WO2013083064A1 - Uninterrupted ice melting, svg type static reactive power compensation compound device and applying method thereof - Google Patents

Uninterrupted ice melting, svg type static reactive power compensation compound device and applying method thereof Download PDF

Info

Publication number
WO2013083064A1
WO2013083064A1 PCT/CN2012/086119 CN2012086119W WO2013083064A1 WO 2013083064 A1 WO2013083064 A1 WO 2013083064A1 CN 2012086119 W CN2012086119 W CN 2012086119W WO 2013083064 A1 WO2013083064 A1 WO 2013083064A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
melting
ice
converter transformer
composite
Prior art date
Application number
PCT/CN2012/086119
Other languages
French (fr)
Chinese (zh)
Inventor
贺长宏
贺瀚青
Original Assignee
国网智能电网研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201110410482.4 priority Critical
Priority to CN201110410482.4A priority patent/CN102412544B/en
Application filed by 国网智能电网研究院, 国家电网公司 filed Critical 国网智能电网研究院
Publication of WO2013083064A1 publication Critical patent/WO2013083064A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/18Arrangements for adjusting, eliminating or compensating reactive power in networks
    • H02J3/1821Arrangements for adjusting, eliminating or compensating reactive power in networks using shunt compensators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G7/00Overhead installations of electric lines or cables
    • H02G7/16Devices for removing snow or ice from lines or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Abstract

An static reactive power compensation compound device of uninterrupted ice melting, SVG type and the applying method thereof. The device has at least two suits of converters which form a back-to-back converting system by sharing a group of direct-current capacitors at DC side. The AC side of the first suit of converter (HLQ1) is connected with a low voltage side of a first converter transformer (B1). The AC side of the second suit of converter (HLQ2) is connected with the low voltage side of the first converter transformer or a second converter transformer (B2) by a switch (K). The high voltage side of the first converter transformer is connected with AC bus (M0) of a substation by parallel. The high voltage side of the second converter transformer is connected with an ice-melting line (L) by the switch in series. The compound device run by controlled with an integrated controller. The work method of the compound device includes an uninterrupted ice melting state and a static reactive power compensation state. The device runs in ice melting state without damaging the system stability.

