WO2013069990A1 - 비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 결정 방법 및 장치 - Google Patents

비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 결정 방법 및 장치 Download PDF

Info

Publication number
WO2013069990A1
WO2013069990A1 PCT/KR2012/009408 KR2012009408W WO2013069990A1 WO 2013069990 A1 WO2013069990 A1 WO 2013069990A1 KR 2012009408 W KR2012009408 W KR 2012009408W WO 2013069990 A1 WO2013069990 A1 WO 2013069990A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion vector
block
candidate
current
current block
Prior art date
Application number
PCT/KR2012/009408
Other languages
English (en)
French (fr)
Inventor
김일구
박영오
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014540946A priority Critical patent/JP2014535239A/ja
Priority to MX2014005643A priority patent/MX2014005643A/es
Priority to SG11201402160XA priority patent/SG11201402160XA/en
Priority to EP12848529.9A priority patent/EP2763416A4/en
Priority to MX2015004571A priority patent/MX337403B/es
Priority to CA2854887A priority patent/CA2854887C/en
Priority to CN201280054956.9A priority patent/CN103931192B/zh
Priority to MX2015004567A priority patent/MX336648B/es
Priority to BR112014010966A priority patent/BR112014010966A2/pt
Priority to CN201810167672.XA priority patent/CN108259915B/zh
Priority to US14/357,043 priority patent/US20140307783A1/en
Priority to RU2014117652/08A priority patent/RU2586001C2/ru
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to AU2012336572A priority patent/AU2012336572B2/en
Priority to MX2015004569A priority patent/MX336649B/es
Priority to MX2015004579A priority patent/MX336650B/es
Publication of WO2013069990A1 publication Critical patent/WO2013069990A1/ko
Priority to PH12014500945A priority patent/PH12014500945A1/en
Priority to ZA2014/03267A priority patent/ZA201403267B/en
Priority to US14/603,112 priority patent/US9204163B2/en
Priority to US14/603,164 priority patent/US9225995B2/en
Priority to US14/632,673 priority patent/US9451282B2/en
Priority to US14/632,717 priority patent/US9332273B2/en
Priority to PH12015500669A priority patent/PH12015500669A1/en
Priority to PH12015500671A priority patent/PH12015500671A1/en
Priority to PH12015500672A priority patent/PH12015500672B1/en
Priority to PH12015500673A priority patent/PH12015500673B1/en
Priority to US15/902,519 priority patent/US20180184114A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/56Motion estimation with initialisation of the vector search, e.g. estimating a good candidate to initiate a search
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/577Motion compensation with bidirectional frame interpolation, i.e. using B-pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/58Motion compensation with long-term prediction, i.e. the reference frame for a current frame not being the temporally closest one
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present invention relates to video encoding and decoding, and more particularly, to video encoding and decoding for performing inter prediction and / or motion compensation.
  • video codec for efficiently encoding or decoding high resolution or high definition video content.
  • video is encoded according to a limited encoding method based on a macroblock of a predetermined size.
  • Image data in the spatial domain is transformed into coefficients in the frequency domain using frequency transformation.
  • the video codec divides an image into blocks having a predetermined size for fast operation of frequency conversion, performs DCT conversion for each block, and encodes frequency coefficients in units of blocks. Compared to the image data of the spatial domain, the coefficients of the frequency domain are easily compressed. In particular, since the image pixel value of the spatial domain is expressed as a prediction error through inter prediction or intra prediction of the video codec, when frequency conversion is performed on the prediction error, much data may be converted to zero.
  • the video codec reduces data volume by substituting data repeatedly generated continuously with small size data.
  • the present invention proposes a method and apparatus for determining a motion vector through motion vector prediction, and a video encoding method and apparatus including motion inter prediction and motion compensation through motion vector prediction, and motion compensation through motion vector prediction.
  • An accompanying video decoding method and apparatus are provided.
  • a method of determining a motion vector for inter prediction includes: determining a candidate motion vector list including motion vectors of a plurality of candidate blocks referred to for predicting a motion vector of a current block; When the reference picture of the first candidate block is different from the reference picture of the current block among the candidate blocks, the reference picture of the current block and the reference picture of the first candidate block are short-term reference pictures. determining whether to use a motion vector of the first candidate block in the candidate motion vector list based on whether the reference picture is a long-term reference picture or a long-term reference picture; And determining a motion vector of the current block by using the candidate motion vector selected from the motion vectors included in the candidate motion vector list.
  • a reference picture indicated by a reference index of a candidate block is different from a reference picture of a current block, and at least one of the reference pictures of the current block and the candidate block is a long-term reference picture.
  • FIG. 1 is a block diagram of an apparatus for determining a motion vector according to an embodiment.
  • FIG. 2 is a flowchart of a method of determining a motion vector, according to an exemplary embodiment.
  • FIG 3 illustrates a case in which a candidate block is a collocated block of another image according to an embodiment.
  • FIG. 4 illustrates a case where a candidate block is a neighboring block of the same image, according to an embodiment.
  • FIG. 5 is a flowchart of a video encoding method involving a motion vector determination method, according to an embodiment.
  • FIG. 6 is a flowchart of a video decoding method involving a motion vector determination method, according to an embodiment.
  • FIG. 7 is a block diagram of a video encoder including a motion vector determining apparatus, according to an embodiment.
  • FIG. 8 is a block diagram of a video decoder including a motion vector determining apparatus, according to an embodiment.
  • FIG. 9 is a block diagram of a video encoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG. 10 is a block diagram of a video decoding apparatus based on coding units according to a tree structure, according to an embodiment.
  • FIG. 11 illustrates a concept of coding units, according to an embodiment of the present invention.
  • FIG. 12 is a block diagram of an image encoder based on coding units, according to an embodiment of the present invention.
  • FIG. 13 is a block diagram of an image decoder based on coding units, according to an embodiment of the present invention.
  • FIG. 14 is a diagram of deeper coding units according to depths, and partitions, according to an embodiment of the present invention.
  • FIG. 15 illustrates a relationship between a coding unit and transformation units, according to an embodiment of the present invention.
  • FIG. 16 illustrates encoding information according to depths, according to an embodiment of the present invention.
  • 17 is a diagram of deeper coding units according to depths, according to an embodiment of the present invention.
  • FIG. 21 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • FIG. 22 illustrates a physical structure of a disk in which a program is stored, according to an embodiment.
  • Fig. 23 shows a disc drive for recording and reading a program by using the disc.
  • FIG. 24 illustrates the overall structure of a content supply system for providing a content distribution service.
  • 25 and 26 illustrate an external structure and an internal structure of a mobile phone to which the video encoding method and the video decoding method of the present invention are applied, according to an embodiment.
  • FIG. 27 illustrates a digital broadcasting system employing a communication system according to the present invention.
  • FIG. 28 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to an embodiment of the present invention.
  • a method of determining a motion vector for inter prediction includes: determining a candidate motion vector list including motion vectors of a plurality of candidate blocks referred to for predicting a motion vector of a current block; When the reference picture of the first candidate block is different from the reference picture of the current block among the candidate blocks, the reference picture of the current block and the reference picture of the first candidate block are short-term reference pictures. determining whether to use a motion vector of the first candidate block in the candidate motion vector list based on whether the reference picture is a long-term reference picture or a long-term reference picture; And determining a motion vector of the current block by using the candidate motion vector selected from the motion vectors included in the candidate motion vector list.
  • the first candidate block may be a collocated block located at the same position as the current block in the neighboring block of the current block or the image reconstructed before the current image in the current image of the current block. May be).
  • the determining of whether to use the motion vector of the first candidate block may include: when the reference image of the current block and the reference image of the candidate block are both the long term reference image, the candidate motion vector. And maintaining a motion vector of the candidate block in the list.
  • the determining of whether to use the motion vector of the first candidate block includes: wherein one of the reference picture of the current block and the reference picture of the first candidate block is the short-term reference picture and the other is In the case of the long term reference image, determining that the motion vector of the first candidate block is not used in the candidate motion vector list.
  • An apparatus for determining a motion vector for inter prediction comprises: a candidate motion vector list including motion vectors of a plurality of candidate blocks referred to for predicting a motion vector of a current block, the first among the plurality of candidate blocks; When the reference picture of the candidate block is different from the reference picture of the current block, the candidate motion based on whether the reference picture of the current block and the reference picture of the first candidate block are short-term reference pictures or long-term reference pictures, respectively.
  • a candidate list determiner that determines whether to use a motion vector of the first candidate block in a vector list; And a motion vector determiner configured to determine a motion vector of the current block by using a candidate motion vector selected from the motion vectors included in the candidate motion vector list.
  • the present invention includes a computer-readable recording medium having recorded thereon a program for implementing a method of determining a motion vector according to an embodiment.
  • a motion vector determining apparatus and a method of determining a motion vector according to an embodiment are disclosed.
  • a video encoding method, a video decoding method, a video encoding apparatus, and a video decoding apparatus including a motion vector determination method according to an embodiment are disclosed.
  • a video encoding method and a video decoding method based on coding units having a tree structure and involving a motion vector determination method according to an embodiment are disclosed.
  • the 'image' may be a still image of the video or a video, that is, the video itself.
  • a motion vector determining apparatus and a method of determining a motion vector according to an embodiment are disclosed. Also, with reference to FIGS. 5 and 8, a video encoding method, a video decoding method, a video encoding apparatus, and a video decoding apparatus including a motion vector determination method according to an embodiment are disclosed.
  • FIG. 1 is a block diagram of an apparatus for determining a motion vector according to an embodiment.
  • the motion vector determining apparatus 10 includes a candidate list determiner 12 and a motion vector determiner 14.
  • Inter prediction uses similarity between the current image and another image.
  • a reference area similar to the current area of the current picture is detected.
  • the distance in coordinates between the current region and the reference region is represented by a motion vector
  • the difference between pixel values between the current region and the reference region is represented by residual data. Accordingly, instead of directly outputting image information of the current region, index, motion vector, and residual data indicating a reference image may be output by inter prediction of the current region.
  • the motion vector determining apparatus 10 may perform inter prediction for each block of each image of a video.
  • the type of block may be square or rectangular, and may be any geometric shape. It is not limited to data units of a certain size.
  • a block according to an embodiment may be a maximum coding unit, a coding unit, a prediction unit, a transformation unit, and the like among coding units having a tree structure.
  • a video encoding and decoding method based on coding units having a tree structure will be described later with reference to FIGS. 9 to 21.
  • the reference picture used for inter prediction of the current picture should be a picture decoded before the current picture.
  • a reference picture for inter prediction may be classified into a short-term reference picture and a long-term reference picture.
  • the decoded picture buffer stores reconstructed images generated by motion compensation of previous images.
  • the reconstructed images generated first may be used as reference images for inter prediction of other images. Accordingly, at least one short term reference image or at least one long term reference image for inter prediction of the current image may be selected among the reconstructed images stored in the decoded picture buffer.
  • the long-term reference picture is decoded longer than the current picture but is selected to be used as a reference picture for inter prediction of other pictures.
  • the image may be stored in a buffer.
  • motion vector prediction of the current block may be determined with reference to motion vectors of other blocks.
  • AMVP advanced motion vector prediction
  • the apparatus for determining a motion vector may determine the motion vector by referring to the motion vector of another block that is temporally or spatially adjacent to the current block.
  • the motion vector determining apparatus 10 may determine a candidate motion vector list including a plurality of motion vectors of candidate blocks that may be a reference object of the motion vector of the current block.
  • the motion vector determining apparatus 10 may determine the motion vector of the current block by referring to one motion vector selected from the candidate motion vector list.
  • the candidate block according to an embodiment may be a collocated block located at the same position as the current block in the neighboring block of the current block or the image reconstructed before the current image in the current image of the current block.
  • the candidate list determiner 12 may include candidate motion vectors satisfying a predetermined condition in a candidate motion vector list including motion vectors of a plurality of candidate blocks referenced to predict a motion vector of the current block. It can be scaled or excluded from the candidate motion vector list.
  • the candidate list determiner 12 may, when the reference picture of the first candidate block is different from the reference picture of the current block among a plurality of candidate blocks included in the candidate motion vector list, the reference picture of the current block. It may be determined whether the reference pictures of the first and second candidate blocks are short-term reference pictures or long-term reference pictures, respectively. The candidate list determiner 12 determines how to use the motion vector of the first candidate block in the candidate motion vector list based on whether the reference pictures of the current block and the first candidate block are short-term reference pictures or long-term reference pictures, respectively. You can decide whether or not.
  • the candidate list determiner 12 may maintain the motion vector of the candidate block in the candidate motion vector list when both the reference picture of the current block and the reference picture of the candidate block are long term reference pictures.
  • the motion vector of the candidate block may be included in the candidate motion vector list as it is without having to resize the motion vector.
  • the candidate list determiner 12 may include a candidate motion vector list in which one of the reference picture of the current block and the reference picture of the first candidate block is a short-term reference picture and the other is a long-term reference picture. It may be determined not to use the motion vector of the first candidate block.
  • the motion vector of the first candidate block may be represented as an unusable motion vector.
  • the candidate list determiner 12 adjusts the size of the motion vector of the candidate block when the reference image of the current block and the reference image of the first candidate block are short-term reference images. Can be included in In this case, the candidate list determiner 12 moves the first candidate block based on a ratio between the distance between the current video and the reference picture of the current block and the distance between the video of the first candidate block and the reference picture of the first candidate block.
  • the vector may be scaled and the motion vector of the first candidate block may be updated with the scaled value in the candidate motion vector list.
  • the motion vector determiner 14 may select one candidate motion vector from among motion vectors included in the candidate motion vector list, and determine the motion vector of the current block using the selected candidate motion vector. .
  • the motion vector determiner 14 may determine the motion vector of the current block by copying or modifying the candidate motion vector as it is.
  • FIG. 2 is a flowchart of a method of determining a motion vector, according to an exemplary embodiment.
  • the motion vector of the current block may be predicted using the motion vector of a block that is temporally close to the current block or spatially close to the current block.
  • a plurality of candidate blocks capable of predicting a motion vector may be determined, and one candidate block may be selected among the candidate blocks, and the motion vector of the current block may be determined by referring to the motion vector of the selected candidate block.
  • the apparatus for determining a motion vector according to an embodiment 10 may refer to the current block with reference to the motion vector of the candidate block when the reference image indicated by the reference index of the predetermined candidate block among the candidate blocks is different from that of the current block. If the motion vector is predicted, even if the size of the motion vector of the candidate block is referred to, the accuracy of the predicted motion vector may be lowered. Therefore, when the reference picture of the current block is different from the reference picture of the candidate block, the motion vector determining apparatus 10 determines whether to refer to the motion vector of the corresponding candidate block by adjusting the size or not to refer to the motion vector at all. You can decide again.
  • the motion vector determining apparatus 10 determines a candidate motion vector list including motion vectors of a plurality of candidate blocks for the current block.
  • the motion vector determination apparatus 10 may determine that the reference image of the current block and the reference image of the first candidate block are different. It is determined whether to use the motion vector of the first candidate block in the candidate motion vector list based on whether the short-term reference picture or the long-term reference picture is used.
  • the motion vector determining apparatus 10 may determine whether the reference image of the current block is a long term reference image by using a long term reference index indicating whether the reference image of the current block is a long term reference image.
  • the long-term reference index of the first candidate block may be used to determine whether the reference picture of the first candidate block is a long-term reference picture.
  • the motion vector determination apparatus 10 may determine that the reference image of the first candidate block is a long term reference image when a difference value between the POCs of the reference image of the current block and the reference image of the first candidate block exceeds a first threshold. Can be. Similarly, when the difference between the POCs of the current picture of the current block and the reference picture of the current block exceeds the second threshold, it may be determined that the reference picture of the current block is a long term reference picture.
  • the motion vector determining apparatus 10 determines the motion vector of the current block by using the candidate motion vector selected from the motion vectors included in the candidate motion vector list.
  • step 25 the reference block indicated by the motion vector of the current block determined in the reference picture of the current block according to the POC pointed to by the reference index of the current block regardless of whether the reference picture of the current block is a short-term reference picture or a long-term reference picture. Can be determined.
  • the motion vector determining apparatus 10 may maintain the motion vector of the candidate block in the candidate motion vector list without scaling.
  • one of the reference pictures of the current block and the first candidate block is the short-term reference picture and the other is the long-term reference picture, it may be determined not to use the motion vector of the first candidate block in the candidate motion vector list.
  • the ratio between the distance between the current picture and the reference picture of the current block and the distance between the picture of the first candidate block and the reference picture of the first candidate block is determined.
  • the motion vector of the first candidate block may be updated in the candidate motion vector list according to the motion vector of the first candidate block whose size is adjusted based on the result.
  • the motion vector determining apparatus 10 may determine the candidate motion vector list again.
  • the motion vector determining apparatus 10 may not use the motion vector of the first candidate block as a reference object by excluding from the candidate motion vector list. Therefore, the motion vector determining apparatus 10 may determine the motion vector of the current block by referring to the remaining motion vectors included in the candidate motion vector list.
  • the motion vector determining apparatus 10 When the reference pictures of the current block and the first candidate block are both long-term reference pictures, the motion vector determining apparatus 10 includes the motion vector of the first candidate block in the candidate motion vector list without scaling. Accordingly, the motion vector determining apparatus 10 selects an optimal reference motion vector among the remaining candidate motion vectors included in the candidate motion vector list and the motion vectors of the first candidate block, and uses the selected reference motion vector to move the current block. The vector can be determined.
  • the motion vector determining apparatus 10 adjusts the size of the motion vector of the first candidate block to include in the candidate motion vector list. Therefore, the motion vector determining apparatus 10 selects an optimal reference motion vector from the remaining candidate motion vectors included in the candidate motion vector list and the motion vectors of the adjusted first candidate block, and uses the selected reference motion vector. The motion vector of the current block can be determined.
  • the reference picture indicated by the reference index of the candidate block is different from the reference picture of the current block.
  • the process of adjusting the size of the motion vector of the candidate block may be omitted or the process of referring to the motion vector of the candidate block may be omitted.
  • the motion vector of the current block is referred to by referring to the motion vector of the candidate block. Since the prediction may reduce the accuracy of the predicted motion vector, the process of referring to the motion vector of the candidate block having low prediction accuracy is omitted, and the current block is referred to to refer to the motion vector of another candidate with relatively high prediction accuracy. To make predictions. Accordingly, the efficiency of the prediction process of the motion vector can be improved.
  • FIG 3 illustrates a case in which a candidate block is a collocated block of another image according to an embodiment.
  • the collocated image 35 is an image which is reconstructed before the current image 30 and may be referred to for inter prediction of the current block 31 among the current images 30.
  • the collocated image 35 may be determined according to the collated index 32 of the current block 31.
  • a block at the same position as the position of the current block 31 of the current image 30 may be determined as the collocated block 36.
  • the motion vector determining apparatus 10 may use the collocated block 36 as a candidate block for predicting the motion vector 34 of the current block 31. Accordingly, the motion vector 34 of the current block 31 may be predicted with reference to the motion vector 37 of the collocated block 36.
  • the collocated reference image 38 may be determined according to the POC indicated by the reference index of the collocated block 36.
  • the current reference picture 33 may be determined according to the POC indicated by the reference index of the current block 31.
  • the apparatus for determining a motion vector may determine the motion vector 37 of the collocated block 36. You can decide whether to refer to it or how to refer to it again.
  • the apparatus for determining a motion vector may refer to the long term reference of the collocated block 36 when the reference index of the collocated block 36 and the reference index of the current block 31 are different.
  • the index and the long term reference index of the current block 31 it may be determined whether the collocated reference image 38 and the current reference image 33 are a short term reference image or a long term reference image.
  • the apparatus for determining a motion vector may determine the motion vector 37 of the collocated block 36. You can decide again or how to refer.
  • the distance Td between the collocated image 35 and the collocated reference image 38 is determined.
  • the size of the motion vector 37 of the collocated block 36 may be adjusted based on the ratio of the distance Tb between the current image 30 and the current reference image 30.
  • the distance Td between the current image 30 and the collocated reference image 38 may be determined as a difference value between the POCs of the current image 30 and the collocated reference image 38.
  • the distance Tb between the current image 30 and the current reference image 33 may also be determined as a difference value between the POCs of the current image 30 and the current reference image 33.
  • the collocated image 35 is added to the motion vector 37 (MVcol) of the collocated block 36.
  • the motion vector determining apparatus 10 is collocated to the candidate motion vector list.
  • the distance Td between the collocated image 35 and the collocated reference image 38 in the motion vector 37 of the block 36 to the motion vector 37 (MVcol) of the collocated block 36. ) May be changed to a value (MVcol ') multiplied by a ratio (Tb / Td) of the distance Tb between the current image 30 and the current reference image 30.
  • the motion vector 37 of the collocated block 36 may be excluded from the candidate motion vector list of the current block 30.
  • the motion vector 37 of the collocated block 36 may be maintained as it is. In the vector list, the motion vector 37 of the collocated block 36 can be maintained without scaling.
  • FIG. 4 illustrates a case where a candidate block is a neighboring block of the same image, according to an embodiment.
  • the motion vector determining apparatus 10 is a candidate block for predicting the motion vector 44 of the current block 41 and is a neighboring block adjacent to the current block 41 in the current image 40. (46) can be used. Accordingly, the motion vector 44 of the current block 41 may be predicted with reference to the motion vector 47 of the neighboring block 46.
  • the neighbor reference image 48 may be determined according to the POC indicated by the reference index of the neighbor block 46.
  • the current reference image 43 may be determined according to the POC indicated by the reference index of the current block 41.
  • the motion vector determining apparatus 10 may refer to the motion vector 47 of the neighboring block 46 when the neighboring reference image 48 and the current reference image 43 are different from each other. You can decide again whether to refer.
  • the apparatus for determining a motion vector may be described in that, when the reference index of the neighboring block 46 and the reference index of the current block 41 are different, the long term reference index and the current block of the neighboring block 46 are different. Using the long term reference index of (41), it may be determined whether the neighbor block 46 and the current reference image 43 are the short term reference image or the long term reference image.
  • the motion vector determining apparatus 10 may refer to or refer to the motion vector 47 of the neighboring block 46. You can decide whether or not to do it again.
  • the distance Td and the current image 40 between the current image 40 and the neighbor reference image 48 are different.
  • the size of the motion vector 47 of the neighboring block 46 based on the ratio of the distance Tb between the current reference image 40 and the current reference image 40.
  • the distance Td between the current image 40 and the neighbor reference image 48 may be determined as a difference value between the POCs of the current image 40 and the neighbor reference image 48.
  • the distance Tb between the current image 40 and the current reference image 43 may also be determined as a difference value between the POCs of the current image 40 and the current reference image 43.
  • the current reference image 43 and the neighbor reference image 48 are both short-term reference images
  • the current image 40 and the neighbor reference image (MVne) are added to the motion vector 47 (MVne) of the neighboring block 46.
  • the motion vector determining apparatus 10 includes: The motion vector 47 of the neighboring block 46 is transferred to the motion vector 47 (MVne) of the neighboring block 46, and the distance Td between the neighboring block 48 and the current block 40 and the current image 40 are obtained. ) And the ratio Mbne 'multiplied by the ratio Tb / Td of the distance Tb between the current reference image 43.
  • an unusable flag may be assigned to the motion vector 47 of the neighboring block 46.
  • the motion vector 47 of the neighboring block 46 may be excluded from the candidate motion vector list of the current block 40.
  • the motion vector 47 of the neighboring block 46 may be maintained as it is. In this case, the motion vector 47 of the neighboring block 46 may be maintained in the candidate motion vector list without scaling.
  • the motion vector determining apparatus 10 uses long term reference indexes of current blocks 31 and 41 and candidate blocks (collocated block 36 and neighbor block 46). Determine whether the current reference pictures 33 and 43 and the reference pictures of the candidate blocks 36 and 46 (the collocated reference picture 38 and the neighbor reference picture 48) are short-term reference pictures or long-term reference pictures, respectively. As a result, it may be determined whether to refer to the motion vectors 37 and 47 of the candidate blocks 36 and 46 or to adjust the size.
  • the motion vector determining apparatus 10 may replace the current reference images 33 and 43 and the candidate blocks 36, instead of the long term reference indexes of the current blocks 31 and 41 and the candidate blocks 36 and 46.
  • the reference indexes representing the POCs of the reference images 38 and 48 of 46 it may be determined whether to refer to the motion vectors 37 and 47 of the candidate blocks 36 and 46 or to adjust the size.
  • the apparatus for determining a motion vector may determine a difference Tr between the reference index of the collocated block 36 and the reference index of the current block 31 by the first threshold THpocdiff1. Compared with, if the difference Tr between the reference indices is larger than the first threshold THpocdiff1, the motion vector 37 of the collocated block 36 is determined to be not a reference object, or the reference is not scaled. You can decide to.
  • the apparatus for determining a motion vector may determine a difference Tr between the reference index of the neighboring block 46 and the reference index of the current block 31 from the first threshold value THpocdiff1. In comparison, if the difference Tr between the reference indices is greater than the first threshold THpocdiff1, the motion vector 47 of the neighboring block 46 may be determined not to be a reference object or to be referred to without being resized. have.
  • the difference Tr between the reference indexes of the candidate blocks 36 and 46 and the reference index of the current block 31 is the first threshold THpocdiff1. Greater than), at least one of the candidate reference images 38 and 48 indicated by the reference indexes of the candidate blocks 36 and 46 and the current reference images 33 and 43 indicated by the reference indexes of the current block 31 are long term references. It is considered an image.
  • the candidate block is determined using the image distance ratio Tb / Td.
  • the motion vectors 37 and 47 of the candidate blocks 36 and 46 are excluded from the candidate motion vector list by determining that the motion vectors 37 and 47 of (36 and 46) are not referred to at all. Can be.
  • the motion vectors 34 and 44 of the current blocks 31 and 41 may be predicted with reference to the size of the motion vectors 37 and 47 of the candidate blocks 36 and 46 without being adjusted.
  • the motion vector determination apparatus 10 According to a result of comparing the difference value between the POCs of the current image 30, 40 and the current reference image 33, 43 with the second threshold THpocdiff2, the motion vector determination apparatus 10 according to another embodiment. It may be determined whether to refer to the motion vectors 37 and 47 of the candidate blocks 36 and 46 or to adjust the size.
  • the image distance The motion vector 37 of the candidate blocks 36 and 46 is determined to be not a reference object without the need to adjust the magnitude of the motion vectors 37 and 47 of the candidate blocks 36 and 46 using the ratio Tb / Td. , 47) can be excluded from the candidate motion vector list.
  • the motion vectors 34 and 44 of the current blocks 31 and 41 may be predicted with reference to the size of the motion vectors 37 and 47 of the candidate blocks 36 and 46 without being adjusted.
  • the first threshold THpocdiff1 or the second threshold THpocdiff2 may be set to one of the following values. i) number of reference images; ii) twice the number of reference images; iii) the sum of the size of a group of pictures (GOP) and twice the number of reference pictures; iv) the sum of the maximum allowable number (max_num_reorder_pics) of the pictures preceding the current picture in decoding order and consecutive in the output order and twice the number of reference pictures; v) the sum of the maximum delay time (max_output_delay) before the reconstructed picture stored in the decoded picture buffer (DPB) and the number of reference pictures is doubled; vi) twice the size of the GOP; vii) two times the maximum allowable number (max_num_reorder_pics) of pictures preceding the current picture in decoding order and contiguous in the output order; viii) twice the maximum delay time (max_output_delay) before the reconstructed picture stored in the decoded picture buffer
  • the size of the first threshold value THpocdiff1 or the second threshold value THpocdiff2 may include the current image 31, the current reference image 33, and the collocated reference image ( 38) can be set variably according to the relative position. For example, i) when the reference index of the collocated block 36 and the reference index of the current block 31 are both larger or smaller than the POC of the current image 30 (the first case), ii) collocated. There is a case where the POC of the current image 30 exists (second case) between the reference index of the block 36 and the reference index of the current block 31.
  • the size of the first threshold THpocdiff1 or the second threshold THpocdiff2 may be set differently in the first case and the second case.
  • the first threshold THpocdiff1 or the second threshold THpocdiff2 may be variably set based on a temporal depth of the hierarchical structure according to a temporal prediction of the current image 30. For example, when referring to a plurality of images hierarchically for inter prediction of the current image 30, the size of the first threshold THpocdiff1 or the second threshold THpocdiff2 may vary depending on the number of steps. Can be adjusted.
  • first threshold value THpocdiff1 or the second threshold value THpocdiff2 may be variably sized according to the position of the current image 30 in the GOP structure including the current image 30.
  • first threshold value THpocdiff1 or the second threshold value THpocdiff2 may be variably sized according to the POC of the current image 30 in the GOP structure including the current image 30.
  • the first threshold THpocdiff1 or the second threshold THpocdiff2 of the current image 30 used when encoding the video may be encoded and transmitted to the video decoder.
  • the first threshold THpocdiff1 or the second threshold THpocdiff2 may be determined per sequence, per picture, per slice, or adaptively determined according to a picture.
  • the first threshold THpocdiff1 or the first parameter may be applied to a sequence parameter set (SPS), a picture parameter set (PPS), a slice header, and an adaptation parameter set (APS).
  • SPS sequence parameter set
  • PPS picture parameter set
  • APS adaptation parameter set
  • Information about the 2 threshold THpocdiff2 may be stored.
  • the video encoding end and the video decoding end may predict the first image THpocdiff1 or the second threshold THpocdiff2 of the current image 30 without transmitting or receiving them.
  • the first threshold THpocdiff1 or the second threshold THpocdiff2 may be predicted based on a hierarchical structure of temporal prediction of the current image 30 such as random access or low delay.
  • the first threshold THpocdiff1 or the second threshold THpocdiff2 may be predicted based on the POC of the current image 30.
  • FIG. 5 is a flowchart of a video encoding method involving a motion vector determination method, according to an embodiment.
  • a candidate motion vector list including motion vectors of a plurality of candidate blocks referred to for predicting a motion vector of the current block may be determined according to a method of determining a motion vector according to an embodiment.
  • the reference picture of the first candidate block is different from the reference picture of the current block among the plurality of candidate blocks, based on whether the reference picture of the current block and the reference picture of the first candidate block are short-term reference pictures or long-term reference pictures, respectively. Thus, it may be determined whether to use the motion vector of the first candidate block in the candidate motion vector list.
  • both the reference picture of the current block and the reference picture of the candidate block are long term reference pictures, they may be included in the candidate motion vector list without having to adjust the size of the motion vector of the candidate block.
  • one of the reference picture of the current block and the reference picture of the first candidate block is a short-term reference picture and the other is a long-term reference picture, it may be determined not to use the motion vector of the first candidate block in the candidate motion vector list. .
  • the motion vector of the candidate block may be adjusted to be included in the candidate motion vector list.
  • one candidate motion vector among motion vectors included in the candidate motion vector list determined in operation 51 may be selected as a reference motion vector, and the motion vector of the current block may be determined with reference to the selected subtraction motion vector.
  • the motion vector of the current block can be determined. For example, when there is difference information of a motion vector, the motion vector of the current block may be determined by synthesizing the difference information with a reference motion vector.
  • residual data between the reference block and the current block may be generated.
  • the quantized transformation coefficients may be generated by performing transformation and quantization on the residual data generated in operation 53.
  • steps 51, 53, and 55 are performed for each block of the current image, and as the transform and quantization are performed, quantized transform coefficients may be generated for each block.
  • a bitstream may be generated and output by performing entropy encoding on the transform coefficients quantized for each block.
  • the video encoding method according to FIG. 5 may be implemented by a video encoding apparatus.
  • a video encoding processor implementing the video encoding method according to FIG. 5 is mounted inside the video encoding apparatus or operates in conjunction with an external video encoding apparatus to perform video encoding operations including inter prediction, transformation, and quantization of the video encoding apparatus.
  • the internal video decoding processor of the video encoding apparatus according to an embodiment includes not only a separate processor but also a case in which the video encoding apparatus, the central processing unit, or the graphics processing unit implements a basic video encoding operation by including a video encoding processing module. You may.
  • FIG. 6 is a flowchart of a video decoding method involving a motion vector determination method, according to an embodiment.
  • step 61 the reference index of the current block and the quantized transform coefficients, and the motion vector of the candidate block may be received.
  • inverse quantization and inverse transformation may be performed on the quantized transformation coefficients of the current block received in operation 61 to restore the residual data of the current block.
  • a candidate motion vector list for the current block may be determined.
  • the reference picture of the first candidate block is different from the reference picture of the current block among the plurality of candidate blocks, based on whether the reference picture of the current block and the reference picture of the first candidate block are short-term reference pictures or long-term reference pictures, respectively. Thus, it may be determined whether to use the motion vector of the first candidate block in the candidate motion vector list.
  • both the reference picture of the current block and the reference picture of the candidate block are long term reference pictures, they may be included in the candidate motion vector list without having to adjust the size of the motion vector of the candidate block.
  • one of the reference picture of the current block and the reference picture of the first candidate block is a short-term reference picture and the other is a long-term reference picture, it may be determined not to use the motion vector of the first candidate block in the candidate motion vector list. .
  • the motion vector of the candidate block may be adjusted to be included in the candidate motion vector list.
  • one candidate motion vector that is, a reference motion vector
  • the motion vector of the current block may be determined with reference to the selected reference motion vector. For example, when the difference information of the motion vector is received, the motion vector of the current block may be determined by synthesizing the difference information with the reference motion vector.
  • a reference block indicated by the motion vector of the current block may be determined.
  • the current block may be reconstructed by synthesizing the residual data of the determined reference block and the current block.
  • the current image including the restored blocks may be restored.
  • a video including the sequence of reconstructed images may be reconstructed.
  • step 61 may parse the received video stream to extract the reference index of the current block, the quantized transform coefficients, and the motion vector of the candidate block from the video stream.
  • the video decoding processes of steps 61, 63, 65, and 67 may also be performed to generate a reconstructed image to be referred for inter prediction of another image.
  • steps 61, 63, 65, and 67 after receiving the reference index and the quantized transform coefficients of the current block and the motion vector of the candidate block generated through inter prediction, transform, and quantization, steps 63, 65, and 67 are performed step by step.
  • the reconstructed current image may be used as a reference image for inter prediction of another image.
  • the video decoding method according to FIG. 6 may be implemented by a video decoding apparatus.
  • the video decoding processor implementing the video decoding method according to FIG. 6 is mounted inside the video decoding apparatus or operates in conjunction with an external video decoding apparatus, thereby performing video decoding operations including inverse quantization, inverse transformation, and prediction / compensation of the video decoding apparatus. Can be done.
  • the internal video decoding processor of the video decoding apparatus according to an embodiment includes not only a separate processor but also a case in which the video decoding apparatus, the central processing unit, or the graphics processing unit implements the basic video decoding operation by including the video decoding processing module. You may.
  • FIG. 7 is a block diagram of a video encoder 70 including a motion vector determining apparatus, according to an embodiment.
  • the video encoder 70 includes an inter predictor 71 and a transform quantizer 75.
  • the inter prediction unit 71 may include a motion vector determining apparatus 10 and a residual generating unit 73 according to an embodiment.
  • the motion vector determining apparatus 10 determines the motion vector for each block.
  • the motion vector of the current block may be predicted with reference to the motion vector of another block.
  • the motion vector determining apparatus 10 may determine a candidate motion vector list of the current block for motion vector prediction.
  • One reference motion vector may be determined from among candidate motion vectors included in the candidate motion vector list.
  • the motion vector determining apparatus 10 may, when the reference image of the first candidate block is different from the reference image of the current block among a plurality of candidate blocks of the candidate motion vector list of the current block, the reference image and the first block of the current block. Based on whether the reference image of the candidate block is a short reference reference image or a long term reference image, it may be determined whether to use the motion vector of the first candidate block in the candidate motion vector list.
  • the motion vector determining apparatus 10 may determine a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, and predict the motion vector of the current block using the reference motion vector. .
  • the residual generator 73 may determine a reference block indicated by the motion vector of the current block in the reference image of the current block, and generate residual data between the reference block and the current block.
  • the inter prediction unit 71 may output residual data for each block.
  • the transform quantization unit 75 may generate quantized transform coefficients by performing transformation and quantization on the residual data output from the inter prediction unit 71.
  • the transformation quantization unit 75 may perform transformation and quantization on the residual data for each block received from the inter prediction unit 71 to generate quantized transformation coefficients for each block.
  • the video encoder 70 may output the encoded bitstream by performing entropy encoding on the quantized transform coefficients generated by the transform quantizer 75.
  • a reference index, a motion vector, a long term reference index, or the like is also output from the inter prediction unit 71, the video encoder 70 entropys not only the quantized transform coefficient but also the reference index, the motion vector, and the long term reference index.
  • the bitstream may be output by performing encoding.
  • FIG. 8 is a block diagram of a video decoder 80 including a motion vector determining apparatus, according to an embodiment.
  • the video decoder 80 includes an inverse quantized inverse transform unit 81 and a motion compensator 83.
  • the motion compensator 71 may include a motion vector determiner 10 and a block reconstructor 85, according to an exemplary embodiment.
  • the video decoder 80 may receive a reference index of the current block, quantized transform coefficients, and a motion vector of the candidate block.
  • the inverse quantization inverse transform unit 81 may perform inverse quantization and inverse transformation on the received quantized transform coefficients of the current block to restore the residual data of the current block.
  • the motion compensator 83 may reconstruct the current block by performing motion compensation on the current block encoded through inter prediction.
  • the motion vector determining apparatus 10 determines the motion vector for each block.
  • the motion vector determining apparatus 10 may determine a candidate motion vector list of the current block for motion vector prediction.
  • the candidate block may include a collocated block or a neighbor block.
  • the motion vector determining apparatus 10 may determine one reference motion vector among candidate motion vectors included in the candidate motion vector list.
  • the motion vector determining apparatus 10 may, when the reference image of the first candidate block is different from the reference image of the current block among a plurality of candidate blocks of the candidate motion vector list of the current block, the reference image and the first block of the current block. Based on whether the reference image of the candidate block is a short reference reference image or a long term reference image, it may be determined whether to use the motion vector of the first candidate block in the candidate motion vector list.
  • the motion vector determining apparatus 10 determines a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, and predicts and determines the motion vector of the current block using the reference motion vector. Can be.
  • the block reconstruction unit 85 may determine the reference image of the current block indicated by the reference index of the current block received by the video decoder 80.
  • the reference block indicated by the motion vector of the current block determined by the motion vector determination apparatus 10 may be determined, and the current block may be reconstructed by synthesizing the residual data of the reference block and the current block.
  • the motion compensator 83 may reconstruct the current image including the reconstructed blocks after reconstructing the blocks by performing the motion compensation for each block. Accordingly, in the video decoder 80, as the images are reconstructed, a video including the image sequence may be reconstructed.
  • the video decoder 80 may further include an in-loop filtering unit that performs deblocking filtering on the reconstructed image including the current block and the reconstructed blocks that are reconstructed as the blocks are reconstructed.
  • the video decoder 80 may receive the encoded video stream and decode the video stream to reconstruct the video. In this case, the video decoder 80 may parse the received video stream to extract the reference index of the current block, the quantized transform coefficients, and the motion vector of the candidate block from the video stream. In addition, the video decoding unit 80 receives the bitstream and performs entropy decoding on the bitstream to parse and extract the reference index of the current block, the quantized transform coefficients, and the motion vector of the candidate block from the bitstream. It may further include a receiving unit.
  • the video decoder 80 may be combined with the video encoder 70 to generate a reconstructed image to be referred for inter prediction of another image in the video encoder 70 described above with reference to FIG. 7.
  • the video decoder 80 receives the reference index of the current block, the quantized transform coefficients, and the motion vector of the candidate block, which are generated and output from the video encoder 70 through inter prediction, transformation, and quantization.
  • the inverse quantized inverse transform unit 81 and the motion compensator 83 may output the finally reconstructed current image.
  • the reconstructed image output by the video decoding unit 80 may be used as a reference image for inter prediction of another image of the video encoding unit 70.
  • blocks in which video data is divided may be divided into coding units having a tree structure, and prediction units for inter prediction with respect to coding units may be used. As shown.
  • a video encoding method and apparatus therefor, a video decoding method, and an apparatus based on coding units and transformation units of a tree structure according to an embodiment will be described with reference to FIGS. 9 to 22.
  • FIG. 9 is a block diagram of a video encoding apparatus 100 based on coding units having a tree structure, according to an embodiment of the present invention.
  • the video encoding apparatus 100 including video prediction based on coding units having a tree structure may include a maximum coding unit splitter 110, a coding unit determiner 120, and an outputter 130.
  • the video encoding apparatus 100 that includes video prediction based on coding units having a tree structure is abbreviated as “video encoding apparatus 100”.
  • the maximum coding unit splitter 110 may partition the current picture based on the maximum coding unit that is a coding unit of the maximum size for the current picture of the image. If the current picture is larger than the maximum coding unit, image data of the current picture may be split into at least one maximum coding unit.
  • the maximum coding unit may be a data unit having a size of 32x32, 64x64, 128x128, 256x256, or the like, and may be a square data unit having a square of two horizontal and vertical sizes.
  • the image data may be output to the coding unit determiner 120 for at least one maximum coding unit.
  • the coding unit according to an embodiment may be characterized by a maximum size and depth.
  • the depth indicates the number of times the coding unit is spatially divided from the maximum coding unit, and as the depth increases, the coding unit for each depth may be split from the maximum coding unit to the minimum coding unit.
  • the depth of the largest coding unit is the highest depth and the minimum coding unit may be defined as the lowest coding unit.
  • the maximum coding unit decreases as the depth increases, the size of the coding unit for each depth decreases, and thus, the coding unit of the higher depth may include coding units of a plurality of lower depths.
  • the image data of the current picture may be divided into maximum coding units according to the maximum size of the coding unit, and each maximum coding unit may include coding units divided by depths. Since the maximum coding unit is divided according to depths, image data of a spatial domain included in the maximum coding unit may be hierarchically classified according to depths.
  • the maximum depth and the maximum size of the coding unit that limit the total number of times of hierarchically dividing the height and the width of the maximum coding unit may be preset.
  • the coding unit determiner 120 encodes at least one divided region obtained by dividing the region of the largest coding unit for each depth, and determines a depth at which the final encoding result is output for each of the at least one divided region. That is, the coding unit determiner 120 encodes the image data in coding units according to depths for each maximum coding unit of the current picture, and selects a depth at which the smallest coding error occurs to determine the coding depth. The determined coded depth and the image data for each maximum coding unit are output to the outputter 130.
  • Image data in the largest coding unit is encoded based on coding units according to depths according to at least one depth less than or equal to the maximum depth, and encoding results based on the coding units for each depth are compared. As a result of comparing the encoding error of the coding units according to depths, a depth having the smallest encoding error may be selected. At least one coding depth may be determined for each maximum coding unit.
  • the coding unit is divided into hierarchically and the number of coding units increases.
  • a coding error of each data is measured, and whether or not division into a lower depth is determined. Therefore, even in the data included in one largest coding unit, since the encoding error for each depth is different according to the position, the coding depth may be differently determined according to the position. Accordingly, one or more coding depths may be set for one maximum coding unit, and data of the maximum coding unit may be partitioned according to coding units of one or more coding depths.
  • the coding unit determiner 120 may determine coding units having a tree structure included in the current maximum coding unit.
  • the coding units having a tree structure according to an embodiment include coding units having a depth determined as a coding depth among all deeper coding units included in the maximum coding unit.
  • the coding unit of the coding depth may be hierarchically determined according to the depth in the same region within the maximum coding unit, and may be independently determined for the other regions.
  • the coded depth for the current region may be determined independently of the coded depth for the other region.
  • the maximum depth according to an embodiment is an index related to the number of divisions from the maximum coding unit to the minimum coding unit.
  • the first maximum depth according to an embodiment may represent the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the second maximum depth according to an embodiment may represent the total number of depth levels from the maximum coding unit to the minimum coding unit. For example, when the depth of the largest coding unit is 0, the depth of the coding unit obtained by dividing the largest coding unit once may be set to 1, and the depth of the coding unit divided twice may be set to 2. In this case, if the coding unit divided four times from the maximum coding unit is the minimum coding unit, since depth levels of 0, 1, 2, 3, and 4 exist, the first maximum depth is set to 4 and the second maximum depth is set to 5. Can be.
  • Predictive encoding and transformation of the largest coding unit may be performed. Similarly, prediction encoding and transformation are performed based on depth-wise coding units for each maximum coding unit and for each depth less than or equal to the maximum depth.
  • encoding including prediction encoding and transformation should be performed on all the coding units for each depth generated as the depth deepens.
  • the prediction encoding and the transformation will be described based on the coding unit of the current depth among at least one maximum coding unit.
  • the video encoding apparatus 100 may variously select a size or shape of a data unit for encoding image data.
  • the encoding of the image data is performed through prediction encoding, transforming, entropy encoding, and the like.
  • the same data unit may be used in every step, or the data unit may be changed in steps.
  • the video encoding apparatus 100 may select not only a coding unit for encoding the image data, but also a data unit different from the coding unit in order to perform predictive encoding of the image data in the coding unit.
  • prediction encoding may be performed based on a coding unit of a coding depth, that is, a more strange undivided coding unit, according to an embodiment.
  • a more strange undivided coding unit that is the basis of prediction coding is referred to as a 'prediction unit'.
  • the partition in which the prediction unit is divided may include a data unit in which at least one of the prediction unit and the height and the width of the prediction unit are divided.
  • the partition may be a data unit in which the prediction unit of the coding unit is split, and the prediction unit may be a partition having the same size as the coding unit.
  • the partition type includes not only symmetric partitions in which the height or width of the prediction unit is divided by a symmetrical ratio, but also partitions divided in an asymmetrical ratio, such as 1: n or n: 1, by a geometric form. It may optionally include partitioned partitions, arbitrary types of partitions, and the like.
  • the prediction mode of the prediction unit may be at least one of an intra mode, an inter mode, and a skip mode.
  • the intra mode and the inter mode may be performed on partitions having sizes of 2N ⁇ 2N, 2N ⁇ N, N ⁇ 2N, and N ⁇ N.
  • the skip mode may be performed only for partitions having a size of 2N ⁇ 2N.
  • the encoding may be performed independently for each prediction unit within the coding unit to select a prediction mode having the smallest encoding error.
  • the video encoding apparatus 100 may perform conversion of image data of a coding unit based on not only a coding unit for encoding image data, but also a data unit different from the coding unit.
  • the transformation may be performed based on a transformation unit having a size smaller than or equal to the coding unit.
  • the transformation unit may include a data unit for intra mode and a transformation unit for inter mode.
  • the transformation unit in the coding unit is also recursively divided into smaller transformation units, so that the residual data of the coding unit is determined according to the tree structure according to the transformation depth. Can be partitioned according to the conversion unit.
  • a transform depth indicating a number of divisions between the height and the width of the coding unit divided to the transform unit may be set. For example, if the size of the transform unit of the current coding unit of size 2Nx2N is 2Nx2N, the transform depth is 0, the transform depth 1 if the size of the transform unit is NxN, and the transform depth 2 if the size of the transform unit is N / 2xN / 2. Can be. That is, the transformation unit having a tree structure may also be set for the transformation unit according to the transformation depth.
  • the encoded information for each coded depth requires not only the coded depth but also prediction related information and transformation related information. Accordingly, the coding unit determiner 120 may determine not only the coded depth that generated the minimum coding error, but also a partition type obtained by dividing a prediction unit into partitions, a prediction mode for each prediction unit, and a size of a transformation unit for transformation.
  • a method of determining a coding unit, a prediction unit / partition, and a transformation unit according to a tree structure of a maximum coding unit according to an embodiment will be described in detail later with reference to FIGS. 11 to 22.
  • the coding unit determiner 120 may measure a coding error of coding units according to depths using a Lagrangian Multiplier-based rate-distortion optimization technique.
  • the output unit 130 outputs the image data of the maximum coding unit encoded based on the at least one coded depth determined by the coding unit determiner 120 and the information about the encoding modes according to depths in the form of a bit stream.
  • the encoded image data may be a result of encoding residual data of the image.
  • the information about the encoding modes according to depths may include encoding depth information, partition type information of a prediction unit, prediction mode information, size information of a transformation unit, and the like.
  • the coded depth information may be defined using depth-specific segmentation information indicating whether to encode to a coding unit of a lower depth without encoding to the current depth. If the current depth of the current coding unit is a coding depth, since the current coding unit is encoded in a coding unit of the current depth, split information of the current depth may be defined so that it is no longer divided into lower depths. On the contrary, if the current depth of the current coding unit is not the coding depth, encoding should be attempted using the coding unit of the lower depth, and thus split information of the current depth may be defined to be divided into coding units of the lower depth.
  • encoding is performed on the coding unit divided into the coding units of the lower depth. Since at least one coding unit of a lower depth exists in the coding unit of the current depth, encoding may be repeatedly performed for each coding unit of each lower depth, and recursive coding may be performed for each coding unit of the same depth.
  • coding units having a tree structure are determined in one largest coding unit and information about at least one coding mode should be determined for each coding unit of a coding depth, information about at least one coding mode may be determined for one maximum coding unit. Can be.
  • the coding depth may be different for each location, and thus information about the coded depth and the coding mode may be set for the data.
  • the output unit 130 may allocate encoding information about a corresponding coding depth and an encoding mode to at least one of a coding unit, a prediction unit, and a minimum unit included in the maximum coding unit. .
  • the minimum unit according to an embodiment is a square data unit having a size obtained by dividing a minimum coding unit, which is a lowest coding depth, into four divisions.
  • the minimum unit according to an embodiment may be a square data unit having a maximum size that may be included in all coding units, prediction units, partition units, and transformation units included in the maximum coding unit.
  • the encoding information output through the output unit 130 may be classified into encoding information according to depth coding units and encoding information according to prediction units.
  • the encoding information for each coding unit according to depth may include prediction mode information and partition size information.
  • the encoding information transmitted for each prediction unit includes information about an estimation direction of the inter mode, information about a reference image index of the inter mode, information about a motion vector, information about a chroma component of an intra mode, and information about an inter mode of an intra mode. And the like.
  • Information about the maximum size and information about the maximum depth of the coding unit defined for each picture, slice, or GOP may be inserted into a header, a sequence parameter set, or a picture parameter set of the bitstream.
  • the information on the maximum size of the transform unit and the minimum size of the transform unit allowed for the current video may also be output through a header, a sequence parameter set, a picture parameter set, or the like of the bitstream.
  • the output unit 130 may encode and output reference information, prediction information, unidirectional prediction information, slice type information including a fourth slice type, etc. related to the prediction described above with reference to FIGS. 1 to 8.
  • a coding unit according to depths is a coding unit having a size in which a height and a width of a coding unit of one layer higher depth are divided by half. That is, if the size of the coding unit of the current depth is 2Nx2N, the size of the coding unit of the lower depth is NxN.
  • the current coding unit having a size of 2N ⁇ 2N may include up to four lower depth coding units having a size of N ⁇ N.
  • the video encoding apparatus 100 determines a coding unit having an optimal shape and size for each maximum coding unit based on the size and the maximum depth of the maximum coding unit determined in consideration of the characteristics of the current picture. Coding units may be configured. In addition, since each of the maximum coding units may be encoded in various prediction modes and transformation methods, an optimal coding mode may be determined in consideration of image characteristics of coding units having various image sizes.
  • the video encoding apparatus may adjust the coding unit in consideration of the image characteristics while increasing the maximum size of the coding unit in consideration of the size of the image, thereby increasing image compression efficiency.
  • the video encoding apparatus 100 of FIG. 9 may perform operations of the motion vector determining apparatus 10 and the video encoding stage 70 described above with reference to FIG. 1.
  • the coding unit determiner 120 may determine a prediction unit including a partition for inter prediction for each coding unit having a tree structure and perform inter prediction for each prediction unit for each maximum coding unit.
