WO2013080992A1 - Eeg measurement electrode, eeg measurement member, and eeg measurement device - Google Patents

Eeg measurement electrode, eeg measurement member, and eeg measurement device

Info

Publication number
WO2013080992A1
WO2013080992A1 PCT/JP2012/080707 JP2012080707W WO2013080992A1 WO 2013080992 A1 WO2013080992 A1 WO 2013080992A1 JP 2012080707 W JP2012080707 W JP 2012080707W WO 2013080992 A1 WO2013080992 A1 WO 2013080992A1
Authority
WO
WIPO (PCT)
Prior art keywords
electroencephalogram
electroencephalogram measurement
electrode
scalp
metal
Prior art date
Application number
PCT/JP2012/080707
Other languages
French (fr)
Japanese (ja)
Inventor
滋 外山
憲司 神作
高野 弘二
Original Assignee
財団法人ヒューマンサイエンス振興財団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人ヒューマンサイエンス振興財団 filed Critical 財団法人ヒューマンサイエンス振興財団
Publication of WO2013080992A1 publication Critical patent/WO2013080992A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]

Definitions

  • the present invention relates to an electroencephalogram measurement electrode, an electroencephalogram measurement member, and an electroencephalogram measurement apparatus.
  • Patent Document 1 includes a projecting portion having conductivity and being deformable by being formed of a conductive gel, and by contacting the projecting portion with the scalp, An electroencephalogram measurement electrode (chip portion) for measuring an electroencephalogram generated by brain activity is disclosed.
  • the electroencephalogram measurement electrode disclosed in Patent Document 1 is deformed when the protruding portion comes into contact with the scalp, so that the pressure applied to the scalp can be reduced and the burden on the scalp can be reduced.
  • the electroencephalogram measurement electrode using the conductive gel as disclosed in Patent Document 1 is easily deformed by the electroencephalogram measurement electrode (particularly the protruding portion), and the conductive gel portion is also deteriorated by drying. It was early. For this reason, the electroencephalogram measurement electrode may be disposable.
  • the present invention has been made in view of the above circumstances, and an electroencephalogram measurement electrode that can be used multiple times while suppressing the burden on the scalp, and an electroencephalogram measurement member and an electroencephalogram using the electroencephalogram measurement electrode It aims at providing a measuring device.
  • an electroencephalogram measurement electrode comprises: An electroencephalogram measuring electrode for measuring an electroencephalogram, The base, A protrusion made of rubber provided protruding from the base, and Provided at the tip of the protruding portion, electrically connected to the outside of the electroencephalogram measurement electrode, and in contact with the scalp when measuring the electroencephalogram, a contact portion made of metal, It is characterized by providing.
  • the protrusion is made of conductive rubber,
  • the contact portion is electrically connected to the outside via the protrusion. You may do it.
  • the contact portion is electrically connected to the outside via the conductor. You may do it.
  • the contact portion is formed integrally with the conductor, and is electrically connected to the outside via the conductor. You may do it.
  • the contact portion is composed of a plurality of metal particles. You may do it.
  • the contact portion is made of a metal film. You may do it.
  • the protrusion is at least partially covered with a metal film that is electrically connected to the outside. You may do it.
  • the spacer shortens the portion inserted between the hairs of the protruding portion when measuring the electroencephalogram, You may do it.
  • the electroencephalogram measurement member comprises: The electroencephalogram measurement electrode; A covering member that covers the scalp, and is attached so that the electroencephalogram measurement electrode contacts the scalp; It is characterized by providing.
  • an electroencephalogram measurement apparatus provides: Comprising the above electroencephalogram measurement electrode, It is characterized by that.
  • the electroencephalogram measurement electrode can be used multiple times while suppressing the burden on the scalp.
  • FIG. 1 is a schematic diagram showing an electroencephalogram measurement apparatus according to a first embodiment of the present invention. It is principal part sectional drawing of the electrode member with which the electroencephalogram measurement apparatus which concerns on the 1st Embodiment of this invention is equipped, and a cap. It is an expanded sectional view of the cover part of FIG. It is an expanded sectional view of the electrode for electroencephalogram measurement of FIG. It is the figure which looked at the electrode for electroencephalogram measurement of FIG. 2 from the direction which the protrusion part protrudes. It is sectional drawing of the electrode for electroencephalogram measurement which concerns on the 2nd Embodiment of this invention. It is sectional drawing of the electrode for electroencephalogram measurement which concerns on the 3rd Embodiment of this invention.
  • FIG. 1 is a schematic perspective view of an electroencephalogram measurement electrode according to a first embodiment of the present invention. It is a schematic perspective view of the electroencephalogram measurement electrode according to Modification 4 of the present invention.
  • the electroencephalogram measurement apparatus 1000 includes an electrode member 100, a cap 200, a lead wire 500, and a signal analysis apparatus 700.
  • the cap 200 covers the head and includes a holder part 210 and a cap part 220.
  • the cap part 220 has a helmet-like or hat-like shape, and is formed of an appropriate material such as a synthetic resin or cloth.
  • the cap unit 220 covers the scalp 400 of a subject (a person who is a subject who measures brain waves).
  • a plurality of holder portions 210 are provided on the cap portion 220 at a predetermined interval.
  • the holder part 210 is a cylindrical member attached to a through hole formed in the cap part 220. Although details will be described later, the electrode member 100 is attached to each holder portion 210.
  • the lead wire 500 is a conducting wire such as an insulated wire whose conductor is covered with an insulator.
  • the lead wire 500 has one end electrically connected to the electrode member 100 and the other end electrically connected to the signal analysis device 700.
  • the signal analysis device 700 is an electronic device such as a computer.
  • the signal analysis device 700 analyzes an electrical signal representing an electroencephalogram transmitted through the electrode member 100 and the lead wire 500, and performs a predetermined operation according to the analysis result.
  • the electrode member 100 includes a lid portion 20, a metal wire 30, and an electroencephalogram measurement electrode 40.
  • Each electrode member 100 is used by being attached to a holder portion 210 (in FIG. 2, hatching representing a cross section of the cap 200 is omitted).
  • the lid portion 20 is formed by a method such as injection molding using a resin material such as an epoxy resin, for example, and is formed in a shape that matches the holder portion 210. Specifically, as shown in FIGS. 2 and 3, the lid portion 20 is stretched from a columnar member 20 a and a portion (upper end portion in FIG. 2) opposite to the scalp 400 on the outer peripheral surface of the columnar member 20 a. And a flange portion 20b to be taken out. On the scalp 400 side of the lid portion 20 (the surface on the scalp 400 side of the cylindrical member 20a (the lower surface of the circular member 20a in FIGS. 2 and 3)), a cylindrical shape into which the electroencephalogram measurement electrode 40 can be inserted.
  • a resin material such as an epoxy resin
  • a hole 21 is formed, and the electroencephalogram measurement electrode 40 is inserted into the hole 21. Threads are formed on the inner peripheral surface of the holder portion 210 and the outer peripheral surface of the columnar member 20a so that the lid portion 20 and the holder portion 210 can be screwed together.
  • the flange portion 20b is formed so as to come into contact with the upper end surface (the surface on the side opposite to the scalp 400) of the holder portion 210 when the lid portion 20 and the holder portion 210 are screwed at a predetermined degree.
  • the cover part 20 may be formed from the synthetic resin etc. which have electroconductivity. At this time, the lid 20 is electrically connected to the electroencephalogram measurement electrode 40 and the metal wire 30.
  • the metal wire 30 has one end electrically connected to the electroencephalogram measurement electrode 40 and the other end electrically connected to the lead wire 500. As shown in FIG. 2, the metal wire 30 penetrates through the center of the lid portion 20 and is inserted almost at the center of the electroencephalogram measurement electrode 40 (base portion 50 described later) (in the drawing, the cross section of the metal wire 30 is shown). The hatching is omitted, and the metal wire 30 is indicated by a solid line). At this time, the metal wire 30 does not penetrate the electroencephalogram measurement electrode 40, and only the tip pierces the electroencephalogram measurement electrode 40. The metal wire 30 is not rotatable with respect to the electroencephalogram measurement electrode 40 and is rotatable with respect to the lid portion 20.
  • the metal wire 30 may not be inserted into the electroencephalogram measurement electrode 40 but may be in contact with the surface of the electroencephalogram measurement electrode 40 that is in contact with the lid portion 20. At this time, the electroencephalogram measurement electrode 40 is electrically connected to the metal wire 30. Further, since the metal wire 30 is only in contact with the electroencephalogram measurement electrode 40, it can be rotated with respect to the electroencephalogram measurement electrode 40.
  • a circular metal plate (the same shape as the upper surface of the hole 21) made of a metal material or the like may be provided on the surface of the lid 20 that contacts the upper surface of the hole 21.
  • the metal wire 30 is not inserted into the electroencephalogram measurement electrode 40 but is electrically connected to the metal plate. Further, the metal plate is electrically connected to the electroencephalogram measurement electrode 40.
  • the electrical signal transmitted to the base 50 is transmitted to the metal wire 30 through this metal plate.
  • the electroencephalogram measurement electrode 40 includes a base portion 50, a protruding portion 60, and a contact portion 70.
  • the base portion 50 and the protruding portion 60 are made of a deformable conductive rubber or the like, and are formed by an appropriate method such as molding.
  • the conductive rubber can be deformed by having elasticity (hereinafter, the same applies to various rubbers).
  • the conductive rubber is formed of, for example, an organic conductive polymer, a polymer material containing a conductive powder material (such as a liquid silicone resin), or a polymer material impregnated with an ionic liquid.
  • the conductive powder material for example, metal particles such as graphite, carbon nanotubes, and silver fine particles, AgCl particles, powder of organic conductive polymer, and the like are used.
  • the base portion 50 is formed in a substantially cylindrical shape that is circular when viewed from the lid portion 20.
  • the base portion 50 is fixed by inserting a metal wire 30 at the center of a circle on the side in contact with the lid portion 20 and is electrically connected to the metal wire 30. At least a part of the base portion 50 is accommodated in the hole 21 of the lid portion 20 and is held by a frictional force between the base portion 50 and the lid portion 20. At this time, the base portion 50 is slidable with respect to the lid portion 20.
  • the base part 50 does not provide the hole 21 of the lid part 20, but, for example, a fixing part (for example, a claw that hooks the base part 50) provided on the lower surface of the cylindrical member 20a, a fixing part such as an adhesive or an adhesive material. May be fixed to the lower surface of the cylindrical member 20a.
  • a fixing part for example, a claw that hooks the base part 50
  • a fixing part such as an adhesive or an adhesive material. May be fixed to the lower surface of the cylindrical member 20a.
  • the protrusion 60 is a substantially conical member formed of conductive rubber as described above, as shown in FIG. As shown in FIG. 2, the protrusion 60 is provided to protrude from the base 50 toward the scalp 400 and is electrically connected to the base 50. Referring to FIG. 5, the protruding portion 60 in the present embodiment is provided with seven protruding portions 60 on the scalp 400 side of the base portion 50. The number of protrusions 60 is not limited to this number, but it is desirable that a plurality of protrusions 60 be provided. In the present embodiment, the protruding portion 60 and the base portion 50 are integrally formed of the same material.
  • the protruding portion 60 may have a shape such as a cylindrical shape, a polygonal prism shape (a shape whose base and top sides are polygonal), and a polygonal pyramid (a shape whose bottom is polygonal).
  • the contact portion 70 is a metal lump formed of a metal material, that is, having conductivity. It is directly provided at the tip of the protrusion 60 so as to come into contact with the scalp 400. As a result, the contact portion 70 is also electrically connected to the protruding portion 60. For example, when the base portion 50 and the protrusion portion 60 are molded, the contact portion 70 is directly fused to the protrusion portion 60 (for example, a method such as insert molding) or by a fixing material such as a conductive adhesive material. The protrusion 60 is fixed and provided.
  • the metal lump constituting the contact portion 70 may be a single component such as silver, gold, platinum, or titanium, but is made of an alloy, a conductive metal oxide, a conductive chloride, or the like.
  • the contact part 70 may use a different component by the inside and the exterior, for example, may use silver inside and may use silver chloride outside.
  • the protrusion 60 is electrically connected to the metal wire 30, and the metal wire 30 is electrically connected to the lead wire 500. Therefore, the protrusion 60 and the contact portion 70 are connected to the signal analysis device 700. It is also connected electrically.
  • “Electrically connected” means that both of the connection targets are directly connected, and both of the connection targets (for example, the contact portion 70 and the signal analysis device 700) are connected to other conductive members (for example, the protruding portion 60). And at least one of the two (for example, the contact portion 70) and the other (for example, the signal analysis device 700) are connected to each other so that electricity flows. Is also included.
  • the electroencephalogram measurement electrode 40 presses the scalp 400 with a pressure corresponding to the tightening degree of the lid 20. Therefore, the pressure applied to the scalp 400 of the electrode member 100 can be finely adjusted by adjusting the degree of rotation of the lid 20.
  • the lid portion 20 enters the holder portion 210 by a predetermined distance, the flange portion 20b comes into contact with the upper end surface of the holder portion 210 (the end surface opposite to the scalp 400 in FIG. 2). Thereby, it can prevent that the cover part 20 approachs into the holder part 210 too much.
  • the lead wire 500 is connected to the metal wire 30 after adjusting the degree of rotation of the lid portion 20.
  • the electroencephalogram measurement electrode 40 including the base portion 50 is slidably inserted into the lid portion 20, it can rotate independently with respect to the lid portion 20. Normally, the lid 20 and the electroencephalogram measurement electrode 40 rotate together. However, since the lid 20 supports the electroencephalogram measurement electrode 40 so as to be rotatable, the protruding portion 60 of the electroencephalogram measurement electrode 40. When a force that impedes rotation of the electroencephalogram measurement electrode 40 is applied to the electroencephalogram measurement electrode 40, such as when the hair enters between the electrodes or the contact portion 70 contacts the scalp, the lid portion 20 It rotates independently of the measurement electrode 40, so that the electroencephalogram measurement electrode 40 does not rotate.
  • the metal wire 30 may be prevented from rotating by connecting the lead wire 500 or the like, and the electroencephalogram measurement electrode 40 may not be rotated even when the lid portion 20 is rotated. Thereby, since the electroencephalogram measurement electrode 40 does not rotate from the beginning, the risk of the electroencephalogram measurement electrode 40 getting involved in the hair is reduced.
  • an electrical signal from the scalp 400 will be described. Electrical signals are transmitted from the scalp 400 to the contact portion 70 that has come into contact with the scalp 400 in accordance with various brain activities.
  • the contact portion 70 that has come into contact with the scalp 400 receives an electrical signal from the scalp 400.
  • This electrical signal represents an electroencephalogram.
  • the transmitted electrical signal is transmitted in the order of the protrusion 60, the base 50, the metal wire 30, and the lead wire 500 (when the above-described metal plate is provided on the base 50, from the base 50, An electric signal is transmitted to the metal wire 30 via the metal plate) and supplied to the signal analysis device 700.
  • the signal analysis device 700 analyzes the supplied electrical signal and identifies the electroencephalogram represented by the electrical signal. In this way, the signal analysis device 700 measures the electroencephalogram.
  • the signal analysis device 700 analyzes the measured electroencephalogram, analyzes the idea of the person (the owner of the measured electroencephalogram), and performs a predetermined operation according to the analysis result. For example, the signal analysis device 700 outputs an analysis result or performs an operation in response to the analysis result.
  • the protrusion part 60 since the protrusion part 60 is provided between the base part 50 and the scalp 400, when the cover part 20 enters the holder part 210, the protrusion part 60 enters between the hairs and protrudes.
  • the contact part 70 provided at the tip of the part 60 contacts the scalp 400. That is, the electrode member 100 easily contacts the scalp 400 and easily receives an electrical signal from the scalp 400. If the protrusion 60 is not provided, if there is scalp on the surface of the scalp 400, the scalp may be sandwiched between the base 50 and the scalp 400, and the contact part 70 may contact the scalp 400. This may make it difficult to receive electrical signals from the scalp 400.
  • the protrusion 60 is formed of rubber as described above, has elasticity, and can be deformed. Therefore, even if the hair wraps around, the protrusion 60 does not pull the hair strongly, and may cause pain or discomfort to the subject. small.
  • the contact portion 70 comes into contact with the scalp 400, the contact portion 70 is made of a metal material (the contact portion of the electrode member 100 with the scalp 400 is hard), which may cause pain and discomfort to the subject.
  • the protrusion 60 according to the present embodiment has the hardness that the contact portion 70 (metal material) gives to the scalp 400 because the protrusion 60 can be deformed (in particular, the protrusion 60 has flexibility). And bends flexibly) and is less likely to cause pain or discomfort to the subject.
  • the burden on the scalp 400 can be suppressed by deformation (here, bending) of the protrusion 60.
  • the electroencephalogram measurement electrode 40 may be disposable.
  • the protruding portion 60 is formed of rubber, and the electrical signal from the scalp 400 is received (detected) by the contact portion 70 of the metal material. It is possible to use multiple times while suppressing.
  • the inventor of the present application uses the scalp 400 for the contact portion 70 formed of conductive rubber (that is, the contact portion 70 in the case where the electroencephalogram measurement electrode 40 is integrally formed of conductive rubber including the contact portion 70).
  • the contact portion 70 is formed of a metal material.
  • the electroencephalogram measurement electrode 40 electroencephalogram measurement apparatus 1000
  • the electroencephalogram can be accurately measured by providing the contact portion 70 formed of the metal material at the tip of the protrusion 60.
  • the burden on the scalp 400 can be suppressed.
  • the electroencephalogram measurement apparatus 1000 including the electroencephalogram measurement electrode 40 is, for example, a brain-machine interface (BMI) or a brain-computer interface (Brain-Computer Interface), which has recently been attracting attention for its usefulness. : Used as BCI).
  • BMI (hereinafter, unless otherwise specified, BMI is used as a term representing a concept including BCI) is an electrical signal that represents an electroencephalogram generated by brain activity, and is directly used as a computer or the like. It is an interface of the format to input to the electronic equipment. This is expected to enable more intuitive operation of electronic devices such as computers. In addition, since it is possible to operate a computer or the like without using limbs, it is also expected to be applied in the fields of welfare, medical care, and nursing care.
