WO2013084207A1 - Formulações micelares proteicas e respectivo método de produção - Google Patents

Formulações micelares proteicas e respectivo método de produção Download PDF

Info

Publication number
WO2013084207A1
WO2013084207A1 PCT/IB2012/057082 IB2012057082W WO2013084207A1 WO 2013084207 A1 WO2013084207 A1 WO 2013084207A1 IB 2012057082 W IB2012057082 W IB 2012057082W WO 2013084207 A1 WO2013084207 A1 WO 2013084207A1
Authority
WO
WIPO (PCT)
Prior art keywords
formulation according
micelles
aqueous phase
protein
lipophilic phase
Prior art date
Application number
PCT/IB2012/057082
Other languages
English (en)
French (fr)
Inventor
Artur Manuel Cavaco Paulo
Andreia Ferreira Castro Gomes
Raquel JESUS MARQUES SILVA
Ana Isabel SÁ LOUREIRO
Ana Arminda LOPES PRETO DE ALMEIDA
Original Assignee
Universidade Do Minho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Do Minho filed Critical Universidade Do Minho
Publication of WO2013084207A1 publication Critical patent/WO2013084207A1/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/196Carboxylic acids, e.g. valproic acid having an amino group the amino group being directly attached to a ring, e.g. anthranilic acid, mefenamic acid, diclofenac, chlorambucil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/5415Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame ortho- or peri-condensed with carbocyclic ring systems, e.g. phenothiazine, chlorpromazine, piroxicam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin

Definitions

  • the present invention describes in protein micellar formulations for controlled release of natural polymer-based agents, more specifically proteins and peptides. More specifically, the production of micelles with polymeric material is carried out with processes involving high energy, namely ultrasound and high pressure homogenizer, in order to obtain formulations with micelles that have a diameter between 30 and 5000 nm. increase the bioavailability of the active ingredients for different topical and / or intravenous pharmaceutical, cosmetic and detergent applications.
  • Vesicular systems such as liposomes, polymer micelles, polymer conjugates, micro and nanoparticles, have several important applications including microencapsulation of dyes, flavors, perfumes and cosmetics, creams, drug release, magnetic resonance contrast agents and echocardiography. , study of membrane structure, function and reactivity. In fact, vesicular systems are still developing and have attracted great interest in the development of new formulations due to their ability to release different types of hydrophilic and lipophilic drugs in specific areas of the body. Compared to conventional dosage forms, these systems provide numerous advantages, including increased therapeutic index. In addition, these vehicles carriers overcome some stability and solubility problems of drugs in biological fluids.
  • nanoparticles A large part of nanoparticles is obtained from synthetic polymers such as polylactic acid, polyorthoesters, etc. and natural such as lipids, oligopeptides, polysaccharides, chitosan, dextrins, proteins, among others.
  • Nanoparticles are thus considered to be highly promising systems in the field of bioactive agent vectoring, as their physicochemical properties can be modulated through a correct selection of various operating parameters thus presenting a high ability to carry a wide range of substances.
  • Protein nanoparticles have been mentioned in the literature as drug carrier systems or as diagnostic agents. However, some of the obstacles encountered in nanocapsulation are due to the use of high temperature organic solvents that can cause damage to the encapsulating material, such as drugs (in US Nos. 3,886,084; 3,937,668; 4,357,259) (Vassiliades 1975 ; Zolle 1976; Oppenheim 1978). Albumin nanoparticles can be prepared by denaturation from temperature rise or through the use of crosslinking agents. In this process an aqueous protein solution is added to an immiscible liquid or an oil phase.
  • the drops of the protein solution are dispersed by high agitation and then stabilized with a temperature increase (100 ° C and 150 ° C) to form nanoparticles (Leucuta et al. 1988).
  • This method has a limitation of the material to be encapsulated as it does not allow the encapsulation of heat sensitive agents.
  • the method of Chemical crosslinking is based on the addition of glutaraldehyde to the emulsion to make the chemical bond between glutaraldehyde and protein followed by rinsing and storage (Lee et al. 1981).
  • the major disadvantage of this technique is the use of crosslinking agents which are generally highly toxic.
  • the present invention describes protein micellar formulations for controlled release of agents and their method of production.
  • the invention is a novel micelle composition for pharmaceutical applications, cosmetics and detergents.
  • formulations for micelle formation comprising:
  • a lipophilic phase comprising a hydrophobic compound
  • aqueous phase may be water or any buffer best suited for a particular application, such as an aqueous bovine serum albumin (BSA) solution; human serum albumin (HSA); silk fibroin or a polypeptide.
  • BSA bovine serum albumin
  • HSA human serum albumin
  • the present invention describes formulations for micelle formation comprising:
  • a lipophilic phase comprising a hydrophobic compound
  • the sizes of said micelles range from 30-5000 nm, preferably 30-100 nm.
  • Another embodiment is a formulation containing the following composition: 50-99.5% v / v of the aqueous phase which contains 0.1-8 g / l of a dissolved adjuvant, preferably 2-6 g / l, most preferably 4-5 g / l ;
  • a lipophilic phase preferably between 0.1-5%, even more preferably 0.5-2.5 ⁇ 6.
  • the aqueous phase of the described formulations comprises at least one of the following solutions:
  • BSA bovine serum albumin
  • SAH human serum albumin
  • GAGAGA GAGSGS; GSGSGS; GAGAGL; GAGLGL; GLGLGL; GDGDGD; GAGAGD; GAGDGD;
  • KRSSPDTSGIKSLD KRYYPDTYGIKYLD; KRHHPDTHGIKHLD; KRFFPDTFGIKFLD; KRLLPDTLGIKLLD.
  • the peptides with higher amino acids i.e. from 6 amino acids, preferably from 10 amino acids; these being hydrophobic, they allow the formation of smaller micelles.
  • the variation of the hydrophobic fraction fraction between 0.1-50% v / v which makes up the lipophilic phase, interferes with the micelle diameter as well as the stability over time. (ie, lower% greater stability).
  • the physicochemical properties of micelles are also influenced. Increasing protein concentration and decreasing lipid fraction leads to a reduction in micelle size and more homogeneous and more stable samples, namely concentrations greater than 1 g / L albumin and lipid fractions below 20%.
  • the formulations described in the present invention may optionally contain a hydrophilic active compound namely diclonofenac, or piroxicam, among others.
  • the formulations described in the present invention may further contain a targeting agent - targeting agent for recognizing certain cells in the aqueous phase or lipophilic phase, namely folic acid.
  • the lipophilic phase of the formulations described in the present invention comprises at least one of the following solutions n-dodecane; vegetable oil, cooking oil, among others.
  • the lipophilic phase may further contain:
  • At least one hydrophobic active compound selected from the following group taxol, celecoxib, piroxicam, CORMs or; At least one compound selected from the following group fragrances, perfumes, or essential oils.
  • the adjuvant may be a surfactant or a polymer. Even more preferably the adjuvant may be selected from the following polysorbate group 80; poloxamer 407; sodium dodecyl sulfate; polyvinyl alcohol or pluronic acid, among others.
  • formulations described in the present invention contain an aqueous phase comprising an albumin solution; a lipophilic phase comprises a vegetable oil and the adjuvant is poloxamer.
  • the formulation may further contain additives, active compounds, fragrances, etc.
  • formulations described in the present invention may be used in medicine i.e. as a medicament or as a pharmaceutical composition, or as a cosmetic in particular in cosmetic compositions or as a detergent (solid or liquid).
  • compositions comprising the micellar formulations described in the present invention may be administered topically, orally, parenterally, injectably, in particular for intravenous, subcutaneous and intramuscular application.
  • the cosmetic compositions comprising the micellar formulations described in the present invention may be the above cosmetic compositions characterized in that they are in the form of a cream, lotion or gel, in particular used in the treatment of skin or hair problems.
  • Another preferred embodiment describes a method of preparing the micelle forming formulations described in the present invention, as they are obtained from two different methodologies, namely by ultrasound or by a high pressure homogenizer.
  • micelles are produced by ultrasonification or high pressure homogenization of an aqueous phase containing a natural or synthetic protein or peptide; a lipophilic phase is comprised of a hydrophobic compound and an adjuvant, and no crosslinking agents or primers are required.