  • the coding unit determiner 120 determines a motion vector for each prediction unit.
  • a motion vector of a current prediction unit may be predicted by referring to a motion vector of another prediction unit.
  • the motion vector determining apparatus 10 may determine a candidate motion vector list of the current prediction unit for motion vector prediction.
  • One reference motion vector may be determined from among candidate motion vectors included in the candidate motion vector list.
  • the candidate prediction unit may be a neighboring prediction unit adjacent to the current prediction unit in the current image or a collated prediction unit in the collocated image.
  • the coding unit determiner 120 determines that the reference image of the first candidate prediction unit is different from the reference image of the current prediction unit among the plurality of candidate prediction units of the candidate motion vector list of the current prediction unit. On the basis of whether the reference picture and the reference picture of the first candidate prediction unit are short-term reference pictures or long-term reference pictures, respectively, it may be determined whether to use the motion vector of the first candidate prediction unit in the candidate motion vector list.
  • the reference pictures of the current prediction unit and the first candidate prediction unit are short-term reference pictures or long-term reference pictures, respectively.
  • both the reference picture of the current prediction unit and the reference picture of the candidate prediction unit are long term reference pictures, they may be included in the candidate motion vector list without the need to adjust the size of the motion vector of the candidate prediction unit.
  • the motion vector of the first candidate prediction unit is not used in the candidate motion vector list. Can be determined.
  • the motion vector of the candidate prediction unit may be adjusted and included in the candidate motion vector list.
  • the coding unit determiner 120 determines a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, predicts a motion vector of the current prediction unit by using the reference motion vector, and You can decide.
  • the coding unit determiner 120 may determine the reference picture of the current prediction unit according to the POC indicated by the reference index of the current prediction unit. Regardless of whether the reference picture is a long-term reference picture or a short-term reference picture, the reference index indicates a POC and the picture indicated by the POC may be determined as the reference picture.
  • the coding unit determiner 120 may determine a reference block indicated by the motion vector of the current block in the reference image of the current prediction unit, and generate residual data between the reference prediction unit and the current prediction unit.
  • the coding unit determiner 120 may output residual data for each prediction unit.
  • the coding unit determiner 120 may generate quantized transform coefficients by performing transformation and quantization on transformation units of a coding unit including residual data for each prediction unit.
  • the coding unit determiner 120 may generate quantized transformation coefficients for each transformation unit.
  • the coding unit determiner 120 may perform the operations of the video encoding unit 80 described above with reference to FIG. 8 to generate a reference image for inter prediction of the prediction unit.
  • the coding unit determiner 120 may reconstruct the residual data of the current block by performing inverse quantization and inverse transformation on the received quantized transform coefficients of the current prediction unit.
  • the current prediction unit may be reconstructed by performing motion compensation on the current prediction unit encoded through inter prediction.
  • the coding unit determiner 120 determines a candidate motion vector list of the current prediction unit and, among the plurality of candidate prediction units of the candidate motion vector list, when the reference picture of the first candidate block is different from the reference picture of the current block. In addition, based on whether the reference picture of the current block and the reference picture of the first candidate block are short-term reference pictures or long-term reference pictures, respectively, whether to use a motion vector of the first candidate block in the candidate motion vector list may be determined. .
  • the coding unit determiner 120 determines a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, and predicts and determines a motion vector of the current block using the reference motion vector. Can be.
  • the coding unit determiner 120 may determine a reference image of the current prediction unit indicated by the received reference index of the current prediction unit.
  • a reference picture of the current prediction unit may be determined according to the POC indicated by the received reference index of the current prediction unit. Regardless of whether the reference picture is a long-term reference picture or a short-term reference picture, the reference index indicates a POC and the picture indicated by the POC may be determined as the reference picture.
  • the reference prediction unit indicated by the motion vector of the current prediction unit may be determined, and the current prediction unit may be restored by synthesizing the residual data of the reference prediction unit and the current prediction unit.
  • the coding unit determiner 120 may reconstruct the current image including the reconstructed prediction units and reconstruct each prediction unit as a result of performing motion compensation for each prediction unit.
  • the reconstructed prediction unit and image may be a reference object of another prediction unit and image.
  • FIG. 10 is a block diagram of a video decoding apparatus 200 based on coding units having a tree structure, according to an embodiment of the present invention.
  • a video decoding apparatus 200 including video prediction based on coding units having a tree structure includes a receiver 210, image data and encoding information extractor 220, and image data decoder 230. do.
  • the video decoding apparatus 200 that includes video prediction based on coding units having a tree structure is abbreviated as “video decoding apparatus 200”.
  • Definitions of various terms such as a coding unit, a depth, a prediction unit, a transformation unit, and information about various encoding modes for a decoding operation of the video decoding apparatus 200 according to an embodiment may be described with reference to FIG. 9 and the video encoding apparatus 100. Same as described above with reference.
  • the receiver 210 receives and parses a bitstream of an encoded video.
  • the image data and encoding information extractor 220 extracts image data encoded for each coding unit from the parsed bitstream according to coding units having a tree structure for each maximum coding unit, and outputs the encoded image data to the image data decoder 230.
  • the image data and encoding information extractor 220 may extract information about a maximum size of a coding unit of the current picture from a header, a sequence parameter set, or a picture parameter set for the current picture.
  • the image data and encoding information extractor 220 extracts information about a coded depth and an encoding mode for the coding units having a tree structure for each maximum coding unit, from the parsed bitstream.
  • the extracted information about the coded depth and the coding mode is output to the image data decoder 230. That is, the image data of the bit string may be divided into maximum coding units so that the image data decoder 230 may decode the image data for each maximum coding unit.
  • the information about the coded depth and the encoding mode for each largest coding unit may be set with respect to one or more coded depth information, and the information about the coding mode according to the coded depths may include partition type information, prediction mode information, and transformation unit of the corresponding coding unit. May include size information and the like.
  • split information for each depth may be extracted as the coded depth information.
  • the information about the coded depth and the encoding mode according to the maximum coding units extracted by the image data and the encoding information extractor 220 may be encoded according to the depth according to the maximum coding unit, as in the video encoding apparatus 100 according to an embodiment.
  • the image data and the encoding information extractor 220 may determine the predetermined data.
  • Information about a coded depth and an encoding mode may be extracted for each unit. If the information about the coded depth and the coding mode of the maximum coding unit is recorded for each of the predetermined data units, the predetermined data units having the information about the same coded depth and the coding mode are inferred as data units included in the same maximum coding unit. Can be.
  • the image data decoder 230 reconstructs the current picture by decoding image data of each maximum coding unit based on the information about the coded depth and the encoding mode for each maximum coding unit. That is, the image data decoder 230 may decode the encoded image data based on the read partition type, the prediction mode, and the transformation unit for each coding unit among the coding units having the tree structure included in the maximum coding unit. Can be.
  • the decoding process may include a prediction process including intra prediction and motion compensation, and an inverse transform process.
  • the image data decoder 230 may perform intra prediction or motion compensation according to each partition and prediction mode for each coding unit based on partition type information and prediction mode information of the prediction unit of the coding unit for each coding depth. .
  • the image data decoder 230 may read transform unit information having a tree structure for each coding unit, and perform inverse transform based on the transformation unit for each coding unit, for inverse transformation for each largest coding unit. Through inverse transformation, the pixel value of the spatial region of the coding unit may be restored.
  • the image data decoder 230 may determine the coded depth of the current maximum coding unit by using the split information for each depth. If the split information indicates that the split information is no longer split at the current depth, the current depth is the coded depth. Therefore, the image data decoder 230 may decode the coding unit of the current depth using the partition type, the prediction mode, and the transformation unit size information of the prediction unit with respect to the image data of the current maximum coding unit.
  • the image data decoder 230 It may be regarded as one data unit to be decoded in the same encoding mode.
  • the decoding of the current coding unit may be performed by obtaining information about an encoding mode for each coding unit determined in this way.
  • the image data decoder 230 of the video decoding apparatus 200 of FIG. 10 may perform operations of the motion vector determining apparatus 10 and the video decoding terminal 80 described above with reference to FIG. 1.
  • the image data decoder 230 may determine a prediction unit for motion compensation for each coding unit having a tree structure and perform motion compensation for each prediction unit for each maximum coding unit.
  • the image data decoder 230 may reconstruct the residual data of the current block by performing inverse quantization and inverse transformation on the received quantized transform coefficients of the current prediction unit.
  • the current prediction unit may be reconstructed by performing motion compensation on the current prediction unit encoded through inter prediction.
  • the image data decoder 230 determines a candidate motion vector list of the current prediction unit and, among the plurality of candidate prediction units of the candidate motion vector list, when the reference picture of the first candidate block is different from the reference picture of the current block. In addition, based on whether the reference picture of the current block and the reference picture of the first candidate block are short-term reference pictures or long-term reference pictures, respectively, whether to use a motion vector of the first candidate block in the candidate motion vector list may be determined. .
  • the candidate prediction unit may be a neighboring prediction unit adjacent to the current prediction unit in the current image or a collated prediction unit in the collocated image.
  • the reference pictures of the current prediction unit and the first candidate prediction unit are short-term reference pictures or long-term reference pictures, respectively.
  • both the reference picture of the current prediction unit and the reference picture of the candidate prediction unit are long term reference pictures, they may be included in the candidate motion vector list without the need to adjust the size of the motion vector of the candidate prediction unit.
  • the motion vector of the first candidate prediction unit is not used in the candidate motion vector list. Can be determined.
  • the motion vector of the candidate prediction unit may be adjusted and included in the candidate motion vector list.
  • the image data decoder 230 determines a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, and predicts and determines a motion vector of the current block by using the reference motion vector. Can be.
  • the image data decoder 230 may determine the reference image of the current prediction unit according to the POC indicated by the received reference index of the current prediction unit. Regardless of whether the reference picture is a long-term reference picture or a short-term reference picture, the reference index indicates a POC and the picture indicated by the POC may be determined as the reference picture.
  • the reference prediction unit indicated by the motion vector of the current prediction unit may be determined, and the current prediction unit may be restored by synthesizing the residual data of the reference prediction unit and the current prediction unit.
  • the image data decoder 230 may reconstruct each prediction unit as a result of performing motion compensation for each prediction unit, and reconstruct the current image including the reconstruction prediction units. Accordingly, as the images are reconstructed, the video including the image sequence may be reconstructed. Also, the reconstructed prediction unit and the reconstructed image may be reference objects of other prediction units and the image.
  • the video decoding apparatus 200 may obtain information about a coding unit that generates a minimum coding error by recursively encoding each maximum coding unit in the encoding process, and use the same to decode the current picture. That is, decoding of encoded image data of coding units having a tree structure determined as an optimal coding unit for each maximum coding unit can be performed.
  • the image data can be efficiently used according to the coding unit size and the encoding mode that are adaptively determined according to the characteristics of the image by using the information about the optimum encoding mode transmitted from the encoding end. Can be decoded and restored.
  • FIG. 11 illustrates a concept of coding units, according to an embodiment of the present invention.
  • a size of a coding unit may be expressed by a width x height, and may include 32x32, 16x16, and 8x8 from a coding unit having a size of 64x64.
  • Coding units of size 64x64 may be partitioned into partitions of size 64x64, 64x32, 32x64, and 32x32, coding units of size 32x32 are partitions of size 32x32, 32x16, 16x32, and 16x16, and coding units of size 16x16 are 16x16.
  • Coding units of size 8x8 may be divided into partitions of size 8x8, 8x4, 4x8, and 4x4, into partitions of 16x8, 8x16, and 8x8.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 2.
  • the resolution is set to 1920x1080, the maximum size of the coding unit is 64, and the maximum depth is 3.
  • the resolution is set to 352x288, the maximum size of the coding unit is 16, and the maximum depth is 1.
  • the maximum depth illustrated in FIG. 11 represents the total number of divisions from the maximum coding unit to the minimum coding unit.
  • the maximum size of the coding size is relatively large not only to improve the coding efficiency but also to accurately shape the image characteristics. Accordingly, the video data 310 or 320 having a higher resolution than the video data 330 may be selected to have a maximum size of 64.
  • the coding unit 315 of the video data 310 is divided twice from a maximum coding unit having a long axis size of 64, and the depth is deepened by two layers, so that the long axis size is 32, 16. Up to coding units may be included.
  • the coding unit 335 of the video data 330 is divided once from coding units having a long axis size of 16, and the depth is deepened by one layer to increase the long axis size to 8. Up to coding units may be included.
  • the coding unit 325 of the video data 320 is divided three times from the largest coding unit having a long axis size of 64, and the depth is three layers deep, so that the long axis size is 32, 16. , Up to 8 coding units may be included. As the depth increases, the expressive power of the detailed information may be improved.
  • FIG. 12 is a block diagram of an image encoder 400 based on coding units, according to an embodiment of the present invention.
  • the image encoder 400 includes operations performed by the encoding unit determiner 120 of the video encoding apparatus 100 to encode image data. That is, the intra predictor 410 performs intra prediction on the coding unit of the intra mode among the current frame 405, and the motion estimator 420 and the motion compensator 425 are the current frame 405 of the inter mode. And the inter frame estimation and the motion compensation using the reference frame 495.
  • Data output from the intra predictor 410, the motion estimator 420, and the motion compensator 425 is output as a quantized transform coefficient through the transform unit 430 and the quantization unit 440.
  • the quantized transform coefficients are restored to the data of the spatial domain through the inverse quantizer 460 and the inverse transformer 470, and the recovered data of the spatial domain is passed through the deblocking block 480 and the loop filtering unit 490. Processed and output to the reference frame 495.
  • the quantized transform coefficients may be output to the bitstream 455 via the entropy encoder 450.
  • an intra predictor 410, a motion estimator 420, a motion compensator 425, and a transformer are all maximal per maximum coding unit.
  • the operation based on each coding unit among the coding units having a tree structure should be performed.
  • the intra predictor 410, the motion estimator 420, and the motion compensator 425 partition each coding unit among coding units having a tree structure in consideration of the maximum size and the maximum depth of the current maximum coding unit.
  • a prediction mode, and the transform unit 430 should determine the size of a transform unit in each coding unit among the coding units having a tree structure.
  • the motion estimation unit 420 may predict the motion vector of the current prediction unit (partition) by referring to the motion vector of another prediction unit for PU merging or AMVP. If the reference image of the first candidate prediction unit is different from the reference frame 495 of the current prediction unit, among the plurality of candidate prediction units of the candidate motion vector list of the current prediction unit, the motion estimation unit 420 may include the current prediction unit. Based on whether the reference frame 495 and the reference image of the first candidate prediction unit are short-term reference images or long-term reference images, respectively, whether to use the motion vector of the first candidate prediction unit in the candidate motion vector list may be determined. have.
  • the motion estimator 420 includes the candidate motion vector in the candidate motion vector list without adjusting the size of the candidate motion vector, or In the candidate motion vector list, it may be determined not to use the motion vector of the first candidate prediction unit.
  • the motion estimator 420 determines a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, and predicts and determines a motion vector of the current prediction unit by using the reference motion vector. Can be.
  • the motion estimation unit 420 may determine a reference block indicated by the motion vector of the current block in the reference frame 495 of the current prediction unit, and generate residual data between the reference prediction unit and the current prediction unit. Accordingly, the motion estimation unit 420 may output residual data for each prediction unit.
  • the motion compensation unit 425 may also determine that the reference image of the first candidate block is different from the reference frame 495 of the current block among a plurality of candidate prediction units of the candidate motion vector list of the current prediction unit. Based on whether at least one of the reference frame 495 and the reference image of the first candidate block is a long term reference image, whether to use or exclude the motion vector of the first candidate block in the candidate motion vector list without adjusting the size You can decide whether or not.
  • the motion compensator 425 may determine a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, and predict and determine a motion vector of the current block by using the motion vector. .
  • the motion compensator 425 may determine a reference prediction unit indicated by the motion vector of the current prediction unit in the reference frame 495, and may synthesize the reference prediction unit and residual data of the current prediction unit to restore the current prediction unit. have.
  • the motion compensation unit 425 may reconstruct each prediction unit and reconstruct the current image including the reconstruction prediction units as a result of performing the motion compensation for each prediction unit.
  • the reconstructed prediction unit and image may be a reference object of another prediction unit and image.
  • FIG. 13 is a block diagram of an image decoder 500 based on coding units, according to an embodiment of the present invention.
  • the bitstream 505 is parsed through the parsing unit 510, and the encoded image data to be decoded and information about encoding necessary for decoding are parsed.
  • the encoded image data is output as inverse quantized data through the entropy decoding unit 520 and the inverse quantization unit 530, and the image data of the spatial domain is restored through the inverse transformation unit 540.
  • the intra prediction unit 550 performs intra prediction on the coding unit of the intra mode, and the motion compensator 560 uses the reference frame 585 together to apply the coding unit of the inter mode. Perform motion compensation for the
  • Data in the spatial domain that has passed through the intra predictor 550 and the motion compensator 560 may be post-processed through the deblocking unit 570 and the loop filtering unit 580 to be output to the reconstructed frame 595.
  • the post-processed data through the deblocking unit 570 and the loop filtering unit 580 may be output as the reference frame 585.
  • step-by-step operations after the parser 510 of the image decoder 500 may be performed.
  • the parser 510, the entropy decoder 520, the inverse quantizer 530, and the inverse transform unit 540 which are components of the image decoder 500, may be used.
  • the intra predictor 550, the motion compensator 560, the deblocking unit 570, and the loop filtering unit 580 must all perform operations based on coding units having a tree structure for each maximum coding unit. do.
  • the intra predictor 550 and the motion compensator 560 determine partitions and prediction modes for each coding unit having a tree structure, and the inverse transform unit 540 must determine the size of the transform unit for each coding unit. .
  • the motion compensator 560 is a current block when a reference image of the first candidate block is different from a reference frame 585 of the current block among a plurality of candidate prediction units of the candidate motion vector list of the current prediction unit. Based on whether at least one of the reference frame 585 and the reference image of the first candidate block is a long term reference image, the candidate motion vector list may be used without adjusting the size of the motion vector of the first candidate block. You can decide whether or not to do so.
  • the motion compensator 560 may determine a reference motion vector by selecting an optimal candidate motion vector among motion vectors included in the candidate motion vector list, and predict and determine a motion vector of the current block by using the motion vector. .
  • the motion compensator 560 determines a reference frame 585 indicated by the POC according to the reference index of the current prediction unit, and determines a reference prediction unit indicated by the motion vector of the current prediction unit within the reference frame 585.
  • the current prediction unit may be restored by synthesizing the residual data of the reference prediction unit and the current prediction unit.
  • the motion compensation unit 560 may reconstruct each prediction unit and generate a reconstructed image including the reconstruction prediction units.
  • the reconstructed prediction unit and the reconstructed image may be reference objects of other prediction units and the image.
  • FIG. 14 is a diagram of deeper coding units according to depths, and partitions, according to an embodiment of the present invention.
  • the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment use hierarchical coding units to consider image characteristics.
  • the maximum height, width, and maximum depth of the coding unit may be adaptively determined according to the characteristics of the image, and may be variously set according to a user's request. According to the maximum size of the preset coding unit, the size of the coding unit for each depth may be determined.
  • the hierarchical structure 600 of a coding unit illustrates a case in which a maximum height and a width of a coding unit are 64 and a maximum depth is four.
  • the maximum depth indicates the total number of divisions from the maximum coding unit to the minimum coding unit. Since the depth deepens along the vertical axis of the hierarchical structure 600 of the coding unit according to an embodiment, the height and the width of the coding unit for each depth are divided.
  • a prediction unit and a partition on which the prediction encoding of each depth-based coding unit is shown along the horizontal axis of the hierarchical structure 600 of the coding unit are illustrated.
  • the coding unit 610 has a depth of 0 as the largest coding unit of the hierarchical structure 600 of the coding unit, and the size, ie, the height and width, of the coding unit is 64x64.
  • a depth deeper along the vertical axis includes a coding unit 620 of depth 1 having a size of 32x32, a coding unit 630 of depth 2 having a size of 16x16, and a coding unit 640 of depth 3 having a size of 8x8.
  • a coding unit 640 of depth 3 having a size of 8 ⁇ 8 is a coding unit having a lowest depth and is a minimum coding unit.
  • Prediction units and partitions of the coding unit are arranged along the horizontal axis for each depth. That is, if the coding unit 610 of size 64x64 having a depth of zero is a prediction unit, the prediction unit may include a partition 610 of size 64x64, partitions 612 of size 64x32, and size included in the coding unit 610 of size 64x64. 32x64 partitions 614, 32x32 partitions 616.
  • the prediction unit of the coding unit 620 having a size of 32x32 having a depth of 1 includes a partition 620 of size 32x32, partitions 622 of size 32x16 and a partition of size 16x32 included in the coding unit 620 of size 32x32. 624, partitions 626 of size 16x16.
  • the prediction unit of the coding unit 630 of size 16x16 having a depth of 2 includes a partition 630 of size 16x16, partitions 632 of size 16x8, and a partition of size 8x16 included in the coding unit 630 of size 16x16. 634, partitions 636 of size 8x8.
  • the prediction unit of the coding unit 640 of size 8x8 having a depth of 3 includes a partition 640 of size 8x8, partitions 642 of size 8x4 and a partition of size 4x8 included in the coding unit 640 of size 8x8. 644, partitions 646 of size 4x4.
  • the coding unit determiner 120 of the video encoding apparatus 100 may determine a coding depth of the maximum coding unit 610.
  • the number of deeper coding units according to depths for including data having the same range and size increases as the depth increases. For example, four coding units of depth 2 are required for data included in one coding unit of depth 1. Therefore, in order to compare the encoding results of the same data for each depth, each of the coding units having one depth 1 and four coding units having four depths 2 should be encoded.
  • encoding may be performed for each prediction unit of a coding unit according to depths along a horizontal axis of the hierarchical structure 600 of the coding unit, and a representative coding error, which is the smallest coding error at a corresponding depth, may be selected. .
  • a depth deeper along the vertical axis of the hierarchical structure 600 of the coding unit the encoding may be performed for each depth, and the minimum coding error may be searched by comparing the representative coding error for each depth.
  • the depth and the partition in which the minimum coding error occurs in the maximum coding unit 610 may be selected as the coding depth and the partition type of the maximum coding unit 610.
  • FIG. 15 illustrates a relationship between a coding unit and transformation units, according to an embodiment of the present invention.
  • the video encoding apparatus 100 encodes or decodes an image in coding units having a size smaller than or equal to the maximum coding unit for each maximum coding unit.
  • the size of a transformation unit for transformation in the encoding process may be selected based on a data unit that is not larger than each coding unit.
  • the 32x32 size conversion unit 720 is The conversion can be performed.
  • the data of the 64x64 coding unit 710 is transformed into 32x32, 16x16, 8x8, and 4x4 transform units of 64x64 size or less, and then encoded, and the transform unit having the least error with the original is selected. Can be.
  • FIG. 16 illustrates encoding information according to depths, according to an embodiment of the present invention.
  • the output unit 130 of the video encoding apparatus 100 is information about an encoding mode, and information about a partition type 800 and information 810 about a prediction mode for each coding unit of each coded depth.
  • the information 820 about the size of the transformation unit may be encoded and transmitted.
  • the information about the partition type 800 is a data unit for predictive encoding of the current coding unit and indicates information about a partition type in which the prediction unit of the current coding unit is divided.
  • the current coding unit CU_0 of size 2Nx2N may be any one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It can be divided and used.
  • the information 800 about the partition type of the current coding unit represents one of a partition 802 of size 2Nx2N, a partition 804 of size 2NxN, a partition 806 of size Nx2N, and a partition 808 of size NxN. It is set to.
  • Information 810 relating to the prediction mode indicates the prediction mode of each partition. For example, through the information 810 about the prediction mode, whether the partition indicated by the information 800 about the partition type is performed in one of the intra mode 812, the inter mode 814, and the skip mode 816 is performed. Whether or not can be set.
  • the information about the transform unit size 820 indicates whether to transform the current coding unit based on the transform unit.
  • the transform unit may be one of a first intra transform unit size 822, a second intra transform unit size 824, a first inter transform unit size 826, and a second intra transform unit size 828. have.
  • the image data and encoding information extractor 210 of the video decoding apparatus 200 may include information about a partition type 800, information 810 about a prediction mode, and transformation for each depth-based coding unit. Information 820 about the unit size may be extracted and used for decoding.
  • 17 is a diagram of deeper coding units according to depths, according to an embodiment of the present invention.
  • Segmentation information may be used to indicate a change in depth.
  • the split information indicates whether a coding unit of a current depth is split into coding units of a lower depth.
  • the prediction unit 910 for predictive encoding of the coding unit 900 having depth 0 and 2N_0x2N_0 size includes a partition type 912 having a size of 2N_0x2N_0, a partition type 914 having a size of 2N_0xN_0, a partition type 916 having a size of N_0x2N_0, and a N_0xN_0 It may include a partition type 918 of size. Although only partitions 912, 914, 916, and 918 in which the prediction unit is divided by a symmetrical ratio are illustrated, as described above, the partition type is not limited thereto, and asymmetric partitions, arbitrary partitions, geometric partitions, and the like. It may include.
  • prediction coding For each partition type, prediction coding must be performed repeatedly for one 2N_0x2N_0 partition, two 2N_0xN_0 partitions, two N_0x2N_0 partitions, and four N_0xN_0 partitions.
  • prediction encoding For partitions having a size 2N_0x2N_0, a size N_0x2N_0, a size 2N_0xN_0, and a size N_0xN_0, prediction encoding may be performed in an intra mode and an inter mode. The skip mode may be performed only for prediction encoding on partitions having a size of 2N_0x2N_0.
  • the depth 0 is changed to 1 and split (920), and the encoding is repeatedly performed on the depth 2 and the coding units 930 of the partition type having the size N_0xN_0.
  • the depth 1 is changed to the depth 2 and divided (950), and repeatedly for the depth 2 and the coding units 960 of the size N_2xN_2.
  • the encoding may be performed to search for a minimum encoding error.
  • depth-based coding units may be set until depth d-1, and split information may be set up to depth d-2. That is, when encoding is performed from the depth d-2 to the depth d-1 to the depth d-1, the prediction encoding of the coding unit 980 of the depth d-1 and the size 2N_ (d-1) x2N_ (d-1)
  • the prediction unit for 990 is a partition type 992 of size 2N_ (d-1) x2N_ (d-1), partition type 994 of size 2N_ (d-1) xN_ (d-1), size A partition type 996 of N_ (d-1) x2N_ (d-1) and a partition type 998 of size N_ (d-1) xN_ (d-1) may be included.
  • one partition 2N_ (d-1) x2N_ (d-1), two partitions 2N_ (d-1) xN_ (d-1), two sizes N_ (d-1) x2N_ Prediction encoding is repeatedly performed for each partition of (d-1) and four partitions of size N_ (d-1) xN_ (d-1), so that a partition type having a minimum encoding error may be searched. .
  • the coding unit CU_ (d-1) of the depth d-1 is no longer
  • the encoding depth of the current maximum coding unit 900 may be determined as the depth d-1, and the partition type may be determined as N_ (d-1) xN_ (d-1) without going through a division process into lower depths.
  • split information is not set for the coding unit 952 having the depth d-1.
  • the data unit 999 may be referred to as a 'minimum unit' for the current maximum coding unit.
  • the minimum unit may be a square data unit having a size obtained by dividing the minimum coding unit, which is the lowest coding depth, into four divisions.
  • the video encoding apparatus 100 compares the encoding errors for each depth of the coding unit 900, selects a depth at which the smallest encoding error occurs, and determines a coding depth.
  • the partition type and the prediction mode may be set to the encoding mode of the coded depth.
  • the depth with the smallest error can be determined by comparing the minimum coding errors for all depths of depths 0, 1, ..., d-1, d, and can be determined as the coding depth.
  • the coded depth, the partition type of the prediction unit, and the prediction mode may be encoded and transmitted as information about an encoding mode.
  • the coding unit since the coding unit must be split from the depth 0 to the coded depth, only the split information of the coded depth is set to '0', and the split information for each depth except the coded depth should be set to '1'.
  • the image data and encoding information extractor 220 of the video decoding apparatus 200 may extract information about a coding depth and a prediction unit for the coding unit 900 and use the same to decode the coding unit 912. Can be.
  • the video decoding apparatus 200 may identify a depth having split information of '0' as a coding depth using split information according to depths, and may use it for decoding by using information about an encoding mode for a corresponding depth. have.
  • the coding units 1010 are coding units according to coding depths determined by the video encoding apparatus 100 according to an embodiment with respect to the maximum coding unit.
  • the prediction unit 1060 is partitions of prediction units of each coding depth of each coding depth among the coding units 1010, and the transformation unit 1070 is transformation units of each coding depth for each coding depth.
  • the depth-based coding units 1010 have a depth of 0
  • the coding units 1012 and 1054 have a depth of 1
  • the coding units 1014, 1016, 1018, 1028, 1050, and 1052 have depths.
  • coding units 1020, 1022, 1024, 1026, 1030, 1032, and 1048 have a depth of three
  • coding units 1040, 1042, 1044, and 1046 have a depth of four.
  • partitions 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 of the prediction units 1060 are obtained by splitting coding units. That is, partitions 1014, 1022, 1050, and 1054 are partition types of 2NxN, partitions 1016, 1048, and 1052 are partition types of Nx2N, and partitions 1032 are partition types of NxN. Prediction units and partitions of the coding units 1010 according to depths are smaller than or equal to each coding unit.
  • the image data of the part 1052 of the transformation units 1070 is transformed or inversely transformed into a data unit having a smaller size than the coding unit.
  • the transformation units 1014, 1016, 1022, 1032, 1048, 1050, 1052, and 1054 are data units having different sizes or shapes when compared to corresponding prediction units and partitions among the prediction units 1060. That is, the video encoding apparatus 100 according to an embodiment and the video decoding apparatus 200 according to an embodiment may be intra prediction / motion estimation / motion compensation operations and transform / inverse transform operations for the same coding unit. Each can be performed on a separate data unit.
  • coding is performed recursively for each coding unit having a hierarchical structure for each largest coding unit to determine an optimal coding unit.
  • coding units having a recursive tree structure may be configured.
  • the encoding information may include split information about a coding unit, partition type information, prediction mode information, and transformation unit size information. Table 1 below shows an example that can be set in the video encoding apparatus 100 and the video decoding apparatus 200 according to an embodiment.
  • the output unit 130 of the video encoding apparatus 100 outputs encoding information about coding units having a tree structure
  • the encoding information extraction unit of the video decoding apparatus 200 according to an embodiment 220 may extract encoding information about coding units having a tree structure from the received bitstream.
  • the split information indicates whether the current coding unit is split into coding units of a lower depth. If the split information of the current depth d is 0, partition type information, prediction mode, and transform unit size information are defined for the coded depth because the depth in which the current coding unit is no longer divided into the lower coding units is a coded depth. Can be. If it is to be further split by the split information, encoding should be performed independently for each coding unit of the divided four lower depths.
  • the prediction mode may be represented by one of an intra mode, an inter mode, and a skip mode.
  • Intra mode and inter mode can be defined in all partition types, and skip mode can be defined only in partition type 2Nx2N.
  • the partition type information indicates the symmetric partition types 2Nx2N, 2NxN, Nx2N, and NxN, in which the height or width of the prediction unit is divided by the symmetric ratio, and the asymmetric partition types 2NxnU, 2NxnD, nLx2N, nRx2N, which are divided by the asymmetric ratio.
  • the asymmetric partition types 2NxnU and 2NxnD are divided into heights 1: 3 and 3: 1, respectively, and the asymmetric partition types nLx2N and nRx2N are divided into 1: 3 and 3: 1 widths, respectively.
  • the conversion unit size may be set to two kinds of sizes in the intra mode and two kinds of sizes in the inter mode. That is, if the transformation unit split information is 0, the size of the transformation unit is set to the size 2Nx2N of the current coding unit. If the transform unit split information is 1, a transform unit having a size obtained by dividing the current coding unit may be set. In addition, if the partition type for the current coding unit having a size of 2Nx2N is a symmetric partition type, the size of the transform unit may be set to NxN, and if the asymmetric partition type is N / 2xN / 2.
  • Encoding information of coding units having a tree structure may be allocated to at least one of a coding unit, a prediction unit, and a minimum unit unit of a coding depth.
  • the coding unit of the coding depth may include at least one prediction unit and at least one minimum unit having the same encoding information.
  • the encoding information held by each adjacent data unit is checked, it may be determined whether the adjacent data units are included in the coding unit having the same coding depth.
  • the coding unit of the corresponding coding depth may be identified by using the encoding information held by the data unit, the distribution of the coded depths within the maximum coding unit may be inferred.
  • the encoding information of the data unit in the depth-specific coding unit adjacent to the current coding unit may be directly referred to and used.
  • the prediction coding when the prediction coding is performed by referring to the neighboring coding unit, the data adjacent to the current coding unit in the coding unit according to depths is encoded by using the encoding information of the adjacent coding units according to depths.
  • the neighboring coding unit may be referred to by searching.
  • FIG. 21 illustrates a relationship between a coding unit, a prediction unit, and a transformation unit, according to encoding mode information of Table 1.
  • the maximum coding unit 1300 includes coding units 1302, 1304, 1306, 1312, 1314, 1316, and 1318 of a coded depth. Since one coding unit 1318 is a coding unit of a coded depth, split information may be set to zero.
  • the partition type information of the coding unit 1318 having a size of 2Nx2N is partition type 2Nx2N 1322, 2NxN 1324, Nx2N 1326, NxN 1328, 2NxnU 1332, 2NxnD 1334, nLx2N (1336). And nRx2N 1338.
  • the transform unit split information (TU size flag) is a type of transform index, and a size of a transform unit corresponding to the transform index may be changed according to a prediction unit type or a partition type of a coding unit.
  • the partition type information is set to one of the symmetric partition types 2Nx2N 1322, 2NxN 1324, Nx2N 1326, and NxN 1328
  • the conversion unit partition information is 0, a conversion unit of size 2Nx2N ( 1342 is set, and if the transform unit split information is 1, a transform unit 1344 of size NxN may be set.
  • the partition type information is set to one of the asymmetric partition types 2NxnU (1332), 2NxnD (1334), nLx2N (1336), and nRx2N (1338), if the conversion unit partition information (TU size flag) is 0, a conversion unit of size 2Nx2N ( 1352 is set, and if the transform unit split information is 1, a transform unit 1354 of size N / 2 ⁇ N / 2 may be set.
  • the conversion unit splitting information (TU size flag) described above with reference to FIG. 21 is a flag having a value of 0 or 1, but the conversion unit splitting information according to an embodiment is not limited to a 1-bit flag and is set to 0 according to a setting. , 1, 2, 3., etc., and may be divided hierarchically.
  • the transformation unit partition information may be used as an embodiment of the transformation index.
  • the size of the transformation unit actually used may be expressed.
  • the video encoding apparatus 100 may encode maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information.
  • the encoded maximum transform unit size information, minimum transform unit size information, and maximum transform unit split information may be inserted into the SPS.
  • the video decoding apparatus 200 may use the maximum transform unit size information, the minimum transform unit size information, and the maximum transform unit split information to use for video decoding.
  • the maximum transform unit split information is defined as 'MaxTransformSizeIndex'
  • the minimum transform unit size is 'MinTransformSize'
  • the transform unit split information is 0,
  • the minimum transform unit possible in the current coding unit is defined as 'RootTuSize'.
  • the size 'CurrMinTuSize' can be defined as in relation (1) below.
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may indicate a maximum transform unit size that can be adopted in the system. That is, according to relation (1), 'RootTuSize / (2 ⁇ MaxTransformSizeIndex)' is a transformation obtained by dividing 'RootTuSize', which is the size of the transformation unit when the transformation unit division information is 0, by the number of times corresponding to the maximum transformation unit division information. Since the unit size is 'MinTransformSize' is the minimum transform unit size, a smaller value among them may be the minimum transform unit size 'CurrMinTuSize' possible in the current coding unit.
  • the maximum transform unit size RootTuSize may vary depending on a prediction mode.
  • RootTuSize may be determined according to the following relation (2).
  • 'MaxTransformSize' represents the maximum transform unit size
  • 'PUSize' represents the current prediction unit size.
  • RootTuSize min (MaxTransformSize, PUSize) ......... (2)
  • 'RootTuSize' which is a transform unit size when the transform unit split information is 0, may be set to a smaller value among the maximum transform unit size and the current prediction unit size.
  • 'RootTuSize' may be determined according to Equation (3) below.
  • 'PartitionSize' represents the size of the current partition unit.
  • RootTuSize min (MaxTransformSize, PartitionSize) ........... (3)
  • the conversion unit size 'RootTuSize' when the conversion unit split information is 0 may be set to a smaller value among the maximum conversion unit size and the current partition unit size.
  • the current maximum conversion unit size 'RootTuSize' according to an embodiment that changes according to the prediction mode of the partition unit is only an embodiment, and a factor determining the current maximum conversion unit size is not limited thereto.
  • the image data of the spatial domain is encoded for each coding unit of the tree structure, and the video decoding method based on the coding units of the tree structure.
  • decoding is performed for each largest coding unit, and image data of a spatial region may be reconstructed to reconstruct a picture and a video that is a picture sequence.
  • the reconstructed video can be played back by a playback device, stored in a storage medium, or transmitted over a network.
  • the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording medium may include a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.) and an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • the video encoding method according to the motion vector determination method described above with reference to FIGS. 1 to 21 is collectively referred to as the video encoding method of the present invention.
  • the video decoding method according to the motion vector determination method described above with reference to FIGS. 1 to 21 is referred to as the video decoding method of the present invention.
  • a video composed of the motion vector determining apparatus 10, the video encoding stage 70, the video decoding stage 80, the video encoding apparatus 100, or the image encoder 400 described above with reference to FIGS. 1 to 21.
  • the encoding device is collectively referred to as the "video encoding device of the present invention.”
  • the video decoding apparatus including the motion vector determining apparatus 10, the video decoding stage 80, the video decoding apparatus 200, or the image decoding unit 500 described above with reference to FIGS. Collectively referred to as a video decoding apparatus.
  • a computer-readable storage medium in which a program is stored according to an embodiment of the present invention will be described in detail below.
  • the disk 26000 described above as a storage medium may be a hard drive, a CD-ROM disk, a Blu-ray disk, or a DVD disk.
  • the disk 26000 is composed of a plurality of concentric tracks tr, and the tracks are divided into a predetermined number of sectors Se in the circumferential direction.
  • a program for implementing the above-described motion vector determination method, video encoding method, and video decoding method may be allocated and stored in a specific area of the disc 26000 which stores the program according to the above-described embodiment.
  • a computer system achieved using a storage medium storing a program for implementing the above-described video encoding method and video decoding method will be described below with reference to FIG. 23.
  • the computer system 26700 may store a program for implementing at least one of the video encoding method and the video decoding method of the present invention on the disc 26000 using the disc drive 26800.
  • the program may be read from the disk 26000 by the disk drive 26800, and the program may be transferred to the computer system 26700.
  • a program for implementing at least one of the video encoding method and the video decoding method may be stored in a memory card, a ROM cassette, and a solid state drive (SSD). .
  • FIG. 24 illustrates the overall structure of a content supply system 11000 for providing a content distribution service.
  • the service area of the communication system is divided into cells of a predetermined size, and wireless base stations 11700, 11800, 11900, and 12000 that serve as base stations are installed in each cell.
  • the content supply system 11000 includes a plurality of independent devices.
  • independent devices such as a computer 12100, a personal digital assistant (PDA) 12200, a camera 12300, and a mobile phone 12500 may be an Internet service provider 11200, a communication network 11400, and a wireless base station. 11700, 11800, 11900, and 12000 to connect to the Internet 11100.
  • PDA personal digital assistant
  • the content supply system 11000 is not limited to the structure shown in FIG. 25, and devices may be selectively connected.
  • the independent devices may be directly connected to the communication network 11400 without passing through the wireless base stations 11700, 11800, 11900, and 12000.
  • the video camera 12300 is an imaging device capable of capturing video images like a digital video camera.
  • the mobile phone 12500 is such as Personal Digital Communications (PDC), code division multiple access (CDMA), wideband code division multiple access (W-CDMA), Global System for Mobile Communications (GSM), and Personal Handyphone System (PHS). At least one communication scheme among various protocols may be adopted.
  • PDC Personal Digital Communications
  • CDMA code division multiple access
  • W-CDMA wideband code division multiple access
  • GSM Global System for Mobile Communications
  • PHS Personal Handyphone System
  • the video camera 12300 may be connected to the streaming server 11300 through the wireless base station 11900 and the communication network 11400.
  • the streaming server 11300 may stream and transmit the content transmitted by the user using the video camera 12300 through real time broadcasting.
  • Content received from the video camera 12300 may be encoded by the video camera 12300 or the streaming server 11300.
  • Video data captured by the video camera 12300 may be transmitted to the streaming server 11300 via the computer 12100.
  • Video data captured by the camera 12600 may also be transmitted to the streaming server 11300 via the computer 12100.
  • the camera 12600 is an imaging device capable of capturing both still and video images, like a digital camera.
  • Video data received from the camera 12600 may be encoded by the camera 12600 or the computer 12100.
  • Software for video encoding and decoding may be stored in a computer readable recording medium such as a CD-ROM disk, a floppy disk, a hard disk drive, an SSD, or a memory card that the computer 12100 may access.
  • video data may be received from the mobile phone 12500.
  • the video data may be encoded by a large scale integrated circuit (LSI) system installed in the video camera 12300, the mobile phone 12500, or the camera 12600.
  • LSI large scale integrated circuit
  • a user is recorded using a video camera 12300, a camera 12600, a mobile phone 12500, or another imaging device.
  • the content is encoded and sent to the streaming server 11300.
  • the streaming server 11300 may stream and transmit content data to other clients who have requested the content data.
  • the clients are devices capable of decoding the encoded content data, and may be, for example, a computer 12100, a PDA 12200, a video camera 12300, or a mobile phone 12500.
  • the content supply system 11000 allows clients to receive and play encoded content data.
  • the content supply system 11000 enables clients to receive and decode and reproduce encoded content data in real time, thereby enabling personal broadcasting.
  • the video encoding apparatus and the video decoding apparatus of the present invention may be applied to encoding and decoding operations of independent devices included in the content supply system 11000.
  • the mobile phone 12500 is not limited in functionality and may be a smart phone that can change or expand a substantial portion of its functions through an application program.
  • the mobile phone 12500 includes a built-in antenna 12510 for exchanging RF signals with the wireless base station 12000, and displays images captured by the camera 1530 or images received and decoded by the antenna 12510. And a display screen 12520 such as an LCD (Liquid Crystal Display) and an OLED (Organic Light Emitting Diodes) screen for displaying.
  • the smartphone 12510 includes an operation panel 12540 including a control button and a touch panel. When the display screen 12520 is a touch screen, the operation panel 12540 further includes a touch sensing panel of the display screen 12520.
  • the smart phone 12510 includes a speaker 12580 or another type of audio output unit for outputting voice and sound, and a microphone 12550 or another type of audio input unit for inputting voice and sound.
  • the smartphone 12510 further includes a camera 1530 such as a CCD camera for capturing video and still images.
  • the smartphone 12510 may be a storage medium for storing encoded or decoded data, such as video or still images captured by the camera 1530, received by an e-mail, or obtained in another form. 12570); And a slot 12560 for mounting the storage medium 12570 to the mobile phone 12500.
  • the storage medium 12570 may be another type of flash memory such as an electrically erasable and programmable read only memory (EEPROM) embedded in an SD card or a plastic case.
  • EEPROM electrically erasable and programmable read only memory
  • 26 illustrates an internal structure of the mobile phone 12500.
  • the power supply circuit 12700 the operation input controller 12640, the image encoder 12720, and the camera interface (12630), LCD control unit (12620), image decoding unit (12690), multiplexer / demultiplexer (12680), recording / reading unit (12670), modulation / demodulation (modulation / demodulation) unit 12660 and
  • the sound processor 12650 is connected to the central controller 12710 through the synchronization bus 1730.
  • the power supply circuit 12700 supplies power to each part of the mobile phone 12500 from the battery pack, thereby causing the mobile phone 12500 to operate. Can be set to an operating mode.
  • the central controller 12710 includes a CPU, a read only memory (ROM), and a random access memory (RAM).
  • the digital signal is generated in the mobile phone 12500 under the control of the central controller 12710, for example, the digital sound signal is generated in the sound processor 12650.
  • the image encoder 12720 may generate a digital image signal, and text data of the message may be generated through the operation panel 12540 and the operation input controller 12640.
  • the modulator / demodulator 12660 modulates a frequency band of the digital signal, and the communication circuit 12610 is a band-modulated digital signal. Digital-to-analog conversion and frequency conversion are performed on the acoustic signal.
  • the transmission signal output from the communication circuit 12610 may be transmitted to the voice communication base station or the radio base station 12000 through the antenna 12510.
  • the sound signal acquired by the microphone 12550 is converted into a digital sound signal by the sound processor 12650 under the control of the central controller 12710.
  • the generated digital sound signal may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
  • the text data of the message is input using the operation panel 12540, and the text data is transmitted to the central controller 12610 through the operation input controller 12640.
  • the text data is converted into a transmission signal through the modulator / demodulator 12660 and the communication circuit 12610, and transmitted to the radio base station 12000 through the antenna 12510.
  • the image data photographed by the camera 1530 is provided to the image encoder 12720 through the camera interface 12630.
  • the image data photographed by the camera 1252 may be directly displayed on the display screen 12520 through the camera interface 12630 and the LCD controller 12620.
  • the structure of the image encoder 12720 may correspond to the structure of the video encoding apparatus as described above.
  • the image encoder 12720 encodes the image data provided from the camera 1252 according to the video encoding method of the video encoding apparatus 100 or the image encoding unit 400 described above, and converts the image data into the compression encoded image data.
  • the encoded image data may be output to the multiplexer / demultiplexer 12680.
  • the sound signal obtained by the microphone 12550 of the mobile phone 12500 is also converted into digital sound data through the sound processor 12650 during recording of the camera 1250, and the digital sound data is converted into the multiplex / demultiplexer 12680. Can be delivered.
  • the multiplexer / demultiplexer 12680 multiplexes the encoded image data provided from the image encoder 12720 together with the acoustic data provided from the sound processor 12650.
  • the multiplexed data may be converted into a transmission signal through the modulation / demodulation unit 12660 and the communication circuit 12610 and transmitted through the antenna 12510.
  • the signal received through the antenna converts the digital signal through a frequency recovery (Analog-Digital conversion) process .
  • the modulator / demodulator 12660 demodulates the frequency band of the digital signal.
  • the band demodulated digital signal is transmitted to the video decoder 12690, the sound processor 12650, or the LCD controller 12620 according to the type.
  • the mobile phone 12500 When the mobile phone 12500 is in the call mode, the mobile phone 12500 amplifies a signal received through the antenna 12510 and generates a digital sound signal through frequency conversion and analog-to-digital conversion processing.
  • the received digital sound signal is converted into an analog sound signal through the modulator / demodulator 12660 and the sound processor 12650 under the control of the central controller 12710, and the analog sound signal is output through the speaker 12580. .
  • a signal received from the radio base station 12000 via the antenna 12510 is converted into multiplexed data as a result of the processing of the modulator / demodulator 12660.
  • the output and multiplexed data is transmitted to the multiplexer / demultiplexer 12680.
  • the multiplexer / demultiplexer 12680 demultiplexes the multiplexed data to separate the encoded video data stream and the encoded audio data stream.
  • the encoded video data stream is provided to the video decoder 12690, and the encoded audio data stream is provided to the sound processor 12650.
  • the structure of the image decoder 12690 may correspond to the structure of the video decoding apparatus as described above.
  • the image decoder 12690 generates the reconstructed video data by decoding the encoded video data by using the video decoding method of the video decoding apparatus 200 or the image decoder 500 described above, and reconstructs the reconstructed video data.
  • the restored video data may be provided to the display screen 12520 through the LCD controller 12620.
  • video data of a video file accessed from a website of the Internet may be displayed on the display screen 12520.
  • the sound processor 12650 may also convert audio data into an analog sound signal and provide the analog sound signal to the speaker 12580. Accordingly, audio data contained in a video file accessed from a website of the Internet can also be reproduced in the speaker 12580.
  • the mobile phone 12500 or another type of communication terminal is a transmitting / receiving terminal including both the video encoding apparatus and the video decoding apparatus of the present invention, a transmitting terminal including only the video encoding apparatus of the present invention described above, or the video decoding apparatus of the present invention. It may be a receiving terminal including only.
  • FIG. 27 illustrates a digital broadcasting system employing a communication system according to the present invention.
  • the digital broadcasting system according to the embodiment of FIG. 27 may receive digital broadcasting transmitted through a satellite or terrestrial network using the video encoding apparatus and the video decoding apparatus.
  • the broadcast station 12890 transmits the video data stream to the communication satellite or the broadcast satellite 12900 through radio waves.
  • the broadcast satellite 12900 transmits a broadcast signal, and the broadcast signal is received by the antenna 12860 in the home to the satellite broadcast receiver.
  • the encoded video stream may be decoded and played back by the TV receiver 12810, set-top box 0 12870, or other device.
  • the playback device 12230 can read and decode the encoded video stream recorded on the storage medium 12020 such as a disk and a memory card.
  • the reconstructed video signal may thus be reproduced in the monitor 12840, for example.
  • the video decoding apparatus of the present invention may also be mounted in the set-top box 12870 connected to the antenna 12860 for satellite / terrestrial broadcasting or the cable antenna 12850 for cable TV reception. Output data of the set-top box 12870 may also be reproduced by the TV monitor 12880.
  • the video decoding apparatus of the present invention may be mounted on the TV receiver 12810 instead of the set top box 12870.
  • An automobile 12920 with an appropriate antenna 12910 may receive signals from satellite 12800 or radio base station 11700.
  • the decoded video may be played on the display screen of the car navigation system 12930 mounted on the car 12920.
  • the video signal may be encoded by the video encoding apparatus of the present invention and recorded and stored in a storage medium.
  • the video signal may be stored in the DVD disk 12960 by the DVD recorder, or the video signal may be stored in the hard disk by the hard disk recorder 12950.
  • the video signal may be stored in the SD card 12970. If the hard disk recorder 12950 includes the video decoding apparatus of the present invention according to an embodiment, the video signal recorded on the DVD disk 12960, the SD card 12970, or another type of storage medium is output from the monitor 12880. Can be recycled.
  • the vehicle navigation system 12930 may not include the camera 1530, the camera interface 12630, and the image encoder 12720 of FIG. 27.
  • the computer 12100 and the TV receiver 12610 may not include the camera 1250, the camera interface 12630, and the image encoder 12720 of FIG. 27.
  • FIG. 28 illustrates a network structure of a cloud computing system using a video encoding apparatus and a video decoding apparatus, according to an embodiment of the present invention.
  • the cloud computing system of the present invention may include a cloud computing server 14100, a user DB 14100, a computing resource 14200, and a user terminal.
  • the cloud computing system provides an on demand outsourcing service of computing resources through an information communication network such as the Internet at the request of a user terminal.
  • service providers integrate the computing resources of data centers located in different physical locations into virtualization technology to provide users with the services they need.
  • the service user does not install and use computing resources such as application, storage, operating system, and security in each user's own terminal, but services in virtual space created through virtualization technology. You can choose as many times as you want.
  • a user terminal of a specific service user accesses the cloud computing server 14100 through an information communication network including the Internet and a mobile communication network.
  • the user terminals may be provided with a cloud computing service, particularly a video playback service, from the cloud computing server 14100.
  • the user terminal may be any electronic device capable of accessing the Internet, such as a desktop PC 14300, a smart TV 14400, a smartphone 14500, a notebook 14600, a portable multimedia player (PMP) 14700, a tablet PC 14800, and the like. It can be a device.
  • the cloud computing server 14100 may integrate and provide a plurality of computing resources 14200 distributed in a cloud network to a user terminal.
  • the plurality of computing resources 14200 include various data services and may include data uploaded from a user terminal.
  • the cloud computing server 14100 integrates a video database distributed in various places into a virtualization technology to provide a service required by a user terminal.
  • the user DB 14100 stores user information subscribed to a cloud computing service.
  • the user information may include login information and personal credit information such as an address and a name.
  • the user information may include an index of the video.
  • the index may include a list of videos that have been played, a list of videos being played, and a stop time of the videos being played.
  • Information about a video stored in the user DB 14100 may be shared among user devices.
  • the playback history of the predetermined video service is stored in the user DB 14100.
  • the cloud computing server 14100 searches for and plays a predetermined video service with reference to the user DB 14100.
  • the smartphone 14500 receives the video data stream through the cloud computing server 14100, the operation of decoding the video data stream and playing the video may be performed by the operation of the mobile phone 12500 described above with reference to FIG. 27. similar.
  • the cloud computing server 14100 may refer to a playback history of a predetermined video service stored in the user DB 14100. For example, the cloud computing server 14100 receives a playback request for a video stored in the user DB 14100 from a user terminal. If the video was being played before, the cloud computing server 14100 may have a streaming method different depending on whether the video is played from the beginning or from the previous stop point according to the user terminal selection. For example, when the user terminal requests to play from the beginning, the cloud computing server 14100 streams the video to the user terminal from the first frame. On the other hand, if the terminal requests to continue playing from the previous stop point, the cloud computing server 14100 streams the video to the user terminal from the frame at the stop point.
  • the user terminal may include the video decoding apparatus as described above with reference to FIGS. 1 to 23.
  • the user terminal may include the video encoding apparatus as described above with reference to FIGS. 1 to 23.
  • the user terminal may include both the video encoding apparatus and the video decoding apparatus of the present invention described above with reference to FIGS. 1 to 23.
  • FIGS. 22 to 28 Various embodiments of utilizing the video encoding method and the video decoding method, the video encoding apparatus, and the video decoding apparatus of the present invention described above with reference to FIGS. 1 to 21 have been described above with reference to FIGS. 22 to 28. However, various embodiments in which the video encoding method and the video decoding method of the present invention described above with reference to FIGS. 1 to 21 are stored in a storage medium or the video encoding apparatus and the video decoding apparatus of the present invention are implemented in a device are illustrated in FIGS. 22 to 21. It is not limited to the embodiments of FIG. 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명은, 움직임 벡터 예측을 통해 움직임 벡터를 결정하는 방법 및 그 장치를 제안한다. 현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트를 결정하고, 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 상기 제1 후보블록의 참조영상이 각각 숏텀 참조영상(Short-term reference picture) 또는 롱텀 참조영상(Long-term reference picture)인지 여부에 기초하여, 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하여, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 선택된 후보 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 결정하는 방법이 개시된다.

