WO2013079725A1 - Procede et un dispositif d'usinage par addition de matiere et mise en forme combinees - Google Patents

Procede et un dispositif d'usinage par addition de matiere et mise en forme combinees Download PDF

Info

Publication number
WO2013079725A1
WO2013079725A1 PCT/EP2012/074268 EP2012074268W WO2013079725A1 WO 2013079725 A1 WO2013079725 A1 WO 2013079725A1 EP 2012074268 W EP2012074268 W EP 2012074268W WO 2013079725 A1 WO2013079725 A1 WO 2013079725A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
shaping
machine
workpiece
during
Prior art date
Application number
PCT/EP2012/074268
Other languages
English (en)
Inventor
Jean-Yves HASCOET
Gilles CARABIN
Pascal MOGNOL
Original Assignee
Ecole Centrale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Centrale filed Critical Ecole Centrale
Priority to US14/362,091 priority Critical patent/US9962799B2/en
Priority to EP12795803.1A priority patent/EP2785492B1/fr
Priority to CN201280069006.3A priority patent/CN104470678B/zh
Priority to JP2014543937A priority patent/JP6203190B2/ja
Priority to KR1020147018310A priority patent/KR102047363B1/ko
Priority to CA2866727A priority patent/CA2866727C/fr
Publication of WO2013079725A1 publication Critical patent/WO2013079725A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/14Spinning
    • B21D22/16Spinning over shaping mandrels or formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/047Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work moving work to adjust its position between soldering, welding or cutting steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P17/00Metal-working operations, not covered by a single other subclass or another group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q39/00Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
    • B23Q39/02Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station
    • B23Q39/021Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like
    • B23Q39/022Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with same working direction of toolheads on same workholder
    • B23Q39/024Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation the sub-assemblies being capable of being brought to act at a single operating station with a plurality of toolheads per workholder, whereby the toolhead is a main spindle, a multispindle, a revolver or the like with same working direction of toolheads on same workholder consecutive working of toolheads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • G05B19/4099Surface or curve machining, making 3D objects, e.g. desktop manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49018Laser sintering of powder in layers, selective laser sintering SLS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49328Laser machining and milling combined
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49358Facing milling, tool perpendicular to surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5176Plural diverse manufacturing apparatus including means for metal shaping or assembling including machining means

