WO2013066682A1 - Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells - Google Patents
Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells Download PDFInfo
- Publication number
- WO2013066682A1 WO2013066682A1 PCT/US2012/061585 US2012061585W WO2013066682A1 WO 2013066682 A1 WO2013066682 A1 WO 2013066682A1 US 2012061585 W US2012061585 W US 2012061585W WO 2013066682 A1 WO2013066682 A1 WO 2013066682A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inversion
- formation
- density
- model
- borehole
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims description 16
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000005259 measurement Methods 0.000 claims description 50
- 238000007781 pre-processing Methods 0.000 claims description 17
- 238000000605 extraction Methods 0.000 claims description 13
- 230000011218 segmentation Effects 0.000 claims description 11
- 238000012805 post-processing Methods 0.000 claims description 7
- 238000005553 drilling Methods 0.000 claims description 5
- 238000005755 formation reaction Methods 0.000 description 60
- 239000002131 composite material Substances 0.000 description 23
- 230000035945 sensitivity Effects 0.000 description 22
- 230000000694 effects Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 230000003044 adaptive effect Effects 0.000 description 8
- 238000013459 approach Methods 0.000 description 4
- 238000001739 density measurement Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 230000005251 gamma ray Effects 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 230000009897 systematic effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 229910052601 baryte Inorganic materials 0.000 description 2
- 239000010428 baryte Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012885 constant function Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/04—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
- G01V5/08—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
- G01V5/12—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays using gamma or X-ray sources
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V5/00—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
- G01V5/04—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
- G01V5/08—Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
Definitions
- Nuclear density measurements progressed from designs focused on measuring an average density for vertical wells to a fully azimuthal measurement for inclined wells. While being a shallower measurement than the resistivity, the nuclear density is also affected by bed crossings and adjacent beds, and additionally by standoff and asymmetric ("teardrop") invasion.
- Embodiments herein relate to apparatus and methods for characterizing a subterranean formation traversed by a wellbore including collecting data from the formation using a tool wherein the tool collects data to form an azimuthal image, characterizing a section of the formation comprising data and images acquired in a high angle wellbore section or horizontal wellbore section using a parametric model, and performing an inversion using apparent densities and volumetric photoelectric factor images to build a formation model wherein the inversion is tailored for high angle wellbore sections and/or horizontal wellbore sections.
- Figure 1 is a computational grid for fast-forward modeling: 3D grid (left) and r- ⁇ grid (right), tied to the sensor, extending from -45° to 45°.
- Figure 2 is a plot of LS nuclear density integrated sensitivity functions azimuthal dependence: radial (left) and axial (right).
- Figure 3 is a plot of SS nuclear density integrated sensitivity functions azimuthal dependence: radial (left) and axial (right).
- Figure 4 is a schematic drawing of a logging scenario used to derive model for sinusoidal features in COMP image for an "ideal" tool as described in the text.
- the ideal tool measures the formation density within an infinitesimal volume-of-investigationS, located a radial distance EP L from the borehole wall.
- Figure 5 is a COMP image corresponding to logging scenario shown in Fig. 4, for an idealized tool with infinitesimal volume-of-investigation and negligible borehole effects. Sensor azimuth ⁇ is referenced to top of hole.
- Figure 6 are two plots of an EPL calibration for an 8.25 inch ECOSCOPE LWDTM tool.
- Figure 7 is a schematic drawing of the high-angle well model parameterization, including set of dipping layers with trajectory of varying inclination, strictly up-section or down- section. Arbitrary borehole geometry is represented with dashed lines.
- Figure 8 is a schematic drawing of the horizontal well model parameterization, including set of layers parallel with the tool at arbitrary azimuth.
- the borehole is represented with dashed lines; its geometry is defined separately.
- Figure 9 is a schematic drawing of a borehole model parameterization: (a) cylindrical geometry and (b) arbitrary geometry. Geometry in plane perpendicular to tool axis (upper panel) and plane containing tool axis (lower panel).
- Figure 10 is a flow chart of an inversion-based workflow for processing data with a high-angle well model.
- Figure 11 is an inversion-based workflow for processing data using a horizontal well model.
- Figure 12 is a composite figure for high-angle well pre-processing for noisy synthetic data: bottom COMP squaring (red curve) produced a density profile (blue) (left); Sinusoid extraction from COMP image (dashed black curves) (middle); Adaptive segmentation (solid black lines) (right).
- Figure 13 is a composite figure for high-angle inversion of noisy synthetic data-set: final layer profile (blue) and COMP bottom quadrant log (measured - red, reconstructed - green), (left); trajectory inclination, initial and final dip, and azimuth (right).
- Figure 14 is a composite figure for reconstruction of COMP image for high-angle inversion of noisy synthetic data-set with relative dip variation 82° to 87°.
- Figure 15 is a composite figure for reconstruction of LS image for high-angle inversion of noisy synthetic data-set with relative dip variation 82° to 87°.
- Figure 16 is a composite figure for reconstruction of SS image for high-angle inversion of noisy synthetic data-set with relative dip variation 82° to 87°.
