WO2013068809A1 - Multilayer barrier film, laminates and process thereof - Google Patents

Multilayer barrier film, laminates and process thereof Download PDF

Info

Publication number
WO2013068809A1
WO2013068809A1 PCT/IB2012/002257 IB2012002257W WO2013068809A1 WO 2013068809 A1 WO2013068809 A1 WO 2013068809A1 IB 2012002257 W IB2012002257 W IB 2012002257W WO 2013068809 A1 WO2013068809 A1 WO 2013068809A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
micron
density polyethylene
film
low density
Prior art date
Application number
PCT/IB2012/002257
Other languages
French (fr)
Inventor
Mrinal Kanti Banerjee
Original Assignee
Essel Propack Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essel Propack Limited filed Critical Essel Propack Limited
Priority to BR112014012257A priority Critical patent/BR112014012257A2/en
Priority to MX2014005525A priority patent/MX360544B/en
Priority to EP12847680.1A priority patent/EP2776246A4/en
Priority to US14/356,538 priority patent/US9937686B2/en
Priority to CN201280066092.2A priority patent/CN104159748B/en
Publication of WO2013068809A1 publication Critical patent/WO2013068809A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0013Extrusion moulding in several steps, i.e. components merging outside the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/151Coating hollow articles
    • B29C48/152Coating hollow articles the inner surfaces thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/327Layered products comprising a layer of synthetic resin comprising polyolefins comprising polyolefins obtained by a metallocene or single-site catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7248Odour barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component