Definitions

  • the invention relates to a method and a device for machining by adding material and forming combined.
  • the method and the device which are the subject of the invention are more particularly suited to the production of parts whose three-dimensional shape or the microgeometric quality of the surfaces is not feasible by the machining and material addition and forming processes when these are applied separately.
  • one method is considered to be applied separately from another when the part, in the course of realization, is repositioned in the machine space, that this repositioning is obtained by a change of machine, or by a transfer of the part from one zone of a machine-transfer to another zone of this machine-transfer, the part being preserved on its assembly or its machining pallet, or, when the remaining part mounted on the same machine, the configuration of said machine is changed significantly so that the origin of the axes or the dynamic behavior of the machine is modified, for example, by the change of the machining head, or that the compensation tables movements , stored in the numerical control of the machine, be modified, or no longer reflect the behavior of the machine if they are kept in the same configuration.
  • the term "machining phase" thus designates a succession of machining operations performed on the same part, without it changing the machining station, or the configuration of the machining station. is modified and without the positioning of the part being modified.
  • machining applies to the action of machining, and the verb "machining” is taken in the general sense of working a material or a part on a machine tool.
  • Japanese Patent Application JP-A-2 010 2 801 73 discloses a device and a method comprising combining, on the same machine, an additive machining method and a material removal machining method. According to this prior art, the implementation of this method uses two separate machining devices mounted on the same frame but using different displacement axes.
  • a first set of effectors is used to deposit a bed of powder and to sinter a part of this bed of powder by a laser beam whose trajectory in said bed is determined by the movements of a mirror
  • a second set of effectors comprises a milling spindle whose movements are controlled by numerical control axes distinct from the axes controlling the movements of the mirror.
  • the method of removing material from this prior art is intended to promote the conditions of implementation of the additive machining process by retouching the deposited material surface so as to correct the geometry thereof and to clean it of any pollution in order to favor the attachment of the layer of material deposited during the following operation.
  • the purpose of this prior art is above all the material health of the part made by additive machining, with no particular objective vis-à-vis the precision of the combined machining operations, accuracy that could not be achieved because of the change phase between the addition operation and the material removal operation.
  • the invention aims in particular, but not exclusively, at producing a piece of complex shape such as represented in FIG. 1.
  • the piece (100) directed to include a planar and rigid plate (110) constituting the substrate, having a bore (115) at its center and a hollow extension (120) of conical and complex shape centered on said bore (115), which can be obtained by addition of material.
  • the whole of said piece (100) is made with constraints on the surface condition, both on the outer part and on the inner part of the complex shape extension (120), for example, a roughness Ra of 1, 6 ⁇ (10 6 meters) according to ISO 4,287.
  • said part must also be produced according to geometric constraints such as a tolerance of concentricity between the bore (1 15) of the plate and that of the extension. (120) conical at said platen, and a tolerance on the thickness (e) of the walls of the extension (120).
  • these tolerances are 0.05 mm.
  • substrate designates the initial material of the part on which is deposited the material by an addition machining method, the material thus deposited may be of the same kind or of a different nature from the material of the substrate. .
  • a part must be performed on a machine comprising at least 5 axes of relative movement between the part and the tool, these 5 axes comprising, for example, 3 orthogonal translations and 2 rotation along orthogonal axes.
  • the realization of this part requires the use of 5 continuous axes, that is to say that the machining tool must be permanently oriented relative to the machined surface.
  • the 5-axis machine architectures are varied and known from the prior art.
  • each tool is associated with "gauges" that is to say a file of numerical values that define the position of the active part of said tool in the reference machine when this tool is mounted in the spindle of said machine.
  • This gauge file is integrated in the kinematic transformation tables stored in the memory of the machine control, said transformation tables translating in terms of movement of the motorized axes, the motion commands programmed so as to obtain the desired trajectory.
  • any numerical control machine has a work volume in which its accuracy and performance are optimal, and outside which performance falls.
  • follow a path with a tool whose gauges lead out of this optimum operating volume, or whose mass that it adds to the structure modifies the dynamic behavior leads to operate the machine in degraded conditions, or would require reloading new compensation tables, which is equivalent to using another machine and changing the machining phase.
  • the document EP 1 614 497 describes a device and a machining method combining, on the same machine, an additive machining and ablative machining.
  • the transition from one machining mode to another is carried out by mounting at the end of the machining head, or directly in the spindle of the machine, an additive machining device.
  • This additive machining device comprises a melting means, a material flow device and a blowing means.
  • EP 0 529 816 discloses a device and a machining process combining additive machining and ablative machining.
  • the additive machining device is permanently mounted next to the ablative machining spindle so that the onboard weight is substantially the same in both machining configurations.
  • This document teaches adding the additive machining device to an existing material removal machining machine.
  • the additive machining device is placed remote from the spindle of the machine.
  • the machine works in a volume, at borders or outside its optimal working volume. The incidence is moderate when the machine is in series architecture and comprises only 3 orthogonal linear displacement axes, as described in this document.
  • this document teaches to achieve by additive machining a preform, that is to say a block of material which is a kind of crude. Precision is achieved by ablative machining, so that the accuracy required for additive machining is several orders of magnitude lower than the accuracy of the machine.
  • the technical solution taught in this document is not applicable in the case where one of the machining, additive or ablative, requires a displacement the continuous control of the orientation of the tool relative to the surface produced.
  • a machining head and motorized axes comprising a rotary axis for moving said head in a space, said working space; b. means for positioning and holding a workpiece in position in said work space;
  • the machining head comprises means for supporting tools for shaping the material and means capable of providing a supply of material.
  • the device object of the invention makes it possible to go from addition machining to machining by shaping and vice versa with the aid of the same machining head, moved by the same means.
  • the onboard weight remains the same when changing the machining operation.
  • the invention also relates to a method implemented by means of the preceding device, which method comprises the steps of:
  • the parts of the workpiece, machined during the addition and shaping operations are perfectly positioned relative to each other, because performed during the same phase, that is to say without modification of the setting in position of the part and without change of configuration of the machining station.
  • the normal orientation of the machining head with respect to the trajectories makes it possible to limit the quantity of material deposited to the strictest necessary and to improve the surface quality of the parts obtained.
  • the invention can be implemented according to the advantageous embodiments described below, which can be considered individually or in any technically operative combination.
  • the device which is the subject of the invention comprises:
  • the probing means make it possible to perfectly connect two successive machining operations and to compensate for shifts in particular due to the thermal expansion of the part.
  • the formatting tools comprise a cutting tool.
  • both the substrate and the material deposited on the workpiece can be machined by removal of material so as to calibrate their size or obtain defined surface conditions.
  • the device which is the subject of the invention, it comprises: f. means for communicating a cutting motion to the cutting tool.
  • the device object of the invention is suitable for performing operations of removal of material by milling or abrasion, including the grinding wheel.
  • the device according to the invention compatible with the previous embodiment, it comprises:
  • the boy Wut. means for communicating a cutting motion to the workpiece.
  • the device according to the invention is suitable for performing machining operations in turning or polishing operations on parts of revolution whose symmetry of revolution is obtained by the cutting movement.
  • the formatting tools of the device which is the subject of the invention comprise a forming tool by plastic deformation of the material.
  • the device according to the invention makes it possible to implement forming operations, both for shaping and for straightening the substrate or the deposited material. This embodiment is also compatible with the previous ones.
  • the means for producing a material supply of the device subject of the invention include:
  • a nozzle having a metal powder projection orifice cii. a device for generating a coaxial laser beam at the orifice of the nozzle and capable of effecting the melting of the powder during the projection.
  • a successive addition operation and a shaping operation are performed with a substantially constant mass of the machining head.
  • the two operations optimally use compensation tables of the machine.
  • the additive machining and the shaping machining according to the method which is the subject of the invention are carried out following a path extending along the three dimensions of the space and the axis of the jet of molten powder or of the formatting tool is oriented normally to this path. So
  • the shaping operation of the method that is the subject of the invention is a contouring cutting operation performed on a layer of material deposited during a prior addition operation.
  • the layer of deposited material can be calibrated in terms of contour and thickness.
  • the layer deposited during the addition operation is deposited on a surface that has previously been subjected to a shaping operation.
  • the combination of the two methods makes it possible to optimize the contribution of each of them to obtaining the desired shape.
  • the precision of realization of the part is improved, and the possible geometrical differences can be corrected.
  • the term "probing" here must be understood in a broad sense and also includes non-contact measuring methods or devices mounted in the machining head.
  • the shaping operation is an incremental forming operation.
  • the device according to the invention makes it possible to obtain complex shapes starting from sheet metals.
  • the substrate and the material deposited during the addition operation are of different natures.
  • the addition machining operation makes it possible, in addition to obtaining the shape, to obtain particular characteristics, in particular of hardness or corrosion resistance of the layer of deposited material, and consequently of the piece thus produced.
  • the operation of preliminary shaping of the surface on which the material is deposited is an incremental forming operation.
  • the substrate can be selected from materials of good formability, the characteristics of use of which can be improved by the deposition of material.
  • the latter comprises, after the addition operation on the surface previously shaped by incremental forming, a step consisting of:
  • this operation makes it possible to produce shapes with a fineness of detail beyond the reach of both the forming process and the addition process.
  • the method which is the subject of the invention uses, for its implementation, a device comprising a machining head by addition of material using a laser beam and said method comprises the steps of:
  • the method can be used for the production of parts comprising inclusion surfaces between the substrate and the insert.
  • the invention also relates to a composite part, called sandwich, obtained by the method according to the invention according to this last embodiment, which piece includes:
  • stiffeners extending in relief from said first substrate, said stiffeners being deposited thereon by a method according to one of the embodiments of the invention
  • complex sandwich pieces for example honeycomb
  • the two substrates may be of different and non-parallel shapes or the density of stiffeners may be variable on the surface of the part.
  • the first substrate, the stiffeners and the second substrate are made of different materials.
  • FIGS. 1 to 10 The invention is explained below according to its preferred embodiments, in no way limiting, and with reference to FIGS. 1 to 10, in which:
  • FIG. 1 shows in perspective view an example of a part whose realization is targeted by the method object of the invention
  • FIG. 2 shows in a partial view, in section and front, the succession of the first operations corresponding to the beginning of the embodiment of the part of Figure 1 by the method and the device objects of the invention;
  • FIG. 3 shows in perspective view an example of architecture of a numerically controlled machine adapted to the implementation of the invention
  • FIG. 4 is a profile view, open housing, an embodiment of a machining head according to the invention.
  • FIG. 5 shows in a front view and in perspective, an embodiment of a machining head according to the invention
  • FIG. 6 is a perspective view and end of the machining head of Figure 5 without its housing;
  • FIG. 7 represents an example in a view from above and in perspective of a part comprising a substrate that responds to a symmetry of revolution;
  • FIG. 8 is an example of the succession of operations of a method that is the subject of the invention, comprising an incremental forming operation;
  • - Figure 9 shows in a perspective view and exploded, an embodiment of a sandwich composite part according to the invention;
  • FIG. 10 is a logic diagram corresponding to a complex embodiment of the method that is the subject of the invention.
  • said method comprises a first step of machining in contouring milling for the realization the bore (1 15) in the plate (110).
  • said platen (1 10) is positioned in the machine space, and a shaping tool, in this case a cutter (240), is selected.
  • the bore being formed, material addition machining means (250) are selected to provide a first portion (220) of the form (120).