Description

不停电融冰兼 SVG型无功静补复合装置及其使用方法 技术领域  Non-stop electric melting ice and SVG type reactive static compensation composite device and using method thereof
本发明涉及一种电力装置, 特别是一种既可用于对电力线路进行不停电融冰, 又可用于 对电网进行 SVG型无功静止补偿的复合装置及其使用方法。 背景技术  The invention relates to a power device, in particular to a composite device which can be used for non-stop power melting of a power line, and can also be used for performing SVG type reactive power static compensation on a power grid and a using method thereof. Background technique
电力线路覆冰问题, 在我国南方部分省区每年程度不同的都要发生, 尤其 2008年那场罕 见的冰灾给南方诸省的电网带来严重灾害, 长时间、 大面积停电对国民经济和人民生活影响 巨大。 电网覆冰也是世界各国普遍关心的重要问题。  The problem of ice icing on power lines occurs in different parts of the southern provinces of China. In particular, the rare ice disaster in 2008 brought serious disasters to the power grids in the southern provinces, long-term, large-scale blackouts to the national economy and The people’s lives have a huge impact. Grid ice icing is also an important issue of universal concern to all countries in the world.
检索国际国内电力线路的融冰技术, 常用的分为两类: 一是当发生大面积覆冰, 线路停 用之后, 采用人工除冰或机械除冰, 除冰工作量大, 停电时间长, 经济损失严重, 且机械除 冰方法没有成熟。 第二类是热力融冰, 热力融冰又分为停电融冰和不停电融冰两类。  Searching for ice-melting technology for international and domestic power lines, commonly used are divided into two categories: First, when large-area ice-covered occurs, after the line is deactivated, manual de-icing or mechanical de-icing is used, the deicing operation is heavy, and the power outage time is long. The economic losses are severe and the mechanical de-icing method is not mature. The second category is thermal melting ice. Thermal ice melting is divided into two categories: power outage melting and non-stopping ice melting.
停电融冰的常用方法有以下两种:  There are two common methods for powering down ice melting:
1、 交流短路升流融冰。 将 2〜3条欲融冰线路(如 110KV或 220KV线路)通过刀闸操作串 接起来, 在串接线路末端人工短路, 首段直接加交流电源(如 10KV或 35KV)进行短路融冰。 这是在南方诸省融冰实践中最常用的方法, 其优点是不需要专用设备, 生产现场非常实用。 缺点在于其短路电源的电压不可调, 事先要对串联线路的条数进行计算, 选定困难, 投切电 源时对电网冲击较大, 还需对保护定值和保护投入方式进行临时调整。 在相关的几个变电站 中都要空出一条母线用于融冰线路的串接, 使电网运行方式更为薄弱。 刀闸操作时间长, 难 以应对多条线路同时发生覆冰时的融冰要求。 这一方法在短路升流过程中既消耗有功, 又要 消耗大量的无功,无功消耗量大约为有功消耗量的 4倍,对电网电压影响很大, 以至在 500KV 及以上线路无法使用。  1. AC short circuit rises and melts ice. Connect 2~3 lines of ice-to-ice (such as 110KV or 220KV lines) through the knife gate operation, manually short-circuit at the end of the series line, and directly add AC power (such as 10KV or 35KV) for short-circuit melting. This is the most common method used in the practice of melting ice in the southern provinces. The advantage is that no special equipment is needed and the production site is very practical. The disadvantage is that the voltage of the short-circuit power supply is not adjustable. It is necessary to calculate the number of series lines in advance, and the selection is difficult. When the power is cut, the impact on the power grid is large, and the protection setting and protection input mode need to be temporarily adjusted. In the relevant substations, a busbar should be vacated for the series connection of the ice-melting lines, which makes the grid operation mode weaker. The operation time of the knife gate is long, and it is difficult to cope with the ice melting requirements when multiple lines are simultaneously covered with ice. This method consumes both active and short-circuit upflow, and consumes a large amount of reactive power. The reactive power consumption is about 4 times of the active power consumption, which has a great influence on the grid voltage, so that it can not be used in 500KV and above.
2、 利用 SVC无功静补装置作为融冰装置, 对线路进行直流短路融冰。 这是 2008年那场 罕见冰灾之后, 研制投运的融冰装置。 当线路发生覆冰后, 将线路停运, 线路末端人工短路, 先在首段的两相上加入经 SVC型无功静补装置整流输出的直流电压, 对线路的两相进行直流 短路融冰, 结束后再对第三相进行融冰。 其优点在于装置输出的直流电压可调, 可适应于任 何长度和电压等级的线路。 和交流短路融冰相比不消耗系统无功。 覆冰时作为融冰设备, 平 时作为无功静止补偿装置, 设备利用率高。 缺点是一次只能融两相, 融冰时间长, 刀闸操作 及人工设置短路线工作量大, 且要停电进行。 2. Using the SVC reactive static compensation device as the ice melting device, the circuit is subjected to DC short-circuit melting. This is the ice melting device developed and put into operation after the rare ice disaster in 2008. When the line is covered with ice, the line is stopped, and the end of the line is artificially short-circuited. First, the DC voltage rectified by the SVC type reactive static compensation device is added to the two phases of the first stage, and the two phases of the line are subjected to DC short-circuit melting. After the end, the third phase is melted. The advantage is that the DC voltage of the device output is adjustable and can be adapted to any length and voltage level. Compared with AC short-circuit melting ice, it does not consume system reactive power. As an ice melting device when icing, it is usually used as a reactive static compensation device, and the equipment utilization rate is high. The disadvantage is that only one phase can be melted at a time, the ice melting time is long, and the knife gate operation And manual setting of the short-circuit line is labor-intensive, and power failure is required.
不停电融冰的方法主要有以下两种:  There are two main methods for non-stopping ice melting:
1、 调整系统潮流, 加大融冰线路负荷的方法。 通过调度切除一条线路, 将两条线路的负 荷转移到一条线路使其融冰, 或使重冰线路末端变电站的全部负荷电流都通过重冰区的一条 线路。 此方法对于截面较小的 l lOkV及以下线路有一定的可行性, 对于 220kV及以上电压等 级的线路而言, 由于导线截面大, 加之系统容量和运行方式的限制, 且所有电压等级线路都 存在系统稳定问题, 采用增加覆冰线路负荷电流的方法融冰的实际效果尚需进一步研究, 目 前理论探讨较多, 没有实际应用的案例。  1. Adjust the system flow and increase the load of the ice melting line. By dispatching a line to cut off, the load of the two lines is transferred to a line to melt the ice, or the entire load current of the substation at the end of the heavy ice line is passed through a line in the heavy ice area. This method has certain feasibility for l lOkV with the smaller cross section and the following lines. For the line with voltage level of 220kV and above, due to the large cross section of the conductor, combined with the limitation of system capacity and operation mode, all voltage grade lines exist. The system stability problem, the actual effect of melting ice by increasing the load current of the ice-covered line needs further research. At present, there are many theoretical discussions, and there are no practical applications.
