WO2013055230A1 - Device for a spring return valve actuator and method of operating a valve - Google Patents
Device for a spring return valve actuator and method of operating a valve Download PDFInfo
- Publication number
- WO2013055230A1 WO2013055230A1 PCT/NO2012/050198 NO2012050198W WO2013055230A1 WO 2013055230 A1 WO2013055230 A1 WO 2013055230A1 NO 2012050198 W NO2012050198 W NO 2012050198W WO 2013055230 A1 WO2013055230 A1 WO 2013055230A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- actuator
- spindle
- valve
- spindle nut
- coupling
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
- F16K31/04—Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
- F16K31/047—Actuating devices; Operating means; Releasing devices electric; magnetic using a motor characterised by mechanical means between the motor and the valve, e.g. lost motion means reducing backlash, clutches, brakes or return means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/50—Mechanical actuating means with screw-spindle or internally threaded actuating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/56—Mechanical actuating means without stable intermediate position, e.g. with snap action
Definitions
- the invention relates to a device for a valve actuator, the valve actuator being provided with a fixedly supported spindle nut which is in engagement with an external threaded portion of an actuator spindle and brings this to be moved axially by the rotation of a driving motor connected to the slide nut via transmission means.
- the actuator is provided with a device which provides for the valve to go to its closed position by the release of spring return in case of the actuator losing its power supply. A method of operating a valve is described as well.
- the function of the actuator is illustrated by the actuator being connected to an underwater sluice valve, the actuator being used to switch the valve between the closed and open positions.
- the actuator is provided with a spring that ensures automatic closing of the associated valve when a brake and a connector in engagement with the spindle nut lose electrical holding current.
- the actuator is also relevant for other applications, in which there is a need to switch the valve to intermediate positions in order to adjust the flow through the valve.
- actuators for underwater sluice valves are operated via hydraulics.
- a new trend in the underwater industry is the use of electrically operated actuators as an alternative to hydraulics.
- WO 2006/071124 Al discloses an electric actuator solution which transmits the torque from a driving motor to a threaded spindle which axially moves a roller nut which is connected to an actuation mechanism.
- US 2010/0127646 Al discloses an electrical actuator solution which transmits a torque from driving motors to a spindle rotating a fixedly supported nut with a through-going threaded spindle connected to an actuation mechanism.
- WO/2003/021077 discloses an actuator with a planetary roller screw mechanism which is moved axially via hydraulic actuation and converts the axial motion into rotation of the centre screw.
- the invention has for its object to remedy or reduce at least one of the drawbacks of the prior art or at least provide a useful alternative to the prior art.
- a valve actuator in which the rotation of a spindle nut results in an axial movement of an actuator spindle which is connected via a valve spindle to a valve slide, for example a valve gate, arranged in a valve housing.
- the actuator is provided with an actuator spring for returning the valve gate to its closed position on loss of holding current to a connector and a brake that are in rotation-preventing
- the invention relates more specifically to a device for a valve actuator, characterized by:
- valve actuator being provided with a spindle nut surrounding a portion of an actuator spindle and being in engagement with an external threaded portion arranged on the actuator spindle, the spindle nut being axially fixed relative to the actuator spindle;
- the actuator spindle being in rotation-preventing engagement with a portion of an actuator attachment or an actuator housing
- the spindle nut being connected via transmission means to a driving motor
- the spindle nut being provided with an electromagnetic connector which is in permanent engagement with the rest of the transmission means of the motor and in engagement with the spindle nut by electromagnetic engagement of the connector;
- the spindle nut being provided with an electromagnetic brake which is mounted on an actuator attachment and is in rotation-preventing engagement with the spindle nut by electromagnetic engagement of the brake; and the actuator spindle being connected to an actuator spring which is compressed by axial displacement of the actuator spindle and which moves the actuator spindle axially in the opposite direction, as, via the brake and connector, the spindle nut is released for rotation; and
- valve actuator being provided with a coupling for disconnecting the actuator spindle from a valve spindle, which is attached to the valve slide, and a coupling for disconnecting the actuator housing from the valve.