  • the contact part 70 is comprised with the several metal particle 71 smaller than the metal lump used in 1st Embodiment instead of the single metal lump like 1st Embodiment. Yes.
  • the metal particles 71 are formed of a metal material as in the first embodiment.
  • the metal particles 71 are embedded at the tip of the protrusion 60, and at least a part of the metal particle 71 is exposed on the scalp 400 side of the protrusion 60.
  • each metal particle 71 is electrically connected to the protrusions 60 by the above-described embedding. As a result, as in the first embodiment, each metal particle 71 is also electrically connected to the metal wire 30, the lead wire 500, the signal analysis device 700, and the like. Since each metal particle 71 is formed of a metal material, the metal particle 71 can accurately measure an electroencephalogram as in the first embodiment. The electrical signal received by the metal particles 71 is transmitted in the order of each metal particle 71, the protrusion 60, the base 50, the metal wire 30, the lead wire 500, and the signal analysis device 700. Further, unlike the electroencephalogram measurement electrode 40 according to the first embodiment, each metal particle 71 according to the second embodiment is added to the scalp 400 by making the contact portion 70 into a plurality of small metal particles 71. Disperse pressure and give subject softness.
  • the electroencephalogram measurement electrode 40 according to the third embodiment includes a metal part 70a, a first metal film 70b, and a second metal film 70c (in FIG. The hatching representing the cross section of the first metal film 70b and the second metal film 70c is omitted, and the first metal film 70b and the metal film 70c are indicated by bold lines).
  • the metal portion 70 a is a metal lump formed of a metal material, that is, having conductivity, and is directly provided at the tip of the protruding portion 60.
  • the first metal film 70b covers the metal part 70a.
  • the second metal film 70c covers the portions which may contact with the scalp 400 of the projecting portion 60.
  • the first metal film 70b and the second metal film 70c are integrally formed of a metal material by a method such as vapor deposition or plating.
  • the first metal film 70b and the second metal film 70c may be formed separately.
  • the first metal film 70b and the second metal film 70c can be deformed, and are configured to maintain the deformation of the protruding portion 60.
  • the first metal film 70b and the second metal film 70c are electrically connected to the metal part 70a, the protruding part 60, etc., and electrically connected to the outside of the electroencephalogram measurement electrode 40.
  • the contact part 70 in the third embodiment is composed of a metal part 70a and a first metal film 70b.
  • the first metal film 70b and the metal film 70c can receive an electrical signal from the scalp when in contact with the scalp.
  • the protrusion 60 is deformed when coming into contact with the scalp 400, and may be deformed (bent) so as to be bent, for example. In this case, there is a possibility that the protrusion 60 (particularly, the side surface near the metal portion 70a) contacts the scalp 400. However, since the protrusion 60 is made of conductive rubber, it may be difficult to receive an electrical signal from the scalp 400.
  • the second metal film 70c formed of a metal material causes the protrusion 60 (particularly a portion that may come into contact with the scalp 400 due to deformation of the protrusion 60). Coating. As a result, even if the projecting portion 60 is deformed, the second metal film 70c comes into contact with the scalp 400, so that the electroencephalogram measurement electrode 40 can easily receive an electrical signal from the scalp 400 by the second metal film 70c.
  • the electrical signal received by the first metal film 70b is transmitted in the order of the metal portion 70a, the protruding portion 60, the base portion 50, the metal wire 30, the lead wire 500, and the signal analyzing device 700.
  • the electrical signal received by the second metal film 70c is transmitted in the order of the protruding portion 60, the base portion 50, the metal wire 30, the lead wire 500, and the signal analyzing device 700.
  • the first metal film 70b and the second metal are formed by performing vapor deposition, plating, or the like on the tip of the protrusion 60 without providing a metal lump at the tip of the protrusion 60.
  • the film 70c may be formed.
  • the first metal film 70b is a part that can come into contact with the scalp 400 when the protruding part 60 is not deformed, and the second metal film 70c can be brought into contact with the scalp 400 when the protruding part 60 is deformed. Part. That is, the contact portion 70 is configured only by the first metal film 70b.
  • the electroencephalogram measurement electrode 40 according to the fourth embodiment further includes a metal plate 85a and a conductor 80 (in FIG. 8, the hatching representing the cross section of the conductor 80 is omitted, and the conductor 80 is indicated by a solid line).
  • the metal plate 85a is formed of a conductive metal material, and is provided in a portion of the electrode member 100 that is in contact with the lid portion 20.
  • the metal wires 30 are electrically connected to the metal plate 85a.
  • the metal wire 30 is electrically connected to the metal plate 85a so as not to rotate with respect to the metal plate 85a (for example, by not soldering the metal wire 30 and the metal plate 85a).
  • the conducting wire 80 is made of a conductive metal material and is formed in a thin line shape that can be deformed (here, has flexibility), and the projecting portion 60 cannot be deformed by the conducting wire 80.
  • the metal plate 85a and the conductive wire 80 may be a single component such as silver, gold, platinum, or titanium, but are made of an alloy, a conductive metal oxide, a conductive chloride, or the like. Is desirable.
  • the conducting wire 80 passes through the inside of the projecting portion 60 and the base portion 50, one end is electrically connected to the contact portion 70, and the other end is electrically connected to the metal plate 85a.
  • the electrical signal received from the scalp 400 by the contact portion 70 is transmitted to the metal plate 85 a via the conductor 80.
  • the protrusion part 60 and the base part 50 which concern on 4th Embodiment are formed with the elastic rubber (synthetic rubber, natural rubber, etc.) which can deform
  • the protrusion 60 and the base 50 do not have conductivity (without using an organic conductive polymer or conductive powder material) via the metal plate 85a and the conductive wire 80.
  • EEG can be measured.
  • the protrusion part 60 and the base part 50 may have electroconductivity.
  • the electrical signal received by the contact unit 70 is transmitted in the order of the conductive wire 80, the metal plate 85 a, the metal wire 30, the lead wire 500, and the signal analysis device 700.
  • the electroencephalogram measurement electrode 40 according to the fifth embodiment includes a metal plate 85 b and a wire (conductive wire) 82 (in FIG. 9, the hatching representing the cross section of the wire 82 is omitted).
  • the wire 82 is indicated by a solid line).
  • the metal plate 85b is formed of a conductive metal material, and is provided in a portion of the electroencephalogram measurement electrode 40 that is in contact with the lid portion 20.
  • the metal wire 30 is electrically connected to the metal plate 85b.
  • the metal wire 30 is electrically connected to the metal plate 85b so as not to rotate with respect to the metal plate 85b (for example, by not soldering the metal wire 30 and the metal plate 85b).
  • the wire 82 is made of a conductive metal material, and is formed in a deformable (flexible) thin line shape. The wire 82 does not prevent the protrusion 60 from being deformed.
  • the metal plate 85b and the conductive wire 80 may be a single component such as silver, gold, platinum, or titanium, but are made of an alloy, a conductive metal oxide, a conductive chloride, or the like. Is desirable. As shown in FIG.
  • the wire 82 passes through the inside of the projecting portion 60, and a part of the wire 82 is exposed to the outside from the scalp 400 side (tip) of the projecting portion 60.
  • the electrical signal is received from the scalp 400 in the same manner as the contact unit 70 according to the embodiment. That is, the contact part 70 of 5th Embodiment is comprised by the part exposed outside from the protrusion part 60 among the wires 82. FIG. One end or both ends of the wire 82 are electrically connected to the metal plate 85b.
  • the protrusion part 60 and the base part 50 which concern on 5th Embodiment are formed with the elastic rubber (synthetic rubber, natural rubber, etc.) which can deform
  • the electroencephalogram can be measured via the metal plate 85b and the conductive wire 80 without the projecting portion 60 and the base portion 50 having conductivity.
  • the protrusion part 60 and the base part 50 may have electroconductivity.
  • the electrical signal received by the contact unit 70 is transmitted in the order of the wire 82, the metal plate 85b, the metal wire 30, the lead wire 500, and the signal analysis device 700.
  • the electroencephalogram measurement electrode 40 may further include a spacer 90 as shown in FIG.
  • the spacer 90 adjusts the length of the protrusion 60 that enters between the hairs by contacting the hairs.
  • the spacer 90 is formed of a synthetic resin or the like (for example, has an insulating property.
  • the spacer 90 may have a conductive property), and is fixed to the scalp 400 side of the base portion 50 and provided between the protruding portions 60. .
  • the spacer 90 is formed to increase the length in the direction in which the protruding portion 60 protrudes and shorten the length of the protruding portion 60 protruding from the base portion 50 as the density or amount of hair decreases.
  • the length of the protrusion 60 entering between the hairs is shortened, and when the density or amount of the hair is large, the length of the protrusion 60 between the hairs. Since the length of penetration increases, the contact portion 70 at the tip of the protruding portion 60 does not pierce the scalp 400 excessively, so that an appropriate pressure can be applied to the scalp 400, and stress applied to the scalp 400 is reduced. Is done.
  • the lid 20 may be as shown in FIG.
  • the lid portion 20 further includes a convex portion 22 a on the inner peripheral surface of the columnar member 20 a included in the lid portion 20.
  • the convex part 22a of the cover part 20 is formed in a ring shape so as to go around the inner peripheral surface of the columnar member 20a.
  • the electroencephalogram measurement electrode 40 is caught by the convex portion 22a, it is possible to prevent the electrode member 100 from being accidentally detached from the lid portion 20 and to handle the electrode member 100 more easily.
  • the convex portion 22a is formed in a ring shape so as to go around the inner peripheral surface of the lid portion 20, the electroencephalogram measurement electrode 40 can be rotated in the horizontal direction.
  • the lid 20 further includes a convex portion 22b on the outer peripheral surface of the columnar member 20a.
  • the convex portion 22b is formed in a ring shape that goes around the outer peripheral surface of the cylindrical member 20a.
  • the holder part 210 further includes a plurality of recesses 230 on the inner peripheral surface. Each recess 230 is formed in a ring shape that goes around the inner peripheral surface of the holder part 210.
  • each concave portion 230 meshes with the convex portion 22b, so that the distance (up and down direction in FIG.
  • the position of the lid part 20 is determined in multiple stages with respect to the holder part 210. Therefore, when it is desired to change the degree of insertion into the holder part 210 of the electrode member 100 after the electroencephalogram measurement electrode 40 is brought into contact with the scalp 400, the degree is changed without turning the electrode member 100. be able to.
  • the cover part 20 is the direction of the surface which contact
  • the cylindrical member 2a and the holder portion 210 are not formed with threads that are screwed together.
  • FIG. 17 is a view in which a part of the entire electroencephalogram measurement electrode 40 according to Modification 4 is cut out and described, and hatching representing a cross section of the base portion 50 is omitted.
  • the electroencephalogram measurement electrode 40 will be described in more detail with reference to Example 1.
  • FIG. 1 the electrode member 100 (electroencephalogram measurement electrode 40) and the cap 200 according to the first embodiment shown in FIG.
  • a commercially available stainless steel female screw (diameter: 16 mm) was attached to the cylindrical through hole using a silicone-based adhesive. This female screw functions as the holder part 210 in the first embodiment.
  • the lid 20 was prepared by pouring an epoxy-based room temperature curing resin Technobit (registered trademark) 4004 into a mold having a predetermined shape and curing it. At this time, a silver wire (corresponding to the metal wire 30) having a diameter of 0.5 mm and a length of 20 mm is inserted in the center, and the silver wire is inserted so that both ends of the silver wire come out of the lid portion 20. The position of the silver wire was adjusted so that the length of the silver wire inserted into the electroencephalogram measurement electrode 40 was about 5 mm. After curing, the epoxy-based room temperature curing resin technobit was taken out. And after taking out the said molding, the lead wire 500 was soldered to the silver wire exposed from the surface (upper surface in FIG. 2) by which the flange part 20b of the cover part 20 is arrange
  • Technobit registered trademark
  • the electroencephalogram measurement electrode 40 was produced using a mold 600 shown in FIG. As shown in FIG. 13, the mold 600 includes an upper mold 610 and a lower mold 620. The upper mold 610 and the lower mold 620 can be separated.
  • the upper mold 610 is formed with seven substantially conical holes having a height of 5 mm and an inner diameter of a cylindrical hole of 16 mm, and the lower mold 620 having an inner diameter of 1.5 mm and a depth of 5 mm. I used what is.
  • An alloy (corresponding to a metal lump of the contact portion 70) was inserted into each of the substantially conical holes of the lower mold 620, and the conductive resin paste was poured into the mold 600.
  • the extracted conductive resin paste is the electroencephalogram measurement electrode 40 according to the first embodiment.
  • the conductive resin paste is obtained by kneading a liquid silicone resin and carbon nanotubes on a weight basis of 92.5% and 7.5%, respectively.
  • Example 2 the electroencephalogram measurement electrode 40 according to the fourth embodiment shown in FIG. 8 was produced.
  • the cap 220 and the lid part 20 were produced by the same procedure as in Example 1. However, in Example 2, the lid part 20 is produced so that the silver wire inserted into the lid part 20 is not inserted into the electroencephalogram measurement electrode 40.
  • Example 2 the electroencephalogram measurement electrode 40 is formed using the same mold 600 as in Example 1.
  • a silver wire (corresponding to the conductive wire 80) was inserted into the mold 600.
  • the silver wire was inserted into the mold 600 so that one end was electrically connected to each alloy.
  • the silver wire has a diameter of 0.5 mm and a length of 10 mm.
  • a resin paste not containing carbon nanotubes that is, a non-conductive resin paste
  • the resin paste is solidified, and the solidified resin paste is taken out from the mold 600.
  • a metal plate (corresponding to the metal plate 85a) was attached to the solidified resin paste so as to be electrically connected to the other end of the silver wire.
  • the electroencephalogram measurement electrode 40 according to the fourth embodiment is obtained.
  • Example 3 the electroencephalogram measurement electrode 40 according to the fifth embodiment shown in FIG. 9 was produced.
  • the cap 220 and the lid part 20 were produced by the same procedure as in Example 1. However, in Example 3, the lid part 20 is produced so that the silver wire inserted into the lid part 20 is not inserted into the electroencephalogram measurement electrode 40.
  • Example 3 the electroencephalogram measurement electrode 40 is formed using the same mold 600 as in Example 1.
  • a silver wire (corresponding to the wire 82) was inserted into each conical hole of the lower mold 620.
  • the silver wire has a diameter of 0.1 mm and a length of 20 mm, and is bent into a hairpin shape at substantially the center.
  • a resin paste containing no carbon nanotubes that is, a resin paste having no electrical conductivity
  • the solidified resin paste was taken out from the mold 600.
  • a metal plate (corresponding to the metal plate 85b) was attached to the solidified resin paste so as to be electrically connected to one end of the silver wire. From the above, the electroencephalogram measurement electricity 40 according to the fifth embodiment is obtained.
  • BMI is an interface that reads an electrical signal representing an electroencephalogram generated by brain activity and directly inputs it to an electronic device.
  • Electroencephalogram measurement was carried out by the following procedure using the cap prepared in Example 1 and an electroencephalogram measurement electrode (cap with electroencephalogram measurement electrode).
  • a cap was put on the subject.
  • the electrode member was inserted into the holder part attached to each through-hole of the cap so that the protruding part was directed to the scalp.
  • the electrode member (particularly, the electroencephalogram measurement electrode) was used after being disinfected with ethanol for disinfection immediately before use.
  • the lid was rotated and attached to the holder so that the lid was in a predetermined position relative to the holder.
  • the electroencephalogram measurement electrode was fastened to the holder part, the electroencephalogram measurement electrode also rotated with the rotation of the lid part at first.
  • the electroencephalogram measurement electrode does not rotate and the lid part does not rotate. Only independently rotated and the electroencephalogram measurement electrode was pressed against the scalp. For this reason, the electroencephalogram measurement electrode did not involve the subject's hair. At this time, the subject confirmed wearing feeling, but no subject complained of pain or discomfort. Therefore, it was confirmed that the electroencephalogram measurement electrode produced in Example 1 is less likely to cause pain and discomfort to the subject by involving the hair and applying excessive pressure to the scalp.
  • the lead wire connected to the electrode member is connected to a commercially available electroencephalograph (manufactured by g.tec), and the scalp and electroencephalogram
  • the impedance between the measurement electrodes was measured. All measured values were 15 k ⁇ or less, and it was confirmed that a sufficient degree of conduction was ensured for BMI. Further, the electroencephalogram measurement electrodes prepared in Example 2 and Example 3 were measured in the same manner, and it was confirmed that the measured value was 15 k ⁇ or less.
  • FIGS. 14 and 15 an example (graph) of an electroencephalogram measured by the electroencephalogram measurement electrode according to Example 1 is shown using FIGS.
  • the graphs shown in FIGS. 14 and 15 are obtained by converting an analog voltage into a digital voltage using an analog-to-digital converter circuit of an electroencephalograph, and setting 1LSB (minimum resolution) to 0.24 pV.
  • the data of the voltage (measured electroencephalogram) are shown.
  • the electrical signal (voltage) from the scalp is converted into a notch filter by a biquad filter with a bandwidth of 2 Hz centering on 50 Hz and a 20 th order from 1 Hz to 45 Hz.
  • an electroencephalogram was measured using an electroencephalogram measuring electrode (contact portion formed from an electrically conductive rubber) formed only from an electrically conductive rubber, an ⁇ wave and an electroencephalogram representing blinking could not be measured in the first place. Therefore, when the electroencephalogram was measured using the electroencephalogram measurement electrode according to Example 1, it was confirmed that the electroencephalogram could be measured with higher accuracy than when the contact portion was formed from conductive rubber. As described above, it was confirmed that the electroencephalogram measurement electrode according to Example 1 can accurately measure the electroencephalogram without applying excessive pressure to the scalp. Moreover, since the same impedance as Example 1 is obtained also about Example 2, 3, even when using the electroencephalogram measurement electrode according to Example 2, 3, it is applied to the scalp similarly to Example 1. On the other hand, it is considered that the electroencephalogram can be accurately measured without applying excessive pressure.
  • Electroencephalogram Measurement Device 100 Electrode Member 20 Lid 20a Columnar Member 20b Flange 21 Hole 22a Convex 22b Convex 30 Metal Wire 40 Electroencephalogram Electrode 50 Base 60 Protrusion 70 Contact Part 71 Metal Particle 70a Metal Part 70b First 1 metal film 70c second metal film 80 conductive wire 82 wire 85a metal plate 85b metal plate 90 spacer 200 cap 210 holder portion 220 cap portion 230 concave portion 400 scalp 500 lead wire 600 mold 610 upper mold 620 lower mold 700 signal analysis device