- Figure 17 is a composite figure for borehole geometry (stand-off in inches) for high- angle inversion of noisy synthetic data: true geometry (left), initial geometry (middle), and final geometry from the inversion (right).
- Figure 18 is a composite figure for reconstruction of COMP image for horizontal well inversion of noisy synthetic data-set with constant 89° relative dip.
- Figure 19 is a composite figure for reconstruction of LS image for horizontal well inversion of noisy synthetic data-set with constant 89° relative dip.
- Figure 20 is a composite figure for reconstruction of SS image for horizontal well inversion of noisy synthetic data-set with constant 89° relative dip.
- Figure 21 is a composite figure for horizontal well inversion of noisy synthetic data (rel. dip 89°): Measured COMP image (top), final borehole-corrected image (middle), and final formation model in curtain-section plane (bottom). The green curves represent trajectory and the borehole surfaces.
- Figure 22 is a reconstruction of COMP image for horizontal well inversion of noisy synthetic data-set with sinusoidal relative dip in the range 88°-92°.
- Figure 23 is a horizontal well inversion of noisy synthetic data with variable rel. dip 88°-92°: Measured COMP image (top), final borehole-corrected image (middle), and final formation model in curtain-section plane (bottom). The green curves represent trajectory and the borehole surfaces.
- Figure 24 is a composite figure illustrating high-angle well pre-processing of the field data: bottom quadrant COMP squaring (red curve) produced a density profile (blue) (left);
- Figure 25 is a high-angle inversion of field data: Inverted density profile (blue), bottom quadrant COMP measurements (red) reconstructed (green); Trajectory inclination, initial and final apparent dip, and relative azimuth (right).
- Figure 26 is a composite figure of reconstruction of COMP image for high-angle well inversion of interval from North Sea field data-set.
- Figure 27 is a composite figure of reconstruction of LS images for high-angle well inversion of interval from North Sea field data-set.
- Figure 28 is a composite figure of reconstruction of SS images for high-angle well inversion of interval from North Sea field data-set.
- Figure 29 is a comparison plot of high-angle inversion of an interval from the North Sea field data-set: Average error per sector for each channel (left) Standard deviation of error per sector for each channel (right).
- Figure 30 is a comparison plot of borehole geometry for high-angle well inversion of an interval from North Sea field data-set: density-caliper (left); initial geometry (middle), and inversion-based caliper (right) in inches.
- Figure 31 is a composite figure of a high-angle inversion workflow on North Sea field data set: Measured COMP image (top), final borehole-corrected image (middle), and final formation model in curtain-section plane (bottom).
- the black curves represent trajectory and the borehole surfaces.
- Figure 32 is composite figure for high-angle well pre-processing for gas shale field data-set: bottom quadrant COMP squaring (red curve) produced a density profile (blue) (left); Sinusoid extraction from COMP image (dashed black curves) (middle); Adaptive segmentation (solid black lines) (right).
- Figure 33 is a composite of a high-angle inversion of gas shale field data-set. Inverted density profile (blue), bottom quadrant COMP: measurements (red) reconstructed (green);
- Figure 34 is a composite of a reconstruction of COMP image for high-angle well inversion of interval from a gas shale field data-set.
- Figure 35 is composite of a reconstruction of LS images for high-angle well inversion of interval from a gas shale field data-set.
- Figure 36 is a composite of a reconstruction of SS images for high-angle well inversion of interval from a gas field data-set.
- Figure 37 is plot of a HA inversion of an interval from a gas shale field data-set:
- Figure 38 is a comparison of borehole geometry for high-angle well inversion of an interval from a gas shale field data-set: density-caliper (left); initial geometry (middle), and inversion-based caliper (right) in inches.
- Figure 39 is a composite figure of a HA inversion workflow on gas shale field data set: measured COMP image (top), final borehole-corrected image (middle) and final formation model in curtain-section plane (bottom).
- the black solid curve is the tool trajectory and the dashed black curves are the borehole surfaces in the curtain-section plane.
- Figure 40 is a composite figure for reconstruction of COMP image for horizontal well inversion of interval from North Sea field data-set.
- Figure 41 is a plot of horizontal well inversion of an interval from North Sea field data- set: Average error per sector for each channel (left) Standard deviation of error per sector for each channel (right).
- Figure 42 is a comparison of borehole geometry for horizontal well inversion of an interval from North Sea field data-set: density-caliper (left); initial geometry (middle), and inversion-based caliper (right) in inches.
- Figure 43 is a composite plot of a final formation model in curtain-section plane reconstructed by HZ well workflow (bottom), corresponding measured COMP image and borehole-corrected image (middle).
- composition used/disclosed herein can also comprise some components other than those cited.
- model-based inversion incorporating the new second- order 3D sensitivity functions.
- This inversion is capable of processing density images in HA as well as HZ wells, solving for a ID layered formation model, formation dip and azimuth, and 3D borehole geometry with locally homogeneous mud properties. Lateral variations in the model parameters are captured using an adaptive trajectory segmentation based on relative dip.
- the inversion-based workflows are driven by measurement sensitivities, ensuring that the interpretation is fully consistent with the measurements from all sectors and channels.