  • this operation is carried out without changing the head of the machine and without modifying the positioning of the plate (1 10) so that the deposited material (220) and the bore (1 15 ) previously realized, are perfectly localized with respect to each other, this positioning accuracy depends only on the accuracy of tracking the trajectories of the machine.
  • the addition-machining method is a process for spraying molten powder, said powder being melted by a laser beam. Such a method is described, for example, in EP-B-0 574 580. It makes it possible to perform machining by adding material without a binder.
  • the deposited material has mechanical characteristics similar to that of the same material that would be implemented by a foundry process.
  • the removal of successive layers produces projections, or steps (221), on the surfaces thus produced.
  • the part (220) machined by addition during the previous operation is taken in contouring milling so as to calibrate the thickness (e), to eliminate the projections and achieve a quality of surface condition.
  • the parameters of the addition machining operation are optimized to obtain the best quality of deposited material authorized by the process, without constraint on the exact geometry of the deposited material part (220). it is taken again during the following contouring operation.
  • the machine is not reconfigured between two operations and the placing in the position of the part not being modified, the position in the machine space of the portion of added material (220) is perfectly known.
  • the contouring operation is thus performed without resetting the axes. The accuracy of this contouring operation therefore depends only on the precision of tracking of the machine paths.
  • the device of the invention comprises a machine (300), which comprises a machining head (370) supporting an effector (340).
  • said effector comprises a forming tool or an addition machining nozzle, the additive machining and machining forming means being always present together in the machining head so that the mass of said machining head is substantially constant, to the weight of the shaping tool.
  • Said machining head (370) is moved into the work space of the machine by motorized axes controlled by a numerical control.
  • the machine (300) comprises three perpendicular translation axes:
  • a horizontal axis (31 1) called the X axis, corresponding to the movement of the table (361) of the machine;
  • All these axes are controlled by a numerical control (not shown) which measures the position of each axis via a suitable sensor, so that the position of each axis is known in a reference (310) related to the machine.
  • the positioning of the workpiece (100) in the machine consists in determining the position and the orientation of said workpiece, that is to say of its surfaces, in the mark (310) of the machine.
  • This embodiment of the machine according to a so-called "series" architecture is not exclusive, and according to other advantageous embodiments, the machine comprises motorized axes configured according to a parallel architecture.
  • the machining device according to the invention comprises sufficient displacement axes so that, both the shaping tool and the additive machining means, are steerable continuously, according to the normal to a trajectory extending in three dimensions in the workspace.
  • the numerical control comprises, according to characteristics that are customary and known from the prior art, numerical tables making it possible, on the one hand, to transform the geometrical information received from the position and displacement sensors of the axes into the reference mark of the machine, under the shape of a position and an orientation of the tool or more generally of the effector mounted in the machining head; and on the other hand, so-called compensation tables, which make it possible to compensate for the deformations of the machine, the inaccuracies of the movements, to see the thermal expansions, in order to ensure the concordance between the real trajectory and the programmed trajectory of the machine. effector (370), despite these sources of dispersion.
  • putting or repositioning or modifying the positioning of a piece (100) in the space of the machine causes an uncertainty of positioning and orientation in said piece in said space, uncertainty which depends on the accuracy of the means for measuring this position and the ability to translate this positioning into the control of the axes of the machine.
  • the problem is all the more acute as the surfaces to be repositioned in the space of the machine are surfaces of complex shape.
  • FIG. 2D more particularly in the case of an additive machining process carried out hot, such as the projection of powder with fusion of said powder by means of a laser beam, the shape of the part is likely to be modified between two material addition operations, simply because of the thermal expansion of said piece (100).
  • the device which is the subject of the invention advantageously comprises probing means (260) which make it possible to measure the precise shape of the part, and consequently to readjust the paths of additive machining or of the shaping machining.
  • FIG. 2E according to an exemplary embodiment of the method which is the subject of the invention, the geometrical information coming from the probing operation is used to precisely deposit a second section (230) on the first (220) by again selecting the means (250) for addition machining.
  • the use of a machine (300) with 5 axes of displacement makes it possible to orient the means (250) of addition machining to produce complex shapes.
  • this finishing operation comprises taking up, with a tool (241) adapted, the top of the section (230) deposited during the preceding addition operation, so as to shape the shape so as to optimizing the adhesion of the deposited material layer during the next addition machining operation.
  • the tool (240, 241) is advantageously oriented substantially normal to the path followed by its active end in the working space. The term substantially normal, takes into account the local orientations compared to normal to avoid overcuts or interference.
  • machining operations by material removal are presented in the context of milling operations in contouring and end, the method of the invention is suitable for any type of machining by removal of material, especially abrasive machining operations such as polishing or grinding.
  • the machining head (370) of the device of the invention permanently comprises at least two types of effectors:
  • a fixing interface (476) makes it possible to connect said machining head to the ram of the machine tool.
  • the machining head (370) permanently comprises four effectors, namely:
  • each device, or nozzle (451, 452), of additive machining comprises means (453) for supplying materials in pulverulent form and a fluid, called confinement, for injecting said materials in the nozzle.
  • Each nozzle is also connected to means (454) for conveying a laser beam capable of effecting the melting of the powder thus injected.
  • the laser used is a diode laser with a power of about 4000 Watt.
  • This type of laser is suitable, on the one hand, for carrying out the additive machining operations when it is combined with the ejection means of pulverulent materials, and on the other hand, is also suitable, when used alone, for carrying out welding operations.
  • the additive machining nozzles (451, 452) are mounted in the machining head on slides (651, 652). Thus, said nozzles are retracted into the machining head during shaping operations to avoid any risk of collision between said nozzles and the workpiece or with elements of the machine.
  • the use of two additive machining nozzles (451, 452) makes it possible to modify the nature of the material deposited during the same machining step, or to use different material flow rates, depending on the amount of material to be deposited and the fineness of the details to create.
  • the forming tools are mounted in the spindle (440) via a standard attachment (441) allowing the automatic tool change.
  • the attachment is selected in the HSK series according to ISO 12164-1, in a dimension adapted to the power of the spindle and its speed of rotation.
  • such attachments are equipped with electronic chips comprising geometrical information on the tools, the pin being equipped with a reader able to read this information automatically during each tool change and thus the integrate in the calculation of trajectories.
  • the machine implementing the method of the invention is advantageously provided with an automatic tool changer.
  • the nozzles (451, 452) are then retracted during each tool change.
  • the spindle is advantageously suitable for machining by material removal at high cutting speed.
  • the surfaces of the parts are completed under reduced cutting forces, in order to limit deformation of both the machine and the part during these operations.
  • the set of effectors (451, 452, 440, 460) is always present in the machining head so that the various machining operations implemented by the method which is the subject of the invention are carried out with an onboard mass substantially constant, at the weight of the shaping tool near.
  • the operations of shaping by removal of material are performed in milling by communicating a cutting movement to the tool.
  • FIG. 7 adapted to the production of a part (700) having symmetrical surfaces of revolution about an axis (710), said part is advantageously produced according to a forming method during filming , by communicating to the workpiece a rotary cutting movement about the axis (710) of symmetry of the workpiece.
  • the plate (364) of the machine on which the part is fixed is, according to a particular embodiment, coupled to motorization means able to communicate to said plate (364) a adapted cutting movement.
  • the part is mounted in the indexed mandrel of a horizontal or vertical turning center.
  • the part (700) further comprises a portion (720) made in additive machining. According to alternative embodiments this part is hollow and has or not a symmetry of revolution.
  • Figure 8 according to an exemplary embodiment of the method according to the invention it uses a sheet substrate (810) which substrate undergone, Figure 8A, a first incremental forming shaping operation.
  • Incremental forming is a method of forming by plastic deformation described for example in US 3,342,051 and which consists in performing a localized stretching of a blank using a tool describing trajectories.
  • the sheet of metal (810) is held at the periphery by a blank greenhouse
  • the forming is performed by an incremental forming tool (840) mounted in the head of the machine, for example in the machining spindle.
  • the blank (810) matches the shape of the matrix (841).
  • the additive machining device (250) is then used, for example, to compensate for local losses in thickness of the blank following its drawing.
  • the method according to the invention makes it possible to select the metal constituting the blank (810) for its formability characteristics, the additive machining process is then advantageously used to deposit on said blank a coating conferring on it other characteristics such as surface hardness or resistance to oxidation, possibly incompatible with the formability characteristics of the initial blank.
  • the additive machining operation is used to create shapes that can not be achieved by the incremental forming. It is for example possible to locally reinforce the thickness of the portion formed to make a boss intended to receive a fastener for example.
  • the deposited material (820) during the additive machining operation is resumed in machining by removal of material so as to confer a locally accurate thickness or specific surface qualities.
  • Figure 9 according to an exemplary implementation of the method object of the invention, it is suitable for producing a sandwich composite part (900), such as a so-called honeycomb.
  • a first substrate (910) is for example machined by removal of material so as to confer geometric properties targeted.
  • Stiffeners (920) are deposited in additive machining on the substrate and, if necessary, finished according to the geometric properties concerned.
  • a second substrate (930) is then placed at the top of the stiffeners (920) and welded thereto by transparency by means of the laser beam of one of the additive machining nozzles.
  • stiffeners of different shape or orientation of the first (920) stiffener are deposited on the second substrate (930) and a third substrate (not shown) welded to them and so to subsequently to obtain a multilayer laminate assembly.
  • the first substrate (910), the second substrate (930) and the stiffeners (920) consist of different materials.
  • FIG. 9 The embodiment of Figure 9 is shown in the case of a piece (900) substantially flat sandwich.
  • the method which is the subject of the invention is suitable for obtaining a sandwich piece of complex shape, possibly non-developable, said complex shape being obtained by the combination of all or part of machining operations by removal of material, by addition and shaping by plastic deformation.
  • the first substrate is positioned (1010) on a matrix placed on the table of the machine.
  • This first substrate is in the form of a sheet metal, chosen for its formability.
  • said first substrate is pressed onto the die by incremental forming.
  • a coating operation (1030) a layer of material is deposited on the surface of said substrate by additive machining.
  • the substrate whose thickness is increased by the thickness of this layer is stiffened.
  • an operation (1040) of ablative machining the layer of material deposited during the previous operation is machined to standardize the thickness.
  • a stage 1010 the first substrate is positioned (1010) on a matrix placed on the table of the machine.
  • This first substrate is in the form of a sheet metal, chosen for its formability.
  • said first substrate is pressed onto the die by incremental forming.
  • a coating operation (1030) a layer of material is deposited on the surface of said substrate by additive machining.
  • an operation (1040) of ablative machining the layer of material deposited during the previous operation is machined
  • stiffeners for example honeycomb
  • This operation (1050) of removal comprises successive operations of additive machining
  • An ablative machining operation (1060) enables the top of the cells to be resumed, so that this vertex describes a nonparallel surface to the surface of the first substrate.
  • a second substrate in the form of a sheet of metal, is placed (1070) in the machine and clamped in a blank greenhouse at the periphery.
  • said second substrate is plated on the apex of the cells.
  • a transparency welding operation (1090) said second substrate is welded to the top of said cells.
  • the method that is the subject of the invention, implemented by means of the device that is the subject of the invention makes it possible to obtain a composite piece of complex shape comprising two non-parallel faces separated by stiffeners whose stiffening is variable on the surface, and this without disassembling the part of the machine.
  • the invention achieves the desired objectives.
  • it allows the automatic production of a part by combining machining processes by removal, addition and deformation of the material, which part consists of several materials and is made from the same numerical control program by offering a possibility of resetting the trajectories of each of the machining processes, one with respect to the other.
  • the invention is particularly suitable for the manufacture of a composite part, comprising internal stiffeners, especially honeycomb.