Definitions

  • the present subject matter relates to a multi-layer barrier film, laminate thereof, and the process of making the same.
  • the present subject matter further relates to laminated products, such as laminated tubes with the multi-layer barrier film which have excellent aroma barrier, UV resistance, oxygen barrier and mechanical properties and being economical as well.
  • Laminated tubes are used for packaging across the globe in varied sectors such as oral care, food, cosmetics, pharma and industrial applications.
  • Films used for the packaging of food generally contain multiple layers, in which each layer adds certain desired physical or chemical properties to the completed film.
  • "Barrier" layer serve to protect the packaged product from physical stresses caused by the normal handling of the product during packaging, shipping, or during commercialization.
  • a heat sealant layer may be utilized to bond films together to form packages for products, such as pharmaceutical or food products.
  • the combination of layers may allow for a film that has favorable physical properties, such as, for example, strength, stiffness, abrasion and chemical resistance.
  • polyamide is a high molecular weight polymer having amide linkages along the molecular chain structure.
  • ylon polyamides which are synthetic polyamides, have favorable physical properties of high strength, stiffness abrasion and chemical resistance.
  • EVOH ethylene-vinyl alcohol copolymer
  • EVOH ethylene-vinyl alcohol copolymer
  • the exclusive use of ethylene- vinyl alcohol (EVOH) as the barrier layer increases the cost besides increasing the thickness of the layer in the laminate.
  • the use of ethylene-vinyl alcohol (EVOH) sandwiched by layers comprising of nylon polyamide provide reduced core thickness, and also reduction in price.
  • the barrier films made up of polyamide-ethylene-vinyl alcohol (EVOH)-polyamide combination, polyamide interferes with the flavor ingredient of the product.
  • the other barrier films generally known in the art are made up of thicker ethylene- vinyl alcohol copolymer (EVOH).
  • EVOH ethylene-vinyl alcohol copolymer
  • Single ethylene-vinyl alcohol (EVOH) is although a good oxygen barrier but it is poor in aroma barrier, mechanical properties, poor UV resistance and
  • the present disclosure relates to a multi-layer barrier film comprising: a first layer of
  • EVOH ethylene vinyl alcohol
  • a second layer of a polyamide layer having a thickness in the range
  • Another aspect of the present disclosure is a laminate comprising: an outer
  • the multi-layer barrier film comprising a first layer of an ethylene vinyl alcohol ' (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron;
  • EVOH ethylene vinyl alcohol '
  • EVOH ethylene vinyl alcohol
  • Another aspect of the present disclosure is the laminated products, such as laminated
  • tubes comprising the multi-layer barrier film in accordance with the present disclosure.
  • Figure 1 illustrates a three layered barrier film 300, according to an embodiment of the present disclosure.
  • Figure 2 illustrates a thirteen layer laminate 100, according to an embodiment of the present disclosure.
  • the present disclosure provides a multi-layer barrier film comprising: a first layer of an ethylene vinyl alcohol (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron; a second layer of a polyamide layer having a thickness in the range of 3 micron to 15 micron in contact with the first layer; and a third layer of an ethylene vinyl alcohol (EVOH) layer having a thickness in the range of 3 micron to 15 micron.
  • the third layer consisting of ethylene vinyl alcohol (EVOH) will be towards the product side when laminated with other polymer layers.
  • the polyamide layer is an aromatic or an aliphatic polyamide layer.
  • the polyamide layer is selected from the group consisting of crystalline polyamide, amorphous polyamide, semi- crystalline polyamide and mixtures thereof.
  • the polyamide polymer layer can include, but not limited to, nylon 6, nylon 6/66, nylon 6/9, nylon 6/10, nylon 6-10, nylon 1 1, nylon 12, amorphous nylons, MXD-6, nylon nano-composites, nylon combined with other inorganic fillers.
  • At least one of the polyamide layers contains one or more UV blocking agents.
  • An embodiment of the present disclosure also provides the aromatic polyamide to be a UV blocking agent.
  • the UV blocking agent present in the polyamide layer is advantageously a UV-B & UV-C blocking agent, suitable for blocking rays in UV-B region (315 nm - 280 nm), and UV-C region (280 nm -200 nm).
  • the UV-B and UV-C blocking agent can be an organic chromophore.
  • the UV-B & UV-C blocking agent that can be used in accordance with the present disclosure are notably commercially available, such as amorphous nylon to block UV B and C naturally.
  • the second layer containing the polyamide layer further comprises of pigments.
  • Pigments are preferably introduced in the layer during blown film making process in a form of Master Batch in which titanium dioxide (Ti0 2 ) or calcium carbonate (CaC0 3 ) is impregnated.
  • Ti0 2 titanium dioxide
  • CaC0 3 calcium carbonate
  • the introduction of pigments in the middle layer results in the polyamide layer of the multi-barrier film to be opaque.
  • Non limitative examples of pigments in accordance with the present disclosure include titanium dioxide (Ti0 2 ), zinc disulfide (ZnS 2 ), zinc oxide (ZnO), barium sulfate (BaS0 4 ) and calcium carbonate (CaC0 3 ).
  • the pigment may be chosen depending upon the desired color to be imparted to the laminate.
  • the shape of the pigment is not particularly limited; they may be notably granule, round, flaky, flat and so on.
  • the white pigment is preferably titanium dioxide.
  • the titanium dioxide used in the instant compositions is any of the notably commercially available, as White Master Batch for linear low density polyethylene (LLDPE) Films from local vendors or manufactured by Clarient, Ampacet, Schulman etc. and available internationally.
  • LLDPE linear low density polyethylene
  • rutile titanium dioxide (Ti0 2 ) is used as white pigment and would like to include calcium carbonate (CaC0 3 ) as well.
  • Titanium dioxide is not particularly limited, and a variety of crystalline forms such as the anatase form, the rutile form and the monoclinic type can be used.
  • the preferably average particle size of the titanium oxide is in the range of 0.015 ⁇ to 0.300 ⁇ .
  • the polyamide layer of the multilayer barrier film is transparent.
  • the polyamide used in the middle layer of the multilayer barrier film is amorphous polyamide.
  • the polyamide layer comprises of blend of amorphous polyamide and crystalline polyamide.
  • an aromatic polyamide denotes an aromatic polyamide having UV blocking property, and which more than 50 mole % of the recurring units comprise at least one aromatic group and an amide moiety of formula (I) (aromatic recurring units, hereinafter).
  • the aromaticity of the aromatic recurring units of an aromatic polyamide can come notably from the diacid (or derivative thereof) and/or from the diamine and/or from the aminoacid used in the polycondensation reaction.
  • the aromatic polyamide comprises at least 20 mol % based on 100 mol % of monomers making up the polyamide, of monomers comprising an aromatic group.
  • aromatic groups typically originate in a diacid monomer, and include terephthalic acid, isophthalic acid, phthalic acid, etc.
  • UV blocking aromatic polyamide such as DuPont's “Selar PA”, “Grivory G21” from EMS Chemicals, can also be used in accordance with the disclosure.
  • the UV blocking aromatic polyamide is an amorphous form.
  • the blend of the aromatic polyamide and the aliphatic polyamide in accordance with the present disclosure, enables better processability and provides good melt strength and tube concentricity.
  • an aliphatic polyamide denotes a polyamide that is compatible with aromatic polyamide contained in the middle layer which is the barrier layer of the multi-layered film.
  • the aliphatic polyamide according to the present disclosure is present in an amount ranging from 0% to 50% on the weight of the total polyamide content in the barrier layer.
  • the aliphatic polyamide is selected from a group consisting of poly(hexamethylene adipamide) (nylon 66), poly(hexamethylene azelaamide) (nylon 69), polyfliexamethylene sebacamide) (nylon 610), poly(hexamethylene dodecanoamide) (nylon 612), poly(dodecamethylene dodecanoamide) (nylon 1212) and mixtures thereof.
  • polyamides obtainable by (and preferably, obtained by) the auto-polycondensation reaction of an amino carboxylic acid and/or a lactam are the polycaprolactame (nylon 6), the polycaproamide and the poly(l 1 -amino- undecano-amide).
  • Aliphatic polyamide such as "Ultramid B40" can be used in the barrier layer of the multi-layer film along with the aromatic polyamide according to this embodiment.
  • the aliphatic polyamide and the aromatic polyamide are in a weight ratio in a range of 15:85 to 85: 15, preferably 25:75 to 75:25 and most preferably 1 : 1.
  • the aliphatic polyamide is semi- crystalline.
  • the present disclosure also provides a laminate comprising: an outer polyethylene film; a middle layer comprising a multi-layer barrier film in contact with the outer polyethylene film; and an inner polyethylene film which is in contact with the multi-layer barrier film; wherein the multi-layer barrier film comprising a first layer of an ethylene vinyl alcohol (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron; a second layer of a polyamide layer having a thickness in the range of 3 micron to 15 micron in contact with the first layer; and a third layer of an ethylene vinyl alcohol (EVOH) layer having a thickness in the range of 3 micron to 15 micron.
  • EVOH ethylene vinyl alcohol
  • the outer polyethylene film and the inner polyethylene film in the multi-layered laminate are selected from the group consisting of clear polyethylene, high density polyethylene (HDPE), linear low density polyethylene polymer (LLDPE), low density polyethylene polymer (LDPE) or combination thereof.
  • the linear low density polyethylene (LLDPE) polymer in the outer polyethylene film and the inner polyethylene film can be selected from C6 (which is hexane based linear low density polyethylene (LLDPE)) such as Dow's "2645 G” and C8 (which is Octane based LLDPES) such as Dow's "5056 G” , "2045", "2038", “2740" Grades.
  • metallocene polyethylene polymer Like Exxon Mobils "Exceed” family (such as “1018 CA”, “1327 CA”), "Enable 3505" polymers from metallocene grades, Dow's "Elite” grade Metallocene linear low density polyethylene (LLDPE) family.
  • LLDPE Metallocene linear low density polyethylene
  • the similar Octane or Hexane based linear low density polyethylene (LLDPE) polymer grades from other polymer manufacturers, such as Mitsui Chemicals' C6 (Octane based linear low density polyethylene (LLDPE))-Ulzex grade or (hexane based) metallocene 4020 L Evolue grades etc. also can be used.
  • the low density polyethylene (LDPE) in accordance with the present disclosure can have density in the range of 0.918 g/cc to 0.935 g/cc.
  • the low density polyethylene (LDPE) in accordance with the present disclosure can have density of 0.918 g/cc, 0.920 g/cc, 0.925 g/cc, 0.930 g/cc or 0.935 g/cc.
  • the preferred density of low density polyethylene (LDPE) is 0.918 g/cc.
  • the density of linear low density polyethylene (LLDPE) in the multi-layered laminate of the present disclosure is in the range of 0.912 g/cc to 0.940 g/cc.
  • the low density polyethylene (LDPE) in accordance with the present disclosure can have density 0.912 g/cc, 0.912 g/cc, 0.917 g/cc, 0.922 g/cc, 0.927, 0.932 g/cc, 0.937 g/cc or 0.940 g/cc.
  • the preferred density of low density polyethylene (LDPE) is 0.927 g/cc.
  • These may be Metallocene linear low density polyethylene (LLDPE) or linear low density polyethylene (LLDPE) formed using other catalyst such as Ziegler-Natta.
  • the outer polyethylene film and the inner polyethylene film contain an additive.
  • the additive is one of the general additives known in the pertinent art to modify the properties of the polymer.
  • Such additives can be stabilizers, antioxidants, modifiers, color pigments colorants, and in combination thereof:
  • the additive is a color pigment or colorant.
  • the color pigments or colorants used can be commercially available black master batches, white master batches and other color master batches.
  • the outer polyethylene film and the inner polyethylene film is a multi-layered polyethylene film.
  • the multi-layered polyethylene film can be a two to six layered film.
  • the multi-layered polyethylene film disclosed in the present disclosure can be a two layered film, a three layered film, a four layered film, a five layered film or a six layered film.
  • the outer polyethylene layer in the multi-layered laminate serves as the print layer having thickness in the range of 5 micron to 50 micron.
  • the inner polyethylene layer in the multi-layered laminate serves as the sealant layer having a thickness in the range of 30 micron to 100 micron.
  • tie or adhesive layers is usually required to adhere together various layers of the multi-layer laminate structure.
  • Material for tie or adhesive layer is selected based on the composition of the outer layer and the next layer.