- the algorithm is primarily intended for 3D petrophysical interpretation in high-angle and horizontal wells, and for real-time well placement.
- the methodology and model are primarily intended for 3D petrophysical interpretation in high-angle and horizontal wells, and for real-time well placement.
- parameterization are fairly general and are compatible with models used for interpretation of other measurements (such as resistivity and directional EM) in HA, HZ wells.
- a fast-forward model for the gamma-gamma density tool response was developed based on second-order 2D (axisymmetric) sensitivity functions.
- the original 2D sensitivity functions have been expanded into a full 3D model of spatial sensitivity.
- the simulation time is reduced from hours using MCNP to milliseconds for the sensitivity approach, making it applicable for commercial petrophysics.
- Due to use of second-order 3D sensitivity functions the accuracy of fast- forward model is comparable to measurement accuracy in wide range of high- angle and horizontal well scenarios, enabling use in rigorous physics-based inversion workflows to reduce ambiguity and minimize subjectivity in the interpretation process.
- the inversion-based approach promises to represent a step change in quantitative interpretation of nuclear measurements in HA/HZ wells, producing more accurate density profile, formation dip and azimuth, with accurate boundary positions and layer densities free of boundary and borehole effects, resulting in improved porosity and reserves estimates.
- the parametric model used for interpretation includes a multi-layer dipping formation, mud properties, arbitrary borehole geometry, and 3D well trajectory. Lateral variations in formation and borehole parameters are captured by defining the models in discrete trajectory segments using an adaptive segmentation based on the local relative dip. Measurement sensitivities are used to design the flexible and robust inversion-based workflow for determining optimum parameter values from all the available measurements. A sliding window is used to enforce consistency of models between adjacent segments. The result of the inversion is the accurate layer thicknesses, shoulder-bed corrected layer densities, formation dip and azimuth in each segment. The inversion also produces a borehole-corrected formation density image and a robust caliper that takes into account the layered formation as background. The algorithm is primarily intended for 3D petrophysical interpretation in high-angle and horizontal wells. The methodology and model parameterization is general and compatible with models used for interpretation of other measurements (such as resistivity and directional EM), making feasible future integration in joint multi-physics interpretation.
- Other measurements such as resistivity and directional
- the horizontal well workflow (for relative dip 88°-92°) takes into account non-crossed layers and enables building the 2D curtain section model as superposition of ID formation models defined in very short segments along the trajectory, with layer boundaries in each segment oriented parallel to the trajectory.
- the inversion uses a sliding window scheme to enforce model consistency between adjacent segments.
- Inversion-based approach for estimating the borehole geometry based on two model parameterizations removes sinusoidal artifacts in conventional density caliper results, which are due to coupling of boundary and borehole effects.
- the inversion-based caliper is more robust because it uses all the information available, and is more accurate because it models the true geometry as well as the layered background, effectively decoupling the borehole effect from boundary effect.
- the ECOSCOPE LWDTM tool integrates a full suite of formation evaluation measurements surpassing the classic "triple-combo" service, with many of the measurements co- located and closer to the bit compared with the previous generation.
- the tool has two density measurements: a gamma-gamma density from a
- PNG pulsed neutron generator
- Nuclear gamma-gamma density measurements are one of the key formation evaluation measurements and are used to infer formation porosity from the knowledge of lithology and pore fluids.
- the gamma-gamma measurement uses a gamma-ray source and two gamma-ray detectors generating three independent measurements: a long-spacing (LS) and short- spacing (SS) apparent electron density and the apparent volumetric photoelectric factor (UAPP), used to infer the lithology.
- the density measurement is resolved into 16 azimuthal sectors each spanning 22.5°.
- the radial sensitivity extends radially approximately 6 inches into the formation, while the axial sensitivity covers 14-18 inches. Therefore, in HAHZ wells, the effective true vertical resolution will vary between these two factors depending on the relative angle between the trajectory and the formation layers.
- the LS and SS based electron densities are combined in a "spine-and-ribs" algorithm to compute the compensated (COMP) density for each sector, quadrant and 16-sector average.
- the compensation is also used along with the apparent mud density to compute a standoff distance which is added to the stabilizer size to create a 3D caliper, henceforth referred to as the density caliper.
- the differential (DRHO) density defined as the difference between COMP and LS densities, is used as a quality indicator for the COMP measurement.
- the fast-forward model uses precomputed first and second order sensitivity functions defined for the 3D grid shown in Fig. 1 to compute measurement responses for density and photoelectric factor properties defined on the same grid.
- the radial grid extends out to 9 inches from the tool, with the cell size gradually increasing from 1/8 inch to 1 inch, total 22 cells.
- the uniform grid in axial direction has 19 cells.
- the spatial variation of integrated radial and axial sensitivity for LS and SS is shown in Figs. 2 and 3, respectively. Including the full 3D sensitivity is especially important for the LS channel.
- the forward modeling is about million times faster than MCNP simulation used to generate them. It takes milliseconds to compute the responses for a single log-point and sector.
- the model has representative accuracies of 0.02 g/cc, 0.05 g/cc, and 0.03 g/cc for LS, SS, and COMP, respectively.