  • a lipophilic phase is comprised of a hydrophobic compound and an adjuvant, and no crosslinking agents or primers are required.
  • the present invention consists of a new formulation and its method of preparing micelle formation for pharmaceutical, cosmetic and detergent applications, the formulations described in the present invention allow to increase the micelle formation yield by more than 90% and the encapsulation efficiency of the compounds in Protein micelles obtained by these formulations is greater than 80%.
  • it proposes controlled release protein compositions for "in vivo" applications.
  • controlled release in vivo refers to the release of biological or non-biological material from oral, intravenous, subcutaneous, intramuscular, topical, etc. administration.
  • active compound refers to active pharmaceutical agents such as analgesic agents, anti-inflammatory agents, antibiotic agents, antifungal agents, anticancer agents, among others.
  • non-active compound refers for example to fragrances or essential oils, among others.
  • the method comprises obtaining protein micelles from a high amount of energy.
  • This energy can be obtained from the use of ultrasound, or the use of a high pressure homogenizer or even from a stir plate, depending on whether more homogeneous samples and smaller sizes are to be obtained or whether it is intended to be used. small protein concentrations.
  • protein encompasses natural or synthetic proteins, peptides, polypeptides, polyamino acids.
  • the preparation method involves two distinct phases: aqueous phase and lipophilic phase, using high energy techniques, namely ultrasound and high pressure homogenizer.
  • the solvent may be water or any buffer most suitable for a particular application, such as an aqueous bovine serum albumin (BSA) solution; human serum albumin (HSA); silk fibroin or a polypeptide according to the following sequences (terminal NC: six amino acid peptides GAGAGS; GAGAGA; GAGSGS; GSGSGS; GAGAGL; GAGLGL; GLGLGL; GDGDGD; GAGAGD; GAGDGD; or peptides with different amino acids DAAGAAAA; DDAAGAAAA; DDDAAGAAAA; DDDDAAGAAAA; DAAGAAAAGAAAAGAAAAGAAAA; DDDDAAGAAAAGAAAAAAAAAA; DDDDAAGAAAAGAAAAAAAAAA; DDDDAAGAAAAGAAAAAAAAAAAA; DDDDAAGAAAAGAAAAAAAAAAAAAA; DD
  • ILLRKLHVPFFPIGFRGRPAAS ILLRKLHVPI I PIGIRGRPAAS; ILLRKLHVPWWPIGWRGRPAAS ILLRKLHVPYYPIGYRGRPAAS; ILLRKLHVAHGAIGIRGRPAAS ILLRKLHVCHGCIGIRGRPAAS; fourteen amino acid peptides; KRCCPDTCGIKCLD; KRSSPDTSGIKSLD; KRYYPDTYGIKYLD; KRHHPDTHGIKHLD; KRFFPDTFGIKFLD;
  • KRLLPDTLGIKLLD KRLLPDTLGIKLLD.
  • These synthetic peptides vary in their composition with regard to the number and type of amino acids, enabling micelle size control.
  • the most amino acid peptides - i.e. from 6 amino acids, preferably from 10 amino acids; these being hydrophobic, it allows the formation of smaller micelles.
  • This phase may further contain an active compound, which is hydrophilic, such as diclofenac.
  • the lipophilic phase may be any solvent that is immiscible with aqueous phase to form two distinct phases, such as n-dodecane (organic solvent) or vegetable oil or cooking oil, among others.
  • Hydrophobic active compounds such as for example celecoxib, taxol, piroxicam or non-active fragrance compounds should be added at this stage.
  • an adjuvant a third component to this composition, called an adjuvant
  • an adjuvant will influence the properties of micelles: size, polydispersity and surface potential.
  • the process of micelle formation is a complex phenomenon that has not yet been completely clarified.
  • Addition of the adjuvant is carried out in the aqueous phase at room temperature prior to sonication or homogenizer treatment.
  • Adjuvants are the use of any surfactant or any polymer which has the ability to decrease surface tension and stabilize micelles.
  • this adjuvant is not fully understood; a surfactant or polymer capable of decreasing surface tension and stabilizing micelles such as polysorbate 80 (Tween 80) may be used as an adjuvant; poloxamer 407; sodium dodecyl sulfate (SDS); polyvinyl alcohol (PVA) or pluronic acid (F-68 and F-127).
  • Teween 80 polysorbate 80
  • poloxamer 407 sodium dodecyl sulfate
  • SDS sodium dodecyl sulfate
  • PVA polyvinyl alcohol
  • pluronic acid F-68 and F-127
  • the physicochemical properties of micelles are also influenced. Increased protein concentration and decreased lipid fraction leads to a reduction in micelle size and more homogeneous and more stable samples, namely, concentrations greater than 1 g / L albumin and lipid fractions below 20%.
  • a targeting agent can also be added. Different targeting agents may be added depending on the target. The objective is to enable specific recognition of certain target cells to be treated, such as micelles can be directed to sites of inflammation since these sites have activated macrophages that have the folate receptor on the surface.
  • the targeting agent may be folic acid.
  • the targeting agent may be bound to the protein used for micelle formation. Thus, a certain ratio of a solution of this folate-bound protein is added to the aqueous phase of the composition at the time of preparation. In the present work, after several optimization steps it was determined that the use of the 1/100 ratio of folate bound BSA / BSA allowed the detection of folate on the micelle surface.
  • Example 1 Obtaining protein micelles containing an anti-inflammatory drug (Piroxicam) from the sonochemical method for application to human skin burns
  • the protein used in this example was bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • the composition used for the preparation of these protein micelles consists of a BSA aqueous phase with a concentration of 5 gL -1 (87% aqueous phase), a low percentage lipophilic phase (5% edible oil) and 8 g / L of adjuvant agent, polyvinyl alcohol.
  • the lipophilic drug used was piroxicam
  • the size distribution was obtained by the photon correlation spectroscopy technique in the equipment designated Zeta Sizer NS, presenting micelles with diameters of 280 nm and a polydispersity of 0.090.
  • the surface charge of these micelles was measured in terms of zeta potential obtained in Zeta Sizer NS, presenting negative charge (-4 mV).
  • These micelles were also analyzed by scanning electron microscopy for the purpose of determining morphology, having a spherical shape. These micelles showed great stability over two months. Cytotoxicity assays revealed that these protein micelles showed low cytotoxicity when tested on human cell lines (human fibroblasts-BJ5ta).
  • the protein used in this example was bovine serum albumin (BSA).
  • BSA bovine serum albumin
  • the composition used for the preparation of these protein micelles consists of an aqueous BSA phase with a concentration of 10 gL -1 (99% aqueous phase), a low percentage lipophilic phase (0.5% edible oil) and 0.5% adjuvant. polysorbate 80.
  • a targeting agent folic acid (FA).
  • the method of preparing these micelles is to homogenize at room temperature the protein solution containing the adjuvant with the lipophilic phase which contains the lipophilic drug dissolved at a concentration of 20 mg. ml -1 .
  • This composition was subjected to 26 cycles using high pressures at the two pressure stages present in the homogenizer (Stage 1 pressure approximately 580 bar and Stage 2 pressure approximately 240 bar).
  • the size distribution was obtained by the photon correlation spectroscopy technique in the equipment called Zeta Sizer NS, presenting micelles with diameters of approximately 70 nm and a polydispersity of approximately 0.2.
  • the surface charge of these micelles was measured in terms of zeta potential obtained in the Zeta Sizer NS, presenting negative charge (approximately -4 mV).
  • These micelles were also analyzed by scanning electron microscopy for the purpose of determining morphology, having a spherical shape. These micelles showed great stability over five months.
  • the formulations may comprise different ratios of aqueous phase / lipophilic phase in the homogenizer, we compare several ratios below.
  • Poloxamer 407 at a concentration of 0.1-5 g / L is present in the aqueous phase when preparing the protein composition.
  • Table 1 Comparison of mean micelle sizes and polydispersity of compositions without Poloxamer 407 and with two concentrations of this copolymer.
  • the following embodiments contain the targeting agent -targeting: These protein compositions may optionally further contain a targeting agent for recognizing certain target cells.
  • the targeting agent used was folic acid (FA). Internalization tests were performed on cancer cells (CACO-2) as well as activated macrophages, cells that express folate receptor.
  • Grinstaff, MWP, CA Soon-shiong, Patrick (Los Angeles, CA), Wong, Michael (Champagne, IL), Sandford, Paul A. (Los Angeles, CA), Suslick, Kenneth S. (Champagne, IL) , Desai, Neil P. (Los Angeles, CA) (1997).
  • Grinstaff, MWP, CA Soon-shiong, Patrick (Los Angeles, CA), Wong, Michael (Champagne, IL), Sandford, Paul A. (Los Angeles, CA), Suslick, Kenneth S.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)