  • the tie or adhesive layer may be a co-extrusion of the low density polyethylene (LDPE) and/ or linear low density polyethylene (LLDPE).
  • the tie or adhesive layer may alternatively comprise any of the various other polymeric adhesives commonly used in the art of making multi-layer laminates.
  • the tie layer used in between the polyethylene based layer is generally made up of anhydride grafted polymer compound or clear lower density polyethylene or linear low density polyethylene polymer.
  • the thickness of each tie layer is generally in the range of 4 micron to 50 micron.
  • the laminate has thickness in the range of 90 micron to 525 micron.
  • the polyethylene present in the multilayer outer film and the multilayer inner film impart mechanical strength and stiffness to the laminate by virtue of the inherent polymer structures.
  • Recently, to add to the aesthetic appeal of the laminates with cost effectiveness, a sharp increase in the demand for thin, yet durable laminates has been witnessed.
  • a decrease in the thickness of the laminate having polyethylene in the outer and the inner layers of the laminate adversely affects mechanical properties, such as stiffness, of the laminate and resilience properties in the tube containers.
  • polyethylene in the skin layers of the outer layer allows easy binding of the various layers of the laminate and also allows for convenient binding and sealing of the laminate when storage containers are produced using the laminate.
  • a laminate comprising: an outer polyethylene layer; a middle layer comprising a multi-layer barrier film, wherein the multi-layer barrier film is in contact with the outer polyethylene film ; and an inner polyethylene film which is in contact with the multi-layer barrier film, wherein the outer polyethylene film comprising an outer polyethylene layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 50 micron; a body layer comprising of high density polyethylene (HDPE) or polypropylene (PP) or linear low density polyethylene (LLDPE) or blend of color master batch or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of polypropylene (PP) and linear low density polyethylene (LLDPE)
  • Figure 1 illustrates an exemplary structure of the multilayer barrier film 300, in accordance with an embodiment of the present disclosure.
  • the multilayer barrier film 300 is formed having a three-layered structure.
  • the middle layer 304 comprises of polyamide or amorphous polyamide or blends of polyamide and amorphous polyamide and optionally pigments.
  • the first layer 302 comprises ethylene vinyl alcohol (EVOH) or a polyamide.
  • the third layer 306 comprises 100% ethylene vinyl alcohol (EVOH), which provides a barrier to atmospheric gases and moisture and also exhibits aroma preserving properties.
  • the thickness of the third layer 306 ranges from 3 micron to 15 micron
  • the thickness of middle layer 304 ranges from 3 micron to 15 micron
  • the thickness of first layer 302 ranges from 3 micron to 15 micron.
  • Figure 2 illustrates an exemplary structure of the laminate 100 comprising the multilayer barrier film 300.
  • the thickness of the laminate 100 ranges from about 90 micron to about 525 micron. Further, as a result of the presence of the multilayer barrier film 300, in the laminate 100, the laminate exhibits excellent barrier and product keeping properties throughout the designated shelf life.
  • the multilayer outer film comprises an outermost printing layer 202 of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof; a body layer 204 comprising high density polyethylene (HDPE) or polypropylene (PP) or low density polyethylene (LLDPE) or blend .
  • a laminating layer 206 comprising clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof; and a skin layer 210 comprising clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof.
  • the thickness of the outer most printing layer 202 ranges from 5 micron to 50 micron
  • the thickness of body layer 204 ranges from 10 micron to 100 micron
  • the thickness of laminating layer 206 ranges from 5 micron to 50 micron
  • the thickness of skin layer 210 ranges from 5 micron to 25 micron.
  • the multilayer inner film comprises an innermost sealant layer 402 of Clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof; a skin layer 406 comprising clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof.
  • the inner most sealant layer 402 is bonded to the skin layer 406 by a tie layer 404, and the skin layer 406 is bonded to the inner barrier layer 306 by using another tie layer 408.
  • the inner most sealant layer 402 is a three layered structure.
  • the thickness of the innermost sealant layer 402 ranges from 30 micron to 100 micron
  • the thickness of skin layer 406 ranges from 5 micron to 25 micron
  • the thickness of tie layer 404 ranges from 10 micron to 50 micron
  • the thickness of another tie layer 408 ranges from 4 micron to 15 micron.
  • the laminating layer 206 and the skin layer 210 is bonded together using a first adhesive layer or a tie layer 208; and in a similar manner, the skin layer 210 is bonded to the first layer 302, of the multilayer barrier film, using a second adhesive layer or tie layer 212. Further to this, in an embodiment the skin layer 406 is bonded to the third layer 306, using third adhesive or tie layer 408; and in a similar manner the inner most sealant layer 402 is bonded to the skin layer 406 using fourth adhesive layer or tie layer 404. As a result of bonding of the different layers, the laminate 100 is obtained.
  • the tie layers in the multi- layered laminate of the present disclosure comprises of layers that generally binds the barrier layer to the outer and the inner layers in the laminate.
  • the tie layer can be any tie layer that is suitable for the said bonding.
  • a laminated tube can be made of the laminate.
  • the laminate 100 is prepared by a Blown Film extrusion or Cast film extrusion or combination of both.
  • the present disclosure further provides a process for preparation of the laminate, said process comprising laminating the multilayer outer polyethylene film, multi-layer barrier film and multilayer inner polyethylene film through extrusion coating and lamination process to obtain the laminate according to the present disclosure.
  • Another embodiment of the present disclosure provides a process for preparation of laminate wherein the each layer of the multilayer outer polyethylene film and the multilayer inner polyethylene film are fabricated separately and kept for conditioning for a period in the range of 8 hours to 72 hours at a temperature in the range of 20°C to 30°C.
  • the layers of multi-layer barrier film are fabricated separately and kept for conditioning for a period in the range of 8 hours to 72 hours at a temperature in the range of 20°C to 30°C.
  • the process used for fabricating the layers is selected from Cast film extrusion and blown film extrusion or combination thereof.
  • Blown film extrusion is a technology that is the most common method for making plastic films, especially for the packaging industry.
  • the process involves extruding a tube of molten polymer through a die and inflating to several times its initial diameter to form a thin film bubble. This bubble is then collapsed and used as a lay-flat film or can be made into bags.
  • polyethylene is used with this process, and other materials can be used as blends with these polymers in production of multilayer blown films.
  • blown film extrusion is carried out vertically upwards. This procedure consists of four main steps:
  • the polymer material is taken in a pellet form, which are successively compacted and melted to form a continuous, viscous liquid. This molten plastic is then forced, or extruded, through an annular die.
  • Air is injected through a hole in the center of the die and the pressure causes the extruded melt to expand into a bubble.
  • the air entering the bubble replaces air leaving it, so that even and constant pressure is maintained to ensure uniform thickness of the film.
  • the bubble is pulled continually upwards from the die and a cooling ring blows air onto the film.
  • the film can also be cooled from the inside using internal bubble cooling. This reduces the temperature inside the bubble, while maintaining the bubble diameter.
  • the film moves into a set of nip rollers which collapse the bubble and flatten it into two flat film layers.
  • the puller rolls pull the film onto windup rollers.
  • the film passes through idler rolls during this process to ensure that there is uniform tension in the film.
  • the film may pass through a treatment centre, depending on the application. During this stage, the film may be slit to form one or two films, or surface treated
  • Cast film extrusion is also a technology that is the most common method for making plastic films, especially for the packaging industry. In cast film extrusion the polymer is melted onto a Chilled drum prior to haul off and winding, the process offers much higher outputs for bulk production of thin polymer films.
  • a layer of ethylene vinyl alcohol or polyamide is in contact with a layer of polyamide or amorphous polyamide or blends of polyamide and amorphous polyamide and optionally pigments.
  • a layer of 100% Ethylene vinyl alcohol (EVOH) which serves a barrier to atmospheric gases and moisture is in contact with the above polyamide layer.
  • EVOH Ethylene vinyl alcohol
  • These three layers comprise a multi-layer barrier film wherein each layer has thickness in the range of 3 micron ( ⁇ ) to 15 micron ( ⁇ ).
  • the structure of the multi-layer barrier film is given below.
  • a multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer.
  • the multi-layered outer layer comprises of an outermost printing layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5 micron to 50 micron is in contact with a body layer comprising of high density polyethylene (HDPE) or polypropylene (PP) or linear low density polyethylene (LLDPE) or blend of color master batch or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of polypropylene (PP) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 10 micron to 100 micron.
  • LDPE low density polyethylene
  • LLDPE linear low density
  • the body layer is contact with a laminating layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5 micron to 50 micron.
  • the laminating layer is bound using a tie layer to a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5micron to 25 micron.
  • the skin layer in turn is bound to the multi- barrier film as described in example 1 using a tie layer.
  • the inner barrier layer containing 100% of ethylene vinyl alcohol (EVOH) in the multi-layer barrier film is bound to a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5 micron to 25 micron using a a tie layer of thickness in the range of 4 micron to 15 micron.
  • LDPE clear low density polyethylene
  • LLDPE linear low density polyethylene
  • LLDPE linear low density polyethylene
  • LLDPE linear low density polyethylene
  • the skin layer is bound to a sealant layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 30 micron to 100 micron, using a tie layer of thickness in the range of 10 micron to 50 micron.
  • LDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • LLDPE low density polyethylene
  • LLDPE linear low density polyethylene
  • the structure of the multi-layered laminate is given below:
  • a multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer.
  • the total thickness of the laminate is 97 ⁇ with 5 ⁇ outer printing layer// 10 ⁇ body layer// 5 ⁇ laminating layer // 10 ⁇ first tie layer // 5 ⁇ skin layer// 4 ⁇ second tie layer // 3 ⁇ EVOH or polyamide // 3 ⁇ polyamide// 3 ⁇ EVOH // 4 ⁇ third tie layer// 5 ⁇ skin layer// 10 ⁇ fourth tie layer// 30 ⁇ inner sealant layer.
  • a multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer.
  • the total thickness of the laminate is 97 ⁇ with 5 ⁇ outer printing layer// 10 ⁇ body layer// 5 ⁇ laminating layer // 10 ⁇ first tie layer // 5 ⁇ skin layer// 4 ⁇ second tie layer // 3 ⁇ EVOH // 3 ⁇ polyamide// 3 ⁇ EVOH // 4 ⁇ third tie layer// 5 ⁇ skin layer// 10 ⁇ fourth tie layer// 30 ⁇ inner sealant layer.
  • Example 5 Example 5:
  • a multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer.
  • the total thickness of the laminate is 525 ⁇ with 50 ⁇ outer printing layer// 100 ⁇ body layer// 50 ⁇ laminating layer // 50 ⁇ first tie layer // 25 ⁇ skin layer// 1 ⁇ second tie layer // 15 ⁇ EVOH or polyamide // 15 ⁇ polyamide// 15 ⁇ EVOH // 15 ⁇ third tie layer// 25 ⁇ skin layer// 50 ⁇ fourth tie layer// 100 ⁇ inner sealant layer.
  • a multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer.
  • the total thickness of the laminate is 525 ⁇ with 50 ⁇ outer printing layer// 100 ⁇ body layer// 50 ⁇ laminating layer // 50 ⁇ first tie layer // 25 ⁇ skin layer// 15 ⁇ second tie layer // 15 ⁇ EVOH // 15 ⁇ polyamide// 15 ⁇ EVOH // 15 ⁇ third tie layer// 25 ⁇ skin layer// 50 ⁇ fourth tie layer// 100 ⁇ inner sealant layer
  • the present disclosure provides multi-layered polyethylene laminates with a multi- layer barrier film which when made into articles excellent aroma barrier, UV resistance and oxygen barrier properties.
  • the present disclosure enhances the product appeal.
  • the present disclosure also provides multi-layered polyethylene laminates with a multi-layer barrier film in a cost effective way.