Description

비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 결정 방법 및 장치
본 발명은 비디오 부복호화에 관한 것이며, 더 구체적으로는 인터 예측 및/또는 움직임 보상을 수행하는 비디오 부복호화에 관한 것이다.
고해상도 또는 고화질 비디오 컨텐트를 재생, 저장할 수 있는 하드웨어의 개발 및 보급에 따라, 고해상도 또는 고화질 비디오 컨텐트를 효과적으로 부호화하거나 복호화하는 비디오 코덱의 필요성이 증대하고 있다. 기존의 비디오 코덱에 따르면, 비디오는 소정 크기의 매크로블록에 기반하여 제한된 부호화 방식에 따라 부호화되고 있다.
주파수 변환을 이용하여 공간 영역의 영상 데이터는 주파수 영역의 계수들로 변환된다. 비디오 코덱은, 주파수 변환의 빠른 연산을 위해 영상을 소정 크기의 블록들로 분할하고, 블록마다 DCT 변환을 수행하여, 블록 단위의 주파수 계수들을 부호화한다. 공간 영역의 영상 데이터에 비해 주파수 영역의 계수들이, 압축하기 쉬운 형태를 가진다. 특히 비디오 코덱의 인터 예측 또는 인트라 예측을 통해 공간 영역의 영상 화소값은 예측 오차로 표현되므로, 예측 오차에 대해 주파수 변환이 수행되면 많은 데이터가 0으로 변환될 수 있다. 비디오 코덱은 연속적으로 반복적으로 발생하는 데이터를 작은 크기의 데이터로 치환함으로써, 데이터량을 절감하고 있다.
본 발명은, 움직임 벡터 예측을 통해 움직임 벡터를 결정하는 방법 및 그 장치를 제안하고, 움직임 벡터 예측을 통한 인터 예측 및 움직임 보상을 수반하는 비디오 부호화 방법 및 그 장치, 움직임 벡터 예측을 통한 움직임 보상을 수반하는 비디오 복호화 방법 및 그 장치를 제안한다.
본 발명의 일 실시예에 따른 인터 예측을 위한 움직임 벡터 결정 방법은, 현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트를 결정하는 단계; 상기 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 상기 현재블록의 참조영상과 다른 경우에, 상기 현재블록의 참조영상과 상기 제1 후보블록의 참조영상이 각각 숏텀 참조영상(Short-term reference picture) 또는 롱텀 참조영상(Long-term reference picture)인지 여부에 기초하여, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계; 및 상기 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 선택된 후보 움직임 벡터를 이용하여 상기 현재블록의 움직임 벡터를 결정하는 단계를 포함한다.
본 발명의 다양한 실시예들에 따른 움직임 벡터 결정 방식에 따르면, 후보블록의 참조인덱스가 가리키는 참조영상이 현재블록의 참조영상과 서로 다르고 현재블록과 후보블록의 참조영상들 중에서 적어도 하나가 롱텀 참조영상인 경우에, 후보블록의 움직임 벡터의 크기를 조절하는 프로세스를 생략하거나 후보블록의 움직임 벡터를 참조하는 프로세스를 생략하고, 상대적으로 예측 정확도가 높은 다른 후보블록의 움직임 벡터를 참조하도록 현재블록을 예측하도록 유도할 수 있다. 이에 따라, 움직임 벡터의 예측 프로세스의 효율성이 향상될 수 있다.
도 1 은 일 실시예에 따른 움직임 벡터 결정 장치의 블록도를 도시한다.
도 2 는 일 실시예에 따른 움직임 벡터 결정 방법의 흐름도를 도시한다.
도 3 은 일 실시예에 따라 후보블록이 다른영상의 콜로케이티드 블록인 경우를 도시한다.
도 4 는 일 실시예에 따라 후보블록이 동일영상의 이웃블록인 경우을 도시한다.
도 5 는 일 실시예에 따른 움직임 벡터 결정 방법을 수반한 비디오 부호화 방법의 흐름도를 도시한다.
도 6 는 일 실시예에 따른 움직임 벡터 결정 방법을 수반한 비디오 복호화 방법의 흐름도를 도시한다.
도 7 은 일 실시예에 따른 움직임 벡터 결정 장치를 포함하는 비디오 부호화부의 블록도를 도시한다.
도 8 은 일 실시예에 따른 움직임 벡터 결정 장치를 포함하는 비디오 복호화부의 블록도를 도시한다.
도 9 은 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치의 블록도를 도시한다.
도 10 은 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치의 블록도를 도시한다.
도 11 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
도 12 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부의 블록도를 도시한다.
도 13 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부의 블록도를 도시한다.
도 14 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
도 15 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
도 16 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
도 17 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
도 18, 19 및 20는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 21 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
도 22 은 일 실시예에 따른 프로그램이 저장된 디스크의 물리적 구조를 예시한다.
도 23 는 디스크를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브를 도시한다.
도 24 은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)의 전체적 구조를 도시한다.
도 25 및 26은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰의 외부구조와 내부구조를 도시한다.
도 27 은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다.
도 28 은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 일 실시예에 따른 인터 예측을 위한 움직임 벡터 결정 방법은, 현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트를 결정하는 단계; 상기 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 상기 현재블록의 참조영상과 다른 경우에, 상기 현재블록의 참조영상과 상기 제1 후보블록의 참조영상이 각각 숏텀 참조영상(Short-term reference picture) 또는 롱텀 참조영상(Long-term reference picture)인지 여부에 기초하여, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계; 및 상기 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 선택된 후보 움직임 벡터를 이용하여 상기 현재블록의 움직임 벡터를 결정하는 단계를 포함한다.
일 실시예에 따른 제1 후보블록은, 상기 현재블록의 현재영상 내에서 상기 현재블록의 이웃블록 또는 상기 현재영상보다 먼저 복원된 영상 내에서 상기 현재블록과 동일한 위치의 콜로케이티드 블록(Collocated Block)일 수 있다.
일 실시예에 따라 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계는, 상기 현재블록의 참조영상과 상기 후보블록의 참조영상이 모두 상기 롱텀 참조영상인 경우에, 상기 후보 움직임벡터 리스트에서 상기 후보블록의 움직임 벡터를 유지하는 단계를 포함할 수 있다.
일 실시예에 따라 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계는, 상기 현재블록의 참조영상 및 상기 제1 후보블록의 참조영상 중 어느 하나가 상기 숏텀 참조영상이고 나머지 하나가 상기 롱텀 참조영상인 경우에, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 이용하지 않도록 결정하는 단계를 포함할 수 있다.
본 발명에 따른 인터 예측을 위한 움직임 벡터 결정 장치는, 현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트에서, 상기 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 상기 현재블록의 참조영상과 다른 경우에, 상기 현재블록의 참조영상과 상기 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 후보 리스트 결정부; 및 상기 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 선택된 후보 움직임 벡터를 이용하여 상기 현재블록의 움직임 벡터를 결정하는 움직임벡터 결정부를 포함한다.
본 발명은, 일 실시예에 따른 움직임 벡터 결정 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체를 포함한다.
이하 도 1 내지 도 4을 참조하여, 일 실시예에 따라 움직임 벡터 결정 장치 및 움직임 벡터를 결정하는 방법이 개시된다. 또한, 도 5 및 도 8을 참조하여, 일 실시예에 따른 움직임 벡터 결정 방법을 수반하는 비디오 부호화 방법과 비디오 복호화 방법, 비디오 부호화 장치와 비디오 복호화 장치가 개시된다. 또한, 도 9 내지 도 21을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위에 기초하며 일 실시예에 따른 움직임 벡터 결정 방법을 수반하는 비디오 부호화 기법 및 비디오 복호화 기법이 개시된다. 이하, '영상'은 비디오의 정지영상이거나 동영상, 즉 비디오 그 자체를 나타낼 수 있다.
먼저, 도 1 내지 도 4을 참조하여, 일 실시예에 따라 움직임 벡터 결정 장치 및 움직임 벡터를 결정하는 방법이 개시된다. 또한, 도 5 및 도 8을 참조하여, 일 실시예에 따른 움직임 벡터 결정 방법을 수반하는 비디오 부호화 방법과 비디오 복호화 방법, 비디오 부호화 장치와 비디오 복호화 장치가 개시된다.
도 1 은 일 실시예에 따른 움직임 벡터 결정 장치의 블록도를 도시한다.
일 실시예에 따른 움직임 벡터 결정 장치(10)는 후보리스트 결정부(12) 및 움직임벡터 결정부(14)를 포함한다.
인터 예측은 현재 영상과 다른 영상 간의 유사성을 이용한다. 현재 영상보다 먼저 복원된 참조영상 내에서, 현재 영상의 현재영역과 유사한 참조영역이 검출된다. 현재영역과 참조영역 간의 좌표상의 거리가 움직임 벡터로 표현되고, 현재영역과 참조영역 간의 픽셀값들의 차이가 레지듀얼 데이터로 표현된다. 따라서 현재 영역에 대한 인터 예측에 의해, 현재 영역의 영상 정보를 직접 출력하는 대신에, 참조영상을 가리키는 인덱스, 움직임 벡터 및 레지듀얼 데이터가 출력될 수 있다.
일 실시예에 따른 움직임 벡터 결정 장치(10)는 비디오의 각각의 영상의 블록별로 인터 예측을 수행할 수 있다. 블록의 타입은 정사각형 또는 직사각형일 수 있으며, 임의의 기하학적 형태일 수도 있다. 일정한 크기의 데이터 단위로 제한되는 것은 아니다. 일 실시예에 따른 블록은, 트리구조에 따른 부호화단위들 중에서는, 최대 부호화 단위, 부호화 단위, 예측 단위, 변환 단위 등일 수 있다. 트리구조에 따른 부호화단위들에 기초한 비디오 부복호화 방식은, 도 9 내지 도 21을 참조하여 후술한다.
현재 영상의 인터 예측을 위해 이용되는 참조영상은 현재 영상보다 먼저 복호화된 영상이어야 한다. 일 실시예에 따른 인터 예측을 위한 참조영상은, 숏텀 참조영상(Short-term Reference Picture)과 롱텀 참조영상(Long-term Reference Picture)으로 분류될 수 있다. 복호픽처 버퍼는, 이전 영상들의 움직임 보상에 의해 생성된 복원영상들을 저장하고 있다. 먼저 생성된 복원영상들은 다른 영상들의 인터 예측을 위한 참조영상으로 이용될 수 있다. 따라서 복호픽처 버퍼에 저장된 복원영상들 중에서, 현재 영상의 인터 예측을 위한 적어도 하나의 숏텀 참조영상 또는 적어도 하나의 롱텀 참조영상이 선택될 수 있다. 숏텀 참조영상은 현재영상과 복호화 순서에 따라 직전 또는 최근에 복호화된 영상인 반면에, 롱텀 참조영상은 현재영상보다 오래전에 복호화되었지만 다른 영상들의 인터 예측을 위한 참조영상으로 사용되기 위해 선택되어 복호픽처 버퍼에 저장된 영상일 수 있다.
움직임 벡터 예측(Motion Vector Prediction), 블록 병합(PU Merging) 또는 AMVP(Advanced Motion Vector Prediction)를 위해서, 다른 블록의 움직임 벡터를 참조하여 현재블록의 움직임 벡터 예측이 결정될 수 있다.
일 실시예에 따른 움직임 벡터 결정 장치(10)는, 움직임 벡터를 결정하기 위해 현재블록에 시간적 또는 공간적으로 인접하는 다른 블록의 움직임 벡터를 참조하여 결정할 수 있다. 움직임 벡터 결정 장치(10)는, 현재블록의 움직임벡터의 참조대상이 될 수 있는 후보블록들의 움직임 벡터들을 다수 포함하는 후보 움직임벡터 리스트를 결정할 수 있다. 움직임 벡터 결정 장치(10)는, 후보 움직임벡터 리스트 중에서 선택된 하나의 움직임 벡터를 참조하여 현재블록의 움직임 벡터를 결정할 수 있다.
일 실시예에 따른 후보블록은, 현재블록의 현재영상 내에서 현재블록의 이웃블록 또는 현재영상보다 먼저 복원된 영상 내에서 현재블록과 동일한 위치에 있는 콜로케이티드 블록(Collocated Block)일 수 있다.
일 실시예에 따른 후보 리스트 결정부(12)는, 현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트에서, 소정 조건을 만족하는 후보 움직임 벡터들을 크기조절(Scaling)하거나 후보 움직임 벡터 리스트에 제외할 수 있다.
일 실시예에 따른 후보 리스트 결정부(12)는, 후보 움직임 벡터 리스트에 포함된 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부를 판단할 수 있다. 후보 리스트 결정부(12)는, 현재블록과 제1 후보블록의 참조영상들이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 어떻게 사용할지 여부를 결정할 수 있다.
일 실시예에 따른 후보 리스트 결정부(12)는, 현재블록의 참조영상과 후보블록의 참조영상이 모두 롱텀 참조영상인 경우에, 후보 움직임벡터 리스트에서 후보블록의 움직임 벡터를 유지할 수 있다. 후보 블록의 움직임 벡터의 크기를 크기조절할 필요 없이 그대로 후보 움직임벡터 리스트에 포함될 수 있다.
일 실시예에 따른 후보 리스트 결정부(12)는, 현재블록의 참조영상 및 제1 후보블록의 참조영상 중 어느 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 이용하지 않도록 결정할 수 있다. 제1 후보블록의 움직임 벡터가 사용불가능한 움직임벡터로 표시될 수 있다.
일 실시예에 따른 후보 리스트 결정부(12)는, 현재블록의 참조영상과 제1 후보블록의 참조영상이 모두 숏텀 참조영상인 경우에, 후보 블록의 움직임 벡터의 크기를 조절하여 후보 움직임벡터 리스트에 포함시킬 수 있다. 이 경우 후보 리스트 결정부(12)는, 현재영상과 현재블록의 참조영상 간의 거리와, 제1 후보블록의 영상과 제1 후보블록의 참조영상 간의 거리 간의 비율에 기초하여 제1 후보블록의 움직임 벡터를 크기조절하고, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 크기조절된 값으로 갱신할 수 있다.
일 실시예에 따른 움직임벡터 결정부(14)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 하나의 후보 움직임 벡터를 선택하고, 선택된 후보 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 결정할 수 있다. 움직임벡터 결정부(14)는, 후보 움직임 벡터를 그대로 복사하거나 변형하여 현재블록의 움직임 벡터를 결정할 수 있다.
도 2 는 일 실시예에 따른 움직임 벡터 결정 방법의 흐름도를 도시한다.
일 실시예에 따른 움직임 벡터 결정 장치(10)에 따라, 현재블록에 시간적으로 가깝거나 공간적으로 가까운 블록의 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 예측할 수 있다. 또한 움직임 벡터의 예측이 가능한 다수의 후보블록을 결정하고 후보블록들 중에서 하나의 후보블록을 선택하여, 선택된 후보블록의 움직임 벡터를 참조하여 현재블록의 움직임 벡터를 결정할 수 있다.
다만 일 실시예에 따른 움직임 벡터 결정 장치(10)는, 후보블록들 중에서 소정 후보블록의 참조인덱스가 가리키는 참조영상이 현재블록의 참조영상과 다른 경우에, 후보블록의 움직임 벡터를 참조하여 현재블록의 움직임 벡터를 예측한다면, 후보블록의 움직임 벡터의 크기를 조절하여 참조한다 하더라도, 예측된 움직임 벡터의 정확도가 떨어질 수 있다. 따라서 움직임 벡터 결정 장치(10)는, 현재블록의 참조영상과 후보블록의 참조영상이 다른 경우에, 해당 후보블록의 움직임 벡터의 크기를 조절하여 참조할지 또는 아예 해당 움직임 벡터를 참조하지 않을지 여부를 다시 결정할 수 있다.
이하 단계 21, 23, 25를 참조하여 움직임 벡터 결정 장치(10)가 현재블로과 후보블록의 참조영상들이 서로 다른 경우에, 후보블록의 움직임 벡터로부터 현재블록의 움직임 벡터를 예측하는 방법을 상술한다.
단계 21에서, 움직임 벡터 결정 장치(10)가 현재블록을 위해 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트를 결정한다.
단계 23에서, 움직임 벡터 결정 장치(10)가 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정한다.
일 실시예에 따라 움직임 벡터 결정 장치(10)는 현재블록의 참조영상이 롱텀 참조영상인지 여부를 나타내는 롱텀 참조인덱스를 이용하여, 현재블록의 참조영상이 롱텀 참조영상인지 결정할 수 있다. 유사하게, 제1 후보블록의 롱텀참조인덱스를 이용하여 제1 후보블록의 참조영상이 롱텀 참조영상인지 결정할 수 있다.
다른 예로 움직임 벡터 결정 장치(10)는, 현재블록의 참조영상과 제1 후보블록의 참조영상의 POC들 간의 차이값이 제1 임계치를 초과하면 제1 후보블록의 참조영상이 롱텀 참조영상이라고 결정할 수 있다. 이와 유사하게, 현재블록의 현재영상과 현재블록의 참조영상의 POC들 간의 차이값이 제2 임계치를 초과하면 현재블록의 참조영상이 롱텀 참조영상이라고 결정할 수도 있다.
단계 25에서, 움직임 벡터 결정 장치(10)가 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 선택된 후보 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 결정한다.
단계 25에서, 현재블록의 참조영상이 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 상관없이, 현재블록의 참조인덱스가 가리키는 POC에 따라 현재블록의 참조영상 내에서 결정된 현재블록의 움직임 벡터가 가리키는 참조블록을 결정할 수 있다.
단계 23에서, 현재블록과 후보블록의 참조영상들이 모두 롱텀 참조영상인 경우에, 움직임 벡터 결정 장치(10)는 후보 움직임벡터 리스트에서 후보블록의 움직임 벡터를 크기 조절 없이 유지할 수 있다. 현재블록과 제1 후보블록의 참조영상들 중 어느 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에는, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 이용하지 않도록 결정할 수 있다. 현재블록과 제1 후보블록의 참조영상이 모두 숏텀 참조영상인 경우에, 현재영상과 현재블록의 참조영상 간의 거리와, 제1 후보블록의 영상과 제1 후보블록의 참조영상 간의 거리 간의 비율에 기초하여 크기가 조절된 제1 후보블록의 움직임 벡터에 따라, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 갱신할 수 있다.
단계 21, 23, 25를 통해 움직임 벡터 결정 장치(10)는 후보 움직임벡터 리스트를 다시 결정할 수 있다. 현재블록과 제1 후보블록의 참조영상 중 어느 하나만 롱텀 참조영상인 경우에, 움직임 벡터 결정 장치(10)는 제1 후보블록의 움직임 벡터를 후보 움직임벡터 리스트로부터 제외하여 참조대상으로써 이용할 수 없다. 따라서 움직임 벡터 결정 장치(10)는 후보 움직임벡터 리스트에 포함된 나머지 움직임 벡터를 참조하여 현재블록의 움직임 벡터를 결정할 수 있다.
현재블록과 제1 후보블록의 참조영상이 모두 롱텀 참조영상들인 경우에, 움직임 벡터 결정 장치(10)는 제1 후보블록의 움직임 벡터를 크기 조절하지 않고 후보 움직임벡터 리스트에 포함한다. 따라서, 움직임 벡터 결정 장치(10)는 후보 움직임벡터 리스트에 포함된 나머지 후보 움직임 벡터와 제1 후보블록의 움직임 벡터 중에서 최적의 참조 움직임 벡터를 선택하고, 선택된 참조 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 결정할 수 있다.
현재블록과 제1 후보블록의 참조영상이 모두 숏텀 참조영상들인 경우에, 움직임 벡터 결정 장치(10)는 제1 후보블록의 움직임 벡터의 크기를 조절하여 후보 움직임벡터 리스트에 포함한다. 따라서, 움직임 벡터 결정 장치(10)는 후보 움직임벡터 리스트에 포함된 나머지 후보 움직임 벡터와 크기가 조절된 제1 후보블록의 움직임 벡터 중에서 최적의 참조 움직임 벡터를 선택하고, 선택된 참조 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 결정할 수 있다.
따라서, 도 1 및 2를 참조하여 상술한 일 실시예에 따른 움직임 벡터 결정 장치(10) 및 움직임 벡터 결정 방법에 따르면, 후보블록의 참조인덱스가 가리키는 참조영상이 현재블록의 참조영상과 서로 다르고 현재블록과 후보블록의 참조영상들 중에서 적어도 하나가 롱텀 참조영상인 경우에, 후보블록의 움직임 벡터의 크기를 조절하는 프로세스를 생략하거나 후보블록의 움직임 벡터를 참조하는 프로세스를 생략할 수 있다.
즉, 현재블록의 참조영상과 후보블록의 참조영상이 서로 다르고 현재블록과 후보블록의 참조영상들 중에서 적어도 하나가 롱텀 참조영상인 경우에, 후보블록의 움직임 벡터를 참조하여 현재블록의 움직임 벡터를 예측한다면 예측된 움직임 벡터의 정확도가 떨어질 수 있으므로, 예측의 정확도가 떨어지는 후보블록의 움직임 벡터를 참조하기 위한 프로세스를 생략하고, 상대적으로 예측 정확도가 높은 다른 후보블록의 움직임 벡터를 참조하도록 현재블록을 예측하도록 유도할 수 있다. 이에 따라, 움직임 벡터의 예측 프로세스의 효율성이 향상될 수 있다.
이하, 도 3 및 4 를 참조하여 후보블록의 종류에 따른 움직임 벡터 예측 방법을 상술한다.
도 3 은 일 실시예에 따라 후보블록이 다른영상의 콜로케이티드 블록인 경우를 도시한다.
콜로케이티드 영상(35)은, 현재영상(30)보다 먼저 복원된 영상으로서 현재영상(30) 중 현재블록(31)의 인터예측을 위해 참조될 수 있는 영상이다. 현재블록(31)의 콜로케이티드 인덱스(32)에 따라 콜로케이티드 영상(35)이 결정될 수 있다.
콜로케이티드 영상(35)에서, 현재영상(30)의 현재블록(31)의 위치와 동일한 위치에 있는 블록이 콜로케이티드 블록(36)으로 결정될 수 있다. 일 실시예에 따른 움직임 벡터 결정 장치(10)는 현재블록(31)의 움직임벡터(34)를 예측하기 위한 참조대상인 후보블록으로서, 콜로케이티드 블록(36)를 이용할 수 있다. 따라서, 콜로케이티드 블록(36)의 움직임 벡터(37)를 참조하여 현재블록(31)의 움직임 벡터(34)가 예측될 수 있다.
콜로케이티드 블록(36)의 참조인덱스가 나타내는 POC에 따라 콜로케이티드 참조영상(38)이 결정될 수 있다. 현재블록(31)의 참조인덱스가 나타내는 POC에 따라 현재 참조영상(33)이 결정될 수 있다.
다만, 일 실시예에 따른 움직임 벡터 결정 장치(10)는, 콜로케이티드 참조영상(38)과 현재 참조영상(33)이 다른 경우에, 콜로케이티드 블록(36)의 움직임 벡터(37)를 참조하는지 또는 어떻게 참조할지 여부를 다시 결정할 수 있다.
구체적으로 일 실시예에 따른 움직임 벡터 결정 장치(10)는, 콜로케이티드 블록(36)의 참조인덱스와 현재블록(31)의 참조인덱스가 다른 경우에, 콜로케이티드 블록(36)의 롱텀 참조인덱스와 현재블록(31)의 롱텀 참조인덱스를 이용하여, 콜로케이티드 참조영상(38)과 현재 참조영상(33)이 숏텀 참조영상 또는 롱텀 참조영상인지 확인할 수 있다.
다만, 일 실시예에 따른 움직임 벡터 결정 장치(10)는, 콜로케이티드 참조영상(38)과 현재 참조영상(33)이 다른 경우에, 콜로케이티드 블록(36)의 움직임 벡터(37)를 참조할지 또는 어떻게 참조할지 여부를 다시 결정할 수 있다.
확인 결과에 따라 현재 참조영상(33)과 콜로케이티드 참조영상(38)이 서로 다르지만 모두 숏텀 참조영상인 경우에는, 콜로케이티드 영상(35) 및 콜로케이티드 참조영상(38) 간의 거리(Td)와 현재영상(30) 및 현재 참조영상(30) 간의 거리(Tb)의 비율에 기초하여, 콜로케이티드 블록(36)의 움직임 벡터(37)의 크기를 조절할 수 있다. 이 때, 현재영상(30) 및 콜로케이티드 참조영상(38) 간의 거리(Td)는 현재영상(30)과 콜로케이티드 참조영상(38)의 POC들의 차이값으로 결정될 수 있다. 이와 유사하게, 현재영상(30) 및 현재 참조영상(33) 간의 거리(Tb)도 현재영상(30)과 현재 참조영상(33)의 POC들의 차이값으로 결정될 수 있다.
즉, 현재 참조영상(33)과 콜로케이티드 참조영상(38)이 모두 숏텀 참조영상인 경우에는, 콜로케이티드 블록(36)의 움직임 벡터(37)(MVcol)에, 콜로케이티드 영상(35) 및 콜로케이티드 참조영상(38) 간의 거리(Td)와 현재영상(30) 및 현재 참조영상(30) 간의 거리(Tb)의 비율을 곱한 값으로 후보 움직임 벡터 MVcol'가 갱신될 수 있다. (MVcol' = MVcol * Tb/Td)
따라서, 움직임 벡터 결정 장치(10)는, 확인 결과에 따라 현재 참조영상(33)과 콜로케이티드 참조영상(38)이 서로 다르지만 모두 숏텀 참조영상인 경우에는, 후보 움직임벡터 리스트에, 콜로케이티드 블록(36)의 움직임 벡터(37)를, 콜로케이티드 블록(36)의 움직임 벡터(37)(MVcol)에, 콜로케이티드 영상(35) 및 콜로케이티드 참조영상(38) 간의 거리(Td)와 현재영상(30) 및 현재 참조영상(30) 간의 거리(Tb)의 비율(Tb/Td)을 곱한 값(MVcol')으로 변경할 수 있다.
현재 참조영상(33)과 콜로케이티드 참조영상(38) 중 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에는, 콜로케이티드 블록(36)의 움직임 벡터(37)에 사용불가(not-available) 플래그를 할당할 수 있다. 이 경우, 현재블록(30)의 후보 움직임벡터 리스트에서, 콜로케이티드 블록(36)의 움직임 벡터(37)를 제외할 수 있다.
현재 참조영상(33)과 콜로케이티드 참조영상(38) 중 모두가 롱텀 참조영상이인 경우에는, 콜로케이티드 블록(36)의 움직임 벡터(37)를 그대로 유지할 수 있다.이 경우, 후보 움직임벡터 리스트에서, 콜로케이티드 블록(36)의 움직임 벡터(37)를 크기조절 없이 그대로 유지할 수 있다.
도 4 는 일 실시예에 따라 후보블록이 동일영상의 이웃블록인 경우을 도시한다.
일 실시예에 따른 움직임 벡터 결정 장치(10)는 현재블록(41)의 움직임벡터(44)를 예측하기 위한 참조대상인 후보블록으로서, 현재영상(40)에서 현재블록(41)에 인접하는 이웃블록(46)을 이용할 수 있다. 따라서, 이웃블록(46)의 움직임 벡터(47)를 참조하여 현재블록(41)의 움직임 벡터(44)가 예측될 수 있다.
이웃블록(46)의 참조인덱스가 나타내는 POC에 따라 이웃 참조영상(48)이 결정될 수 있다. 현재블록(41)의 참조인덱스가 나타내는 POC에 따라 현재 참조영상(43)이 결정될 수 있다.
다만, 일 실시예에 따른 움직임 벡터 결정 장치(10)는, 이웃 참조영상(48)과 현재 참조영상(43)이 다른 경우에, 이웃블록(46)의 움직임 벡터(47)를 참조하는지 또는 어떻게 참조할지 여부를 다시 결정할 수 있다.
구체적으로 일 실시예에 따른 움직임 벡터 결정 장치(10)는, 이웃블록(46)의 참조인덱스와 현재블록(41)의 참조인덱스가 다른 경우에, 이웃블록(46)의 롱텀 참조인덱스와 현재블록(41)의 롱텀 참조인덱스를 이용하여, 이웃블록(46)과 현재 참조영상(43)이 숏텀 참조영상 또는 롱텀 참조영상인지 확인할 수 있다.
다만, 일 실시예에 따른 움직임 벡터 결정 장치(10)는, 이웃블록(46)과 현재 참조영상(33)이 다른 경우에, 이웃블록(46)의 움직임 벡터(47)를 참조할지 또는 어떻게 참조할지 여부를 다시 결정할 수 있다.
확인 결과에 따라 현재 참조영상(43)과 이웃 참조영상(48)이 서로 다르지만 모두 숏텀 참조영상인 경우에는, 현재영상(40) 및 이웃 참조영상(48) 간의 거리(Td)와 현재영상(40) 및 현재 참조영상(40) 간의 거리(Tb)의 비율에 기초하여, 이웃블록(46)의 움직임 벡터(47)의 크기를 조절할 수 있다. 현재영상(40) 및 이웃 참조영상(48) 간의 거리(Td)는 현재영상(40)과 이웃 참조영상(48)의 POC들의 차이값으로 결정될 수 있다. 이와 유사하게, 현재영상(40) 및 현재 참조영상(43) 간의 거리(Tb)도 현재영상(40)과 현재 참조영상(43)의 POC들의 차이값으로 결정될 수 있다.
즉, 현재 참조영상(43)과 이웃 참조영상(48)이 모두 숏텀 참조영상인 경우에는, 이웃블록(46)의 움직임 벡터(47)(MVne)에, 현재영상(40) 및 이웃 참조영상(48) 간의 거리(Td)와 현재영상(40) 및 현재 참조영상(43) 간의 거리(Tb)의 비율(Tb/Td))을 곱한 값으로, 후보 움직임 벡터(MVne')가 갱신될 수 있다. (MVne' = MVne * Tb/Td)
따라서, 움직임 벡터 결정 장치(10)는, 확인 결과에 따라 현재 참조영상(43)과 이웃블록(38)의 참조영상(48)이 서로 다르지만 모두 숏텀 참조영상인 경우에는, 후보 움직임벡터 리스트에, 이웃블록(46)의 움직임 벡터(47)를, 이웃블록(46)의 움직임 벡터(47)(MVne)에, 이웃블록(48) 및 현재블록(40) 간의 거리(Td)와 현재영상(40) 및 현재 참조영상(43) 간의 거리(Tb)의 비율(Tb/Td)을 곱한 값(MVne')으로 변경할 수 있다.
현재 참조영상(43)과 이웃 참조영상(48) 중 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에는, 이웃블록(46)의 움직임 벡터(47)에 사용불가 플래그를 할당할 수 있다. 이 경우, 현재블록(40)의 후보 움직임벡터 리스트에서, 이웃블록(46)의 움직임 벡터(47)를 제외할 수 있다.
현재 참조영상(43)과 이웃 참조영상(48) 중 모두가 롱텀 참조영상이인 경우에는, 이웃 블록(46)의 움직임 벡터(47)를 그대로 유지할 수 있다. 이 경우, 후보 움직임벡터 리스트에, 이웃블록(46)의 움직임 벡터(47)를 크기조절 없이 그대로 유지할 수 있다.
도 3 및 4의 실시예에서, 움직임 벡터 결정 장치(10)는, 현재블록(31, 41)과 후보블록(콜로케이티드 블록(36), 이웃블록(46))의 롱텀 참조인덱스를 이용하여, 현재 참조영상(33, 43), 후보블록(36, 46)의 참조영상(콜로케이티드 참조영상(38), 이웃 참조영상(48))이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 결정하고, 그 결과에 따라 후보블록(36, 46)의 움직임 벡터(37, 47)를 참조하는지 또는 크기를 조절하여 참조할지를 결정할 수 있다.
다른 실시예에 따른 움직임 벡터 결정 장치(10)는, 현재블록(31, 41)과 후보블록(36, 46)의 롱텀 참조인덱스 대신에, 현재 참조영상(33, 43)과 후보블록(36, 46)의 참조영상(38, 48)의 POC을 나타내는 참조인덱스들을 이용하여, 후보블록(36, 46)의 움직임 벡터(37, 47)를 참조하는지 또는 크기를 조절하여 참조할지를 결정할 수 있다.
구체적으로, 도 3에서 다른 실시예에 따른 움직임 벡터 결정 장치(10)는 콜로케이티드 블록(36)의 참조인덱스와 현재블록(31)의 참조인덱스 간의 차이(Tr)를 제1 임계치(THpocdiff1)와 비교하여, 참조인덱스들 간의 차이(Tr)가 제1 임계치(THpocdiff1)보다 크다면, 콜로케이티드 블록(36)의 움직임 벡터(37)를 참조대상이 아니라고 결정하거나, 크기를 조절하지 않고 참조하도록 결정할 수 있다.
이와 유사하게, 도 4에서 다른 실시예에 따른 움직임 벡터 결정 장치(10)는 이웃블록(46)의 참조인덱스와 현재블록(31)의 참조인덱스 간의 차이(Tr)를 제1 임계치(THpocdiff1)와 비교하여, 참조인덱스들 간의 차이(Tr)가 제1 임계치(THpocdiff1)보다 크다면, 이웃블록(46)의 움직임 벡터(47)를 참조대상이 아니라고 결정하거나, 크기를 조절하지 않고 참조하도록 결정할 수 있다.
도 3 및 4에서 다른 실시예에 따른 움직임 벡터 결정 장치(10)에 따르면, 후보블록(36, 46)의 참조인덱스와 현재블록(31)의 참조인덱스 간의 차이(Tr)가 제1 임계치(THpocdiff1)보다 크다면, 후보블록(36, 46)의 참조인덱스가 가리키는 후보 참조영상(38, 48)와 현재블록(31)의 참조인덱스가 가리키는 현재 참조영상(33, 43) 중 적어도 하나가 롱텀 참조영상이라고 간주한다.
따라서, 후보블록(36, 46)의 참조인덱스와 현재블록(31)의 참조인덱스 간의 차이(Tr)가 제1 임계치(THpocdiff1)보다 크다면, 영상거리 비율(Tb/Td)을 이용하여 후보블록(36, 46)의 움직임 벡터(37, 47)의 크기를 조절할 필요 없이, 아예 참조대상이 아니라고 결정하여 후보블록(36, 46)의 움직임 벡터(37, 47)를 후보 움직임벡터 리스트에서 제외할 수 있다. 또는, 후보블록(36, 46)의 움직임 벡터(37, 47)의 크기를 조절하지 않은 채로 그대로 참조하여 현재블록(31, 41)의 움직임 벡터(34, 44)가 예측되도록 결정할 수도 있다.
또 다른 실시예에 따른 움직임 벡터 결정 장치(10)는, 현재영상(30, 40)과 현재 참조영상(33, 43)의 POC들 간의 차이값을 제2 임계치(THpocdiff2)와 비교한 결과에 따라, 후보블록(36, 46)의 움직임 벡터(37, 47)를 참조하는지 또는 크기를 조절하여 참조할지를 결정할 수 있다.
따라서, 현재블록(31,41)의 참조인덱스가 가리키는 현재 참조영상(33, 43)과 현재영상(30, 40)의 POC 간의 차이(Tb)가 제2 임계치(THpocdiff2)보다 크다면, 영상거리 비율(Tb/Td)을 이용하여 후보블록(36, 46)의 움직임 벡터(37, 47)의 크기를 조절할 필요 없이, 아예 참조대상이 아니라고 결정하여 후보블록(36, 46)의 움직임 벡터(37, 47)를 후보 움직임벡터 리스트에서 제외할 수 있다. 또는, 후보블록(36, 46)의 움직임 벡터(37, 47)의 크기를 조절하지 않은 채로 그대로 참조하여 현재블록(31, 41)의 움직임 벡터(34, 44)가 예측되도록 결정할 수도 있다.
제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)는 다음 값 중에 하나로 설정될 수 있다. i) 참조영상의 개수; ii) 참조영상의 개수의 2배수; iii) GOP(Group Of Pictures)의 크기와 참조영상의 개수의 2배수의 합; iv) 현재영상보다 디코딩 순서상으로 선행하며 출력 순서상으로 연속되는 영상들의 최대 허용 개수(max_num_reorder_pics)와 참조영상의 개수의 2배수의 합; v) 복호픽처 버퍼(Decoded Picture Buffer; DPB)에 저장된 복원영상이 출력되기까지의 최대 지연 시간(max_output_delay)과 참조영상의 개수의 2배수의 합; vi) GOP의 크기의 2배수; vii) 현재영상보다 디코딩 순서상으로 선행하며 출력 순서상으로 연속되는 영상들의 최대 허용 개수(max_num_reorder_pics)의 2배수; viii) 복호픽처 버퍼(DPB)에 저장된 복원영상이 출력되기까지의 최대 지연 시간(max_output_delay)의 2배수.
후보블록이 콜로케이티드 블록(36)인 경우에, 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)의 크기는, 현재영상(31), 현재 참조영상(33) 및 콜로케이티드 참조영상(38)의 상대적인 위치에 따라 가변적으로 설정될 수 있다. 예를 들어, i) 콜로케이티드 블록(36)의 참조인덱스와 현재블록(31)의 참조인덱스가 모두 현재영상(30)의 POC보다 크거나 모두 작은 경우(첫번째 경우), ii) 콜로케이티드 블록(36)의 참조인덱스와 현재블록(31)의 참조인덱스 사이에 현재영상(30)의 POC가 있는 경우(두번째 경우)가 있다. 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)의 크기는 첫번째 경우와 두번째 경우에서 각각 다르게 설정될 수 있다.
또한, 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)는, 현재영상(30)의 시간 예측(temporal prediction)에 따른 계층구조의 시간 심도(temporal depth)에 기초하여 가변적으로 설정될 수 있다. 예를 들어, 현재영상(30)의 인터 예측을 위해 다수의 영상들을 계층적으로 참조하는 경우에, 몇단계까지 참조하는지 여부에 따라 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)의 크기가 조절될 수 있다.
또한, 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)는, 현재영상(30)이 포함된 GOP 구조에서 현재영상(30)의 위치에 따라 가변적으로 크기가 조절될 수 있다.
또한, 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)는, 현재영상(30)이 포함된 GOP 구조에서 현재영상(30)의 POC에 따라 가변적으로 크기가 조절될 수 있다.
비디오를 부호화할 때 이용된 현재영상(30)의 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)는 부호화하여 비디오 복호화단에 전송될 수 있다. 예를 들어, 예를 들어, 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)는, 시퀀스마다 결정되거나, 픽처마다 결정되거나, 슬라이스마다 결정되거나, 픽처에 따라 적응적으로 결정될 수 있다. 이에 따라 시퀀스 파라미터 세트(Sequence Parameter Set; SPS), 픽처 파라미터 세트(Picture Parameter Set; PPS), 슬라이스 헤더(Slice Header), 적응 파라미터 세트(Adaptation Parameter Set; APS)에 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)에 대한 정보가 수록될 수 있다.