Abstract

L'invention concerne un dispositif pour l'usinage d'une pièce, lequel dispositif comprend : a.une tête d'usinage (370) et des axes motorisés, comprenant un axe rotatif pour le déplacement de ladite tête dans un espace dit espace de travail; b. des moyens de mise en position et de maintien en position d'une pièce dans ledit espace de travail; c. caractérisé en ce que la tête d'usinage (370) comprend des moyens (440) pour supporter des outils de mise en forme de la matière et des moyens (250, 451, 452) aptes à réaliser un apport de matière. L'invention concerne également un procédé d'usinage mis en œuvre par ce dispositif.

Description

PROCÉDÉ ET UN DISPOSITIF D'USINAGE PAR ADDITION DE MATIÈRE ET
MISE EN FORME COMBINÉES
L'invention concerne un procédé et un dispositif d'usinage par addition de matière et mise en forme combinées. Le procédé et le dispositif objets de l'invention sont plus particulièrement adaptés à la réalisation de pièces dont la forme tridimensionnelle ou la qualité microgéométrique des surfaces n'est pas réalisable par les procédés d'usinage par addition de matière et de mise en forme lorsque ceux-ci sont appliqués séparément. Dans la suite, un procédé est considéré comme appliqué séparément d'un autre lorsque la pièce, en cours de réalisation, est repositionnée dans l'espace machine, que ce repositionnement soit obtenu par un changement de machine, ou par un transfert de la pièce d'une zone d'une machine-transfert à une autre zone de cette machine-transfert, la pièce étant conservée sur son montage ou sa palette d'usinage, ou encore, lorsque la pièce restant montée sur une même machine, la configuration de ladite machine est changée de manière significative de sorte que l'origine des axes ou le comportement dynamique de la machine s'en trouve modifiés, par exemple, par le changement de la tête d'usinage, ou encore que les tables de compensation des mouvements, enregistrées dans la commande numérique de la machine, soit modifiées, ou ne reflètent plus le comportement de la machine si elles sont conservées dans la même configuration. Dans la suite, le terme « phase d'usinage » désigne ainsi une succession d'opérations d'usinage réalisées sur une même pièce, sans que celle-ci ne change de poste d'usinage, ou que la configuration du poste d'usinage ne soit modifiée et sans que la mise en position de la pièce ne soit modifiée.
Dans tout le texte le terme « usinage » s'applique à l'action d'usiner, et le verbe « usiner » est pris dans le sens général de travailler un matériau ou une pièce sur une machine-outil.
Les procédés d'usinage tant par addition que par enlèvement de matière sont connus de l'art antérieur. La demande de brevet japonais JP-A-2 010 2 801 73 décrit un dispositif et un procédé comprenant la combinaison, sur une même machine, d'un procédé d'usinage additif et d'un procédé d'usinage par enlèvement de matière. Selon cet art antérieur, la mise en œuvre de ce procédé utilise deux dispositif d'usinage distincts montés sur le même bâti mais utilisant des axes de déplacement différents. Ainsi, selon cet art antérieur, un premier ensemble d'effecteurs est utilisé pour déposer un lit de poudre et fritter une partie de ce lit de poudre par un faisceau laser dont la trajectoire dans ledit lit est déterminée par les mouvements d'un miroir, et un second ensemble d'effecteurs comprend une broche de fraisage dont les mouvements sont pilotés par des axes à commande numériques distincts des axes pilotant les mouvements du miroir. Il s'agit en fait de deux machines distinctes partageant le même bâti. Par ailleurs, le procédé d'enlèvement de matière de cet art antérieur a pour objet de favoriser les conditions de mise en œuvre du procédé d'usinage additif en retouchant la surface de matière déposée de sorte à corriger la géométrie de celle-ci et à la nettoyer de toute pollution afin de favoriser l'accrochage de la couche de matière déposée lors de l'opération suivante. Ainsi, le but de cet art antérieur vise avant tout la santé matière de la pièce réalisée par usinage additif, sans objectif particulier vis-à-vis de la précision des opérations d'usinage combinées, précision qui ne pourrait être atteinte du fait du changement de phase entre l'opération d'addition et l'opération d'enlèvement de matière.
L'invention vise notamment, mais non exclusivement, la réalisation d'une pièce de forme complexe telle que représentée figure 1. Selon cet exemple, nullement limitatif et destiné simplement à illustrer le problème technique résolu par l'invention, la pièce (100) dont la réalisation est visée, comprend une platine (110) plane et rigide, constituant le substrat, comportant un alésage (115) en son centre et une prolongation creuse (120) de forme complexe et conique centrée sur ledit alésage (115), qui peut être obtenue par addition de matière. L'ensemble de ladite pièce (100) est réalisé avec des contraintes sur l'état de surface, tant sur la partie externe que sur la partie interne de la prolongation de forme complexe (120), par exemple, une rugosité Ra de 1 ,6 μιτι (10 6 mètres) selon la norme ISO 4 287. Par ailleurs, ladite pièce doit également être réalisée selon des contraintes géométriques telles qu'une tolérance de concentricité entre l'alésage (1 15) de la platine et celui de la prolongation (120) conique au niveau de ladite platine, ainsi qu'une tolérance sur l'épaisseur (e) des parois de la prolongation (120). À titre d'exemple ces tolérances sont de 0,05 mm. Selon les procédés connus de l'art antérieur, une telle pièce (100), avec de telles contraintes de réalisation, ne peut être réalisée en un seul posage et par suite, l'obtention des précisions désirées est délicate et peu compatible avec une fabrication en série. Dans la suite, le terme « substrat » désigne la matière initiale de la pièce sur laquelle est déposée de la matière par un procédé d'usinage par addition, la matière ainsi déposée pouvant être de même nature ou de nature différente de la matière du substrat.
La réalisation de la pièce (100) représentée figure 1 , au cours d'un même posage, nécessite l'utilisation d'un mouvement rotatif, et même de deux mouvement rotatifs, tant pour les opérations d'usinage additif que pour les opérations d'usinage par enlèvement de matière, ou usinage ablatif. Typiquement une telle pièce doit être réalisée sur une machine comprenant au moins 5 axes de déplacement relatif entre la pièce et l'outil, ces 5 axes comprenant, par exemple, 3 translations orthogonales et 2 rotation selon des axes orthogonaux. La réalisation de cette pièce requiert l'utilisation de 5 axes en continu, c'est-à-dire que l'outil d'usinage doit être en permanence orienté par rapport à la surface usinée. Les architectures de machine à 5 axes sont variées et connues de l'art antérieur. Pour permettre une certaine portabilité des programmes usinage entre les différentes architectures de machine, la programmation est, selon une méthode connue et répandue, réalisée en décrivant le mouvement de l'extrémité de la partie active de l'outil. Pour la mise en oeuvre du programme sur la machine, chaque outil est associé à des « jauges » c'est à dire un fichier de valeurs numériques qui définissent la position de la partie active dudit outil dans le repère la machine lorsque cet outil est monté dans la broche de ladite machine. Ce fichier de jauges est intégré aux tables de transformation cinématique enregistrées dans la mémoire de la commande de la machine, lesdites tables de transformation traduisant en termes de déplacement des axes motorisés, les ordres de déplacement programmés de sorte à obtenir la trajectoire désirée. Ainsi, particulièrement lorsque l'architecture de la machine est de type parallèle, un déplacement simple, tel qu'une translation, conduit à la mobilisation de 5 axes motorisés, voire plus selon es architectures.
Pour atteindre la précision d'usinage requise, particulièrement à grande vitesse d'avance, les machines d'usinage à commande numérique sont pourvues, selon l'état de l'art de tables de compensation. Ces tables permettent de corriger les erreurs, notamment mécaniques, de la machine. Ces erreurs, ont diverses origines : défaut de fabrication, variation de rigidité, déformation, dilatation thermique etc.. Ainsi, toute machine à commande numérique comporte un volume de travail dans lequel sa précision et ses performances sont optimales, et en dehors duquel les performances chutent. Suivre une trajectoire avec un outil dont les jauges conduisent à sortir de ce volume de fonctionnement optimal, ou dont la masse qu'il ajoute à la structure en modifie le comportement dynamique, conduit à faire travailler la machine dans des conditions dégradées, ou nécessiterait de recharge de nouvelles tables de compensation, ce qui est équivalent à utiliser une autre machine et à changer de phase d'usinage.
Le document EP 1 614 497 décrit un dispositif et un procédé d'usinage combinant, sur une même machine, un usinage additif et un usinage ablatif. La transition d'un mode d'usinage à l'autre est réalisée en montant à l'extrémité de la tête d'usinage, ou directement dans la broche de la machine, un dispositif d'usinage additif. Ce dispositif d'usinage additif comporte un moyen de fusion, un dispositif de débit de matière et un moyen de soufflage. Ainsi, le montage de ce dispositif d'usinage additif sur la tête de la machine modifie significativement la masse en mouvement et le comportement de la machine lors des usinages additifs diffère du comportement de cette même machine au cours des usinage ablatifs.
Le document EP 0 529 816 décrit un dispositif et un procédé d'usinage combinant usinage additif et usinage ablatif. Le dispositif d'usinage additif est monté en permanence à côté de la broche d'usinage ablatif de sorte que la masse embarquée est sensiblement la même dans les deux configuration d'usinage. Ce document enseigne d'ajouter le dispositif d'usinage additif sur une machine d'usinage par enlèvement de matière existante. Ainsi, pour conserver les capacités de changement automatique d'outil et éviter les interférences entre ce dispositif et la pièce lors des opérations d'usinage ablatif, le dispositif d'usinage additif est placé distant de la broche de la machine. Ainsi, lors de l'utilisation de l'usinage additif la machine travaille dans un volume, aux frontières voir en dehors de son volume de travail optimal. L'incidence est modérée lorsque la machine est en architecture série et ne comprend que 3 axes de déplacement linéaires orthogonaux, comme décrit dans ce documents. De plus, ce document enseigne de réaliser par usinage additif une préforme, c'est-à-dire un bloc de matière qui constitue en quelque sorte un brut. La précision est obtenue par l'usinage ablatif, de sorte que la précision requise pour l'usinage additif est inférieur de plusieurs ordre de grandeur à la précision de la machine. La solution technique enseignée dans ce document n'est pas applicable au cas où l'une des usinages, additif ou ablatif, requiert un déplacement le contrôle continu de l'orientation de l'outil par rapport à la surface réalisée.
L'invention vise à résoudre les inconvénients de l'art antérieur et concerne à cette fin un dispositif pour l'usinage d'une pièce lequel dispositif comprend :
a. une tête d'usinage et des axes motorisés comprenant un axe rotatif pour le déplacement de ladite tête dans un espace, dit espace de travail ; b. des moyens de mise en position et de maintien en position d'une pièce dans ledit espace de travail ;
c. tel que la tête d'usinage comprend des moyens pour supporter des outils de mise en forme de la matière et des moyens aptes à réaliser un apport de matière.
Ainsi, le dispositif objet de l'invention permet de passer de l'usinage par addition à l'usinage par mise en forme et vice versa à l'aide de la même tête d'usinage, mue par les mêmes moyens. La masse embarquée reste la même lors du changement d'opération d'usinage.
L'invention concerne également un procédé mis en œuvre au moyen du dispositif précédent, lequel procédé comprend les étapes consistant à :
i. déposer une couche de matière sur une pièce à l'aide des moyens d'apport au cours d'une opération d'addition ;
ii. mettre en forme une partie de la pièce au moyen de l'outil de mise en forme au cours d'une opération de mise en forme ;
iii. les opérations d'addition et de mise en forme étant réalisées dans la même phase selon des trajectoires s'étendant selon les trois dimensions de l'espace les moyens d'apport et l'outil de mise en forme étant orientés normalement à ces trajectoires.
Ainsi, les parties de la pièce, usinées au cours des opérations d'addition et de mise en forme sont parfaitement positionnées l'une par rapport à l'autre, car réalisées lors de la même phase, c'est-à-dire sans modification de la mise en position de la pièce et sans changement de configuration du poste d'usinage. L'orientation normale de la tête d'usinage par rapport aux trajectoires permet de limiter la quantité de matière déposée au stricte nécessaire et d'améliorer la qualité de surface des pièces obtenues. L'invention peut être mise en œuvre selon les modes de réalisation avantageux exposés ci-après, lesquels peuvent être considérés individuellement ou selon toute combinaison techniquement opérante.
Avantageusement, le dispositif objet de l'invention comprend :
d. des moyens de palpage placés sur la tête d'usinage ;
e. des moyens pour mesurer sur les axes motorisés la position desdits moyens de palpage dans l'espace machine.
Ainsi, en plus de la précision intrinsèque de la machine pour le raccordement des deux opérations d'usinage, les moyens de palpage permettent de raccorder parfaitement deux usinages successifs et de compenser des décalages notamment dus à la dilatation thermique de la pièce.
Avantageusement, les outils de mise en forme comprennent un outil de coupe. Ainsi, tant le substrat que la matière déposée sur la pièce peuvent être usinés par enlèvement de matière de sorte à calibrer leur dimension ou obtenir des états de surfaces définis.
Selon un mode de réalisation du dispositif objet de l'invention, celui-ci comprend : f. des moyens pour communiquer un mouvement de coupe à l'outil de coupe.
Ainsi, le dispositif objet de l'invention est adapté à la réalisation d'opérations d'enlèvement de matière par fraisage ou par abrasion, notamment à la meule.
Selon un autre mode de réalisation du dispositif objet de l'invention compatible avec le mode de réalisation précédent, celui-ci comprend :