- the representative accuracy of the UAPP model is 1 b/cc for non-barite muds, while for heavy barite muds, the model is only qualitative. In configurations with standoff up to 0.25in, the accuracy of the model for all channels is comparable to the measurement accuracy, better than 0.02g/cc.
- the error in approximation of COMP remains the same for standoffs up to linch, while it nearly doubles for LS over the same range.
- the SS accuracy decrease by a factor of two for an intermediate standoff of 0.5 in.
- the parametric model includes separate components for describing the formation and borehole along a given wellbore. Complete and general model parameterization enables easy modeling, sensitivity analysis and interfacing to the inversion. In general, model
- parameterization should not be related to measurements, and is shared for interpretation of different measurements to build a common model.
- Isocontours of the COMP image are computed using the "marching squares” algorithm, which is the 2D adaptation of the “marching cubes” algorithm for extracting isosurfaces from a 3D scalar field.
- isocontours are computed for isovalues spanning the density range in the image, in increments of the measurement accuracy, 0.015 gfcc.
- 3 ⁇ 4 is the location of the sinusoid in MD
- a k is the sinusoid amplitude
- k is the sinusoid phase.
- Isocontours will not be exactly sinusoidal if the image contains noise, or if assumptions underlying the parametric model break down, for example, tool crossing a non- planar layer boundary, variable trajectory inclination and azimuth, or significant
- the high-angle well model assumes that the trajectory can be discretized into segments such that the formation in each segment is ID layering with constant dip and azimuth.
- the trajectory azimuth is assumed to be constant in each segment, and the trajectory inclination is assumed to be "down-section", with layers crossed at relative dip less than 90°, or "up-section", when layers are crossed at relative dip greater than 90°.
- Fig. 7 shows the formation for a typical down-section segment when viewed in the "curtain-section" plane, a vertical surface defined by the trajectory.
- the free parameters for the segment are the apparent formation dip ⁇ ⁇ , TVD location payers Q ⁇ i a y er b oun d ar y ? layer densities pj ayers , and layer photoelectric factors PEFj ayers .
- the layer boundary locations may also be parameterized by their locations in MD, lj ayers , which is a more stable parameterization due to the fact that the initial values for l ayers are constrained from log-squaring, whereas the initial values of zj ayers are coupled to lj ayers via the initial value of the apparent formation dip ⁇ ⁇ .
- the segment sizes, number of layers and relative azimuth are determined and fixed from the data in a pre-processing step.
- the horizontal well model also assumes discrete segments such that the formation in each segment is ID layering with dip and azimuth, and such that the trajectory azimuth is constant in each segment.
- the horizontal well model constrains the layer boundaries in each segment to be parallel to the trajectory, i.e., constant relative dip 90°.
- Fig. 8 shows the model for a typical horizontal well segment when viewed in the curtain section.
- the model parameters for each segment are the distance zj ayers in TVD from the first log-point to each layer boundary, layer densities p j layers , and layer photoelectric factors PEFj ayers .
- the number of segments, segment sizes and number of layers J ⁇ ayers in each segment are determined and fixed from the data in a pre-processing step.
- the horizontal well model is applicable to intervals with variable relative dip close to 90°, i.e., with borehole parallel or near parallel to the surrounding formation layers.
- segments must be chosen sufficiently small (not below the LS axial resolution) so that the model error in each segment - due to variable trajectory inclination or layer boundaries not parallel to the trajectory - corresponds to change in responses smaller than the data noise.
- the mud properties, p muc i and PEF mud are defined in the same trajectory segments used for the formation model, and are assumed to be uniform in each segment.
- the geometry of the borehole is defined in terms of the radial distance from the tool axis to the borehole wall, denoted by r(9,MD), where ⁇ is the tool azimuth.
- r(9,MD) the corresponding stand-off s(9,MD) is defined as where r too i is the tool radius.
- r(9,MD) may be parameterized using one of the following models.
- the radial distance to the borehole wall is assumed to be piecewise-constant function of both ⁇ and MD, defined by a discrete radius for each sector and each log-point.
- the harmonic geometry can describe an arbitrary borehole surface.
- the radial distance to the borehole wall is a harmonic function of ⁇ :
- the high-angle pre-processing workflow consists of the following steps:
- Log-Squaring - A log-squaring algorithm is applied to the bottom quadrant density (ROBB) log to construct a layered density profile along MD.
- a photoelectric factor for each layer is obtained by sampling the UAPP bottom quadrant log at the layer mid-points.
- Sinusoid Extraction The amplitude and phase of sinusoidal features corresponding to layer boundaries are extracted from the COMP image either manually, or by an automatic method. For each layer boundary, the extracted phase and amplitude are converted to relative dip and relative azimuth.
- Trajectory Segmentation An adaptive algorithm is used to discretize the trajectory such that the COMP image for each segment includes at least half a sinusoidal feature, which improves sensitivity to dip.
- the algorithm also constrains segment end-points to coincide with layer mid-points, so that each segment includes at least half of a layer, improving sensitivity to properties of truncated layers.