- the at least one driving motor may be an electromotor arranged in a pressure-tight actuator housing.
- the valve actuator may be provided with a connecting device for a second, mobile driving motor, and the connecting device is in engagement with a spindle nut via transmission elements.
- the transmission elements may include a coupling.
- the second, mobile driving motor may be an underwater torque tool.
- the position sensor may be mechanical or electric.
- the invention relates more specifically to a method of operating a valve, characterized by the method including the steps of:
- the at least one driving motor may be an electromotor arranged in a pressure-tight actuator housing, and the electromotor is connected to a programmable control system.
- the at least one driving motor may be a torque tool arranged on an underwater vessel and temporarily connected to the transmission elements via an external connecting device which is provided with a securing device that keeps the transmission elements engaged and locked for rotation when the spring has been tightened via the torque tool.
- Figure 1 shows an axial section through a sluice valve with a valve actuator
- Figure 2A shows an axial section through the valve housing and the couplings for releasing the actuator from the valve
- Figure 2B shows an axial section through the valve housing and the couplings for releasing the actuator from the valve, rotated 90° in relation to figure 2A;
- Figure 3A shows an axial section through the valve actuator
- Figure 3B shows an axial section through the valve actuator, rotated 90° in
- Figure 3C shows, on a larger scale, a section of an axial section of the actuator with the actuator attachment, the spindle nut, supporting bearings, an electromagnetic connector, an electromagnetic brake and a driving gearwheel for the spindle nut;
- Figure 3D shows a section of an axial section of the actuator with a position sensor for measuring the rotation of the driving gearwheel for the spindle nut
- Figure 3E shows a section of an axial section of the actuator with power supply via sliding contacts to the electromagnetic connector for the spindle nut;
- Figure 4A shows a perspective drawing of the sluice valve and the valve actuator;
- Figure 4B shows a perspective drawing of the sluice valve and the valve actuator, in which, for the sake of exposition, the valve housing has been removed and the valve actuator has been rotated 180° in relation to figure 4A.
- the reference numeral 1 indicates a sluice valve with a valve housing 1A and a bonnet IB for the valve housing 1A.
- the bonnet IB is provided with a cutout with a latch groove 1C adapted for a coupling 2 for a valve actuator 3 with devices placed in a pressure-tight manner in an actuator housing 3A which is defined by a mounting flange 3B, and actuator jacket 3C and an end cap 3D.
- actuating devices 4 an electromagnetic coupling 5, an electromagnetic brake 6, a transmission 7 for operation from an external torque tool 7A and a transmission for a mechanical position sensor 8, an electronic position sensor 9, a cable gland 10 and a pressure compensator 11 are arranged.
- Figure 1 shows a drawing in longitudinal section of the sluice valve 1 assembled with the coupling 2 and the valve actuator 3.
- Figures 2A and 2B show drawings in longitudinal sections of the valve 1 and coupling 2 with parts belonging thereto.
- Figure 2A has been rotated 90° in relation to figure 2B.
- the valve housing 1A is provided with welding end piece for flange connections at the inlet ID and outlet IE of the valve.
- the bonnet IB has been fitted to the valve housing 1A with screws IF and is provided with seals 1G.
- the bonnet IB is provided with a stuffing box 1H for the passage of a valve spindle II.
- the coupling 2 is arranged to attach the actuator 3 to the valve 1 and consists of a coupling housing 2A and a locking device 2B which may be of various designs, for example with locking segments, or a ball lock as shown in figures 2A-2B.
- the coupling 2 will be arranged for hydraulic or mechanical activation by means of an underwater vessel.