Abstract

The present disclosure relates to a multi-layer barrier film comprising: a first layer of an ethylene vinyl alcohol (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron; a second layer of a polyamide layer having a thickness in the range of 3 micron to 15 micron in contact with the first layer; and a third layer of an ethylene vinyl alcohol (EVOH) layer having a thickness in the range of 3 micron to 15 micron. The present disclosure also relates to a multi-layered laminate comprising the multilayer barrier film, and the process of making the same.

Description

TECHNICAL FIELD
The present subject matter relates to a multi-layer barrier film, laminate thereof, and the process of making the same.
The present subject matter further relates to laminated products, such as laminated tubes with the multi-layer barrier film which have excellent aroma barrier, UV resistance, oxygen barrier and mechanical properties and being economical as well.
BACKGROUND
Laminated tubes are used for packaging across the globe in varied sectors such as oral care, food, cosmetics, pharma and industrial applications. Films used for the packaging of food generally contain multiple layers, in which each layer adds certain desired physical or chemical properties to the completed film. "Barrier" layer serve to protect the packaged product from physical stresses caused by the normal handling of the product during packaging, shipping, or during commercialization. In addition, a heat sealant layer may be utilized to bond films together to form packages for products, such as pharmaceutical or food products. Further, the combination of layers may allow for a film that has favorable physical properties, such as, for example, strength, stiffness, abrasion and chemical resistance.
One such layer that may be utilized as a barrier layer and to increase the toughness of films made therefrom is a layer comprising polyamide. Polyamide is a high molecular weight polymer having amide linkages along the molecular chain structure. Nylon polyamides, which are synthetic polyamides, have favorable physical properties of high strength, stiffness abrasion and chemical resistance.
It is, of course, generally known to provide multilayer polymeric films that may have high strength, stiffness, abrasion resistance and/or chemical. Many such films may have a barrier layer of ethylene-vinyl alcohol copolymer (EVOH). The exclusive use of ethylene- vinyl alcohol (EVOH) as the barrier layer increases the cost besides increasing the thickness of the layer in the laminate. The use of ethylene-vinyl alcohol (EVOH) sandwiched by layers comprising of nylon polyamide provide reduced core thickness, and also reduction in price. The barrier films made up of polyamide-ethylene-vinyl alcohol (EVOH)-polyamide combination, polyamide interferes with the flavor ingredient of the product.
The other barrier films generally known in the art are made up of thicker ethylene- vinyl alcohol copolymer (EVOH). Single ethylene-vinyl alcohol (EVOH) is although a good oxygen barrier but it is poor in aroma barrier, mechanical properties, poor UV resistance and
much high cost.
Thus there is a need of a barrier film which has excellent aroma barrier, UV
resistance, oxygen barrier and mechanical properties and economical also.
SUMMARY
The present disclosure relates to a multi-layer barrier film comprising: a first layer of
an ethylene vinyl alcohol (EVOH) layer or a polyamide layer having a thickness in the range
of 3 micron to 15 micron; a second layer of a polyamide layer having a thickness in the range
of 3 micron to 15 micron in contact with the first layer; and a third layer of an ethylene vinyl
alcohol (EVOH) layer having a thickness in the range of 3 micron to 15 micron in contact
with the above polyamide layer.
Another aspect of the present disclosure is a laminate comprising: an outer
polyethylene film; a middle layer comprising a multi-layer barrier film in contact with the
outer polyethylene film; and an inner polyethylene film in contact with the multi-layer barrier ' film; wherein the multi-layer barrier film comprising a first layer of an ethylene vinyl alcohol ' (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron;
a second layer of a polyamide layer having a thickness in the range of 3 micron to 15 micron s in contact with the first layer; and a third layer of an ethylene vinyl alcohol (EVOH) layer
having a thi ckness in the range of 3 micron to 15 micron in contact with the above
polyamide layer.
Further aspect of the present disclosure is the process for the preparation of the '* laminate comprising the multi-layer barrier film.
Another aspect of the present disclosure is the laminated products, such as laminated
tubes comprising the multi-layer barrier film in accordance with the present disclosure.
These and other features, aspects, and advantages of the present subject matter will
become better understood with reference to the following description. This summary is
provided to introduce a selection of concepts in a simplified form. This summary is not
intended to identify key features or essential features of the disclosure, nor is it intended to be
used to limit the scope of the subject matter. BRIEF DESCRIPTION OF THE DRAWINGS
The above and other features, aspects, and advantages of the subject matter will be better understood with regard to the following description, appended claims, and accompanying drawings where:
Figure 1 illustrates a three layered barrier film 300, according to an embodiment of the present disclosure.
Figure 2 illustrates a thirteen layer laminate 100, according to an embodiment of the present disclosure. DETAILED DESCRIPTION
The present disclosure provides a multi-layer barrier film comprising: a first layer of an ethylene vinyl alcohol (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron; a second layer of a polyamide layer having a thickness in the range of 3 micron to 15 micron in contact with the first layer; and a third layer of an ethylene vinyl alcohol (EVOH) layer having a thickness in the range of 3 micron to 15 micron. The third layer consisting of ethylene vinyl alcohol (EVOH) will be towards the product side when laminated with other polymer layers.
.In one of the embodiment, the polyamide layer is an aromatic or an aliphatic polyamide layer. In another embodiment of the present disclosure the polyamide layer is selected from the group consisting of crystalline polyamide, amorphous polyamide, semi- crystalline polyamide and mixtures thereof. The polyamide polymer layer can include, but not limited to, nylon 6, nylon 6/66, nylon 6/9, nylon 6/10, nylon 6-10, nylon 1 1, nylon 12, amorphous nylons, MXD-6, nylon nano-composites, nylon combined with other inorganic fillers.
In an embodiment of the present disclosure at least one of the polyamide layers contains one or more UV blocking agents. An embodiment of the present disclosure also provides the aromatic polyamide to be a UV blocking agent. The UV blocking agent present in the polyamide layer is advantageously a UV-B & UV-C blocking agent, suitable for blocking rays in UV-B region (315 nm - 280 nm), and UV-C region (280 nm -200 nm). The UV-B and UV-C blocking agent can be an organic chromophore. The UV-B & UV-C blocking agent that can be used in accordance with the present disclosure are notably commercially available, such as amorphous nylon to block UV B and C naturally.
In another embodiment of the present disclosure the second layer containing the polyamide layer further comprises of pigments. Pigments are preferably introduced in the layer during blown film making process in a form of Master Batch in which titanium dioxide (Ti02) or calcium carbonate (CaC03) is impregnated. The introduction of pigments in the middle layer results in the polyamide layer of the multi-barrier film to be opaque.
Non limitative examples of pigments in accordance with the present disclosure include titanium dioxide (Ti02), zinc disulfide (ZnS2), zinc oxide (ZnO), barium sulfate (BaS04) and calcium carbonate (CaC03).The pigment may be chosen depending upon the desired color to be imparted to the laminate.
The shape of the pigment is not particularly limited; they may be notably granule, round, flaky, flat and so on. The white pigment is preferably titanium dioxide. The titanium dioxide used in the instant compositions is any of the notably commercially available, as White Master Batch for linear low density polyethylene (LLDPE) Films from local vendors or manufactured by Clarient, Ampacet, Schulman etc. and available internationally. In the present disclosure rutile titanium dioxide (Ti02) is used as white pigment and would like to include calcium carbonate (CaC03) as well.
Titanium dioxide is not particularly limited, and a variety of crystalline forms such as the anatase form, the rutile form and the monoclinic type can be used. The preferably average particle size of the titanium oxide is in the range of 0.015 μιη to 0.300 μιη.
In another embodiment of the present disclosure wherein the polyamide layer of the multilayer barrier film is transparent. The polyamide used in the middle layer of the multilayer barrier film is amorphous polyamide. In accordance with the present disclosure, the polyamide layer comprises of blend of amorphous polyamide and crystalline polyamide.
According to the present disclosure an aromatic polyamide denotes an aromatic polyamide having UV blocking property, and which more than 50 mole % of the recurring units comprise at least one aromatic group and an amide moiety of formula (I) (aromatic recurring units, hereinafter). The aromaticity of the aromatic recurring units of an aromatic polyamide can come notably from the diacid (or derivative thereof) and/or from the diamine and/or from the aminoacid used in the polycondensation reaction.
In yet another embodiment of the present disclosure the aromatic polyamide comprises at least 20 mol % based on 100 mol % of monomers making up the polyamide, of monomers comprising an aromatic group. Although not required, such aromatic groups typically originate in a diacid monomer, and include terephthalic acid, isophthalic acid, phthalic acid, etc.
Notably commercially available UV blocking aromatic polyamide such as DuPont's "Selar PA", "Grivory G21" from EMS Chemicals, can also be used in accordance with the disclosure. In a preferred embodiment, the UV blocking aromatic polyamide is an amorphous form.
The blend of the aromatic polyamide and the aliphatic polyamide, in accordance with the present disclosure, enables better processability and provides good melt strength and tube concentricity.