다른 예로, 비디오 부호화단과 비디오 복호화단은 현재영상(30)의 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)를 송수신하지 않고, 예측할 수 있다. 예를 들어 랜덤 억세스(Low delay) 또는 로우 딜레이(Low Delay)와 같은 현재영상(30)의 시간 예측의 계층구조에 기초하여 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)가 예측될 수 있다. 또는 현재영상(30)의 POC에 기초하여 제1 임계치(THpocdiff1) 또는 제2 임계치(THpocdiff2)가 예측될 수도 있다.
이하 도 5 내지 6을 참조하여, 일 실시예에 따른 움직임 벡터 결정 방법을 수반하는 비디오 부호화 방법 및 비디오 복호화 방법을 상술한다.
도 5 는 일 실시예에 따른 움직임 벡터 결정 방법을 수반한 비디오 부호화 방법의 흐름도를 도시한다.
단계 51에서, 일 실시예에 따른 움직임 벡터 결정 방법에 따라, 현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트가 결정될 수 있다.
복수의 후보블록들 중에서 제1 후보블록의 참조영상이 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 사용할지 여부가 결정될 수 있다.
현재블록의 참조영상과 후보블록의 참조영상이 모두 롱텀 참조영상인 경우에, 후보 블록의 움직임 벡터의 크기를 조절할 필요 없이 그대로 후보 움직임벡터 리스트에 포함될 수 있다.
현재블록의 참조영상 및 제1 후보블록의 참조영상 중 어느 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 이용하지 않도록 결정될 수 있다.
현재블록의 참조영상과 제1 후보블록의 참조영상이 모두 숏텀 참조영상인 경우에, 후보 블록의 움직임 벡터의 크기를 조절하여 후보 움직임벡터 리스트에 포함시킬 수 있다.
단계 53에서, 단계 51에서 결정된 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 하나의 후보 움직임 벡터를 참조 움직임 벡터로서 선택하고, 선택된 침조 움직임 벡터를 참조하여 현재블록의 움직임 벡터를 결정할 수 있다. 참조 움직임 벡터를 그대로 복사하거나 변형함으로써 현재블록의 움직임 벡터가 결정될 수 있다. 예를 들어, 움직임 벡터의 차이 정보가 있는 경우에, 참조 움직임 벡터에 차이 정보를 합성함으로써 현재블록의 움직임 벡터가 결정될 수 있다.
현재블록의 참조영상 내에서 결정된 현재블록의 움직임벡터가 가리키는 참조블록이 결정되면, 참조블록과 현재블록 간의 레지듀얼 데이터가 생성될 수 있다.
단계 55에서, 단계 53에서 생성된 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여 양자화된 변환계수들이 생성될 수 있다.
현재영상의 블록들마다 단계 51, 53, 55의 인터 예측이 수행되고, 변환 및 양자화가 수행됨에 따라 블록별로 양자화된 변환계수들이 생성될 수 있다. 또한, 블록별로 양자화된 변환계수들에 대해 엔트로피 부호화를 수행하여 비트스트림이 생성되어 출력될 수도 있다.
도 5 에 따른 비디오 부호화 방법은 비디오 부호화 장치에 의해 구현될 수 있다. 도 5 에 따른 비디오 부호화 방법을 구현하는 비디오 인코딩 프로세서가 비디오 부호화 장치 내부에 탑재되거나, 외부 비디오 부호화 장치에 연계하여 작동함으로써, 비디오 부호화 장치의 인터 예측, 변환, 양자화를 포함한 비디오 부호화 동작을 수행할 수 있다. 일 실시예에 따른 비디오 부호화 장치의 내부 비디오 디코딩 프로세서는, 별개의 프로세서 뿐만 아니라, 비디오 부호화 장치 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 인코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 부호화 동작을 구현하는 경우도 포함할 수도 있다.
도 6 는 일 실시예에 따른 움직임 벡터 결정 방법을 수반한 비디오 복호화 방법의 흐름도를 도시한다.
단계 61에서, 현재블록의 참조인덱스와 양자화된 변환계수들, 및 후보블록의 움직임 벡터가 수신될 수 있다.
단계 63에서, 단계 61에서 수신된 현재블록의 양자화된 변환계수들에 대해 역양자화 및 역변환이 수행되어 현재블록의 레지듀얼 데이터가 복원될 수 있다.
단계 65에서, 현재블록을 위한 후보 움직임벡터 리스트가 결정될 수 있다. 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 사용할지 여부가 결정될 수 있다.
현재블록의 참조영상과 후보블록의 참조영상이 모두 롱텀 참조영상인 경우에, 후보 블록의 움직임 벡터의 크기를 조절할 필요 없이 그대로 후보 움직임벡터 리스트에 포함될 수 있다.
현재블록의 참조영상 및 제1 후보블록의 참조영상 중 어느 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 이용하지 않도록 결정될 수 있다.
현재블록의 참조영상과 제1 후보블록의 참조영상이 모두 숏텀 참조영상인 경우에, 후보 블록의 움직임 벡터의 크기를 조절하여 후보 움직임벡터 리스트에 포함시킬 수 있다.
단계 67에서, 단계 65에서 결정된 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 하나의 후보 움직임 벡터, 즉 참조 움직임 벡터를 선택하고, 선택된 참조 움직임 벡터를 참조하여 현재블록의 움직임 벡터를 결정할 수 있다. 예를 들어, 움직임 벡터의 차이 정보가 수신된 경우에는, 참조 움직임 벡터에 차이 정보를 합성함으로써 현재블록의 움직임 벡터가 결정될 수 있다.
수신된 현재블록의 참조인덱스가 가리키는 현재블록의 참조영상 내에서, 현재블록의 움직임벡터가 가리키는 참조블록이 결정될 수 있다. 결정된 참조블록과 현재블록의 레지듀얼 데이터를 합성하여 현재블록이 복원될 수 있다.
블록별로 단계 61, 63, 65, 67의 동작들이 수행됨으로써 복원된 블록들을 포함하는 현재영상이 복원될 수 있다. 영상들이 복원됨에 따라 복원영상들의 시퀀스를 포함하는 비디오가 복원될 수 있다.
단계 61, 63, 65, 67의 비디오 복호화 과정은, 비디오 복호화 과정에서 부호화된 비디오스트림을 수신하여 비디오스트림을 복호화하여 비디오를 복원할 때 수행될 수 있다. 이 경우 단계 61은 수신한 비디오스트림을 파싱하여 비디오스트림으로부터 현재블록의 참조인덱스와 양자화된 변환계수들, 및 후보블록의 움직임 벡터를 추출할 수 있다.
또한 도 5를 참조하여 전술한 비디오 부호화 방법에서도, 다른 영상의 인터예측을 위해 참조될 복원영상을 생성하기 위해서도 단계 61, 63, 65, 67의 비디오 복호화 과정이 수행될 수 있다. 이 경우 단계 61은 인터예측, 변환 및 양자화를 통해 생성된 현재블록의 참조인덱스와 양자화된 변환계수들, 및 후보블록의 움직임 벡터를 수신한 후, 단계 63, 65, 67이 단계적으로 수행되어 최종적으로 복원된 현재영상이 다른 영상의 인터예측을 위한 참조영상으로 이용될 수 있다.
도 6 에 따른 비디오 복호화 방법은 비디오 복호화 장치에 의해 구현될 수 있다. 도 6 에 따른 비디오 복호화 방법을 구현하는 비디오 디코딩 프로세서가 비디오 복호화 장치 내부에 탑재되거나, 외부 비디오 복호화 장치에 연계하여 작동함으로써, 비디오 복호화 장치의 역양자화, 역변환, 예측/보상을 포함한 비디오 복호화 동작을 수행할 수 있다. 일 실시예에 따른 비디오 복호화 장치의 내부 비디오 디코딩 프로세서는, 별개의 프로세서 뿐만 아니라, 비디오 복호화 장치 또는 중앙 연산 장치, 그래픽 연산 장치가 비디오 디코딩 프로세싱 모듈을 포함함으로써 기본적인 비디오 복호화 동작을 구현하는 경우도 포함할 수도 있다.
이하 도 7 내지 8을 참조하여, 일 실시예에 따른 움직임 벡터 결정 장치(10)를 수반하는 비디오 부호화부(70) 및 비디오 복호화부(80)를 상술한다.
도 7 은 일 실시예에 따른 움직임 벡터 결정 장치를 포함하는 비디오 부호화부(70)의 블록도를 도시한다.
비디오 부호화부(70)는, 인터예측부(71) 및 변환양자화부(75)를 포함한다. 인터예측부(71)는 일 실시예에 따른 움직임 벡터 결정 장치(10) 및 레지듀얼 생성부(73)를 포함할 수 있다.
움직임 벡터 결정 장치(10)는, 블록별로 움직임 벡터를 결정한다. 또한 움직임 벡터 예측, 블록 병합 또는 AMVP를 위해서, 다른 블록의 움직임 벡터를 참조하여 현재블록의 움직임 벡터가 예측될 수 있다. 움직임 벡터 결정 장치(10)는 움직임 벡터 예측을 위해 현재블록의 후보 움직임벡터 리스트를 결정할 수 있다. 후보 움직임벡터 리스트에 포함된 후보 움직임벡터들 중에서 하나의 참조 움직임벡터를 결정할 수 있다.
움직임 벡터 결정 장치(10)는, 현재블록의 후보 움직임벡터 리스트의 복수의 후보블록들 중에서, 제1 후보블록의 참조영상이 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정할 수 있다.
움직임 벡터 결정 장치(10)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 참조 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 예측할 수 있다.
레지듀얼 생성부(73)는, 현재블록의 참조영상 내에서 현재블록의 움직임벡터가 가리키는 참조블록을 결정하고, 참조블록과 현재블록 간의 레지듀얼 데이터를 생성할 수 있다.
이에 따라 인터예측부(71)는, 블록별로 인터예측을 수행한 결과, 블록별로 레지듀얼 데이터를 출력할 수 있다.
변환양자화부(75)는, 인터예측부(71)가 출력한 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여 양자화된 변환계수들을 생성할 수 있다. 변환양자화부(75)는, 인터예측부(71)로부터 수신한 블록별 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여, 블록별로 양자화된 변환계수들을 생성할 수 있다.
비디오 부호화부(70)는, 변환양자화부(75)에 의해 생성된 양자화된 변환계수에 대해 엔트로피 부호화를 수행하여 부호화된 비트스트림을 출력할 수 있다. 또한, 인터예측부(71)로부터 참조인덱스, 움직임 벡터, 롱텀 참조인덱스 등도 출력된 경우에, 비디오 부호화부(70)는, 양자화된 변환계수 뿐만 아니라 참조인덱스, 움직임 벡터, 롱텀 참조인덱스에 대해서도 엔트로피 부호화를 수행하여 비트스트림을 출력할 수 있다.
도 8 은 일 실시예에 따른 움직임 벡터 결정 장치를 포함하는 비디오 복호화부(80)의 블록도를 도시한다.
비디오 복호화부(80)는, 역양자화역변환부(81) 및 움직임 보상부(83)을 포함한다. 움직임 보상부(71)는 일 실시예에 따른 움직임 벡터 결정 장치(10) 및 블록 복원부(85)를 포함할 수 있다.
비디오 복호화부(80)는, 현재블록의 참조인덱스와 양자화된 변환계수들, 및 후보블록의 움직임 벡터를 수신할 수 있다. 역양자화역변환부(81)는, 수신된 현재블록의 양자화된 변환계수들에 대해 역양자화 및 역변환을 수행하여 현재블록의 레지듀얼 데이터를 복원할 수 있다.
움직임 보상부(83)는 인터 예측을 통해 부호화된 현재블록에 대해 움직임 보상을 수행함으로써 현재블록을 복원할 수 있다.
움직임 벡터 결정 장치(10)는, 블록별로 움직임 벡터를 결정한다. 움직임 벡터 결정 장치(10)는 움직임 벡터 예측을 위해 현재블록의 후보 움직임벡터 리스트를 결정할 수 있다. 후보블록은 콜로케이티드 블록이나 이웃블록을 포함할 수 있다. 움직임 벡터 결정 장치(10)는, 후보 움직임벡터 리스트에 포함된 후보 움직임벡터들 중에서 하나의 참조 움직임벡터를 결정할 수 있다.
움직임 벡터 결정 장치(10)는, 현재블록의 후보 움직임벡터 리스트의 복수의 후보블록들 중에서, 제1 후보블록의 참조영상이 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정할 수 있다.
움직임 벡터 결정 장치(10)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 참조 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 예측하여 결정할 수 있다.
블록 복원부(85)는, 비디오 복호화부(80)가 수신한 현재블록의 참조인덱스가 가리키는 현재블록의 참조영상을 결정할 수 있다. 움직임 벡터 결정 장치(10)에서 결정된 현재블록의 움직임벡터가 참조영상 내에서 가리키는 참조블록을 결정하고, 참조블록과 현재블록의 레지듀얼 데이터를 합성하여 현재블록을 복원할 수 있다.
이에 따라 움직임 보상부(83)는, 블록별로 움직임 보상을 수행한 결과 블록별로 복원하고 복원된 블록들을 포함하는 현재영상을 복원할 수 있다. 이에 따라 비디오 복호화부(80)에서, 영상들이 복원됨에 따라 영상시퀀스를 포함하는 비디오가 복원될 수 있다.
비디오 복호화부(80)는, 블록들이 복원됨에 따라 복원된 현재블록 및 복원된 블록들을 포함하는 복원영상에 대해 디블로킹 필터링을 수행하는 인루프 필터링부를 더 포함할 수도 있다.
비디오 복호화단(80)은 부호화된 비디오스트림을 수신하여 비디오스트림을 복호화하여 비디오를 복원할 수도 있다. 이 경우 비디오 복호화단(80)은 수신한 비디오스트림을 파싱하여 비디오스트림으로부터 현재블록의 참조인덱스와 양자화된 변환계수들, 및 후보블록의 움직임 벡터를 추출할 수 있다. 또한, 비디오 복호화단(80)은, 비트스트림을 수신하여 비트스트림에 대해 엔트로피 복호화를 수행하여, 비트스트림으로부터 현재블록의 참조인덱스와 양자화된 변환계수들, 및 후보블록의 움직임 벡터를 파싱하여 추출하는 수신부를 더 포함할 수도 있다.
또한 도 7를 참조하여 전술한 비디오 부호화단(70)에서 다른 영상의 인터예측을 위해 참조될 복원영상을 생성하기 위해서, 비디오 부호화단(70)에 비디오 복호화단(80)이 결합될 수도 있다. 이 경우 비디오 복호화단(80)은, 비디오 부호화단(70)에서 인터예측, 변환 및 양자화를 통해 생성하여 출력한 현재블록의 참조인덱스와 양자화된 변환계수들, 및 후보블록의 움직임 벡터를 수신하고, 역양자화역변환부(81) 및 움직임보상부(83)을 통해 최종적으로 복원된 현재영상을 출력할 수 있다. 비디오 복호화단(80)이 출력한 복원영상은 비디오 부호화단(70)의 다른 영상의 인터예측을 위한 참조영상으로 이용될 수 있다.
일 실시예에 따른 움직임 벡터 결정 장치(10)에서, 비디오 데이터가 분할되는 블록들이 트리 구조의 부호화 단위들로 분할되고, 부호화 단위에 대한 인터 예측을 위한 예측 단위들이 이용되는 경우가 있음은 전술한 바와 같다. 이하 도 9 내지 22을 참조하여, 일 실시예에 따른 트리 구조의 부호화 단위 및 변환 단위에 기초한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치가 개시된다.
도 9 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 부호화 장치(100)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 최대 부호화 단위 분할부(110), 부호화 단위 결정부(120) 및 출력부(130)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 부호화 장치(100)는 '비디오 부호화 장치(100)'로 축약하여 지칭한다.
최대 부호화 단위 분할부(110)는 영상의 현재 픽처를 위한 최대 크기의 부호화 단위인 최대 부호화 단위에 기반하여 현재 픽처를 구획할 수 있다. 현재 픽처가 최대 부호화 단위보다 크다면, 현재 픽처의 영상 데이터는 적어도 하나의 최대 부호화 단위로 분할될 수 있다. 일 실시예에 따른 최대 부호화 단위는 크기 32x32, 64x64, 128x128, 256x256 등의 데이터 단위로, 가로 및 세로 크기가 2의 자승인 정사각형의 데이터 단위일 수 있다. 영상 데이터는 적어도 하나의 최대 부호화 단위별로 부호화 단위 결정부(120)로 출력될 수 있다.
일 실시예에 따른 부호화 단위는 최대 크기 및 심도로 특징지어질 수 있다. 심도란 최대 부호화 단위로부터 부호화 단위가 공간적으로 분할한 횟수를 나타내며, 심도가 깊어질수록 심도별 부호화 단위는 최대 부호화 단위로부터 최소 부호화 단위까지 분할될 수 있다. 최대 부호화 단위의 심도가 최상위 심도이며 최소 부호화 단위가 최하위 부호화 단위로 정의될 수 있다. 최대 부호화 단위는 심도가 깊어짐에 따라 심도별 부호화 단위의 크기는 감소하므로, 상위 심도의 부호화 단위는 복수 개의 하위 심도의 부호화 단위를 포함할 수 있다.
전술한 바와 같이 부호화 단위의 최대 크기에 따라, 현재 픽처의 영상 데이터를 최대 부호화 단위로 분할하며, 각각의 최대 부호화 단위는 심도별로 분할되는 부호화 단위들을 포함할 수 있다. 일 실시예에 따른 최대 부호화 단위는 심도별로 분할되므로, 최대 부호화 단위에 포함된 공간 영역(spatial domain)의 영상 데이터가 심도에 따라 계층적으로 분류될 수 있다.
최대 부호화 단위의 높이 및 너비를 계층적으로 분할할 수 있는 총 횟수를 제한하는 최대 심도 및 부호화 단위의 최대 크기가 미리 설정되어 있을 수 있다.
부호화 단위 결정부(120)는, 심도마다 최대 부호화 단위의 영역이 분할된 적어도 하나의 분할 영역을 부호화하여, 적어도 하나의 분할 영역 별로 최종 부호화 결과가 출력될 심도를 결정한다. 즉 부호화 단위 결정부(120)는, 현재 픽처의 최대 부호화 단위마다 심도별 부호화 단위로 영상 데이터를 부호화하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여 부호화 심도로 결정한다. 결정된 부호화 심도 및 최대 부호화 단위별 영상 데이터는 출력부(130)로 출력된다.
최대 부호화 단위 내의 영상 데이터는 최대 심도 이하의 적어도 하나의 심도에 따라 심도별 부호화 단위에 기반하여 부호화되고, 각각의 심도별 부호화 단위에 기반한 부호화 결과가 비교된다. 심도별 부호화 단위의 부호화 오차의 비교 결과 부호화 오차가 가장 작은 심도가 선택될 수 있다. 각각의 최대화 부호화 단위마다 적어도 하나의 부호화 심도가 결정될 수 있다.
최대 부호화 단위의 크기는 심도가 깊어짐에 따라 부호화 단위가 계층적으로 분할되어 분할되며 부호화 단위의 개수는 증가한다. 또한, 하나의 최대 부호화 단위에 포함되는 동일한 심도의 부호화 단위들이라 하더라도, 각각의 데이터에 대한 부호화 오차를 측정하고 하위 심도로의 분할 여부가 결정된다. 따라서, 하나의 최대 부호화 단위에 포함되는 데이터라 하더라도 위치에 따라 심도별 부호화 오차가 다르므로 위치에 따라 부호화 심도가 달리 결정될 수 있다. 따라서, 하나의 최대 부호화 단위에 대해 부호화 심도가 하나 이상 설정될 수 있으며, 최대 부호화 단위의 데이터는 하나 이상의 부호화 심도의 부호화 단위에 따라 구획될 수 있다.
따라서, 일 실시예에 따른 부호화 단위 결정부(120)는, 현재 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들이 결정될 수 있다. 일 실시예에 따른 '트리 구조에 따른 부호화 단위들'은, 현재 최대 부호화 단위에 포함되는 모든 심도별 부호화 단위들 중, 부호화 심도로 결정된 심도의 부호화 단위들을 포함한다. 부호화 심도의 부호화 단위는, 최대 부호화 단위 내에서 동일 영역에서는 심도에 따라 계층적으로 결정되고, 다른 영역들에 대해서는 독립적으로 결정될 수 있다. 마찬가지로, 현재 영역에 대한 부호화 심도는, 다른 영역에 대한 부호화 심도와 독립적으로 결정될 수 있다.
일 실시예에 따른 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 분할 횟수와 관련된 지표이다. 일 실시예에 따른 제 1 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낼 수 있다. 일 실시예에 따른 제 2 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 심도 레벨의 총 개수를 나타낼 수 있다. 예를 들어, 최대 부호화 단위의 심도가 0이라고 할 때, 최대 부호화 단위가 1회 분할된 부호화 단위의 심도는 1로 설정되고, 2회 분할된 부호화 단위의 심도가 2로 설정될 수 있다. 이 경우, 최대 부호화 단위로부터 4회 분할된 부호화 단위가 최소 부호화 단위라면, 심도 0, 1, 2, 3 및 4의 심도 레벨이 존재하므로 제 1 최대 심도는 4, 제 2 최대 심도는 5로 설정될 수 있다.
최대 부호화 단위의 예측 부호화 및 변환이 수행될 수 있다. 예측 부호화 및 변환도 마찬가지로, 최대 부호화 단위마다, 최대 심도 이하의 심도마다 심도별 부호화 단위를 기반으로 수행된다.
최대 부호화 단위가 심도별로 분할될 때마다 심도별 부호화 단위의 개수가 증가하므로, 심도가 깊어짐에 따라 생성되는 모든 심도별 부호화 단위에 대해 예측 부호화 및 변환을 포함한 부호화가 수행되어야 한다. 이하 설명의 편의를 위해 적어도 하나의 최대 부호화 단위 중 현재 심도의 부호화 단위를 기반으로 예측 부호화 및 변환을 설명하겠다.
일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 데이터 단위의 크기 또는 형태를 다양하게 선택할 수 있다. 영상 데이터의 부호화를 위해서는 예측 부호화, 변환, 엔트로피 부호화 등의 단계를 거치는데, 모든 단계에 걸쳐서 동일한 데이터 단위가 사용될 수도 있으며, 단계별로 데이터 단위가 변경될 수도 있다.
예를 들어 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위의 영상 데이터의 예측 부호화를 수행하기 위해, 부호화 단위와 다른 데이터 단위를 선택할 수 있다.
최대 부호화 단위의 예측 부호화를 위해서는, 일 실시예에 따른 부호화 심도의 부호화 단위, 즉 더 이상한 분할되지 않는 부호화 단위를 기반으로 예측 부호화가 수행될 수 있다. 이하, 예측 부호화의 기반이 되는 더 이상한 분할되지 않는 부호화 단위를 '예측 단위'라고 지칭한다. 예측 단위가 분할된 파티션은, 예측 단위 및 예측 단위의 높이 및 너비 중 적어도 하나가 분할된 데이터 단위를 포함할 수 있다. 파티션은 부호화 단위의 예측 단위가 분할된 형태의 데이터 단위이고, 예측 단위는 부호화 단위와 동일한 크기의 파티션일 수 있다.
예를 들어, 크기 2Nx2N(단, N은 양의 정수)의 부호화 단위가 더 이상 분할되지 않는 경우, 크기 2Nx2N의 예측 단위가 되며, 파티션의 크기는 2Nx2N, 2NxN, Nx2N, NxN 등일 수 있다. 일 실시예에 따른 파티션 타입은 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션들뿐만 아니라, 1:n 또는 n:1과 같이 비대칭적 비율로 분할된 파티션들, 기하학적인 형태로 분할된 파티션들, 임의적 형태의 파티션들 등을 선택적으로 포함할 수도 있다.
예측 단위의 예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 적어도 하나일 수 있다. 예를 들어 인트라 모드 및 인터 모드는, 2Nx2N, 2NxN, Nx2N, NxN 크기의 파티션에 대해서 수행될 수 있다. 또한, 스킵 모드는 2Nx2N 크기의 파티션에 대해서만 수행될 수 있다. 부호화 단위 이내의 하나의 예측 단위마다 독립적으로 부호화가 수행되어 부호화 오차가 가장 작은 예측 모드가 선택될 수 있다.
또한, 일 실시예에 따른 비디오 부호화 장치(100)는, 영상 데이터의 부호화를 위한 부호화 단위 뿐만 아니라, 부호화 단위와 다른 데이터 단위를 기반으로 부호화 단위의 영상 데이터의 변환을 수행할 수 있다. 부호화 단위의 변환을 위해서는, 부호화 단위보다 작거나 같은 크기의 변환 단위를 기반으로 변환이 수행될 수 있다. 예를 들어 변환 단위는, 인트라 모드를 위한 데이터 단위 및 인터 모드를 위한 변환 단위를 포함할 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위와 유사한 방식으로, 부호화 단위 내의 변환 단위도 재귀적으로 더 작은 크기의 변환 단위로 분할되면서, 부호화 단위의 레지듀얼 데이터가 변환 심도에 따라 트리 구조에 따른 변환 단위에 따라 구획될 수 있다.
일 실시예에 따른 변환 단위에 대해서도, 부호화 단위의 높이 및 너비가 분할하여 변환 단위에 이르기까지의 분할 횟수를 나타내는 변환 심도가 설정될 수 있다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위의 변환 단위의 크기가 2Nx2N이라면 변환 심도 0, 변환 단위의 크기가 NxN이라면 변환 심도 1, 변환 단위의 크기가 N/2xN/2이라면 변환 심도 2로 설정될 수 있다. 즉, 변환 단위에 대해서도 변환 심도에 따라 트리 구조에 따른 변환 단위가 설정될 수 있다.
부호화 심도별 부호화 정보는, 부호화 심도 뿐만 아니라 예측 관련 정보 및 변환 관련 정보가 필요하다. 따라서, 부호화 단위 결정부(120)는 최소 부호화 오차를 발생시킨 부호화 심도 뿐만 아니라, 예측 단위를 파티션으로 분할한 파티션 타입, 예측 단위별 예측 모드, 변환을 위한 변환 단위의 크기 등을 결정할 수 있다.
일 실시예에 따른 최대 부호화 단위의 트리 구조에 따른 부호화 단위 및 예측단위/파티션, 및 변환 단위의 결정 방식에 대해서는, 도 11 내지 22을 참조하여 상세히 후술한다.
부호화 단위 결정부(120)는 심도별 부호화 단위의 부호화 오차를 라그랑지 곱(Lagrangian Multiplier) 기반의 율-왜곡 최적화 기법(Rate-Distortion Optimization)을 이용하여 측정할 수 있다.
출력부(130)는, 부호화 단위 결정부(120)에서 결정된 적어도 하나의 부호화 심도에 기초하여 부호화된 최대 부호화 단위의 영상 데이터 및 심도별 부호화 모드에 관한 정보를 비트스트림 형태로 출력한다.
부호화된 영상 데이터는 영상의 레지듀얼 데이터의 부호화 결과일 수 있다.
심도별 부호화 모드에 관한 정보는, 부호화 심도 정보, 예측 단위의 파티션 타입 정보, 예측 모드 정보, 변환 단위의 크기 정보 등을 포함할 수 있다.
부호화 심도 정보는, 현재 심도로 부호화하지 않고 하위 심도의 부호화 단위로 부호화할지 여부를 나타내는 심도별 분할 정보를 이용하여 정의될 수 있다. 현재 부호화 단위의 현재 심도가 부호화 심도라면, 현재 부호화 단위는 현재 심도의 부호화 단위로 부호화되므로 현재 심도의 분할 정보는 더 이상 하위 심도로 분할되지 않도록 정의될 수 있다. 반대로, 현재 부호화 단위의 현재 심도가 부호화 심도가 아니라면 하위 심도의 부호화 단위를 이용한 부호화를 시도해보아야 하므로, 현재 심도의 분할 정보는 하위 심도의 부호화 단위로 분할되도록 정의될 수 있다.
현재 심도가 부호화 심도가 아니라면, 하위 심도의 부호화 단위로 분할된 부호화 단위에 대해 부호화가 수행된다. 현재 심도의 부호화 단위 내에 하위 심도의 부호화 단위가 하나 이상 존재하므로, 각각의 하위 심도의 부호화 단위마다 반복적으로 부호화가 수행되어, 동일한 심도의 부호화 단위마다 재귀적(recursive) 부호화가 수행될 수 있다.
하나의 최대 부호화 단위 안에 트리 구조의 부호화 단위들이 결정되며 부호화 심도의 부호화 단위마다 적어도 하나의 부호화 모드에 관한 정보가 결정되어야 하므로, 하나의 최대 부호화 단위에 대해서는 적어도 하나의 부호화 모드에 관한 정보가 결정될 수 있다. 또한, 최대 부호화 단위의 데이터는 심도에 따라 계층적으로 구획되어 위치 별로 부호화 심도가 다를 수 있으므로, 데이터에 대해 부호화 심도 및 부호화 모드에 관한 정보가 설정될 수 있다.
따라서, 일 실시예에 따른 출력부(130)는, 최대 부호화 단위에 포함되어 있는 부호화 단위, 예측 단위 및 최소 단위 중 적어도 하나에 대해, 해당 부호화 심도 및 부호화 모드에 대한 부호화 정보를 할당될 수 있다.
일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위이다. 일 실시예에 따른 최소 단위는, 최대 부호화 단위에 포함되는 모든 부호화 단위, 예측 단위, 파티션 단위 및 변환 단위 내에 포함될 수 있는 최대 크기의 정사각 데이터 단위일 수 있다.
예를 들어 출력부(130)를 통해 출력되는 부호화 정보는, 심도별 부호화 단위별 부호화 정보와 예측 단위별 부호화 정보로 분류될 수 있다. 심도별 부호화 단위별 부호화 정보는, 예측 모드 정보, 파티션 크기 정보를 포함할 수 있다. 예측 단위별로 전송되는 부호화 정보는 인터 모드의 추정 방향에 관한 정보, 인터 모드의 참조 영상 인덱스에 관한 정보, 움직임 벡터에 관한 정보, 인트라 모드의 크로마 성분에 관한 정보, 인트라 모드의 보간 방식에 관한 정보 등을 포함할 수 있다.
픽처, 슬라이스 또는 GOP별로 정의되는 부호화 단위의 최대 크기에 관한 정보 및 최대 심도에 관한 정보는 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등에 삽입될 수 있다.
또한 현재 비디오에 대해 허용되는 변환 단위의 최대 크기에 관한 정보 및 변환 단위의 최소 크기에 관한 정보도, 비트스트림의 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트 등을 통해 출력될 수 있다. 출력부(130)는, 도 1 내지 8을 참조하여 전술한 예측과 관련된 참조정보, 예측정보, 단일방향예측 정보, 제4 슬라이스타입을 포함하는 슬라이스 타입 정보 등을 부호화하여 출력할 수 있다.
비디오 부호화 장치(100)의 가장 간단한 형태의 실시예에 따르면, 심도별 부호화 단위는 한 계층 상위 심도의 부호화 단위의 높이 및 너비를 반분한 크기의 부호화 단위이다. 즉, 현재 심도의 부호화 단위의 크기가 2Nx2N이라면, 하위 심도의 부호화 단위의 크기는 NxN 이다. 또한, 2Nx2N 크기의 현재 부호화 단위는 NxN 크기의 하위 심도 부호화 단위를 최대 4개 포함할 수 있다.
따라서, 비디오 부호화 장치(100)는 현재 픽처의 특성을 고려하여 결정된 최대 부호화 단위의 크기 및 최대 심도를 기반으로, 각각의 최대 부호화 단위마다 최적의 형태 및 크기의 부호화 단위를 결정하여 트리 구조에 따른 부호화 단위들을 구성할 수 있다. 또한, 각각의 최대 부호화 단위마다 다양한 예측 모드, 변환 방식 등으로 부호화할 수 있으므로, 다양한 영상 크기의 부호화 단위의 영상 특성을 고려하여 최적의 부호화 모드가 결정될 수 있다.
따라서, 영상의 해상도가 매우 높거나 데이터량이 매우 큰 영상을 기존 매크로블록 단위로 부호화한다면, 픽처당 매크로블록의 수가 과도하게 많아진다. 이에 따라, 매크로블록마다 생성되는 압축 정보도 많아지므로 압축 정보의 전송 부담이 커지고 데이터 압축 효율이 감소하는 경향이 있다. 따라서, 일 실시예에 따른 비디오 부호화 장치는, 영상의 크기를 고려하여 부호화 단위의 최대 크기를 증가시키면서, 영상 특성을 고려하여 부호화 단위를 조절할 수 있으므로, 영상 압축 효율이 증대될 수 있다.
도 9의 비디오 부호화 장치(100)는, 도 1을 참조하여 전술한 움직임 벡터 결정 장치(10) 및 비디오 부호화단(70)의 동작을 수행할 수 있다.
부호화 단위 결정부(120)는, 최대 부호화 단위마다, 트리 구조에 따른 부호화 단위들별로, 인터 예측을 위한 파티션을 포함하여 예측단위를 결정하고 예측단위마다 인터 예측을 수행할 수 있다.
부호화 단위 결정부(120)는 예측단위별로 움직임 벡터를 결정한다. 또한 움직임 벡터 예측, 예측단위 병합(PU Merging) 또는 AMVP를 위해서, 다른 예측단위의 움직임 벡터를 참조하여 현재 예측단위(파티션)의 움직임 벡터가 예측될 수 있다. 움직임 벡터 결정 장치(10)는 움직임 벡터 예측을 위해 현재 예측단위의 후보 움직임벡터 리스트를 결정할 수 있다. 후보 움직임벡터 리스트에 포함된 후보 움직임벡터들 중에서 하나의 참조 움직임벡터를 결정할 수 있다. 후보 예측단위는 현재영상 내에서 현재 예측단위에 인접하는 이웃 예측단위이거나, 콜로케이티드 영상 내의 콜로케이티드 예측단위일 수 있다.
부호화 단위 결정부(120)는, 현재 예측단위의 후보 움직임벡터 리스트의 복수의 후보 예측단위들 중에서, 제1 후보 예측단위의 참조영상이 현재 예측단위의 참조영상과 다른 경우에, 현재 예측단위의 참조영상과 제1 후보 예측단위의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보 예측단위의 움직임 벡터를 사용할지 여부를 결정할 수 있다.
현재 예측단위와 제1 후보 예측단위의 롱텀 참조인덱스에 기초하여, 현재 예측단위와 제1 후보 예측단위의 참조영상들이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 결정될 수 있다.
현재 예측단위의 참조영상과 후보 예측단위의 참조영상이 모두 롱텀 참조영상인 경우에, 후보 예측단위의 움직임 벡터의 크기를 조절할 필요 없이 그대로 후보 움직임벡터 리스트에 포함될 수 있다.
현재 예측단위의 참조영상 및 제1 후보 예측단위의 참조영상 중 어느 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에, 후보 움직임벡터 리스트에서 제1 후보 예측단위의 움직임 벡터를 이용하지 않도록 결정될 수 있다.
현재 예측단위의 참조영상과 제1 후보 예측단위의 참조영상이 모두 숏텀 참조영상인 경우에, 후보 예측단위의 움직임 벡터의 크기를 조절하여 후보 움직임벡터 리스트에 포함시킬 수 있다.
부호화 단위 결정부(120)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 참조 움직임 벡터를 이용하여 현재 예측단위의 움직임 벡터를 예측하고 결정할 수 있다.
부호화 단위 결정부(120)는, 현재 예측단위의 참조인덱스가 나타내는 POC에 따라 현재 예측단위의 참조영상을 결정할 수 있다. 참조영상이 롱텀 참조영상 또는 숏텀 참조영상인지 여부와 상관없이 참조인덱스는 POC를 나타내며 POC가 가리키는 영상을 참조영상으로 결정할 수 있다.
부호화 단위 결정부(120)는, 현재 예측단위의 참조영상 내에서 현재블록의 움직임벡터가 가리키는 참조블록을 결정하고, 참조 예측단위과 현재 예측단위 간의 레지듀얼 데이터를 생성할 수 있다.
이에 따라 부호화 단위 결정부(120)는, 예측단위별로 인터예측을 수행한 결과, 예측단위별로 레지듀얼 데이터를 출력할 수 있다.
부호화 단위 결정부(120)는, 예측단위별 레지듀얼 데이터를 포함하는 부호화 단위의 변환단위들에 대해 변환 및 양자화를 수행하여 양자화된 변환계수들을 생성할 수 있다. 부호화 단위 결정부(120)는, 이에 따라 변환단위별로 양자화된 변환계수들을 생성할 수 있다.
또한, 부호화 단위 결정부(120)는 예측단위의 인터 예측을 위한 참조영상을 생성하기 위해 도 8을 참조하여 전술한 비디오 부호화단(80)의 동작을 수행할 수도 있다.
부호화 단위 결정부(120)는, 수신된 현재 예측단위의 양자화된 변환계수들에 대해 역양자화 및 역변환을 수행하여 현재블록의 레지듀얼 데이터를 복원할 수 있다. 인터 예측을 통해 부호화된 현재 예측단위에 대해 움직임 보상을 수행함으로써 현재 예측단위을 복원할 수 있다.
부호화 단위 결정부(120)는, 현재 예측단위의 후보 움직임벡터 리스트를 결정하고 후보 움직임벡터 리스트의 복수의 후보 예측단위들 중에서, 제1 후보블록의 참조영상이 상기 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정할 수 있다.
부호화 단위 결정부(120)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 참조 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 예측하여 결정할 수 있다.
부호화 단위 결정부(120)는, 수신한 현재 예측단위의 참조인덱스가 가리키는 현재 예측단위의 참조영상을 결정할 수 있다. 수신한 현재 예측단위의 참조인덱스가 나타내는 POC에 따라 현재 예측단위의 참조영상을 결정할 수 있다. 참조영상이 롱텀 참조영상 또는 숏텀 참조영상인지 여부와 상관없이 참조인덱스는 POC를 나타내며 POC가 가리키는 영상을 참조영상으로 결정할 수 있다.
현재 예측단위의 움직임벡터가 참조영상 내에서 가리키는 참조 예측단위을 결정하고, 참조 예측단위과 현재 예측단위의 레지듀얼 데이터를 합성하여 현재 예측단위을 복원할 수 있다.
이에 따라 부호화 단위 결정부(120)는, 예측단위별로 움직임 보상을 수행한 결과 예측단위별로 복원하고 복원 예측단위들을 포함하는 현재영상을 복원할 수 있다. 복원된 예측단위 및 영상은 다른 예측단위 및 영상의 참조 대상이 될 수 있다.
도 10 는 본 발명의 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 복호화 장치(200)의 블록도를 도시한다.
일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 수신부(210), 영상 데이터 및 부호화 정보 추출부(220) 및 영상 데이터 복호화부(230)를 포함한다. 이하 설명의 편의를 위해, 일 실시예에 따라 트리 구조에 따른 부호화 단위에 기초한 비디오 예측을 수반하는 비디오 복호화 장치(200)는 '비디오 복호화 장치(200)'로 축약하여 지칭한다.
일 실시예에 따른 비디오 복호화 장치(200)의 복호화 동작을 위한 부호화 단위, 심도, 예측 단위, 변환 단위, 각종 부호화 모드에 관한 정보 등 각종 용어의 정의는, 도 9 및 비디오 부호화 장치(100)를 참조하여 전술한 바와 동일하다.
수신부(210)는 부호화된 비디오에 대한 비트스트림을 수신하여 파싱한다. 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 따라 부호화 단위마다 부호화된 영상 데이터를 추출하여 영상 데이터 복호화부(230)로 출력한다. 영상 데이터 및 부호화 정보 추출부(220)는 현재 픽처에 대한 헤더, 시퀀스 파라미터 세트 또는 픽처 파라미터 세트로부터 현재 픽처의 부호화 단위의 최대 크기에 관한 정보를 추출할 수 있다.
또한, 영상 데이터 및 부호화 정보 추출부(220)는 파싱된 비트스트림으로부터 최대 부호화 단위별로 트리 구조에 따른 부호화 단위들에 대한 부호화 심도 및 부호화 모드에 관한 정보를 추출한다. 추출된 부호화 심도 및 부호화 모드에 관한 정보는 영상 데이터 복호화부(230)로 출력된다. 즉, 비트열의 영상 데이터를 최대 부호화 단위로 분할하여, 영상 데이터 복호화부(230)가 최대 부호화 단위마다 영상 데이터를 복호화하도록 할 수 있다.
최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 하나 이상의 부호화 심도 정보에 대해 설정될 수 있으며, 부호화 심도별 부호화 모드에 관한 정보는, 해당 부호화 단위의 파티션 타입 정보, 예측 모드 정보 및 변환 단위의 크기 정보 등을 포함할 수 있다. 또한, 부호화 심도 정보로서, 심도별 분할 정보가 추출될 수도 있다.
영상 데이터 및 부호화 정보 추출부(220)가 추출한 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보는, 일 실시예에 따른 비디오 부호화 장치(100)와 같이 부호화단에서, 최대 부호화 단위별 심도별 부호화 단위마다 반복적으로 부호화를 수행하여 최소 부호화 오차를 발생시키는 것으로 결정된 부호화 심도 및 부호화 모드에 관한 정보이다. 따라서, 비디오 복호화 장치(200)는 최소 부호화 오차를 발생시키는 부호화 방식에 따라 데이터를 복호화하여 영상을 복원할 수 있다.