- Initial Model The output from log-squaring and sinusoid extraction is used to define the number of layers, their properties and boundaries, apparent formation dip, and relative azimuth for each segment.
- the layer boundaries from log-squaring must be shifted in MD in order to obtain their locations referenced to the tool axis.
- the initial borehole geometry is defined as a cylinder with diameter equal to the bit-size. Alternatively, the initial borehole geometry may also be defined using the density caliper.
- the initial mud density and mud photoelectric factor are specified by the user.
- a subset of model parameters is optimized from a subset of channels which are selected based on their sensitivity to the parameters being optimized, resulting in a more robust workflow.
- Gauss-Newton optimization with line search, adaptive regularization and parameter constraints is used to minimize the cost function, defined to be the weighted Z 2 -norm error between the measurements and the modeled responses over all log-points in a processing window (see below for definition of processing window).
- the weights in the cost function are the reciprocal of the measurement noise level for the channel used (0.015 g/cc for SS, LS, COMP, and 0.5 b/e- for UAPP). Measurements from all sectors are included with equal weights; no special weighting is applied to sectors from the bottom of the hole.
- the model parameters are inverted from measurements in a processing window that includes all log- points in the segment, as well as log-points from buffer regions on each side of the segment. Formation layers from the previous and subsequent segments that influence measurements in the buffer regions are added to the formation model in each segment. The properties and thicknesses of the layers included from the previous segment are held fixed during the inversion.
- the purpose of the post-processing workflow is to visualize the inversion results, and to compute various measures of the quality of the results.
- the formation model is visualized as a sequence of ID multi-layer dipping formations in the curtain-section plane or as the inversion- based borehole-corrected image, which is obtained by projecting the layer properties in each segment onto a cylinder with radius r too/ +EPL, where EPL is the effective penetration length of the COMP channel.
- EPL is the effective penetration length of the COMP channel.
- the uncertainties in the final model parameters for each segment may be estimated from the model covariance matrix.
- Fig. 11 The steps for processing a horizontal interval are shown in Fig. 11 and are grouped in a similar manner to the high-angle workflow, with a pre-processing workflow, an inversion workflow, and a post-processing workflow.
- segment sizes must be chosen so as to balance the opposing requirements of a small window size for minimizing model error, and a large window size for improving inversion robustness. Based on tests with perfect synthetic data described earlier, we use segment size of 2 ft in MD.
- the initial parameters for the borehole model are defined using the same procedure described for the high-angle pre-processing workflow.
- the density images are processed segment by segment using a sliding window scheme analogous to the one used for the high-angle well workflow described earlier.
- the 8.25 inch tool size was modeled over the 200 ft trajectory section with inclination varying linearly from 77° to 82°.
- Gaussian noise with zero mean and standard deviation of 0.02 g/cc which is comparable to the amplitude of real measurement noise, was added to the synthetic measurements for all channels.
- the initial mud properties were set to their true values.
- Fig. 12 The output from the pre-processing workflow is shown in Fig. 12.
- Log-squaring and sinusoid extraction are used to build an initial segmented multi-layer formation model.
- the initial densities in the thin layers have errors due to shoulder-bed effect.
- the inverted, fully shoulder-bed corrected profile is shown in Fig 13.
- Fig. 14 shows the measured, initial, and final COMP density images, as well as reconstruction errors for the initial guess and the solution.
- the initial error shows large systematic discrepancies due to errors in the initial dip, initial layer densities and boundary locations obtained from log-squaring and sinusoid extraction. These discrepancies are corrected by the inversion.
- Figs. 15 and 16 show the measured, initial, and final images for the LS and SS densities, and corresponding error images. The initial error shows similar systematic
- Fig. 17 shows the standoff from the inversion.
- the final errors appear random for all channels and the mean and standard deviation of the error for each sector.
- the errors are comparable to the measurement noise, which confirms the accuracy of the inversion for this data-set.
- Fig. 19 shows the borehole-corrected image and final formation model in the curtain-section view.
- Fig. 24 shows the output from pre-processing, as a result of which the trajectory has been discretized into segments with a ID multi-layer formation in each segment.
- the initial borehole was assumed to be a cylinder with diameter equal to the bit- size of 8.5 inch, and the initial mud density and mud PEF were set to 1.4 g/cc and 10 b/e-, respectively.
- Fig. 25 shows the reconstructed COMP bottom quadrant log, and final layer profile, dip, and azimuth. Note the shoulder-bed corrections in thin layers and corrections to the initial dip of approximately 1°.
- Figs. 26-28 show the reconstructed images for the COMP, LS and SS density channels, as well as the corresponding errors.
- COMP image reconstruction shows that errors are reduced in all quadrants due to optimization of the layer properties, thicknesses, and dip. Final errors are less than 5 %, and are larger in the upper quadrant relative to the bottom quadrant, possibly due to inaccuracies in the mud properties or lower accuracy of fast- forward model for the large standoff.
- LS and SS reconstruction is similar, but in addition, significant reduction in the initial error in the upper quadrant is seen due to optimization of the borehole geometry.
- Fig. 29 shows the average and standard deviation of the reconstruction error for each sector.