- the coupling housing 2A is secured in a recess externally on the valve bonnet IB with a piston ring 2C which is arranged to force the balls 2D out into a latch groove 1C when hydraulic cylinders 2E are pressurized.
- the piston ring 2C will be provided with a securing device (not shown) which keeps the coupling 2 locked to the valve bonnet IB.
- An actuator spindle 4A has been passed through a centre opening in the coupling housing 2A.
- the valve spindle II is attached to the actuator spindle 4A via a bayonet connection IN on the end of the valve spindle II.
- the coupling housing 2A is formed with an internal cavity adapted to the external shape of the bayonet connection IN which is moved axially in the cavity of the coupling housing 2A by the actuator spindle 4A.
- the coupling housing 2A with the locking device 2B will be provided with an injection port (not shown) for filling with a corrosion-preventing and lubricating medium.
- Figures 2A and 2B show sections of the actuator 3 with a device for uncoupling the actuator spindle 4A from the valve spindle II before the valve actuator 3 is released from the valve 1 by means of the coupling 2.
- a cylindrical end case 2F has been extended through a centre opening in the end cap 3D where an external spring housing 2G is arranged. From the end case 2F, a shaft 2H has been extended through a centre hole in the spring housing 2G with an external handle 21 on the end of the shaft 2H.
- the other end of the end case 2F is formed with a centre opening
- the end case 2F is normally held in its locked position by the spring 2J.
- An edge on the end case 2F on the outside of the end cap 3D is formed with guiding grooves 2K for twisting of the end case 2F, in engagement with the actuator spindle 4A, within an angular sector limited by the guide pins 2L projecting up through the guiding grooves 2K from the end cap 3D as shown in figure 2B.
- the end case 2F may be turned to disconnect the actuator spindle 4A, or connect the actuator spindle to the valve spindle II at the bayonet connection IN on the end of the valve spindle II.
- a mechanical indicator 2M has been attached to the end case 2F, projecting from a sector opening between the spring housing 2G and the end cap 3D as shown in figures 1 and 4A.
- figure 4A there is a handle 2N placed externally on the actuator housing 3A for handling the actuator with an underwater vessel during the disconnection and connection of the actuator and other handling.
- Figures 3A and 3B show drawings in longitudinal sections of the valve actuator 3 with the actuator housing 3A and internal actuating devices 4.
- Figure 3B has been rotated 90° in relation to figure 3A.
- a double mounting flange 3B with a through hole for the actuator spindle 4A is attached to the end of the coupling housing 2A with screws 3E.
- An actuator jacket 3C encloses the actuator devices 4.
- a first jacket seal 3F is arranged between the cylindrical actuator jacket 3C and the outer edge of the mounting flange 3B, and a second jacket seal 3G between the actuator jacket 3C and the outer edge of the end cap 3D.
- the cylindrical actuator jacket 3C is attached with screws 3H to, respectively, the outer edge of the mounting flange 3B and the outer edge of the end cap 3D.
- An actuator spring housing 4B with at least one actuator spring 4C is secured to an end of the actuator attachment 4D.
- a spring plate 4E rests on the actuator attachment 4D when the actuator spring 4C is not compressed.
- the actuator spindle 4A is provided with a shoulder which abuts against the spring plate 4E and which
- Figure 3C shows a section of the actuator 3 with the actuator attachment 4D which is formed with an internal recess for a stationary spindle nut 4F, a supporting bearing 4G, a coupling 5, a brake 6, external gearwheels 4H, 41, and a supporting bearing 4J.
- Several smaller gearwheels internally in the actuator attachment 4D mesh with the gearwheels 4H and 41.
- the gearwheels 4K are shown in figure 3A and the gearwheels 4L and 8A are shown in figure 3B.
- the actuator attachment 4D is provided with a through-going centre bore for the actuator spindle 4A.
- the actuator spindle 4A is formed with an external threaded portion which is in engagement with the spindle nut 4F.
- the spindle nut may be, for example, a so-called roller nut or a ball nut.