일 실시예에 따른 부호화 심도 및 부호화 모드에 대한 부호화 정보는, 해당 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 할당되어 있을 수 있으므로, 영상 데이터 및 부호화 정보 추출부(220)는 소정 데이터 단위별로 부호화 심도 및 부호화 모드에 관한 정보를 추출할 수 있다. 소정 데이터 단위별로, 해당 최대 부호화 단위의 부호화 심도 및 부호화 모드에 관한 정보가 기록되어 있다면, 동일한 부호화 심도 및 부호화 모드에 관한 정보를 갖고 있는 소정 데이터 단위들은 동일한 최대 부호화 단위에 포함되는 데이터 단위로 유추될 수 있다.
영상 데이터 복호화부(230)는 최대 부호화 단위별 부호화 심도 및 부호화 모드에 관한 정보에 기초하여 각각의 최대 부호화 단위의 영상 데이터를 복호화하여 현재 픽처를 복원한다. 즉 영상 데이터 복호화부(230)는, 최대 부호화 단위에 포함되는 트리 구조에 따른 부호화 단위들 가운데 각각의 부호화 단위마다, 판독된 파티션 타입, 예측 모드, 변환 단위에 기초하여 부호화된 영상 데이터를 복호화할 수 있다. 복호화 과정은 인트라 예측 및 움직임 보상을 포함하는 예측 과정, 및 역변환 과정을 포함할 수 있다.
영상 데이터 복호화부(230)는, 부호화 심도별 부호화 단위의 예측 단위의 파티션 타입 정보 및 예측 모드 정보에 기초하여, 부호화 단위마다 각각의 파티션 및 예측 모드에 따라 인트라 예측 또는 움직임 보상을 수행할 수 있다.
또한, 영상 데이터 복호화부(230)는, 최대 부호화 단위별 역변환을 위해, 부호화 단위별로 트리 구조에 따른 변환 단위 정보를 판독하여, 부호화 단위마다 변환 단위에 기초한 역변환을 수행할 수 있다. 역변환을 통해, 부호화 단위의 공간 영역의 화소값이 복원할 수 있다.
영상 데이터 복호화부(230)는 심도별 분할 정보를 이용하여 현재 최대 부호화 단위의 부호화 심도를 결정할 수 있다. 만약, 분할 정보가 현재 심도에서 더 이상 분할되지 않음을 나타내고 있다면 현재 심도가 부호화 심도이다. 따라서, 영상 데이터 복호화부(230)는 현재 최대 부호화 단위의 영상 데이터에 대해 현재 심도의 부호화 단위를 예측 단위의 파티션 타입, 예측 모드 및 변환 단위 크기 정보를 이용하여 복호화할 수 있다.
즉, 부호화 단위, 예측 단위 및 최소 단위 중 소정 데이터 단위에 대해 설정되어 있는 부호화 정보를 관찰하여, 동일한 분할 정보를 포함한 부호화 정보를 보유하고 있는 데이터 단위가 모여, 영상 데이터 복호화부(230)에 의해 동일한 부호화 모드로 복호화할 하나의 데이터 단위로 간주될 수 있다. 이런 식으로 결정된 부호화 단위마다 부호화 모드에 대한 정보를 획득하여 현재 부호화 단위의 복호화가 수행될 수 있다.
또한, 도 10의 비디오 복호화 장치(200) 중 영상데이터 복호화부(230)는, 도 1을 참조하여 전술한 움직임 벡터 결정 장치(10) 및 비디오 복호화단(80)의 동작을 수행할 수 있다.
영상데이터 복호화부(230)는, 최대 부호화 단위마다, 트리 구조에 따른 부호화 단위들별로, 움직임 보상을 위한 예측단위를 결정하고 예측단위마다 움직임 보상을 수행할 수 있다.
영상데이터 복호화부(230)는, 수신된 현재 예측단위의 양자화된 변환계수들에 대해 역양자화 및 역변환을 수행하여 현재블록의 레지듀얼 데이터를 복원할 수 있다. 인터 예측을 통해 부호화된 현재 예측단위에 대해 움직임 보상을 수행함으로써 현재 예측단위을 복원할 수 있다.
영상데이터 복호화부(230)는, 현재 예측단위의 후보 움직임벡터 리스트를 결정하고 후보 움직임벡터 리스트의 복수의 후보 예측단위들 중에서, 제1 후보블록의 참조영상이 상기 현재블록의 참조영상과 다른 경우에, 현재블록의 참조영상과 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정할 수 있다. 후보 예측단위는 현재영상 내에서 현재 예측단위에 인접하는 이웃 예측단위이거나, 콜로케이티드 영상 내의 콜로케이티드 예측단위일 수 있다.
현재 예측단위와 제1 후보 예측단위의 롱텀 참조인덱스에 기초하여, 현재 예측단위와 제1 후보 예측단위의 참조영상들이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 결정될 수 있다.
현재 예측단위의 참조영상과 후보 예측단위의 참조영상이 모두 롱텀 참조영상인 경우에, 후보 예측단위의 움직임 벡터의 크기를 조절할 필요 없이 그대로 후보 움직임벡터 리스트에 포함될 수 있다.
현재 예측단위의 참조영상 및 제1 후보 예측단위의 참조영상 중 어느 하나가 숏텀 참조영상이고 나머지 하나가 롱텀 참조영상인 경우에, 후보 움직임벡터 리스트에서 제1 후보 예측단위의 움직임 벡터를 이용하지 않도록 결정될 수 있다.
현재 예측단위의 참조영상과 제1 후보 예측단위의 참조영상이 모두 숏텀 참조영상인 경우에, 후보 예측단위의 움직임 벡터의 크기를 조절하여 후보 움직임벡터 리스트에 포함시킬 수 있다.
영상데이터 복호화부(230)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 참조 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 예측하여 결정할 수 있다.
영상데이터 복호화부(230)는, 수신한 현재 예측단위의 참조인덱스가 나타내는 POC에 따라 현재 예측단위의 참조영상을 결정할 수 있다. 참조영상이 롱텀 참조영상 또는 숏텀 참조영상인지 여부와 상관없이 참조인덱스는 POC를 나타내며 POC가 가리키는 영상을 참조영상으로 결정할 수 있다.
현재 예측단위의 움직임벡터가 참조영상 내에서 가리키는 참조 예측단위을 결정하고, 참조 예측단위과 현재 예측단위의 레지듀얼 데이터를 합성하여 현재 예측단위을 복원할 수 있다.
이에 따라 영상데이터 복호화부(230)는, 예측단위별로 움직임 보상을 수행한 결과 예측단위별로 복원하고 복원 예측단위들을 포함하는 현재영상을 복원할 수 있다. 이에 따라 영상들이 복원됨에 따라 영상시퀀스를 포함하는 비디오가 복원될 수 있다. 또한 복원된 예측단위 및 복원된 영상은 다른 예측단위 및 영상의 참조대상이 될 수 있다.
결국, 비디오 복호화 장치(200)는, 부호화 과정에서 최대 부호화 단위마다 재귀적으로 부호화를 수행하여 최소 부호화 오차를 발생시킨 부호화 단위에 대한 정보를 획득하여, 현재 픽처에 대한 복호화에 이용할 수 있다. 즉, 최대 부호화 단위마다 최적 부호화 단위로 결정된 트리 구조에 따른 부호화 단위들의 부호화된 영상 데이터의 복호화가 가능해진다.
따라서, 높은 해상도의 영상 또는 데이터량이 과도하게 많은 영상이라도 부호화단으로부터 전송된 최적 부호화 모드에 관한 정보를 이용하여, 영상의 특성에 적응적으로 결정된 부호화 단위의 크기 및 부호화 모드에 따라 효율적으로 영상 데이터를 복호화하여 복원할 수 있다.
도 11 은 본 발명의 일 실시예에 따른 부호화 단위의 개념을 도시한다.
부호화 단위의 예는, 부호화 단위의 크기는 너비x높이로 표현되며, 크기 64x64인 부호화 단위부터, 32x32, 16x16, 8x8를 포함할 수 있다. 크기 64x64의 부호화 단위는 크기 64x64, 64x32, 32x64, 32x32의 파티션들로 분할될 수 있고, 크기 32x32의 부호화 단위는 크기 32x32, 32x16, 16x32, 16x16의 파티션들로, 크기 16x16의 부호화 단위는 크기 16x16, 16x8, 8x16, 8x8의 파티션들로, 크기 8x8의 부호화 단위는 크기 8x8, 8x4, 4x8, 4x4의 파티션들로 분할될 수 있다.
비디오 데이터(310)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 2로 설정되어 있다. 비디오 데이터(320)에 대해서는, 해상도는 1920x1080, 부호화 단위의 최대 크기는 64, 최대 심도가 3로 설정되어 있다. 비디오 데이터(330)에 대해서는, 해상도는 352x288, 부호화 단위의 최대 크기는 16, 최대 심도가 1로 설정되어 있다. 도 11에 도시된 최대 심도는, 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다.
해상도가 높거나 데이터량이 많은 경우 부호화 효율의 향상 뿐만 아니라 영상 특성을 정확히 반형하기 위해 부호화 사이즈의 최대 크기가 상대적으로 큰 것이 바람직하다. 따라서, 비디오 데이터(330)에 비해, 해상도가 높은 비디오 데이터(310, 320)는 부호화 사이즈의 최대 크기가 64로 선택될 수 있다.
비디오 데이터(310)의 최대 심도는 2이므로, 비디오 데이터(310)의 부호화 단위(315)는 장축 크기가 64인 최대 부호화 단위로부터, 2회 분할하며 심도가 두 계층 깊어져서 장축 크기가 32, 16인 부호화 단위들까지 포함할 수 있다. 반면, 비디오 데이터(330)의 최대 심도는 1이므로, 비디오 데이터(330)의 부호화 단위(335)는 장축 크기가 16인 부호화 단위들로부터, 1회 분할하며 심도가 한 계층 깊어져서 장축 크기가 8인 부호화 단위들까지 포함할 수 있다.
비디오 데이터(320)의 최대 심도는 3이므로, 비디오 데이터(320)의 부호화 단위(325)는 장축 크기가 64인 최대 부호화 단위로부터, 3회 분할하며 심도가 세 계층 깊어져서 장축 크기가 32, 16, 8인 부호화 단위들까지 포함할 수 있다. 심도가 깊어질수록 세부 정보의 표현능력이 향상될 수 있다.
도 12 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 부호화부(400)의 블록도를 도시한다.
일 실시예에 따른 영상 부호화부(400)는, 비디오 부호화 장치(100)의 부호화 단위 결정부(120)에서 영상 데이터를 부호화하는데 거치는 작업들을 포함한다. 즉, 인트라 예측부(410)는 현재 프레임(405) 중 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 추정부(420) 및 움직임 보상부(425)는 인터 모드의 현재 프레임(405) 및 참조 프레임(495)을 이용하여 인터 추정 및 움직임 보상을 수행한다.
인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)로부터 출력된 데이터는 변환부(430) 및 양자화부(440)를 거쳐 양자화된 변환 계수로 출력된다. 양자화된 변환 계수는 역양자화부(460), 역변환부(470)을 통해 공간 영역의 데이터로 복원되고, 복원된 공간 영역의 데이터는 디블로킹부(480) 및 루프 필터링부(490)를 거쳐 후처리되어 참조 프레임(495)으로 출력된다. 양자화된 변환 계수는 엔트로피 부호화부(450)를 거쳐 비트스트림(455)으로 출력될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)에 적용되기 위해서는, 영상 부호화부(400)의 구성 요소들인 인트라 예측부(410), 움직임 추정부(420), 움직임 보상부(425), 변환부(430), 양자화부(440), 엔트로피 부호화부(450), 역양자화부(460), 역변환부(470), 디블로킹부(480) 및 루프 필터링부(490)가 모두, 최대 부호화 단위마다 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위에 기반한 작업을 수행하여야 한다.
특히, 인트라 예측부(410), 움직임 추정부(420) 및 움직임 보상부(425)는 현재 최대 부호화 단위의 최대 크기 및 최대 심도를 고려하여 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위의 파티션 및 예측 모드를 결정하며, 변환부(430)는 트리 구조에 따른 부호화 단위들 중 각각의 부호화 단위 내의 변환 단위의 크기를 결정하여야 한다.
특히, 움직임 추정부(420)는 예측단위 병합(PU Merging) 또는 AMVP를 위해서, 다른 예측단위의 움직임 벡터를 참조하여 현재 예측단위(파티션)의 움직임 벡터를 예측할 수 있다. 움직임 추정부(420)는 현재 예측단위의 후보 움직임벡터 리스트의 복수의 후보 예측단위들 중에서, 제1 후보 예측단위의 참조영상이 현재 예측단위의 참조 프레임(495)과 다른 경우에, 현재 예측단위의 참조 프레임(495)과 제1 후보 예측단위의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보 예측단위의 움직임 벡터를 사용할지 여부를 결정할 수 있다.
움직임 추정부(420)는 현재 예측단위와 제1 후보 예측단위의 참조영상들 중에서 적어도 하나가 롱텀 참조영상인 경우에, 후보 움직임 벡터의 크기를 조절할 필요 없이 그대로 후보 움직임벡터 리스트에 포함시키거나, 후보 움직임벡터 리스트에서 제1 후보 예측단위의 움직임 벡터를 이용하지 않도록 결정할 수 있다.
움직임 추정부(420)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 참조 움직임 벡터를 이용하여 현재 예측단위의 움직임 벡터를 예측하고 결정할 수 있다. 움직임 추정부(420)는, 현재 예측단위의 참조 프레임(495) 내에서 현재블록의 움직임벡터가 가리키는 참조블록을 결정하고, 참조 예측단위과 현재 예측단위 간의 레지듀얼 데이터를 생성할 수 있다. 이에 따라 움직임 추정부(420)는, 예측단위별로 레지듀얼 데이터를 출력할 수 있다.
또한 움직임 보상부(425)도, 현재 예측단위의 후보 움직임벡터 리스트의 복수의 후보 예측단위들 중에서, 제1 후보블록의 참조영상이 현재블록의 참조 프레임(495)과 다른 경우에, 현재블록의 참조 프레임(495)과 제1 후보블록의 참조영상 중에서 적어도 하나가 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터의 크기를 조절하지 않고 사용할지 아니면 아예 제외할지 여부를 결정할 수 있다.
움직임 보상부(425)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 예측하여 결정할 수 있다.
움직임 보상부(425)는, 참조 프레임(495) 내에서 현재 예측단위의 움직임벡터가 가리키는 참조 예측단위를 결정하고, 참조 예측단위과 현재 예측단위의 레지듀얼 데이터를 합성하여 현재 예측단위를 복원할 수 있다.
이에 따라 움직임 보상부(425)는, 예측단위별로 움직임 보상을 수행한 결과 예측단위별로 복원하고 복원 예측단위들을 포함하는 현재영상을 복원할 수 있다. 복원된 예측단위 및 영상은 다른 예측단위 및 영상의 참조 대상이 될 수 있다.
도 13 는 본 발명의 일 실시예에 따른 부호화 단위에 기초한 영상 복호화부(500)의 블록도를 도시한다.
비트스트림(505)이 파싱부(510)를 거쳐 복호화 대상인 부호화된 영상 데이터 및 복호화를 위해 필요한 부호화에 관한 정보가 파싱된다. 부호화된 영상 데이터는 엔트로피 복호화부(520) 및 역양자화부(530)를 거쳐 역양자화된 데이터로 출력되고, 역변환부(540)를 거쳐 공간 영역의 영상 데이터가 복원된다.
공간 영역의 영상 데이터에 대해서, 인트라 예측부(550)는 인트라 모드의 부호화 단위에 대해 인트라 예측을 수행하고, 움직임 보상부(560)는 참조 프레임(585)를 함께 이용하여 인터 모드의 부호화 단위에 대해 움직임 보상을 수행한다.
인트라 예측부(550) 및 움직임 보상부(560)를 거친 공간 영역의 데이터는 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리되어 복원 프레임(595)으로 출력될 수 있다. 또한, 디블로킹부(570) 및 루프 필터링부(580)를 거쳐 후처리된 데이터는 참조 프레임(585)으로서 출력될 수 있다.
비디오 복호화 장치(200)의 영상 데이터 복호화부(230)에서 영상 데이터를 복호화하기 위해, 일 실시예에 따른 영상 복호화부(500)의 파싱부(510) 이후의 단계별 작업들이 수행될 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)에 적용되기 위해서는, 영상 복호화부(500)의 구성 요소들인 파싱부(510), 엔트로피 복호화부(520), 역양자화부(530), 역변환부(540), 인트라 예측부(550), 움직임 보상부(560), 디블로킹부(570) 및 루프 필터링부(580)가 모두, 최대 부호화 단위마다 트리 구조에 따른 부호화 단위들에 기반하여 작업을 수행하여야 한다.
특히, 인트라 예측부(550), 움직임 보상부(560)는 트리 구조에 따른 부호화 단위들 각각마다 파티션 및 예측 모드를 결정하며, 역변환부(540)는 부호화 단위마다 변환 단위의 크기를 결정하여야 한다.
특히, 움직임 보상부(560)는, 현재 예측단위의 후보 움직임벡터 리스트의 복수의 후보 예측단위들 중에서, 제1 후보블록의 참조영상이 현재블록의 참조 프레임(585)과 다른 경우에, 현재블록의 참조 프레임(585)과 제1 후보블록의 참조영상 중에서 적어도 하나가 롱텀 참조영상인지 여부에 기초하여, 후보 움직임벡터 리스트에서 제1 후보블록의 움직임 벡터의 크기를 조절하지 않고 사용할지 아니면 아예 제외할지 여부를 결정할 수 있다.
움직임 보상부(560)는, 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 최적의 후보 움직임 벡터를 선택하여 참조 움직임 벡터를 결정하고, 움직임 벡터를 이용하여 현재블록의 움직임 벡터를 예측하여 결정할 수 있다.
움직임 보상부(560)는, 현재 예측단위의 참조인덱스에 따른 POC가 가리키는 참조 프레임(585)를 결정하고, 참조 프레임(585) 내에서 현재 예측단위의 움직임벡터가 가리키는 참조 예측단위를 결정하고, 참조 예측단위과 현재 예측단위의 레지듀얼 데이터를 합성하여 현재 예측단위를 복원할 수 있다.
이에 따라 움직임 보상부(560)는, 예측단위별로 움직임 보상을 수행한 결과 예측단위별로 복원하고 복원 예측단위들을 포함하는 복원영상을 생성할 수 있다. 복원된 예측단위 및 복원영상은 다른 예측단위 및 영상의 참조 대상이 될 수 있다.
도 14 는 본 발명의 일 실시예에 따른 심도별 부호화 단위 및 파티션을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)는 영상 특성을 고려하기 위해 계층적인 부호화 단위를 사용한다. 부호화 단위의 최대 높이 및 너비, 최대 심도는 영상의 특성에 따라 적응적으로 결정될 수도 있으며, 사용자의 요구에 따라 다양하게 설정될 수도 있다. 미리 설정된 부호화 단위의 최대 크기에 따라, 심도별 부호화 단위의 크기가 결정될 수 있다.
일 실시예에 따른 부호화 단위의 계층 구조(600)는 부호화 단위의 최대 높이 및 너비가 64이며, 최대 심도가 4인 경우를 도시하고 있다. 이 때, 최대 심도는 최대 부호화 단위로부터 최소 부호화 단위까지의 총 분할 횟수를 나타낸다. 일 실시예에 따른 부호화 단위의 계층 구조(600)의 세로축을 따라서 심도가 깊어지므로 심도별 부호화 단위의 높이 및 너비가 각각 분할한다. 또한, 부호화 단위의 계층 구조(600)의 가로축을 따라, 각각의 심도별 부호화 단위의 예측 부호화의 기반이 되는 예측 단위 및 파티션이 도시되어 있다.
즉, 부호화 단위(610)는 부호화 단위의 계층 구조(600) 중 최대 부호화 단위로서 심도가 0이며, 부호화 단위의 크기, 즉 높이 및 너비가 64x64이다. 세로축을 따라 심도가 깊어지며, 크기 32x32인 심도 1의 부호화 단위(620), 크기 16x16인 심도 2의 부호화 단위(630) 및 크기 8x8인 심도 3의 부호화 단위(640)가 존재한다. 크기 8x8인 심도 3의 부호화 단위(640)는 최하위 심도의 부호화 단위이며 최소 부호화 단위이다.
각각의 심도별로 가로축을 따라, 부호화 단위의 예측 단위 및 파티션들이 배열된다. 즉, 심도 0의 크기 64x64의 부호화 단위(610)가 예측 단위라면, 예측 단위는 크기 64x64의 부호화 단위(610)에 포함되는 크기 64x64의 파티션(610), 크기 64x32의 파티션들(612), 크기 32x64의 파티션들(614), 크기 32x32의 파티션들(616)로 분할될 수 있다.
마찬가지로, 심도 1의 크기 32x32의 부호화 단위(620)의 예측 단위는, 크기 32x32의 부호화 단위(620)에 포함되는 크기 32x32의 파티션(620), 크기 32x16의 파티션들(622), 크기 16x32의 파티션들(624), 크기 16x16의 파티션들(626)로 분할될 수 있다.
마찬가지로, 심도 2의 크기 16x16의 부호화 단위(630)의 예측 단위는, 크기 16x16의 부호화 단위(630)에 포함되는 크기 16x16의 파티션(630), 크기 16x8의 파티션들(632), 크기 8x16의 파티션들(634), 크기 8x8의 파티션들(636)로 분할될 수 있다.
마찬가지로, 심도 3의 크기 8x8의 부호화 단위(640)의 예측 단위는, 크기 8x8의 부호화 단위(640)에 포함되는 크기 8x8의 파티션(640), 크기 8x4의 파티션들(642), 크기 4x8의 파티션들(644), 크기 4x4의 파티션들(646)로 분할될 수 있다.
일 실시예에 따른 비디오 부호화 장치(100)의 부호화 단위 결정부(120)는, 최대 부호화 단위(610)의 부호화 심도를 결정하기 위해, 최대 부호화 단위(610)에 포함되는 각각의 심도의 부호화 단위마다 부호화를 수행하여야 한다.
동일한 범위 및 크기의 데이터를 포함하기 위한 심도별 부호화 단위의 개수는, 심도가 깊어질수록 심도별 부호화 단위의 개수도 증가한다. 예를 들어, 심도 1의 부호화 단위 한 개가 포함하는 데이터에 대해서, 심도 2의 부호화 단위는 네 개가 필요하다. 따라서, 동일한 데이터의 부호화 결과를 심도별로 비교하기 위해서, 한 개의 심도 1의 부호화 단위 및 네 개의 심도 2의 부호화 단위를 이용하여 각각 부호화되어야 한다.
각각의 심도별 부호화를 위해서는, 부호화 단위의 계층 구조(600)의 가로축을 따라, 심도별 부호화 단위의 예측 단위들마다 부호화를 수행하여, 해당 심도에서 가장 작은 부호화 오차인 대표 부호화 오차가 선택될 수다. 또한, 부호화 단위의 계층 구조(600)의 세로축을 따라 심도가 깊어지며, 각각의 심도마다 부호화를 수행하여, 심도별 대표 부호화 오차를 비교하여 최소 부호화 오차가 검색될 수 있다. 최대 부호화 단위(610) 중 최소 부호화 오차가 발생하는 심도 및 파티션이 최대 부호화 단위(610)의 부호화 심도 및 파티션 타입으로 선택될 수 있다.
도 15 은 본 발명의 일 실시예에 따른, 부호화 단위 및 변환 단위의 관계를 도시한다.
일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)는, 최대 부호화 단위마다 최대 부호화 단위보다 작거나 같은 크기의 부호화 단위로 영상을 부호화하거나 복호화한다. 부호화 과정 중 변환을 위한 변환 단위의 크기는 각각의 부호화 단위보다 크지 않은 데이터 단위를 기반으로 선택될 수 있다.
예를 들어, 일 실시예에 따른 비디오 부호화 장치(100) 또는 일 실시예에 따른 비디오 복호화 장치(200)에서, 현재 부호화 단위(710)가 64x64 크기일 때, 32x32 크기의 변환 단위(720)를 이용하여 변환이 수행될 수 있다.
또한, 64x64 크기의 부호화 단위(710)의 데이터를 64x64 크기 이하의 32x32, 16x16, 8x8, 4x4 크기의 변환 단위들로 각각 변환을 수행하여 부호화한 후, 원본과의 오차가 가장 적은 변환 단위가 선택될 수 있다.
도 16 은 본 발명의 일 실시예에 따라, 심도별 부호화 정보들을 도시한다.
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 부호화 모드에 관한 정보로서, 각각의 부호화 심도의 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 부호화하여 전송할 수 있다.
파티션 타입에 대한 정보(800)는, 현재 부호화 단위의 예측 부호화를 위한 데이터 단위로서, 현재 부호화 단위의 예측 단위가 분할된 파티션의 형태에 대한 정보를 나타낸다. 예를 들어, 크기 2Nx2N의 현재 부호화 단위 CU_0는, 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806), 크기 NxN의 파티션(808) 중 어느 하나의 타입으로 분할되어 이용될 수 있다. 이 경우 현재 부호화 단위의 파티션 타입에 관한 정보(800)는 크기 2Nx2N의 파티션(802), 크기 2NxN의 파티션(804), 크기 Nx2N의 파티션(806) 및 크기 NxN의 파티션(808) 중 하나를 나타내도록 설정된다.
예측 모드에 관한 정보(810)는, 각각의 파티션의 예측 모드를 나타낸다. 예를 들어 예측 모드에 관한 정보(810)를 통해, 파티션 타입에 관한 정보(800)가 가리키는 파티션이 인트라 모드(812), 인터 모드(814) 및 스킵 모드(816) 중 하나로 예측 부호화가 수행되는지 여부가 설정될 수 있다.
또한, 변환 단위 크기에 관한 정보(820)는 현재 부호화 단위를 어떠한 변환 단위를 기반으로 변환을 수행할지 여부를 나타낸다. 예를 들어, 변환 단위는 제 1 인트라 변환 단위 크기(822), 제 2 인트라 변환 단위 크기(824), 제 1 인터 변환 단위 크기(826), 제 2 인트라 변환 단위 크기(828) 중 하나일 수 있다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(210)는, 각각의 심도별 부호화 단위마다 파티션 타입에 관한 정보(800), 예측 모드에 관한 정보(810), 변환 단위 크기에 대한 정보(820)를 추출하여 복호화에 이용할 수 있다.
도 17 는 본 발명의 일 실시예에 따른 심도별 부호화 단위를 도시한다.
심도의 변화를 나타내기 위해 분할 정보가 이용될 수 있다. 분할 정보는 현재 심도의 부호화 단위가 하위 심도의 부호화 단위로 분할될지 여부를 나타낸다.
심도 0 및 2N_0x2N_0 크기의 부호화 단위(900)의 예측 부호화를 위한 예측 단위(910)는 2N_0x2N_0 크기의 파티션 타입(912), 2N_0xN_0 크기의 파티션 타입(914), N_0x2N_0 크기의 파티션 타입(916), N_0xN_0 크기의 파티션 타입(918)을 포함할 수 있다. 예측 단위가 대칭적 비율로 분할된 파티션들(912, 914, 916, 918)만이 예시되어 있지만, 전술한 바와 같이 파티션 타입은 이에 한정되지 않고 비대칭적 파티션, 임의적 형태의 파티션, 기하학적 형태의 파티션 등을 포함할 수 있다.
파티션 타입마다, 한 개의 2N_0x2N_0 크기의 파티션, 두 개의 2N_0xN_0 크기의 파티션, 두 개의 N_0x2N_0 크기의 파티션, 네 개의 N_0xN_0 크기의 파티션마다 반복적으로 예측 부호화가 수행되어야 한다. 크기 2N_0x2N_0, 크기 N_0x2N_0 및 크기 2N_0xN_0 및 크기 N_0xN_0의 파티션에 대해서는, 인트라 모드 및 인터 모드로 예측 부호화가 수행될 수 있다. 스킵 모드는 크기 2N_0x2N_0의 파티션에 예측 부호화가 대해서만 수행될 수 있다.
크기 2N_0x2N_0, 2N_0xN_0 및 N_0x2N_0의 파티션 타입(912, 914, 916) 중 하나에 의한 부호화 오차가 가장 작다면, 더 이상 하위 심도로 분할할 필요 없다.
크기 N_0xN_0의 파티션 타입(918)에 의한 부호화 오차가 가장 작다면, 심도 0를 1로 변경하며 분할하고(920), 심도 2 및 크기 N_0xN_0의 파티션 타입의 부호화 단위들(930)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
심도 1 및 크기 2N_1x2N_1 (=N_0xN_0)의 부호화 단위(930)의 예측 부호화를 위한 예측 단위(940)는, 크기 2N_1x2N_1의 파티션 타입(942), 크기 2N_1xN_1의 파티션 타입(944), 크기 N_1x2N_1의 파티션 타입(946), 크기 N_1xN_1의 파티션 타입(948)을 포함할 수 있다.
또한, 크기 N_1xN_1 크기의 파티션 타입(948)에 의한 부호화 오차가 가장 작다면, 심도 1을 심도 2로 변경하며 분할하고(950), 심도 2 및 크기 N_2xN_2의 부호화 단위들(960)에 대해 반복적으로 부호화를 수행하여 최소 부호화 오차를 검색해 나갈 수 있다.
최대 심도가 d인 경우, 심도별 부호화 단위는 심도 d-1일 때까지 설정되고, 분할 정보는 심도 d-2까지 설정될 수 있다. 즉, 심도 d-2로부터 분할(970)되어 심도 d-1까지 부호화가 수행될 경우, 심도 d-1 및 크기 2N_(d-1)x2N_(d-1)의 부호화 단위(980)의 예측 부호화를 위한 예측 단위(990)는, 크기 2N_(d-1)x2N_(d-1)의 파티션 타입(992), 크기 2N_(d-1)xN_(d-1)의 파티션 타입(994), 크기 N_(d-1)x2N_(d-1)의 파티션 타입(996), 크기 N_(d-1)xN_(d-1)의 파티션 타입(998)을 포함할 수 있다.
파티션 타입 가운데, 한 개의 크기 2N_(d-1)x2N_(d-1)의 파티션, 두 개의 크기 2N_(d-1)xN_(d-1)의 파티션, 두 개의 크기 N_(d-1)x2N_(d-1)의 파티션, 네 개의 크기 N_(d-1)xN_(d-1)의 파티션마다 반복적으로 예측 부호화를 통한 부호화가 수행되어, 최소 부호화 오차가 발생하는 파티션 타입이 검색될 수 있다.
크기 N_(d-1)xN_(d-1)의 파티션 타입(998)에 의한 부호화 오차가 가장 작더라도, 최대 심도가 d이므로, 심도 d-1의 부호화 단위 CU_(d-1)는 더 이상 하위 심도로의 분할 과정을 거치지 않으며, 현재 최대 부호화 단위(900)에 대한 부호화 심도가 심도 d-1로 결정되고, 파티션 타입은 N_(d-1)xN_(d-1)로 결정될 수 있다. 또한 최대 심도가 d이므로, 심도 d-1의 부호화 단위(952)에 대해 분할 정보는 설정되지 않는다.
데이터 단위(999)은, 현재 최대 부호화 단위에 대한 '최소 단위'라 지칭될 수 있다. 일 실시예에 따른 최소 단위는, 최하위 부호화 심도인 최소 부호화 단위가 4분할된 크기의 정사각형의 데이터 단위일 수 있다. 이러한 반복적 부호화 과정을 통해, 일 실시예에 따른 비디오 부호화 장치(100)는 부호화 단위(900)의 심도별 부호화 오차를 비교하여 가장 작은 부호화 오차가 발생하는 심도를 선택하여, 부호화 심도를 결정하고, 해당 파티션 타입 및 예측 모드가 부호화 심도의 부호화 모드로 설정될 수 있다.
이런 식으로 심도 0, 1, ..., d-1, d의 모든 심도별 최소 부호화 오차를 비교하여 오차가 가장 작은 심도가 선택되어 부호화 심도로 결정될 수 있다. 부호화 심도, 및 예측 단위의 파티션 타입 및 예측 모드는 부호화 모드에 관한 정보로써 부호화되어 전송될 수 있다. 또한, 심도 0으로부터 부호화 심도에 이르기까지 부호화 단위가 분할되어야 하므로, 부호화 심도의 분할 정보만이 '0'으로 설정되고, 부호화 심도를 제외한 심도별 분할 정보는 '1'로 설정되어야 한다.
일 실시예에 따른 비디오 복호화 장치(200)의 영상 데이터 및 부호화 정보 추출부(220)는 부호화 단위(900)에 대한 부호화 심도 및 예측 단위에 관한 정보를 추출하여 부호화 단위(912)를 복호화하는데 이용할 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 심도별 분할 정보를 이용하여 분할 정보가 '0'인 심도를 부호화 심도로 파악하고, 해당 심도에 대한 부호화 모드에 관한 정보를 이용하여 복호화에 이용할 수 있다.
도 18, 19 및 20는 본 발명의 일 실시예에 따른, 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
부호화 단위(1010)는, 최대 부호화 단위에 대해 일 실시예에 따른 비디오 부호화 장치(100)가 결정한 부호화 심도별 부호화 단위들이다. 예측 단위(1060)는 부호화 단위(1010) 중 각각의 부호화 심도별 부호화 단위의 예측 단위들의 파티션들이며, 변환 단위(1070)는 각각의 부호화 심도별 부호화 단위의 변환 단위들이다.
심도별 부호화 단위들(1010)은 최대 부호화 단위의 심도가 0이라고 하면, 부호화 단위들(1012, 1054)은 심도가 1, 부호화 단위들(1014, 1016, 1018, 1028, 1050, 1052)은 심도가 2, 부호화 단위들(1020, 1022, 1024, 1026, 1030, 1032, 1048)은 심도가 3, 부호화 단위들(1040, 1042, 1044, 1046)은 심도가 4이다.
예측 단위들(1060) 중 일부 파티션(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 부호화 단위가 분할된 형태이다. 즉, 파티션(1014, 1022, 1050, 1054)은 2NxN의 파티션 타입이며, 파티션(1016, 1048, 1052)은 Nx2N의 파티션 타입, 파티션(1032)은 NxN의 파티션 타입이다. 심도별 부호화 단위들(1010)의 예측 단위 및 파티션들은 각각의 부호화 단위보다 작거나 같다.
변환 단위들(1070) 중 일부(1052)의 영상 데이터에 대해서는 부호화 단위에 비해 작은 크기의 데이터 단위로 변환 또는 역변환이 수행된다. 또한, 변환 단위(1014, 1016, 1022, 1032, 1048, 1050, 1052, 1054)는 예측 단위들(1060) 중 해당 예측 단위 및 파티션와 비교해보면, 서로 다른 크기 또는 형태의 데이터 단위이다. 즉, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 다른 비디오 복호화 장치(200)는 동일한 부호화 단위에 대한 인트라 예측/움직임 추정/움직임 보상 작업, 및 변환/역변환 작업이라 할지라도, 각각 별개의 데이터 단위를 기반으로 수행할 수 있다.
이에 따라, 최대 부호화 단위마다, 영역별로 계층적인 구조의 부호화 단위들마다 재귀적으로 부호화가 수행되어 최적 부호화 단위가 결정됨으로써, 재귀적 트리 구조에 따른 부호화 단위들이 구성될 수 있다. 부호화 정보는 부호화 단위에 대한 분할 정보, 파티션 타입 정보, 예측 모드 정보, 변환 단위 크기 정보를 포함할 수 있다. 이하 표 1은, 일 실시예에 따른 비디오 부호화 장치(100) 및 일 실시예에 따른 비디오 복호화 장치(200)에서 설정할 수 있는 일례를 나타낸다.
표 1
분할 정보 0 (현재 심도 d의 크기 2Nx2N의 부호화 단위에 대한 부호화) 분할 정보 1
예측 모드 파티션 타입 변환 단위 크기 하위 심도 d+1의 부호화 단위들마다 반복적 부호화
인트라 인터스킵 (2Nx2N만) 대칭형 파티션 타입 비대칭형 파티션 타입 변환 단위 분할 정보 0 변환 단위 분할 정보 1
2Nx2N2NxNNx2NNxN 2NxnU2NxnDnLx2NnRx2N 2Nx2N NxN (대칭형 파티션 타입) N/2xN/2 (비대칭형 파티션 타입)
일 실시예에 따른 비디오 부호화 장치(100)의 출력부(130)는 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 출력하고, 일 실시예에 따른 비디오 복호화 장치(200)의 부호화 정보 추출부(220)는 수신된 비트스트림으로부터 트리 구조에 따른 부호화 단위들에 대한 부호화 정보를 추출할 수 있다.
분할 정보는 현재 부호화 단위가 하위 심도의 부호화 단위들로 분할되는지 여부를 나타낸다. 현재 심도 d의 분할 정보가 0이라면, 현재 부호화 단위가 현재 부호화 단위가 하위 부호화 단위로 더 이상 분할되지 않는 심도가 부호화 심도이므로, 부호화 심도에 대해서 파티션 타입 정보, 예측 모드, 변환 단위 크기 정보가 정의될 수 있다. 분할 정보에 따라 한 단계 더 분할되어야 하는 경우에는, 분할된 4개의 하위 심도의 부호화 단위마다 독립적으로 부호화가 수행되어야 한다.
예측 모드는, 인트라 모드, 인터 모드 및 스킵 모드 중 하나로 나타낼 수 있다. 인트라 모드 및 인터 모드는 모든 파티션 타입에서 정의될 수 있으며, 스킵 모드는 파티션 타입 2Nx2N에서만 정의될 수 있다.
파티션 타입 정보는, 예측 단위의 높이 또는 너비가 대칭적 비율로 분할된 대칭적 파티션 타입 2Nx2N, 2NxN, Nx2N 및 NxN 과, 비대칭적 비율로 분할된 비대칭적 파티션 타입 2NxnU, 2NxnD, nLx2N, nRx2N를 나타낼 수 있다. 비대칭적 파티션 타입 2NxnU 및 2NxnD는 각각 높이가 1:3 및 3:1로 분할된 형태이며, 비대칭적 파티션 타입 nLx2N 및 nRx2N은 각각 너비가 1:3 및 3:1로 분할된 형태를 나타낸다.
변환 단위 크기는 인트라 모드에서 두 종류의 크기, 인터 모드에서 두 종류의 크기로 설정될 수 있다. 즉, 변환 단위 분할 정보가 0 이라면, 변환 단위의 크기가 현재 부호화 단위의 크기 2Nx2N로 설정된다. 변환 단위 분할 정보가 1이라면, 현재 부호화 단위가 분할된 크기의 변환 단위가 설정될 수 있다. 또한 크기 2Nx2N인 현재 부호화 단위에 대한 파티션 타입이 대칭형 파티션 타입이라면 변환 단위의 크기는 NxN, 비대칭형 파티션 타입이라면 N/2xN/2로 설정될 수 있다.
일 실시예에 따른 트리 구조에 따른 부호화 단위들의 부호화 정보는, 부호화 심도의 부호화 단위, 예측 단위 및 최소 단위 단위 중 적어도 하나에 대해 할당될 수 있다. 부호화 심도의 부호화 단위는 동일한 부호화 정보를 보유하고 있는 예측 단위 및 최소 단위를 하나 이상 포함할 수 있다.
따라서, 인접한 데이터 단위들끼리 각각 보유하고 있는 부호화 정보들을 확인하면, 동일한 부호화 심도의 부호화 단위에 포함되는지 여부가 확인될 수 있다. 또한, 데이터 단위가 보유하고 있는 부호화 정보를 이용하면 해당 부호화 심도의 부호화 단위를 확인할 수 있으므로, 최대 부호화 단위 내의 부호화 심도들의 분포가 유추될 수 있다.
따라서 이 경우 현재 부호화 단위가 주변 데이터 단위를 참조하여 예측하기 경우, 현재 부호화 단위에 인접하는 심도별 부호화 단위 내의 데이터 단위의 부호화 정보가 직접 참조되어 이용될 수 있다.
또 다른 실시예로, 현재 부호화 단위가 주변 부호화 단위를 참조하여 예측 부호화가 수행되는 경우, 인접하는 심도별 부호화 단위의 부호화 정보를 이용하여, 심도별 부호화 단위 내에서 현재 부호화 단위에 인접하는 데이터가 검색됨으로써 주변 부호화 단위가 참조될 수도 있다.
도 21 은 표 1의 부호화 모드 정보에 따른 부호화 단위, 예측 단위 및 변환 단위의 관계를 도시한다.
최대 부호화 단위(1300)는 부호화 심도의 부호화 단위들(1302, 1304, 1306, 1312, 1314, 1316, 1318)을 포함한다. 이 중 하나의 부호화 단위(1318)는 부호화 심도의 부호화 단위이므로 분할 정보가 0으로 설정될 수 있다. 크기 2Nx2N의 부호화 단위(1318)의 파티션 타입 정보는, 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326), NxN(1328), 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정될 수 있다.
변환 단위 분할 정보(TU size flag)는 변환 인덱스의 일종으로서, 변환 인덱스에 대응하는 변환 단위의 크기는 부호화 단위의 예측 단위 타입 또는 파티션 타입에 따라 변경될 수 있다.
예를 들어, 파티션 타입 정보가 대칭형 파티션 타입 2Nx2N(1322), 2NxN(1324), Nx2N(1326) 및 NxN(1328) 중 하나로 설정되어 있는 경우, 변환 단위 분할 정보가 0이면 크기 2Nx2N의 변환 단위(1342)가 설정되고, 변환 단위 분할 정보가 1이면 크기 NxN의 변환 단위(1344)가 설정될 수 있다.
파티션 타입 정보가 비대칭형 파티션 타입 2NxnU(1332), 2NxnD(1334), nLx2N(1336) 및 nRx2N(1338) 중 하나로 설정된 경우, 변환 단위 분할 정보(TU size flag)가 0이면 크기 2Nx2N의 변환 단위(1352)가 설정되고, 변환 단위 분할 정보가 1이면 크기 N/2xN/2의 변환 단위(1354)가 설정될 수 있다.