2、 上世纪 70年代始, 宝鸡市供电局在 110KV双分裂导线的线路上, 将常年易发生覆冰 的线路段的双分裂导线的固定夹更换为绝缘夹, 在线路中部建设融冰站, 给每相双分裂导线 加上融冰环流, 和负荷电流共同发生的热效应叠加实现不停电融冰, 这是目前唯一使用的不 停电融冰方式。 但是, 每条线路上都要建一座融冰站, 设备投入大, 设备利用率低。 融冰站 建在线路中部, 一般是大山深处, 维护困难。 使用对象必须是双分裂导线, 局限性大, 难以 普遍推广应用。  2. In the 1970s, the Power Supply Bureau of Baoji City replaced the fixed clips of the double-split conductors of the ice-prone line segments with insulating clips on the 110KV double-split conductor line, and built a melting ice station in the middle of the line. Adding ice-melting circulation to the double-split wire of each phase, and superimposing the thermal effect of the load current to achieve non-stopping melt ice, this is the only non-stopping ice melting method currently used. However, an ice melting station should be built on each line, with large equipment investment and low equipment utilization. The ice melting station is built in the middle of the line, usually deep in the mountains and difficult to maintain. The object to be used must be a double-split wire, which has limited limitations and is difficult to popularize.
综上所述, 现有不停电方式下的融冰技术不具有普遍推广价值, 停电融冰技术均要在停 电方式下进行, 人工挂接短路线及停电操作工作量大, 时间长, 更重要的是影响线路的可靠 供电。 发明内容  In summary, the existing ice-melting technology without power-off mode does not have universal promotion value. The power-off and ice-melting technology must be carried out in the power-off mode. The manual connection of the short-circuit line and the power-off operation is large, and the time is long. It is the reliable power supply that affects the line. Summary of the invention
针对上述现有技术存在的缺陷或不足, 为了实现快捷实用的不停电融冰, 且提高设备的 利用率, 本发明的目的在于, 提供一种具有不停电融冰兼 SVG型无功静补两种功能的复合装 置(以下简称复合装置)及其使用方法, 使用同一套装置, 在覆冰发生时用于对电力线路进行 不停电融冰, 电网正常运行情况下作为 SVG型无功静止补偿装置使用。  In view of the above-mentioned defects or deficiencies of the prior art, in order to realize a fast and practical non-stop power melting ice, and to improve the utilization rate of the device, the object of the present invention is to provide a non-stop power melting ice and SVG type reactive static compensation. The composite device of the function (hereinafter referred to as the composite device) and the method of using the same, using the same device, is used for non-stop power melting of the electric power line when the ice coating occurs, and is used as the SVG type reactive static compensation device in the normal operation of the power grid. use.
为了实现上述任务, 本发明采取如下的技术解决方案得以实现:  In order to achieve the above tasks, the present invention adopts the following technical solutions:
一种不停电融冰兼 SVG型无功静补复合装置, 其特征在于, 至少有两组换流器, 其直流 侧共用一组直流电容器构成背靠背换流系统, 第一组换流器的交流侧与第一换流变压器低压 侧相连接, 第二组换流器的交流侧通过切换刀间可分别与第一换流变压器或第二换流变压器 的低压侧相连接, 第一换流变压器的高压侧并接于变电站的交流母线, 第二换流变压器的高 压侧通过切换刀间串接于欲融冰的线路上, 复合装置由综合控制器控制运行。  The utility model relates to a non-stop electric ice melting and SVG type reactive static compensation composite device, characterized in that at least two sets of inverters have a DC capacitor on a DC side to form a back-to-back converter system, and the first group of converters exchanges The side is connected to the low-voltage side of the first converter transformer, and the AC side of the second group of converters can be respectively connected to the low-voltage side of the first converter transformer or the second converter transformer through the switching knife, the first converter transformer The high voltage side is connected to the AC bus of the substation, and the high voltage side of the second converter transformer is connected in series to the line to be melted by the switching knife, and the composite device is controlled by the integrated controller.
当第一换流器交流侧电压和变电站母线电压相等时, 第一换流变压器省去。  When the AC side voltage of the first converter and the substation bus voltage are equal, the first converter transformer is omitted.
上述不停电融冰兼 SVG型无功静补复合装置的使用方法, 其特征在于, 包括以下两种工 作状态: The method for using the above-mentioned non-stop electric ice melting and SVG type reactive static compensation composite device is characterized in that it comprises the following two kinds of work Status:
a)不停电融冰工作状态: 第一组换流器的交流侧与第一换流变压器的低压侧相连接, 第 二组换流器的交流侧与第二换流变压器的低压侧相连接, 综合控制器按照正弦脉冲宽度调制 技术 (SP丽)控制第一组换流器处于无功静补工作状态,控制第二组换流器处于融冰工作状态; b)无功静补工作状态: 复合装置中的两组换流器的交流侧, 均连接于第一换流变压器的 低压侧, 综合控制器按照正弦脉冲宽度调制技术 (SP丽)控制两组换流器同步处于 SVG型无功 静补运行状态, 而第二换流变压器处于停运状态。  a) non-stop power melting state: the AC side of the first group of converters is connected to the low voltage side of the first converter transformer, and the AC side of the second group of converters is connected to the low side of the second converter transformer The integrated controller controls the first group of inverters to be in the reactive static compensation state according to the sinusoidal pulse width modulation technology (SP 丽), and controls the second group of converters to be in the ice melting working state; b) the reactive power static compensation working state : The AC side of the two sets of inverters in the composite device are connected to the low voltage side of the first converter transformer. The integrated controller controls the two sets of inverters to be in SVG type according to the sinusoidal pulse width modulation technology (SP 丽). The function is statically compensated for operation, while the second converter transformer is in a stopped state.