- the free end of the actuator spindle has a non-circular profile which corresponds to a centre opening in the end case 2F, preventing the actuator spindle 4A from rotating when the spindle nut 4F is set into rotational motion to move the actuator spindle 4A axially.
- An electromagnetic coupling 5 known per se surrounds a first end of the spindle nut 4F.
- a coupling part 5A with an electromagnet 5B is attached to the spindle nut 4F and rotates therewith.
- a drive plate 5C is attached to an external gearwheel 4H.
- the electromagnet 5B is engaged with electrical holding current (DC) via the cable connection 5D and the sliding contacts 5E, as it appears from figure 3E, the spindle nut 4F is rotated as shown in figure 3A by a first driving motor 4M, typically an electric motor which is provided with a gear 4N, via the gearwheel 4K which is arranged on a gear shaft 40, and the gearwheel 4H.
- a first driving motor 4M typically an electric motor which is provided with a gear 4N, via the gearwheel 4K which is arranged on a gear shaft 40, and the gearwheel 4H.
- the gear shafts 40 are provided with a supporting bearing 4P each, recessed in the mounting flange 3B.
- the torque is transmitted by the electromagnet 5B compressing a plate stack 5F of toothed plates alternatingly engaging either the coupling part 5A, which is attached to the spindle nut 4F, or the drive plate 5C, which is attached to the external gearwheel 4H.
- the power from the electromagnet 5B is typically transferred via pressure pins 5G which are secured to a pressure plate 5H, so that the friction between the compressed plates 5F keeps the coupling part 5A locked to the drive plate 5C.
- the springs 51 push the pressure plate 5H back so that the plates in the plate stack 5F, which, via teeth on the individual plate, are in engagement with, respectively, the coupling part 5A and the drive plate 5C, may rotate freely.
- An electromagnetic brake 6 known per se surrounds a second end of the spindle nut 4F and the supporting bearing 4G.
- the armature plate 6A with an electromagnet 6B is fixed in an internal recess in the actuator attachment 4D.
- a friction disc 6C is attached to the connector piece 6D via resilient elements (not shown), and the connector piece 6D is fixed to the spindle nut 4F.
- the friction disc 6C is separated from the stationary armature plate 6A by a gap so that the spindle nut 4F with the friction disc 6C and the connector piece 6D may rotate freely when the brake is not energized.
- the brake 6 prevents the spindle nut 4F from rotating, by the spring force being overcome and the friction disc 6C being pulled towards the stationary armature plate 6A, so that there is friction between the plates 6A, 6C.
- An alternative embodiment of the brake 6 may be with multi-plates as a friction element.
- the spindle nut 4F may be rotated by means of a torque tool 7A from an underwater vessel.
- the torque tool 7A may be connected to a connecting device 7B which is mounted externally on the end cap 3D via a flange 7C.
- a connecting device 7B From the connecting device 7B, an axially displaceable torque shaft 7D is arranged, which is attached to one half of a coupling 7E.
- a spring (not shown) keeps the coupling halves disconnected during normal operation of the actuator 3.
- the torque shaft 7D compresses the spring so that the coupling halves of the coupling 7E are engaged, the torque from the torque tool 7A is transmitted through the coupling for the rotation of the spindle nut 4F via the gearwheel 4L in mesh with the external gearwheel 41 fixed to the spindle nut 4F.
- the shaft of the gearwheel 4L is supported in a supporting bearing 4P, recessed in the mounting flange 3B.
- a mechanical securing device 7F for the transmission elements 7D and 7E is placed on the flange 7C to avoid free rotation of the spindle nut 4F when the valve 1 has been opened via a torque tool 7A.
- the securing device 7F is arranged to hold the torque shaft 7D in its inner position, while at the same time, rotation of the shaft 7D is prevented, as the actuator spring 4C has been tightened and the electromagnetic coupling 5 and the brake 6 are not energized and thereby are disengaged.