- the final average error is less than 0.03 g/cc for all channels over all sectors, with close to zero average error in the bottom quadrant.
- the final standard deviation of the error is less than 0.03 g/cc for all channels in all sectors.
- Fig. 30 shows the final borehole geometry, which was parameterized using a harmonic model with two harmonics in the expansion. The same figure also shows the geometry from the density caliper. The density caliper has sinusoidal artifacts whose locations correlate with layers in the COMP image. These artifacts are not present in the geometry from the inversion.
- Fig. 31 shows the final borehole-corrected image and final formation model in the curtain-section view. Field data-set from a gas shale well
- Fig. 32 shows the output from preprocessing, where the trajectory has been discretized into segments with associated initial ID multi-layer formation in each segment.
- the initial borehole geometry was assumed to be a cylinder with diameter equal to the bit-size (8.5 inch), and the mud density and mud PEF were set to 1.4 g/cc and 50 b/e-, respectively.
- Fig. 33 shows the reconstructed layered density profile, dip, and azimuth.
- the reconstructed dip is corrected up to 2° compared to initial guess.
- Fig. 34 shows the measured, initial, and final images for the COMP channel, as well as the initial and final errors.
- Fig. 35-36 show the measured, initial, and final images for the LS and SS channels, as well as the initial and final errors.
- Fig. 37 shows the average and standard deviation of the initial and final errors for each sector. The inversion significantly reduces the mismatch between modeling and the measurements.
- Fig. 38 shows the final borehole geometry.
- Fig. 39 shows the final borehole-corrected image and final formation model in the curtain- section plane.
- Fig. 40 The measured COMP image, the initial guess, inversion reconstructed image and corresponding misfit are shown in Fig. 40.
- Fig. 41 shows the average and standard deviation of the initial and final errors for each sector.
- the inversion significantly reduces the mismatch between modeling and the measurements.
- Borehole geometry in terms of standoff is shown in Fig 42.
- Initial geometry was cylinder with 8.5 inch diameter. Harmonic parameterization with two harmonics in the expansion was used.
- Figure 43 bottom track shows the final formation model in the curtain-section plane.
- the green curve is the tool trajectory and the dashed green curves are the borehole surfaces.
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
- Image Processing (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1406621.1A GB2509450A (en) | 2011-10-31 | 2012-10-24 | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
US14/352,566 US9869792B2 (en) | 2011-10-31 | 2012-10-24 | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
NO20140524A NO20140524A1 (en) | 2011-10-31 | 2014-04-23 | INVERSION-BASED WORKFLOW TO TREAT CORE DENSITY IMAGES IN STEEL-ANGLED AND HORIZONTAL WELLS |
US15/845,515 US10809416B2 (en) | 2011-10-31 | 2017-12-18 | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161553810P | 2011-10-31 | 2011-10-31 | |
US61/553,810 | 2011-10-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/352,566 A-371-Of-International US9869792B2 (en) | 2011-10-31 | 2012-10-24 | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
US15/845,515 Continuation US10809416B2 (en) | 2011-10-31 | 2017-12-18 | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013066682A1 true WO2013066682A1 (en) | 2013-05-10 |
Family
ID=48192624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/061585 WO2013066682A1 (en) | 2011-10-31 | 2012-10-24 | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
Country Status (4)
Country | Link |
---|---|
US (2) | US9869792B2 (en) |
GB (1) | GB2509450A (en) |
NO (1) | NO20140524A1 (en) |
WO (1) | WO2013066682A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015051350A1 (en) * | 2013-10-04 | 2015-04-09 | Schlumberger Canada Limited | Inversion-based workflow for consistent interpretation of nuclear density images in horizontal wells |
WO2015131016A1 (en) * | 2014-02-28 | 2015-09-03 | Schlumberger Canada Limited | Automatic method for three-dimensional structural interpretation of borehole images acquired in high-angle and horizontal wells |
US9366135B2 (en) | 2013-10-08 | 2016-06-14 | Exxonmobil Upstream Research Company | Automatic dip picking from wellbore azimuthal image logs |
US10451769B2 (en) | 2015-01-26 | 2019-10-22 | Schlumberger Technology Corporation | Method for determining petrophysical properties from logging measurements |
US20230102131A1 (en) * | 2018-05-11 | 2023-03-30 | Schlumberger Technology Corporation | Geologic formation neutron porosity system |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2509450A (en) | 2011-10-31 | 2014-07-02 | Schlumberger Holdings | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
GB2511744B (en) * | 2013-03-11 | 2020-05-20 | Reeves Wireline Tech Ltd | Methods of and apparatuses for identifying geological characteristics in boreholes |