本发明的有益效果是: 在一座变电站中仅配备一套复合装置, 即可对变电站中的所有不 同电压等级的线路, 通过刀闸操作依次进行不停电融冰, 切投速度快, 融冰工作量小, 既可 应对部分线路发生覆冰时的融冰, 也能应对大面积发生覆冰时的融冰要求。 一套装置即可用 于对线路的融冰, 电网正常情况下用作无功静止补偿设备, 设备的利用率高。 尤其是 SVG型 无功补偿技术, 是现有最新的无功补偿技术, 既可以发出无功功率, 也可以吸收无功功率, 可以从额定容量的感性无功到额定容量的容性无功之间进行连续平滑的快速调整, 成为替代 SVC无功补偿设备的新技术已开始普及应用。 在实施 SVG应用的基础上加入融冰功能, 投资 少, 作用大。 复合装置用于融冰时系统稳定不会破坏。 附图说明  The beneficial effects of the invention are as follows: In a substation, only one set of composite devices is provided, and all the lines of different voltage levels in the substation can be sequentially subjected to non-stop melting and melting through the knife gate operation, and the cutting speed is fast, and the ice melting work is performed. The amount is small, which can cope with the melting ice when some lines are covered with ice, and can also cope with the melting ice when a large area occurs. A set of devices can be used to melt ice on the line. The power grid is normally used as a reactive static compensation device, and the utilization rate of the device is high. In particular, SVG type reactive power compensation technology is the latest reactive power compensation technology, which can generate reactive power and absorb reactive power. It can be from the inductive reactive power of rated capacity to the capacitive reactive power of rated capacity. Continuously smooth and rapid adjustment has become a popular technology to replace SVC reactive power compensation equipment. Adding ice-melting function based on the implementation of SVG application, with less investment and greater effect. The composite device is used to stabilize the system without breaking when melting ice. DRAWINGS
图 1是复合装置的原理接线图。 HLQ1和 HLQ2为共用了一组直流电容器的两组换流器, 由现有技术中 GT0、 IGBT、 IGCT等全控电力电子器件组成的换流电路和电抗器 DK1、 DK2, 换 流电阻 R1和 R2以及滤波器 LB组成。 B1和 B2为换流变压器, K为切换刀闸, Kl、 Κ2、 Κ3为 隔离刀闸, Μ0为变电站的母线, L为变电站的一条线路, DL是线路开关, 1DL是复合装置的 控制开关。  Figure 1 is a schematic wiring diagram of a composite device. HLQ1 and HLQ2 are two sets of converters sharing a set of DC capacitors. The commutation circuit consisting of GT0, IGBT, IGCT and other fully controlled power electronic devices and reactors DK1, DK2, converter resistor R1 and R2 and filter LB are composed. B1 and B2 are converter transformers, K is the switching knife gate, Kl, Κ2, Κ3 are isolated knife gates, Μ0 is the busbar of the substation, L is a line of the substation, DL is the line switch, and 1DL is the control switch of the composite device.
图 2是复合装置中综合控制器的原理框图。  Figure 2 is a block diagram of the integrated controller in the composite device.
图 3是复合装置在融冰工作状态下的等效电路图和相量图。  Figure 3 is an equivalent circuit diagram and phasor diagram of the composite device under ice melting operation.
图 4是复合装置在电力系统中用于融冰时的接入示意图。 图中 Μ1、 Μ2、 Μ0分别表示第一 座变电站的三条母线, M3和 M4分别代表第二座和第三座变电站的母线, Ll、 L2、 L3、 L4分 别表示 4条线路, HLQ1、 HLQ2为共用了一组直流电容器的两组换流器, Bl、 B2为换流变压器。  Figure 4 is a schematic illustration of the access of the composite device for melting ice in a power system. In the figure, Μ1, Μ2, Μ0 respectively represent the three busbars of the first substation, M3 and M4 represent the busbars of the second and third substations, respectively, and Ll, L2, L3 and L4 respectively represent 4 lines, HLQ1 and HLQ2 are Two sets of converters sharing a set of DC capacitors, Bl and B2 are converter transformers.
以下结合附图和实施例对本发明作进一步的详细说明。 具体实施方式  The invention will be further described in detail below with reference to the accompanying drawings and embodiments. detailed description
图 1描述了不停电融冰兼 SVG型无功静补复合装置(以下简称复合装置)的原理接线, 两 组换流器 HLQ1、 HLQ2的直流侧共用一组直流电容器, 第 1组换流器 HLQ1的交流侧与第一换 流变压器 B1电连接于变电站的母线 M0上,第 2组换流器 HLQ2的交流侧与切换开关 K电连接。 当 K处于位置 1时, 两组换流器并联运行于第一换流变压器 B1的低压侧, 此时综合控制器按 照现有技术中的正弦脉冲宽度调制技术 (SPWM)控制两组换流器同时运行于 SVG型无功静止补 偿工作状态 (SVG型无功静补技术为现有技术, 故不再详述)。 当 K处于位置 2时, 第二换流 器 HLQ2连接于变压器 B2的低压侧, 通过刀间操作, 断开 Kl、 接通 Κ2和 Κ3将第二换流变压 器 Β2的高压侧串接于线路 L的出口, 综合控制器使第 1组换流器 HLQ1仍工作于 SVG型无功 静止补偿工作状态, 使第 2组换流器 HLQ2处于逆变工作状态, 给第二换流变压器 Β2的高压 侧建立一个与线路电压同频率的电压源串接于线路之上。第二换流变压器 Β2高压侧电压源的 建立以提高线路有功和无功的传输能力, 使线路电流达到融冰工作电流, 复合装置处于融冰 工作状态。 Figure 1 depicts the principle wiring of the non-stop electric ice melting and SVG type reactive static compensation composite device (hereinafter referred to as composite device), two The DC side of the group converters HLQ1 and HLQ2 share a group of DC capacitors. The AC side of the first group of converters HLQ1 is electrically connected to the first converter transformer B1 to the bus M0 of the substation, and the second group of converters HLQ2 The AC side is electrically connected to the switch K. When K is in position 1, two sets of inverters are operated in parallel on the low voltage side of the first converter transformer B1, and the integrated controller controls two sets of inverters according to the prior art sinusoidal pulse width modulation technique (SPWM). At the same time, it runs in the SVG type reactive power compensation working state (SVG type reactive power static compensation technology is prior art, so it will not be detailed). When K is in position 2, the second converter HLQ2 is connected to the low-voltage side of the transformer B2, and the high-voltage side of the second converter transformer Β2 is connected in series to the line L by the inter-blade operation, the opening K1, the closing Κ2 and the Κ3. The outlet, the integrated controller enables the first group of converters HLQ1 to still operate in the SVG type reactive power compensation state, so that the second group converter HLQ2 is in the inverter working state, and the high voltage side of the second converter transformer Β2 Establish a voltage source with the same frequency as the line voltage connected in series with the line. The second converter transformer Β2 establishes a high-voltage side voltage source to improve the active and reactive power transmission capacity of the line, so that the line current reaches the melting ice working current, and the composite device is in a melting ice working state.