Abstract

A presente invenção descreve em formulações micelares proteicas para libertação controlada de agentes e respetivo método de produção. A invenção descreve numa nova composição de micelas para aplicações farmacêuticas, cosméticas e detergência. Nomeadamente, formulações para a formação de micelas que compreendem: • uma fase aquosa contendo uma proteína ou um péptido natural ou sintético; • uma fase lipofílica que compreende um composto hidrofóbico; • um agente adjuvante dissolvido na fase aquosa que regula o tamanho e estabilidade das micelas; em que os tamanhos das referidas micelas varia entre 30 a 5000 nm, de preferência de 30-100 nm, as referidas micelas podem ser obtidas a partir de duas metodologias diferentes, nomeadamente ultra-sons ou homogeneizador de alta pressão. O método de preparação envolve duas fases distintas: fase aquosa e fase lipofilica. A fase aquosa pode ser água ou qualquer tampão que mais se adeque para uma determinada aplicação, como por exemplo uma solução aquosa de albumina sérica bovina (BSA); albumina sérica humana (HSA); fibroína da seda ou de um polipéptido.

Description

DESCRIÇÃO
FORMULAÇÕES MICELARES PROTEICAS E RESPECTIVO MÉTODO DE
PRODUÇÃO
Campo da invenção
A presente invenção descreve em formulações micelares proteicas para libertação controlada de agentes, com base em polímero naturais, mais concretamente proteínas e péptidos. Mais especificamente, a produção das micelas com material polimérico é efetuada com processos que envolvem elevada quantidade de energia, nomeadamente ultra-sons e homogeneizador de alta pressão, de forma a obter formulações com micelas que possuem um diâmetro entre 30 a 5000 nm com o objetivo de aumentar a biodisponibilidade dos princípios ativos para diferentes aplicações farmacêuticas tópica e/ou intravenosa, cosméticas e detergência.
Antecedentes da invenção
Os sistemas vesiculares, como lipossomas, micelas poliméricas, conjugados de polímeros, micro e nanopartícuias , possuem diversas e importantes aplicações, incluindo a microencapsulação de corantes, aromas, perfumes e cosméticos, cremes, libertação de fármacos, agentes de contraste para ressonância magnética e ecocardiografia, estudo da estrutura da membrana, função e reactividade . Na verdade, os sistemas vesiculares continuam em desenvolvimento e têm atraído grande interesse no desenvolvimento de novas formulações, devido à capacidade que possuem de libertar diferentes tipos de drogas, hidrofílicas e lipofílicas, em áreas específicas do corpo. Em comparação com as formas farmacêuticas convencionais, estes sistemas proporcionam inúmeras vantagens, incluindo o aumento do índice terapêutico. Além disso, esses veículos transportadores superam alguns problemas de estabilidade e solubilidade de fármacos em fluidos biológicos.
Uma grande parte das nanoparticulas é obtida a partir de polímeros sintéticos como o ácido poliláctico, poliortoesteres , etc. , e naturais como por exemplo lipidos, oligopeptidos , polissacarideos , quitosano, dextrinas, proteínas, entre outros.
As nanoparticulas são assim, consideradas sistemas altamente promissores no domínio da vectorização de agentes bioactivos, pois as suas propriedades físico-químicas podem ser moduladas através de uma correcta selecção de diversos parâmetros operacionais apresentando assim uma elevada capacidade de transportarem uma grande diversidade de substâncias .
As nanoparticulas proteicas têm sido mencionadas na literatura, como sistemas transportadores de fármacos ou como agentes de diagnóstico. No entanto, alguns dos obstáculos encontrados à nanoencapsulação devem-se à utilização de solventes orgânicos e de temperaturas elevadas susceptíveis de causar danificação no material a encapsular, como por exemplo nos fármacos (nos documentos US N° 3,886,084; 3,937,668; 4,357,259) (Vassiliades 1975; Zolle 1976; Oppenheim 1978) . As nanoparticulas de albumina podem ser preparadas por desnaturação a partir do aumento de temperatura ou através do uso de agentes "crosslinking" . Neste processo uma solução aquosa de proteína é adicionada a um líquido imiscível ou a uma fase oleosa. As gotas da solução proteica são dispersas através de uma elevada agitação, sendo posteriormente estabilizadas com um aumento de temperatura (100° C e os 150° C) para formar nanoparticulas (Leucuta et al . 1988). Este método possui uma limitação do material a encapsular, pois não permite o encapsulamento de agentes sensíveis ao calor. O método de "crosslinking" químico baseia-se na adição de glutaraldeido à emulsão para que ocorra a ligação química entre o glutaraldeido e a proteína efectuando-se logo de seguida as lavagens para depois proceder-se ao seu armazenamento (Lee et al . 1981) . A grande desvantagem desta técnica é o uso de agentes "crosslinking" que apresentam de uma forma geral uma elevada toxicidade. Mais tarde, surgiram novas técnicas de preparação de nanoparticulas de proteína sem recorrer ao uso de temperaturas elevadas ou até mesmo de agentes "crosslinking", como está referido no documento US N° 4,357,259 (Senyei 1982). Este método refere-se apenas ao encapsulamento de compostos solúveis em água não usando adjuvantes, apresentando tempos de preparação superiores a 1 hora e o envolvimento de múltiplas técnicas (agitação seguida de sonicação) para a obtenção de partículas com tamanhos superiores a 1000 nm.
Diversos documentos e artigos sobre o aperfeiçoamento de produção de nanoparticulas foram surgindo ao longo destes anos (US N° : 5,069,936; WO 91/06286; US N° : 6,592,844; US 2004/0043077; US2007 / 0122465 ; US2008 / 0233201 ) (Yen 1991; Mathiowitz 1993; Coombes 2002; Brown 2004; Royere 2008) . Um elevado número de processos tem sido utilizado na produção de nanoparticulas para uma grande diversidade de aplicações, nomeadamente, sistemas de ultra-sons, e o homogeneizador de alta pressão, uma vez que estes aumentam o potencial efeito de agitação/mistura acelerando uma grande variedade de processos químicos e físicos.
A produção de nanoparticulas de proteínas através de sistemas de ultrasons tem sido explorada. Albunex é um produto aprovado pelo FDA (Food and Drug Administration) , que consiste em micropartícuias de albumina produzidas por ultra-sons sendo estas aplicadas por via intravenosa, como agente de contraste para ultra-sonografia e como um eco- agente de contraste para ecocardiograma (Grinstaff and Suslick 1991) . No entanto, a escolha da proteína, assim como, os materiais a encapsular nestas nanopartícuias , permitem uma infinidade de aplicações biomédicas. Algumas das aplicações das nanoparticulas biocompatíveis incluem agentes de contraste para ressonância magnética e ecocardiografia e novos sistemas de libertação controlada (Suslick and Grinstaff 1990) . Todas estas aplicações e procedimentos estão descritos nos documentos US N° : 5,362,478; 5,439,686; 5,505,932; 5,508,021; 5,512,268; 5,635,207; 5,639,473; 5,650,156; 5,665,382; 5,665,383; 7,217,410 B2 7 (Desai 1994; Desai 1995; Grinstaff 1996; Grinstaff 1996; Grinstaff 1996; Grinstaff 1997; Grinstaff 1997; Grinstaff 1997; Grinstaff 1997; Grinstaff 1997; Desai 2003; Suslick 2007) . Os documentos US N° : 5, 916, 596 e 2003/0133955 (Desai 1999; Desai 2003) mencionam o uso de ultra-sons e homogeneizador de alta pressão, obtendo nanoparticulas de proteínas com diferentes tamanhos, de acordo com a técnica utilizada. Todas estas patentes acima mencionadas, referem a formação de nano/micropartículas a partir de ligações dissulfidicas entre os resíduos Cisteína presentes nas proteínas, e/ou o uso de agentes "crosslinking" capazes de promover essas ligações dissulfidicas ; atribuindo ainda a estabilidade ao longo do tempo destas partículas, a essas ligações que se estabelecem a quando a sua formação.
Sumário da Invenção
A presente invenção descreve formulações micelares proteicas para libertação controlada de agentes e respectivo método de produção. A invenção consiste numa nova composição de micelas para aplicações farmacêuticas, cosméticas e detergentes. Nomeadamente, formulações para a formação de micelas que compreendem:
• uma fase aquosa contendo uma proteína ou um péptido natural ou sintético;
• uma fase lipofílica que compreende um composto hidrofóbico ;
• um agente adjuvante dissolvido na fase aquosa que regula o tamanho e estabilidade das micelas;
em que os tamanhos das referidas micelas varia entre 30 a 5000 nm, de preferência de 30-100 nm, as referidas micelas podem ser obtidas a partir de duas metodologias diferentes, nomeadamente ultra-sons e homogeneizador de alta pressão. O método de preparação envolve duas fases distintas: fase aquosa e fase lipofilica. A fase aquosa pode ser água ou qualquer tampão que mais se adeqúe para uma determinada aplicação, como por exemplo uma solução aquosa de albumina sérica bovina (BSA) ; albumina sérica humana (HSA) ; fibroína da seda ou de um polipéptido.
A presente invenção descreve formulações para a formação de micelas que compreende:
• uma fase aquosa contendo uma proteína ou um péptido natural ou sintético;
• uma fase lipofílica que compreende um composto hidrofóbico ;
• um agente adjuvante dissolvido na fase aquosa que regula o tamanho e estabilidade das micelas;
em que os tamanhos das referidas micelas varia entre 30- 5000 nm, de preferência de 30-100 nm.
Uma outra realização é uma formulação que contem a seguinte composição • 50-99,5 % v/v da fase aquosa a qual contem 0,1-8 g/l de um agente adjuvante dissolvido, de preferência de 2-6 g/L, ainda mais de preferência 4-5 g/L;