US9811882B2 (en) * | 2014-09-30 | 2017-11-07 | Electronics And Telecommunications Research Institute | Method and apparatus for processing super resolution image using adaptive preprocessing filtering and/or postprocessing filtering |
US10222498B2 (en) | 2015-05-15 | 2019-03-05 | Weatherford Technology Holdings, Llc | System and method for joint inversion of bed boundaries and petrophysical properties from borehole logs |
CN110443283A (en) * | 2019-07-11 | 2019-11-12 | 长江大学 | A kind of discriminant classification method and system of tight gas reservoir horizontal well |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090093962A1 (en) * | 2003-10-03 | 2009-04-09 | Ridvan Akkurt | System and methods for t1-based logging |
US20100004867A1 (en) * | 2008-07-01 | 2010-01-07 | Schlumberger Technology Corporation | Forward models for gamma ray measurement analysis of subterranean formations |
US20100312478A1 (en) * | 2009-06-04 | 2010-12-09 | Tabanou Jacques R | Log processing in highly deviated wellbores |
US20110077867A1 (en) * | 2008-03-11 | 2011-03-31 | Michael Evans | Method and apparatus for determining formation and fluid properties |
US20110168879A1 (en) * | 2007-02-05 | 2011-07-14 | Schlumberger Technology Corporation | Nuclear Tool |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4104358A1 (en) | 1991-02-13 | 1992-08-20 | Implex Gmbh | IMPLANTABLE HOER DEVICE FOR EXCITING THE INNER EAR |
US5831935A (en) * | 1996-03-05 | 1998-11-03 | Chevron U.S.A. Inc. | Method for geophysical processing and interpretation using seismic trace difference for analysis and display |
US5960371A (en) * | 1997-09-04 | 1999-09-28 | Schlumberger Technology Corporation | Method of determining dips and azimuths of fractures from borehole images |
US6308136B1 (en) * | 2000-03-03 | 2001-10-23 | Baker Hughes Incorporated | Method of interpreting induction logs in horizontal wells |
WO2004076816A1 (en) * | 2003-02-27 | 2004-09-10 | Schlumberger Surenco Sa | Estimation of formation characteristics in wells |
US7814036B2 (en) * | 2003-06-19 | 2010-10-12 | Haliburton Energy Services, Inc. | Processing well logging data with neural network |
US7279677B2 (en) | 2005-08-22 | 2007-10-09 | Schlumberger Technology Corporation | Measuring wellbore diameter with an LWD instrument using compton and photoelectric effects |
GB2453478B (en) * | 2006-07-25 | 2011-08-17 | Exxonmobil Upstream Res Co | Method for determining physical properties of structures |
EP2238477A4 (en) * | 2007-12-19 | 2016-08-24 | Exxonmobil Upstream Res Co | Gamma ray tool response modeling |
US9557440B2 (en) * | 2009-07-17 | 2017-01-31 | Baker Hughes Incorporated | Radial waves in a borehole and stoneley waves for measuring formation permeability and electroacoustic constant |
US8433518B2 (en) | 2009-10-05 | 2013-04-30 | Schlumberger Technology Corporation | Multilevel workflow method to extract resistivity anisotropy data from 3D induction measurements |
CA2787149A1 (en) * | 2010-01-22 | 2011-07-28 | Schlumberger Canada Limited | Real-time formation anisotropy and dip evaluation using tri-axial induction measurements |
AU2010357606B2 (en) * | 2010-07-16 | 2014-03-13 | Halliburton Energy Services, Inc. | Efficient inversion systems and methods for directionally-sensitive resistivity logging tools |
US8754651B2 (en) | 2010-11-15 | 2014-06-17 | Schlumberger Technology Corporation | System and method for imaging properties of subterranean formations |
US9557433B2 (en) * | 2011-03-23 | 2017-01-31 | Seismic Global Ambient, Llc | Fracture imaging methods employing skeletonization of seismic emission tomography data |
US9239403B2 (en) * | 2011-08-29 | 2016-01-19 | Hallibburton Energy Services, Inc. | Apparatus and methods of controlling recordation of resistivity-related readings in determining formation resistivity |
GB2509450A (en) | 2011-10-31 | 2014-07-02 | Schlumberger Holdings | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells |
-
2012
- 2012-10-24 GB GB1406621.1A patent/GB2509450A/en not_active Withdrawn
- 2012-10-24 WO PCT/US2012/061585 patent/WO2013066682A1/en active Application Filing
- 2012-10-24 US US14/352,566 patent/US9869792B2/en active Active
-
2014
- 2014-04-23 NO NO20140524A patent/NO20140524A1/en not_active Application Discontinuation
-
2017
- 2017-12-18 US US15/845,515 patent/US10809416B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090093962A1 (en) * | 2003-10-03 | 2009-04-09 | Ridvan Akkurt | System and methods for t1-based logging |
US20110168879A1 (en) * | 2007-02-05 | 2011-07-14 | Schlumberger Technology Corporation | Nuclear Tool |
US20110077867A1 (en) * | 2008-03-11 | 2011-03-31 | Michael Evans | Method and apparatus for determining formation and fluid properties |
US20100004867A1 (en) * | 2008-07-01 | 2010-01-07 | Schlumberger Technology Corporation | Forward models for gamma ray measurement analysis of subterranean formations |
US20100312478A1 (en) * | 2009-06-04 | 2010-12-09 | Tabanou Jacques R | Log processing in highly deviated wellbores |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015051350A1 (en) * | 2013-10-04 | 2015-04-09 | Schlumberger Canada Limited | Inversion-based workflow for consistent interpretation of nuclear density images in horizontal wells |