According to the present disclosure an aliphatic polyamide denotes a polyamide that is compatible with aromatic polyamide contained in the middle layer which is the barrier layer of the multi-layered film. The aliphatic polyamide according to the present disclosure is present in an amount ranging from 0% to 50% on the weight of the total polyamide content in the barrier layer.
In a further embodiment of the present disclosure the aliphatic polyamide is selected from a group consisting of poly(hexamethylene adipamide) (nylon 66), poly(hexamethylene azelaamide) (nylon 69), polyfliexamethylene sebacamide) (nylon 610), poly(hexamethylene dodecanoamide) (nylon 612), poly(dodecamethylene dodecanoamide) (nylon 1212) and mixtures thereof. Examples of polyamides obtainable by (and preferably, obtained by) the auto-polycondensation reaction of an amino carboxylic acid and/or a lactam are the polycaprolactame (nylon 6), the polycaproamide and the poly(l 1 -amino- undecano-amide).
Aliphatic polyamide such as "Ultramid B40" can be used in the barrier layer of the multi-layer film along with the aromatic polyamide according to this embodiment.
In another embodiment of the present disclosure the aliphatic polyamide and the aromatic polyamide are in a weight ratio in a range of 15:85 to 85: 15, preferably 25:75 to 75:25 and most preferably 1 : 1.
In yet another embodiment of the present disclosure the aliphatic polyamide is semi- crystalline.
The present disclosure also provides a laminate comprising: an outer polyethylene film; a middle layer comprising a multi-layer barrier film in contact with the outer polyethylene film; and an inner polyethylene film which is in contact with the multi-layer barrier film; wherein the multi-layer barrier film comprising a first layer of an ethylene vinyl alcohol (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron; a second layer of a polyamide layer having a thickness in the range of 3 micron to 15 micron in contact with the first layer; and a third layer of an ethylene vinyl alcohol (EVOH) layer having a thickness in the range of 3 micron to 15 micron.
In yet another embodiment of the present disclosure the outer polyethylene film and the inner polyethylene film in the multi-layered laminate are selected from the group consisting of clear polyethylene, high density polyethylene (HDPE), linear low density polyethylene polymer (LLDPE), low density polyethylene polymer (LDPE) or combination thereof. According to this embodiment the linear low density polyethylene (LLDPE) polymer in the outer polyethylene film and the inner polyethylene film can be selected from C6 (which is hexane based linear low density polyethylene (LLDPE)) such as Dow's "2645 G" and C8 (which is Octane based LLDPES) such as Dow's "5056 G" , "2045", "2038", "2740" Grades. Other non limiting examples are metallocene polyethylene polymer Like Exxon Mobils "Exceed" family (such as "1018 CA", "1327 CA"), "Enable 3505" polymers from metallocene grades, Dow's "Elite" grade Metallocene linear low density polyethylene (LLDPE) family. The similar Octane or Hexane based linear low density polyethylene (LLDPE) polymer grades from other polymer manufacturers, such as Mitsui Chemicals' C6 (Octane based linear low density polyethylene (LLDPE))-Ulzex grade or (hexane based) metallocene 4020 L Evolue grades etc. also can be used.
The low density polyethylene (LDPE) in accordance with the present disclosure can have density in the range of 0.918 g/cc to 0.935 g/cc. The low density polyethylene (LDPE) in accordance with the present disclosure can have density of 0.918 g/cc, 0.920 g/cc, 0.925 g/cc, 0.930 g/cc or 0.935 g/cc. In an embodiment the preferred density of low density polyethylene (LDPE) is 0.918 g/cc.
The density of linear low density polyethylene (LLDPE) in the multi-layered laminate of the present disclosure is in the range of 0.912 g/cc to 0.940 g/cc. The low density polyethylene (LDPE) in accordance with the present disclosure can have density 0.912 g/cc, 0.912 g/cc, 0.917 g/cc, 0.922 g/cc, 0.927, 0.932 g/cc, 0.937 g/cc or 0.940 g/cc. In an embodiment the preferred density of low density polyethylene (LDPE) is 0.927 g/cc. These may be Metallocene linear low density polyethylene (LLDPE) or linear low density polyethylene (LLDPE) formed using other catalyst such as Ziegler-Natta.
In a further embodiment of the present disclosure the outer polyethylene film and the inner polyethylene film contain an additive. According to this embodiment, the additive is one of the general additives known in the pertinent art to modify the properties of the polymer. Such additives can be stabilizers, antioxidants, modifiers, color pigments colorants, and in combination thereof: In an embodiment, the additive is a color pigment or colorant. The color pigments or colorants used can be commercially available black master batches, white master batches and other color master batches.
In an embodiment of the present disclosure the outer polyethylene film and the inner polyethylene film is a multi-layered polyethylene film. According to this embodiment the multi-layered polyethylene film can be a two to six layered film. The multi-layered polyethylene film disclosed in the present disclosure can be a two layered film, a three layered film, a four layered film, a five layered film or a six layered film.
According to the foregoing embodiments of the present disclosure the outer polyethylene layer in the multi-layered laminate serves as the print layer having thickness in the range of 5 micron to 50 micron. The inner polyethylene layer in the multi-layered laminate serves as the sealant layer having a thickness in the range of 30 micron to 100 micron.
Generally a Tie, or adhesive layers is usually required to adhere together various layers of the multi-layer laminate structure. Material for tie or adhesive layer is selected based on the composition of the outer layer and the next layer. In an exemplary embodiment of the present disclosure, the tie or adhesive layer may be a co-extrusion of the low density polyethylene (LDPE) and/ or linear low density polyethylene (LLDPE). The tie or adhesive layer may alternatively comprise any of the various other polymeric adhesives commonly used in the art of making multi-layer laminates.
The tie layer used in between the polyethylene based layer is generally made up of anhydride grafted polymer compound or clear lower density polyethylene or linear low density polyethylene polymer. The thickness of each tie layer is generally in the range of 4 micron to 50 micron.
In yet another embodiment of the present disclosure the laminate has thickness in the range of 90 micron to 525 micron. The polyethylene present in the multilayer outer film and the multilayer inner film impart mechanical strength and stiffness to the laminate by virtue of the inherent polymer structures. Recently, to add to the aesthetic appeal of the laminates with cost effectiveness, a sharp increase in the demand for thin, yet durable laminates has been witnessed. However, a decrease in the thickness of the laminate having polyethylene in the outer and the inner layers of the laminate adversely affects mechanical properties, such as stiffness, of the laminate and resilience properties in the tube containers.
The use of polyethylene in the skin layers of the outer layer allows easy binding of the various layers of the laminate and also allows for convenient binding and sealing of the laminate when storage containers are produced using the laminate.
In still another embodiment, a laminate comprising: an outer polyethylene layer; a middle layer comprising a multi-layer barrier film, wherein the multi-layer barrier film is in contact with the outer polyethylene film ; and an inner polyethylene film which is in contact with the multi-layer barrier film, wherein the outer polyethylene film comprising an outer polyethylene layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 50 micron; a body layer comprising of high density polyethylene (HDPE) or polypropylene (PP) or linear low density polyethylene (LLDPE) or blend of color master batch or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of polypropylene (PP) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 10 micron to 100 micron; a laminating layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 50 micron; a first tie layer having a thickness in the range of 10 " micron to 50 micron; a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 25 micron; a second tie layer having a thickness in the range of 4 micron to 15 micron; and the inner polyethylene film comprising: a third tie layer having a thickness in the range of 4 micron to 15 micron; a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 25 micron in contact with the third tie layer; a fourth tie layer having a thickness in the range of 10 micron to 50 micron in contact with the skin layer; and an inner polyethylene layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 30 micron to 100 micron in contact with the fourth tie layer.
In an embodiment of the present disclosure, Figure 1 illustrates an exemplary structure of the multilayer barrier film 300, in accordance with an embodiment of the present disclosure. In said embodiment, as mentioned earlier, the multilayer barrier film 300 is formed having a three-layered structure. The middle layer 304 comprises of polyamide or amorphous polyamide or blends of polyamide and amorphous polyamide and optionally pigments. The first layer 302 comprises ethylene vinyl alcohol (EVOH) or a polyamide. The third layer 306 comprises 100% ethylene vinyl alcohol (EVOH), which provides a barrier to atmospheric gases and moisture and also exhibits aroma preserving properties. According to this embodiment, the thickness of the third layer 306 ranges from 3 micron to 15 micron, the thickness of middle layer 304 ranges from 3 micron to 15 micron, and the thickness of first layer 302 ranges from 3 micron to 15 micron. ^
In another embodiment of the present disclosure, Figure 2 illustrates an exemplary structure of the laminate 100 comprising the multilayer barrier film 300. In an embodiment, the thickness of the laminate 100 ranges from about 90 micron to about 525 micron. Further, as a result of the presence of the multilayer barrier film 300, in the laminate 100, the laminate exhibits excellent barrier and product keeping properties throughout the designated shelf life.
In laminate 100, the multilayer outer film comprises an outermost printing layer 202 of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof; a body layer 204 comprising high density polyethylene (HDPE) or polypropylene (PP) or low density polyethylene (LLDPE) or blend . of color master batch or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of polypropylene (PP) and linear low density polyethylene (LLDPE) or combination thereof; a laminating layer 206 comprising clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof; and a skin layer 210 comprising clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof.