• 0,1-50% v/v uma fase lipofilica, de preferência entre 0,1-5 %, ainda mais de preferência de 0,5- 2,5 ~6.
Numa outra realização ainda mais preferencial, a fase aquosa das formulações descritas compreende pelo menos uma das seguintes soluções:
• albumina sérica bovina (BSA) ;
• albumina sérica humana (HSA) ;
• fibroina da seda
• um polipéptido N-C terminal seis aminoácidos GAGAGS;
GAGAGA; GAGSGS; GSGSGS; GAGAGL; GAGLGL; GLGLGL; GDGDGD; GAGAGD; GAGDGD;
• ou péptidos com diferentes aminoácidos DAAGAAAA;
DDAAGAAAA; DDDAAGAAAA; DDDDAAGAAAA; DAAGAAAAGAAAAGAAAAGAAAA; DDDDAAGAAAAGAAAAGAAAAGAAAA;
• péptidos com vinte e dois aminoácidos ILLRKLHVPFFPIGFRGRPAAS; ILLRKLHVPI I PIGIRGRPAAS ; ILLRKLHVPWWPIGWRGRPAAS ; ILLRKLHVPYYPIGYRGRPAAS ; ILLRKLHVAHGAIGIRGRPAAS ; ILLRKLHVCHGCIGIRGRPAAS ;
• péptidos com catorze aminoácidos; KRCCPDTCGIKCLD;
KRSSPDTSGIKSLD; KRYYPDTYGIKYLD; KRHHPDTHGIKHLD; KRFFPDTFGIKFLD; KRLLPDTLGIKLLD .
Nas diversas realizações da presente invenção, verificou-se que os péptidos com maior número de aminoácidos - isto é, a partir de 6 aminoácidos, de preferência a partir de 10 aminoácidos; sendo estes hidrofóbicos, permitem a formação de micelas com tamanho mais reduzido. No que se refere ao aperfeiçoamento das micelas proteicas, a variação da fracção do composto hidrofóbico entre 0,1-50% v/v, que compõe a fase lipofilica, interfere no diâmetro das micelas, assim como, na estabilidade destas ao longo do tempo (i.e., menores % maior estabilidade). Com diferentes concentrações de proteína, bem como diferentes percentagens de agente adjuvante, as propriedades físico-químicas das micelas são também influenciadas . O aumento de concentração de proteína e a diminuição da fracção lipídica leva a uma redução do tamanho das micelas e a amostras mais homogéneas e mais estáveis nomeadamente, concentrações superiores a 1 g/L de albumina e fracções lipídicas inferiores a 20%.
Numa outra realização ainda mais preferencial, as formulações descritas na presente invenção podem opcionalmente conter um composto ativo hidrofílico nomeadamente o diclonofenac, ou o piroxicam, entre outros.
Numa outra realização ainda mais preferencial, as formulações descritas na presente invenção podem ainda conter um agente alvo - "agente targeting" -_ de reconhecimento de determinadas células na fase aquosa ou fase lipofilica, nomeadamente o ácido fólico.
Numa outra realização ainda mais preferencial, a fase lipofilica das formulações descritas na presente invenção compreende pelo menos uma das seguintes soluções o n- dodecano; óleo vegetal, óleo alimentar, entre outras. Numa outra realização ainda mais preferencial, a fase lipofilica poderá ainda conter:
• pelo menos um composto ativo hidrofóbico, seleccionado do seguinte grupo taxol, celecoxib, piroxicam, CORMs ou; • pelo menos um composto seleccionado do seguinte grupo fragâncias, perfumes, ou óleos essenciais.
Numa outra realização ainda mais preferencial, das formulações descritas na presente invenção o agente adjuvante poderá ser um surfactante ou um polímero. Ainda mais de preferência o agente adjuvante pode ser seleccionado do seguinte grupo polisorbato 80; poloxamer 407; dodecil sulfato de sódio; álcool polivinílico ou ácido plurónico, entre outros.
Numa outra realização ainda mais preferencial, das formulações descritas na presente invenção contem uma fase aquosa que compreende uma solução de albumina; uma fase lipofílica compreender um óleo vegetal e pelo agente adjuvante ser poloxamer. A formulação poderá ainda conter aditivos, compostos activos, fragâncias, etc.
As formulações descritas na presente invenção poderão ser usadas em medicina i.e. como medicamento ou como composição framaçeuticas , ou como cosmético nomeadamente em composições cosméticas, ou como detergente (sólidos ou líquidos) .
Numa outra realização, as composições farmacêuticas que compreendem as formulações micelares descritas na presente invenção poderão ser ministrada por via tópica, oral, parental, injectável, nomeadamente para aplicação intravenosa, subcutânea e intramuscular.
Numa outra realização, as composições cosméticas que compreendem as formulações micelares descritas na presente invenção poderão as composições cosméticas anterior caracterizadas por terem a forma de creme, loção ou gel, nomeadamente usadas no tratamento de problemas de pele ou cabelo . Uma outra realização preferência descreve um método de preparação das formulações para a formação das micelas descritas na presente invenção, por serem obtidas a partir de duas metodologias diferentes, nomeadamente por ultra- sons ou por um homogeneizador de alta pressão.
Descrição detalhada da invenção
Na presente invenção as micelas são produzidas por ultrasonificação ou por homogeneização de alta pressão, de uma fase aquosa contendo uma proteína ou um péptido natural ou sintético; uma fase lipofílica esteja compreendida por um composto hidrofóbico e um agente adjuvante, não sendo necessário a utilização de agentes de "crosslinking" ou iniciadores. Desta forma, é possível a formação de micelas proteicas com um diâmetro reduzido (30 -5000 nm) através de um único passo de processamento da composição descrita, eliminando-se passos intermédios como por exemplo a evaporação de solventes orgânicos utilizados como agentes de "crosslinking" . Pela aplicação destas técnicas de elevada energia e pela presença do adjuvante são obtidas pequenas micelas, onde a proteína se encontra localizada na interface óleo/água, como uma fina camada de revestimento de superfície. As micelas proteicas produzidas são ideais para diversas aplicações que vão desde a indústria farmacêutica, à cosmética e detergência.
A presente invenção consiste numa nova formulação e respectivo método de preparação de formação de micelas para aplicações farmacêuticas, cosméticas e detergência, as formulações descritas na presente invenção permitem aumentar o rendimento de formação de micelas superior a 90% e a eficácia de encapsulamento dos compostos nas micelas proteicas obtidas por estas formulações é superior a 80%. De acordo com a presente invenção, esta propõe composições proteicas para libertação controlada, para aplicações "in vivo ".
0 termo "libertação controlada in vivo" refere-se à libertação de material biológico ou não biológico a partir da administração oral, intravenosa, subcutânea, intramuscular, tópica, etc.
0 termo "composto activo" refere-se agentes farmacêuticos ativos como os agentes analgésicos, agentes anti- inflamatórios , agentes antibióticos, agentes antifúngicos , agentes anticancerigenos , entre outros.
0 termo "composto não activo" refere-se por exemplo a fragrâncias ou óleos essenciais, entre outros.
0 método compreende a obtenção de micelas de proteína, a partir de uma elevada quantidade de energia. Esta energia pode ser obtida a partir de o uso de ultra-sons, ou pelo uso de homogeneizador de alta pressão ou até mesmo a partir de uma placa de agitação, dependendo se se pretende obter amostras mais homogéneas e tamanhos mais pequenos ou se pretende utilizar pequenas concentrações de proteínas.
Qualquer proteína pode formar este tipo de micelas. 0 termo "proteína" engloba proteínas, péptidos, polipéptidos , poliaminoácidos , naturais ou sintéticos.
0 método de preparação envolve duas fases distintas: fase aquosa e fase lipofílica, recorrendo-se a técnicas de elevada energia, nomeadamente o ultra-sons e homogeneizador de alta pressão. Na fase aquosa o solvente poderá ser água ou qualquer tampão que mais se adeqúe para uma determinada aplicação, como por exemplo uma solução aquosa de albumina sérica bovina (BSA) ; albumina sérica humana (HSA) ; fibroína da seda ou de um polipéptido de acordo com as seguintes sequências (N-C terminal: péptidos com seis aminoácidos GAGAGS; GAGAGA; GAGSGS; GSGSGS; GAGAGL; GAGLGL; GLGLGL; GDGDGD; GAGAGD; GAGDGD; ou péptidos com diferentes aminoácidos DAAGAAAA; DDAAGAAAA; DDDAAGAAAA; DDDDAAGAAAA; DAAGAAAAGAAAAGAAAAGAAAA; DDDDAAGAAAAGAAAAGAAAAGAAAA; péptidos com vinte e dois aminoácidos
ILLRKLHVPFFPIGFRGRPAAS ILLRKLHVPI I PIGIRGRPAAS ; ILLRKLHVPWWPIGWRGRPAAS ILLRKLHVPYYPIGYRGRPAAS ; ILLRKLHVAHGAIGIRGRPAAS ILLRKLHVCHGCIGIRGRPAAS ; péptidos com catorze aminoácidos; KRCCPDTCGIKCLD; KRSSPDTSGIKSLD; KRYYPDTYGIKYLD; KRHHPDTHGIKHLD; KRFFPDTFGIKFLD;
KRLLPDTLGIKLLD . Estes péptidos sintéticos variam na sua composição, no que se refere ao número e tipo de aminoácidos, possibilitando controlo do tamanho das micelas. Os péptidos com maior número de aminoácidos-isto é a partir de 6 aminoácidos, de preferência a partir de 10 aminoácidos; sendo estes hidrofóbicos, permite a formação de micelas com tamanho mais reduzido. Esta fase poderá conter ainda um composto activo, sendo este hidrofilico, tal como por exemplo o diclofenac.
A fase lipofilica poderá ser qualquer solvente que seja imiscivel com fase aquosa de modo a formar duas fases distintas, como por exemplo n-dodecano (solvente orgânico) ou óleo vegetal ou óleo alimentar, entre outros. Os compostos activos hidrofóbicos, tais como por exemplo, o celecoxib, taxol, piroxicam ou compostos não activos como fragâncias deverão ser adicionados nesta fase.