US10914861B2 (en) | 2013-10-04 | 2021-02-09 | Schlumberger Technology Corporation | Inversion-based workflow for consistent interpretation of nuclear density images in horizontal wells |
US9366135B2 (en) | 2013-10-08 | 2016-06-14 | Exxonmobil Upstream Research Company | Automatic dip picking from wellbore azimuthal image logs |
WO2015131016A1 (en) * | 2014-02-28 | 2015-09-03 | Schlumberger Canada Limited | Automatic method for three-dimensional structural interpretation of borehole images acquired in high-angle and horizontal wells |
EP3111041A4 (en) * | 2014-02-28 | 2017-12-06 | Services Pétroliers Schlumberger | Automatic method for three-dimensional structural interpretation of borehole images acquired in high-angle and horizontal wells |
US10466375B2 (en) | 2014-02-28 | 2019-11-05 | Schlumberger Technology Corporation | Automatic method for three-dimensional structural interpretation of borehole images acquired in high-angle and horizontal wells |
US10451769B2 (en) | 2015-01-26 | 2019-10-22 | Schlumberger Technology Corporation | Method for determining petrophysical properties from logging measurements |
US20230102131A1 (en) * | 2018-05-11 | 2023-03-30 | Schlumberger Technology Corporation | Geologic formation neutron porosity system |
US11774631B2 (en) * | 2018-05-11 | 2023-10-03 | Schlumberger Technology Corporaton | Geologic formation neutron porosity system |
Also Published As
Publication number | Publication date |
---|---|
US20180136362A1 (en) | 2018-05-17 |
US20140286539A1 (en) | 2014-09-25 |
GB2509450A (en) | 2014-07-02 |
US10809416B2 (en) | 2020-10-20 |
NO20140524A1 (en) | 2014-05-06 |
GB201406621D0 (en) | 2014-05-28 |
US9869792B2 (en) | 2018-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10809416B2 (en) | Inversion-based workflow for processing nuclear density images in high-angle and horizontal wells | |
EP3111041B1 (en) | Automatic method for three-dimensional structural interpretation of borehole images acquired in high-angle and horizontal wells | |
US9482775B2 (en) | Real-time formation anisotropy and dip evaluation using tri-axial induction measurements | |
Grana et al. | Quantitative log interpretation and uncertainty propagation of petrophysical properties and facies classification from rock-physics modeling and formation evaluation analysis | |
US10451765B2 (en) | Post-well reservoir characterization using image-constrained inversion | |
US10914861B2 (en) | Inversion-based workflow for consistent interpretation of nuclear density images in horizontal wells | |
US8527204B2 (en) | Volume of investigation based density image processing | |
US20140257703A1 (en) | Real-Time Formation Anisotropy And Dip Evaluation Using Multiaxial Induction Measurements | |
CN106154322A (en) | Log curve correction method and apparatus | |
US20200033501A1 (en) | Improved methods relating to quality control | |
Wang et al. | Seismic attributes for characterization and prediction of carbonate faulted karst reservoirs in the Tarim Basin, China | |
Shetty et al. | Inversion-based workflows for interpretation of nuclear density images in high-angle and horizontal wells | |
Shetty et al. | 3D Parametric Inversion for Interpretation of Logging-While-Drilling Density Images in High-Angle and Horizontal Wells1 | |
CN114542055A (en) | Method and device for focusing and processing array induction logging data of inclined well or inclined stratum | |
George et al. | Challenges and key learning for developing tight carbonate reservoirs | |
BR102020012943A2 (en) | COMPUTATIONAL SCRIPT FOR IMAGE TREATMENT AND ITS APPLICATION IN EASY IMAGE DETERMINATION METHOD | |
CN110850504B (en) | Shale density parameter prestack inversion method based on uranium curve quasi-impedance constraint | |
Maharaja | Global net-to-gross uncertainty Assessment at reservoir appraisal stage | |
Boesing et al. | High-Angle Formation Response Modeling for More Accurate Petrophysics–Challenges and Experiences from Multiple Cases | |
Bolt et al. | A Methodology for Portraying Three-Dimensional Positional Uncertainty Using Along-Hole Depth, Inclination and Azimuth Measurement Accuracies | |
Zhou et al. | Quantitative formation evaluation in high angle and horizontal wells-A step change in reservoir characterization | |
EP2113795A1 (en) | Volume Of Investigation Based Image Processing | |
Stromberg et al. | Reservoir Quality, Net-to-Gross, and Fluid Identification in Laminated Reservoirs from a new generation of NMR logging tools. Examples from the Gharif Formation, Southern Oman. | |
Zhou | Newly developed technology for array resistivity logging | |
Fishburn et al. | SPWLA 39th Annual Logging Symposium, May 26-29, 1998 PRACTICAL INVERSION OF HIGH-DEFINITION INDUCTION LOGS USING A PRIORI INFORMATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12845442 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 1406621 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20121024 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1406621.1 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14352566 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12845442 Country of ref document: EP Kind code of ref document: A1 |