도 21을 참조하여 전술된 변환 단위 분할 정보(TU size flag)는 0 또는 1의 값을 갖는 플래그이지만, 일 실시예에 따른 변환 단위 분할 정보가 1비트의 플래그로 한정되는 것은 아니며 설정에 따라 0, 1, 2, 3.. 등으로 증가하며 변환 단위가 계층적으로 분할될 수도 있다. 변환 단위 분할 정보는 변환 인덱스의 한 실시예로써 이용될 수 있다.
이 경우, 일 실시예에 따른 변환 단위 분할 정보를 변환 단위의 최대 크기, 변환 단위의 최소 크기와 함께 이용하면, 실제로 이용된 변환 단위의 크기가 표현될 수 있다. 일 실시예에 따른 비디오 부호화 장치(100)는, 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 부호화할 수 있다. 부호화된 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보는 SPS에 삽입될 수 있다. 일 실시예에 따른 비디오 복호화 장치(200)는 최대 변환 단위 크기 정보, 최소 변환 단위 크기 정보 및 최대 변환 단위 분할 정보를 이용하여, 비디오 복호화에 이용할 수 있다.
예를 들어, (a) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 크기는 32x32이라면, (a-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32, (a-2) 변환 단위 분할 정보가 1일 때 변환 단위의 크기가 16x16, (a-3) 변환 단위 분할 정보가 2일 때 변환 단위의 크기가 8x8로 설정될 수 있다.
다른 예로, (b) 현재 부호화 단위가 크기 32x32이고, 최소 변환 단위 크기는 32x32이라면, (b-1) 변환 단위 분할 정보가 0일 때 변환 단위의 크기가 32x32로 설정될 수 있으며, 변환 단위의 크기가 32x32보다 작을 수는 없으므로 더 이상의 변환 단위 분할 정보가 설정될 수 없다.
또 다른 예로, (c) 현재 부호화 단위가 크기 64x64이고, 최대 변환 단위 분할 정보가 1이라면, 변환 단위 분할 정보는 0 또는 1일 수 있으며, 다른 변환 단위 분할 정보가 설정될 수 없다.
따라서, 최대 변환 단위 분할 정보를 'MaxTransformSizeIndex', 최소 변환 단위 크기를 'MinTransformSize', 변환 단위 분할 정보가 0인 경우의 변환 단위 크기를 'RootTuSize'라고 정의할 때, 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'는 아래 관계식 (1) 과 같이 정의될 수 있다.
CurrMinTuSize
= max (MinTransformSize, RootTuSize/(2^MaxTransformSizeIndex)) ... (1)
현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'와 비교하여, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 시스템상 채택 가능한 최대 변환 단위 크기를 나타낼 수 있다. 즉, 관계식 (1)에 따르면, 'RootTuSize/(2^MaxTransformSizeIndex)'는, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'를 최대 변환 단위 분할 정보에 상응하는 횟수만큼 분할한 변환 단위 크기이며, 'MinTransformSize'는 최소 변환 단위 크기이므로, 이들 중 작은 값이 현재 현재 부호화 단위에서 가능한 최소 변환 단위 크기 'CurrMinTuSize'일 수 있다.
일 실시예에 따른 최대 변환 단위 크기 RootTuSize는 예측 모드에 따라 달라질 수도 있다.
예를 들어, 현재 예측 모드가 인터 모드라면 RootTuSize는 아래 관계식 (2)에 따라 결정될 수 있다. 관계식 (2)에서 'MaxTransformSize'는 최대 변환 단위 크기, 'PUSize'는 현재 예측 단위 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PUSize) ......... (2)
즉 현재 예측 모드가 인터 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 예측 단위 크기 중 작은 값으로 설정될 수 있다.
현재 파티션 단위의 예측 모드가 예측 모드가 인트라 모드라면 모드라면 'RootTuSize'는 아래 관계식 (3)에 따라 결정될 수 있다. 'PartitionSize'는 현재 파티션 단위의 크기를 나타낸다.
RootTuSize = min(MaxTransformSize, PartitionSize) ...........(3)
즉 현재 예측 모드가 인트라 모드라면, 변환 단위 분할 정보가 0인 경우의 변환 단위 크기인 'RootTuSize'는 최대 변환 단위 크기 및 현재 파티션 단위 크기 중 작은 값으로 설정될 수 있다.
다만, 파티션 단위의 예측 모드에 따라 변동하는 일 실시예에 따른 현재 최대 변환 단위 크기 'RootTuSize'는 일 실시예일 뿐이며, 현재 최대 변환 단위 크기를 결정하는 요인이 이에 한정되는 것은 아님을 유의하여야 한다.
도 9 내지 21를 참조하여 전술된 트리 구조의 부호화 단위들에 기초한 비디오 부호화 기법에 따라, 트리 구조의 부호화 단위들마다 공간영역의 영상 데이터가 부호화되며, 트리 구조의 부호화 단위들에 기초한 비디오 복호화 기법에 따라 최대 부호화 단위마다 복호화가 수행되면서 공간 영역의 영상 데이터가 복원되어, 픽처 및 픽처 시퀀스인 비디오가 복원될 수 있다. 복원된 비디오는 재생 장치에 의해 재생되거나, 저장 매체에 저장되거나, 네트워크를 통해 전송될 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등)와 같은 저장매체를 포함한다.
설명의 편의를 위해 앞서 도 1 내지 21을 참조하여 전술된 움직임 벡터 결정 방법에 따른 비디오 부호화 방법은, '본 발명의 비디오 부호화 방법'으로 통칭한다. 또한, 앞서 도 1 내지 21을 참조하여 전술된 움직임 벡터 결정 방법에 따른 비디오 복호화 방법은 '본 발명의 비디오 복호화 방법'으로 지칭한다
또한, 앞서 도 1 내지 21을 참조하여 전술된 움직임 벡터 결정 장치(10), 비디오 부호화단(70), 비디오 복호화단(80), 비디오 부호화 장치(100) 또는 영상 부호화부(400)로 구성된 비디오 부호화 장치는, '본 발명의 비디오 부호화 장치'로 통칭한다. 또한, 앞서 도 1 내지 21을 참조하여 전술된 움직임 벡터 결정 장치(10), 비디오 복호화단(80), 비디오 복호화 장치(200) 또는 영상 복호화부(500)로 구성된 비디오 복호화 장치는, '본 발명의 비디오 복호화 장치'로 통칭한다.
일 실시예에 따른 프로그램이 저장되는 컴퓨터로 판독 가능한 저장매체가 디스크(26000)인 실시예를 이하 상술한다.
도 22은 일 실시예에 따른 프로그램이 저장된 디스크(26000)의 물리적 구조를 예시한다. 저장매체로서 전술된 디스크(26000)는, 하드드라이브, 시디롬(CD-ROM) 디스크, 블루레이(Blu-ray) 디스크, DVD 디스크일 수 있다. 디스크(26000)는 다수의 동심원의 트랙(tr)들로 구성되고, 트랙들은 둘레 방향에 따라 소정 개수의 섹터(Se)들로 분할된다. 상기 전술된 일 실시예에 따른 프로그램을 저장하는 디스크(26000) 중 특정 영역에, 전술된 움직임 벡터 결정 방법, 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램이 할당되어 저장될 수 있다.
전술된 비디오 부호화 방법 및 비디오 복호화 방법을 구현하기 위한 프로그램을 저장하는 저장매체를 이용하여 달성된 컴퓨터 시스템이 도 23를 참조하여 후술된다.
도 23는 디스크(26000)를 이용하여 프로그램을 기록하고 판독하기 위한 디스크드라이브(26800)를 도시한다. 컴퓨터 시스템(26700)은 디스크드라이브(26800)를 이용하여 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램을 디스크(26000)에 저장할 수 있다. 디스크(26000)에 저장된 프로그램을 컴퓨터 시스템(26700)상에서 실행하기 위해, 디스크 드라이브(26800)에 의해 디스크(26000)로부터 프로그램이 판독되고, 프로그램이 컴퓨터 시스템(26700)에게로 전송될 수 있다.
도 22 및 23에서 예시된 디스크(26000) 뿐만 아니라, 메모리 카드, 롬 카세트, SSD(Solid State Drive)에도 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법 중 적어도 하나를 구현하기 위한 프로그램이 저장될 수 있다.
전술된 실시예에 따른 비디오 부호화 방법 및 비디오 복호화 방법이 적용된 시스템이 후술된다.
도 24은 컨텐트 유통 서비스(content distribution service)를 제공하기 위한 컨텐트 공급 시스템(content supply system)(11000)의 전체적 구조를 도시한다. 통신시스템의 서비스 영역은 소정 크기의 셀들로 분할되고, 각 셀에 베이스 스테이션이 되는 무선 기지국(11700, 11800, 11900, 12000)이 설치된다.
컨텐트 공급 시스템(11000)은 다수의 독립 디바이스들을 포함한다. 예를 들어, 컴퓨터(12100), PDA(Personal Digital Assistant)(12200), 카메라(12300) 및 휴대폰(12500)과 같은 독립디바이스들이, 인터넷 서비스 공급자(11200), 통신망(11400), 및 무선 기지국(11700, 11800, 11900, 12000)을 거쳐 인터넷(11100)에 연결된다.
그러나, 컨텐트 공급 시스템(11000)은 도 25에 도시된 구조에만 한정되는 것이 아니며, 디바이스들이 선택적으로 연결될 수 있다. 독립 디바이스들은 무선 기지국(11700, 11800, 11900, 12000)을 거치지 않고 통신망(11400)에 직접 연결될 수도 있다.
비디오 카메라(12300)는 디지털 비디오 카메라와 같이 비디오 영상을 촬영할 수 있는 촬상 디바이스이다. 휴대폰(12500)은 PDC(Personal Digital Communications), CDMA(code division multiple access), W-CDMA(wideband code division multiple access), GSM(Global System for Mobile Communications), 및 PHS(Personal Handyphone System)방식과 같은 다양한 프로토콜들 중 적어도 하나의 통신방식을 채택할 수 있다.
비디오 카메라(12300)는 무선기지국(11900) 및 통신망(11400)을 거쳐 스트리밍 서버(11300)에 연결될 수 있다. 스트리밍 서버(11300)는 사용자가 비디오 카메라(12300)를 사용하여 전송한 컨텐트를 실시간 방송으로 스트리밍 전송할 수 있다. 비디오 카메라(12300)로부터 수신된 컨텐트는 비디오 카메라(12300) 또는 스트리밍 서버(11300)에 의해 부호화될 수 있다. 비디오 카메라(12300)로 촬영된 비디오 데이터는 컴퓨터(12100)을 거쳐 스트리밍 서버(11300)로 전송될 수도 있다.
카메라(12600)로 촬영된 비디오 데이터도 컴퓨터(12100)를 거쳐 스트리밍 서버(11300)로 전송될 수도 있다. 카메라(12600)는 디지털 카메라와 같이 정지영상과 비디오 영상을 모두 촬영할 수 있는 촬상 장치이다. 카메라(12600)로부터 수신된 비디오 데이터는 카메라(12600) 또는 컴퓨터(12100)에 의해 부호화될 수 있다. 비디오 부호화 및 복호화를 위한 소프트웨어는 컴퓨터(12100)가 억세스할 수 있는 시디롬 디스크, 플로피디스크, 하드디스크 드라이브, SSD , 메모리 카드와 같은 컴퓨터로 판독 가능한 기록 매체에 저장될 수 있다.
또한 휴대폰(12500)에 탑재된 카메라에 의해 비디오가 촬영된 경우, 비디오 데이터가 휴대폰(12500)으로부터 수신될 수 있다.
비디오 데이터는, 비디오 카메라(12300), 휴대폰(12500) 또는 카메라(12600)에 탑재된 LSI(Large scale integrated circuit) 시스템에 의해 부호화될 수 있다.
일 실시예에 따른 컨텐트 공급 시스템(11000)에서, 예를 들어 콘서트의 현장녹화 컨텐트와 같이, 사용자가 비디오 카메라(12300), 카메라(12600), 휴대폰(12500) 또는 다른 촬상 디바이스를 이용하여 녹화된 컨텐트가 부호화되고, 스트리밍 서버(11300)로 전송된다. 스트리밍 서버(11300)는 컨텐트 데이터를 요청한 다른 클라이언트들에게 컨텐트 데이터를 스트리밍 전송할 수 있다.
클라이언트들은 부호화된 컨텐트 데이터를 복호화할 수 있는 디바이스이며, 예를 들어 컴퓨터(12100), PDA(12200), 비디오 카메라(12300) 또는 휴대폰(12500)일 수 있다. 따라서, 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 재생할 수 있도록 한다. 또한 컨텐트 공급 시스템(11000)은, 클라이언트들이 부호화된 컨텐트 데이터를 수신하여 실시간으로 복호화하고 재생할 수 있도록 하여, 개인방송(personal broadcasting)이 가능하게 한다.
컨텐트 공급 시스템(11000)에 포함된 독립 디바이스들의 부호화 동작 및 복호화 동작에 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 적용될 수 있다.
도 25 및 26을 참조하여 컨텐트 공급 시스템(11000) 중 휴대폰(12500)의 일 실시예가 상세히 후술된다.
도 25은, 일 실시예에 따른 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 적용되는 휴대폰(12500)의 외부 구조를 도시한다. 휴대폰(12500)은 기능이 제한되어 있지 않고 응용 프로그램을 통해 상당 부분의 기능을 변경하거나 확장할 수 있는 스마트폰일 수 있다.
휴대폰(12500)은, 무선기지국(12000)과 RF신호를 교환하기 위한 내장 안테나(12510)을 포함하고, 카메라(12530)에 의해 촬영된 영상들 또는 안테나(12510)에 의해 수신되어 복호화된 영상들을 디스플레이하기 위한 LCD(Liquid Crystal Display), OLED(Organic Light Emitting Diodes)화면 같은 디스플레이화면(12520)를 포함한다. 스마트폰(12510)은 제어버튼, 터치패널을 포함하는 동작 패널(12540)를 포함한다. 디스플레이화면(12520)이 터치스크린인 경우, 동작 패널(12540)은 디스플레이화면(12520)의 터치감지패널을 더 포함한다. 스마트폰(12510)은 음성, 음향을 출력하기 위한 스피커(12580) 또는 다른 형태의 음향출력부와, 음성, 음향이 입력되는 마이크로폰(12550) 또는 다른 형태의 음향입력부를 포함한다. 스마트폰(12510)은 비디오 및 정지영상을 촬영하기 위한 CCD 카메라와 같은 카메라(12530)를 더 포함한다. 또한, 스마트폰(12510)은 카메라(12530)에 의해 촬영되거나 이메일(E-mail)로 수신되거나 다른 형태로 획득된 비디오나 정지영상들과 같이, 부호화되거나 복호화된 데이터를 저장하기 위한 저장매체(12570); 그리고 저장매체(12570)를 휴대폰(12500)에 장착하기 위한 슬롯(12560)을 포함할 수 있다. 저장매체(12570)는 SD카드 또는 플라스틱 케이스에 내장된 EEPROM(electrically erasable and programmable read only memory)와 같은 다른 형태의 플래쉬 메모리일 수 있다.
도 26은 휴대폰(12500)의 내부 구조를 도시한다. 디스플레이화면(12520) 및 동작 패널(12540)로 구성된 휴대폰(12500)의 각 파트를 조직적으로 제어하기 위해, 전력공급회로(12700), 동작입력제어부(12640), 영상부호화부(12720), 카메라 인터페이스(12630), LCD제어부(12620), 영상복호화부(12690), 멀티플렉서/디멀티플렉서(multiplexer/demultiplexer)(12680), 기록/판독부(12670), 변조/복조(modulation/demodulation)부(12660) 및 음향처리부(12650)가, 동기화 버스(12730)를 통해 중앙제어부(12710)에 연결된다.
사용자가 전원 버튼을 동작하여 '전원꺼짐' 상태에서 '전원켜짐' 상태로 설정하면, 전력공급회로(12700)는 배터리팩으로부터 휴대폰(12500)의 각 파트에 전력을 공급함으로써, 휴대폰(12500)가 동작 모드로 셋팅될 수 있다.
중앙제어부(12710)는 CPU, ROM(Read Only Memory) 및 RAM(Random Access Memory)을 포함한다.
휴대폰(12500)이 외부로 통신데이터를 송신하는 과정에서는, 중앙제어부(12710)의 제어에 따라 휴대폰(12500)에서 디지털 신호가 생성된다, 예를 들어, 음향처리부(12650)에서는 디지털 음향신호가 생성되고, 영상 부호화부(12720)에서는 디지털 영상신호가 생성되며, 동작 패널(12540) 및 동작 입력제어부(12640)를 통해 메시지의 텍스트 데이터가 생성될 수 있다. 중앙제어부(12710)의 제어에 따라 디지털 신호가 변조/복조부(12660)에게 전달되면, 변조/복조부(12660)는 디지털 신호의 주파수대역을 변조하고, 통신회로(12610)는 대역변조된 디지털 음향신호에 대해 D/A변환(Digital-Analog conversion) 및 주파수변환(frequency conversion) 처리를 수행한다. 통신회로(12610)로부터 출력된 송신신호는 안테나(12510)를 통해 음성통신기지국 또는 무선기지국(12000)으로 송출될 수 있다.
예를 들어, 휴대폰(12500)이 통화 모드일 때 마이크로폰(12550)에 의해 획득된 음향신호는, 중앙제어부(12710)의 제어에 따라 음향처리부(12650)에서 디지털 음향신호로 변환된다. 생성된 디지털 음향신호는 변조/복조부(12660) 및 통신회로(12610)를 거쳐 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
데이터통신 모드에서 이메일과 같은 텍스트 메시지가 전송되는 경우, 동작 패널(12540)을 이용하여 메시지의 텍스트 데이터가 입력되고, 텍스트 데이터가 동작 입력제어부(12640)를 통해 중앙제어부(12610)로 전송된다. 중앙제어부(12610)의 제어에 따라, 텍스트 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 무선기지국(12000)에게로 송출된다.
데이터통신 모드에서 영상 데이터를 전송하기 위해, 카메라(12530)에 의해 촬영된 영상 데이터가 카메라 인터페이스(12630)를 통해 영상부호화부(12720)로 제공된다. 카메라(12530)에 의해 촬영된 영상 데이터는 카메라 인터페이스(12630) 및 LCD제어부(12620)를 통해 디스플레이화면(12520)에 곧바로 디스플레이될 수 있다.
영상부호화부(12720)의 구조는, 전술된 본 발명의 비디오 부호화 장치의 구조와 상응할 수 있다. 영상부호화부(12720)는, 카메라(12530)로부터 제공된 영상 데이터를, 전술된 비디오 부호화 장치(100) 또는 영상 부호화부(400)의 비디오 부호화 방식에 따라 부호화하여, 압축 부호화된 영상 데이터로 변환하고, 부호화된 영상 데이터를 다중화/역다중화부(12680)로 출력할 수 있다. 카메라(12530)의 녹화 중에 휴대폰(12500)의 마이크로폰(12550)에 의해 획득된 음향신호도 음향처리부(12650)를 거쳐 디지털 음향데이터로 변환되고, 디지털 음향데이터는 다중화/역다중화부(12680)로 전달될 수 있다.
다중화/역다중화부(12680)는 음향처리부(12650)로부터 제공된 음향데이터와 함께 영상부호화부(12720)로부터 제공된 부호화된 영상 데이터를 다중화한다. 다중화된 데이터는 변조/복조부(12660) 및 통신회로(12610)를 통해 송신신호로 변환되고, 안테나(12510)를 통해 송출될 수 있다.
휴대폰(12500)이 외부로부터 통신데이터를 수신하는 과정에서는, 안테나(12510)를 통해 수신된 신호를 주파수복원(frequency recovery) 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 신호를 변환한다. 변조/복조부(12660)는 디지털 신호의 주파수대역을 복조한다. 대역복조된 디지털 신호는 종류에 따라 비디오 복호화부(12690), 음향처리부(12650) 또는 LCD제어부(12620)로 전달된다.
휴대폰(12500)은 통화 모드일 때, 안테나(12510)를 통해 수신된 신호를 증폭하고 주파수변환 및 A/D변환(Analog-Digital conversion) 처리를 통해 디지털 음향 신호를 생성한다. 수신된 디지털 음향 신호는, 중앙제어부(12710)의 제어에 따라 변조/복조부(12660) 및 음향처리부(12650)를 거쳐 아날로그 음향 신호로 변환되고, 아날로그 음향 신호가 스피커(12580)를 통해 출력된다.
데이터통신 모드에서 인터넷의 웹사이트로부터 억세스된 비디오 파일의 데이터가 수신되는 경우, 안테나(12510)를 통해 무선기지국(12000)으로부터 수신된 신호는 변조/복조부(12660)의 처리결과 다중화된 데이터를 출력하고, 다중화된 데이터는 다중화/역다중화부(12680)로 전달된다.
안테나(12510)를 통해 수신한 다중화된 데이터를 복호화하기 위해, 다중화/역다중화부(12680)는 다중화된 데이터를 역다중화하여 부호화된 비디오 데이터스트림과 부호화된 오디오 데이터스트림을 분리한다. 동기화 버스(12730)에 의해, 부호화된 비디오 데이터스트림은 비디오 복호화부(12690)로 제공되고, 부호화된 오디오 데이터스트림은 음향처리부(12650)로 제공된다.
영상복호화부(12690)의 구조는, 전술된 본 발명의 비디오 복호화 장치의 구조와 상응할 수 있다. 영상복호화부(12690)는 전술된 비디오 복호화 장치(200) 또는 영상 복호화부(500)의 비디오 복호화 방식을 이용하여, 부호화된 비디오 데이터를 복호화하여 복원된 비디오 데이터를 생성하고, 복원된 비디오 데이터를 LCD제어부(12620)를 거쳐 디스플레이화면(12520)에게 복원된 비디오 데이터를 제공할 수 있다.
이에 따라 인터넷의 웹사이트로부터 억세스된 비디오 파일의 비디오 데이터가 디스플레이화면(12520)에서 디스플레이될 수 있다. 이와 동시에 음향처리부(12650)도 오디오 데이터를 아날로그 음향 신호로 변환하고, 아날로그 음향 신호를 스피커(12580)로 제공할 수 있다. 이에 따라, 인터넷의 웹사이트로부터 억세스된 비디오 파일에 포함된 오디오 데이터도 스피커(12580)에서 재생될 수 있다.
휴대폰(12500) 또는 다른 형태의 통신단말기는 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함하는 송수신 단말기이거나, 전술된 본 발명의 비디오 부호화 장치만을 포함하는 송신단말기이거나, 본 발명의 비디오 복호화 장치만을 포함하는 수신단말기일 수 있다.
본 발명의 통신시스템은 도 25를 참조하여 전술한 구조에 한정되지 않는다. 예를 들어, 도 27은 본 발명에 따른 통신시스템이 적용된 디지털 방송 시스템을 도시한다. 도 27의 일 실시예에 따른 디지털 방송 시스템은, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 이용하여, 위성 또는 지상파 네트워크를 통해 전송되는 디지털 방송을 수신할 수 있다.
구체적으로 보면, 방송국(12890)은 전파를 통해 비디오 데이터스트림을 통신위성 또는 방송위성(12900)으로 전송한다. 방송위성(12900)은 방송신호를 전송하고, 방송신호는 가정에 있는 안테나(12860)에 의해 위성방송수신기로 수신된다. 각 가정에서, 부호화된 비디오스트림은 TV수신기(12810), 셋탑박스(set-top box0)(12870) 또는 다른 디바이스에 의해 복호화되어 재생될 수 있다.
재생장치(12830)에서 본 발명의 비디오 복호화 장치가 구현됨으로써, 재생장치(12830)가 디스크 및 메모리 카드와 같은 저장매체(12820)에 기록된 부호화된 비디오스트림을 판독하여 복호화할 수 있다. 이에 따라 복원된 비디오 신호는 예를 들어 모니터(12840)에서 재생될 수 있다.
위성/지상파 방송을 위한 안테나(12860) 또는 케이블TV 수신을 위한 케이블 안테나(12850)에 연결된 셋탑박스(12870)에도, 본 발명의 비디오 복호화 장치가 탑재될 수 있다. 셋탑박스(12870)의 출력데이터도 TV모니터(12880)에서 재생될 수 있다.
다른 예로, 셋탑박스(12870) 대신에 TV수신기(12810) 자체에 본 발명의 비디오 복호화 장치가 탑재될 수도 있다.
적절한 안테나(12910)를 구비한 자동차(12920)가 위성(12800) 또는 무선기지국(11700)으로부터 송출되는 신호를 수신할 수도 있다. 자동차(12920)에 탑재된 자동차 네비게이션 시스템(12930)의 디스플레이 화면에 복호화된 비디오가 재생될 수 있다.
비디오 신호는, 본 발명의 비디오 부호화 장치에 의해 부호화되어 저장매체에 기록되어 저장될 수 있다. 구체적으로 보면, DVD 레코더에 의해 영상 신호가 DVD디스크(12960)에 저장되거나, 하드디스크 레코더(12950)에 의해 하드디스크에 영상 신호가 저장될 수 있다. 다른 예로, 비디오 신호는 SD카드(12970)에 저장될 수도 있다. 하드디스크 레코더(12950)가 일 실시예에 따른 본 발명의 비디오 복호화 장치를 구비하면, DVD디스크(12960), SD카드(12970) 또는 다른 형태의 저장매체에 기록된 비디오 신호가 모니터(12880)에서 재생될 수 있다.
자동차 네비게이션 시스템(12930)은 도 27의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다. 예를 들어, 컴퓨터(12100) 및 TV수신기(12810)도, 도 27의 카메라(12530), 카메라 인터페이스(12630) 및 영상 부호화부(12720)를 포함하지 않을 수 있다.
도 28은 본 발명의 일 실시예에 따른 비디오 부호화 장치 및 비디오 복호화 장치를 이용하는 클라우드 컴퓨팅 시스템의 네트워크 구조를 도시한다.
본 발명의 클라우드 컴퓨팅 시스템은 클라우드 컴퓨팅 서버(14100), 사용자 DB(14100), 컴퓨팅 자원(14200) 및 사용자 단말기를 포함하여 이루어질 수 있다.
클라우드 컴퓨팅 시스템은, 사용자 단말기의 요청에 따라 인터넷과 같은 정보 통신망을 통해 컴퓨팅 자원의 온 디맨드 아웃소싱 서비스를 제공한다. 클라우드 컴퓨팅 환경에서, 서비스 제공자는 서로 다른 물리적인 위치에 존재하는 데이터 센터의 컴퓨팅 자원를 가상화 기술로 통합하여 사용자들에게 필요로 하는 서비스를 제공한다. 서비스 사용자는 어플리케이션(Application), 스토리지(Storage), 운영체제(OS), 보안(Security) 등의 컴퓨팅 자원을 각 사용자 소유의 단말에 설치하여 사용하는 것이 아니라, 가상화 기술을 통해 생성된 가상 공간상의 서비스를 원하는 시점에 원하는 만큼 골라서 사용할 수 있다.
특정 서비스 사용자의 사용자 단말기는 인터넷 및 이동통신망을 포함하는 정보통신망을 통해 클라우드 컴퓨팅 서버(14100)에 접속한다. 사용자 단말기들은 클라우드 컴퓨팅 서버(14100)로부터 클라우드 컴퓨팅 서비스 특히, 동영상 재생 서비스를 제공받을 수 있다. 사용자 단말기는 데스트탑 PC(14300), 스마트TV(14400), 스마트폰(14500), 노트북(14600), PMP(Portable Multimedia Player)(14700), 태블릿 PC(14800) 등, 인터넷 접속이 가능한 모든 전자 기기가 될 수 있다.
클라우드 컴퓨팅 서버(14100)는 클라우드 망에 분산되어 있는 다수의 컴퓨팅 자원(14200)을 통합하여 사용자 단말기에게 제공할 수 있다. 다수의 컴퓨팅 자원(14200)은 여러가지 데이터 서비스를 포함하며, 사용자 단말기로부터 업로드된 데이터를 포함할 수 있다. 이런 식으로 클라우드 컴퓨팅 서버(14100)는 여러 곳에 분산되어 있는 동영상 데이터베이스를 가상화 기술로 통합하여 사용자 단말기가 요구하는 서비스를 제공한다.
사용자 DB(14100)에는 클라우드 컴퓨팅 서비스에 가입되어 있는 사용자 정보가 저장된다. 여기서, 사용자 정보는 로그인 정보와, 주소, 이름 등 개인 신용 정보를 포함할 수 있다. 또한, 사용자 정보는 동영상의 인덱스(Index)를 포함할 수 있다. 여기서, 인덱스는 재생을 완료한 동영상 목록과, 재생 중인 동영상 목록과, 재생 중인 동영상의 정지 시점 등을 포함할 수 있다.
사용자 DB(14100)에 저장된 동영상에 대한 정보는, 사용자 디바이스들 간에 공유될 수 있다. 따라서 예를 들어 노트북(14600)으로부터 재생 요청되어 노트북(14600)에게 소정 동영상 서비스를 제공한 경우, 사용자 DB(14100)에 소정 동영상 서비스의 재생 히스토리가 저장된다. 스마트폰(14500)으로부터 동일한 동영상 서비스의 재생 요청이 수신되는 경우, 클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)을 참조하여 소정 동영상 서비스를 찾아서 재생한다. 스마트폰(14500)이 클라우드 컴퓨팅 서버(14100)를 통해 동영상 데이터스트림을 수신하는 경우, 동영상 데이터스트림을 복호화하여 비디오를 재생하는 동작은, 앞서 도 27을 참조하여 전술한 휴대폰(12500)의 동작과 유사하다.
클라우드 컴퓨팅 서버(14100)는 사용자 DB(14100)에 저장된 소정 동영상 서비스의 재생 히스토리를 참조할 수도 있다. 예를 들어, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로부터 사용자 DB(14100)에 저장된 동영상에 대한 재생 요청을 수신한다. 동영상이 그 전에 재생 중이었던 것이면, 클라우드 컴퓨팅 서버(14100)는 사용자 단말기로의 선택에 따라 처음부터 재생하거나, 이전 정지 시점부터 재생하느냐에 따라 스트리밍 방법이 달라진다. 예를 들어, 사용자 단말기가 처음부터 재생하도록 요청한 경우에는 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 첫 프레임부터 스트리밍 전송한다. 반면, 단말기가 이전 정지시점부터 이어서 재생하도록 요청한 경우에는, 클라우드 컴퓨팅 서버(14100)가 사용자 단말기에게 해당 동영상을 정지시점의 프레임부터 스트리밍 전송한다.
이 때 사용자 단말기는, 도 1 내지 23을 참조하여 전술한 본 발명의 비디오 복호화 장치를 포함할 수 있다. 다른 예로, 사용자 단말기는, 도 1 내지 23을 참조하여 전술한 본 발명의 비디오 부호화 장치를 포함할 수 있다. 또한, 사용자 단말기는, 도 1 내지 23을 참조하여 전술한 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치를 모두 포함할 수도 있다.
도 1 내지 21을 참조하여 전술된 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법, 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 활용되는 다양한 실시예들이 도 22 내지 도 28에서 전술되었다. 하지만, 도 1 내지 21을 참조하여 전술된 본 발명의 비디오 부호화 방법 및 비디오 복호화 방법이 저장매체에 저장되거나 본 발명의 비디오 부호화 장치 및 비디오 복호화 장치가 디바이스에서 구현되는 다양한 실시예들은, 도 22 내지 도 28의 실시예들에 한정되지 않는다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 인터 예측을 위한 움직임 벡터 결정 방법에 있어서,
    현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트를 결정하는 단계;
    상기 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 상기 현재블록의 참조영상과 다른 경우에, 상기 현재블록의 참조영상과 상기 제1 후보블록의 참조영상이 각각 숏텀 참조영상(Short-term reference picture) 또는 롱텀 참조영상(Long-term reference picture)인지 여부에 기초하여, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계; 및
    상기 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 선택된 후보 움직임 벡터를 이용하여 상기 현재블록의 움직임 벡터를 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터 결정 방법.
  2. 제 1 항에 있어서, 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계는,
    상기 현재블록의 참조영상과 상기 후보블록의 참조영상이 모두 상기 롱텀 참조영상인 경우에, 상기 후보 움직임벡터 리스트에서 상기 후보블록의 움직임 벡터를 유지하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터 결정 방법.
  3. 제 1 항에 있어서, 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계는,
    상기 현재블록의 참조영상 및 상기 제1 후보블록의 참조영상 중 어느 하나가 상기 숏텀 참조영상이고 나머지 하나가 상기 롱텀 참조영상인 경우에, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 이용하지 않도록 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터 결정 방법.
  4. 제 1 항에 있어서,
    상기 제1 후보블록은, 상기 현재블록의 현재영상 내에서 상기 현재블록의 이웃블록 또는 상기 현재영상보다 먼저 복원된 영상 내에서 상기 현재블록과 동일한 위치의 콜로케이티드 블록(Collocated Block)인 것을 특징으로 하는 움직임 벡터 결정 방법.
  5. 제 1 항에 있어서, 상기 현재블록의 움직임 벡터 결정 단계는,
    상기 현재블록의 참조영상이 상기 숏텀 참조영상 또는 상기 롱텀 참조영상인지 여부에 상관없이, 상기 현재블록의 참조인덱스가 가리키는 POC(Picture Order Count)값에 따라 상기 현재블록의 참조영상 내에서 상기 결정된 현재블록의 움직임 벡터가 가리키는 참조블록을 결정하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터 결정 방법.
  6. 제 1 항에 있어서, 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 단계는,
    상기 현재블록의 참조영상이 롱텀 참조영상인지 여부를 나타내는 롱텀참조인덱스를 이용하여 상기 현재블록의 참조영상이 상기 롱텀 참조영상인지 결정하는 단계를 포함하는 단계; 및
    상기 제1 후보블록의 롱텀참조인덱스를 이용하여 상기 제1 후보블록의 참조영상이 상기 롱텀 참조영상인지 결정하는 단계를 포함하는 단계를 포함하는 것을 특징으로 하는 움직임 벡터 결정 방법.
  7. 제 1 항에 있어서, 상기 움직임 벡터 결정 방법은,
    상기 현재블록의 참조영상 내에서 상기 결정된 현재블록의 움직임벡터가 가리키는 참조블록을 결정하고 상기 결정된 참조블록과 상기 현재블록 간의 레지듀얼 데이터를 생성하는 단계; 및
    상기 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여 양자화된 변환계수들을 생성하는 단계를 더 포함하는 것을 특징으로 하는 움직임 벡터 결정 방법.
  8. 제 1 항에 있어서, 상기 움직임 벡터 결정 방법은,
    상기 현재블록의 참조인덱스와 양자화된 변환계수들, 및 상기 후보블록의 움직임 벡터를 수신하는 단계;
    상기 수신된 현재블록의 양자화된 변환계수들에 대해 역양자화 및 역변환을 수행하여 상기 현재블록의 레지듀얼 데이터를 복원하는 단계; 및
    상기 수신된 현재블록의 참조인덱스가 가리키는 상기 현재블록의 참조영상 내에서 상기 결정된 현재블록의 움직임벡터가 가리키는 참조블록을 결정하고 상기 결정된 참조블록과, 상기 현재블록의 레지듀얼 데이터를 합성하여 상기 현재블록을 복원하는 단계를 더 포함하는 것을 특징으로 하는 움직임 벡터 결정 방법.
  9. 인터 예측을 위한 움직임 벡터 결정 장치에 있어서,
    현재블록의 움직임 벡터를 예측하기 위해 참조되는 복수의 후보블록들의 움직임 벡터들을 포함하는 후보 움직임벡터 리스트에서, 상기 복수의 후보블록들 중에서 제1 후보블록의 참조영상이 상기 현재블록의 참조영상과 다른 경우에, 상기 현재블록의 참조영상과 상기 제1 후보블록의 참조영상이 각각 숏텀 참조영상 또는 롱텀 참조영상인지 여부에 기초하여, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 사용할지 여부를 결정하는 후보 리스트 결정부; 및
    상기 후보 움직임벡터 리스트에 포함된 움직임 벡터들 중에서 선택된 후보 움직임 벡터를 이용하여 상기 현재블록의 움직임 벡터를 결정하는 움직임벡터 결정부를 포함하는 것을 특징으로 하는 움직임 벡터 결정 장치.
  10. 제 9 항에 있어서, 상기 후보 리스트 결정부는,
    상기 현재블록의 참조영상과 상기 후보블록의 참조영상이 모두 상기 롱텀 참조영상인 경우에, 상기 후보 움직임벡터 리스트에서 상기 후보블록의 움직임 벡터를 유지하는 것을 특징으로 하는 움직임 벡터 결정 장치.
  11. 제 9 항에 있어서, 상기 후보 리스트 결정부는,
    상기 현재블록의 참조영상 및 상기 제1 후보블록의 참조영상 중 어느 하나가 상기 숏텀 참조영상이고 나머지 하나가 상기 롱텀 참조영상인 경우에, 상기 후보 움직임벡터 리스트에서 상기 제1 후보블록의 움직임 벡터를 이용하지 않도록 결정하는 것을 특징으로 하는 움직임 벡터 결정 장치.
  12. 제 9 항에 있어서,
    상기 제1 후보블록은, 상기 현재블록의 현재영상 내에서 상기 현재블록의 이웃블록 또는 상기 현재영상보다 먼저 복원된 영상 내에서 상기 현재블록과 동일한 위치의 콜로케이티드 블록(Collocated Block)인 것을 특징으로 하는 움직임 벡터 결정 장치.
  13. 제 9 항에 있어서, 상기 움직임 벡터 결정 장치는,
    상기 현재블록의 참조영상 내에서 상기 결정된 현재블록의 움직임벡터가 가리키는 참조블록을 결정하고 상기 결정된 참조블록과 상기 현재블록 간의 레지듀얼 데이터를 생성하는 인터예측부; 및
    상기 레지듀얼 데이터에 대해 변환 및 양자화를 수행하여 양자화된 변환계수들을 생성하는 변환양자화부를 더 포함하는 것을 특징으로 하는 움직임 벡터 결정 장치.
  14. 제 9 항에 있어서,
    상기 움직임 벡터 결정 장치는, 상기 현재블록의 참조인덱스와 양자화된 변환계수들, 및 상기 후보블록의 움직임 벡터를 수신하고,
    상기 수신된 현재블록의 양자화된 변환계수들에 대해 역양자화 및 역변환을 수행하여 상기 현재블록의 레지듀얼 데이터를 복원하는 역양자화역변환부; 및
    상기 수신된 현재블록의 참조인덱스가 가리키는 상기 현재블록의 참조영상 내에서 상기 결정된 현재블록의 움직임벡터가 가리키는 참조블록을 결정하고 상기 결정된 참조블록과, 상기 현재블록의 레지듀얼 데이터를 합성하여 상기 현재블록을 복원하는 움직임 보상부를 더 포함하는 것을 특징으로 하는 움직임 벡터 결정 장치.
  15. 제 1 항의 움직임 벡터 결정 방법을 구현하기 위한 컴퓨터 프로그램이 기록된 컴퓨터로 판독 가능한 기록매체.
PCT/KR2012/009408 2011-11-08 2012-11-08 비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 결정 방법 및 장치 WO2013069990A1 (ko)