In yet another embodiment of the present disclosure the thickness of the outer most printing layer 202 ranges from 5 micron to 50 micron, the thickness of body layer 204 ranges from 10 micron to 100 micron, the thickness of laminating layer 206 ranges from 5 micron to 50 micron, and the thickness of skin layer 210 ranges from 5 micron to 25 micron.
In laminate 100, the multilayer inner film comprises an innermost sealant layer 402 of Clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof; a skin layer 406 comprising clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof. The inner most sealant layer 402 is bonded to the skin layer 406 by a tie layer 404, and the skin layer 406 is bonded to the inner barrier layer 306 by using another tie layer 408.
In a further embodiment of the present disclosure the inner most sealant layer 402 is a three layered structure.
In still another embodiment of the present disclosure, the thickness of the innermost sealant layer 402 ranges from 30 micron to 100 micron, the thickness of skin layer 406 ranges from 5 micron to 25 micron, the thickness of tie layer 404 ranges from 10 micron to 50 micron, and the thickness of another tie layer 408 ranges from 4 micron to 15 micron.
The laminating layer 206 and the skin layer 210 is bonded together using a first adhesive layer or a tie layer 208; and in a similar manner, the skin layer 210 is bonded to the first layer 302, of the multilayer barrier film, using a second adhesive layer or tie layer 212. Further to this, in an embodiment the skin layer 406 is bonded to the third layer 306, using third adhesive or tie layer 408; and in a similar manner the inner most sealant layer 402 is bonded to the skin layer 406 using fourth adhesive layer or tie layer 404. As a result of bonding of the different layers, the laminate 100 is obtained.
The tie layers in the multi- layered laminate of the present disclosure comprises of layers that generally binds the barrier layer to the outer and the inner layers in the laminate. Depending on the type of the barrier layer, the tie layer can be any tie layer that is suitable for the said bonding.
In an embodiment, a laminated tube can be made of the laminate.
In another embodiment of the present disclosure, the laminate 100 is prepared by a Blown Film extrusion or Cast film extrusion or combination of both.
The present disclosure further provides a process for preparation of the laminate, said process comprising laminating the multilayer outer polyethylene film, multi-layer barrier film and multilayer inner polyethylene film through extrusion coating and lamination process to obtain the laminate according to the present disclosure.
Another embodiment of the present disclosure provides a process for preparation of laminate wherein the each layer of the multilayer outer polyethylene film and the multilayer inner polyethylene film are fabricated separately and kept for conditioning for a period in the range of 8 hours to 72 hours at a temperature in the range of 20°C to 30°C. In a similar manner the layers of multi-layer barrier film are fabricated separately and kept for conditioning for a period in the range of 8 hours to 72 hours at a temperature in the range of 20°C to 30°C. The process used for fabricating the layers is selected from Cast film extrusion and blown film extrusion or combination thereof.
Blown film extrusion is a technology that is the most common method for making plastic films, especially for the packaging industry. The process involves extruding a tube of molten polymer through a die and inflating to several times its initial diameter to form a thin film bubble. This bubble is then collapsed and used as a lay-flat film or can be made into bags. Usually polyethylene is used with this process, and other materials can be used as blends with these polymers in production of multilayer blown films.
Typically, blown film extrusion is carried out vertically upwards. This procedure consists of four main steps:
1. The polymer material is taken in a pellet form, which are successively compacted and melted to form a continuous, viscous liquid. This molten plastic is then forced, or extruded, through an annular die.
2. Air is injected through a hole in the center of the die and the pressure causes the extruded melt to expand into a bubble. The air entering the bubble replaces air leaving it, so that even and constant pressure is maintained to ensure uniform thickness of the film.
3. The bubble is pulled continually upwards from the die and a cooling ring blows air onto the film. The film can also be cooled from the inside using internal bubble cooling. This reduces the temperature inside the bubble, while maintaining the bubble diameter.
4. After solidification at the frost line, the film moves into a set of nip rollers which collapse the bubble and flatten it into two flat film layers. The puller rolls pull the film onto windup rollers. The film passes through idler rolls during this process to ensure that there is uniform tension in the film. Between the nip rollers and the windup rollers, the film may pass through a treatment centre, depending on the application. During this stage, the film may be slit to form one or two films, or surface treated
Cast film extrusion is also a technology that is the most common method for making plastic films, especially for the packaging industry. In cast film extrusion the polymer is melted onto a Chilled drum prior to haul off and winding, the process offers much higher outputs for bulk production of thin polymer films. EXAMPLES
The disclosure will now be illustrated with working examples, which is intended to illustrate the working of the disclosure and not intended to take restrictively to imply any limitations on the scope of the present disclosure. Other embodiments are also possible.
Example 1:
A layer of ethylene vinyl alcohol or polyamide is in contact with a layer of polyamide or amorphous polyamide or blends of polyamide and amorphous polyamide and optionally pigments. A layer of 100% Ethylene vinyl alcohol (EVOH) which serves a barrier to atmospheric gases and moisture is in contact with the above polyamide layer. These three layers comprise a multi-layer barrier film wherein each layer has thickness in the range of 3 micron (μ) to 15 micron (μ).
The structure of the multi-layer barrier film is given below.
3 μ to 15 μ EVOH or polyamide// 3 μ to 15 μ polyamide// 3 μ to 15 EVOH
Example 2:
A multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer. The multi-layered outer layer comprises of an outermost printing layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5 micron to 50 micron is in contact with a body layer comprising of high density polyethylene (HDPE) or polypropylene (PP) or linear low density polyethylene (LLDPE) or blend of color master batch or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of polypropylene (PP) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 10 micron to 100 micron. The body layer is contact with a laminating layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5 micron to 50 micron. The laminating layer is bound using a tie layer to a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5micron to 25 micron. The skin layer in turn is bound to the multi- barrier film as described in example 1 using a tie layer. The inner barrier layer containing 100% of ethylene vinyl alcohol (EVOH) in the multi-layer barrier film is bound to a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 5 micron to 25 micron using a a tie layer of thickness in the range of 4 micron to 15 micron. The skin layer is bound to a sealant layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof of thickness in the range of 30 micron to 100 micron, using a tie layer of thickness in the range of 10 micron to 50 micron.
The structure of the multi-layered laminate is given below:
5 μ to 50 μ outer printing layer// 10 μ to 100 μ body layer// 5 μ to 50 μ laminating layer // 10 μ to 50 μ first tie layer // 5 μ to 25 μ skin layer// 4 μ to 15 μ second tie layer // 3μ to 15'μ EVOH or polyamide // 3 μ to 15 μ polyamide// 3 μ to 15 μ EVOH // 4 μ to 15 μ third tie layer// 5 μ to 25 μ skin layer// 10 μ to 50 μ fourth tie layer// 30 μ to 100 μ inner sealant layer
Example 3:
A multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer. The total thickness of the laminate is 97 μ with 5 μ outer printing layer// 10 μ body layer// 5 μ laminating layer // 10 μ first tie layer // 5 μ skin layer// 4 μ second tie layer // 3μ EVOH or polyamide // 3 μ polyamide// 3 μ EVOH // 4 μ third tie layer// 5 μ skin layer// 10 μ fourth tie layer// 30 μ inner sealant layer.
Example 4:
A multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer. The total thickness of the laminate is 97 μ with 5 μ outer printing layer// 10 μ body layer// 5 μ laminating layer // 10 μ first tie layer // 5 μ skin layer// 4 μ second tie layer // 3μ EVOH // 3 μ polyamide// 3 μ EVOH // 4 μ third tie layer// 5 μ skin layer// 10 μ fourth tie layer// 30 μ inner sealant layer. Example 5:
A multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer. The total thickness of the laminate is 525 μ with 50 μ outer printing layer// 100 μ body layer// 50 μ laminating layer // 50 μ first tie layer // 25 μ skin layer// 1 μ second tie layer // 15 μ EVOH or polyamide // 15 μ polyamide// 15 μ EVOH // 15 μ third tie layer// 25 μ skin layer// 50 μ fourth tie layer// 100 μ inner sealant layer.
Example 6: f
A multi-layered laminate comprises of a multi-layered outer layer, a multi-layered middle layer and a multi-layered inner layer. The total thickness of the laminate is 525 μ with 50 μ outer printing layer// 100 μ body layer// 50 μ laminating layer // 50 μ first tie layer // 25 μ skin layer// 15 μ second tie layer // 15 μ EVOH // 15 μ polyamide// 15 μ EVOH // 15 μ third tie layer// 25 μ skin layer// 50 μ fourth tie layer// 100 μ inner sealant layer
Advantages:
The previously described versions of the subject matter and its equivalent thereof have many advantages, including those which are described below:
1. The present disclosure provides multi-layered polyethylene laminates with a multi- layer barrier film which when made into articles excellent aroma barrier, UV resistance and oxygen barrier properties.
2. The present disclosure enhances the product appeal.
3. The present disclosure also provides multi-layered polyethylene laminates with a multi-layer barrier film in a cost effective way.
Although the subject matter has been described in considerable detail with reference to certain preferred embodiments thereof, other embodiments are possible. As such, the spirit and scope of the disclosure should riot be limited to the description of the preferred embodiment contained therein.