A adição de um terceiro componente a esta composição, designado por agente adjuvante, irá influenciar as propriedades das micelas: o tamanho, polidispersividade e o seu potencial de superfície. O processo de formação de micelas é um fenómeno complexo que ainda não foi completamente esclarecido. A adição do agente adjuvante é efetuada na fase aquosa à temperatura ambiente, antes de submeter ao tratamento do ultra-sons ou do homogeneizador . Como adjuvantes entende-se o uso de qualquer surfatante ou qualquer polímero que tenha a capacidade diminuir a tensão superficial e de estabilizar as micelas. O mecanismo deste agente adjuvante não está totalmente esclarecido, podemos utilizar com agente adjuvante um surfactante ou polímero capaz de diminuir a tensão superficial e de estabilizar as micelas como por exemplo, o polisorbato 80 (Tween 80); poloxamer 407; o dodecil sulfato de sódio (SDS) ; o álcool polivinílico (PVA) ou ácido plurónico (F-68 e o F-127) . Assim, é possível a obtenção de micelas com tamanhos que variam entre os 30- 5000 nm. Os tamanhos obtidos permite com que estas micelas sejam compatíveis com diversas vias de administração, incluindo intravenosa, intradérmica, subcutânea, transdérmica (por exemplo, tópica) e transmucosa.
No que se refere ao aperfeiçoamento das micelas proteicas, a variação da fracção do composto hidrofóbico entre 0,1-50% v/v, que compõe a fase lipofilica, interfere no diâmetro das micelas, assim como, na estabilidade destas ao longo do tempo (i.e., menores % maior estabilidade). Com diferentes concentrações de proteína, bem como diferentes percentagens de agente adjuvante, as propriedades físico-químicas das micelas são também influenciadas . O aumento de concentração de proteína e a diminuição da fracção lipídica leva a uma redução do tamanho das micelas e a amostras mais homogéneas e mais estáveis nomeadamente, concentrações superiores a 1 g/L de albumina e fracções lipídicas inferiores a 20%
Opcionalmente, pode ainda ser adicionado um agente "targeting". Diferentes agentes "targeting" podem ser adicionados consoante o alvo. O objectivo é permitir o reconhecimento específico de determinadas células alvo a serem tratadas, como por exemplo as micelas podem ser direccionadas para locais de inflamação dado que esses locais têm macrófagos activados que possuem o receptor de folato à superfície. Opcionalmente, o agente alvo "targeting" poderá ser o ácido fólico. O agente de "targeting" pode encontrar-se ligado à proteína utilizada para a formação das micelas. Desta forma, uma determinada razão de uma solução desta proteína ligada ao folato é adicionada à fase aquosa da composição aquando da preparação. No presente trabalho, após várias etapas de optimização determinou-se que a utilização da razão de 1/100 de BSA ligada a folato/BSA permitiu a detecção de folato à superfície das micelas.
Descrição detalhada
Seguidamente serão apresentados exemplos que não deverão ser considerados limitativos.
Exemplo 1 - Obtenção de micelas proteicas contendo um fármaco anti-inflamatório (Piroxicam) , a partir do método sonoquimico, para aplicação em queimaduras de pele humana
A proteína usada neste exemplo foi a albumina de sérica bovina (BSA) . A composição utilizada para a preparação destas micelas proteicas consiste numa fase aquosa de BSA com uma concentração de 5 g.L-1 (87% de fase aquosa), numa fase lipofílica presente em baixa percentagem (5% de óleo alimentar) e 8 g/L de agente adjuvante, o álcool polivinílico . O fármaco lipofílico usado foi o piroxicam
(3 mM) , sendo este um anti-inflamatório . A sonda ultrasónica foi posicionada na interface
(aquosa : lipofílica) aplicando uma amplitude de 40% com uma temperatura inicial de 10° C, dentro do reactor de vidro, durante 3 minutos. Após obtenção das micelas acima referidas, estas foram sujeitas a uma exaustiva caracterização fisico-quimica . As micelas foram submetidas à centrifugação e sucessivas lavagens com o objectivo de as separar da solução mãe de proteína e do piroxicam que ficou por encapsular. A capacidade da proteína para formar micelas, foi obtida através da quantificação de proteína que ficou no sobrenadante, verificando-se um rendimento de formação de micelas superior a 90%. A eficácia de encapsulamento do piroxicam nas micelas proteicas foi de 80%. A distribuição de tamanhos foi obtida através da técnica de espectroscopia de correlação fotónica no equipamento designado Zeta Sizer NS, apresentando micelas com diâmetros de 280 nm e com uma polidispersividade de 0.090. A carga superficial destas micelas foi medida em termos de potencial zeta obtido no Zeta Sizer NS, apresentando carga negativa (-4 mV) . Estas micelas foram também analisadas por microscopia electrónica de varrimento com o objectivo de determinar a morfologia, apresentando uma forma esférica. Estas micelas evidenciaram grande estabilidade ao longo de dois meses. Ensaios de citotoxicidade revelaram que estas micelas proteicas apresentaram baixa citotoxicidade quando testadas em linhas celulares humanas ( fibroblastos humanos- BJ5ta) .
A aplicação tópica destas micelas contendo o agente anti- inflamatório, foi efectuada em equivalentes a pele humana com espessura completa. Provocou-se uma queimadura aplicando-se em seguida as referidas micelas, verificando- se que após 6 dias de tratamento houve uma melhor cicatrização quando comparado com o controlo comercial à base de colagénio (Suprasorb C) . Além disso, o custo monetário deste tipo de formulação obtido com micelas proteicas é considerado baixo em comparação com o colagénio que é bastante dispendioso. Exemplo 2 - Obtenção de micelas proteicas contendo iam fármaco anti-inflamatório (celecoxib) , a partir do método por homogeneização de alta pressão, para aplicação intravenosa em doenças anti-inflamatórias .
A proteína usada neste exemplo foi a albumina de sérica bovina (BSA) . A composição utilizada para a preparação destas micelas proteicas consiste numa fase aquosa de BSA com uma concentração de 10 g.L_1(99% de fase aquosa), numa fase lipofílica presente em baixa percentagem (0.5% de óleo alimentar) e 0.5% de agente adjuvante, o polisorbato 80. A esta composição pode ainda ser adicionado um agente de "targeting", ácido fólico (FA) . 0 método de preparação destas micelas consiste na homogeneização, à temperatura ambiente, da solução proteica contendo o agente adjuvante com a fase lipofílica, a qual contem o fármaco lipofílico dissolvido numa concentração de 20 mg. ml-1. Esta composição foi sujeita a 26 ciclos utilizando pressões elevadas nos dois estágios de pressão presentes no homogeneizador (Pressão no estágio 1 de aproximadamente 580 bar e Pressão no estágio 2 de aproximadamente 240 bar) .
Após obtenção das micelas acima referidas, estas foram sujeitas a uma exaustiva caracterização físico-química . A distribuição de tamanhos foi obtida através da técnica de espectroscopia de correlação fotónica no equipamento designado Zeta Sizer NS, apresentando micelas com diâmetros de aproximadamente 70 nm e com uma polidispersividade de aproximadamente 0.2. A carga superficial destas micelas foi medida em termos de potencial zeta obtido no Zeta Sizer NS, apresentando carga negativa (aproximadamente -4 mV) . Estas micelas foram também analisadas por microscopia electrónica de varrimento com o objectivo de determinar a morfologia, apresentando uma forma esférica. Estas micelas evidenciaram grande estabilidade ao longo de cinco meses. Ensaios de citotoxicidade revelaram que estas micelas proteicas apresentaram baixa citotoxicidade quando testadas em linhas celulares humanas ( fibroblastos humanos- BJ5ta) . Micelas preparadas utilizando uma razão de BSA-FA/BSA de 1/100 demonstraram ter capacidade de ser internalizadas com mais eficiência por células com receptores de ácido fólico, quando comparadas com micelas sem ácido fólico à superfície .
Efeito da composição no tamanho
As formulações podem compreender diferentes razões fase aquosa/ fase lipofílica no homogeneizador , comparamos de seguida diversas razões
Comparativo dos tamanhos
Figure imgf000017_0001
Análise do da concentração do poloxamer no tamanho
Foram igualmente testadas diferentes concentrações de proteína, BSA, tendo-se observado que a utilização de maiores concentrações resultava em micelas menores. Sendo a concentração de lOg/L escolhida como sendo a concentração a utilizar na preparação desta composição proteica. Utilizando esta concentração de proteína e a razão para a qual foram obtidas micelas de menores tamanhos, 99,5% v/v solução aquosa de BSA/ 0,5% v/v óleo alimentar procedeu-se à adição do copolímero, Poloxamer 407. Este copolímero é adicinado na fase aquosa, tendo sido testadas diferentes concentrações. A formulação escolhida como sendo a formulação óptima corresponde à composição proteica caracterizada por compreender:
• 99,5% da fase aquosa contendo BSA à concentração de lOg/L
• 0,5% da fase lipidica constituída por óleo alimentar;
• Poloxamer 407 (agente adjuvante) à concentração de 0,l-5g/L encontra-se presente na fase aquosa aquando da preparação da composição proteica.
Tabela 1 : Comparação de tamanhos médios das micelas e polidispersividade das composições sem Poloxamer 407 e com duas concentrações deste copolímero.
Figure imgf000018_0001
Internalização em células - efeito da variação do poloxamer .
As seguintes realizações contem o agente alvo -targeting: estas composições proteicas podem ainda conter opcionalmente um agente targeting de reconhecimento de determinadas células alvo. O agente de targeting utilizado foi o ácido fólico (FA) . Ensaios de internalização foram realizados em células de cancro (CACO-2) bem como em macrófagos activados, células que expressam receptor de folato .
Tabela 2: Percentagens de internalização de diferentes micelas .
Figure imgf000019_0001
Listagem de Peptidos
Tabela 3 - Construção peptidica com seis aminoácidos.
Sequência peptidica (N-C terminal)
SEQ ID NO: 1 - - GAGAGS