进行融冰操作时,复合装置中的第二换流变压器 Β2的高压侧必须串接于平行线路或环形 网络中的一条线路上。 对于不能构成环网连接的单电源线路, 只能少量提高线路的无功传输 而提高负荷侧的电压, 不能提高线路电流达到融冰电流, 故无法实现对单电源线路的融冰。  When performing the ice melting operation, the high voltage side of the second converter transformer Β2 in the composite device must be connected in series to one of the parallel lines or the ring network. For a single power supply line that cannot form a ring network connection, the reactive power transmission of the line can be increased by a small amount to increase the voltage on the load side, and the line current cannot be increased to reach the ice melting current, so that the melting of the single power supply line cannot be achieved.
图 2是复合装置中的综合控制器原理框图, 由测量单元、 控制单元、 信号输出单元、 保 护单元、 显示及指令输入单元等组成。 测量单元采集变电站的母线电压、 融冰线路的电流、 复合装置的直流电压、 输出电流等参数。 控制单元按照控制指令, 使输出单元输出不同的控 制信号控制两组换流器工作于无功静补工作状态或融冰工作状态。 保护单元对复合装置进行 保护并与变电站的保护系统协调运作。 显示及指令输入单元显示复合装置的工作状态和相关 参数, 并可人为输入控制指令。 综合控制器可控制复合装置工作于 SVG型无功静补工作状态 或融冰工作状态, 两种工作状态的控制方法均使用现有的正弦脉冲宽度调制技术 (SPWM)控制 换流器的工作。 所不同的是控制目标不同, 在无功静补工作状态时, 综合控制器使两组换流 器均根据变电站的母线电压高低, 或吸收一定的无功或发出一定的无功功率, 其目的是保持 变电站母线电压平稳; 在融冰工作状态时, 综合控制器控制第一组换流器工作于无功静补状 态, 此时第一换流器的主要控制目标是保持两组换流器所共用的直流电容器的端电压恒定, 使第二组换流器向第二组换流器 Β2输出一个与线路同频率的、可变的交流电压, 以改变融冰 线路的出口电压, 均衡加大线路的有功和无功功率的传输, 使线路电流提升到融冰电流为控 制目的(融冰电流均大于正常负荷电流)。 综合控制器可使用现有技术实现, 本发明不作为重 点叙述内容。  Figure 2 is a block diagram of the integrated controller in the composite device, which consists of a measurement unit, a control unit, a signal output unit, a protection unit, a display and an instruction input unit. The measuring unit collects parameters such as the bus voltage of the substation, the current of the ice melting circuit, the DC voltage of the composite device, and the output current. The control unit causes the output unit to output different control signals according to the control command to control the two sets of inverters to work in the reactive static compensation state or the ice melting working state. The protection unit protects the composite unit and coordinates with the protection system of the substation. The display and command input unit displays the working status and related parameters of the composite device, and can manually input control commands. The integrated controller can control the composite device to work in the SVG type reactive static compensation state or the ice melting operation state. Both of the working state control methods use the existing sinusoidal pulse width modulation technology (SPWM) to control the operation of the inverter. The difference is that the control targets are different. In the reactive static compensation state, the integrated controller makes the two sets of inverters according to the bus voltage of the substation, or absorbs certain reactive power or emits certain reactive power. It is to keep the substation bus voltage stable; in the ice melting state, the integrated controller controls the first group of converters to work in the reactive static compensation state. At this time, the main control target of the first converter is to maintain two sets of inverters. The terminal voltage of the shared DC capacitor is constant, so that the second group of converters outputs a variable AC voltage of the same frequency to the second group of converters Β2 to change the outlet voltage of the ice melting line, and equalize The transmission of active and reactive power of the large line increases the line current to the melting current for control purposes (the melting current is greater than the normal load current). The integrated controller can be implemented using the prior art, and the present invention is not intended to be a major point of content.
图 3是复合装置工作于平行线路中的一条线路上, 处于融冰工作状态时的等效电路图和 向量图, 以下结合图 3详细叙述复合装置的融冰工作原理。 图 3中, 两侧系统分别为 ^和^,融冰线路的阻抗为 X。 第二换流变压器 B2高压侧注入 电压用相量 表示, 它可以在以 为端点的圆盘内任意运行。 根据图 3 (a)可得系统的受端功 率为: Fig. 3 is an equivalent circuit diagram and a vector diagram of a composite device operating on a line in a parallel line in an ice-melting state. The ice-melting operation principle of the composite device will be described in detail below with reference to FIG. In Figure 3, the systems on both sides are ^ and ^, respectively, and the impedance of the ice-melting line is X. The high-voltage side injection voltage of the second converter transformer B2 is represented by a phasor which can be arbitrarily operated in the disc which is the end point. According to Figure 3 (a), the receiving end power of the system is:
Figure imgf000007_0001
Figure imgf000007_0001
而第二换流变压器 B2高压侧没有串入线 为:
Figure imgf000007_0002
The second converter transformer B2 has no stringing line on the high voltage side:
Figure imgf000007_0002
第二换流变压器 B2高压侧串入线路的时候,假设输电系统发出端和受端电压以及第二换 流变压器 B2高压侧注入系统的电压分别为: = Ue]S = U(cos- + jsm-) When the high-voltage side of the second converter transformer B2 is connected to the line, the voltages of the transmitting and receiving terminals of the power transmission system and the high-voltage side injection system of the second converter transformer B2 are assumed to be: = Ue ]S = U(cos- + jsm -)
2 2  twenty two
r = Ue-]S'2 =t/(cos--7sin-) r = Ue- ]S ' 2 =t/(cos--7sin-)
2 2  twenty two
^ [-esm ^ UJC0 ) -jsm(i 1 ^可得到第二换流变压器 B2高压侧串入线路时 的输电系统受端的功率为:
Figure imgf000007_0003
^ [ - esm ^ UJC0 ) - jsm( i 1 ^ The power of the receiving end of the transmission system when the high-voltage side of the second converter transformer B2 is connected to the line is:
Figure imgf000007_0003
Qr =— (1-cosd)-——- cos( + p) 同样, 可得到第二换流变压器 B2高压侧没有串入线路时的受端功率为: Q r =—(1-cosd)-——- cos( + p) Similarly, the power of the receiving end when the high-voltage side of the second converter transformer B2 is not connected to the line is:
复合装置传输的功率为
Figure imgf000007_0004