Claims

We Claim:
1. A multi-layer barrier film comprising:
a first layer of an ethylene vinyl alcohol (EVOH) layer or a polyamide layer having a thickness in the range of 3 micron to 15 micron;
a second layer of a polyamide layer having a thickness in the range of 3 micron to 15 micron in contact with the first layer; and
a third layer of an ethylene vinyl alcohol (EVOH) layer having a thickness in the range of 3 micron to 1 micron.
2. The multi-layer film as claimed in claim 1, wherein the polyamide layer is an aromatic or an aliphatic polyamide layer
3. The multi-layer film as claimed in claim 1, wherein the polyamide layer is selected from the group consisting of crystalline polyamide, amorphous polyamide, semi- crystalline polyamide and mixtures thereof.
4. The multi-layer film as claimed in claim 1, wherein at least one of the polyamide layers contains one or more UV blocking agents.
5. The multi-layer film as claimed in claim 4, wherein the UV blocking agent is amorphous nylon.
6. The multi-layer film as claimed in claim 1, wherein the second layer further comprises of pigments.
7. The multi-layer film as claimed in claim 2, wherein the aliphatic polyamide is selected from a group consisting of poly(hexamethylene adipamide), poly(hexamethylene azelaamide), poly(hexamethylene sebacamide), poly(hexamethylene dodecanoamide) poly(dodecamethylene dodecanoamide) and mixtures thereof.
8. The multi-layer film as claimed in claim 2, wherein the aliphatic polyamide and the aromatic polyamide are in a weight ratio in a range of 15:85 to 85: 15, preferably 25:75 to 75:25, and most preferably 1 : 1.
9. The multi-layer film as claimed in claim 2, wherein the aliphatic polyamide is semi- crystalline.
10. A laminate comprising:
an outer polyethylene film;
a middle layer comprising a multi-layer barrier film as claimed in claim 1 wherein the multi-layer barrier film is m ' contact with the outer polyethylene film ; and an inner polyethylene film which is in contact with the multi-layer barrier film.
1 1. The laminate as claimed in claim 10, wherein the outer polyethylene film and the inner polyethylene film are selected from a group consisting of clear polyethylene, high density polyethylene (HDPE), linear low density polyethylene polymer (LLDPE), low density polyethylene polymer (LDPE) and in combination thereof.
12. The laminate as claimed in claim 10, wherein the density of low density polyethylene (LDPE) is in the range of 0.918 g/cc to 0.935 g/cc, preferably 0.918 g/cc.
13. The laminate as claimed "in claim 10, wherein the density of linear low density polyethylene (LLDPE) is in the range of 0.912 g/cc to 0.940 g/cc, preferably 0.927 g/cc.
14. The laminate as claimed in claim 10, wherein the outer polyethylene film and the inner polyethylene film contain an additive which is selected from a group consisting of stabilizers, antioxidants, modifiers, colour pigments, col ourant, and in combination thereof.
15. The laminate as claimed in claim 10 wherein the outer polyethylene film or the inner polyethylene film is a multi-layered polyethylene film.
16. The laminate as claimed in claim 15, wherein the multi-layered polyethylene film is a two to six layered film.
17. The laminate as claimed in claim 10, wherein the thickness of the outer polyethylene film is in the range of 5 micron to 50 micron.
18. The laminate as claimed in claim 10, wherein the thickness of the inner polyethylene film is in the range of 30 micron to 100 micron.
19. The laminate as clairned in claim 10 wherein said laminate has a thickness in the range of 90 micron to 525 micron.
20. The laminate as claimed in claim 10, comprising:
an outer polyethylene film;
a middle layer comprising a multi-layer barrier film as claimed in claim 1 wherein the multi-layer barrier film is in contact with the outer polyethylene film; and an inner polyethylene film which is in contact with the multi-layer barrier film.
wherein the outer polyethylene film comprising:
an outer polyethylene layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE): and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 50 micron;
a body layer comprising of high density polyethylene (HDPE) or polypropylene (PP) or linear low density polyethylene (LLDPE) or blend of color master batch or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of polypropylene (PP) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 10 micron to 100 micron;
a laminating layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 50 micron;
a first tie layer having a thickness in the range of 10 micron to 50 micron; a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 25 micron;
a second tie layer having a thickness in the range of 4 micron to 15 micron; and the inner polyethylene film comprising:
a third tie layer having a thickness in the range of 4 micron to 15 micron; a skin layer comprising of clear low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of colorant and low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 5 micron to 25 micron in contact with the third tie layer; a fourth tie layer having a thickness in the range of 10 micron to 50 micron in contact with the skin layer; and
an inner polyethylene layer comprising of clear polyethylene film or low density polyethylene (LDPE) or linear low density polyethylene (LLDPE) or blend of high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) or blend of low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) or combination thereof having a thickness in the range of 30 micron to 100 micron in contact with the fourth tie layer.
21. A laminated tube made of the laminate as claimed in any of the claims 1 to 20.
22. A process for the preparation of laminate as claimed in claim 10, said process comprising:
laminating the outer polyethylene film, the multi-layer barrier film and the inner polyethylene film through extrusion coating and lamination process to obtain the multi-layered laminate.
23. The laminate as claimed in claim 22, prepared by a process comprising:
fabricating each layer of the outer polyethylene film, and the inner polyethylene film separately and the middle layer separately by using cast film extrusion or blown film extrusion or combination thereof; and
conditioning each layer of the outer polyethylene film, and the inner polyethylene film separately and the7 middle layer separately for a period of 8 hours to 72 hours at a temperature in the range of 20°C to 30°C.
PCT/IB2012/002257 2011-11-08 2012-11-07 Multilayer barrier film, laminates and process thereof WO2013068809A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112014012257A BR112014012257A2 (en) 2011-11-08 2012-11-07 multibrand wafers, laminates and related processes
MX2014005525A MX360544B (en) 2011-11-08 2012-11-07 Multilayer barrier film, laminates and process thereof.
EP12847680.1A EP2776246A4 (en) 2011-11-08 2012-11-07 Multilayer barrier film, laminates and process thereof
US14/356,538 US9937686B2 (en) 2011-11-08 2012-11-07 Multilayer barrier film, laminates and process thereof
CN201280066092.2A CN104159748B (en) 2011-11-08 2012-11-07 Multilayer barrier film, layered product and its method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN3163MU2011 2011-11-08
IN3163/MUM/2011 2011-11-08

Publications (1)

Publication Number Publication Date
WO2013068809A1 true WO2013068809A1 (en) 2013-05-16

Family

ID=48288604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2012/002257 WO2013068809A1 (en) 2011-11-08 2012-11-07 Multilayer barrier film, laminates and process thereof

Country Status (6)