g. des moyens pour communiquer un mouvement de coupe à la pièce. Ainsi, le dispositif objet de l'invention est adapté à la réalisation d'opérations d'usinage en tournage ou des opérations de polissage sur des pièces de révolution dont la symétrie de révolution est obtenue par le mouvement de coupe.
Avantageusement, les outils de mise en forme du dispositif objet de l'invention comprennent un outil de formage par déformation plastique de la matière. Ainsi, le dispositif objet de l'invention permet de mettre en œuvre des opérations de formage, tant pour la mise en forme que pour le redressement du substrat ou de la matière déposée. Ce mode de réalisation est par ailleurs compatible avec les précédents.
Avantageusement, les moyens pour réaliser un apport de matière du dispositif objet de l'invention comprennent :
ci. une buse comportant un orifice de projection de poudre métallique ; cii. un dispositif pour la génération d'un faisceau laser coaxial à l'orifice de la buse et apte à réaliser la fusion de la poudre au cours de la projection. Ainsi, la dépose de matière est pilotée selon des trajectoires précises, le point d'addition de la matière étant parfaitement défini dans l'espace de la machine.
Avantageusement, selon le procédé objet de l'invention, une opération d'addition et une opération de mise en forme successives sont réalisées avec une masse de la tête d'usinage sensiblement constante. Ainsi les deux opérations utilisent de manière optimale des tables de compensation de la machine.
Avantageusement, l'usinage additif et l'usinage de mise en forme selon le procédé objet de l'invention sont réalisés en suivant une trajectoire s'étendant selon les trois dimensions de l'espace et l'axe du jet de poudre en fusion ou de l'outil de mise en forme est orienté normalement à cette trajectoire. Ainsi
Avantageusement, l'opération de mise en forme du procédé objet de l'invention est une opération de coupe en contournage réalisée sur une couche de matière déposée au cours d'une opération d'addition antérieure. Ainsi la couche de matière déposée peut être calibrée en termes de contour et d'épaisseur.
Avantageusement, la couche déposée au cours de l'opération d'addition est déposée sur une surface ayant fait préalablement l'objet d'une opération de mise en forme. Ainsi, outre le fait de favoriser l'accrochage de la couche déposée sur ladite surface, la combinaison des deux procédés permet d'optimiser la contribution de chacun d'eux à l'obtention de la forme désirée.
Selon un mode de réalisation avantageux du procédé objet de l'invention, celui-ci comprend une étape consistant à :
iv. réaliser une opération de palpage de la pièce avant une opération de mise en forme ou avant une opération d'addition, afin de recaler ladite opération dans l'espace machine.
Ainsi, la précision de réalisation de la pièce est améliorée, et les éventuels écarts géométriques peuvent être corrigés. Le terme « palpage » doit ici être compris dans un sens large et comprend également des procédés ou dispositifs de mesure sans contact montés dans la tête d'usinage. Avantageusement, l'opération de mise en forme est une opération de formage incrémental. Ainsi, le dispositif objet de l'invention permet d'obtenir des formes complexes en partant de métaux en feuille.
Selon un mode de réalisation particulier du procédé objet de l'invention, le substrat et la matière déposée au cours de l'opération d'addition sont de natures différentes. Ainsi, l'opération d'usinage par addition permet, en plus de l'obtention de la forme, d'obtenir des caractéristiques particulières, notamment de dureté ou de résistance à la corrosion de la couche de matière déposée, et par suite de la pièce ainsi réalisée.
Selon un mode de réalisation avantageux du procédé objet de l'invention, l'opération de mise en forme préalable de la surface sur laquelle est déposée la matière est une opération de formage incrémental. Ainsi, le substrat peut être sélectionné parmi des matériaux de bonne formabilité, dont les caractéristiques d'usage peuvent être améliorées par le dépôt de matière.
Selon ce dernier mode de réalisation avantageux du procédé objet de l'invention, celui-ci comprend à l'issue de l'opération d'addition sur la surface préalablement mise en forme par formage incrémental, une étape consistant à :
v. réaliser une opération de coupe sur la couche de matière déposée sur la surface préalablement mise en forme.
Ainsi, outre l'amélioration de la qualité de surface, cette opération permet de réaliser des formes avec une finesse de détail hors d'atteinte tant du procédé de formage que du procédé d'addition.
Avantageusement le procédé objet de l'invention utilise pour sa mise en œuvre un dispositif comportant une tête d'usinage par addition de matière utilisant un faisceau laser et ledit procédé comprend des étapes consistant à :
vi. poser une pièce rapportée sur la pièce réalisée au cours des étapes i) à iii) du procédé objet de l'invention ;
vii. souder ladite pièce rapportée à la pièce en utilisant le faisceau laser de la tête d'usinage.
Ainsi le procédé peut être utilisé pour la réalisation de pièces comportant des surfaces en inclusion entre le substrat et la pièce rapportée .
Ainsi, l'invention concerne également une pièce composite, dite sandwich, obtenue par le procédé objet de l'invention selon ce dernier mode de réalisation, laquelle pièce comprend :
x. un premier substrat usiné ;
y. des raidisseurs s'étendant en relief dudit premier substrat, lesdits raidisseurs étant déposés sur celui-ci par un procédé selon l'un des modes de réalisation de l'invention ;
z. un deuxième substrat posé au sommet desdits raidisseurs et fixé à ceux-ci par soudage.
Ainsi, en combinant les différents modes de réalisation du procédé objet de l'invention, des pièces sandwich complexes par exemple en nid d'abeille peuvent être créées. Par exemple, les deux substrats peuvent être de formes différentes et non parallèles ou la densité de raidisseurs peut être variable sur la surface de la pièce.
Avantageusement, le premier substrat, les raidisseurs et le deuxième substrat sont constitués de matériaux différents.
L'invention est exposée ci-après selon ses modes de réalisation préférés, nullement limitatifs, et en référence aux figures 1 à 10, dans lesquelles :
- la figure 1 montre selon une vue en perspective un exemple de pièce dont la réalisation est visée par le procédé objet de l'invention ;
- la figure 2 représente selon une vue partielle, en coupe et de face, la succession des premières opérations correspondant au début de la réalisation de la pièce de la figure 1 par le procédé et le dispositif objets de l'invention ;
- la figure 3 montre selon une vue en perspective un exemple d'architecture d'une machine à commande numérique adaptée à la mise en œuvre de l'invention ;
- la figure 4 est une vue de profil, carter ouvert, d'un exemple de réalisation d'une tête d'usinage selon l'invention ;
- la figure 5 montre selon une vue de face et en perspective, un exemple de réalisation d'une tête d'usinage selon l'invention ;
- la figure 6 est une vue en perspective et en bout de la tête d'usinage de la figure 5, sans son carter ;
- la figure 7 représente un exemple selon une vue de dessus et en perspective d'une pièce comportant un substrat répondant à une symétrie de révolution ;
- la figure 8 est un exemple de la succession des opérations d'un procédé objet de l'invention comportant une opération de formage incrémental ; - la figure 9 montre selon une vue en perspective et en éclaté, un exemple de réalisation d'une pièce composite sandwich selon l'invention ;
- et la figure 10 est un logigramme correspondant à un mode de réalisation complexe du procédé objet de l'invention.
Figure 2A, selon un exemple de réalisation du procédé objet de l'invention, correspondant aux premières opérations pour la réalisation de la pièce (100) de la figure 1 , ledit procédé comprend une première étape d'usinage en fraisage de contournage pour la réalisation de l'alésage (1 15) dans la platine (110). À cette fin, ladite platine (1 10) est positionnée dans l'espace machine, et un outil de mise en forme, en l'occurrence une fraise (240), est sélectionnée.
Figure 2B, l'alésage étant réalisé, des moyens (250) d'usinage par addition de matière sont sélectionnés afin de réaliser une première partie (220) de la forme (120). Selon le procédé objet de l'invention, cette opération est réalisée sans changer la tête de la machine et sans modifier la mise en position de la platine (1 10) de sorte que la matière déposée (220) et l'alésage (1 15) précédemment réalisé, sont parfaitement localisés l'un par rapport à l'autre, cette précision de positionnement ne dépendant que de la précision de suivi des trajectoires de la machine. Selon un exemple de réalisation, le procédé d'usinage par addition est un procédé de projection de poudre en fusion, ladite poudre étant fondue par un faisceau laser. Un tel procédé est décrit, par exemple, dans le document EP-B-0 574 580. Il permet de réaliser un usinage par addition de matière sans liant. Ainsi, la matière déposée présente des caractéristiques mécaniques voisines de celle de la même matière qui serait mise en œuvre par un procédé de fonderie. La dépose de strates successive produit des ressauts, ou marches (221 ), sur les surfaces ainsi réalisées.
Figure 2C, selon un exemple de mise en oeuvre du procédé objet del'invention, la partie (220) usinée par addition lors de l'opération précédente est reprise en fraisage de contournage de sorte à en calibrer l'épaisseur (e), à éliminer les ressauts et à réaliser une qualité d'état de surface visée. Ainsi, selon ce mode de réalisation, les paramètres de l'opération d'usinage par addition sont optimisés pour obtenir la meilleure qualité de matière déposée autorisée par le procédé, sans contrainte sur la géométrie exacte de la partie de matière déposée (220) celle-ci étant reprise lors de l'opération de contournage suivante. La machine n'étant pas reconfigurée entre deux opérations et la mise en position de la pièce n'étant pas modifiée, la position dans l'espace machine de la partie de matière ajoutée (220) est parfaitement connue. L'opération de contournage est ainsi réalisée sans recalage des axes. La précision de réalisation de cette opération de contournage ne dépend donc que de la précision de suivi des trajectoires de la machine.
En effet, figure 3, selon un exemple de réalisation, le dispositif objet de l'invention comprend une machine (300), laquelle comprend une tête d'usinage (370) supportant un effecteur (340). Selon l'invention, ledit effecteur comprend un outil de mise en forme ou une buse d'usinage par addition, les moyens d'usinage additif et d'usinage de mise en forme étant toujours présents conjointement dans la tête d'usinage de sorte que la masse de ladite tête d'usinage est sensiblement constante, au poids de l'outil de mise en forme près. Ladite tête d'usinage (370) est déplacée dans l'espace de travail de la machine par des axes motorisés pilotés par une commande numérique. Selon cet exemple de réalisation, nullement limitatif, la machine (300) comprend trois axes de translation perpendiculaires :
- un axe horizontal (31 1 ), dit axe X, correspondant au déplacement de la table (361 ) de la machine ;
- un axe horizontal (312), dite axe Y, perpendiculaire au précédent (311 ) porté par le bélier (362) supportant la tête d'usinage (370) ;
- un axe vertical (313), dit axe Z, perpendiculaire aux deux autres, transmis au bélier (362) guidé sur une colonne (363).
Ces trois axes correspondant à des mouvements de translation sont, selon cet exemple de réalisation, associés à deux axes de déplacement rotatifs :
- un mouvement de rotation (314) autour de l'axe Y, dit axe B, appliqué à la tête d'usinage (370) ;
- un mouvement de rotation (315) autour de l'axe Z, dit axe C, porté par un plateau (364), lui-même lié à la table (361 ).
L'ensemble de ces axes est piloté par une commande numérique (non représentée) qui mesure la position de chaque axe par l'intermédiaire d'un capteur adapté, de sorte que la position de chaque axe est connue dans un repère (310) lié à la machine. La mise en position de la pièce (100) dans la machine consiste à déterminer la position et l'orientation de ladite pièce, c'est-à-dire de ses surfaces, dans le repère (310) de la machine. Ce mode de réalisation de la machine selon une architecture dite « série » n'est pas exclusif, et selon d'autres modes de réalisation avantageux, la machine comporte des axes motorisés configurés selon une architecture parallèle. Dans tous les cas le dispositif d'usinage objet de l'invention comprend suffisamment d'axes de déplacement de sorte que, tant l'outil de mise en forme que le moyen d'usinage additif, soient orientables en continu, selon la normale à une trajectoire s'étendant selon trois dimensions dans l'espace de travail.
La commande numérique comprend, selon des caractéristiques habituelles et connues de l'art antérieur, des tables numériques permettant, d'une part, de transformer les informations géométriques reçues des capteurs de position et de déplacement des axes dans le repère de la machine, sous la forme d'une position et d'une orientation de l'outil ou plus généralement de l'effecteur monté dans la tête d'usinage ; et d'autre part, des tables, dites de compensation, qui permettent, de compenser les déformations de la machine, les imprécisions des mouvements, voir les dilatations thermiques, afin d'assurer la concordance entre la trajectoire réelle et la trajectoire programmée de l'effecteur (370), malgré ces sources de dispersion.
Ainsi, mettre ou remettre en position ou modifier la mise en position d'une pièce (100) dans l'espace de la machine entraîne une incertitude de positionnement et d'orientation dans ladite pièce dans ledit espace, incertitude qui dépend de la précision des moyens de mesure de cette position et de la capacité à traduire cette mise en position sur le pilotage des axes de la machine. Le problème se pose avec d'autant plus d'acuité que les surfaces à repositionner dans l'espace de la machine sont des surfaces de forme complexe.