Priority Applications (26)

Application Number Priority Date Filing Date Title
CN201810167672.XA CN108259915B (zh) 2011-11-08 2012-11-08 用于在视频编码或解码中的运动矢量确定的方法和设备
SG11201402160XA SG11201402160XA (en) 2011-11-08 2012-11-08 Method and apparatus for motion vector determination in video encoding or decoding
EP12848529.9A EP2763416A4 (en) 2011-11-08 2012-11-08 METHOD AND DEVICE FOR DETERMINING MOTION VECTOR FOR VIDEO ENCODING OR DECODING
MX2015004571A MX337403B (es) 2011-11-08 2012-11-08 Metodo y aparato para determinacion de vectores de movimiento en codificacion o decodificacion de video.
CA2854887A CA2854887C (en) 2011-11-08 2012-11-08 Method and apparatus for motion vector determination in video encoding or decoding
CN201280054956.9A CN103931192B (zh) 2011-11-08 2012-11-08 用于在视频编码或解码中的运动矢量确定的方法和设备
MX2015004567A MX336648B (es) 2011-11-08 2012-11-08 Metodo y aparato para determinacion de vectores de movimiento en codificacion o decodificacion de video.
BR112014010966A BR112014010966A2 (pt) 2011-11-08 2012-11-08 método para determinar vetor de movimento para previsão inter, aparelho determinador de vetor de movimento para previsão inter, e mídia de gravação legível por computador
MX2014005643A MX2014005643A (es) 2011-11-08 2012-11-08 Metodo y aparato para determinacion de vectores de movimiento en codificacion o decodificacion de video.
US14/357,043 US20140307783A1 (en) 2011-11-08 2012-11-08 Method and apparatus for motion vector determination in video encoding or decoding
RU2014117652/08A RU2586001C2 (ru) 2011-11-08 2012-11-08 Способ и устройство для определения вектора движения в кодировании или декодировании видео
AU2012336572A AU2012336572B2 (en) 2011-11-08 2012-11-08 Method and device for determining motion vector for video coding or video decoding
MX2015004569A MX336649B (es) 2011-11-08 2012-11-08 Metodo y aparato para determinacion de vectores de movimiento en codificacion o decodificacion de video.
JP2014540946A JP2014535239A (ja) 2011-11-08 2012-11-08 ビデオ符号化またはビデオ復号化のための動きベクトル決定方法及びその装置
MX2015004579A MX336650B (es) 2011-11-08 2012-11-08 Metodo y aparato para determinacion de vectores de movimiento en codificacion o decodificacion de video.
PH12014500945A PH12014500945A1 (en) 2011-11-08 2014-04-29 Method and apparatus for motion vector determination in video encoding or decoding
ZA2014/03267A ZA201403267B (en) 2011-11-08 2014-05-06 Method and device for determining motion vector for video coding or video decoding
US14/603,164 US9225995B2 (en) 2011-11-08 2015-01-22 Method and apparatus for motion vector determination in video encoding or decoding
US14/603,112 US9204163B2 (en) 2011-11-08 2015-01-22 Method and apparatus for motion vector determination in video encoding or decoding
US14/632,673 US9451282B2 (en) 2011-11-08 2015-02-26 Method and apparatus for motion vector determination in video encoding or decoding
US14/632,717 US9332273B2 (en) 2011-11-08 2015-02-26 Method and apparatus for motion vector determination in video encoding or decoding
PH12015500669A PH12015500669A1 (en) 2011-11-08 2015-03-25 Method and apparatus for motion vector determination in video encoding or decoding
PH12015500671A PH12015500671A1 (en) 2011-11-08 2015-03-25 Method and apparatus for motion vector determination in video encoding or decoding
PH12015500672A PH12015500672B1 (en) 2011-11-08 2015-03-25 Method and apparatus for motion vector determination in video encoding or decoding
PH12015500673A PH12015500673B1 (en) 2011-11-08 2015-03-25 Method and apparatus for motion vector determination in video encoding or decoding
US15/902,519 US20180184114A1 (en) 2011-11-08 2018-02-22 Method and apparatus for motion vector determination in video encoding or decoding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161557133P 2011-11-08 2011-11-08
US61/557,133 2011-11-08