Country Link
US (1) US9937686B2 (en)
EP (1) EP2776246A4 (en)
CN (1) CN104159748B (en)
BR (1) BR112014012257A2 (en)
MX (1) MX360544B (en)
WO (1) WO2013068809A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104786601A (en) * 2015-04-17 2015-07-22 湖北德威包装科技有限公司 Low-friction coefficient high-resistance aluminized film and preparation method thereof
WO2019152453A1 (en) * 2018-01-30 2019-08-08 Saslekov Todor A sterilized multilayer film and method and apparatus for making the same
EP3556555A4 (en) * 2016-12-14 2019-11-06 Mitsubishi Chemical Corporation Multilayer structure
WO2021041083A1 (en) * 2019-08-23 2021-03-04 Sonoco Development, Inc. Polymeric wrapper
WO2021137811A3 (en) * 2019-12-31 2021-08-05 Beşel Basim Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ 100 per cent recyclable packaging for wet wipes
US11872784B2 (en) 2019-10-07 2024-01-16 Epl Limited Lamitube and implementations thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3400136A1 (en) * 2016-01-07 2018-11-14 Essel Propack Limited Laminate for vignette and tonal image printing
CA3037862A1 (en) * 2016-09-28 2018-04-05 Printpack Illinois, Inc. Multi-ply structures, packages, and methods of sterilization
EP3476593A1 (en) 2017-10-24 2019-05-01 Renolit SE Laminate structure for barrier packaging
PL241999B1 (en) * 2018-08-03 2023-01-02 Witoplast Kisielińscy Spółka Jawna Multilayer pipe and polyethylene tube containing a multilayer pipe
CN111717524B (en) * 2019-04-25 2023-04-28 广州市金章塑料制品有限公司 Medical sterilization bag resistant to high temperature and high pressure and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194040B1 (en) * 1997-05-21 2001-02-27 Kalle Nalo Gmbh & Co. Kg Multilayered, biaxially-oriented food casing comprising two oxygen-barrier layers
US6379812B1 (en) * 2000-05-31 2002-04-30 Cryovac, Inc. High modulus, multilayer film
US20020168489A1 (en) * 2001-05-08 2002-11-14 Ting Robert R. Lidding film for modified atmosphere packaging
US20030100685A1 (en) * 1996-03-25 2003-05-29 Farkas Nicholas Akos Polyamide formulations for embossed laminates
US20070160806A1 (en) * 2004-01-30 2007-07-12 Mitsubishi Plastics, Inc. Layered polyamide film
US20100015423A1 (en) * 2008-07-18 2010-01-21 Schaefer Suzanne E Polyamide structures for the packaging of moisture containing products
US20100151218A1 (en) * 2008-05-28 2010-06-17 Curie Kevin J Innerliner with nylon skin layer
US7794848B2 (en) * 2007-01-25 2010-09-14 Equistar Chemicals, Lp MDO multilayer polyethylene film
US20110027428A1 (en) 2009-07-28 2011-02-03 Cryovac, Inc. Ultra High Barrier Aseptic Film and Package

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406763B1 (en) * 1999-12-23 2002-06-18 Cryovac, Inc. Post pasteurization multilayered film
AU2007219037A1 (en) * 2006-02-20 2007-08-30 Huhtamaki New Zealand Limited Improved product packaging
EP1857270B1 (en) * 2006-05-17 2013-04-17 Curwood, Inc. Myoglobin blooming agent, films, packages and methods for packaging
US9452592B2 (en) * 2007-08-28 2016-09-27 Cryovac, Inc. Multilayer film having an active oxygen barrier layer with radiation enhanced active barrier properties
US9193509B2 (en) * 2011-06-14 2015-11-24 Essel Propack Limited Dual barrier laminate structure
WO2013072918A2 (en) * 2011-06-14 2013-05-23 Essel Propack Limited Partially opaque-partially clear laminates and methods thereof.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030100685A1 (en) * 1996-03-25 2003-05-29 Farkas Nicholas Akos Polyamide formulations for embossed laminates
US6194040B1 (en) * 1997-05-21 2001-02-27 Kalle Nalo Gmbh & Co. Kg Multilayered, biaxially-oriented food casing comprising two oxygen-barrier layers
US6379812B1 (en) * 2000-05-31 2002-04-30 Cryovac, Inc. High modulus, multilayer film
US20020168489A1 (en) * 2001-05-08 2002-11-14 Ting Robert R. Lidding film for modified atmosphere packaging
US20070160806A1 (en) * 2004-01-30 2007-07-12 Mitsubishi Plastics, Inc. Layered polyamide film
US7794848B2 (en) * 2007-01-25 2010-09-14 Equistar Chemicals, Lp MDO multilayer polyethylene film
US20100151218A1 (en) * 2008-05-28 2010-06-17 Curie Kevin J Innerliner with nylon skin layer
US20100015423A1 (en) * 2008-07-18 2010-01-21 Schaefer Suzanne E Polyamide structures for the packaging of moisture containing products
US20110027428A1 (en) 2009-07-28 2011-02-03 Cryovac, Inc. Ultra High Barrier Aseptic Film and Package

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2776246A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104786601A (en) * 2015-04-17 2015-07-22 湖北德威包装科技有限公司 Low-friction coefficient high-resistance aluminized film and preparation method thereof
CN104786601B (en) * 2015-04-17 2017-06-16 湖北德威包装科技有限公司 A kind of low-friction coefficient high barrier aluminum-plating film and preparation method thereof
EP3556555A4 (en) * 2016-12-14 2019-11-06 Mitsubishi Chemical Corporation Multilayer structure
WO2019152453A1 (en) * 2018-01-30 2019-08-08 Saslekov Todor A sterilized multilayer film and method and apparatus for making the same
WO2021041083A1 (en) * 2019-08-23 2021-03-04 Sonoco Development, Inc. Polymeric wrapper
US11872784B2 (en) 2019-10-07 2024-01-16 Epl Limited Lamitube and implementations thereof
WO2021137811A3 (en) * 2019-12-31 2021-08-05 Beşel Basim Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ 100 per cent recyclable packaging for wet wipes

Also Published As

Publication number Publication date
EP2776246A4 (en) 2015-07-01
MX360544B (en) 2018-10-26
MX2014005525A (en) 2015-03-06
EP2776246A1 (en) 2014-09-17
CN104159748A (en) 2014-11-19
US9937686B2 (en) 2018-04-10
BR112014012257A2 (en) 2017-06-13
US20150158278A1 (en) 2015-06-11
CN104159748B (en) 2017-03-15

Similar Documents

Publication Publication Date Title
US9937686B2 (en) Multilayer barrier film, laminates and process thereof
JP4738459B2 (en) Laminated packaging material and method for producing the laminated material
KR100674777B1 (en) Laminated packaging material and method for producing the same
JP4794442B2 (en) No foil barrier laminate
US20170361582A1 (en) Multilayer plastic film
US20070031690A1 (en) Multilayer coextruded films including frangible intralaminar bonding forces
CN102717563A (en) Multilayer sheet- or tube-type food casing or food film
AU2003244597A1 (en) Packaging films containing coextruded polyester and nylon layers
US9193509B2 (en) Dual barrier laminate structure
US9701445B2 (en) Liners for bulk containers
CN101594991B (en) There is the PCTFE film of EVA or the extruding coating containing the EVA of UV absorbent
CN102825875A (en) Multi-layer composite sheet and preparation method thereof
JP6954281B2 (en) Multi-layer sheet manufacturing method, molding container manufacturing method, and multi-layer sheet manufacturing method
JP4100484B2 (en) Method for producing a laminate for packaging
JP2008056766A (en) Resin composition and multiple layer-structured material
US20030144402A1 (en) Blends of polyamide and polyester for barrier packaging
CN104080857B (en) Disguised film, layered product and packaging material
CA2683362C (en) Film structures and packages therefrom useful for respiring food products that release high co2 amounts
CN111730942A (en) Antibacterial and mildewproof composite sheet and composite hose
US20230364891A1 (en) Oriented film containing recycled polyamide
JP2010241910A (en) Resin composition and multilayer structure
CZ2015631A3 (en) A multilayer packaging film with optimized barrier properties and recyclability, and the method of its production
JP2007283570A (en) Manufacturing process of biaxially stretched multilayer film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14356538

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/005525

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201402723

Country of ref document: ID

Ref document number: 12014501046

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2012847680

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014012257

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112014012257

Country of ref document: BR

ENPZ Former announcement of the withdrawal of the entry into the national phase was wrong

Ref document number: 112014012257

Country of ref document: BR

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 112014012257

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140508