SEQ ID NO: 2 - - GAGAGA
SEQ ID NO: 3 - - GAGSGS
SEQ ID NO: 4 - - GSGSGS
SEQ ID NO: 5 - - GAGAGL
SEQ ID NO: 6 - - GAGLGL
SEQ ID NO: 7 - - GLGLGL SEQ ID NO: 8 - GDGDGD
SEQ ID NO: 9 - GAGAGD
SEQ ID NO: 10 - GAGDGD
Tabela 4 - Construção peptídica com diferente número de aminoácidos
Sequência peptidica (N-C terminal)
SEQ ID NO: 11 - - DAAGAAAA
SEQ ID NO: 12 - - DDAAGAAAA
SEQ ID NO: 13 - - DDDAAGAAAA
SEQ ID NO: 14 - - DDDDAAGAAAA
SEQ ID NO: 15 - - DAAGAAAAGAAAAGAAAAGAAAA
SEQ ID NO: 16 - - DDDDAAGAAAAGAAAAGAAAAGAAAA
Tabela 5- Construção peptidica com vinte e dois aminoácidos
Sequência peptidica
(N-C terminal)
SEQ ID NO: 17 - ILLRKLHVPFFPIGFRGRPAAS
SEQ ID NO: 18 - ILLRKLHVPI I PIGIRGRPAAS
SEQ ID NO: 19 - ILLRKLHVPWWPIGWRGRPAAS
SEQ ID NO: 20 - ILLRKLHVPYYPIGYRGRPAAS
SEQ ID NO: 21 - ILLRKLHVAHGAIGIRGRPAAS
SEQ ID NO: 22 - ILLRKLHVCHGCIGIRGRPAAS Tabela 6 - Construção peptídica com catorze aminoácidos
Sequência peptidica
(N-C terminal)
SEQ ID NO: 23 - - KRCCPDTCGIKCLD
SEQ ID NO: 24 - - KRSSPDTSGIKSLD
SEQ ID NO: 25 - - KRYYPDTYGIKYLD
SEQ ID NO: 26 - - KRHHPDTHGIKHLD
SEQ ID NO: 27 - - KRFFPDTFGIKFLD
SEQ ID NO: 28 - - KRLLPDTLGIKLLD
Tabela 7 - Poli (amino ácidos)
Poli (amino ácidos)
Poli (Lisina)
Poli (Serina)
Poli ( Prolina)
Poli (Alanina)
Referências
Addison, D. K., GB), Essler, Alicia J. (Skipton, GB), Cullen, Breda M. (Skipton, GB), Silcock, Derek W. (Skipton, GB) (2006). Wound treatment device. United States.
Brown, L. R. . , MA, US) (2004). Production of microspheres . United States.
Coombes, A. G. A. . , GB), Lin WU. (NOTTINGHAM, GB), 0'hagen, Derek T. (BERKELEY, CA, US), Davis, Stanley S. (NOTTINGHAM, GB) (2002) . PREPARATION OF PROTEIN
MICROSPHERES, FILMS AND COATINGS. United States.
Desai, N. P. L. A., CA), Soon-shiong, Patrick (Los Angeles, CA), Sandford, Paul A. (Los Angeles, CA), Grinstaff, Mark W. (Pasadena, CA), Suslick, Kenneth S. (Champaign, IL)
(1994) . Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell. United States, Vivorx Pharmaceuticals , Inc. (Santa Mónica, CA).
Desai, N. P. L. A., CA), Soon-shiong, Patrick (Los Angeles, CA), Sandford, Paul A. (Los Angeles, CA), Grinstaff, Mark W. (Pasadena, CA), Suslick, Kenneth S. (Champaign, IL)
(1995) . Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor. United States, VivoRx Pharmaceuticals, Inc. (Santa Mónica, CA) .
Desai, N. P. L. A., CA), Tao, Chunlin (Beverly Hills, CA), Yang, Andrew (Rosemead, CA) , Louie, Leslie (Montebello, CA) , Zheng, Tianli (Culver City, CA) , Yao, Zhiwen (Culver City, CA) , Soon-shiong, Patrick (Los Angeles, CA) , Magdassi, Shlomo (Jerusalém, IL) (1999). Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof. United States, Vivorx Pharmaceuticals , Inc. (Santa Mónica, CA).
Desai, N. P. L. A., CA, US), Soon-shiong, Patrick (Los Angeles, CA, US) (2003) . Methods and compositions useful for administration of chemotherapeutic agents. United States, American BioScience, Inc.
Di Salvo, A. B., NJ, US), Mordas, Carolyn J. (Lawrenceville, NJ, US) , Nikolovski, Janeta (Princeton, NJ, US), Wiegand, Benjamin C. (Yardley, PA, US) (2008). ENZYME INHIBITION USING NANOPARTICLES . United States.
Disalvo, A. L. B., NJ, US), Mordas, Carolyn J. (Princeton, NJ, US) (2005) . Absorbent articles comprising nanoparticles . United States.
Disalvo, A. L. B., NJ, US), Mordas, Carolyn J. (Princeton, NJ, US) (2005) . Enhancing properties by the use of nanoparticles. United States.
Edwards, J. V., D. R. Yager, et al . (2001). "Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution." Wound Repair and Regeneration 9(1): 50-58.
Gestrelius, S. L., SE), Hammarstrom, Lars (Djursholm, SE), Lyngstadaas, Petter (Nesoddtangen, NO) , Andersson, Christer (Vellinge, SE) , Slaby, Ivan (Malno, SE) , Hammargren, Tomas (Malmo, SE) (2003) . Matrix protein compositions for treating infection. United States, Biora BioEx AB . Grinstaff, M . W. and K . S. Suslick (1991). Polym. Prep. 32: 255.
Grinstaff, M. W. P., CA) , Desai, Neil P. (Los Angeles, CA), Suslick, Kenneth S. (Champaign, IL) , Soon-shiong, Patrick (Los Angeles, CA) , Sandford, Paul A. (Los Angeles, CA) , Merideth, Noma R. (Pacific Palisades, CA) (1996) . Method for the preparation of fluorocarbon-containing polymeric shells for medicai imaging. United States, Vivorx Pharmaceuticals , Inc. (Santa Mónica, CA).
Grinstaff, M. W. P., CA), Desai, Neil P. (Los Angeles, CA), Suslick, Kenneth S. (Champaign, IL) , Soon-shiong, Patrick (Los Angeles, CA) , Sandford, Paul A. (Los Angeles, CA) , Merideth, Noma R. (Pacific Palisades, CA) (1996) . Non- fluorinated polymeric shells for medicai imaging. United States, Vivorx Pharmaceuticals, Inc. (Santa Mónica, CA).
Grinstaff, M. W. P., CA), Desai, Neil P. (Los Angeles, CA), Suslick, Kenneth S. (Champaign, IL) , Soon-shiong, Patrick (Los Angeles, CA) , Sandford, Paul A. (Los Angeles, CA) , Merideth, Noma R. (Pacific Palisades, CA) (1996) . Polymeric shells for medicai imaging prepared from synthetic polymers, and methods for the use thereof. United States, Vivorx Pharmaceuticals, Inc. (Santa Mónica, CA).
Grinstaff, M. W. P., CA), Soon-shiong, Patrick (Los Angeles, CA) , Wong, Michael (Champagne, IL) , Sandford, Paul A. (Los Angeles, CA), Suslick, Kenneth S. (Champagne, IL) , Desai, Neil P. (Los Angeles, CA) (1997) . Methods for in vivo delivery of nutriceuticals and compositions useful therefor. United States, Vivorx Pharmaceuticals, Inc. (Santa Mónica, CA) . Grinstaff, M. W. P., CA) , Soon-shiong, Patrick (Los Angeles, CA) , Wong, Michael (Champagne, IL) , Sandford, Paul A. (Los Angeles, CA), Suslick, Kenneth S. (Champagne, IL) , Desai, Neil P. (Los Angeles, CA) (1997) . Methods for the preparation of immunostimulating agents for in vivo delivery. United States, Vivorx Pharmaceuticals , Inc. (Santa Mónica, CA) .
Grinstaff, M. W. P., CA), Soon-shiong, Patrick (Los Angeles, CA) , Wong, Michael (Champaign, IL) , Sandford, Paul A. (Los Angeles, CA), Suslick, Kenneth S. (Champaign, IL) , Desai, Neil P. (Los Angeles, CA) (1997) . Methods for the preparation of blood substitutes for in vivo delivery. United States, Vivorx Pharmaceuticals, Inc. (Santa Mónica, CA) .
Grinstaff, M. W. P., CA), Soon-shiong, Patrick (Los Angeles, CA) , Wong, Michael (Champaign, IL) , Sandford, Paul A. (Los Angeles, CA), Suslick, Kenneth S. (Champaign, IL) , Desai, Neil P. (Los Angeles, CA) (1997) . Methods for the preparation of nucleic acids for in vivo delivery. United States, Vivorx Pharmaceuticals, Inc. (Santa Mónica, CA).
Grinstaff, M. W. P., CA), Soon-shiong, Patrick (Los
Angeles, CA) , Wong, Michael (Champaign, IL) , Sandford, Paul
A. (Los Angeles, CA), Suslick, Kenneth S. (Champaign, IL) , Desai, Neil P. (Los Angeles, CA) (1997) . Methods for the preparation of pharmaceutically active agents for in vivo delivery. United States, Vivorx Pharmaceuticals, Inc. (Santa Mónica, CA) . Mathiowitz, E. B., MA) , Bernstein, Howard (Cambridge, MA), Morrei, Eric (Needham, MA) , Schwaller, Kirsten (Duxbury, MA) (1993). Method for producing protein microspheres. United States, Alkermes Controlled Therapeutics , Inc. (Cambridge, MA) .
Oppenheim, R. C. P., AU), Marty, Jennifer Joy (East Kew, AU), Speiser, Peter (Zurich, CH) (1978). Injectable compositions , nanoparticles useful therein, and process of manufacturing same. United States, Pharmaceutical , Society Of Victoria (Parkville, AU) .
Rippon, M. G. W., GB), Meadows, John (Wrexham, GB) (2006). Wound gels. United States, Maelor Pharmaceuticals Limited (Wrexham, GB) .
Royere, A. A., FR), Bazile, Didier (Angers, FR), Bibette, Jerome (Paris, FR) (2008) . Method for Preparing Calibrated Biodegradable Microspheres. United States.
Senyei, A. E. C, IL) , Widder, Kenneth J. (Chicago, IL) (1982). Method of incorporating water-soluble heat- sensitive therapeutic agents in albumin microspheres. United States, Northwestern University (Evanston, IL) .
Suslick, K. S. and M. W. Grinstaff (1990). "Protein Microencapsulation of Nonaqueous Liquids . " J. Am. Chem. Soe. (112) : 7807-7809.
Suslick, K. S. C, IL, US), Toublan, Farah Jean-jacques (Urbana, IL, US) , Boppart, Stephen A. (Champaign, IL, US) , Marks, Daniel L. (Urbana, IL, US) (2007) . SURFACE MODIFIED PROTEIN MICROPARTICLES . United States. Vassiliades, A. E. (1975). Microencapsulation System. United States, Champion International Corporation (New York, NY) .
Wille Jr., J. J. C, NJ, US) (2009). Wound healing compositions . United States.
Wulff, T. H., DK) , Aagren, Sven Per Magnus (Humlebaek, DK) , Nielsen, Peter Sylvest (Vaerloese, DK) (2001). Hydrocolloid wound gel. United States, Coloplast, A/s (Humlebaek, DK) .
Yager, D. R., S. M. Chen, et al . (1997). "Ability of chronic wound fluids to degrade peptide growth factors is associated with increased leveis of elastase activity and dimished leveis of proteinase inhibitors." Wound Repair and Regeneration 5(1): 23-32.
Yen, R. C. K. C. A., Los Angeles, CA, 90066) (1991). Manufacturing protein microspheres . United States.
Zolle, I. (1976). Method for incorporating substances into protein microspheres. United States (Lazarettgasse 14A, Vienna 1090, OE) .
A presente invenção não é, naturalmente, de modo algum restrito às realizações descritas neste documento e uma pessoa com conhecimentos médios da área poderá prever muitas possibilidades de modificação da mesma sem se afastar da ideia geral da invenção, tal como definido nas reivindicações.
As realizações preferenciais acima descritas são obviamente combináveis entre si. As seguintes reivindicações definem adicionalmente realizações preferenciais da presente invenção.

Claims

REIVINDICAÇÕES
1. Formulação para a formação de micelas caracterizada por compreender :
• uma fase aquosa contendo uma proteína ou um péptido natural ou sintético;
• uma fase lipofílica que compreende um composto hidrofóbico ;
• um agente adjuvante dissolvido na fase aquosa que regula o tamanho e estabilidade das micelas;
em que os tamanhos das referidas micelas varia entre 30- 5000 nm, de preferência de 30-100 nm.
2. Formulação de acordo com a reivindicação 1 caracterizada por
• 50-99, 9 % v/v da fase aquosa a qual contem 0,1-8 g/l de um agente adjuvante dissolvido, de preferência de 2-6 g/L;
• 0,1-50 % v/v uma fase lipofílica.
3. Formulação de acordo com as reivindicações anteriores, caracterizada por a fase aquosa estar compreendida por uma das seguintes soluções:
• albumina sérica bovina (BSA) ;
• albumina sérica humana (HSA) ;
• fibroína da seda;
• um polipéptido N-C terminal seis aminoácidos SEQ ID NO: 1 - GAGAGS; GAGAGA; GAGSGS; GSGSGS; GAGAGL; GAGLGL; GLGLGL; GDGDGD; GAGAGD; GAGDGD;
• ou péptidos com diferentes aminoácidos DAAGAAAA;
DDAAGAAAA; DDDAAGAAAA; DDDDAAGAAAA; DAAGAAAAGAAAAGAAAAGAAAA;
DDDDAAGAAAAGAAAAGAAAAGAAAA;
• péptidos com vinte e dois aminoácidos ILLRKLHVPFFPIGFRGRPAAS; ILLRKLHVPI I PIGIRGRPAAS ; ILLRKLHVPWWPIGWRGRPAAS ; ILLRKLHVPYYPIGYRGRPAAS ; ILLRKLHVAHGAIGIRGRPAAS ; ILLRKLHVCHGCIGIRGRPAAS ;
• péptidos com catorze aminoácidos; KRCCPDTCGIKCLD;
KRSSPDTSGIKSLD; KRYYPDTYGIKYLD; KRHHPDTHGIKHLD; KRFFPDTFGIKFLD; KRLLPDTLGIKLLD .
4. Formulação de acordo com qualquer uma das reivindicações anteriores caracterizada por opcionalmente conter um composto ativo hidrofilico.
5. Formulação de acordo com qualquer uma das reivindicações anteriores caracterizada por, a fase lipofilica conter um composto hidrofóbico 0,1-50% v/v da fase lipofilica.
6. Formulação de acordo com a reivindicações anteriores caracterizada por o composto ativo hidrofilico ser diclonofenac, piroxicam.
7. Formulação de acordo com qualquer uma das reivindicações anteriores, caracterizada por conter ainda um agente alvo, de reconhecimento de determinadas células, na fase aquosa ou fase lipofilica .
Formulação de acordo com a reivindicação anterior, caracterizada por opcionalmente o agente targeting ser ácido fólico .
9. Formulação de acordo com qualquer uma das reivindicações anteriores, caracterizada a fase lipofilica compreender uma das seguintes soluções o n- dodecano; óleo vegetal ou óleo alimentar.
10. Formulação de acordo com a reivindicação anterior, caracterizada por a referida fase lipofilica conter ainda pelo menos um composto ativo hidrofóbico, selecionado do seguinte grupo taxol, celecoxib, piroxicam, CORMs .
11. Formulação de acordo com a reivindicação anterior, caracterizada por a referida fase lipofilica conter ainda pelo menos um composto seleccionado do seguinte grupo fragâncias, perfumes, ou óleos essenciais .
12. Formulação de acordo com qualquer uma das reivindicações anteriores, caracterizada por o agente adjuvante ser um surfactante ou um polímero.
13. Formulação de acordo com a reivindicação anteriores, caracterizada por o agente adjuvante ser seleccionado do seguinte grupo polisorbato 80; poloxamer 407; dodecil sulfato de sódio; álcool polivinílico ou ácido plurónico.
14. Formulação de acordo com qualquer uma das reivindicações anteriores, caracterizada por:
• a fase aquosa compreender uma solução de albumina ;
• a fase lipofilica compreender um óleo vegetal; • o agente adjuvante ser poloxamer.
15. Formulação de acordo com qualquer uma das reivindicações anteriores, caracterizada pelo uso em medicina, ou como cosmético, ou como detergente.
16. Método de preparação da formulação conforme descrita nas reivindicações 1 a 15, caracterizada por utilizar um aparelho de ultra-sons ou um homogeneizador de alta pressão.
17. Composições farmacêuticas caracterizadas por conter as formulações descritas nas reivindicações 1- 14.
18. Composições farmacêuticas caracterizadas por serem ministradas por via tópica, oral, parental, injectável, nomeadamente para aplicação intravenosa, subcutânea e intramuscular.
19. Composições cosméticas caracterizadas por conter as formulações descritas nas reivindicações 1-15.
20. Composições cosméticas de acordo com a reivindicação anterior caracterizadas por terem a forma de creme, loção ou gel.
21. Composições cosméticas de acordo com a reivindicação anterior caracterizadas por serem usadas no tratamento de problemas de pele ou cabelo.
22. Composições de detergentes sólidos ou líquidos caracterizados por conterem a formulação descrita nas reivindicações 1-15.
PCT/IB2012/057082 2011-12-07 2012-12-07 Formulações micelares proteicas e respectivo método de produção WO2013084207A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PT10604711 2011-12-07
PT106047 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013084207A1 true WO2013084207A1 (pt) 2013-06-13

Family

ID=47605613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/057082 WO2013084207A1 (pt) 2011-12-07 2012-12-07 Formulações micelares proteicas e respectivo método de produção

Country Status (1)

Country Link
WO (1) WO2013084207A1 (pt)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886084A (en) 1966-09-29 1975-05-27 Champion Int Corp Microencapsulation system
US3937668A (en) 1970-07-15 1976-02-10 Ilse Zolle Method for incorporating substances into protein microspheres
US4357259A (en) 1977-08-01 1982-11-02 Northwestern University Method of incorporating water-soluble heat-sensitive therapeutic agents in albumin microspheres
WO1991006286A1 (en) 1989-11-06 1991-05-16 Enzytech, Inc. Method for producing protein microspheres
US5069936A (en) 1987-06-25 1991-12-03 Yen Richard C K Manufacturing protein microspheres
US5362478A (en) 1993-03-26 1994-11-08 Vivorx Pharmaceuticals, Inc. Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell
US5439686A (en) 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5635207A (en) 1993-02-22 1997-06-03 Vivorx Pharmaceuticals, Inc. Methods for the preparation of blood substitutes for in vivo delivery
US5650156A (en) 1993-02-22 1997-07-22 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of nutriceuticals and compositions useful therefor
US5665383A (en) 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery
US5665382A (en) 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US5916596A (en) 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US6592844B2 (en) 1994-10-10 2003-07-15 Chiron Corporation Preparation of protein microspheres, films and coatings
US20030133955A1 (en) 1993-02-22 2003-07-17 American Bioscience, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US20040043077A1 (en) 2000-10-27 2004-03-04 Brown Larry R. Production of microspheres
US20050009731A1 (en) * 2003-07-10 2005-01-13 American Bioscience, Inc. Propofol formulations with non-reactive container closures
US7217410B2 (en) 2003-06-17 2007-05-15 The Board Of Trustees Of The Universtiy Of Illinois Surface modified protein microparticles
US20070122465A1 (en) 1993-02-22 2007-05-31 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
WO2007110421A2 (en) * 2006-03-27 2007-10-04 Nestec S.A. Whey protein micelles
US20080233201A1 (en) 2004-03-03 2008-09-25 Audrey Royere Method for Preparing Calibrated Biodegradable Microspheres

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886084A (en) 1966-09-29 1975-05-27 Champion Int Corp Microencapsulation system
US3937668A (en) 1970-07-15 1976-02-10 Ilse Zolle Method for incorporating substances into protein microspheres
US4357259A (en) 1977-08-01 1982-11-02 Northwestern University Method of incorporating water-soluble heat-sensitive therapeutic agents in albumin microspheres
US5069936A (en) 1987-06-25 1991-12-03 Yen Richard C K Manufacturing protein microspheres
WO1991006286A1 (en) 1989-11-06 1991-05-16 Enzytech, Inc. Method for producing protein microspheres
US5650156A (en) 1993-02-22 1997-07-22 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of nutriceuticals and compositions useful therefor
US5665382A (en) 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of pharmaceutically active agents for in vivo delivery
US20070122465A1 (en) 1993-02-22 2007-05-31 Desai Neil P Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20030133955A1 (en) 1993-02-22 2003-07-17 American Bioscience, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US5916596A (en) 1993-02-22 1999-06-29 Vivorx Pharmaceuticals, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US5635207A (en) 1993-02-22 1997-06-03 Vivorx Pharmaceuticals, Inc. Methods for the preparation of blood substitutes for in vivo delivery
US5639473A (en) 1993-02-22 1997-06-17 Vivorx Pharmaceuticals, Inc. Methods for the preparation of nucleic acids for in vivo delivery
US5439686A (en) 1993-02-22 1995-08-08 Vivorx Pharmaceuticals, Inc. Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor
US5665383A (en) 1993-02-22 1997-09-09 Vivorx Pharmaceuticals, Inc. Methods for the preparation of immunostimulating agents for in vivo delivery
US5362478A (en) 1993-03-26 1994-11-08 Vivorx Pharmaceuticals, Inc. Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell
US5512268A (en) 1993-03-26 1996-04-30 Vivorx Pharmaceuticals, Inc. Polymeric shells for medical imaging prepared from synthetic polymers, and methods for the use thereof
US5508021A (en) 1993-03-26 1996-04-16 Vivorx Pharmaceuticals, Inc. Non-fluorinated polymeric shells for medical imaging
US5505932A (en) 1993-03-26 1996-04-09 Vivorx Pharmaceuticals, Inc. Method for the preparation of fluorocarbon-containing polymeric shells for medical imaging
US6592844B2 (en) 1994-10-10 2003-07-15 Chiron Corporation Preparation of protein microspheres, films and coatings
US20040043077A1 (en) 2000-10-27 2004-03-04 Brown Larry R. Production of microspheres
US7217410B2 (en) 2003-06-17 2007-05-15 The Board Of Trustees Of The Universtiy Of Illinois Surface modified protein microparticles
US20050009731A1 (en) * 2003-07-10 2005-01-13 American Bioscience, Inc. Propofol formulations with non-reactive container closures
US20080233201A1 (en) 2004-03-03 2008-09-25 Audrey Royere Method for Preparing Calibrated Biodegradable Microspheres
WO2007110421A2 (en) * 2006-03-27 2007-10-04 Nestec S.A. Whey protein micelles