Related Child Applications (6)

Application Number Title Priority Date Filing Date
US14/357,043 A-371-Of-International US20140307783A1 (en) 2011-11-08 2012-11-08 Method and apparatus for motion vector determination in video encoding or decoding
US14/603,164 Continuation US9225995B2 (en) 2011-11-08 2015-01-22 Method and apparatus for motion vector determination in video encoding or decoding
US14/603,112 Continuation US9204163B2 (en) 2011-11-08 2015-01-22 Method and apparatus for motion vector determination in video encoding or decoding
US14/632,673 Continuation US9451282B2 (en) 2011-11-08 2015-02-26 Method and apparatus for motion vector determination in video encoding or decoding
US14/632,717 Continuation US9332273B2 (en) 2011-11-08 2015-02-26 Method and apparatus for motion vector determination in video encoding or decoding
US15/902,519 Continuation US20180184114A1 (en) 2011-11-08 2018-02-22 Method and apparatus for motion vector determination in video encoding or decoding

Publications (1)

Publication Number Publication Date
WO2013069990A1 true WO2013069990A1 (ko) 2013-05-16

Family

ID=48290288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009408 WO2013069990A1 (ko) 2011-11-08 2012-11-08 비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 결정 방법 및 장치

Country Status (16)

Country Link
US (6) US20140307783A1 (ko)
EP (7) EP2916550A3 (ko)
JP (7) JP2014535239A (ko)
KR (6) KR101493698B1 (ko)
CN (7) CN104796723B (ko)
AU (1) AU2012336572B2 (ko)
BR (5) BR122015021739A2 (ko)
CA (5) CA2883368C (ko)
MX (5) MX336648B (ko)
MY (5) MY177794A (ko)
PH (5) PH12014500945A1 (ko)
RU (5) RU2566973C2 (ko)
SG (5) SG10201502735PA (ko)
TW (5) TWI556648B (ko)
WO (1) WO2013069990A1 (ko)
ZA (5) ZA201403267B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128308A (ja) * 2011-06-30 2015-07-09 ソニー株式会社 画像処理装置および方法、記録媒体、並びに、プログラム
US11523119B2 (en) 2019-06-14 2022-12-06 Lg Electronics Inc. Method and device for image coding using motion vector differences

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104041042B (zh) 2011-10-28 2018-10-23 太阳专利托管公司 图像编码方法、图像解码方法、图像编码装置及图像解码装置
CN103688545B (zh) 2011-10-28 2017-05-10 太阳专利托管公司 图像编码方法、图像解码方法、图像编码装置及图像解码装置
US20130177084A1 (en) * 2012-01-10 2013-07-11 Qualcomm Incorporated Motion vector scaling in video coding
WO2013133587A1 (ko) * 2012-03-07 2013-09-12 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
US20150085932A1 (en) * 2012-04-24 2015-03-26 Mediatek Inc. Method and apparatus of motion vector derivation for 3d video coding
CN104704819B (zh) * 2012-10-03 2016-12-21 联发科技股份有限公司 3d视频编码的视差矢量推导和视图间运动矢量预测的方法及装置
WO2014166068A1 (en) * 2013-04-09 2014-10-16 Mediatek Inc. Refinement of view synthesis prediction for 3-d video coding
US20160205409A1 (en) * 2013-09-04 2016-07-14 Samsung Electronics Co., Ltd. Screen image encoding method and apparatus therefor, and screen image decoding method and apparatus therefor
DK3958572T3 (da) * 2014-01-02 2024-03-04 Dolby Laboratories Licensing Corp Fremgangsmåde til kodning af multi-visnings-video, fremgangsmåde til afkodning af multi-visnings-video og lagringsmedium dertil
KR102466902B1 (ko) 2014-10-31 2022-11-14 삼성전자주식회사 움직임 벡터 부복호화 방법 및 장치
US10735762B2 (en) * 2014-12-26 2020-08-04 Sony Corporation Image processing apparatus and image processing method
CN104811721B (zh) * 2015-05-26 2017-09-22 珠海全志科技股份有限公司 视频解码数据存储方法及运动向量数据的计算方法
US10555002B2 (en) * 2016-01-21 2020-02-04 Intel Corporation Long term reference picture coding
CN109089119B (zh) * 2017-06-13 2021-08-13 浙江大学 一种运动矢量预测的方法及设备
KR102360412B1 (ko) 2017-08-25 2022-02-09 엘지디스플레이 주식회사 영상 생성 방법과 이를 이용한 표시장치
EP3691273A4 (en) * 2017-09-26 2020-08-19 Panasonic Intellectual Property Corporation of America ENCODING DEVICE, DECODING DEVICE, ENCODING PROCESS AND DECODING PROCESS
CN117294837A (zh) 2018-04-02 2023-12-26 深圳市大疆创新科技有限公司 用于图像处理的方法和图像处理装置
MX2020013828A (es) 2018-06-29 2021-03-25 Beijing Bytedance Network Tech Co Ltd Interaccion entre lut y amvp.
EP3791589A1 (en) 2018-06-29 2021-03-17 Beijing Bytedance Network Technology Co. Ltd. Which lut to be updated or no updating
TWI752331B (zh) 2018-06-29 2022-01-11 大陸商北京字節跳動網絡技術有限公司 當向Merge/AMVP添加HMVP候選時的部分/完全修剪
CN115134599A (zh) 2018-06-29 2022-09-30 抖音视界有限公司 更新查找表(lut)的条件
BR112020024202A2 (pt) 2018-06-29 2021-02-17 Beijing Bytedance Network Technology Co., Ltd. método de processamento de dados de vídeo, aparelho de processamento de vídeo e meios de armazenamento e gravação legíveis por computador não transitório
TWI723444B (zh) 2018-06-29 2021-04-01 大陸商北京字節跳動網絡技術有限公司 使用一個或多個查找表來按順序存儲先前編碼的運動信息並使用它們來編碼後面的塊的概念
CN110662057B (zh) 2018-06-29 2022-06-21 北京字节跳动网络技术有限公司 视频处理方法、装置、设备以及存储比特流的方法
JP7181395B2 (ja) 2018-07-02 2022-11-30 北京字節跳動網絡技術有限公司 イントラ予測モードを有するルックアップテーブルおよび非隣接ブロックからのイントラモード予測
US10284432B1 (en) * 2018-07-03 2019-05-07 Kabushiki Kaisha Ubitus Method for enhancing quality of media transmitted via network
BR112021001384A2 (pt) 2018-08-06 2021-04-20 Electronics And Telecommunications Research Institute método e dispositivo para codificação/decodificação de imagens, e mídia de gravação que armazena fluxo de bits
CN110868601B (zh) * 2018-08-28 2024-03-15 华为技术有限公司 帧间预测方法、装置以及视频编码器和视频解码器
CN110868613B (zh) * 2018-08-28 2021-10-01 华为技术有限公司 基于历史候选列表的图像编码方法、图像解码方法及装置
CN110876058B (zh) * 2018-08-30 2021-09-21 华为技术有限公司 一种历史候选列表更新方法与装置
TWI820211B (zh) 2018-09-12 2023-11-01 大陸商北京字節跳動網絡技術有限公司 取決於總數減去k的開始檢查hmvp候選的條件
CN116684589A (zh) * 2018-12-12 2023-09-01 Lg电子株式会社 图像编解码设备和视频信号发送设备
JP7343097B2 (ja) * 2018-12-29 2023-09-12 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 動画処理方法、装置、およびコンピュータプログラム
CN111279693B (zh) * 2018-12-29 2021-11-12 北京大学 视频处理方法和设备
KR20240010576A (ko) 2019-01-10 2024-01-23 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 Lut 업데이트의 호출
CN113383554B (zh) 2019-01-13 2022-12-16 北京字节跳动网络技术有限公司 LUT和共享Merge列表之间的交互
WO2020147772A1 (en) 2019-01-16 2020-07-23 Beijing Bytedance Network Technology Co., Ltd. Motion candidates derivation
PL3912357T3 (pl) * 2019-02-20 2024-03-25 Beijing Dajia Internet Information Technology Co., Ltd. Ograniczone wyprowadzanie wektora ruchu dla długotrwałych obrazów odniesienia w kodowaniu wideo
CN113574868A (zh) * 2019-03-08 2021-10-29 韩国电子通信研究院 图像编码/解码方法和设备以及存储比特流的记录介质
US11350074B2 (en) * 2019-03-20 2022-05-31 Electronics And Telecommunications Research Institute Method for processing immersive video and method for producing immersive video
CN113615193A (zh) 2019-03-22 2021-11-05 北京字节跳动网络技术有限公司 Merge列表构建和其他工具之间的交互
WO2020197038A1 (ko) 2019-03-22 2020-10-01 엘지전자 주식회사 영상 코딩 시스템에서 인트라 서브 파티션 기반의 인트라 예측 방법 및 장치
US10638130B1 (en) * 2019-04-09 2020-04-28 Google Llc Entropy-inspired directional filtering for image coding
CN111953997A (zh) 2019-05-15 2020-11-17 华为技术有限公司 候选运动矢量列表获取方法、装置及编解码器
JP7469335B2 (ja) * 2019-06-13 2024-04-16 エルジー エレクトロニクス インコーポレイティド 動きベクトル予測基盤映像/ビデオコーディング方法及び装置
CN113992914B (zh) * 2019-09-24 2023-04-14 Oppo广东移动通信有限公司 帧间预测方法及装置、设备、存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030086214A (ko) * 2002-05-03 2003-11-07 엘지전자 주식회사 동영상 코딩 방법
JP2008245016A (ja) * 2007-03-28 2008-10-09 Canon Inc 画像符号化装置、画像符号化方法、及びプログラム
KR20090113281A (ko) * 2007-01-24 2009-10-29 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
JP2011507314A (ja) * 2007-09-28 2011-03-03 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション ビデオ情報処理

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347954B2 (ja) * 1995-11-02 2002-11-20 三菱電機株式会社 動画像符号化装置及び動画像復号化装置
US6594313B1 (en) * 1998-12-23 2003-07-15 Intel Corporation Increased video playback framerate in low bit-rate video applications
CN100505878C (zh) 2001-11-06 2009-06-24 松下电器产业株式会社 运动画面编码方法及运动画面解码方法
CN1913634B (zh) * 2001-11-06 2011-08-24 松下电器产业株式会社 运动图像解码方法
CN101018329B (zh) 2002-04-19 2014-05-14 松下电器产业株式会社 图像解码方法及图像解码装置
US7940845B2 (en) 2002-04-19 2011-05-10 Panasonic Corporation Motion vector calculating method
JP4130783B2 (ja) 2002-04-23 2008-08-06 松下電器産業株式会社 動きベクトル符号化方法および動きベクトル復号化方法
KR100506864B1 (ko) * 2002-10-04 2005-08-05 엘지전자 주식회사 모션벡터 결정방법
US8824553B2 (en) * 2003-05-12 2014-09-02 Google Inc. Video compression method
US20050013498A1 (en) 2003-07-18 2005-01-20 Microsoft Corporation Coding of motion vector information
CN1784008B (zh) 2004-12-02 2010-04-28 北京凯诚高清电子技术有限公司 高清晰视频超强压缩编码方法及解码方法
KR100668463B1 (ko) * 2004-12-31 2007-01-12 엠큐브웍스(주) 동영상 데이터의 인코딩을 위한 다중 참조 프레임 선택 방법
KR100763182B1 (ko) 2005-05-02 2007-10-05 삼성전자주식회사 다계층 기반의 가중 예측을 이용한 비디오 코딩 방법 및장치
EP1927249B1 (en) 2005-09-21 2018-07-18 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding multi-view video
US8559515B2 (en) 2005-09-21 2013-10-15 Samsung Electronics Co., Ltd. Apparatus and method for encoding and decoding multi-view video
CN101371571B (zh) * 2006-01-12 2013-06-19 Lg电子株式会社 处理多视图视频
WO2007081176A1 (en) * 2006-01-12 2007-07-19 Lg Electronics Inc. Processing multiview video
RU2395174C1 (ru) * 2006-03-30 2010-07-20 ЭлДжи ЭЛЕКТРОНИКС ИНК. Способ и устройство для декодирования/кодирования сигнала видео
BRPI0714859A2 (pt) * 2006-08-02 2013-05-21 Thomson Licensing mÉtodo e aparelho para particionamento geomÉtrico adaptativo para codificaÇço de vÍdeo e estrutura de sinal de vÍdeo para codificaÇço de vÍdeo
US8494049B2 (en) * 2007-04-09 2013-07-23 Cisco Technology, Inc. Long term reference frame management with error video feedback for compressed video communication
US9648325B2 (en) 2007-06-30 2017-05-09 Microsoft Technology Licensing, Llc Video decoding implementations for a graphics processing unit
BRPI0818444A2 (pt) * 2007-10-12 2016-10-11 Qualcomm Inc codificação adaptativa de informação de cabeçalho de bloco de vídeo
KR100901642B1 (ko) 2008-01-25 2009-06-09 엘지전자 주식회사 모션 벡터 결정 방법
KR100985263B1 (ko) * 2008-07-18 2010-10-04 엘지전자 주식회사 모션벡터 결정방법
WO2010041856A2 (en) 2008-10-06 2010-04-15 Lg Electronics Inc. A method and an apparatus for processing a video signal
KR101377527B1 (ko) * 2008-10-14 2014-03-25 에스케이 텔레콤주식회사 복수 개의 참조 픽처의 움직임 벡터 부호화/복호화 방법 및장치와 그를 이용한 영상 부호화/복호화 장치 및 방법
KR20110008653A (ko) * 2009-07-20 2011-01-27 삼성전자주식회사 움직임 벡터 예측 방법과 이를 이용한 영상 부호화/복호화 장치 및 방법
KR101452859B1 (ko) 2009-08-13 2014-10-23 삼성전자주식회사 움직임 벡터를 부호화 및 복호화하는 방법 및 장치
JP2011082683A (ja) * 2009-10-05 2011-04-21 Sony Corp 画像処理装置、画像処理方法、及び、プログラム
CN102045557B (zh) * 2009-10-20 2012-09-19 鸿富锦精密工业(深圳)有限公司 视频编解码方法及使用其的视频编码、解码装置
KR101457418B1 (ko) * 2009-10-23 2014-11-04 삼성전자주식회사 계층적 부호화 단위의 크기에 따른 비디오 부호화 방법과 그 장치, 및 비디오 복호화 방법과 그 장치
CN102104781B (zh) * 2009-12-18 2013-03-20 联咏科技股份有限公司 图像解码器
US20110217994A1 (en) 2010-03-03 2011-09-08 Boku, Inc. Systems and Methods to Automate Transactions via Mobile Devices
US20110310976A1 (en) * 2010-06-17 2011-12-22 Qualcomm Incorporated Joint Coding of Partition Information in Video Coding
US8848779B2 (en) * 2010-07-15 2014-09-30 Sharp Laboratories Of America, Inc. Method of parallel video coding based on block size
US8526495B2 (en) * 2010-11-22 2013-09-03 Mediatek Singapore Pte. Ltd. Apparatus and method of constrained partition size for high efficiency video coding
JP5320525B1 (ja) 2011-10-27 2013-10-23 パナソニック株式会社 予測動きベクトル導出方法および予測動きベクトル導出装置
CN103688545B (zh) * 2011-10-28 2017-05-10 太阳专利托管公司 图像编码方法、图像解码方法、图像编码装置及图像解码装置
US10200709B2 (en) * 2012-03-16 2019-02-05 Qualcomm Incorporated High-level syntax extensions for high efficiency video coding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030086214A (ko) * 2002-05-03 2003-11-07 엘지전자 주식회사 동영상 코딩 방법
KR20090113281A (ko) * 2007-01-24 2009-10-29 엘지전자 주식회사 비디오 신호 처리 방법 및 장치
JP2008245016A (ja) * 2007-03-28 2008-10-09 Canon Inc 画像符号化装置、画像符号化方法、及びプログラム
JP2011507314A (ja) * 2007-09-28 2011-03-03 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション ビデオ情報処理

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015128308A (ja) * 2011-06-30 2015-07-09 ソニー株式会社 画像処理装置および方法、記録媒体、並びに、プログラム
JP2015128307A (ja) * 2011-06-30 2015-07-09 ソニー株式会社 画像処理装置および方法、記録媒体、並びに、プログラム
JP2016187208A (ja) * 2011-06-30 2016-10-27 ソニー株式会社 画像処理装置および方法、記録媒体、並びに、プログラム
US9491462B2 (en) 2011-06-30 2016-11-08 Sony Corporation High efficiency video coding device and method based on reference picture type
US9560375B2 (en) 2011-06-30 2017-01-31 Sony Corporation High efficiency video coding device and method based on reference picture type
US9648344B2 (en) 2011-06-30 2017-05-09 Sony Corporation High efficiency video coding device and method based on reference picture type
KR20170071608A (ko) * 2011-06-30 2017-06-23 소니 주식회사 화상 처리 장치 및 방법
US9788008B2 (en) 2011-06-30 2017-10-10 Sony Corporation High efficiency video coding device and method based on reference picture type
KR20180124146A (ko) * 2011-06-30 2018-11-20 소니 주식회사 화상 처리 장치 및 방법
US10158877B2 (en) 2011-06-30 2018-12-18 Sony Corporation High efficiency video coding device and method based on reference picture type of co-located block
US10187652B2 (en) 2011-06-30 2019-01-22 Sony Corporation High efficiency video coding device and method based on reference picture type
KR101954007B1 (ko) 2011-06-30 2019-03-04 소니 주식회사 화상 처리 장치 및 방법
KR101954046B1 (ko) 2011-06-30 2019-03-04 소니 주식회사 화상 처리 장치 및 방법
US10484704B2 (en) 2011-06-30 2019-11-19 Sony Corporation High efficiency video coding device and method based on reference picture type
US10764600B2 (en) 2011-06-30 2020-09-01 Sony Corporation High efficiency video coding device and method based on reference picture type
US11405634B2 (en) 2011-06-30 2022-08-02 Sony Corporation High efficiency video coding device and method based on reference picture type
US11523119B2 (en) 2019-06-14 2022-12-06 Lg Electronics Inc. Method and device for image coding using motion vector differences

Also Published As

Publication number Publication date
JP2019071662A (ja) 2019-05-09
SG10201502739QA (en) 2015-05-28
CA2883363C (en) 2017-03-28
US9204163B2 (en) 2015-12-01
EP2916552A2 (en) 2015-09-09
CA2854887A1 (en) 2013-05-16
CA2854887C (en) 2015-08-04
RU2015115002A (ru) 2015-09-10
BR112014010966A2 (pt) 2017-06-06
SG10201502731VA (en) 2015-05-28
PH12015500673A1 (en) 2016-01-25
CN104811727A (zh) 2015-07-29
MY174659A (en) 2020-05-05
BR122015021735A2 (pt) 2019-08-27
CN104754356A (zh) 2015-07-01
MY179745A (en) 2020-11-12
ZA201504683B (en) 2017-01-25
CN104796724B (zh) 2017-07-07
PH12015500671B1 (en) 2016-01-25
US20180184114A1 (en) 2018-06-28
US20150131726A1 (en) 2015-05-14
CA2883368A1 (en) 2013-05-16
KR101881551B1 (ko) 2018-07-24
EP2916551A3 (en) 2015-10-14
CN103931192B (zh) 2018-03-16
PH12015500673B1 (en) 2016-01-25
EP2916550A2 (en) 2015-09-09
TW201536035A (zh) 2015-09-16
ZA201504684B (en) 2017-01-25
EP2916550A3 (en) 2015-10-07
BR122015021736A2 (pt) 2019-08-27
CA2883047A1 (en) 2013-05-16
RU2566973C2 (ru) 2015-10-27
KR101493699B1 (ko) 2015-02-16
CA2883047C (en) 2017-03-28
MX336649B (es) 2016-01-27
KR20150034702A (ko) 2015-04-03
TWI528792B (zh) 2016-04-01
MX2014005643A (es) 2014-08-01
EP2763416A1 (en) 2014-08-06
US9332273B2 (en) 2016-05-03
US20150172704A1 (en) 2015-06-18
EP2916551A2 (en) 2015-09-09
RU2586001C2 (ru) 2016-06-10
RU2566955C2 (ru) 2015-10-27
ZA201504681B (en) 2017-01-25
TWI532370B (zh) 2016-05-01
BR122015021739A2 (pt) 2019-08-27
JP6122056B2 (ja) 2017-04-26
JP2015159589A (ja) 2015-09-03
CN104768010A (zh) 2015-07-08
CA2883368C (en) 2017-08-29
RU2015114988A (ru) 2015-09-10
RU2566957C2 (ru) 2015-10-27
TWI556648B (zh) 2016-11-01
BR122015021741A2 (pt) 2019-08-27
AU2012336572A1 (en) 2014-07-10
ZA201504682B (en) 2017-01-25
CA2883363A1 (en) 2013-05-16
MY179763A (en) 2020-11-12
EP2763416A4 (en) 2015-10-07
ZA201403267B (en) 2021-05-26
MX336648B (es) 2016-01-27
PH12015500669B1 (en) 2016-01-25
JP2014535239A (ja) 2014-12-25
TWI508533B (zh) 2015-11-11
JP2017143557A (ja) 2017-08-17
EP3264770A1 (en) 2018-01-03
JP6466986B2 (ja) 2019-02-06
TW201536036A (zh) 2015-09-16
KR20130050903A (ko) 2013-05-16
RU2014117652A (ru) 2015-11-10
CN104796724A (zh) 2015-07-22
US20150172703A1 (en) 2015-06-18
TW201536034A (zh) 2015-09-16
KR101575005B1 (ko) 2015-12-08
CN104811727B (zh) 2018-02-16
AU2012336572B2 (en) 2015-09-17
JP6120902B2 (ja) 2017-04-26
TW201536037A (zh) 2015-09-16
PH12015500671A1 (en) 2016-01-25
KR101575006B1 (ko) 2015-12-08
CN108259915B (zh) 2022-03-29
CN108259915A (zh) 2018-07-06
PH12014500945B1 (en) 2014-10-20
KR101493698B1 (ko) 2015-03-02
PH12015500672A1 (en) 2016-01-25
EP2916553A3 (en) 2015-10-14
US9225995B2 (en) 2015-12-29
KR20140085388A (ko) 2014-07-07
EP2916552A3 (en) 2015-10-14
JP2015159588A (ja) 2015-09-03
US20150139321A1 (en) 2015-05-21
PH12015500672B1 (en) 2016-01-25
KR20150034703A (ko) 2015-04-03
MX337403B (es) 2016-03-03
TWI505696B (zh) 2015-10-21
CA2883050A1 (en) 2013-05-16
US9451282B2 (en) 2016-09-20
JP2015159587A (ja) 2015-09-03
SG10201502738XA (en) 2015-05-28
CA2883050C (en) 2015-07-14
CN104796723B (zh) 2016-10-12
EP2953367A1 (en) 2015-12-09
RU2015114980A (ru) 2015-08-10
CN103931192A (zh) 2014-07-16
EP2916553A2 (en) 2015-09-09
CN104796723A (zh) 2015-07-22
CN104768010B (zh) 2017-07-07
RU2566955C9 (ru) 2016-11-27
PH12015500669A1 (en) 2016-01-25
MY169355A (en) 2019-03-26
RU2566956C2 (ru) 2015-10-27
RU2015114969A (ru) 2015-09-20
SG10201502735PA (en) 2015-05-28
PH12014500945A1 (en) 2014-10-20
JP2015159586A (ja) 2015-09-03
SG11201402160XA (en) 2014-08-28
KR20150056080A (ko) 2015-05-22
JP6120901B2 (ja) 2017-04-26
TW201332371A (zh) 2013-08-01
US20140307783A1 (en) 2014-10-16
MY177794A (en) 2020-09-23
CN104754356B (zh) 2017-09-22
KR20150009493A (ko) 2015-01-26
MX336650B (es) 2016-01-27
KR101575004B1 (ko) 2015-12-08

Similar Documents

Publication Publication Date Title
WO2013069990A1 (ko) 비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 결정 방법 및 장치
WO2014007521A1 (ko) 비디오 부호화 또는 비디오 복호화를 위한 움직임 벡터 예측 방법 및 장치
WO2016068685A1 (ko) 고정밀 스킵 부호화를 이용한 비디오 부호화 장치 및 비디오 복호화 장치 및 그 방법
WO2013062391A1 (ko) 인터 예측 방법 및 그 장치, 움직임 보상 방법 및 그 장치
WO2013157791A1 (ko) 인터 예측의 참조영상을 결정하는 방법과 그 장치
WO2016068674A1 (ko) 움직임 벡터 부복호화 방법 및 장치
WO2014007518A1 (ko) 블록크기에 따라 인터 예측의 참조픽처리스트를 결정하는 비디오 부호화 방법과 그 장치, 비디오 복호화 방법과 그 장치
WO2014107065A1 (ko) 슬라이스 세그먼트의 엔트로피 부호화 방법 및 그 장치, 슬라이스 세그먼트의 엔트로피 복호화 방법 및 그 장치
WO2015199478A1 (en) Video encoding and decoding methods and apparatuses for padding area of image
WO2015137783A1 (ko) 인터 레이어 비디오의 복호화 및 부호화를 위한 머지 후보 리스트 구성 방법 및 장치
WO2013115560A1 (ko) 공간 서브영역별로 비디오를 부호화하는 방법 및 그 장치, 공간 서브영역별로 비디오를 복호화하는 방법 및 그 장치
WO2015053594A1 (ko) 인트라 블록 복사 예측을 이용한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2013069958A1 (ko) 비디오 복호화 과정에서 역양자화 및 역변환의 데이터를 클리핑하는 역변환 방법 및 그 장치
WO2015005753A1 (ko) 깊이 기반 디스패리티 벡터를 이용하는 인터 레이어 비디오 복호화 방법 및 그 장치, 깊이 기반 디스패리티 벡터를 이용하는 인터 레이어 비디오 부호화 방법 및 장치
WO2013095047A1 (ko) 최대 부호화 단위 별로 픽셀 분류에 따른 오프셋 조정을 이용하는 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2013162311A1 (ko) 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조픽처세트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
WO2014112830A1 (ko) 디코더 설정을 위한 비디오 부호화 방법 및 그 장치, 디코더 설정에 기초한 비디오 복호화 방법 및 그 장치
WO2013157783A1 (ko) 참조픽처리스트 변경이 가능한 인터 예측 방법과 그 장치
WO2013109115A1 (ko) 병렬 처리가 가능한 엔트로피 부호화 방법 및 장치, 병렬 처리가 가능한 엔트로피 복호화 방법 및 장치
WO2014163458A1 (ko) 인터 레이어 복호화 및 부호화 방법 및 장치를 위한 인터 예측 후보 결정 방법
WO2013022281A2 (ko) 다시점 비디오 예측 부호화 방법 및 그 장치, 다시점 비디오 예측 복호화 방법 및 그 장치
WO2014175647A1 (ko) 시점 합성 예측을 이용한 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 복호화 방법 및 그 장치
WO2013162251A1 (ko) 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 부호화 방법 및 그 장치, 다시점 비디오 예측을 위한 참조리스트를 이용하는 다시점 비디오 복호화 방법 및 그 장치
WO2015005749A1 (ko) 인터 레이어 비디오 복호화 및 부호화 장치 및 방법을 위한 블록 기반 디스패리티 벡터 예측 방법
WO2013109114A1 (ko) 서브영역별로 엔트로피 부호화의 병렬 처리가 가능한 비디오 부호화 방법 및 장치, 서브영역별로 엔트로피 복호화의 병렬 처리가 가능한 비디오 복호화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848529

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012848529

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012848529

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014117652

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014540946

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2854887

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14357043

Country of ref document: US

Ref document number: MX/A/2014/005643

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2012336572

Country of ref document: AU

Date of ref document: 20121108

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014010966

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 12015500669

Country of ref document: PH

Ref document number: 12015500672

Country of ref document: PH

Ref document number: 12015500671

Country of ref document: PH

Ref document number: 12015500673

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: IDP00201502524

Country of ref document: ID

Ref document number: IDP00201502518

Country of ref document: ID

Ref document number: IDP00201502519

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112014010966

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140507