Abstract

An EEG measurement electrode (40) for measuring EEG comprises: a base part (50); protrusion parts (60) made from rubber and which are disposed to protrude from the base part; and contact parts (70) made from metal, which are disposed on the leading ends of the protrusion parts, electrically connected externally to the EEG measurement electrode, and which make contact with the scalp when measuring the EEG.

Description

脳波測定用電極、脳波測定用部材、及び、脳波測定装置Electroencephalogram measurement electrode, electroencephalogram measurement member, and electroencephalogram measurement apparatus
 本発明は、脳波測定用電極、脳波測定用部材、及び、脳波測定装置に関する。 The present invention relates to an electroencephalogram measurement electrode, an electroencephalogram measurement member, and an electroencephalogram measurement apparatus.
 この種の脳波測定用電極として、例えば特許文献1には、導電性ゲルで形成されることで導電性を有しかつ変形可能な突出部を備え、この突出部を頭皮に接触させることで、脳の活動によって生じる脳波を測定する脳波測定用電極(チップ部)が開示されている。特許文献1に開示されている脳波測定用電極は、突出部が頭皮に接触すると変形するので頭皮に加わる圧力を低減し頭皮への負担を小さくすることができる。 As an electrode for this type of electroencephalogram measurement, for example, Patent Document 1 includes a projecting portion having conductivity and being deformable by being formed of a conductive gel, and by contacting the projecting portion with the scalp, An electroencephalogram measurement electrode (chip portion) for measuring an electroencephalogram generated by brain activity is disclosed. The electroencephalogram measurement electrode disclosed in Patent Document 1 is deformed when the protruding portion comes into contact with the scalp, so that the pressure applied to the scalp can be reduced and the burden on the scalp can be reduced.
特開2011-120866号公報JP 2011-120866 A
 しかし、特許文献1に開示されているような導電性ゲルを用いた脳波測定用電極は、脳波測定用電極(特に、突出部)が変形し易く、また、導電性ゲル部分の乾燥による劣化も早かった。このため、脳波測定用電極は使い捨てになってしまう場合があった。 However, the electroencephalogram measurement electrode using the conductive gel as disclosed in Patent Document 1 is easily deformed by the electroencephalogram measurement electrode (particularly the protruding portion), and the conductive gel portion is also deteriorated by drying. It was early. For this reason, the electroencephalogram measurement electrode may be disposable.
 本発明は、上記実情に鑑みてなされたものであり、頭皮への負担を抑えつつも、複数回の使用が可能な脳波測定用電極及びこの脳波測定用電極を用いた脳波測定用部材及び脳波測定装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an electroencephalogram measurement electrode that can be used multiple times while suppressing the burden on the scalp, and an electroencephalogram measurement member and an electroencephalogram using the electroencephalogram measurement electrode It aims at providing a measuring device.
 上記目的を達成するために、本発明の第1の観点に係る脳波測定用電極は、
 脳波を測定するための脳波測定用電極であって、
 基底部と、
 前記基底部から突出して設けられた、ゴムからなる突出部と、
 前記突出部の先端に設けられ、前記脳波測定用電極の外部と電気的に接続され、前記脳波の測定時に頭皮に接触する、金属からなる接触部と、
 を備えることを特徴とする。
In order to achieve the above object, an electroencephalogram measurement electrode according to the first aspect of the present invention comprises:
An electroencephalogram measuring electrode for measuring an electroencephalogram,
The base,
A protrusion made of rubber provided protruding from the base, and
Provided at the tip of the protruding portion, electrically connected to the outside of the electroencephalogram measurement electrode, and in contact with the scalp when measuring the electroencephalogram, a contact portion made of metal,
It is characterized by providing.
 前記突出部は、導電性ゴムからなり、
 前記接触部は、前記突出部を介して前記外部と電気的に接続されている、
 ようにしてもよい。
The protrusion is made of conductive rubber,
The contact portion is electrically connected to the outside via the protrusion.
You may do it.
 前記突出部に設けられ、変形可能な導体をさらに備え、
 前記接触部は、前記導体を介して前記外部と電気的に接続されている、
 ようにしてもよい。
Further provided with a deformable conductor provided on the protrusion,
The contact portion is electrically connected to the outside via the conductor.
You may do it.
 前記突出部に設けられ、変形可能な導体をさらに備え、
 前記接触部は、前記導体と一体的に形成されており、前記導体を介して前記外部と電気的に接続されている、
 ようにしてもよい。
Further provided with a deformable conductor provided on the protrusion,
The contact portion is formed integrally with the conductor, and is electrically connected to the outside via the conductor.
You may do it.
 前記接触部は、複数の金属粒子からなる、
 ようにしてもよい。
The contact portion is composed of a plurality of metal particles.
You may do it.
 前記接触部は、金属膜からなる、
 ようにしてもよい。
The contact portion is made of a metal film.
You may do it.
 前記突出部は、少なくとも一部が、前記外部と電気的に接続される、金属膜で被覆されている、
 ようにしてもよい。
The protrusion is at least partially covered with a metal film that is electrically connected to the outside.
You may do it.
 前記基底部上に設けられたスペーサーをさらに備え、
 前記スペーサーは、前記脳波の測定時に、前記突出部の頭髪の合間に挿入される部分を短くする、
 ようにしてもよい。
Further comprising a spacer provided on the base,
The spacer shortens the portion inserted between the hairs of the protruding portion when measuring the electroencephalogram,
You may do it.
 上記目的を達成するために、本発明の第2の観点に係る脳波測定用部材は、
 上記脳波測定用電極と、
 前記脳波測定用電極が頭皮に接触するように取り付けられる、前記頭皮を覆う覆い部材と、
 を備えることを特徴とする。
In order to achieve the above object, the electroencephalogram measurement member according to the second aspect of the present invention comprises:
The electroencephalogram measurement electrode;
A covering member that covers the scalp, and is attached so that the electroencephalogram measurement electrode contacts the scalp;
It is characterized by providing.
 上記目的を達成するために、本発明の第3の観点に係る脳波測定装置は、
 上記脳波測定用電極を備える、
 ことを特徴とする。
In order to achieve the above object, an electroencephalogram measurement apparatus according to the third aspect of the present invention provides:
Comprising the above electroencephalogram measurement electrode,
It is characterized by that.
 本発明によれば、脳波測定用電極について、頭皮への負担を抑えつつも、複数回の使用が可能である。 According to the present invention, the electroencephalogram measurement electrode can be used multiple times while suppressing the burden on the scalp.
本発明の第1の実施形態に係る脳波測定装置を示す模式図である。1 is a schematic diagram showing an electroencephalogram measurement apparatus according to a first embodiment of the present invention. 本発明の第1の実施形態に係る脳波測定装置が備える電極部材及びキャップの要部断面図である。It is principal part sectional drawing of the electrode member with which the electroencephalogram measurement apparatus which concerns on the 1st Embodiment of this invention is equipped, and a cap. 図2の蓋部の拡大断面図である。It is an expanded sectional view of the cover part of FIG. 図2の脳波測定用電極の拡大断面図である。It is an expanded sectional view of the electrode for electroencephalogram measurement of FIG. 図2の脳波測定用電極を、突出部が突出している方向から見た図である。It is the figure which looked at the electrode for electroencephalogram measurement of FIG. 2 from the direction which the protrusion part protrudes. 本発明の第2の実施形態に係る脳波測定用電極の断面図である。It is sectional drawing of the electrode for electroencephalogram measurement which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る脳波測定用電極の断面図である。It is sectional drawing of the electrode for electroencephalogram measurement which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る脳波測定用電極の断面図である。It is sectional drawing of the electrode for electroencephalogram measurement which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る脳波測定用電極の断面図である。It is sectional drawing of the electrode for electroencephalogram measurement which concerns on the 5th Embodiment of this invention. 本発明における変形例1に係る脳波測定用電極などを表す断面図である。It is sectional drawing showing the electrode for electroencephalogram measurement which concerns on the modification 1 in this invention. 本発明における変形例2に係る脳波測定用電極などを表す断面図である。It is sectional drawing showing the electrode for electroencephalogram measurement which concerns on the modification 2 in this invention. 本発明における変形例3に係る脳波測定用電極などを表す断面図である。It is sectional drawing showing the electrode for electroencephalogram measurement which concerns on the modification 3 in this invention. 本発明の実施例1乃至3に係る脳波測定用電極を作製するための鋳型の断面図である。It is sectional drawing of the casting_mold | template for producing the electrode for electroencephalogram measurement which concerns on Example 1 thru | or 3 of this invention. 本発明の実施例1の脳波測定用電極を用いて脳波を測定した結果を示した図である。It is the figure which showed the result of having measured the electroencephalogram using the electrode for electroencephalogram measurement of Example 1 of this invention. 本発明の実施例1の脳波測定用電極を用いて脳波を測定した結果を示した図である。It is the figure which showed the result of having measured the electroencephalogram using the electrode for electroencephalogram measurement of Example 1 of this invention. 本発明の第1の実施形態に係る脳波測定用電極の概略斜視図である。1 is a schematic perspective view of an electroencephalogram measurement electrode according to a first embodiment of the present invention. 本発明における変形例4に係る脳波測定用電極の概略斜視図である。It is a schematic perspective view of the electroencephalogram measurement electrode according to Modification 4 of the present invention.
 以下、図面を参照しながら、本発明の実施の形態(脳波測定用電極及び脳波測定装置)について詳しく述べる。 Hereinafter, embodiments of the present invention (electroencephalogram measurement electrode and electroencephalogram measurement apparatus) will be described in detail with reference to the drawings.
(第1の実施形態)
 図1に示すように、脳波測定装置1000は、電極部材100と、キャップ200と、リード線500と、信号解析装置700と、を備える。
(First embodiment)
As shown in FIG. 1, the electroencephalogram measurement apparatus 1000 includes an electrode member 100, a cap 200, a lead wire 500, and a signal analysis apparatus 700.
 キャップ200は、頭に被るものであり、ホルダー部210と、キャップ部220と、を備える。キャップ部220は、ヘルメット状又は帽子状の形状を有するものであり、合成樹脂、布などの適宜の材料によって形成される。キャップ部220は、被験者(脳波を測定する対象となる人)の頭皮400を覆う。ホルダー部210は、キャップ部220に所定の間隔で複数設けられる。ホルダー部210は、キャップ部220に形成された貫通孔に取り付けられた円筒状の部材である。詳細は後述するが、各ホルダー部210には、電極部材100が取り付けられる。 The cap 200 covers the head and includes a holder part 210 and a cap part 220. The cap part 220 has a helmet-like or hat-like shape, and is formed of an appropriate material such as a synthetic resin or cloth. The cap unit 220 covers the scalp 400 of a subject (a person who is a subject who measures brain waves). A plurality of holder portions 210 are provided on the cap portion 220 at a predetermined interval. The holder part 210 is a cylindrical member attached to a through hole formed in the cap part 220. Although details will be described later, the electrode member 100 is attached to each holder portion 210.
 リード線500は、導体が絶縁体で覆われた絶縁電線等の導線である。リード線500は、一端が電極部材100と電気的に接続され、他端が信号解析装置700と電気的に接続されている。 The lead wire 500 is a conducting wire such as an insulated wire whose conductor is covered with an insulator. The lead wire 500 has one end electrically connected to the electrode member 100 and the other end electrically connected to the signal analysis device 700.
 信号解析装置700は、コンピュータ等の電子機器である。信号解析装置700は、電極部材100及びリード線500を介して伝達された、脳波を表す電気信号を解析し、解析結果に応じて所定の動作を行う。 The signal analysis device 700 is an electronic device such as a computer. The signal analysis device 700 analyzes an electrical signal representing an electroencephalogram transmitted through the electrode member 100 and the lead wire 500, and performs a predetermined operation according to the analysis result.
 電極部材100は、図2に示すように、蓋部20と、金属線30と、脳波測定用電極40と、を備える。各電極部材100は、ホルダー部210に取り付けられて用いられる(図2において、キャップ200の断面を表すハッチングを省略した)。 As shown in FIG. 2, the electrode member 100 includes a lid portion 20, a metal wire 30, and an electroencephalogram measurement electrode 40. Each electrode member 100 is used by being attached to a holder portion 210 (in FIG. 2, hatching representing a cross section of the cap 200 is omitted).
 蓋部20は、例えばエポキシ樹脂等の樹脂材料などによって、射出成形などの方法で形成されるものであり、ホルダー部210に合わせた形状で形成されている。具体的には、蓋部20は、図2及び図3に示すように、円柱状部材20aと、円柱状部材20aの外周面における頭皮400と反対側の部分(図2における上端部)から張り出すフランジ部20bと、を備える。蓋部20の頭皮400側(円柱状部材20aの頭皮400側の面(図2及び3では、円状部材20aの下面))には、脳波測定用電極40を挿入することができる円柱状の孔21が形成されており、脳波測定用電極40はこの孔21に挿入される。ホルダー部210の内周面及び円柱状部材20aの外周面には、蓋部20とホルダー部210とが螺合することができるようにネジ山が形成されている。フランジ部20bは、蓋部20とホルダー部210とが所定の度合いで螺合した場合において、ホルダー部210の上端面(頭皮400と反対側の面)に当接するように形成されている。なお、蓋部20は、導電性を有する合成樹脂などから形成されていてもよい。このとき、蓋部20は、脳波測定用電極40及び金属線30と電気的に接続されている。 The lid portion 20 is formed by a method such as injection molding using a resin material such as an epoxy resin, for example, and is formed in a shape that matches the holder portion 210. Specifically, as shown in FIGS. 2 and 3, the lid portion 20 is stretched from a columnar member 20 a and a portion (upper end portion in FIG. 2) opposite to the scalp 400 on the outer peripheral surface of the columnar member 20 a. And a flange portion 20b to be taken out. On the scalp 400 side of the lid portion 20 (the surface on the scalp 400 side of the cylindrical member 20a (the lower surface of the circular member 20a in FIGS. 2 and 3)), a cylindrical shape into which the electroencephalogram measurement electrode 40 can be inserted. A hole 21 is formed, and the electroencephalogram measurement electrode 40 is inserted into the hole 21. Threads are formed on the inner peripheral surface of the holder portion 210 and the outer peripheral surface of the columnar member 20a so that the lid portion 20 and the holder portion 210 can be screwed together. The flange portion 20b is formed so as to come into contact with the upper end surface (the surface on the side opposite to the scalp 400) of the holder portion 210 when the lid portion 20 and the holder portion 210 are screwed at a predetermined degree. In addition, the cover part 20 may be formed from the synthetic resin etc. which have electroconductivity. At this time, the lid 20 is electrically connected to the electroencephalogram measurement electrode 40 and the metal wire 30.
 金属線30は、一端が脳波測定用電極40と電気的に接続され、他端がリード線500と電気的に接続されている。金属線30は、図2に示すように、蓋部20の中心を貫通し、脳波測定用電極40(後述の基底部50)のほぼ中心に挿入される(図面において、金属線30の断面を表すハッチングを省略し、金属線30を実線で示した)。このとき、金属線30は、脳波測定用電極40を貫通はしておらず、先端が脳波測定用電極40に突き刺さっているだけである。金属線30は、脳波測定用電極40に対しては回転不能で、蓋部20に対しては回転可能になっている。 The metal wire 30 has one end electrically connected to the electroencephalogram measurement electrode 40 and the other end electrically connected to the lead wire 500. As shown in FIG. 2, the metal wire 30 penetrates through the center of the lid portion 20 and is inserted almost at the center of the electroencephalogram measurement electrode 40 (base portion 50 described later) (in the drawing, the cross section of the metal wire 30 is shown). The hatching is omitted, and the metal wire 30 is indicated by a solid line). At this time, the metal wire 30 does not penetrate the electroencephalogram measurement electrode 40, and only the tip pierces the electroencephalogram measurement electrode 40. The metal wire 30 is not rotatable with respect to the electroencephalogram measurement electrode 40 and is rotatable with respect to the lid portion 20.
 なお、金属線30は、脳波測定用電極40に挿入されずに、脳波測定用電極40における蓋部20と接している面に当接しているだけでもよい。このとき、脳波測定用電極40は、金属線30と電気的に接続されている。また、金属線30は、脳波測定用電極40と当接しているだけなので、脳波測定用電極40に対しては回転可能になっている。 The metal wire 30 may not be inserted into the electroencephalogram measurement electrode 40 but may be in contact with the surface of the electroencephalogram measurement electrode 40 that is in contact with the lid portion 20. At this time, the electroencephalogram measurement electrode 40 is electrically connected to the metal wire 30. Further, since the metal wire 30 is only in contact with the electroencephalogram measurement electrode 40, it can be rotated with respect to the electroencephalogram measurement electrode 40.
 また、蓋部20における孔21の上面と接する面には、金属材料等から形成される、円形状(孔21の上面と同じ形状)の金属板を設けてもよい。このとき、金属線30は、脳波測定用電極40に挿入されずに、この金属板と電気的に接続されている。さらに、この金属板は、脳波測定用電極40と電気的に接続されている。また、基底部50に伝達された電気信号は、この金属板を介して金属線30に伝達される。金属板を設けることで、基底部50と金属板との接触面積を大きく取ることが出来、電気信号を伝達し易くしている。 Further, a circular metal plate (the same shape as the upper surface of the hole 21) made of a metal material or the like may be provided on the surface of the lid 20 that contacts the upper surface of the hole 21. At this time, the metal wire 30 is not inserted into the electroencephalogram measurement electrode 40 but is electrically connected to the metal plate. Further, the metal plate is electrically connected to the electroencephalogram measurement electrode 40. The electrical signal transmitted to the base 50 is transmitted to the metal wire 30 through this metal plate. By providing the metal plate, a large contact area between the base portion 50 and the metal plate can be obtained, and an electric signal can be easily transmitted.
 脳波測定用電極40は、図2及び図16に示すように、基底部50と、突出部60と、接触部70と、を備える。基底部50及び突出部60は、変形可能な導電性ゴムなどで、型成型などの適宜の方法で形成されている。導電性ゴムは、弾性を有することによって、変形可能である(以下、各種ゴムについて同じ)。なお、導電性ゴムは、例えば、有機導電性ポリマー、導電性粉体材料を含有した高分子材料(液状のシリコーン樹脂等)、イオン性液体を含侵させた高分子材料で形成される。また、上記導電性粉体材料には、例えば、グラファイト、カーボンナノチューブ、銀微粒子等の金属粒子、AgCl粒子、有機導電性ポリマーの粉体等が用いられる。 As shown in FIGS. 2 and 16, the electroencephalogram measurement electrode 40 includes a base portion 50, a protruding portion 60, and a contact portion 70. The base portion 50 and the protruding portion 60 are made of a deformable conductive rubber or the like, and are formed by an appropriate method such as molding. The conductive rubber can be deformed by having elasticity (hereinafter, the same applies to various rubbers). The conductive rubber is formed of, for example, an organic conductive polymer, a polymer material containing a conductive powder material (such as a liquid silicone resin), or a polymer material impregnated with an ionic liquid. In addition, as the conductive powder material, for example, metal particles such as graphite, carbon nanotubes, and silver fine particles, AgCl particles, powder of organic conductive polymer, and the like are used.
 基底部50は、蓋部20から見た場合に円形状である略円柱形状で形成されている。基底部50は、蓋部20と当接している側の円の中心に金属線30が挿入されて固着され、金属線30と電気的に接続されている。基底部50は、少なくとも一部が蓋部20の孔21に収納され、蓋部20との間の摩擦力によって保持されている。このとき、基底部50は、蓋部20に対して摺動可能である。なお、基底部50は、蓋部20の孔21を設けず、例えば、円柱状部材20aの下面に設けた固定部材(例えば、基底部50を引っ掛ける爪)、接着材、粘着材などの固定部によって、円柱状部材20aの下面に固定されてもよい。 The base portion 50 is formed in a substantially cylindrical shape that is circular when viewed from the lid portion 20. The base portion 50 is fixed by inserting a metal wire 30 at the center of a circle on the side in contact with the lid portion 20 and is electrically connected to the metal wire 30. At least a part of the base portion 50 is accommodated in the hole 21 of the lid portion 20 and is held by a frictional force between the base portion 50 and the lid portion 20. At this time, the base portion 50 is slidable with respect to the lid portion 20. In addition, the base part 50 does not provide the hole 21 of the lid part 20, but, for example, a fixing part (for example, a claw that hooks the base part 50) provided on the lower surface of the cylindrical member 20a, a fixing part such as an adhesive or an adhesive material. May be fixed to the lower surface of the cylindrical member 20a.