- the locking device 7F is provided with a handle 7G for the securing device 7F to be engaged and disengaged by means of an underwater vessel.
- the actuator 3 is provided with a mechanical position sensor for registering the turns of the spindle nut 4F.
- a gearwheel 8A meshes with the external gearwheel 41 fixed to the spindle nut 4F.
- the shaft 8B of the gearwheel 8A is supported in a supporting bearing 8C, recessed in the mounting flange 3B.
- the torque from the gearwheel 8A is transmitted via a first gear 8D to a torque shaft 8E connected to a second gear 8F which is connected to an indicator 8G on the outside of the end cap 3D of the actuator 3.
- an electronic position sensor 9 for registering turns of the spindle nut 4F is positioned on the actuator attachment 4D with a passage to the recess of the actuator attachment 4D for registering the movement of the gearwheel 4H which is attached to the drive plate 5B for the spindle nut 4F.
- the sensor registers holes in the gearwheel 4H as indicated in the figure.
- a cable connection (not shown) runs through a cable gland 10 for signal transmission and electrical power supply.
- the actuator housing 3A is filled with an electrically insulating medium, for example silicone oil, and is pressure-compensated against the surrounding seawater pressure via a pressure compensator 11 known per se.
- an electrically insulating medium for example silicone oil
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Mechanically-Actuated Valves (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Fluid-Driven Valves (AREA)
- Transmission Devices (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/346,278 US9581266B2 (en) | 2011-10-12 | 2012-10-10 | Device for a spring return valve actuator and method of operating a valve |
ES12840212.0T ES2598102T3 (en) | 2011-10-12 | 2012-10-10 | Device for a spring return valve actuator and method of operation of a valve |
BR112014008782-2A BR112014008782B1 (en) | 2011-10-12 | 2012-10-10 | spring return valve actuator device and valve operation method |
AU2012300208A AU2012300208B2 (en) | 2011-10-12 | 2012-10-10 | Device for a spring return valve actuator and method of operating a valve |
EP12840212.0A EP2766647B1 (en) | 2011-10-12 | 2012-10-10 | Device for a spring return valve actuator and method of operating a valve |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20111384 | 2011-10-12 | ||
NO20111384A NO333570B1 (en) | 2011-10-12 | 2011-10-12 | Device for valve actuator with spring return and method for operating a valve |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013055230A1 true WO2013055230A1 (en) | 2013-04-18 |
Family
ID=48082140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NO2012/050198 WO2013055230A1 (en) | 2011-10-12 | 2012-10-10 | Device for a spring return valve actuator and method of operating a valve |
Country Status (7)
Country | Link |
---|---|
US (1) | US9581266B2 (en) |
EP (1) | EP2766647B1 (en) |
AU (1) | AU2012300208B2 (en) |
BR (1) | BR112014008782B1 (en) |
ES (1) | ES2598102T3 (en) |
NO (1) | NO333570B1 (en) |
WO (1) | WO2013055230A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103322269A (en) * | 2013-07-01 | 2013-09-25 | 上海理工大学 | Electric actuating mechanism driven by cylindrical linear motor |
WO2015042678A1 (en) * | 2013-09-30 | 2015-04-02 | Chemtech Seviços De Engenharia E Software Ltda | System for actuating manual underwater valves |
WO2016019983A1 (en) * | 2014-08-05 | 2016-02-11 | Aktiebolaget Skf | Valve operator assembly, valve equipped with such assembly and assembly process for such a valve |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3209918B1 (en) * | 2014-10-20 | 2018-08-01 | Aktiebolaget SKF | Valve operator assembly and valve equipped with such assembly |