De la même manière, un changement de tête d'usinage (370) ou l'utilisation d'autres axes de déplacement, tel que réalisé selon l'art antérieur, pour passer d'un type d'effecteur à un autre, se traduit, d'une part, par une imprécision de positionnement de la nouvelle tête sur la machine et plus particulièrement par la nécessité de charger de nouvelles tables numériques de transformation géométrique et de compensation. Une telle opération ne peut être réalisée dans le même programme d'usinage. Ainsi, changer de tête sur une machine à commande numérique est équivalent à changer de machine, et même si la pièce reste en position sur la machine au cours de ce changement de tête, sa position effective et son orientation dans le repère de la machine, s'en trouvent modifiées vis-à-vis des trajectoires. Ainsi, le dispositif objet de l'invention, en évitant tant le changement de configuration de la machine que la remise en position de la pièce, permet la réalisation économique et rapide de cotes précises, telles que la cote d'épaisseur (e), figure 2C.
Figure 2D, plus particulièrement dans le cas d'un procédé d'usinage additif réalisé à chaud, tel que la projection de poudre avec fusion de ladite poudre au moyen d'un faisceau laser, la forme de la pièce est susceptible d'être modifiée entre deux opérations d'addition de matière, du simple fait de la dilatation thermique de ladite pièce (100). Le dispositif objet de l'invention comprend avantageusement des moyens de palpage (260) qui permettent de mesurer la forme précise de la pièce, et par suite, de recaler les trajectoires d'usinage additif ou de l'usinage de mise en forme.
Figure 2E, selon un exemple de réalisation du procédé objet de l'invention, les informations géométriques issues de l'opération de palpage sont utilisées pour déposer de manière précise un deuxième tronçon (230) sur le premier (220) en sélectionnant à nouveau les moyens (250) d'usinage par addition. Selon cet exemple de réalisation, l'utilisation d'une machine (300) à 5 axes de déplacement permet d'orienter les moyens (250) d'usinage par addition pour réaliser des formes complexes.
Figure 2F, le tronçon (230) déposé lors de l'opération d'usinage par addition précédente est parachevé sur ses faces intérieures et extérieurs par les moyens (240) d'usinage par enlèvement de matière de sorte à calibrer le tronçon (230) en forme, en épaisseur et en état de surface. Selon un mode de réalisation particulier, cette opération de parachèvement comprend la reprise, avec un outil (241 ) adapté, du sommet du tronçon (230) déposé lors de l'opération d'addition précédente, de sorte à en façonner la forme afin d'optimiser l'accrochage de la couche de matière déposée lors de l'opération d'usinage par addition suivante. Pour chacune de ces opérations d'usinage ablatif, l'outil (240, 241 ) est avantageusement orienté de manière sensiblement normale à la trajectoire suivie par son extrémité active dans l'espace de travail. Le terme sensiblement normal, tient compte des orientations locales par rapport à la normale visant à éviter les surcoupes ou les interférences.
Les séquences précédentes, figures 2D à 2F, sont répétées jusqu'à l'obtention de la pièce finie. L'alternance des opérations d'usinage par enlèvement et par addition de matière permet la réalisation de formes finies et entièrement parachevées, qui seraient strictement impossibles à réaliser par d'autres technologies de mise en forme.
Bien que les opérations d'usinage par enlèvement de matière, selon ces exemples de réalisation, soient présentées dans le cadre d'opérations de fraisage en contournage et en bout, le procédé objet de l'invention est adapté à tout type d'usinage par enlèvement de matière, notamment des opérations d'usinage par abrasion tel que le polissage ou la rectification.
Figure 4, selon un exemple de réalisation, la tête d'usinage (370) du dispositif objet de l'invention, représentée sans son carter, comprend en permanence au moins deux types d'effecteurs :
- une buse (451 ) d'usinage additif par projection et fusion coaxiale de poudre ;
- et une broche (440) de fraisage, pour l'usinage par enlèvement de matière. Une interface de fixation (476) permet de connecter ladite tête d'usinage au bélier de la machine-outil.
Figure 5, selon un mode de réalisation avantageux du dispositif objet de l'invention, la tête d'usinage (370) comprend en permanence quatre effecteurs, soit :
- un dispositif de palpage (460) ;
- et une seconde buse (452) d'usinage additif ;
en plus de la première buse (451 ) d'usinage additif et de la broche de fraisage (440).
Selon cet exemple de réalisation, chaque dispositif, ou buse (451 , 452), d'usinage additif comprend des moyens (453) d'amenée de matériaux sous forme pulvérulente et d'un fluide, dit de confinement, permettant de d'injecter lesdits matériaux dans la buse. Chaque buse est également connectée à des moyens (454) pour y véhiculer un faisceau laser apte à réaliser la fusion de la poudre ainsi injectée.
Selon un exemple de réalisation le laser utilisé est un laser diode d'une puissance de l'ordre 4000 Watt. Ce type de laser est adapté, d'une part, à la réalisation des opérations d'usinage additif lorsqu'il est combiné avec les moyens d'éjection de matériaux pulvérulents, et d'autre part, est également adapté, lorsqu'il est utilisé seul, pour la réalisation d'opérations de soudage.
Figure 6, les buses d'usinage additif (451 , 452) sont montées dans la tête d'usinage sur des glissières (651 , 652). Ainsi, lesdites buses sont escamotées dans la tête d'usinage lors des opérations de mise en forme pour éviter tout risque de collision entre lesdites buses et la pièce ou avec des éléments de la machine. L'utilisation de deux buses (451 , 452) d'usinage additif permet de modifier la nature de la matière déposée au cours d'une même phase d'usinage, ou d'utiliser des débits de matière déposée différents, en fonction de la quantité de matière à déposer et de la finesse des détails à créer.
Selon cet exemple de réalisation, les outils de mise en forme sont montés dans la broche (440) par l'intermédiaire d'un attachement (441 ) normalisé autorisant le changement automatique d'outil. À titre d'exemple non limitatif, l'attachement est choisi dans la série HSK selon la norme ISO 12164-1 , dans une dimension adaptée à la puissance de la broche et à sa vitesse de rotation. Selon une configuration connue de l'art antérieur, de tels attachements sont équipés de puces électroniques comprenant des informations géométriques sur les outils, la broche étant équipée d'un lecteur apte à lire ces informations automatiquement lors de chaque changement d'outil et ainsi les intégrer dans le calcul des trajectoires. Ainsi, la machine mettant en œuvre le procédé objet de l'invention est avantageusement munie d'un changeur automatique d'outil. Les buses (451 , 452) sont alors escamotées lors de chaque changement d'outil.
La broche est avantageusement adaptée à un usinage par enlèvement de matière à grande vitesse de coupe. Ainsi, les surfaces de la pièces sont parachevées sous des efforts de coupe réduits, afin de limiter les déformations tant de la machine que de la pièce au cours de ces opérations.
L'ensemble des effecteurs (451 , 452, 440, 460) est toujours présent dans la tête d'usinage de sorte que les diverses opérations d'usinage mises en oeuvre par le procédé objet de l'invention sont réalisées avec une masse embarquée sensiblement constante, au poids de l'outil de mise en forme près.
Selon les exemples de réalisation précédents, les opérations de mise en forme par enlèvement de matière sont réalisées en fraisage en communiquant un mouvement de coupe à l'outil.
Figure 7, selon un exemple de réalisation, adapté à la réalisation d'une pièce (700) présentant des surfaces en symétrie de révolution autour d'un axe (710), ladite pièce est avantageusement réalisée selon un procédé de mise en forme en tournage, en communiquant à la pièce un mouvement de coupe de rotation autour de l'axe (710) de symétrie de la pièce. À cette fin, en revenant à la figure 3, le plateau (364) de la machine sur lequel la pièce est fixée, est, selon un exemple particulier de réalisation, accouplé à des moyens de motorisation aptes à communiquer audit plateau (364) un mouvement de coupe adapté. Alternativement, la pièce est montée dans le mandrin indexé d'un centre de tournage horizontal ou vertical.
En revenant à la figure 7, la pièce (700) comprend, en outre, une partie (720) réalisée en usinage additif. Selon des variantes de réalisation cette partie est creuse et présente ou non une symétrie de révolution.
Figure 8, selon un exemple de réalisation du procédé objet de l'invention celui-ci utilise un substrat en feuille (810) lequel substrat subi, figure 8A, une première opération de mise en forme par formage incrémental. Le formage incrémental est un procédé de mise en forme par déformation plastique décrit par exemple dans le document US 3 342 051 et qui consiste à réaliser un étirage localisé d'un flan au moyen d'un outil décrivant des trajectoires.
Figure 8A, la feuille de métal (810) est maintenue en périphérie par un serre flan
(860) sur une matrice (841 ). Le formage est réalisé par un outil (840) de formage incrémental monté dans la tête de la machine, par exemple dans la broche d'usinage.
Figure 8B, après formage, le flan (810) épouse la forme de la matrice (841 ). Le dispositif d'usinage additif (250) est alors utilisé, par exemple, pour compenser les pertes locales d'épaisseur du flan consécutives à son étirage. Le procédé objet de l'invention permet de sélectionner le métal constituant le flan (810) pour ses caractéristiques de formabilité, le procédé d'usinage additif est alors avantageusement utilisé pour déposer sur ledit flan un revêtement lui conférant d'autres caractéristiques telles que de la dureté superficielle ou une résistance à l'oxydation, éventuellement incompatible avec les caractéristiques de formabilité du flan initial. Selon un mode de réalisation, l'opération d'usinage additif est utilisée pour créer des formes qui ne peuvent pas être atteintes par le formage incrémental. Il est par exemple possible de renforcer localement l'épaisseur de la partie formée pour réaliser un bossage destiné à recevoir une fixation par exemple.
Figure 8C, la matière déposée (820) au cours de l'opération d'usinage additif est reprise en usinage par enlèvement de matière de sorte à lui conférer une épaisseur localement précise ou des qualités de surface déterminées. La réalisation de l'ensemble de ces opérations dans la même phase d'usinage permet de localiser précisément les apports et les enlèvement de matière par rapport à la forme de la surface obtenue en formage, autorisant ainsi la réalisation de pièces en série.
Figure 9, selon un exemple de mise en œuvre du procédé objet de l'invention, celui-ci est adapté à la réalisation d'une pièce (900) composite sandwich, telle qu'une dite en nid d'abeilles. Selon un exemple de réalisation, un premier substrat (910) est par exemple usiné par enlèvement de matière de sorte à lui conférer des propriétés géométriques visées. Des raidisseurs (920) sont déposés en usinage additif sur le substrat et, si nécessaire, parachevés en fonction des propriétés géométriques visées. Un deuxième substrat (930) est alors posé au sommet des raidisseurs (920) et soudé à ceux-ci par transparence au moyen du faisceau laser d'une des buses d'usinage additif. Selon un exemple de réalisation des raidisseurs (non représentés), de forme ou d'orientation différente des premiers (920) raidisseur sont déposés sur le deuxième substrat (930) et un troisième substrat (non représenté) soudé sur ceux-ci et ainsi de suite de sorte à obtenir un ensemble stratifié multicouches.
Selon un exemple de réalisation, le premier substrat (910), le deuxième substrat (930) et les raidisseurs (920) sont constitués de matériaux différents.
L'exemple de réalisation de la figure 9 est présenté dans le cas d'une pièce (900) sandwich essentiellement plane. Le procédé objet de l'invention est adapté à l'obtention d'une pièce sandwich de forme complexe, éventuellement non développable, ladite forme complexe étant obtenue par la combinaison de toute ou partie d'opérations d'usinage par enlèvement de matière, par addition et en mise en forme par déformation plastique.
Figure 10, selon un exemple complexe de réalisation, le premier substrat, est positionné (1010) sur une matrice placée sur la table de la machine. Ce premier substrat se présente sous la forme d'un métal en feuille, choisi pour sa formabilité. Au cours d'une opération de formage (1020) ledit premier substrat est plaqué sur la matrice par formage incrémental. Au cours d'une opération (1030) de revêtement, une couche de matière est déposée à la surface dudit substrat par usinage additif. Ainsi le substrat dont l'épaisseur est augmentée de l'épaisseur de cette couche est rigidifié. Au cours d'une opération (1040) d'usinage ablatif la couche de matière déposée lors de l'opération précédente est usinée pour en uniformiser l'épaisseur. Au cours d'une étape
(1050) d'usinage additif, des raidisseurs, par exemple en nid d'abeille, sont déposés à la surface dudit substrat. Selon un exemple de réalisation, la dimension des alvéoles ainsi déposées est variable des bords du substrat vers le centre de celui-ci. Cette opération (1050) de dépose comporte des opérations successives d'usinage additif
(1051 ) et d'usinage ablatif (1052). Une opération (1060) d'usinage ablatif permet de reprendre le sommet des alvéoles, de sorte à ce que ce somment décrive une surface non parallèle à la surface du premier substrat. Un deuxième substrat, sous la forme d'une feuille de métal, est placé (1070) dans la machine et serré dans un serre flan en périphérie. Au cours d'une opération (1080) de formage incrémental, ledit deuxième substrat est plaqué sur le sommet des alvéoles. Finalement, au cours d'une opération (1090) de soudage par transparence, ledit deuxième substrat est soudé au sommet desdites alvéoles. Ainsi, le procédé objet de l'invention, mis en oeuvre au moyen du dispositif objet de l'invention, permet d'obtenir une pièce composite de forme complexe comprenant deux faces non parallèles séparées par des raidisseurdont le raidissement est variable sur la surface, et ceci sans démonter la pièce de la machine.
La description ci-avant et les exemples de réalisation montrent que l'invention atteint les objectifs visés. En particulier elle permet la réalisation automatique d'une pièce en combinant des procédés d'usinage par enlèvement, addition et déformation de la matière, laquelle pièce est constituée de plusieurs matériaux et est réalisée à partir d'un même programme de commande numérique en offrant une possibilité de recalage des trajectoires de chacun des procédés d'usinage, l'un par rapport à l'autre. L'invention est notamment adaptée à la fabrication d'une pièce composite, comprenant des raidisseurs internes, notamment en nid d'abeille.

Claims

REVENDICATIONS
Dispositif pour l'usinage d'une pièce (100, 700), lequel dispositif comprend :
a. une tête d'usinage (370) et des axes (31 1 , 312, 313, 314, 315) motorisés comprenant un axe rotatif (314, 315) pour le déplacement de ladite tête dans un espace dit espace de travail ; b. des moyens de mise en position et de maintien en position d'une pièce (100) dans ledit espace de travail ;
c. caractérisé en ce que la tête d'usinage (370) comprend des moyens (440) pour supporter des outils de mise en forme de la matière et des moyens (250, 451 , 452) aptes à réaliser un apport de matière.
Procédé mis en œuvre au moyen du dispositif selon la revendication 1 , caractérisé en ce qu'il comprend les étapes consistant à :
i. déposer une couche de matière (220, 820) sur une pièce à l'aide des moyens d'apport (250) au cours d'une opération d'addition ; ii. usiner une partie (220, 1 10, 810) de la pièce au moyen de l'outil de mise en forme (240, 840) au cours d'une opération de mise en forme ;
iii. les opérations d'addition et de mise en forme étant réalisées dans la même phase d'usinage, selon des trajectoires s'étendant selon les trois dimensions de l'espace, les moyens d'apport et l'outil de mise en forme étant orientés normalement à ces trajectoires.
Dispositif selon la revendication 1 , caractérisé en ce qu'il comprend : d. des moyens de palpage (260, 460) placés sur la tête d'usinage (370) ;
e. des moyens pour mesurer sur les axes motorisés (311 , 312, 313, 314, 315) la position desdits moyens de palpage dans l'espace machine.
4. Dispositif selon la revendication 1 , dans lequel les outils de mise en forme comprennent un outil de coupe (240).
5. Dispositif selon la revendication 4, caractérisé en ce qu'il comprend : f. des moyens (440, 441 ) pour communiquer un mouvement de coupe à l'outil de coupe (240). 6. Dispositif selon la revendication 4, caractérisé en ce qu'il comprend :
g. des moyens (364) pour communiquer un mouvement de coupe à la pièce (700).
7. Dispositif selon la revendication 1 ,dans lequel les outils de mise en forme comprennent un outil (840) de formage par déformation plastique de la matière.
8. Dispositif selon la revendication 1 , dans lequel les moyens d'apport comprennent :
ci. une buse (451 , 452) comportant un orifice de projection de poudre métallique ;
cii. un dispositif (454) pour la génération d'un faisceau laser coaxial à l'orifice de la buse et apte à réaliser la fusion de la poudre au cours de la projection
9. Procédé selon la revendication 2, dans lequel une opération d'addition et une opération de mise en forme successives sont réalisées avec une masse de la tête d'usinage sensiblement constante.
10. Procédé selon la revendication 2, dans lequel l'opération de mise en forme est une opération de coupe en contournage réalisée sur une couche de matière (220, 820) déposée au cours d'une opération d'addition antérieure. 11. Procédé selon la revendication 2, dans lequel la couche déposée (220,
820) au cours de l'opération d'addition est déposée sur une surface ayant fait préalablement l'objet d'une opération de mise en forme.
12. Procédé selon la revendication 2, mettant en œuvre un dispositif selon la revendication 3, caractérisé en ce qu'il comprend une étape consistant à : iv. réaliser une opération de palpage de la pièce avant une opération de mise en forme ou avant une opération d'addition afin de recaler ladite opération dans l'espace machine. 13. Procédé selon la revendication 2, utilisant un dispositif selon la revendication 7, caractérisé en ce que l'opération de mise en forme est une opération de formage incrémental.
14. Procédé selon la revendication 2, caractérisé en ce que le substrat (110, 810) et la matière (220, 820) déposée au cours de l'opération d'addition sont de natures différentes.
15. Procédé selon la revendication 1 1 , caractérisé en ce que l'opération de mise en forme préalable est une opération de formage incrémental.
16. Procédé selon la revendication 15, caractérisé en ce qu'il comprend à l'issue de l'opération d'addition sur la surface préalablement mise en forme par formage incrémental, une étape consistant à :
v. réaliser une opération de coupe sur la couche (820) de matière déposée sur la surface préalablement mise en forme.
17. Procédé selon la revendication 2, utilisant un dispositif selon la revendication 8, caractérisé en ce qu'il comprend des étapes consistant à :
vi. poser une pièce rapportée (930) sur la pièce réalisée au cours des étapes i) à iii) ;
vii. souder ladite pièce rapportée (930) à la pièce en utilisant le faisceau laser de la tête d'usinage.
PCT/EP2012/074268 2011-12-02 2012-12-03 Procede et un dispositif d'usinage par addition de matiere et mise en forme combinees WO2013079725A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/362,091 US9962799B2 (en) 2011-12-02 2012-12-03 Method and machining device by combined addition of material and shaping
EP12795803.1A EP2785492B1 (fr) 2011-12-02 2012-12-03 Dispositif d'usinage par addition de matière et mise en forme combinées
CN201280069006.3A CN104470678B (zh) 2011-12-02 2012-12-03 通过材料添加和成形相结合的加工设备与方法
JP2014543937A JP6203190B2 (ja) 2011-12-02 2012-12-03 材料付加及び造形の組合せによる加工方法及び装置
KR1020147018310A KR102047363B1 (ko) 2011-12-02 2012-12-03 결합된 재료의 첨가 및 성형에 의한 방법 및 기계가공 디바이스
CA2866727A CA2866727C (fr) 2011-12-02 2012-12-03 Procede et un dispositif d'usinage par addition de matiere et mise en forme combinees

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1161126A FR2983424B1 (fr) 2011-12-02 2011-12-02 Procede et dispositif d'usinage par addition de matiere et mise en forme combinees
FR1161126 2011-12-02

Publications (1)

Publication Number Publication Date
WO2013079725A1 true WO2013079725A1 (fr) 2013-06-06

Family

ID=47294895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/074268 WO2013079725A1 (fr) 2011-12-02 2012-12-03 Procede et un dispositif d'usinage par addition de matiere et mise en forme combinees

Country Status (8)

Country Link
US (1) US9962799B2 (fr)
EP (1) EP2785492B1 (fr)
JP (1) JP6203190B2 (fr)
KR (1) KR102047363B1 (fr)
CN (1) CN104470678B (fr)
CA (1) CA2866727C (fr)
FR (1) FR2983424B1 (fr)
WO (1) WO2013079725A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104325640A (zh) * 2014-09-16 2015-02-04 王奉瑾 一种3d打印车载工厂
WO2016045651A1 (fr) * 2014-09-22 2016-03-31 Technische Universität Dortmund Procédé et dispositif de production combinée d'éléments au moyen d'un formage incrémental de tôles et de procédés additifs en une seule passe
WO2017095785A1 (fr) * 2015-11-30 2017-06-08 The Gleason Works Fabrication additive d'engrenages
CN107249790A (zh) * 2014-12-23 2017-10-13 赛峰航空器发动机 通过激光工艺生产涡轮机零件的方法
WO2017182668A1 (fr) * 2016-04-22 2017-10-26 Ecole Centrale De Nantes Procédé de fabrication additive d'une piece etagee a section variable comportant une partie non supportee
EP3266563A4 (fr) * 2015-03-02 2018-12-26 Tongtai Machine & Tool Co., Ltd. Machine de traitement à commande numérique assistée par ordinateur de type combiné et son procédé de traitement
US10173379B2 (en) 2013-12-31 2019-01-08 Roctool Device for heating a mold

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201314030D0 (en) * 2013-08-06 2013-09-18 Eads Uk Ltd Extrusion-Based Additive Manufacturing System and Method
FR3030338B1 (fr) * 2014-12-23 2019-05-03 Institut De Recherche Technologique Jules Verne Procede et dispositif pour la preparation a l’assemblage d’une piece de grandes dimensions
DE102015204977A1 (de) * 2015-03-19 2016-09-22 Fashion.De Gmbh Verfahren und Vorrichtung zur Herstellung eines Hohlkörpers
KR101692141B1 (ko) * 2015-03-26 2017-01-18 안동대학교 산학협력단 삼차원 구조물 제조장치 및 방법
US10088103B2 (en) * 2015-07-01 2018-10-02 Keystone Engineering Company Method of fabricating space satellite tank components utilizing additive manufacturing and spin forming
US10065241B2 (en) 2015-11-17 2018-09-04 General Electric Company Combined additive manufacturing and machining system
US10688581B2 (en) * 2015-11-24 2020-06-23 The Board Of Trustees Of Western Michigan University 3D metal printing device and process
JP6414560B2 (ja) * 2016-02-23 2018-10-31 マツダ株式会社 構造体の製造方法
DE102016103202A1 (de) * 2016-02-24 2017-08-24 Klingelnberg Ag Verfahren zum Bereitstellen einer Fluidzufuhrvorrichtung und Verwendung einer solchen
US10100668B2 (en) * 2016-02-24 2018-10-16 General Electric Company System and method of fabricating and repairing a gas turbine component
CN105643114A (zh) * 2016-03-17 2016-06-08 深圳市海目星激光科技有限公司 一种带有传感器的切割机
US11072015B2 (en) * 2016-03-22 2021-07-27 The Penn State Research Foundation Incremental forming tools and method
WO2018033973A1 (fr) * 2016-08-17 2018-02-22 ヤマザキマザック株式会社 Dispositif d'usinage composite et procédé d'usinage composite
WO2018083786A1 (fr) * 2016-11-04 2018-05-11 ヤマザキマザック株式会社 Appareil de traitement combiné et procédé de traitement combiné
CN106311876A (zh) * 2016-11-15 2017-01-11 山东大学 基于渐进成形与增材制造的复杂薄壁件成形系统及方法
FR3059578B1 (fr) * 2016-12-07 2019-06-28 Constellium Issoire Procede de fabrication d'un element de structure
US10478897B2 (en) * 2017-01-04 2019-11-19 GM Global Technology Operations LLC Sheet metal system and manufacturing process joining incremental forming and direct metal deposition
JP6751040B2 (ja) * 2017-03-13 2020-09-02 株式会社神戸製鋼所 積層造形物の製造方法、製造システム、及び製造プログラム
DE102017007734A1 (de) * 2017-08-16 2019-02-21 Linde Aktiengesellschaft Verfahren zur Herstellung eines Rohrformstücks, insbesondere durch Auftragschweißen
CN107737929A (zh) * 2017-10-09 2018-02-27 南京航空航天大学 一种基于3d打印与渐进成形技术的变壁厚钣金零件加工方法与装置
US10427246B2 (en) * 2018-02-21 2019-10-01 Hamilton Sundstrand Corporation Indirect surface finishing during hybrid manufacturing
EP3628434A1 (fr) * 2018-09-28 2020-04-01 Siemens Aktiengesellschaft Procédé de fabrication additive et installation de fabrication
CN109746443A (zh) * 2018-12-29 2019-05-14 华中科技大学 一种增材制造过程中并行控制零件变形和精度的方法
DE102019201085A1 (de) * 2019-01-29 2020-07-30 Siemens Aktiengesellschaft Herstellungsverfahren für ein Bauteil mit integrierten Kanälen
FR3095606B1 (fr) 2019-05-03 2021-12-24 I Mc Procédé et dispositif pour le contrôle d’une pièce en cours de fabrication
JP7362306B2 (ja) * 2019-06-11 2023-10-17 ニデックマシンツール株式会社 三次元積層装置および方法
CN110434223A (zh) * 2019-07-11 2019-11-12 南京航空航天大学 基于电弧3d打印与渐进成形技术的加强筋钣金件成形方法
JP2021041479A (ja) * 2019-09-09 2021-03-18 株式会社スギノマシン 加工機及び加工方法
GB2592949A (en) * 2020-03-11 2021-09-15 Effective Cnc Solutions Ltd Multi-purpose apparatus
KR102352274B1 (ko) * 2020-03-24 2022-01-18 창원대학교 산학협력단 밀링 가공이 가능한 3d 프린터
CN112296508B (zh) * 2020-11-02 2021-09-10 吉林大学 一种激光自动加工平台
FR3125242B1 (fr) * 2021-07-13 2023-07-21 Pascal Moigne Machine de fabrication hybride combinant l’impression 3d et l’usinage et comportant un support articulé
FR3135637A1 (fr) 2022-05-17 2023-11-24 Fse Dispositif et procédé pour le contrôle d’un apport de matière en fabrication additive

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342051A (en) 1964-08-10 1967-09-19 Leszak Edward Apparatus and process for incremental dieless forming
EP0529816A1 (fr) 1991-07-29 1993-03-03 Fritz B. Prinz Procédé et appareil pour la fabrication d'objets en trois dimensions par dépôt de soudure
EP0574580A1 (fr) * 1992-01-07 1993-12-22 Strasbourg Elec Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre.
DE19533960A1 (de) * 1995-09-13 1997-03-20 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung von metallischen Werkstücken
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
EP1614497A1 (fr) 2004-07-09 2006-01-11 Ingersoll Machine Tools, Inc. Procédé et dispositif de réparation ou rechargement de surfaces d'une pièce montée dans une machine-outil
WO2009050229A1 (fr) * 2007-10-18 2009-04-23 Siemens Aktiengesellschaft Réparation d'un joint de rotor statique
US20090226272A1 (en) * 2008-03-06 2009-09-10 Kevin Scott Smith Deformation machining systems and methods
JP2010280173A (ja) 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
GB2472685A (en) * 2009-08-12 2011-02-16 Boeing Co Method of making a composite layup tool

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3410913A1 (de) * 1984-03-24 1985-10-03 Trumpf GmbH & Co, 7257 Ditzingen Werkzeugmaschine zur mechanischen und laserstrahl-bearbeitung eines werkstuecks
US5121329A (en) * 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
DE4040554A1 (de) * 1990-12-18 1992-07-02 Maho Ag Werkzeugmaschine zur abtragenden werkstueckbearbeitung mittels laserstrahls
JP2597778B2 (ja) * 1991-01-03 1997-04-09 ストラタシイス,インコーポレイテッド 三次元対象物組み立てシステム及び組み立て方法
EP0593799B1 (fr) * 1992-10-19 1996-01-03 ZEPPELIN-Metallwerke GmbH Procédé et dispositif pour façonner un flan en tÔle
US5503785A (en) * 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
CN1145840A (zh) * 1995-09-14 1997-03-26 邵文远 集成加工中心
JPH09150228A (ja) * 1995-11-24 1997-06-10 Rikagaku Kenkyusho 金属板積層金型の製作方法
JP3784539B2 (ja) * 1998-07-01 2006-06-14 本田技研工業株式会社 金型の製造方法
US6441338B1 (en) * 1999-04-19 2002-08-27 Joshua E. Rabinovich Rapid manufacturing of steel rule dies and other 3-dimensional products, apparatus, process and products
CN1140377C (zh) * 2000-12-20 2004-03-03 华中科技大学 直接快速制造模具与零件的方法及其装置
DE102004012682A1 (de) * 2004-03-16 2005-10-06 Degussa Ag Verfahren zur Herstellung von dreidimensionalen Objekten mittels Lasertechnik und Auftragen eines Absorbers per Inkjet-Verfahren
US20070003416A1 (en) * 2005-06-30 2007-01-04 General Electric Company Niobium silicide-based turbine components, and related methods for laser deposition
US7951412B2 (en) * 2006-06-07 2011-05-31 Medicinelodge Inc. Laser based metal deposition (LBMD) of antimicrobials to implant surfaces
ATE553910T1 (de) * 2007-07-04 2012-05-15 Envisiontec Gmbh Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
WO2009013751A2 (fr) * 2007-07-25 2009-01-29 Objet Geometries Ltd. Fabrication en forme irrégulière solide à l'aide d'une pluralité de matériaux de modelage
JP5653657B2 (ja) * 2010-06-09 2015-01-14 パナソニック株式会社 三次元形状造形物の製造方法、得られる三次元形状造形物および成形品の製造方法
EP2629975B1 (fr) * 2010-10-21 2022-03-09 Organovo, Inc. Dispositifs pour la fabrication de tissu
JP5622636B2 (ja) * 2011-03-29 2014-11-12 株式会社東芝 補修装置および補修方法
US9636873B2 (en) * 2012-05-03 2017-05-02 B9Creations, LLC Solid image apparatus with improved part separation from the image plate
US9149988B2 (en) * 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3342051A (en) 1964-08-10 1967-09-19 Leszak Edward Apparatus and process for incremental dieless forming
EP0529816A1 (fr) 1991-07-29 1993-03-03 Fritz B. Prinz Procédé et appareil pour la fabrication d'objets en trois dimensions par dépôt de soudure
EP0574580A1 (fr) * 1992-01-07 1993-12-22 Strasbourg Elec Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre.
EP0574580B1 (fr) 1992-01-07 1995-11-08 Electricite De Strasbourg, S.A. Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre
DE19533960A1 (de) * 1995-09-13 1997-03-20 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Herstellung von metallischen Werkstücken
US6144008A (en) * 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
EP1614497A1 (fr) 2004-07-09 2006-01-11 Ingersoll Machine Tools, Inc. Procédé et dispositif de réparation ou rechargement de surfaces d'une pièce montée dans une machine-outil
WO2009050229A1 (fr) * 2007-10-18 2009-04-23 Siemens Aktiengesellschaft Réparation d'un joint de rotor statique
US20090226272A1 (en) * 2008-03-06 2009-09-10 Kevin Scott Smith Deformation machining systems and methods
JP2010280173A (ja) 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
GB2472685A (en) * 2009-08-12 2011-02-16 Boeing Co Method of making a composite layup tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FRANZEN V ET AL: "Rapid prototyping in der Blechumformung", VDI Z, SPRINGER VDI VERLAG, DE, vol. 151, no. 4, 1 April 2009 (2009-04-01), pages 67 - 69, XP001547743, ISSN: 0042-1766 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10173379B2 (en) 2013-12-31 2019-01-08 Roctool Device for heating a mold
CN104325640A (zh) * 2014-09-16 2015-02-04 王奉瑾 一种3d打印车载工厂
WO2016045651A1 (fr) * 2014-09-22 2016-03-31 Technische Universität Dortmund Procédé et dispositif de production combinée d'éléments au moyen d'un formage incrémental de tôles et de procédés additifs en une seule passe
CN107249790A (zh) * 2014-12-23 2017-10-13 赛峰航空器发动机 通过激光工艺生产涡轮机零件的方法
EP3266563A4 (fr) * 2015-03-02 2018-12-26 Tongtai Machine & Tool Co., Ltd. Machine de traitement à commande numérique assistée par ordinateur de type combiné et son procédé de traitement
WO2017095785A1 (fr) * 2015-11-30 2017-06-08 The Gleason Works Fabrication additive d'engrenages
CN108367398A (zh) * 2015-11-30 2018-08-03 格里森工场 齿轮的添加制造
WO2017182668A1 (fr) * 2016-04-22 2017-10-26 Ecole Centrale De Nantes Procédé de fabrication additive d'une piece etagee a section variable comportant une partie non supportee
FR3050391A1 (fr) * 2016-04-22 2017-10-27 Nantes Ecole Centrale Procede de fabrication additive et piece obtenue par un tel procede

Also Published As

Publication number Publication date
FR2983424A1 (fr) 2013-06-07
KR20140109919A (ko) 2014-09-16
JP2015511180A (ja) 2015-04-16
EP2785492B1 (fr) 2019-05-01
KR102047363B1 (ko) 2019-11-21
JP6203190B2 (ja) 2017-09-27
CA2866727A1 (fr) 2013-06-06
EP2785492A1 (fr) 2014-10-08
FR2983424B1 (fr) 2014-09-19
CN104470678B (zh) 2017-03-01
CN104470678A (zh) 2015-03-25
US9962799B2 (en) 2018-05-08
CA2866727C (fr) 2019-09-24
US20150000108A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
EP2785492B1 (fr) Dispositif d'usinage par addition de matière et mise en forme combinées
EP2364240B1 (fr) Machine ophtalmique et procede d'usinage et/ou de polissage de lentille
US10688581B2 (en) 3D metal printing device and process
CN105873701B (zh) 切削刀具及其制造方法
CA2766217C (fr) Procede de fabrication d'une piece forgee avec polissage adaptatif
EP3215349A1 (fr) Machine et procédé pour la fabrication additive à base de poudre
EP1175280B1 (fr) Procede de fabrication d'une surface d'une lentille ophtalmique et installation de mise en oeuvre du procede
US20180326547A1 (en) Additive manufacturing of gears
EP2723518B1 (fr) Machine et procede d'assemblage d'un modele pour moulage a modele perdu, procede de moulage correspondant
US9612594B2 (en) Method for determining a machining means in hybrid ultraprecision machining device, and hybrid ultraprecision machining device
CN105436819B (zh) 航空发动机风扇叶片金属加强边的加工方法
WO2013064767A1 (fr) Installation de fabrication de pièces par fusion sélective de poudre
EP2783777B1 (fr) Dispositif de percage et procédé de percage utilisant un tel dispositif de percage
FR3090438A1 (fr) Procédé de fabrication d’une ébauche et dispositif correspondant
Lauwers et al. Hybrid Manufacturing based on the combination of Mechanical and Electro Physical–Chemical Processes
FR3071178A1 (fr) Procede de fabrication d'une piece de turbomachine par fabrication additive et frittage flash
Abe et al. Residual Stress and Deformation After Finishing of a Shell Structure Fabricated by Direct Metal Lamination Using Arc Discharge.
WO2023285320A1 (fr) Machine de fabrication hybride combinant l'impression 3d et l'usinage et comportant un support articulé
FR3057795A1 (fr) Procede de percage de trous, dispositif et outil permettant de le mettre en oeuvre
CN115709369A (zh) 高精度薄壁高温合金材料管接口的加工方法
CH702859A2 (fr) Système et procédé de décolletage-fraisage.
EP0960683A1 (fr) Procédé de fabrication d'outils de forgeage à chaud, et outils obtenus par ce procédé.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12795803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543937

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14362091

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012795803

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147018310

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2866727

Country of ref document: CA