 突出部60は、図4に示すように、上述したような導電性ゴムで形成された略円錐形状の部材である。突出部60は、図2に示すように、基底部50から頭皮400の方向に突出して設けられ、基底部50と電気的に接続されている。図5を参照すると、本実施形態における突出部60は、基底部50の頭皮400側に7つの突出部60が設けられている。なお、突出部60の数はこの数に限られないが、突出部60は複数設けられている方が望ましい。本実施形態では、突出部60と基底部50とは、同じ材料によって、一体的に形成されている。突出部60は、円柱形状、多角柱形状(底辺及び上辺が多角形の形状)、多角錐(底辺が多角形の形状)などの形状であってもよい。 The protrusion 60 is a substantially conical member formed of conductive rubber as described above, as shown in FIG. As shown in FIG. 2, the protrusion 60 is provided to protrude from the base 50 toward the scalp 400 and is electrically connected to the base 50. Referring to FIG. 5, the protruding portion 60 in the present embodiment is provided with seven protruding portions 60 on the scalp 400 side of the base portion 50. The number of protrusions 60 is not limited to this number, but it is desirable that a plurality of protrusions 60 be provided. In the present embodiment, the protruding portion 60 and the base portion 50 are integrally formed of the same material. The protruding portion 60 may have a shape such as a cylindrical shape, a polygonal prism shape (a shape whose base and top sides are polygonal), and a polygonal pyramid (a shape whose bottom is polygonal).
 接触部70は、金属材料で形成された、すなわち導電性を有する金属塊である。頭皮400と接触するように突出部60の先端に直接設けられている。これによって、接触部70は、突出部60と電気的に接続されていることにもなる。接触部70は、例えば、基底部50及び突出部60を型成型するときに突出部60に直接融着されるか(例えば、インサート成型などの方法)、導電性の接着材などの固着材によって突出部60に固着されて、設けられる。接触部70を構成する金属塊は、例えば、銀、金、白金、チタン等の単一成分であってもよいが、合金、導電性の金属酸化物、導電性の塩化物等からなるものであることが望ましい。なお、接触部70は、内部と外部とで異なった成分を用いてもよく、例えば内部に銀を用い、外部に塩化銀を用いてもよい。なお、突出部60は、金属線30と電気的に接続されており、金属線30は、リード線500と電気的に接続されているので、突出部60及び接触部70は、信号解析装置700と電気的に接続されていることにもなる。「電気的に接続する」とは、接続対象の両者を直接接続することのほか、接続対象の両者(例えば、接触部70と信号解析装置700)を他の導電性部材(例えば、突出部60や金属線30)を介して接続されるようにして、前記両者のうち少なくとも一方(例えば、接触部70)から他方(例えば、信号解析装置700)に電気が流れるように前記両者を接続することをも含む。 The contact portion 70 is a metal lump formed of a metal material, that is, having conductivity. It is directly provided at the tip of the protrusion 60 so as to come into contact with the scalp 400. As a result, the contact portion 70 is also electrically connected to the protruding portion 60. For example, when the base portion 50 and the protrusion portion 60 are molded, the contact portion 70 is directly fused to the protrusion portion 60 (for example, a method such as insert molding) or by a fixing material such as a conductive adhesive material. The protrusion 60 is fixed and provided. The metal lump constituting the contact portion 70 may be a single component such as silver, gold, platinum, or titanium, but is made of an alloy, a conductive metal oxide, a conductive chloride, or the like. It is desirable to be. In addition, the contact part 70 may use a different component by the inside and the exterior, for example, may use silver inside and may use silver chloride outside. The protrusion 60 is electrically connected to the metal wire 30, and the metal wire 30 is electrically connected to the lead wire 500. Therefore, the protrusion 60 and the contact portion 70 are connected to the signal analysis device 700. It is also connected electrically. “Electrically connected” means that both of the connection targets are directly connected, and both of the connection targets (for example, the contact portion 70 and the signal analysis device 700) are connected to other conductive members (for example, the protruding portion 60). And at least one of the two (for example, the contact portion 70) and the other (for example, the signal analysis device 700) are connected to each other so that electricity flows. Is also included.
 ここで、電極部材100(脳波測定用電極40)のキャップ200への取り付け方法(装着方法)を説明する。脳波測定用電極40が挿入された蓋部20をホルダー部210に挿入して回していくことで、両者がネジ山によって螺合し、蓋部20がホルダー部210に装着される。このとき、蓋部20を回すほど、蓋部20は、ホルダー部210内に進入し、頭皮400に近づく(図2では、下側に進む)。蓋部20には脳波測定用電極40が挿入されているため、蓋部20が頭皮400に近づくことによって、脳波測定用電極40が頭皮400に近づき、やがて頭皮400に接触する。その後、蓋部20をさらに回していくと、脳波測定用電極40は蓋部20の締め付け具合に応じた圧力で頭皮400を押圧することになる。従って、蓋部20の回し具合を調節することによって、電極部材100の頭皮400に与える圧力を微調整することが可能となる。なお、蓋部20がホルダー部210の内部に所定距離だけ進入すると、ホルダー部210の上端面(図2における頭皮400と反対側の端面)にフランジ部20bが当接する。これにより、蓋部20がホルダー部210に進入しすぎることを防止できる。蓋部20の回し具合の調節後に、リード線500が金属線30に接続される。 Here, a method of attaching the electrode member 100 (electroencephalogram measurement electrode 40) to the cap 200 (attachment method) will be described. By inserting and rotating the lid part 20 with the electroencephalogram measurement electrode 40 inserted into the holder part 210, both of them are screwed together by a screw thread, and the lid part 20 is attached to the holder part 210. At this time, the more the cover part 20 is turned, the more the cover part 20 enters the holder part 210 and approaches the scalp 400 (in FIG. 2, it proceeds downward). Since the electroencephalogram measurement electrode 40 is inserted into the lid 20, the electroencephalogram measurement electrode 40 approaches the scalp 400 when the lid 20 approaches the scalp 400, and eventually comes into contact with the scalp 400. Thereafter, when the lid 20 is further rotated, the electroencephalogram measurement electrode 40 presses the scalp 400 with a pressure corresponding to the tightening degree of the lid 20. Therefore, the pressure applied to the scalp 400 of the electrode member 100 can be finely adjusted by adjusting the degree of rotation of the lid 20. When the lid portion 20 enters the holder portion 210 by a predetermined distance, the flange portion 20b comes into contact with the upper end surface of the holder portion 210 (the end surface opposite to the scalp 400 in FIG. 2). Thereby, it can prevent that the cover part 20 approachs into the holder part 210 too much. The lead wire 500 is connected to the metal wire 30 after adjusting the degree of rotation of the lid portion 20.
 基底部50を備える脳波測定用電極40は、蓋部20に摺動可能に挿入されているので、蓋部20に対して独立して回転することができる。通常は蓋部20と脳波測定用電極40とが共に回転することになるが、蓋部20が脳波測定用電極40を回動可能に支持しているため、脳波測定用電極40の突出部60の間に頭髪が入り込んだり、接触部70が頭皮に接触したりするなどして、脳波測定用電極40の回転を妨げる力が脳波測定用電極40に加わった場合には、蓋部20は脳波測定用電極40と独立して回転し、脳波測定用電極40が回転しないようになっている。これによって、脳波測定用電極40が頭髪に絡むリスクを軽減している。なお、金属線30をリード線500に接続するなどして回転出来ないようにし、蓋部20が回転しても、脳波測定用電極40は回転しないようにしてもよい。これにより、脳波測定用電極40は最初から回転しないので、脳波測定用電極40が頭髪に絡むリスクを軽減している。 Since the electroencephalogram measurement electrode 40 including the base portion 50 is slidably inserted into the lid portion 20, it can rotate independently with respect to the lid portion 20. Normally, the lid 20 and the electroencephalogram measurement electrode 40 rotate together. However, since the lid 20 supports the electroencephalogram measurement electrode 40 so as to be rotatable, the protruding portion 60 of the electroencephalogram measurement electrode 40. When a force that impedes rotation of the electroencephalogram measurement electrode 40 is applied to the electroencephalogram measurement electrode 40, such as when the hair enters between the electrodes or the contact portion 70 contacts the scalp, the lid portion 20 It rotates independently of the measurement electrode 40, so that the electroencephalogram measurement electrode 40 does not rotate. This reduces the risk of the electroencephalogram measurement electrode 40 getting involved in the hair. The metal wire 30 may be prevented from rotating by connecting the lead wire 500 or the like, and the electroencephalogram measurement electrode 40 may not be rotated even when the lid portion 20 is rotated. Thereby, since the electroencephalogram measurement electrode 40 does not rotate from the beginning, the risk of the electroencephalogram measurement electrode 40 getting involved in the hair is reduced.
 次に、頭皮400からの電気信号について説明する。頭皮400に接触した接触部70には、脳の様々な活動に応じて電気信号が頭皮400から伝達される。頭皮400に接触した接触部70は、電気信号を頭皮400から受け取る。この電気信号は脳波を表す。そして、伝達された電気信号は、突出部60、基底部50、金属線30、リード線500の順に伝達され(上述の金属板が基底部50に設けられた場合には、基底部50から、金属板を介して金属線30に電気信号が伝達される)、信号解析装置700に供給される。信号解析装置700は、供給された電気信号を解析して、電気信号が表す脳波を特定する。このようにして、信号解析装置700は、脳波を測定する。信号解析装置700は、測定した脳波を解析し、その人(測定した脳波の持ち主)の考えを分析し、分析結果に応じて所定の動作を行う。例えば、信号解析装置700は、分析結果を出力したり、分析結果に応答した動作を行ったりする。 Next, an electrical signal from the scalp 400 will be described. Electrical signals are transmitted from the scalp 400 to the contact portion 70 that has come into contact with the scalp 400 in accordance with various brain activities. The contact portion 70 that has come into contact with the scalp 400 receives an electrical signal from the scalp 400. This electrical signal represents an electroencephalogram. The transmitted electrical signal is transmitted in the order of the protrusion 60, the base 50, the metal wire 30, and the lead wire 500 (when the above-described metal plate is provided on the base 50, from the base 50, An electric signal is transmitted to the metal wire 30 via the metal plate) and supplied to the signal analysis device 700. The signal analysis device 700 analyzes the supplied electrical signal and identifies the electroencephalogram represented by the electrical signal. In this way, the signal analysis device 700 measures the electroencephalogram. The signal analysis device 700 analyzes the measured electroencephalogram, analyzes the idea of the person (the owner of the measured electroencephalogram), and performs a predetermined operation according to the analysis result. For example, the signal analysis device 700 outputs an analysis result or performs an operation in response to the analysis result.
 次に、突出部60について考える。本実施形態では、基底部50と頭皮400との間に突出部60を備えているため、蓋部20がホルダー部210内に進入することによって、突出部60が頭髪の間に入り込んで、突出部60の先端に設けられた接触部70が頭皮400に接触する。つまり、電極部材100は、頭皮400に接触しやすく、頭皮400から電気信号を受け取り易い。なお、仮に、突出部60が設けられていない場合には、頭皮400の表面に頭髪があると基底部50と頭皮400との間に頭髪が挟まり、接触部70が頭皮400に接触することが困難になり、頭皮400から電気信号を受け取れないおそれがある。また、突出部60は、上記のようにゴムで形成されて弾性を有し、変形可能であるので、頭髪が巻き付いても頭髪を強く引っ張ることがなく、被験者に痛みや不快感を与えるおそれが小さい。さらに、接触部70が頭皮400に接触すると、接触部70が金属材料から形成されている(電極部材100の頭皮400との接触部分が固い)ことにより被験者に痛みや不快感を与えるおそれがあるが、本実施形態に係る突出部60は、接触部70(金属材料)が頭皮400に与える固さを、突出部60が変形可能であることによって(特に、突出部60が可撓性を有して撓むことによって)柔軟に緩和し、被験者に痛みや不快感を与えるおそれが低い。さらに、電極部材100は、日常的に、かつ長時間にわたって連続的に使用されても、突出部60の変形(ここでは、撓む)により頭皮400への負担を抑えることができる。 Next, consider the protrusion 60. In this embodiment, since the protrusion part 60 is provided between the base part 50 and the scalp 400, when the cover part 20 enters the holder part 210, the protrusion part 60 enters between the hairs and protrudes. The contact part 70 provided at the tip of the part 60 contacts the scalp 400. That is, the electrode member 100 easily contacts the scalp 400 and easily receives an electrical signal from the scalp 400. If the protrusion 60 is not provided, if there is scalp on the surface of the scalp 400, the scalp may be sandwiched between the base 50 and the scalp 400, and the contact part 70 may contact the scalp 400. This may make it difficult to receive electrical signals from the scalp 400. Further, the protrusion 60 is formed of rubber as described above, has elasticity, and can be deformed. Therefore, even if the hair wraps around, the protrusion 60 does not pull the hair strongly, and may cause pain or discomfort to the subject. small. Further, when the contact portion 70 comes into contact with the scalp 400, the contact portion 70 is made of a metal material (the contact portion of the electrode member 100 with the scalp 400 is hard), which may cause pain and discomfort to the subject. However, the protrusion 60 according to the present embodiment has the hardness that the contact portion 70 (metal material) gives to the scalp 400 because the protrusion 60 can be deformed (in particular, the protrusion 60 has flexibility). And bends flexibly) and is less likely to cause pain or discomfort to the subject. Furthermore, even if the electrode member 100 is used on a daily basis and continuously for a long time, the burden on the scalp 400 can be suppressed by deformation (here, bending) of the protrusion 60.
 また、仮に、少なくとも突出部60(基底部50及び突出部60)を、導電性ゲルを用いて形成した場合には、突出部60は、変形し易く、また、乾燥による劣化が生じやすい。このため、脳波測定用電極40が使い捨てになってしまう場合があった。しかし、本実施形態では、突出部60(及び基底部50)に導電性ゴムを用いたので、強度があがり、導電性ゲルを用いた場合より脳波測定用電極40を複数回使用できる。このように、本実施形態に係る脳波測定用電極40は、突出部60がゴムで形成され、金属材料の接触部70で頭皮400からの電気信号を受け取る(検出する)ので、頭皮への負担を抑えつつも、複数回の使用が可能になっている。 Also, if at least the protrusions 60 (the base part 50 and the protrusions 60) are formed using a conductive gel, the protrusions 60 are easily deformed and easily deteriorated due to drying. For this reason, the electroencephalogram measurement electrode 40 may be disposable. However, in this embodiment, since conductive rubber is used for the protrusion 60 (and the base 50), the strength is increased, and the electroencephalogram measurement electrode 40 can be used a plurality of times as compared with the case where a conductive gel is used. As described above, in the electroencephalogram measurement electrode 40 according to the present embodiment, the protruding portion 60 is formed of rubber, and the electrical signal from the scalp 400 is received (detected) by the contact portion 70 of the metal material. It is possible to use multiple times while suppressing.
 なお、本願発明者は、導電性ゴムから形成された接触部70(つまり、接触部70も含め、脳波測定用電極40を一体的に導電性ゴムによって形成した場合における接触部70)を頭皮400に接触させて脳波を測定したところ、脳波を表す電気信号が頭皮400から信号解析装置700にうまく伝達されず、脳波を精度良く測定できない場合があることを見出した。本願発明者は、この現象が生じる理由を、脳波を表す電気信号が頭皮400から脳波測定用電極40にうまく伝達されないことによるものであることを見出した。そこで、本実施形態では、接触部70を金属材料で形成している。このようにすることで、接触部70が導電性ゴムから形成された場合に比べて、頭皮400から脳波を表す電気信号を受け取り易くなり、脳波を精度良く測定することが出来た。これは、接触部70と頭皮400との接触面に起こる抵抗(接触抵抗)が低くなり、金属で形成された接触部70を介して電気信号を受け取り易くなったことが理由の一因と予測される。以上より、本実施形態に係る脳波測定用電極40(脳波測定装置1000)では、突出部60の先端に金属材料から形成される接触部70を設けることで、脳波を精度良く測定することができるとともに、突出部60に導電性ゴムを用いたので、頭皮400への負担を抑えることができる。 In addition, the inventor of the present application uses the scalp 400 for the contact portion 70 formed of conductive rubber (that is, the contact portion 70 in the case where the electroencephalogram measurement electrode 40 is integrally formed of conductive rubber including the contact portion 70). When an electroencephalogram was measured in contact with the electroencephalogram, the electrical signal representing the electroencephalogram was not transmitted well from the scalp 400 to the signal analysis device 700, and it was found that the electroencephalogram could not be measured accurately. The inventor of the present application has found that the reason why this phenomenon occurs is that an electric signal representing an electroencephalogram is not successfully transmitted from the scalp 400 to the electroencephalogram measurement electrode 40. Therefore, in the present embodiment, the contact portion 70 is formed of a metal material. By doing in this way, compared with the case where the contact part 70 was formed from electroconductive rubber, it became easy to receive the electrical signal showing an electroencephalogram from the scalp 400, and the electroencephalogram was able to be measured with sufficient precision. It is predicted that this is because the resistance (contact resistance) generated on the contact surface between the contact portion 70 and the scalp 400 is low, and it is easy to receive an electrical signal through the contact portion 70 formed of metal. Is done. As described above, in the electroencephalogram measurement electrode 40 (electroencephalogram measurement apparatus 1000) according to the present embodiment, the electroencephalogram can be accurately measured by providing the contact portion 70 formed of the metal material at the tip of the protrusion 60. At the same time, since conductive rubber is used for the protrusion 60, the burden on the scalp 400 can be suppressed.
 なお、脳波測定用電極40を含む脳波測定装置1000は、例えば、近年その有用性が注目されているブレイン-マシン・インターフェイス(Brain-Machine Interface:BMI)又はブレイン-コンピュータ・インターフェイス(Brain-Computer Interface: BCI)として用いられる。BMI(以下、特に断りのない限り、本明細書においてBMIはBCIを包含する概念を表す言葉として用いられる。)とは、脳の活動によって生じる脳波を表す電気信号を読み取り、これを直接コンピュータ等の電子機器に入力する形式のインターフェースである。これにより、コンピュータ等の電子機器をより直感的に操作することが可能になると期待されている。また、手足を使わなくてもコンピュータ等を操作することが可能になるため、福祉、医療、介護分野等への応用も期待されている。 The electroencephalogram measurement apparatus 1000 including the electroencephalogram measurement electrode 40 is, for example, a brain-machine interface (BMI) or a brain-computer interface (Brain-Computer Interface), which has recently been attracting attention for its usefulness. : Used as BCI). BMI (hereinafter, unless otherwise specified, BMI is used as a term representing a concept including BCI) is an electrical signal that represents an electroencephalogram generated by brain activity, and is directly used as a computer or the like. It is an interface of the format to input to the electronic equipment. This is expected to enable more intuitive operation of electronic devices such as computers. In addition, since it is possible to operate a computer or the like without using limbs, it is also expected to be applied in the fields of welfare, medical care, and nursing care.
(第2の実施形態)
 次に、本発明の第2の実施形態に係る脳波測定用電極40について、図6を参照しながら説明する。第2の実施形態を説明するにあたり、第1の実施形態と異なる点を中心に説明するとともに、同様の部材については同じ符号を付して説明する。第2の実施形態では、接触部70が、第1の実施形態のように単一の金属塊ではなく、第1の実施形態で用いた金属塊よりも小さな複数の金属粒子71で構成されている。金属粒子71は、第1の実施形態と同様に、金属材料で形成される。金属粒子71は、突出部60の先端に埋設されており、少なくとも一部が突出部60の頭皮400側に露出している。上記のような埋設によって、各金属粒子71は、突出部60と電気的に接続されている。これによって、第1の実施形態と同様に、各金属粒子71は、金属線30、リード線500、信号解析装置700などとも電気的に接続されていることになる。各金属粒子71は、金属材料で形成されているため、上記第1の実施形態と同様に、金属粒子71は、脳波を精度良く測定することが出来る。金属粒子71が受け取った電気信号は、各金属粒子71、突出部60、基底部50、金属線30、リード線500、信号解析装置700の順に伝達される。また、第2の実施形態に係る各金属粒子71は、第1の実施形態に係る脳波測定用電極40とは違い、接触部70を小さな複数の金属粒子71にすることで、頭皮400に加える圧力を分散し柔らかさを被験者に与える。
(Second Embodiment)