The power transmitted by the composite device is
Figure imgf000007_0004
八 uuc ^ , Eight uu c ^ ,
Qc =―"—cos(S + p) uuc UU Qc = ""-cos(S + p) Uu c UU
可以看到, 复合装置传输的功率 Pc和 Qc只与了和— y的相应值以及 P有关, 而与系 统两侧电压的相角差无关。相当于第二换流变压器 B2的高压侧绕组在线路上注入了一个幅值 和相角可调的电压 ,通过对 进行调节, 即可以控制线路潮流的变化。  It can be seen that the powers Pc and Qc transmitted by the composite device are only related to the corresponding values of y and y, and are independent of the phase angle difference of the voltages on both sides of the system. Corresponding to the high-voltage side winding of the second converter transformer B2, a voltage with adjustable amplitude and phase angle is injected on the line, and by adjusting, the change of the line current can be controlled.
复合装置的融冰工作状态: 就是通过调节第二换流变压器 B2高压侧的电压和相位, 改变 线路有功和无功负荷的传递, 以使线路电流达到融冰电流。 并且提升线路电流到达融冰工作 电流的过程, 是通过改变线路出口电压的方式实现的, 线路的稳定不会遭到破坏。  The ice-melting working state of the composite device is to change the voltage and phase of the high-voltage side of the second converter transformer B2 to change the transmission of the active and reactive loads of the line, so that the line current reaches the melting current. And the process of increasing the line current to the ice-melting working current is realized by changing the line outlet voltage, and the stability of the line is not destroyed.
图 4 是采用本发明的复合装置在一座双母线接线的变电站中的应用示意图。 图中 330KVMK 330KV M2禾 B 35KV M0是第一座变电站中的三条母线, Ml和 M2为双母线接线。 M3 和 M4 分别代表第二座和第三座变电站的母线。 第一座和第二座变电站之间由两条平行线路 L1和 L2连接, 线路 L3和 L4将三座变电站连成环网。 复合装置的控制开关 1DL运行于第一 座变电站的 35KV的母线上, 当切换开关 K运行于位置 1时, 两组换流器 (HLQ1, HLQ2)均并联 运行于第一换流变压器 B1低压侧, 整套装置工作于无功静补工作状态, 第二换流变压器 B2 在停运状态。 欲对一条线路(如 L1)进行融冰操作时, 只让线路 L1运行于 330KV Ml上, 使其 它线路 (如 L2和 L3)均运行于 M2, 合上母联开关 DL0, 合上第二换流变压器 B2的高压厕绕组 的两侧刀闸使第二换流变压器 B2桥接 Ml和 M2, 此时 Ml和 M2等电位, B2的高压侧不会有电 流流过。 将复合装置中的切换开关 K运行于位置 2, 通过综合控制器控制第二换流变压器 B2 的输出, 使流过第二换流变压器 B2高压绕组的功率与线路 L1相等, 此时流过母联开关 DL0 的电流将为零, 断开母联开关 DL0, 再控制第二换流变压器 B2的输出以加大线路 L1的传输 功率使线路 L1的电流达到融冰电流, 进入融冰工作状态。 融冰结束后, 控制第二换流变压器 B2的输出使线路 L1传输功率降低到其正常传输功率时, 此时流过 B2高压侧的电流为零, 合 上母线联络开关 DL0, 然后切开第二换流变压器 B2高压侧的两侧刀闸, 复合装置退出运行。 同理可依次对三条线路分别进行不停电融冰。  Figure 4 is a schematic view of the application of the composite device of the present invention in a substation with double busbar connections. In the figure, 330KVMK 330KV M2 and B 35KV M0 are the three busbars in the first substation, and Ml and M2 are double busbars. M3 and M4 represent the busbars of the second and third substations, respectively. The first and second substations are connected by two parallel lines L1 and L2, and the lines L3 and L4 connect the three substations into a ring network. The control switch 1DL of the composite device runs on the 35KV busbar of the first substation. When the switch K is operated at position 1, the two sets of inverters (HLQ1, HLQ2) are operated in parallel on the low voltage side of the first converter transformer B1. The whole device works in the reactive static compensation state, and the second converter transformer B2 is in the stopped state. To perform ice-melting operation on one line (such as L1), only let line L1 run on 330KV Ml, so that other lines (such as L2 and L3) run on M2, close the bus-coupled switch DL0, and close the second change. The two side cutters of the high voltage toilet winding of the flow transformer B2 bridge the M1 and M2 of the second converter transformer B2, at which time Ml and M2 are equipotential, and no current flows through the high voltage side of B2. The switch K in the composite device is operated at the position 2, and the output of the second converter transformer B2 is controlled by the integrated controller, so that the power flowing through the high voltage winding of the second converter transformer B2 is equal to the line L1, and the flow passes through the mother. The current of the interlocking switch DL0 will be zero, the busbar switch DL0 is disconnected, and the output of the second converter transformer B2 is controlled to increase the transmission power of the line L1 so that the current of the line L1 reaches the melting current and enters the melting ice working state. After the melting ice is finished, when the output of the second converter transformer B2 is controlled to reduce the transmission power of the line L1 to its normal transmission power, the current flowing through the high voltage side of the B2 is zero, the bus contact switch DL0 is closed, and then the first section is cut. On both sides of the high-voltage side of the converter transformer B2, the composite device is taken out of operation. In the same way, the three lines can be continuously cooled and melted.
图 4只是复合装置在双母线的变电站接线中的一种应用形式。 也可根据不同的变电站接 线类型配合使用, 个别母线接线方式与复合装置不好配合时, 也可采用加装专门融冰母线的 方法。  Figure 4 is just one application of the composite unit in the substation wiring of the double bus. It can also be used according to different substation wiring types. When individual busbar wiring is not well matched with the composite device, a special method of melting ice busbars can also be used.
图 4中给出的是单线示意图, 第二换流变压器 B2低压侧绕组既可是三角接线, 也可是星 型连接, 图中未画出。  Figure 4 shows a single-line diagram. The low-voltage side winding of the second converter transformer B2 can be either a delta connection or a star connection, not shown.
复合装置的控制开关 1DL, 可设计其运行于 35KV或 330KV母线上。 一般无功静止补偿设 备应该运行于低压配网中, 故本实施例中采用了将其连接于 35KV母线上的方案。 另外, 当低 压母线和换流器交流侧的电压相同时, 第一换流变压器 B1可以省去。  The control switch 1DL of the compound unit can be designed to operate on a 35KV or 330KV bus. Generally, the reactive static compensation device should be operated in the low-voltage distribution network, so the scheme for connecting it to the 35KV bus is used in this embodiment. In addition, when the voltages of the low voltage bus and the AC side of the inverter are the same, the first converter transformer B1 can be omitted.