WO2019209987A1 (en) * | 2018-04-25 | 2019-10-31 | Kana Energy Services, Inc. | Linear actuator |
US12034351B2 (en) * | 2020-07-06 | 2024-07-09 | Electrical Subsea & Drilling As | Electromechanical actuator for use under water |
GB2621297A (en) * | 2021-06-04 | 2024-02-07 | Schlumberger Technology Bv | Electric blowout preventer bonnet using linear actuated roller screws |
NO20220828A1 (en) * | 2022-07-26 | 2024-01-29 | Fmc Kongsberg Subsea As | Subsea valve actuator assembly |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2318630A (en) * | 1996-10-15 | 1998-04-29 | Baker Hughes Inc | Actuator for a valve |
WO2006071124A1 (en) * | 2004-12-30 | 2006-07-06 | Fmc Kongsberg Subsea As | Anti-surge actuator |
US20090211762A1 (en) * | 2008-02-27 | 2009-08-27 | Vetco Gray Inc. | Detachable Electrical Actuator |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3087105A (en) * | 1963-04-23 | Electromechanical actuator with limiting mechanism | ||
US2860266A (en) * | 1957-02-06 | 1958-11-11 | American Metal Climax Inc | Linear actuator |
US2947394A (en) * | 1957-06-03 | 1960-08-02 | Robert R Grover | Electric clutch and brake |
NL289903A (en) * | 1962-03-08 | |||
DE2263058A1 (en) * | 1972-12-22 | 1974-06-27 | Klaus Union Armaturen | TUGLESS DRIVE, ESPECIALLY FOR FITTINGS |
GB8712055D0 (en) * | 1987-05-21 | 1987-06-24 | British Petroleum Co Plc | Rov intervention on subsea equipment |
GB8805744D0 (en) * | 1988-03-10 | 1988-04-07 | British Petroleum Co Plc | Mechanical fail-safe release actuator system |
US5195721A (en) * | 1990-05-04 | 1993-03-23 | Ava International Corporation | Fail safe valve actuator |
US5224512A (en) * | 1992-06-05 | 1993-07-06 | Shikoku Research Institute Inc. | Valve stem driving apparatus |
GB9415648D0 (en) * | 1994-08-03 | 1994-09-21 | Rotork Controls | Differential drive linear actuator |
US5518462A (en) * | 1994-08-12 | 1996-05-21 | Jordan Controls, Inc. | Spring return electric actuator |
EP0984133B1 (en) * | 1998-09-03 | 2006-01-04 | Cooper Cameron Corporation | Actuation module |
DE20018563U1 (en) * | 2000-10-30 | 2002-03-21 | CAMERON GmbH, 29227 Celle | Actuating device, in particular for a throttle device |
US6585227B2 (en) | 2001-07-26 | 2003-07-01 | Cooper Cameron Corporation | Roller screw actuator for subsea choke or module |
DE60301150T2 (en) * | 2002-02-01 | 2006-01-05 | Vetco Gray Controls Ltd., Nailsea | linear actuator |
US6909281B2 (en) * | 2002-07-03 | 2005-06-21 | Fisher Controls International Llc | Position sensor using a compound magnetic flux source |
US7609056B2 (en) * | 2006-09-11 | 2009-10-27 | Fisher Controls International Llc | Apparatus to determine the position of an actuator |
US7523916B2 (en) * | 2006-10-05 | 2009-04-28 | Vetco Gray Inc. | Fail-safe gate valve |
WO2008125136A1 (en) | 2007-04-13 | 2008-10-23 | Cameron International Corporation | Actuating device and method of operating an actuating device |
US20100308240A1 (en) * | 2009-05-03 | 2010-12-09 | Mcadoo Timothy K | Electric fail safe valve actuator |
-
2011
- 2011-10-12 NO NO20111384A patent/NO333570B1/en unknown
-
2012
- 2012-10-10 US US14/346,278 patent/US9581266B2/en active Active
- 2012-10-10 AU AU2012300208A patent/AU2012300208B2/en active Active
- 2012-10-10 EP EP12840212.0A patent/EP2766647B1/en active Active
- 2012-10-10 ES ES12840212.0T patent/ES2598102T3/en active Active
- 2012-10-10 BR BR112014008782-2A patent/BR112014008782B1/en active IP Right Grant