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
ADDISON, D. K.; ESSLER, ALICIA J.; CULLEN, BREDA M.; SILCOCK, DEREK W., WOUND TREATMENT DEVICE, 2006
BROWN, L. R. N., PRODUCTION OF MICROSPHERES, 2004
COOMBES, A. G. A. N.; LIN WU.; O'HAGEN, DEREK T.; DAVIS, STANLEY S., PREPARATION OF PROTEIN MICROSPHERES, FILMS AND COATINGS, 2002
DESAI, N. P. L. A.; SOON-SHIONG, PATRICK: "Methods and compositions useful for administration of chemotherapeutic agents", 2003, AMERICAN BIOSCIENCE, INC.
DESAI, N. P. L. A.; SOON-SHIONG, PATRICK; SANDFORD, PAUL A.; GRINSTAFF, MARK W.; SUSLICK, KENNETH S.: "Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell", 1994, VIVORX PHARMACEUTICALS, INC.
DESAI, N. P. L. A.; SOON-SHIONG, PATRICK; SANDFORD, PAUL A.; GRINSTAFF, MARK W.; SUSLICK, KENNETH S.: "Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor", 1995, VIVORX PHARMACEUTICALS, INC.
DESAI, N. P. L. A.; TAO, CHUNLIN; YANG, ANDREW; LOUIE, LESLIE; ZHENG, TIANLI; YAO, ZHIWEN; SOON-SHIONG, PATRICK; MAGDASSI, SHLOMO: "Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof", 1999, VIVORX PHARMACEUTICALS, INC.
DI SALVO, A. B.; MORDAS, CAROLYN J.; NIKOLOVSKI, JANETA; WIEGAND, BENJAMIN C., ENZYME INHIBITION USING NANOPARTICLES, 2008
DISALVO, A. L. B.; MORDAS, CAROLYN J., ABSORBENT ARTICLES COMPRISING NANOPARTICLES, 2005
DISALVO, A. L. B.; MORDAS, CAROLYN J., ENHANCING PROPERTIES BY THE USE OF NANOPARTICLES, 2005
EDWARDS, J. V.; D. R. YAGER ET AL.: "Modified cotton gauze dressings that selectively absorb neutrophil elastase activity in solution", WOUND REPAIR AND REGENERATION, vol. 9, no. 1, 2001, pages 50 - 58, XP002324103, DOI: doi:10.1046/j.1524-475x.2001.00050.x
GESTRELIUS, S. L.; HAMMARSTROM, LARS; LYNGSTADAAS, PETTER; ANDERSSON, CHRISTER; SLABY, IVAN; HAMMARGREN, TOMAS: "Matrix protein compositions for treating infection", 2003, BIORA BIOEX AB
GRINBERG ET AL: "Characterization and activity of sonochemically-prepared BSA microspheres containing Taxol - An anticancer drug", ULTRASONICS: SONOCHEMISTRY, BUTTERWORTH-HEINEMANN, GB, vol. 14, no. 5, 27 April 2007 (2007-04-27), pages 661 - 666, XP022050735, ISSN: 1350-4177, DOI: 10.1016/J.ULTSONCH.2006.11.004 *
GRINSTAFF, M. W. P.; DESAI, NEIL P.; SUSLICK, KENNETH S.; SOON-SHIONG, PATRICK; SANDFORD, PAUL A.; MERIDETH, NOMA R.: "Method for the preparation of fluorocarbon-containing polymeric shells for medical imaging", 1996, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W. P.; DESAI, NEIL P.; SUSLICK, KENNETH S.; SOON-SHIONG, PATRICK; SANDFORD, PAUL A.; MERIDETH, NOMA R.: "Non- fluorinated polymeric shells for medical imaging", 1996, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W. P.; DESAI, NEIL P.; SUSLICK, KENNETH S.; SOON-SHIONG, PATRICK; SANDFORD, PAUL A.; MERIDETH, NOMA R.: "Polymeric shells for medical imaging prepared from synthetic polymers, and methods for the use thereof", 1996, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W. P.; SOON-SHIONG, PATRICK; WONG, MICHAEL; PAUL A.; SUSLICK, KENNETH S.; DESAI, NEIL P.: "Methods for the preparation of pharmaceutically active agents for in vivo delivery", 1997, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W. P.; SOON-SHIONG, PATRICK; WONG, MICHAEL; SANDFORD, PAUL A.; SUSLICK, KENNETH S.; DESAI, NEIL P.: "Methods for in vivo delivery of nutriceuticals and compositions useful therefor", 1997, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W. P.; SOON-SHIONG, PATRICK; WONG, MICHAEL; SANDFORD, PAUL A.; SUSLICK, KENNETH S.; DESAI, NEIL P.: "Methods for the preparation of blood substitutes for in vivo delivery", 1997, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W. P.; SOON-SHIONG, PATRICK; WONG, MICHAEL; SANDFORD, PAUL A.; SUSLICK, KENNETH S.; DESAI, NEIL P.: "Methods for the preparation of immunostimulating agents for in vivo delivery", 1997, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W. P.; SOON-SHIONG, PATRICK; WONG, MICHAEL; SANDFORD, PAUL A.; SUSLICK, KENNETH S.; DESAI, NEIL P.: "Methods for the preparation of nucleic acids for in vivo delivery", 1997, VIVORX PHARMACEUTICALS, INC.
GRINSTAFF, M. W.; K. S. SUSLICK, POLYM. PREP., vol. 32, 1991, pages 255
HYOUNG-JOON JIN ET AL: "Mechanism of silk processing in insects and spiders", NATURE, vol. 424, no. 6952, 28 August 2003 (2003-08-28), pages 1057 - 1061, XP055058447, ISSN: 0028-0836, DOI: 10.1038/nature01809 *
MATHIOWITZ, E. B.; BERNSTEIN, HOWARD; MORREL, ERIC; SCHWALLER, KIRSTEN: "Method for producing protein microsphere", 1993, ALKERMES CONTROLLED THERAPEUTICS, INC.
OPPENHEIM, R. C. P.; MARTY, JENNIFER JOY; SPEISER, PETER: "Injectable compositions, nanoparticles useful therein, and process of manufacturing same", 1978, PHARMACEUTICAL, SOCIETY OF VICTORIA
RAQUEL SILVA ET AL: "Insights on the Mechanism of Formation of Protein Microspheres in a Biphasic System", MOLECULAR PHARMACEUTICS, vol. 9, no. 11, 5 November 2012 (2012-11-05), pages 3079 - 3088, XP055058584, ISSN: 1543-8384, DOI: 10.1021/mp3001827 *
RAQUEL SILVA ET AL: "Protein microspheres as suitable devices for piroxicam release", COLLOIDS AND SURFACES. B, BIOINTERFACES, ELSEVIER, AMSTERDAM, NL, vol. 92, 8 December 2011 (2011-12-08), pages 277 - 285, XP028448522, ISSN: 0927-7765, [retrieved on 20111208], DOI: 10.1016/J.COLSURFB.2011.11.050 *
RIPPON, M. G. W.; MEADOWS, JOHN: "Wound gels", 2006, MAELOR PHARMACEUTICALS LIMITED
ROYERE, A. A.; BAZILE, DIDIER; BIBETTE, JEROME, METHOD FOR PREPARING CALIBRATED BIODEGRADABLE MICROSPHERES, 2008
SENYEI, A. E. C.; WIDDER, KENNETH J.: "Method of incorporating water-soluble heat- sensitive therapeutic agents in albumin microspheres", 1982, NORTHWESTERN UNIVERSITY
SILVA RAQUEL ET AL: "Sonoproduction of liposomes and protein particles as templates for delivery purposes.", BIOMACROMOLECULES 10 OCT 2011, vol. 12, no. 10, 10 October 2011 (2011-10-10), pages 3353 - 3368, XP002694894, ISSN: 1526-4602 *
SUSLICK, K. S. C.; TOUBLAN, FARAH JEAN-JACQUES; BOPPART, STEPHEN A.; MARKS, DANIEL L., SURFACE MODIFIED PROTEIN MICROPARTICLES, 2007
SUSLICK, K. S.; M. W. GRINSTAFF: "Protein Microencapsulation of Nonaqueous Liquids", J. AM. CHEM. SOC., 1990, pages 7807 - 7809, XP002022613, DOI: doi:10.1021/ja00177a058
VASSILIADES, A. E.: "Microencapsulation System", 1975, CHAMPION INTERNATIONAL CORPORATION
WILLE JR., J. J. C., WOUND HEALING COMPOSITIONS, 2009
WULFF, T. H.; AAGREN, SVEN PER MAGNUS; NIELSEN, PETER SYLVEST: "Hydrocolloid wound gel", 2001, COLOPLAST, A/S
YAGER, D. R.; S. M. CHEN ET AL.: "Ability of chronic wound fluids to degrade peptide growth factors is associated with increased levels of elastase activity and dimished levels of proteinase inhibitors", WOUND REPAIR AND REGENERATION, vol. 5, no. 1, 1997, pages 23 - 32
YEN, R. C. K. C. A., MANUFACTURING PROTEIN MICROSPHERES, 1991
ZOLLE, I., METHOD FOR INCORPORATING SUBSTANCES INTO PROTEIN MICROSPHERES, 1976

Similar Documents

Publication Publication Date Title
Li et al. pH-sensitive polymeric micelles for targeted delivery to inflamed joints
Wang et al. Exploration of the natural active small-molecule drug-loading process and highly efficient synergistic antitumor efficacy
JP5405527B2 (ja) 薬理薬物の新規製剤、その製造法及びその使用法
Gayathri et al. Nano formulation approaches for curcumin delivery-a review
Velluto et al. PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release: cyclosporin A as an example
JP5513713B2 (ja) 非層状分散を生じる組成物
Tan et al. Cubosomes and hexosomes as novel nanocarriers for bioactive compounds
JP2015509936A (ja) 植物性疎水性タンパク質および水混和性非揮発性有機溶媒を含んでなるナノ粒子ならびにその使用
Qin et al. Folate-targeted redox-responsive polymersomes loaded with chemotherapeutic drugs and tariquidar to overcome drug resistance
US20220354801A1 (en) Multifunctional Nanoparticles For Prevention And Treatment Of Atherosclerosis
Pillai et al. Characterization and application of mixed micellar assemblies of PEO-PPO star block copolymers for solubilization of hydrophobic anticancer drug and in vitro release
CN102302447A (zh) 一种新型紫杉醇脂质微球注射液及其制备方法
Marzaman et al. Development of chloramphenicol whey protein-based microparticles incorporated into thermoresponsive in situ hydrogels for improved wound healing treatment
JP6772282B2 (ja) 抗癌薬の新規ナノ製剤及びその製造方法
Nayak et al. Unlocking the potential of bilosomes and modified bilosomes: a comprehensive journey into advanced drug delivery trends
Sepulveda et al. Biomedical applications of stimuli-responsive hydrogels
BRPI0804172A2 (pt) compostos quìmicos formados a partir de nanoencapsulamentos e complexação de elementos
US10940118B2 (en) Nanoparticles and methods of producing the same
WO2013084207A1 (pt) Formulações micelares proteicas e respectivo método de produção
Wang et al. Studies on the molecular interactions between plant-derived protein zein and small molecules
Liu et al. Self-emulsifying drug delivery system enhances tissue distribution of cinnamaldehyde by altering the properties of the mucus layer
US10105293B2 (en) Core-shell particle
Benedini et al. Nanodevices for facing new challenges of medical treatments: stimuli-responsive drug delivery systems
Chen Dermal delivery of Centella asiatica using hyaluronic acid niosomal system for wound healing
Zhang et al. Drug delivery systems based on tyrosine-derived nanospheres (TyroSpheres™)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12818928

Country of ref document: EP

Kind code of ref document: A1