Claims

权 利 要 求 Rights request
1. 一种不停电融冰兼 SVG型无功静补复合装置, 其特征在于, 至少有两组换流器 (HLQ1 , HLQ2) , 其直流侧共用一组直流电容器构成背靠背换流系统, 第一组换流器 (HLQ1)的交流侧与 第一换流变压器 (B1)低压侧相连接,第二组换流器 (HLQ2)的交流侧通过切换刀闸 (K)可分别与 第一换流变压器 (B1)或第二换流变压器 (B2)的低压侧相连接, 第一换流变压器 (B1)的高压侧 并接于变电站的交流母线, 第二换流变压器 (B2)的高压侧通过切换刀闸串接于欲融冰的线路 上, 复合装置由综合控制器控制运行。 1. A non-stop electric ice melting and SVG type reactive static compensation composite device, characterized in that there are at least two sets of inverters (HLQ1, HLQ2), and a DC capacitor on the DC side forms a back-to-back commutation system, The AC side of a group of inverters (HLQ1) is connected to the low voltage side of the first converter transformer (B1), and the AC side of the second group of converters (HLQ2) can be switched to the first by the switching knife (K). The low voltage side of the flow transformer (B1) or the second converter transformer (B2) is connected, the high voltage side of the first converter transformer (B1) is connected to the AC bus of the substation, and the high voltage side of the second converter transformer (B2) The composite device is controlled by the integrated controller by switching the knife gates in series with the line to be melted.
2. 如权利要求 1中所述的不停电融冰兼 SVG型无功静补复合装置, 其特征在于, 当第一 换流器 (HLQ1)交流侧电压和变电站母线电压相等时, 第一换流变压器 (B1)省去。  2. The non-stopping ice melting and SVG type reactive static compensation composite device according to claim 1, wherein when the first converter (HLQ1) AC side voltage and the substation bus voltage are equal, the first exchange The flow transformer (B1) is omitted.
3. 权利要求 1所述的不停电融冰兼 SVG型无功静补复合装置的使用方法, 其特征在于, 包括以下两种工作状态:  3. The method of using the non-stop electric ice melting and SVG type reactive static compensation composite device according to claim 1, characterized in that the following two working states are included:
a)不停电融冰工作状态: 第一组换流器 (HLQ1)的交流侧与第一换流变压器 (B1)的低压侧 相连接, 第二组换流器 (HLQ2)的交流侧与第二换流变压器 (B2)的低压侧相连接, 综合控制器 按照 SP丽 控制技术控制第一组换流器 (HLQ1)处于无功静补运行状态, 控制第二组换流器 (HLQ2)处于融冰运行状态;  a) Non-stop power-melting state: The AC side of the first group of converters (HLQ1) is connected to the low-voltage side of the first converter transformer (B1), and the AC side of the second group of converters (HLQ2) The low-voltage side of the two converter transformer (B2) is connected, and the integrated controller controls the first group of converters (HLQ1) to be in the reactive static compensation state according to the SP control technology, and controls the second group of converters (HLQ2) to be in Melting ice running state;
b)无功静补工作状态: 复合装置中的两组换流器 (HLQ1, HLQ2)的交流侧, 均连接于第一 换流变压器 (B1)的低压侧, 综合控制器按照 SP丽控制技术控制两组换流器 (HLQ1, HLQ2)同步 处于 SVG型无功静补运行状态, 而第二换流变压器 (B2)处于停运状态。  b) Reactive static compensation working state: The AC sides of the two sets of inverters (HLQ1, HLQ2) in the composite device are connected to the low voltage side of the first converter transformer (B1), and the integrated controller follows the SP control technology. The two sets of inverters (HLQ1, HLQ2) are controlled to be in the SVG type reactive static compensation operation state, and the second converter transformer (B2) is in the shutdown state.
4. 如权利要求 3所述的方法, 其特征在于, 所述的不停电融冰工作状态, 必须使复合装 置中的第二换流变压器 (B2)的高压侧串接于平行线路或环网线路中的一条线路上, 对于不能 构成环网连接的单线路, 复合装置不能实现融冰操作。  4. The method according to claim 3, wherein in the non-power-off ice-melting state, the high-voltage side of the second converter transformer (B2) in the composite device must be connected in series to the parallel line or the ring network. On one of the lines, the composite device cannot achieve the ice-melting operation for a single line that does not form a ring connection.
PCT/CN2012/086119 2011-12-09 2012-12-07 Uninterrupted ice melting, svg type static reactive power compensation compound device and applying method thereof WO2013083064A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110410482.4 2011-12-09
CN201110410482.4A CN102412544B (en) 2011-12-09 2011-12-09 Power-uninterrupted ice melting and SVG-type reactive static compensation compound device and use method thereof

Publications (1)

Publication Number Publication Date
WO2013083064A1 true WO2013083064A1 (en) 2013-06-13

Family

ID=45914468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086119 WO2013083064A1 (en) 2011-12-09 2012-12-07 Uninterrupted ice melting, svg type static reactive power compensation compound device and applying method thereof

Country Status (2)

Country Link
CN (1) CN102412544B (en)
WO (1) WO2013083064A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947193A (en) * 2017-12-29 2018-04-20 江苏上能新特变压器有限公司 New 35kV 220kV substations SVG or SVC electric power systems