- 2012-10-10 WO PCT/NO2012/050198 patent/WO2013055230A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2318630A (en) * | 1996-10-15 | 1998-04-29 | Baker Hughes Inc | Actuator for a valve |
WO2006071124A1 (en) * | 2004-12-30 | 2006-07-06 | Fmc Kongsberg Subsea As | Anti-surge actuator |
US20090211762A1 (en) * | 2008-02-27 | 2009-08-27 | Vetco Gray Inc. | Detachable Electrical Actuator |
Non-Patent Citations (1)
Title |
---|
See also references of EP2766647A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103322269A (en) * | 2013-07-01 | 2013-09-25 | 上海理工大学 | Electric actuating mechanism driven by cylindrical linear motor |
CN103322269B (en) * | 2013-07-01 | 2015-11-18 | 上海理工大学 | The electric actuator that cylinder type linear motor drives |
WO2015042678A1 (en) * | 2013-09-30 | 2015-04-02 | Chemtech Seviços De Engenharia E Software Ltda | System for actuating manual underwater valves |
WO2016019983A1 (en) * | 2014-08-05 | 2016-02-11 | Aktiebolaget Skf | Valve operator assembly, valve equipped with such assembly and assembly process for such a valve |
CN106574737A (en) * | 2014-08-05 | 2017-04-19 | 斯凯孚公司 | Valve operator assembly, valve equipped with such assembly and assembly process for such a valve |
Also Published As
Publication number | Publication date |
---|---|
ES2598102T3 (en) | 2017-01-25 |
NO333570B1 (en) | 2013-07-08 |
EP2766647B1 (en) | 2016-08-10 |
US9581266B2 (en) | 2017-02-28 |
AU2012300208B2 (en) | 2014-11-13 |
BR112014008782A2 (en) | 2017-06-13 |
US20140231685A1 (en) | 2014-08-21 |
NO20111384A1 (en) | 2013-04-15 |
EP2766647A4 (en) | 2015-08-05 |
EP2766647A1 (en) | 2014-08-20 |
BR112014008782B1 (en) | 2020-12-01 |
AU2012300208A1 (en) | 2013-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2766647B1 (en) | Device for a spring return valve actuator and method of operating a valve | |
JP5322953B2 (en) | Throttle valve | |
KR101366458B1 (en) | Valve | |
CA2780882C (en) | Electric actuators having internal load apparatus | |
EP2499410B1 (en) | Coupling apparatus for use with electric actuators | |
US7584692B2 (en) | Helical spline actuators | |
US9470330B2 (en) | Actuating device and method for displacing the actuating device | |
AU2013217819B2 (en) | Device in a subsea electromechanical actuator and method for use of a subsea electromechanical actuator | |
EP2556281B1 (en) | Device for electromechanical actuator | |
JP2017026136A (en) | Hydraulic rotary actuator for opening and closing butterfly valve | |
US11448243B2 (en) | Electrohydraulic system for use under water, comprising an electrohydraulic actuator | |
CN106763813B (en) | Electric stop valve with position indication | |
US20100308240A1 (en) | Electric fail safe valve actuator | |
US9906101B2 (en) | Actuator with an assembly for electrical manual actuation of an actuator | |
CN213512321U (en) | Valve electrohydraulic driving device | |
RU2367828C1 (en) | Pneumatic drive for ball cocks of pipelines and electropneumatic control device | |
JP2006022893A (en) | Manual operation device for fluid-pressure driving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2012300208 Country of ref document: AU |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12840212 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2012840212 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012840212 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14346278 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014008782 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014008782 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140411 |
|
ENP | Entry into the national phase |
Ref document number: 112014008782 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140411 |