Next, an electroencephalogram measurement electrode 40 according to a second embodiment of the present invention will be described with reference to FIG. In describing the second embodiment, points different from the first embodiment will be mainly described, and the same members will be described with the same reference numerals. In 2nd Embodiment, the contact part 70 is comprised with the several metal particle 71 smaller than the metal lump used in 1st Embodiment instead of the single metal lump like 1st Embodiment. Yes. The metal particles 71 are formed of a metal material as in the first embodiment. The metal particles 71 are embedded at the tip of the protrusion 60, and at least a part of the metal particle 71 is exposed on the scalp 400 side of the protrusion 60. The metal particles 71 are electrically connected to the protrusions 60 by the above-described embedding. As a result, as in the first embodiment, each metal particle 71 is also electrically connected to the metal wire 30, the lead wire 500, the signal analysis device 700, and the like. Since each metal particle 71 is formed of a metal material, the metal particle 71 can accurately measure an electroencephalogram as in the first embodiment. The electrical signal received by the metal particles 71 is transmitted in the order of each metal particle 71, the protrusion 60, the base 50, the metal wire 30, the lead wire 500, and the signal analysis device 700. Further, unlike the electroencephalogram measurement electrode 40 according to the first embodiment, each metal particle 71 according to the second embodiment is added to the scalp 400 by making the contact portion 70 into a plurality of small metal particles 71. Disperse pressure and give subject softness.
(第3の実施形態)
 次に、本発明の第3の実施形態に係る脳波測定用電極40について、図7を参照しながら説明する。第3の実施形態を説明するにあたり、第1の実施形態と異なる点を中心に説明するとともに、同様の部材については同じ符号を付して説明する。第3の実施形態に係る脳波測定用電極40は、図7に示すように、金属部70aと、第1の金属膜70bと、第2の金属膜70cと、を備える(図7において、第1の金属膜70b及び第2の金属膜70cの断面を表すハッチングを省略し、第1の金属膜70b及び金属膜70cを太線で示した)。金属部70aは、金属材料で形成された、すなわち導電性を有する金属塊であり、突出部60の先端に直接設けられている。第1の金属膜70bは、金属部70aを被覆する。第2の金属膜70cは、突出部60における頭皮400と接触する可能性のある部分を被覆する。第1の金属膜70bと第2の金属膜70cとは、金属材料によって、蒸着やメッキ等の方法で、一体的に形成される。第1の金属膜70bと第2の金属膜70cとは、別々に形成されるようにしてもよい。第1の金属膜70bと第2の金属膜70cとは、変形可能であり、突出部60が変形することを維持できるように構成される。第3の実施形態では、第1の金属膜70bと第2の金属膜70cとは、金属部70a、突出部60などと電気的に接続され、脳波測定用電極40の外部と電気的に接続されている。第3の実施形態における接触部70は、金属部70aと第1の金属膜70bとから構成されている。第1の金属膜70b及び金属膜70cは、頭皮に接触すると頭皮から電気信号を受け取ることができる。
(Third embodiment)
Next, an electroencephalogram measurement electrode 40 according to a third embodiment of the present invention will be described with reference to FIG. In describing the third embodiment, points different from the first embodiment will be mainly described, and the same members will be described with the same reference numerals. As shown in FIG. 7, the electroencephalogram measurement electrode 40 according to the third embodiment includes a metal part 70a, a first metal film 70b, and a second metal film 70c (in FIG. The hatching representing the cross section of the first metal film 70b and the second metal film 70c is omitted, and the first metal film 70b and the metal film 70c are indicated by bold lines). The metal portion 70 a is a metal lump formed of a metal material, that is, having conductivity, and is directly provided at the tip of the protruding portion 60. The first metal film 70b covers the metal part 70a. The second metal film 70c covers the portions which may contact with the scalp 400 of the projecting portion 60. The first metal film 70b and the second metal film 70c are integrally formed of a metal material by a method such as vapor deposition or plating. The first metal film 70b and the second metal film 70c may be formed separately. The first metal film 70b and the second metal film 70c can be deformed, and are configured to maintain the deformation of the protruding portion 60. In the third embodiment, the first metal film 70b and the second metal film 70c are electrically connected to the metal part 70a, the protruding part 60, etc., and electrically connected to the outside of the electroencephalogram measurement electrode 40. Has been. The contact part 70 in the third embodiment is composed of a metal part 70a and a first metal film 70b. The first metal film 70b and the metal film 70c can receive an electrical signal from the scalp when in contact with the scalp.
 ここで、第2の金属膜70cが被覆されていない場合について考える。突出部60は、頭皮400に接触すると変形し、例えば、曲がるように変形する(撓む)場合がある。この場合、突出部60(特に、金属部70a近傍の側面)が頭皮400に接触する可能性がある。しかし、突出部60は、導電性ゴムから形成されているので頭皮400から電気信号を受け取ることが難しい場合がある。 Here, consider a case where the second metal film 70c is not covered. The protrusion 60 is deformed when coming into contact with the scalp 400, and may be deformed (bent) so as to be bent, for example. In this case, there is a possibility that the protrusion 60 (particularly, the side surface near the metal portion 70a) contacts the scalp 400. However, since the protrusion 60 is made of conductive rubber, it may be difficult to receive an electrical signal from the scalp 400.
 そこで、第3の実施形態では、金属材料で形成された第2の金属膜70cで、突出部60(特に、突出部60が変形するなどして、頭皮400と接触する可能性のある部分)を被覆する。これによって、突出部60が変形しても、第2の金属膜70cが頭皮400に接触するので、第2の金属膜70cによって、脳波測定用電極40は頭皮400から電気信号を受け取り易くなる。第1の金属膜70bが受け取った電気信号は、金属部70a、突出部60、基底部50、金属線30、リード線500、信号解析装置700の順に伝達される。または、第2の金属膜70cが受け取った電気信号は、突出部60、基底部50、金属線30、リード線500、信号解析装置700の順に伝達される。 Therefore, in the third embodiment, the second metal film 70c formed of a metal material causes the protrusion 60 (particularly a portion that may come into contact with the scalp 400 due to deformation of the protrusion 60). Coating. As a result, even if the projecting portion 60 is deformed, the second metal film 70c comes into contact with the scalp 400, so that the electroencephalogram measurement electrode 40 can easily receive an electrical signal from the scalp 400 by the second metal film 70c. The electrical signal received by the first metal film 70b is transmitted in the order of the metal portion 70a, the protruding portion 60, the base portion 50, the metal wire 30, the lead wire 500, and the signal analyzing device 700. Alternatively, the electrical signal received by the second metal film 70c is transmitted in the order of the protruding portion 60, the base portion 50, the metal wire 30, the lead wire 500, and the signal analyzing device 700.
 また、第1の実施形態のように突出部60の先端には金属塊を設けずに、突出部60の先端などに蒸着やメッキ等を施すことで第1の金属膜70bと第2の金属膜70cとを形成してもよい。第1の金属膜70bは、突出部60が変形しないときに、頭皮400に接触可能な部分であり、第2の金属膜70cは、突出部60が変形したときに、頭皮400に接触可能な部分である。つまり、接触部70は、この第1の金属膜70bだけで構成される。 Further, as in the first embodiment, the first metal film 70b and the second metal are formed by performing vapor deposition, plating, or the like on the tip of the protrusion 60 without providing a metal lump at the tip of the protrusion 60. The film 70c may be formed. The first metal film 70b is a part that can come into contact with the scalp 400 when the protruding part 60 is not deformed, and the second metal film 70c can be brought into contact with the scalp 400 when the protruding part 60 is deformed. Part. That is, the contact portion 70 is configured only by the first metal film 70b.
(第4の実施形態)
 次に、本発明の第4の実施形態に係る脳波測定用電極40について、図8を参照しながら説明する。第4の実施形態を説明するにあたり、第1の実施形態と異なる点を中心に説明するとともに、同様の部材については同じ符号を付して説明する。第4の実施形態に係る脳波測定用電極40は、図8に示すように、金属板85aと、導線80と、をさらに備える(図8において、導線80の断面を表すハッチングを省略し、導線80を実線で示した)。金属板85aは、導電性を有する金属材料で形成され、電極部材100における蓋部20と当接している部分に設けられている。また、第4の実施形態では、金属線30が金属板85aと電気的に接続されている。このとき、金属線30は、金属板85aに対しては回転不能になるように(例えば、金属線30と金属板85aとをはんだ付けしない等によって)、金属板85aと電気的に接続されている。導線80は、導電性を有する金属材料からなり、変形可能な(ここでは、可撓性を有する)細い線状で形成されており、導線80によって突出部60が変形できなくなることはない。金属板85a及び導線80は、例えば、銀、金、白金、チタン等の単一成分であってもよいが、合金、導電性の金属酸化物、導電性の塩化物等からなるものであることが望ましい。導線80は、突出部60及び基底部50の内部を通り、一端が接触部70と電気的に接続され、他端が金属板85aと電気的に接続されている。これにより、接触部70が頭皮400から受け取った電気信号は、導線80を介して金属板85aに伝達される。また、第4の実施形態に係る突出部60及び基底部50は、変形可能であるが導電性を有してはいない弾性ゴム(合成ゴムや天然ゴムなど)で形成されている。これによって、第4の実施形態では、突出部60及び基底部50が導電性を有することなく(有機導電性ポリマー、導電性粉体材料を用いることなく)、金属板85a及び導線80を介して脳波を測定することが出来る。ただし、突出部60及び基底部50が導電性を有していてもよい。接触部70が受け取った電気信号は、導線80、金属板85a、金属線30、リード線500、信号解析装置700の順に伝達される。
(Fourth embodiment)
Next, an electroencephalogram measurement electrode 40 according to a fourth embodiment of the present invention will be described with reference to FIG. In describing the fourth embodiment, differences from the first embodiment will be mainly described, and similar members will be described with the same reference numerals. As shown in FIG. 8, the electroencephalogram measurement electrode 40 according to the fourth embodiment further includes a metal plate 85a and a conductor 80 (in FIG. 8, the hatching representing the cross section of the conductor 80 is omitted, and the conductor 80 is indicated by a solid line). The metal plate 85a is formed of a conductive metal material, and is provided in a portion of the electrode member 100 that is in contact with the lid portion 20. In the fourth embodiment, the metal wires 30 are electrically connected to the metal plate 85a. At this time, the metal wire 30 is electrically connected to the metal plate 85a so as not to rotate with respect to the metal plate 85a (for example, by not soldering the metal wire 30 and the metal plate 85a). Yes. The conducting wire 80 is made of a conductive metal material and is formed in a thin line shape that can be deformed (here, has flexibility), and the projecting portion 60 cannot be deformed by the conducting wire 80. The metal plate 85a and the conductive wire 80 may be a single component such as silver, gold, platinum, or titanium, but are made of an alloy, a conductive metal oxide, a conductive chloride, or the like. Is desirable. The conducting wire 80 passes through the inside of the projecting portion 60 and the base portion 50, one end is electrically connected to the contact portion 70, and the other end is electrically connected to the metal plate 85a. As a result, the electrical signal received from the scalp 400 by the contact portion 70 is transmitted to the metal plate 85 a via the conductor 80. Moreover, the protrusion part 60 and the base part 50 which concern on 4th Embodiment are formed with the elastic rubber (synthetic rubber, natural rubber, etc.) which can deform | transform but does not have electroconductivity. As a result, in the fourth embodiment, the protrusion 60 and the base 50 do not have conductivity (without using an organic conductive polymer or conductive powder material) via the metal plate 85a and the conductive wire 80. EEG can be measured. However, the protrusion part 60 and the base part 50 may have electroconductivity. The electrical signal received by the contact unit 70 is transmitted in the order of the conductive wire 80, the metal plate 85 a, the metal wire 30, the lead wire 500, and the signal analysis device 700.
(第5の実施形態)
 次に、本発明の第5の実施形態に係る脳波測定用電極40について、図9を参照しながら説明する。第5の実施形態を説明するにあたり、第1の実施形態と異なる点を中心に説明するとともに、同様の部材については同じ符号を付して説明する。第5の実施形態に係る脳波測定用電極40は、図9に示すように、金属板85bと、ワイヤー(導線)82と、を備える(図9において、ワイヤー82の断面を表すハッチングを省略し、ワイヤー82を実線で示した)。金属板85bは、導電性を有する金属材料で形成され、脳波測定用電極40における蓋部20と当接している部分に設けられている。また、第5の実施形態では、第1の実施形態とは違い、金属線30が金属板85bと電気的に接続されている。このとき、金属線30は、金属板85bに対しては回転不能であるように(例えば、金属線30と金属板85bとをはんだ付けしない等によって)、金属板85bと電気的に接続されている。ワイヤー82は、導電性を有する金属材料からなり、変形可能な(可撓性を有する)細い線状で形成されており、ワイヤー82によって突出部60の変形できなくなることはない。金属板85b及び導線80は、例えば、銀、金、白金、チタン等の単一成分であってもよいが、合金、導電性の金属酸化物、導電性の塩化物等からなるものであることが望ましい。ワイヤー82は、図9に示すように、突出部60の内部を通り、ワイヤー82の一部を突出部60の頭皮400側(先端)から外部に露出させることで、この露出部分が第1の実施形態に係る接触部70と同じように頭皮400から電気信号を受け取る。つまり、第5の実施形態の接触部70は、ワイヤー82のうち、突出部60から外部に露出している部分で構成される。ワイヤー82は、一端又は両端が金属板85bと電気的に接続されている。また、第5の実施形態に係る突出部60及び基底部50は、変形可能であるが導電性を有してはいない弾性ゴム(合成ゴムや天然ゴムなど)で形成されている。これによって、第5の実施形態では、突出部60及び基底部50が導電性を有することなく、金属板85b及び導線80を介して脳波を測定することが出来る。ただし、突出部60及び基底部50が導電性を有していてもよい。接触部70が受け取った電気信号は、ワイヤー82、金属板85b、金属線30、リード線500、信号解析装置700の順に伝達される。
(Fifth embodiment)
Next, an electroencephalogram measurement electrode 40 according to a fifth embodiment of the present invention will be described with reference to FIG. In describing the fifth embodiment, differences from the first embodiment will be mainly described, and similar members will be described with the same reference numerals. As shown in FIG. 9, the electroencephalogram measurement electrode 40 according to the fifth embodiment includes a metal plate 85 b and a wire (conductive wire) 82 (in FIG. 9, the hatching representing the cross section of the wire 82 is omitted). The wire 82 is indicated by a solid line). The metal plate 85b is formed of a conductive metal material, and is provided in a portion of the electroencephalogram measurement electrode 40 that is in contact with the lid portion 20. In the fifth embodiment, unlike the first embodiment, the metal wire 30 is electrically connected to the metal plate 85b. At this time, the metal wire 30 is electrically connected to the metal plate 85b so as not to rotate with respect to the metal plate 85b (for example, by not soldering the metal wire 30 and the metal plate 85b). Yes. The wire 82 is made of a conductive metal material, and is formed in a deformable (flexible) thin line shape. The wire 82 does not prevent the protrusion 60 from being deformed. The metal plate 85b and the conductive wire 80 may be a single component such as silver, gold, platinum, or titanium, but are made of an alloy, a conductive metal oxide, a conductive chloride, or the like. Is desirable. As shown in FIG. 9, the wire 82 passes through the inside of the projecting portion 60, and a part of the wire 82 is exposed to the outside from the scalp 400 side (tip) of the projecting portion 60. The electrical signal is received from the scalp 400 in the same manner as the contact unit 70 according to the embodiment. That is, the contact part 70 of 5th Embodiment is comprised by the part exposed outside from the protrusion part 60 among the wires 82. FIG. One end or both ends of the wire 82 are electrically connected to the metal plate 85b. Moreover, the protrusion part 60 and the base part 50 which concern on 5th Embodiment are formed with the elastic rubber (synthetic rubber, natural rubber, etc.) which can deform | transform but does not have electroconductivity. Thus, in the fifth embodiment, the electroencephalogram can be measured via the metal plate 85b and the conductive wire 80 without the projecting portion 60 and the base portion 50 having conductivity. However, the protrusion part 60 and the base part 50 may have electroconductivity. The electrical signal received by the contact unit 70 is transmitted in the order of the wire 82, the metal plate 85b, the metal wire 30, the lead wire 500, and the signal analysis device 700.
(変形例)
 なお、本発明は、上記実施形態に限定されず、上記実施形態の内容は適宜変更可能である。以下に、上記実施形態の変形例を示すが、下記の変形例は適宜組み合わせることができる。なお、上記各実施形態の構成も適宜組合せることができる。
(Modification)
In addition, this invention is not limited to the said embodiment, The content of the said embodiment can be changed suitably. Although the modification of the said embodiment is shown below, the following modification can be combined suitably. The configurations of the above embodiments can be combined as appropriate.
(変形例1)
 上記実施形態に係る脳波測定用電極40は、図10に示すように、さらにスペーサー90を備えてもよい。スペーサー90は、頭髪に当接することで、突出部60における、頭髪の間に入り込む長さを調整するものである。スペーサー90は、合成樹脂等から形成され(例えば、絶縁性を有する。導電性を有していてもよい。)、基底部50の頭皮400側に固着されて各突出部60の間に設けられる。スペーサー90は、頭髪の密度又は量が少なくなるほど、突出部60が突出する方向の長さを長くし、突出部60における基底部50から突出している長さを短くするように形成される。これによって、頭髪の密度又は量が少ない場合には、突出部60における、頭髪の間に入り込む長さが短くなり、頭髪の密度又は量が多い場合には、突出部60における、頭髪の間に入り込む長さが長くなるので、突出部60の先端にある接触部70は、頭皮400に過度に突き刺さらず、適度な押圧を頭皮400に加えることが可能になり、頭皮400に与えるストレスが軽減される。
(Modification 1)
The electroencephalogram measurement electrode 40 according to the above embodiment may further include a spacer 90 as shown in FIG. The spacer 90 adjusts the length of the protrusion 60 that enters between the hairs by contacting the hairs. The spacer 90 is formed of a synthetic resin or the like (for example, has an insulating property. The spacer 90 may have a conductive property), and is fixed to the scalp 400 side of the base portion 50 and provided between the protruding portions 60. . The spacer 90 is formed to increase the length in the direction in which the protruding portion 60 protrudes and shorten the length of the protruding portion 60 protruding from the base portion 50 as the density or amount of hair decreases. Accordingly, when the density or amount of the hair is small, the length of the protrusion 60 entering between the hairs is shortened, and when the density or amount of the hair is large, the length of the protrusion 60 between the hairs. Since the length of penetration increases, the contact portion 70 at the tip of the protruding portion 60 does not pierce the scalp 400 excessively, so that an appropriate pressure can be applied to the scalp 400, and stress applied to the scalp 400 is reduced. Is done.
(変形例2)
 次に、上記実施形態に係る蓋部20は、図11が示すようなものを用いてもよい。蓋部20は、図11に示すように、蓋部20が備える円柱状部材20aの内周面に凸部22aを、さらに備える。蓋部20の凸部22aは、円柱状部材20aの内周面を一周するようにリング状に形成されている。蓋部20の孔21に変形可能な脳波測定用電極40が挿入されると、脳波測定用電極40は、図11に示すように、凸部22aに圧迫されてわずかに変形する。このため、脳波測定用電極40は、凸部22aに引っかかるので、蓋部20からの不慮の脱落を防ぎ、電極部材100の取り扱いをさらに容易にすることができる。なお、先に述べたように凸部22aは蓋部20の内周面を一周するようリング状に形成されているため、脳波測定用電極40が水平方向に回転可能である。
(Modification 2)
Next, the lid 20 according to the above embodiment may be as shown in FIG. As shown in FIG. 11, the lid portion 20 further includes a convex portion 22 a on the inner peripheral surface of the columnar member 20 a included in the lid portion 20. The convex part 22a of the cover part 20 is formed in a ring shape so as to go around the inner peripheral surface of the columnar member 20a. When the deformable electroencephalogram measurement electrode 40 is inserted into the hole 21 of the lid portion 20, the electroencephalogram measurement electrode 40 is pressed by the convex portion 22a and slightly deformed as shown in FIG. For this reason, since the electroencephalogram measurement electrode 40 is caught by the convex portion 22a, it is possible to prevent the electrode member 100 from being accidentally detached from the lid portion 20 and to handle the electrode member 100 more easily. As described above, since the convex portion 22a is formed in a ring shape so as to go around the inner peripheral surface of the lid portion 20, the electroencephalogram measurement electrode 40 can be rotated in the horizontal direction.
(変形例3)
 次に、上記実施形態に係るホルダー部210及び蓋部20は、図12が示すようなものを用いてもよい。蓋部20は、図12に示すように、円柱部材20aの外周面に凸部22bをさらに備える。凸部22bは、円柱部材20aの外周面を一周するようなリング状で形成されている。ホルダー部210は、図12に示すように、内周面に複数の凹部230をさらに備える。各凹部230は、ホルダー部210の内周面を一周するようなリング状で形成される。また、各凹部230が凸部22bと噛み合うことで、電極部材100は頭皮400との距離(図12では、上下方向)が固定される(不慮の脱落防止になる)。以上のように、ホルダー部210の内周面に複数の凹部230を設けることで、蓋部20はホルダー部210に対して多段階的に位置が決まる。このため、脳波測定用電極40を頭皮400に接触させたあとに、電極部材100のホルダー部210に対して挿入される度合いを変更したい場合に、電極部材100を回すことなくその度合いを変更することができる。また、各凹部230及び凸部22bがリング状で形成されていることで、蓋部20は、ホルダー部210に対して、蓋部20におけるホルダー部210と接している面の方向(図12では、左右方向)に摺動可能である。なお、円柱部材2a及びホルダー部210には、互いに螺合するネジ山が形成されていない。
(Modification 3)
Next, the holder part 210 and the lid part 20 according to the above embodiment may be as shown in FIG. As shown in FIG. 12, the lid 20 further includes a convex portion 22b on the outer peripheral surface of the columnar member 20a. The convex portion 22b is formed in a ring shape that goes around the outer peripheral surface of the cylindrical member 20a. As shown in FIG. 12, the holder part 210 further includes a plurality of recesses 230 on the inner peripheral surface. Each recess 230 is formed in a ring shape that goes around the inner peripheral surface of the holder part 210. In addition, each concave portion 230 meshes with the convex portion 22b, so that the distance (up and down direction in FIG. 12) of the electrode member 100 from the scalp 400 is fixed (prevents accidental dropout). As described above, by providing the plurality of recesses 230 on the inner peripheral surface of the holder part 210, the position of the lid part 20 is determined in multiple stages with respect to the holder part 210. Therefore, when it is desired to change the degree of insertion into the holder part 210 of the electrode member 100 after the electroencephalogram measurement electrode 40 is brought into contact with the scalp 400, the degree is changed without turning the electrode member 100. be able to. Moreover, since each recessed part 230 and the convex part 22b are formed in ring shape, the cover part 20 is the direction of the surface which contact | connects the holder part 210 in the cover part 20 with respect to the holder part 210 (in FIG. 12). Slidable in the left and right direction). The cylindrical member 2a and the holder portion 210 are not formed with threads that are screwed together.
(変形例4)
 次に、上記実施形態に係る突出部60は、通常図16に示すように、中央に位置する突出部60を中心に広がる同心円状に広がる配置で形成されているが、図17に示すように、くし状の配置(列)を、複数有するように形成されてもよい。突出部60は、くし状の配置で、一列に形成してもよい。図17は変形例4に係る脳波測定用電極40の全体の一部を切り出して説明した図であり、基底部50の断面を表すハッチングを省略した。
(Modification 4)
Next, as shown in FIG. 17, the protrusion 60 according to the above-described embodiment is formed in a concentrically extending manner centering on the protrusion 60 located at the center, as shown in FIG. Alternatively, a plurality of comb-like arrangements (rows) may be formed. The protrusions 60 may be formed in a row in a comb-like arrangement. FIG. 17 is a view in which a part of the entire electroencephalogram measurement electrode 40 according to Modification 4 is cut out and described, and hatching representing a cross section of the base portion 50 is omitted.
 本発明に係る脳波測定用電極40について、実施例1を示しながらさらに詳細に説明する。実施例1では、図2等に示した第1の実施形態に係る電極部材100(脳波測定用電極40)、及びキャップ200を作製した。まず、キャップ部220に相当する市販の頭部保護用キャップに、直径16mmの円柱状の貫通孔を数カ所形成した。次に、この円柱状の貫通孔に市販のステンレス製雌ねじ(直径16mm)を、シリコーン系接着剤を用いて取り付けた。この雌ねじは、第1の実施形態におけるホルダー部210として機能するものである。 The electroencephalogram measurement electrode 40 according to the present invention will be described in more detail with reference to Example 1. FIG. In Example 1, the electrode member 100 (electroencephalogram measurement electrode 40) and the cap 200 according to the first embodiment shown in FIG. First, several cylindrical through holes with a diameter of 16 mm were formed in a commercially available head protecting cap corresponding to the cap portion 220. Next, a commercially available stainless steel female screw (diameter: 16 mm) was attached to the cylindrical through hole using a silicone-based adhesive. This female screw functions as the holder part 210 in the first embodiment.
 蓋部20は、所定の形状の鋳型にエポキシ系常温硬化樹脂テクノビット(登録商標)4004を流し込み、それを硬化させることによって作製した。このとき、直径0.5mm、長さ20mmの銀線(金属線30に相当)を中心に差し込み、銀線の両端が蓋部20の外に出るように銀線を差し込む。なお、銀線のうち脳波測定用電極40に挿入される長さが約5mmとなるように銀線の位置を調整した。硬化後、エポキシ系常温硬化樹脂テクノビットを取り出した。そして、上記成形物を取り出したあとに、蓋部20のフランジ部20bが配置された側の面(図2における上面)から露出した銀線にリード線500をはんだ付けした。 The lid 20 was prepared by pouring an epoxy-based room temperature curing resin Technobit (registered trademark) 4004 into a mold having a predetermined shape and curing it. At this time, a silver wire (corresponding to the metal wire 30) having a diameter of 0.5 mm and a length of 20 mm is inserted in the center, and the silver wire is inserted so that both ends of the silver wire come out of the lid portion 20. The position of the silver wire was adjusted so that the length of the silver wire inserted into the electroencephalogram measurement electrode 40 was about 5 mm. After curing, the epoxy-based room temperature curing resin technobit was taken out. And after taking out the said molding, the lead wire 500 was soldered to the silver wire exposed from the surface (upper surface in FIG. 2) by which the flange part 20b of the cover part 20 is arrange | positioned.
 脳波測定用電極40は、図13に示す鋳型600を用いて作製した。鋳型600は、図13に示すように、上鋳型610と下鋳型620とから構成されている。上鋳型610と下鋳型620とは分離可能である。実施例1において、上鋳型610には、高さが5mm、円柱状の孔の内径が16mm、下鋳型620には、内径1.5mm、深さ5mmの略円錐形の孔が7箇所形成されているものを用いた。下鋳型620の略円錐形の各孔に合金(接触部70の金属塊に相当)を挿入し、鋳型600に導電性樹脂ペーストを流し込んだ。そして、60℃で15時間以上かけて導電性樹脂ペーストを固化させ、鋳型600から固化した導電性樹脂ペーストを取り出した。この取り出した導電性樹脂ペーストが第1の実施形態に係る脳波測定用電極40である。なお、導電性樹脂ペーストは、液状のシリコーン樹脂、カーボンナノチューブ、をそれぞれ92.5%、7.5%の重量基準で混練することによってペースト状にしたものである。 The electroencephalogram measurement electrode 40 was produced using a mold 600 shown in FIG. As shown in FIG. 13, the mold 600 includes an upper mold 610 and a lower mold 620. The upper mold 610 and the lower mold 620 can be separated. In Example 1, the upper mold 610 is formed with seven substantially conical holes having a height of 5 mm and an inner diameter of a cylindrical hole of 16 mm, and the lower mold 620 having an inner diameter of 1.5 mm and a depth of 5 mm. I used what is. An alloy (corresponding to a metal lump of the contact portion 70) was inserted into each of the substantially conical holes of the lower mold 620, and the conductive resin paste was poured into the mold 600. And the conductive resin paste was solidified at 60 degreeC over 15 hours, and the solidified conductive resin paste was taken out from the casting_mold | template 600. FIG. The extracted conductive resin paste is the electroencephalogram measurement electrode 40 according to the first embodiment. The conductive resin paste is obtained by kneading a liquid silicone resin and carbon nanotubes on a weight basis of 92.5% and 7.5%, respectively.
 次に、実施例2では、図8に示した第4の実施形態に係る脳波測定用電極40を作製した。キャップ220及び蓋部20は、実施例1と同様の手順により作製した。ただし、実施例2では、蓋部20に挿入される銀線を脳波測定用電極40に挿入しないように蓋部20を作製する。 Next, in Example 2, the electroencephalogram measurement electrode 40 according to the fourth embodiment shown in FIG. 8 was produced. The cap 220 and the lid part 20 were produced by the same procedure as in Example 1. However, in Example 2, the lid part 20 is produced so that the silver wire inserted into the lid part 20 is not inserted into the electroencephalogram measurement electrode 40.
 実施例2においても、実施例1と同じ鋳型600を用いて、脳波測定用電極40を作成する。実施例2では、下鋳型600の円錐形の各孔に合金を挿入したのちに、銀線(導線80に相当)を鋳型600に挿入した。このとき、銀線は、一端が各合金と電気的に接続されるように鋳型600に挿入した。なお、銀線は、直径0.5mm、長さ10mmである。次に、実施例1とは違い、鋳型600にカーボンナノチューブを含有しない樹脂ペースト、つまり導電性のない樹脂ペーストを流し込んだ。そして、樹脂ペーストを固化させ、鋳型600から固化した樹脂ペーストを取り出す。最後に、銀線の他端と電気的に接続するように、固化した樹脂ペーストに金属板(金属板85aに相当)を貼り付けた。以上より、第4の実施形態に係る脳波測定用電極40が得られる。 Also in Example 2, the electroencephalogram measurement electrode 40 is formed using the same mold 600 as in Example 1. In Example 2, after the alloy was inserted into each conical hole of the lower mold 600, a silver wire (corresponding to the conductive wire 80) was inserted into the mold 600. At this time, the silver wire was inserted into the mold 600 so that one end was electrically connected to each alloy. The silver wire has a diameter of 0.5 mm and a length of 10 mm. Next, unlike Example 1, a resin paste not containing carbon nanotubes, that is, a non-conductive resin paste, was poured into the mold 600. Then, the resin paste is solidified, and the solidified resin paste is taken out from the mold 600. Finally, a metal plate (corresponding to the metal plate 85a) was attached to the solidified resin paste so as to be electrically connected to the other end of the silver wire. As described above, the electroencephalogram measurement electrode 40 according to the fourth embodiment is obtained.
 次に、実施例3では、図9に示した第5の実施形態に係る脳波測定用電極40を作製した。キャップ220及び蓋部20は、実施例1と同様の手順により作製した。ただし、実施例3では、蓋部20に挿入される銀線を脳波測定用電極40に挿入しないように蓋部20を作製する。 Next, in Example 3, the electroencephalogram measurement electrode 40 according to the fifth embodiment shown in FIG. 9 was produced. The cap 220 and the lid part 20 were produced by the same procedure as in Example 1. However, in Example 3, the lid part 20 is produced so that the silver wire inserted into the lid part 20 is not inserted into the electroencephalogram measurement electrode 40.
 実施例3においても、実施例1と同じ鋳型600を用いて、脳波測定用電極40を作成する。実施例3では、下鋳型620の円錐形の各孔に銀線(ワイヤー82に相当)を挿入した。なお、銀線は、直径0.1mm、長さ20mmのものであり、略中央でヘアピン状に折り曲げたものである。次に、鋳型600にカーボンナノチューブを含有しない樹脂ペースト、つまり導電性のない樹脂ペーストを流し込み、樹脂ペーストを固化させた。そして、鋳型600から固化した樹脂ペーストを取り出した。最後に、銀線の一端と電気的に接続するように、固化した樹脂ペーストに金属板(金属板85bに相当)を貼り付けた。以上より、第5の実施形態に係る脳波測定用電40が得られる。 Also in Example 3, the electroencephalogram measurement electrode 40 is formed using the same mold 600 as in Example 1. In Example 3, a silver wire (corresponding to the wire 82) was inserted into each conical hole of the lower mold 620. The silver wire has a diameter of 0.1 mm and a length of 20 mm, and is bent into a hairpin shape at substantially the center. Next, a resin paste containing no carbon nanotubes, that is, a resin paste having no electrical conductivity, was poured into the mold 600 to solidify the resin paste. Then, the solidified resin paste was taken out from the mold 600. Finally, a metal plate (corresponding to the metal plate 85b) was attached to the solidified resin paste so as to be electrically connected to one end of the silver wire. From the above, the electroencephalogram measurement electricity 40 according to the fifth embodiment is obtained.
(測定結果)
 以下、第1の実施形態(実施例1)に係る電極部材100による脳波の測定結果を示す。そこで、BMIの電極として、脳波測定用電極40を用いて、脳波の測定結果を示す。なお、BMIとは、脳の活動により生じる脳波を表す電気信号等を読み取り、これを直接電子機器に入力する形式のインターフェースである。
(Measurement result)
Hereinafter, the measurement result of the electroencephalogram by the electrode member 100 according to the first embodiment (Example 1) is shown. Therefore, an electroencephalogram measurement result is shown by using an electroencephalogram measurement electrode 40 as the BMI electrode. BMI is an interface that reads an electrical signal representing an electroencephalogram generated by brain activity and directly inputs it to an electronic device.
 実施例1において作製されたキャップ、脳波測定用電極(脳波測定用電極付きキャップ)を用いて脳波測定を以下の手順により実施した。まず、被験者にキャップを被せた。次に、キャップの各貫通孔に取り付けられたホルダー部に、電極部材をそれぞれ突出部が頭皮の方向を向くように挿入した。なお、電極部材(特に、脳波測定用電極)は、使用する直前に消毒用エタノールにより消毒して用いた。蓋部がホルダー部に対して所定の位置に来るように、蓋部を回転させながらホルダー部に取り付けた。ホルダー部に脳波測定用電極を締め付ける際に、最初は蓋部の回転に伴い脳波測定用電極も回転したが、突出部が頭髪又は頭皮と当接すると、脳波測定用電極は回転せず蓋部のみが独立して回転し、脳波測定用電極を頭皮に押圧した。このため、脳波測定用電極が被験者の頭髪を巻き込むことはなかった。このとき、被験者に装着感を確認したが、痛みや不快感を訴える被験者はいなかった。従って、実施例1において作製した脳波測定用電極が、頭髪を巻き込んだり、頭皮に対して過度の圧力を加えたりして被験者に痛みや不快感を与えるおそれが小さいことが確認された。 Electroencephalogram measurement was carried out by the following procedure using the cap prepared in Example 1 and an electroencephalogram measurement electrode (cap with electroencephalogram measurement electrode). First, a cap was put on the subject. Next, the electrode member was inserted into the holder part attached to each through-hole of the cap so that the protruding part was directed to the scalp. The electrode member (particularly, the electroencephalogram measurement electrode) was used after being disinfected with ethanol for disinfection immediately before use. The lid was rotated and attached to the holder so that the lid was in a predetermined position relative to the holder. When the electroencephalogram measurement electrode was fastened to the holder part, the electroencephalogram measurement electrode also rotated with the rotation of the lid part at first. However, when the protruding part comes into contact with the hair or scalp, the electroencephalogram measurement electrode does not rotate and the lid part does not rotate. Only independently rotated and the electroencephalogram measurement electrode was pressed against the scalp. For this reason, the electroencephalogram measurement electrode did not involve the subject's hair. At this time, the subject confirmed wearing feeling, but no subject complained of pain or discomfort. Therefore, it was confirmed that the electroencephalogram measurement electrode produced in Example 1 is less likely to cause pain and discomfort to the subject by involving the hair and applying excessive pressure to the scalp.
 脳波測定用電極が頭皮に対して所定の位置と圧力とで固定された後、電極部材に接続されているリード線を市販の脳波計測器(g.tec社製)と接続し、頭皮と脳波測定用電極との間のインピーダンスを測定した。測定値はいずれも15kΩ以下であり、BMIに十分な程度の導通が確保されていることが確認された。また、実施例2、実施例3において作製した脳波測定用電極についても同様に測定を行い、こちらも測定値が15kΩ以下であることが確認された。 After the electroencephalogram measurement electrode is fixed to the scalp at a predetermined position and pressure, the lead wire connected to the electrode member is connected to a commercially available electroencephalograph (manufactured by g.tec), and the scalp and electroencephalogram The impedance between the measurement electrodes was measured. All measured values were 15 kΩ or less, and it was confirmed that a sufficient degree of conduction was ensured for BMI. Further, the electroencephalogram measurement electrodes prepared in Example 2 and Example 3 were measured in the same manner, and it was confirmed that the measured value was 15 kΩ or less.
 さらに、図14、図15を用いて、実施例1に係る脳波測定用電極で測定された脳波の例(グラフ)を示す。図14、図15に示したグラフは、脳波計測器のアナログ-デジタル変換回路(Analog-to-digital converter)を用いてアナログ電圧をデジタル電圧に変換し、1LSB(最小分解能)を0.24pVとして、電圧(測定した脳波)のデータを示したものである。ただし、図14、図15に示したグラフでは、頭皮からの電気信号(電圧)を、50Hzを中心とした帯域幅2Hzの双2次フィルタ(biquad filter)によるノッチフィルターと1Hzから45Hzの20次のバンドパスフィルタとをソフトウェア上で掛けて処理したもの(脳波)を示した。なお、図14、図15に示したグラフは、縦軸に電圧[μV]、横軸[ms]に時間をとったものである。実施例1に係る脳波測定用電極(金属材料から形成された接触部)を用いて脳波を測定すると、図14が示すようなα波を測定することができた。また、脳波測定中において、被験者が約600[ms]、約1400[ms]のときに瞬きをすると、図15が示すような、スパイク上の波形(約600[ms]、約1400[ms])を測定することが出来た。導電性ゴムだけから形成された脳波測定用電極(導電性ゴムから形成された接触部)を用いて脳波を測定したところ、α波及び瞬きを表す脳波をそもそも測定することができなかった。したがって、実施例1に係る脳波測定用電極を用いて脳波を測定すると、接触部が導電性ゴムから形成された場合に比べて、脳波を精度良く測定できることが確認された。以上のように、実施例1に係る脳波測定用電極は、頭皮に対して過度の圧力を加えることなく、脳波を精度よく測定できることが確認された。また、実施例2、3についても、実施例1と同様のインピーダンスが得られているので、実施例2、3に係る脳波測定用電極を用いた場合でも、実施例1と同様に、頭皮に対して過度の圧力を加えることなく、脳波が精度よく測定できると考えられる。 Furthermore, an example (graph) of an electroencephalogram measured by the electroencephalogram measurement electrode according to Example 1 is shown using FIGS. The graphs shown in FIGS. 14 and 15 are obtained by converting an analog voltage into a digital voltage using an analog-to-digital converter circuit of an electroencephalograph, and setting 1LSB (minimum resolution) to 0.24 pV. The data of the voltage (measured electroencephalogram) are shown. However, in the graphs shown in FIGS. 14 and 15, the electrical signal (voltage) from the scalp is converted into a notch filter by a biquad filter with a bandwidth of 2 Hz centering on 50 Hz and a 20 th order from 1 Hz to 45 Hz. (Brain wave) processed by applying the above bandpass filter on the software. In the graphs shown in FIGS. 14 and 15, the vertical axis represents voltage [μV] and the horizontal axis [ms] represents time. When the electroencephalogram was measured using the electroencephalogram measurement electrode (contact portion formed of a metal material) according to Example 1, it was possible to measure the α wave as shown in FIG. Further, when the subject blinks when the subject is about 600 [ms] and about 1400 [ms] during the electroencephalogram measurement, the waveform on the spike (about 600 [ms] and about 1400 [ms] as shown in FIG. 15). ) Was measured. When an electroencephalogram was measured using an electroencephalogram measuring electrode (contact portion formed from an electrically conductive rubber) formed only from an electrically conductive rubber, an α wave and an electroencephalogram representing blinking could not be measured in the first place. Therefore, when the electroencephalogram was measured using the electroencephalogram measurement electrode according to Example 1, it was confirmed that the electroencephalogram could be measured with higher accuracy than when the contact portion was formed from conductive rubber. As described above, it was confirmed that the electroencephalogram measurement electrode according to Example 1 can accurately measure the electroencephalogram without applying excessive pressure to the scalp. Moreover, since the same impedance as Example 1 is obtained also about Example 2, 3, even when using the electroencephalogram measurement electrode according to Example 2, 3, it is applied to the scalp similarly to Example 1. On the other hand, it is considered that the electroencephalogram can be accurately measured without applying excessive pressure.
 以上、実施の形態、変形例及び実施例を挙げて本発明について詳細に説明したが、本発明の範囲は上記の実施の形態などに限定されるものではないことは言うまでも無い。当業者により為される改良、置換、組み合わせ等は、本発明の要旨を超えない限り、本発明の範囲に含まれるものである。 As mentioned above, although the present invention has been described in detail with reference to the embodiment, the modification, and the example, it goes without saying that the scope of the present invention is not limited to the above-described embodiment. Improvements, substitutions, combinations, and the like made by those skilled in the art are included in the scope of the present invention unless they exceed the gist of the present invention.
 本出願は、2011年11月30日に出願された日本国特許出願第2011-262032号に基づく。本明細書中にその明細書、特許請求の範囲、図面全体を参照として取り込むものとする。  This application is based on Japanese Patent Application No. 2011-262032 filed on November 30, 2011. The specification, claims, and entire drawings are incorporated herein by reference.
  1000   脳波測定装置
  100    電極部材
  20     蓋部
  20a    円柱状部材
  20b    フランジ部
  21     孔
  22a    凸部
  22b    凸部
  30     金属線
  40     脳波測定用電極
  50     基底部
  60     突出部
  70     接触部
  71     金属粒子
  70a    金属部
  70b    第1の金属膜
  70c    第2の金属膜
  80     導線
  82     ワイヤー
  85a    金属板
  85b    金属板
  90     スペーサー
  200    キャップ
  210    ホルダー部
  220    キャップ部
  230    凹部
  400    頭皮
  500    リード線
  600    鋳型
  610    上鋳型
  620    下鋳型
  700    信号解析装置
1000 Electroencephalogram Measurement Device 100 Electrode Member 20 Lid 20a Columnar Member 20b Flange 21 Hole 22a Convex 22b Convex 30 Metal Wire 40 Electroencephalogram Electrode 50 Base 60 Protrusion 70 Contact Part 71 Metal Particle 70a Metal Part 70b First 1 metal film 70c second metal film 80 conductive wire 82 wire 85a metal plate 85b metal plate 90 spacer 200 cap 210 holder portion 220 cap portion 230 concave portion 400 scalp 500 lead wire 600 mold 610 upper mold 620 lower mold 700 signal analysis device

Claims (10)

  1.  脳波を測定するための脳波測定用電極であって、
     基底部と、
     前記基底部から突出して設けられた、ゴムからなる突出部と、
     前記突出部の先端に設けられ、前記脳波測定用電極の外部と電気的に接続され、前記脳波の測定時に頭皮に接触する、金属からなる接触部と、
     を備えることを特徴とする脳波測定用電極。
    An electroencephalogram measuring electrode for measuring an electroencephalogram,
    The base,
    A protrusion made of rubber provided protruding from the base, and
    Provided at the tip of the protruding portion, electrically connected to the outside of the electroencephalogram measurement electrode, and in contact with the scalp when measuring the electroencephalogram, a contact portion made of metal,
    An electrode for electroencephalogram measurement comprising:
  2.  前記突出部は、導電性ゴムからなり、
     前記接触部は、前記突出部を介して前記外部と電気的に接続されている、
     ことを特徴とする請求項1に記載の脳波測定用電極。
    The protrusion is made of conductive rubber,
    The contact portion is electrically connected to the outside via the protrusion.
    The electrode for electroencephalogram measurement according to claim 1.
  3.  前記突出部に設けられ、変形可能な導体をさらに備え、
     前記接触部は、前記導体を介して前記外部と電気的に接続されている、
     ことを特徴とする請求項1に記載の脳波測定用電極。
    Further provided with a deformable conductor provided on the protrusion,
    The contact portion is electrically connected to the outside via the conductor.
    The electrode for electroencephalogram measurement according to claim 1.
  4.  前記突出部に設けられ、変形可能な導体をさらに備え、
     前記接触部は、前記導体と一体的に形成されており、前記導体を介して前記外部と電気的に接続されている、
     ことを特徴とする請求項1に記載の脳波測定用電極。
    Further provided with a deformable conductor provided on the protrusion,
    The contact portion is formed integrally with the conductor, and is electrically connected to the outside via the conductor.
    The electrode for electroencephalogram measurement according to claim 1.
  5.  前記接触部は、複数の金属粒子からなる、
     ことを特徴とする請求項1乃至3のいずれか1項に記載の脳波測定用電極。
    The contact portion is composed of a plurality of metal particles.
    The electrode for electroencephalogram measurement according to any one of claims 1 to 3, wherein:
  6.  前記接触部は、金属膜からなる、
     ことを特徴とする請求項1乃至3のいずれか1項に記載の脳波測定用電極。
    The contact portion is made of a metal film.
    The electrode for electroencephalogram measurement according to any one of claims 1 to 3, wherein:
  7.  前記突出部は、少なくとも一部が、前記外部と電気的に接続される、金属膜で被覆されている、
     ことを特徴とする請求項1乃至6のいずれか1項に記載の脳波測定用電極。
    The protrusion is at least partially covered with a metal film that is electrically connected to the outside.
    The electroencephalogram measurement electrode according to any one of claims 1 to 6.
  8.  前記基底部上に設けられたスペーサーをさらに備え、
     前記スペーサーは、前記脳波の測定時に、前記突出部の頭髪の合間に挿入される部分を短くする、
     ことを特徴とする請求項1乃至7のいずれか1項に記載の脳波測定用電極。
    Further comprising a spacer provided on the base,
    The spacer shortens the portion inserted between the hairs of the protruding portion when measuring the electroencephalogram,
    The electrode for electroencephalogram measurement according to any one of claims 1 to 7,
  9.  請求項1乃至8のいずれか1項に記載の脳波測定用電極と、
     前記脳波測定用電極が頭皮に接触するように取り付けられる、前記頭皮を覆う覆い部材と、
     を備えることを特徴とする脳波測定用部材。
    Electroencephalogram measurement electrode according to any one of claims 1 to 8,
    A covering member that covers the scalp, and is attached so that the electroencephalogram measurement electrode contacts the scalp;
    A member for measuring electroencephalogram, comprising:
  10.  請求項1乃至8のいずれか1項に記載の脳波測定用電極を備える、
     ことを特徴とする脳波測定装置。
    The electroencephalogram measurement electrode according to any one of claims 1 to 8,
    An electroencephalogram measuring apparatus characterized by that.
PCT/JP2012/080707 2011-11-30 2012-11-28 Eeg measurement electrode, eeg measurement member, and eeg measurement device WO2013080992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-262032 2011-11-30
JP2011262032A JP5842198B2 (en) 2011-11-30 2011-11-30 Electroencephalogram measurement electrode, electroencephalogram measurement member, and electroencephalogram measurement apparatus

Publications (1)

Publication Number Publication Date
WO2013080992A1 true WO2013080992A1 (en) 2013-06-06

Family

ID=48535443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080707 WO2013080992A1 (en) 2011-11-30 2012-11-28 Eeg measurement electrode, eeg measurement member, and eeg measurement device

Country Status (2)

Country Link
JP (1) JP5842198B2 (en)
WO (1) WO2013080992A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170224278A1 (en) * 2016-02-10 2017-08-10 Brain Products Gmbh Sensor device or eeg electrode and cap having a plurality of sensor devices
WO2020085035A1 (en) * 2018-10-26 2020-04-30 住友ベークライト株式会社 Bioelectrode, biological sensor, and biological signal measurement system
CN111511280A (en) * 2018-10-17 2020-08-07 Nok株式会社 Bioelectrode and method for manufacturing bioelectrode
WO2020261773A1 (en) * 2019-06-25 2020-12-30 住友ベークライト株式会社 Biomedical electrode, biomedical sensor, and biosignal measurement system
GB2591620A (en) * 2014-03-12 2021-08-04 Nielsen Consumer Llc Methods and apparatus to gather and analyze electroencephalographic data
EP3900572A1 (en) * 2020-04-20 2021-10-27 Mooyoo Co., Ltd Massage pin for skin blood circulation promotor and coupling method thereof

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608984B1 (en) 2010-02-23 2013-12-17 Cleveland Medical Polymers, Inc. Polymer nano-composites as dry sensor material for biosignal sensing
JP2015027440A (en) * 2013-06-28 2015-02-12 株式会社モリグチ Cluster probe device
EP2868269A1 (en) * 2013-11-05 2015-05-06 Cleveland Medical Polymers, Inc. Polymer nano-composites as dry sensor material for biosignal sensing
JP2016159065A (en) * 2015-03-05 2016-09-05 ニプロ株式会社 Electrodes for detecting brain waves
JP6486551B2 (en) * 2016-03-11 2019-03-20 アルプスアルパイン株式会社 Bioelectrode, bioelectrode manufacturing method, and method for collecting electrical signals from a living body
JP6668500B2 (en) * 2016-11-10 2020-03-18 アルプスアルパイン株式会社 Biological information measuring electrode and method for manufacturing biological information measuring electrode
JPWO2018155449A1 (en) * 2017-02-27 2019-11-14 シャープ株式会社 Electrode apparatus and biological information measuring device
JPWO2018186212A1 (en) * 2017-04-07 2019-12-19 アルプスアルパイン株式会社 Biological information measurement electrode and biological information measurement method
WO2018230445A1 (en) * 2017-06-16 2018-12-20 Nok株式会社 Biological electrode
JP2019072310A (en) * 2017-10-18 2019-05-16 アルプスアルパイン株式会社 Biological information measurement electrode, biological information acquisition device, and method of manufacturing biological information measurement electrode
JPWO2019130832A1 (en) * 2017-12-27 2020-10-22 アルプスアルパイン株式会社 Manufacturing method of electrodes for measuring biological information and electrodes for measuring biological information
EP3868290A4 (en) * 2018-10-17 2022-08-17 NOK Corporation Bioelectrode and bioelectrode production method
JP6825744B2 (en) * 2018-10-26 2021-02-03 住友ベークライト株式会社 Bioelectrodes, biosensors and biosignal measurement systems
US20210338129A1 (en) * 2018-12-10 2021-11-04 Nok Corporation Bioelectrode and manufacturing method of bioelectrode
JP2020168138A (en) * 2019-04-02 2020-10-15 株式会社リコー Magnetic measurement device and head-mounted magnetic measurement device
JP7028371B2 (en) * 2020-02-26 2022-03-02 住友ベークライト株式会社 EEG measuring device
WO2022004282A1 (en) 2020-07-03 2022-01-06 Nok株式会社 Bioelectrode
WO2022064907A1 (en) * 2020-09-25 2022-03-31 住友ベークライト株式会社 Brainwave detection electrode
JP7004127B1 (en) * 2020-09-25 2022-01-21 住友ベークライト株式会社 Electrodes for brain wave detection
EP4302692A1 (en) 2021-03-02 2024-01-10 Sumitomo Bakelite Co., Ltd. Brain wave detection electrode and brain wave measurement device
JP7375958B2 (en) 2021-09-24 2023-11-08 住友ベークライト株式会社 EEG detection electrode, EEG measurement device, and EEG measurement method
WO2023048077A1 (en) 2021-09-24 2023-03-30 住友ベークライト株式会社 Brain wave detection electrode, brain wave measuring device, and brain wave measuring method
JP7420319B2 (en) * 2022-02-17 2024-01-23 住友ベークライト株式会社 Biosignal measurement electrode, biosignal measurement device, and biosignal measurement method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120866A (en) * 2009-11-10 2011-06-23 Japan Health Science Foundation Brain wave measuring electrode, cap with brain wave measuring electrode and brain wave measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120866A (en) * 2009-11-10 2011-06-23 Japan Health Science Foundation Brain wave measuring electrode, cap with brain wave measuring electrode and brain wave measuring device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2591620A (en) * 2014-03-12 2021-08-04 Nielsen Consumer Llc Methods and apparatus to gather and analyze electroencephalographic data
US11357433B2 (en) 2014-03-12 2022-06-14 Nielsen Consumer Llc Methods and apparatus to gather and analyze electroencephalographic data
GB2591620B (en) * 2014-03-12 2021-10-27 Nielsen Consumer Llc Methods and apparatus to gather and analyze electroencephalographic data
US10456058B2 (en) * 2016-02-10 2019-10-29 Brian Products Gmbh Sensor device or EEG electrode and cap having a plurality of sensor devices
US20170224278A1 (en) * 2016-02-10 2017-08-10 Brain Products Gmbh Sensor device or eeg electrode and cap having a plurality of sensor devices
CN111511280A (en) * 2018-10-17 2020-08-07 Nok株式会社 Bioelectrode and method for manufacturing bioelectrode
US20210000371A1 (en) * 2018-10-17 2021-01-07 Nok Corporation Bioelectrode and method for producing bioelectrode
JP6708322B1 (en) * 2018-10-26 2020-06-10 住友ベークライト株式会社 Biological electrode, biosensor and biosignal measurement system
US20210386350A1 (en) * 2018-10-26 2021-12-16 Sumitomo Bakelite Co., Ltd. Biomedical electrode, biomedical sensor, and biomedical signal measurement system
WO2020085035A1 (en) * 2018-10-26 2020-04-30 住友ベークライト株式会社 Bioelectrode, biological sensor, and biological signal measurement system
EP3871595A4 (en) * 2018-10-26 2022-07-13 Sumitomo Bakelite Co.Ltd. Bioelectrode, biological sensor, and biological signal measurement system
JP6888747B1 (en) * 2019-06-25 2021-06-16 住友ベークライト株式会社 Bioelectrodes, biosensors, and biological signal measurement systems
WO2020261773A1 (en) * 2019-06-25 2020-12-30 住友ベークライト株式会社 Biomedical electrode, biomedical sensor, and biosignal measurement system
EP3900572A1 (en) * 2020-04-20 2021-10-27 Mooyoo Co., Ltd Massage pin for skin blood circulation promotor and coupling method thereof
JP2021171649A (en) * 2020-04-20 2021-11-01 有限会社G.Mコーポレーション Massage pin for skin blood circulation activation tool, and coupling method thereof
JP7140423B2 (en) 2020-04-20 2022-09-21 有限会社G.Mコーポレーション Massage pin for cutaneous blood circulation activator and bonding method thereof

Also Published As

Publication number Publication date
JP5842198B2 (en) 2016-01-13
JP2013111361A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
JP5842198B2 (en) Electroencephalogram measurement electrode, electroencephalogram measurement member, and electroencephalogram measurement apparatus
JP5561122B2 (en) Biological signal detection device
CN102596021B (en) Device for positioning electrodes on a user's scalp
JP5720047B2 (en) Electroencephalogram measurement electrode, cap with electroencephalogram measurement electrode, and electroencephalogram measurement apparatus
JP5476570B2 (en) Kenyama-type dry electrode and manufacturing method thereof
US20110074396A1 (en) Biosensor and electrode structure thereof
JP2012501789A5 (en)
US8874184B1 (en) MR Conditional needle and surface electrodes
US10653331B2 (en) Electrode sensor
CN113974637B (en) Novel highly comfortable elastic electroencephalogram dry electrode, electroencephalogram equipment and application system
WO2012150528A1 (en) Electrode assembly for contacting skin
US20150238100A1 (en) Sensor electrode device
Fiedler et al. Modular multipin electrodes for comfortable dry EEG
JP6486551B2 (en) Bioelectrode, bioelectrode manufacturing method, and method for collecting electrical signals from a living body
KR102171566B1 (en) Method, apparatus and computer program for measuring biological signals
CN217365889U (en) Novel highly comfortable elastic electroencephalogram dry electrode, electroencephalogram equipment and application system
CN218889674U (en) Electroencephalogram detection device
US20230066856A1 (en) Dry Electrode And Wearable Device
CN213910252U (en) Electroencephalogram electrode
EP3900624A1 (en) An electrode device for amplitude-integrated electroencephalography
WO2022176559A1 (en) Bioelectrode
EP3818924A1 (en) Apparatus for measuring bio-signals
TWI584783B (en) Combined inductive electrode and combined inductive electrode of physiological signal sensor
JPH024322A (en) Organism induction electrode for four limbs
JPH059094B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12854481

Country of ref document: EP

Kind code of ref document: A1