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412544B (en) * 2011-12-09 2015-07-15 贺长宏 Power-uninterrupted ice melting and SVG-type reactive static compensation compound device and use method thereof
CN103036186A (en) * 2012-12-14 2013-04-10 贺长宏 Power-uninterrupted ice melting and SVG-type reactive static compensation compound device and use method thereof
CN103199477B (en) * 2013-04-17 2015-09-09 国家电网公司 A kind of circuit exchanges de-icing method and device
CN103337821A (en) * 2013-06-09 2013-10-02 南方电网科学研究院有限责任公司 Overvoltage protection and insulation coordination design method of direct current ice melting system
CN103730841A (en) * 2013-11-22 2014-04-16 国家电网公司 Capacitor circuit in transformer substation and transformer substation
CN103647278B (en) * 2013-12-18 2016-04-20 国家电网公司 A kind of Large Copacity Unified Power disturbing generating device
CN106229930B (en) * 2016-09-18 2019-03-05 湖北科技学院 A kind of DC power transmission line conductor ice prevention and static passive compensation device
CN106207863A (en) * 2016-09-26 2016-12-07 南京工程学院 A kind of based on the THE UPFC de-icing method of synchronization paralleling device between electrical network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2316867C1 (en) * 2006-08-11 2008-02-10 Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") Combinatorial ice melting and reactive power correcting installation
CN101540508A (en) * 2009-01-16 2009-09-23 中国电力科学研究院 Reconfigurable device of static var compensation (SVC) and direct-current thawing
CN102412544A (en) * 2011-12-09 2012-04-11 贺长宏 Power-uninterrupted ice melting and SVG-type reactive static compensation compound device and use method thereof
CN202535014U (en) * 2011-12-09 2012-11-14 贺长宏 A composite apparatus used for power-on ice melting and performing SVG static var compensation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615772B (en) * 2009-05-21 2011-04-13 鸡西电业局 Ice-melting method of transmission line with ends therefore infused with reactive current
CN101673951B (en) * 2009-10-15 2011-11-30 中国电力科学研究院 Thyristor valve triggering and monitoring system
CN101673950B (en) * 2009-10-15 2013-06-12 中电普瑞科技有限公司 Static var compensator (SVC) and DC ice melting device and realization method thereof
CN102195260B (en) * 2011-05-29 2013-11-20 西南交通大学 Power-frequency online anti-icing de-icing method for electrified railway contact network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2316867C1 (en) * 2006-08-11 2008-02-10 Открытое Акционерное Общество "Федеральная Сетевая Компания Единой Энергетической Системы" (Оао "Фск Еэс") Combinatorial ice melting and reactive power correcting installation
CN101540508A (en) * 2009-01-16 2009-09-23 中国电力科学研究院 Reconfigurable device of static var compensation (SVC) and direct-current thawing
CN102412544A (en) * 2011-12-09 2012-04-11 贺长宏 Power-uninterrupted ice melting and SVG-type reactive static compensation compound device and use method thereof
CN202535014U (en) * 2011-12-09 2012-11-14 贺长宏 A composite apparatus used for power-on ice melting and performing SVG static var compensation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE CHANGHONG ET AL.: "Research of compound system for grid integration, ice-melting automatically I of transmission lines and static var compensation.", SHANXI PROVINCE HYDROELECTRIC ENGINEERING ACADEMY EXCELLENT ACADEMIC PAPERS OF THE YOUTH SET., 2008, pages 20 - 25 *
LIU JIAJUN ET AL.: "Simulation Research on Ice-Melting of interconnecting Tie by UPFC Based on grid Synchronizing Device.", POWER SYSTEM TECHNOLOGY., vol. 36, no. 4, April 2012 (2012-04-01), pages 89 - 93 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947193A (en) * 2017-12-29 2018-04-20 江苏上能新特变压器有限公司 New 35kV 220kV substations SVG or SVC electric power systems

Also Published As

Publication number Publication date
CN102412544B (en) 2015-07-15
CN102412544A (en) 2012-04-11

Similar Documents

Publication Publication Date Title
WO2013083064A1 (en) Uninterrupted ice melting, svg type static reactive power compensation compound device and applying method thereof
WO2015184955A1 (en) Voltage source type dc ice melting and static synchronous compensation device and method for controlling same
WO2015131517A1 (en) Direct-current de-icing device based on voltage source type converter and control method therefor
CN103560538B (en) Micro-capacitance sensor protection and the switching integrated control method of Based PC C place's energy storage
CN105610158B (en) A kind of Distributed Power Flow controller and its control method
CN203690938U (en) Low-voltage reactive-power automatic compensation device
CN101345419B (en) Series voltage quality regulator and fast investment and cutting method
WO2014201809A1 (en) Uninterrupted direct current deicing device
CN103457261A (en) Power quality integrated management device of electrified railway traction supply network
Qu et al. Planning and analysis of the demonstration project of the MVDC distribution network in Zhuhai
CN102496898A (en) Bifunctional direct current ice melting apparatus based on voltage source type current converter and ice melting method thereof
CN102510039B (en) Automatic switching circuit for multi-functional direct current ice melting and switching method thereof
CN101540508A (en) Reconfigurable device of static var compensation (SVC) and direct-current thawing
WO2014048336A1 (en) Coordination control method for facts devices of new energy delivery system
Huang et al. Research status and prospect of control and protection technology for DC distribution network
CN204376414U (en) A kind of device having DC ice melting and static reactive function concurrently
CN107171270B (en) Intensive deicing device constant current, constant pressure modularization dynamic passive compensation component
CN103036186A (en) Power-uninterrupted ice melting and SVG-type reactive static compensation compound device and use method thereof
CN202535014U (en) A composite apparatus used for power-on ice melting and performing SVG static var compensation
CN105207208B (en) Realize power flowcontrol and the circuit of small current grounding fault active compensation extinguishing arc simultaneously
CN204179673U (en) A kind of dynamic passive compensation and DC ice melting multiplexer
CN205335862U (en) Flexible switching device of intelligence
CN106340885B (en) A kind of end Network Voltage Stability system and control method
CN204334357U (en) A kind of DC de-icing device
CN203690919U (en) Electrified switching device for energy-saving cabinet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855965

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC