WO2013047305A1 - 感光性樹脂組成物及びドライフィルムレジスト - Google Patents

感光性樹脂組成物及びドライフィルムレジスト Download PDF

Info

Publication number
WO2013047305A1
WO2013047305A1 PCT/JP2012/073999 JP2012073999W WO2013047305A1 WO 2013047305 A1 WO2013047305 A1 WO 2013047305A1 JP 2012073999 W JP2012073999 W JP 2012073999W WO 2013047305 A1 WO2013047305 A1 WO 2013047305A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
photosensitive resin
resin composition
compound
copolymer
Prior art date
Application number
PCT/JP2012/073999
Other languages
English (en)
French (fr)
Inventor
久史 片山
真司 稲葉
川辺 正直
Original Assignee
新日鐵住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金化学株式会社 filed Critical 新日鐵住金化学株式会社
Priority to KR1020147011187A priority Critical patent/KR20140084074A/ko
Priority to CN201280046740.8A priority patent/CN103842908A/zh
Publication of WO2013047305A1 publication Critical patent/WO2013047305A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0388Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions

Definitions

  • the present invention relates to a photosensitive resin composition excellent in high sensitivity, high insulation, dielectric properties, heat resistance, etc., and a dry film resist using the photosensitive resin composition.
  • an insulating resin material used for a printed wiring board is also required to have heat resistance, fine workability, electrical characteristics, and the like.
  • a method of patterning by exposure and development is known, and a photosensitive resin composition has been used there, but high sensitivity, adhesion to the substrate, electrical characteristics, Many characteristics such as plating resistance, heat resistance, and dimensional stability have been demanded.
  • the electrical characteristics have the disadvantage that the dielectric characteristics in the high frequency region are poor, and cannot be used as a material for a multilayer printed wiring board on which a high frequency circuit is mounted.
  • the photosensitive resin composition used in these fields generally contains a polymerizable oligomer having an unsaturated double bond, a polymerizable monomer, and a photopolymerization initiator as essential components.
  • the polymerizable oligomer mainly used as the photosensitive component include polyester acrylate, urethane acrylate, and epoxy acrylate. These polymerizable oligomers have a polymerizable unsaturated group, and thus are photopolymerization initiators. It reacts with other polymerizable monomers with radicals caused by, and becomes a cured product by crosslinking.
  • These polymerizable compounds generally have a small molecular weight and are cured instantaneously by light irradiation. Therefore, there is a problem in that residual stress is generated in the coating film and adhesion to a substrate and mechanical properties are deteriorated.
  • high molecular weight polymerizable compounds have been studied, but a large amount of solvent and reactive diluent are required to adjust the viscosity so that it can be applied.
  • Such a photosensitive resin composition has poor mechanical strength and chemical resistance. Further, there is a problem that the solubility in an alkali developer is lowered due to the high molecular weight, and development is impossible.
  • Patent Document 1 attempts to improve dielectric properties by using an alkali-developable photosensitive polyfunctional vinyl compound.
  • Patent Documents 2 and 3 disclose solvent-soluble polyfunctional vinyl copolymers, but they did not have alkali developability.
  • the object of the present invention is a pattern that can be developed with an alkaline aqueous solution, has high sensitivity, and has excellent dielectric properties that have been difficult to realize simultaneously with these properties, as well as various properties such as insulation and heat resistance. It is providing the photosensitive resin composition and dry film resist which can form a thin film easily.
  • the present invention relates to a copolymer obtained by copolymerizing component (A): divinyl compound (a) 20 to 99 mol% and monovinyl compound (b) 80 to 1 mol%, A solvent-soluble polyfunctional vinyl copolymer in which the content of the structural unit containing an unreacted vinyl group represented by the following formula (a1) is 10 to 90 mol%, (B) component: an alkali-soluble resin component containing a carboxyl group-containing copolymer (b) obtained by reacting a polyol compound and a polyvalent carboxylic acid, and having an acid value of 50 to 200 mg KOH / g, and (C) Component: A photosensitive resin composition containing a photoinitiator, wherein the blending amount of the component (A) with respect to the total of the components (A), (B) and (C) is 1 to 98.9 wt%, (B The present invention relates to a photosensitive resin composition capable of alkali development, wherein the blending amount
  • R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • the above is a solvent-soluble polyfunctional vinyl copolymer having a phenolic hydroxyl group at the terminal and the introduction amount is 2.2 / molecule or more, or the solvent-soluble polyfunctional vinyl copolymer is represented by the following formula ( It preferably has a terminal group containing an unsaturated bond represented by a2).
  • R 2 is a hydrocarbon group having 1 to 18 carbon atoms which may contain an etheric oxygen atom or a thioetheric sulfur atom, and R 3 is hydrogen or a methyl group.
  • the weight average molecular weight of the carboxyl group-containing copolymer (b) is preferably 3,000 to 40,000.
  • the present invention provides a dry film resist in which a photosensitive resin layer is provided on a support substrate that can be peeled, wherein the photosensitive resin layer is composed of the photosensitive resin composition described above. It relates to a film resist.
  • the photosensitive resin composition of the present invention can be developed with a solvent-soluble polyfunctional vinyl copolymer (hereinafter also referred to as component (A) or polyfunctional vinyl copolymer) and an alkaline aqueous solution as component (B).
  • component (A) or polyfunctional vinyl copolymer a solvent-soluble polyfunctional vinyl copolymer
  • component (B) an alkaline aqueous solution
  • the main component of the alkali-soluble resin component means 50 wt% or more, preferably 80 wt% or more.
  • the alkali-soluble resin component is not particularly limited as long as it contains a component that gives a resin that can be developed with an aqueous alkali solution after exposure. It is preferable to contain a component that becomes a resin.
  • the resin or resin-forming component excluding the polyfunctional vinyl copolymer in the photosensitive resin composition may be simply referred to as an alkali-soluble resin.
  • the blending amount of the component (A) is 1 to 98.9 wt% and the blending amount of the component (B) is 98.9 to 1 wt% with respect to the sum of the components (A), (B) and (C). .
  • the blending amount of the component (A) is preferably 1 to 50 wt%, more preferably 5 to 24 wt%. If the blending amount of the component (A) is small, the effect on the low dielectric property and moisture resistance is lowered. Too much is not preferable because developability deteriorates.
  • the polyfunctional vinyl copolymer of component (A) is known and can be selected and used. For example, it can be obtained according to the methods disclosed in JP-A No. 2004-123873, JP-A No. 2005-213443, WO 2009/110453, and the like. Specifically, a divinyl compound and at least one monovinyl compound are used for copolymerization to obtain a copolymer having a reactive pendant vinyl group represented by the formula (a1). Furthermore, as described in the above-mentioned patent document, those having other terminal groups other than vinyl groups introduced at the terminals can also be used, particularly for compounds having an unsaturated bond in the molecule such as phenoxy methacrylates.
  • divinyl compound used here examples include divinyl aromatic compounds typified by divinylbenzene, aliphatics typified by ethylene glycol di (meth) acrylate, and alicyclic (meth) acrylates.
  • the monovinyl compound used here may be any compound having an olefinic double bond copolymerizable with styrene, such as aromatic vinyl monomers such as paramethylstyrene, acrylic acid such as acrylic acid and methacrylic acid. Acid monomers, vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, acrylic monomers such as butyl acrylate and methyl methacrylate, ⁇ , ⁇ -ethylenically unsaturated carboxylic acids such as maleic anhydride and fumaric acid, phenylmaleimide, cyclohexyl Examples thereof include imide monomers such as maleimide.
  • a method for producing a polyfunctional vinyl copolymer for example, two or more kinds of compounds selected from divinyl aromatic compounds, monovinyl aromatic compounds and other monovinyl compounds are used as promoters selected from Lewis acid catalysts and ester compounds. It can be obtained by cationic copolymerization in the presence. Further, when a (meth) acrylate divinyl or monovinyl compound is used, the reaction does not proceed in cationic polymerization, and therefore, it can be obtained by radical polymerization in the presence of a radical catalyst such as peroxide.
  • a radical catalyst such as peroxide.
  • the amount of divinyl compound and monovinyl compound used is determined so as to give the composition of the polyfunctional vinyl copolymer used in the present invention, but the divinyl compound is 20 to 99 mol%, preferably 20 to 50 mol%, more preferably 30 to 50 mol% is used.
  • the monovinyl compound is used in an amount of 80 to 1 mol%, preferably 80 to 50 mol%, more preferably 70 to 50 mol% of all monomers.
  • cationic polymerization such as 2-phenoxyethyl methacrylate, those acting as terminal modifiers are not calculated as monomers.
  • the Lewis acid catalyst used in the production of the polyfunctional vinyl copolymer is not particularly limited as long as it is a compound composed of a metal ion (acid) and a ligand (base) and can receive an electron pair. Can be used. From the viewpoints of control of molecular weight and molecular weight distribution and polymerization activity, boron trifluoride ether (diethyl ether, dimethyl ether, etc.) complexes are most preferably used.
  • the Lewis acid catalyst is used in the range of 0.001 to 10 mol, more preferably 0.001 to 0.01 mol, relative to 1 mol of the monomer compound. An excessive amount of the Lewis acid catalyst is not preferable because the polymerization rate becomes too high and it becomes difficult to control the molecular weight distribution.
  • the cocatalyst includes one or more selected from ester compounds.
  • ester compounds having 4 to 30 carbon atoms are preferably used from the viewpoint of controlling the polymerization rate and the molecular weight distribution of the copolymer.
  • ethyl acetate, propyl acetate and butyl acetate are preferably used.
  • the cocatalyst is used in the range of 0.001 to 10 mol, more preferably 0.01 to 1 mol, relative to 1 mol of the monomer compound.
  • the amount of the cocatalyst used is excessive, the polymerization rate decreases and the yield of the copolymer decreases.
  • the amount of the cocatalyst used is too small, the selectivity of the polymerization reaction is lowered, the molecular weight distribution is increased, the gel is generated, and the polymerization reaction is difficult to control.
  • a catalyst used for producing a polyfunctional vinyl copolymer by radical polymerization monofunctional compounds such as azo compounds represented by azobisisobutyronitrile, dibenzoyl peroxide, t-butylperoxybenzoate, etc.
  • Bifunctional or higher functional peroxides such as functional peroxides and 1,1-bis (t-butylperoxy) cyclohexane, are exemplified, and may be used alone or in combination of two or more. Can do.
  • the polyfunctional vinyl copolymer used in the present invention can be obtained by the above production method, but it is necessary to leave a part of the vinyl group of the divinyl compound used as a monomer without polymerizing. . Then, on average, 2 or more, preferably 3 or more vinyl groups are present in one molecule.
  • This vinyl group exists mainly as a structural unit represented by the above formula (a1). Then, by leaving a part of the vinyl group without being polymerized, the crosslinking reaction can be suppressed and solvent solubility can be imparted.
  • solvent-soluble means that it is soluble in toluene, xylene, THF, dichloroethane, or chloroform.
  • the weight average molecular weight (Mw) of the polyfunctional vinyl copolymer is preferably 1,000 to 100,000, more preferably 5,000 to 70,000. If it is smaller than 1000, the viscosity when the photosensitive resin composition is made becomes low, it becomes difficult to form a thick film when coated, and tackiness occurs when it is made a dry film. descend. Moreover, when Mw is 100,000 or more, the solubility when it is used as a composition is reduced, appearance defects are generated, and alkali solubility is lowered due to high molecular weight, so that developability tends to deteriorate. .
  • the polyfunctional vinyl copolymer preferably has a phenolic hydroxyl group derived from the polymerization additive or a structural unit represented by the above formula (2) at a part of its terminal.
  • the amount introduced at the end is preferably 2.2 / molecule or more.
  • a resin composition having improved development characteristics with an alkaline solution can be obtained.
  • the polyfunctional vinyl copolymer is calculated, It is not calculated as a soluble resin.
  • R 2 and R 3 have the above meaning, and R 2 is preferably an alkylene group having 1 to 6 carbon atoms.
  • the unit containing a vinyl group derived from a divinyl compound introduced into the polyfunctional vinyl copolymer has a structural unit represented by the above formula (a1), and the molar fraction of the structural unit (a1) is 0.1. Is preferably from 0.9 to 0.9, preferably from 0.1 to 0.5, and more preferably from 0.1 to 0.3.
  • the molar fraction is less than 0.1, the crosslinking density of the cured product is lowered, and the water resistance, migration resistance, and heat resistance are lowered, which is not preferable.
  • it exceeds 0.9 excessive curing of the cured product proceeds and becomes brittle, which is not preferable.
  • those obtained by terminal modification with a compound having an unsaturated bond in the molecule include, in addition to the structural unit represented by the formula (a1), the terminal unsaturated bond-containing structural unit (a2) is also a vinyl group. Therefore, the total molar fraction (a3) of both is preferably 0.1 to 0.9, preferably 0.1 to 0.5, more preferably 0.1 to 0.3. is there.
  • the terminal unsaturated bond-containing structural unit (a2) is excellent in photoreactivity, and the resolution and sensitivity are improved by introducing this structure.
  • the total of units (groups) forming the main chain, side chain and terminal constituting the copolymer is calculated as 1.
  • R 1 is a divalent group derived from a divinyl compound, and when the divinyl compound is divinylbenzene, R 1 is a phenylene group.
  • the alkali-soluble resin component of the component includes a carboxyl group-containing copolymer (b) obtained by reacting a polyol compound and a polyvalent carboxylic acid, and has an acid value of 50 to 200 mgKOH / g.
  • the carboxyl group-containing copolymer (b) preferably has an acid value of 50 to 200 mg KOH / g and a weight average molecular weight of 3,000 to 40,000.
  • the carboxyl group-containing copolymer (b) is a main component that imparts alkali solubility to the alkali-soluble resin component. Therefore, the carboxyl group-containing copolymer (b) is preferably contained in an amount of 10 to 30 parts by weight with respect to 100 parts by weight as a total of the components (A) and (B).
  • the alkali-soluble resin component of the component has an acid value that can provide alkali-solubility after curing.
  • the alkali-soluble resin component of component B) may consist only of the carboxyl group-containing copolymer (b), but in order to adjust various physical properties required for the resin composition, the carboxyl group-containing copolymer ( In obtaining an alkali-soluble resin component containing b), an unsaturated compound (c) containing at least one photopolymerizable ethylenically unsaturated bond in one molecule and an epoxy resin (d) are present in the raw material. These are preferably copolymerized or polymerized or mixed, preferably copolymerized.
  • the amount of the carboxyl group-containing compound used is adjusted so that the acid value of the alkali-soluble resin component falls within the above range. If either the polyol compound or the polyvalent carboxylic acid has an unsaturated bond, copolymerization with the unsaturated compound (c) becomes possible, and the epoxy resin (d) is an OH group of the polyol compound and the polyvalent carboxylic acid or Because it is reactive with COOH groups, it is believed that at least a portion is copolymerized.
  • the polyol compound for obtaining the carboxyl group-containing copolymer (b) is preferably one having two hydroxyl groups in the molecule from the viewpoint of increasing the molecular weight during the polymerization reaction.
  • those having, for example, a symmetrical molecular structure in which the reactivity with two acid anhydride groups in the acid dianhydride is equal are preferable.
  • polyol compound examples include ethylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, hydrogenated bisphenol A, bis (4-hydroxyphenyl) ketone, bis (4-hydroxyphenyl) sulfone, 2,2-bis (4 -Hydroxyphenyl) propane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) hexafluoropropane, 9,9-bis (4-hydroxyphenyl) fluorene, bis (4-hydroxyphenyl) dimethylsilane, 4 , 4′-biphenol, phenol novolak, cresol novolak, or a compound in which part of phenol novolak or cresol novolak is glycidyl ether.
  • (meth) acrylic acid adduct has a polymerizable unsaturated bond and an alkali-soluble carboxyl group in the same molecule after the reaction with the polyvalent carboxylic acid, and thus is preferable for improving the exposure sensitivity and increasing the resolution.
  • a resin having a fluorene skeleton in the unit structure (hereinafter referred to as a fluorene skeleton-containing resin) is preferable in order to develop excellent heat resistance, and 30% by weight in the carboxyl group-containing copolymer.
  • a fluorene skeleton-containing resin a resin having a fluorene skeleton in the unit structure
  • 30% by weight in the carboxyl group-containing copolymer Preferably 50 weight% or more is effective in the heat resistant expression of a resin composition.
  • the fluorene skeleton-containing resin is a resin having a fluorene skeleton obtained by reacting bisphenol fluorene epoxy (meth) acrylate with a polyvalent carboxylic acid or an anhydride thereof.
  • bisphenol fluorene epoxy (meth) acrylate By reacting bisphenolfluorene type epoxy (meth) acrylate with a polyvalent carboxylic acid or an acid anhydride thereof, alkali-solubility can be achieved.
  • polyvalent carboxylic acids examples include polyvalent carboxylic acids, acid anhydrides, acid chlorides, and the like, and acid anhydrides are preferable.
  • the polyvalent carboxylic acids include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylendomethylenetetrahydrophthalic acid, chlorendic acid, methyltetrahydrophthalic acid, pyromellitic acid, benzophenone tetracarboxylic acid.
  • An acid, biphenyl tetracarboxylic acid, biphenyl ether tetracarboxylic acid, etc. can be mentioned, but at least a part is preferably a tetracarboxylic acid or an acid dianhydride. These can be used alone or in combination of two or more.
  • the reaction between a polyol compound such as epoxy (meth) acrylate and a polyvalent carboxylic acid can be carried out by a known method.
  • the polycarboxylic acid used is preferably a polybasic carboxylic acid having 3 or more basic acids in order to make the obtained fluorene skeleton-containing resin have an acid value of 10 mg KOH / g or more and express sufficient alkali solubility. It is good that it is an acid anhydride of these or a mixture thereof.
  • acrylates are typical examples.
  • the acrylates include those having a hydroxyl group such as polyethylene glycol (meth) acrylate and butanediol mono (meth) acrylate, for example, allyl (meth) acrylate, butoxytriethylene glycol (meth) acrylate, and methacryloxypropyltrimethoxysilane.
  • Aliphatic (meth) acrylates such as glycidyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, dibromopropyl (meth) acrylate, and alicyclic such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate
  • Modified (meth) acrylates, other aromatic (meth) acrylates, phosphorus-containing (meth) acrylates and the like can be mentioned.
  • bifunctional compounds such as diethylene glycol di (meth) acrylate, bisphenol A di (meth) acrylate, and tetrabromobisphenol A di (meth) acrylate are exemplified.
  • trimethylolpropane tri (meth) acrylate pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, alkyl-modified dipentaerythritol Trifunctional or higher functional compounds such as penta (meth) acrylate and urethane tri (meth) acrylate are exemplified.
  • the caprolactone, propylene oxide, modified ethylene oxide, etc. can be used similarly.
  • other polymerizable monomers for example, monofunctional compounds such as vinyl compounds such as vinyl acetate, vinyl caprolactam, vinyl pyrrolidone, and styrene can be used as necessary.
  • a polyester resin, a polyvinyl resin, etc. can be used if necessary.
  • these monofunctional compounds, bifunctional compounds, trifunctional or higher functional compounds and their modified products or resins only one of them can be used alone, and of course, two or more can be used in combination. .
  • the average number of ethylenically unsaturated bonds per molecule is preferably 1.5 or more.
  • the photosensitive resin composition of the present invention requires not only alkali solubility but also excellent photocurability, that is, high sensitivity, two polymerizable double bonds per molecule (two (Functional) or more, more preferably, it is preferable to blend a resin or monomer having three (trifunctional) or more.
  • the amount of the monomer (c) containing at least one photopolymerizable ethylenically unsaturated bond in one molecule is 3 to 25 with respect to 100 parts by weight of the total of the above components (A) and (B). It is preferably in the range of parts by weight.
  • examples of the epoxy resin include phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and biphenyl type epoxy resin.
  • epoxy resins such as alicyclic epoxy resins, compounds having at least one epoxy group such as phenyl glycidyl ether, p-butylphenol glycidyl ether, triglycidyl isocyanurate, diglycidyl isocyanurate, allyl glycidyl ether, glycidyl methacrylate, etc. It is done.
  • the amount of the epoxy resin used is preferably within a range where the alkali-soluble property of the alkali-soluble resin is maintained, and is 10 to 35 with respect to 100 parts by weight of the total of the components (A) and (B). It is preferable to blend in the range of parts by weight.
  • Examples of the photopolymerization initiator (C) include radical generation types such as Michler's ketone, and cation generation types such as triarylsulfonium salts and diaryliodonium salts. These may be used alone or in combination of two or more.
  • the amount of the photopolymerization initiator used is in the range of 0.1 to 10 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight as a total of the components (A), (B) and (C). It is good to mix with. If it exceeds 10 parts by weight, the light absorption ratio increases, and light may not penetrate to the lower part.
  • photopolymerization initiators examples include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 2,2-diethoxy- 2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) Acetophenones such as phenyl] -2-morpholinopropan-1-one; 2-ethylanthraquinone, 2-tertiarybutylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone, etc.
  • benzoins such as benzoin, benzoin methyl ether, benzo
  • Anthraquinones such as 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide Benzophenones such as 4,4′-bismethylaminobenzophenone; phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide It is done.
  • photosensitization such as N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, triethanolamine, triethylamine and the like.
  • photosensitizers can be used alone or in combination of two or more thereof.
  • the photosensitizer is preferably used in the range of 10 to 70% by weight based on the photopolymerization initiator.
  • the photosensitive resin composition of the present invention one of inorganic fillers such as silica, alumina, titanium oxide, boron nitride or the like is used for the purpose of reducing the thermal expansion of the cured product and improving the elastic modulus and hygroscopicity. You may mix
  • the photosensitive resin composition of the present invention includes, as necessary, a bromine-based compound, a phosphorus-based epoxy resin curing accelerator, a polymerization inhibitor, a plasticizer, a leveling agent, an antifoaming agent, and a flame retardant. Additives such as compounds and antimony can be blended.
  • a rubber component such as polybutadiene may also be added as an auxiliary for surface roughening with a permanganate solution or the like.
  • curing agent, solvent soluble resin, etc. can also be mix
  • the solvent-soluble resin is preferably a polyphenylene ether resin that is excellent in compatibility with the polyfunctional vinyl copolymer. Polyphenylene ether resins are excellent in dielectric properties as well as heat resistance of cured products.
  • Examples of the epoxy resin curing accelerator include amine compounds, imidazole compounds, carboxylic acids, phenols, quaternary ammonium salts, and methylol group-containing compounds.
  • Examples of the thermal polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, pyrogallol, tert-butylcatechol, phenothiazine and the like.
  • Examples of the plasticizer include dibutyl phthalate, dioctyl phthalate, and tricresyl.
  • Examples of the antifoaming agent and leveling agent include silicon-based, fluorine-based, and acrylic compounds.
  • the photosensitive resin composition of the present invention can be adjusted in viscosity by blending a solvent as necessary.
  • the solvent must be one that dissolves the alkali-soluble resin component of the photosensitive resin composition and does not react with the resin and additives of the alkali-soluble resin component, and is particularly limited if these conditions are satisfied. It is not a thing.
  • the photosensitive resin composition of the present invention can contain a solvent, a filler and the like as described above.
  • the component (A), the component (B), and (C) It is preferable to contain a component in the following range. % Is wt%.
  • the method for using the photosensitive resin composition of the present invention is as follows: 1) after preparing as a varnish, applying this to a target object to form an insulating resin layer, and 2) using the photosensitive resin composition in advance. There is a method in which a laminate (dry film) from which a solvent has been removed is formed and used on a supporting substrate that is peeled and removed later.
  • thermosetting When used as a varnish, for example, after applying the photosensitive resin composition of the present invention adjusted to a varnish on a substrate by means of spin coating, curtain coating, etc., and forming a pattern by drying, exposure, and development, The method of thermosetting is mentioned.
  • the photosensitive resin composition of the present invention is uniformly applied onto a supporting substrate, and the solvent is dried by hot air drying or the like, and then a protective film as necessary.
  • the method of winding by applying is illustrated.
  • the drying temperature is preferably 80 to 120 ° C. in consideration of the thermal stability and productivity of the unsaturated compound.
  • the dry film resist of the present invention can be produced as described above.
  • the organic solvent often remains in the resin layer after drying, the content is desirably 15% by weight or less, preferably 10% by weight or less.
  • the content referred to here is a weight% that is reduced when the weight of the resin layer after drying is 100% by weight and the absolute dry weight is obtained after drying again at 200 ° C. for 30 minutes. If this exceeds 15% by weight, cold flow tends to occur.
  • the thickness of the insulating resin layer after drying made of the photosensitive resin composition varies depending on the application, but is 1 to 10 ⁇ m for a liquid crystal display and 5 to 100 ⁇ m for a circuit board.
  • the film thickness is 30 ⁇ m
  • a 30 ⁇ m via and a 20 ⁇ m line and space can be formed.
  • an isolated line and isolated dot of 20 ⁇ m can be formed at 5 ⁇ m.
  • the support substrate (film) to which the photosensitive resin composition is applied is preferably a transparent substrate that transmits active light.
  • the support layer that transmits active light include known polyethylene terephthalate films, polyacrylonitrile films, optical polypropylene films, and cellulose derivative films. The thinner these films are, the more advantageous in terms of image forming properties and economic efficiency, but those having a thickness of 10 to 30 ⁇ m are common because of the need to maintain the strength.
  • a protective film can be laminated
  • An example of such a film is a polyethylene film.
  • Creation of a circuit board using a cured film of the photosensitive resin composition of the present invention creation of a multichip module, creation of a color filter for a liquid crystal display and a spacer are performed by known techniques. The process will be briefly described below.
  • the protective film When there is a protective film, first the protective film is peeled off, and then the insulating resin layer is heat-pressed and laminated on the substrate surface with a hot roll laminator.
  • the heating temperature at this time is 70 to 120 ° C., preferably 80 to 110 ° C.
  • the temperature is lower than 70 ° C., the adhesiveness to the substrate is inferior.
  • the temperature is higher than 120 ° C., the photosensitive resin layer protrudes from the side edge and the film thickness accuracy is impaired.
  • the supporting substrate is peeled off and image exposure is performed with active light through a mask. Subsequently, the unexposed portion of the photosensitive resin layer is developed and removed using an alkaline aqueous solution.
  • an aqueous solution of sodium carbonate, potassium carbonate, potassium hydroxide, diethylamine, tetramethylammonium hydroxide or the like can be used as the alkaline aqueous solution.
  • These developers are selected according to the characteristics of the resin layer, but can be used in combination with a surfactant.
  • polymerization or curing (sometimes referred to as curing by combining both) is completed by heat to obtain a cured product such as a permanent insulating film.
  • thermosetting in the range of 160 to 200 ° C. is preferable in order to impart heat resistance to the resin.
  • the surface of the heat-cured resin layer is flattened by buffing if necessary, then roughened by applying a known desmear process using permanganate, and then non-coated by a known means.
  • Electrolytic copper plating is performed, and if necessary, electrolytic copper plating is performed to form a conductor layer. In addition, it is preferable to anneal after electrolytic copper plating. If a circuit is formed by selectively etching away the conductor layer and then repeating the process of laminating the insulating layer again, a multilayer circuit board can be formed.
  • GPC gel permeation chromatography
  • the molecular weight shown is the weight average molecular weight (Mw) in terms of polystyrene of the carboxyl group-containing copolymer portion excluding the unreacted raw material.
  • Mw weight average molecular weight
  • Polymer structure This was determined by 13C-NMR and 1H-NMR analysis using a JNM-LA600 type nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d1 was used as a solvent and the tetramethylsilane resonance line was used as an internal standard to determine the molar fraction of the structural unit (a1).
  • [Terminal phenolic hydroxyl group] It was calculated from the number average molecular weight obtained from the above GPC measurement, the amount of phenolic hydroxyl group at the terminal obtained from the results of 1H-NMR measurement and elemental analysis.
  • FHPA Equivalent reaction product of fluorene bisphenol type epoxy resin and acrylic acid (manufactured by Nippon Steel Chemical Co., Ltd., ASF-400 solution: solid content concentration 50 wt%, solid content converted acid value 1.28 mg KOH / g, epoxy equivalent 21300)
  • BPDA biphenyltetracarboxylic dianhydride
  • THPA tetrahydrophthalic anhydride
  • PGMEA propylene glycol monomethyl ether acetate
  • TEABr tetraethylammonium bromide
  • TMPTA trimethylolpropane triacrylate
  • DPHA KAYARAD DPHA (manufactured by Nippon Kayaku Co., Ltd.)
  • YD-134 and 128 Bisphenol A type epoxy resin (Epototo manufactured by Nippon Steel Chemical Co., Ltd.)
  • PPE Polyphenylene ether (Mitsubishi Gas Chemical Co.,
  • Synthesis example 1 (Polyfunctional vinyl copolymer PV-A) 159.8 g (14.4 wt%) of divinylbenzene, 93.8 g (8.5 wt%) of ethyl vinylbenzene, 223.2 g (20.1 wt%) of styrene, 632.7 g (57.0 wt%) of 2-phenoxyethyl methacrylate Then, 1081 g of toluene was put into a 3 L reactor, 56.8 g of diethyl ether complex of boron trifluoride was added at 50 ° C., and reacted for 6 hours.
  • This polyfunctional vinyl copolymer ⁇ has a weight average molecular weight Mw of 8000, a molar fraction of the structural unit (a1) containing a vinyl group derived from a divinyl compound is 0.18, and a two-phenoxyethyl methacrylate derived from the terminal 2-phenoxyethyl methacrylate.
  • the double bond (a2) was 0.02, and the combined molar fraction (a3) of both was 0.20.
  • Synthesis example 2 (Polyfunctional vinyl copolymer PV-B) 332.0 g (26.2 wt%) of divinylbenzene, 195.0 g (15.4 wt%) of ethyl vinyl benzene, 109.6 g (8.6 wt%) of styrene, 631.1 g (49.8 wt%) of 2-phenoxyethyl methacrylate Then, 865.0 g of toluene was put into a 3 L reactor, 35.5 g of diethyl ether complex of boron trifluoride was added at 50 ° C., and reacted for 3 hours.
  • polyfunctional vinyl copolymer PV-B has an Mw of 8000, a molar fraction of the structural unit (a1) containing a vinyl group derived from a divinyl compound is 0.34, and a double component derived from a terminal 2-phenoxyethyl methacrylate.
  • the bond (a2) was 0.03, and the combined molar fraction (a3) of both was 0.37.
  • Synthesis example 3 (Polyfunctional vinyl copolymer PV-C) 4230 g (58.6 wt%) of divinylbenzene, 169 g (2.3 wt%) of ethylvinylbenzene, 1170 g (16.2 wt%) of styrene, 1649 g (22.8 wt%) of 2,6-xylenol, 158 g of ethyl acetate, and 12745 g of toluene It was put into a 30 L reactor, and 18 g (120 mmol) of diethyl ether complex of boron trifluoride was added at 70 ° C. and reacted for 2 hours.
  • Mn of the obtained polyfunctional vinyl copolymer PV-C was 2820, Mw was 10800, and Mw / Mn was 3.84.
  • the amount of phenolic hydroxyl groups introduced into the soluble polyfunctional vinyl aromatic polymer calculated from the elemental analysis results and the number average molecular weight in terms of standard polystyrene was 5.8 (pieces / molecule). Further, it contained 79.2 mol% of structural units derived from divinylbenzene and 20.7 mol% in total of structural units derived from styrene and ethylbenzene.
  • the molar fraction of the structural unit (a1) containing a vinyl group derived from a divinyl compound contained in the polyfunctional vinyl copolymer PV-C was 0.32.
  • the copolymer PV-C was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was observed.
  • Synthesis example 4 (Alkali-soluble resin solution AD-A) In a 300 ml four-necked flask equipped with a reflux condenser, 96.0 g of FHPA solution, 14.4 g of BPDA, 2.5 g of PGMEA and 0.15 g of TEABr were charged, and the mixture was stirred at 120 to 125 ° C. with heating for 2 hours, and further 60 to 62 Stirring was carried out at 8 ° C. for 8 hours to obtain an alkali-soluble resin solution AD-A containing a carboxyl group-containing copolymer resin.
  • the obtained resin solution had a solid content of 56.5 wt%, an acid value (converted to a solid content) of 90.3 mg KOH / g, an area percent of the carboxyl group-containing copolymer in the resin solution by GPC analysis was 90%, and a weight average The molecular weight was 15000.
  • Synthesis example 5 (Alkali-soluble resin solution AD-B) In a 300 ml four-necked flask equipped with a reflux condenser, 96.0 g of FHPA solution, 10.8 g of BPDA, 5.6 g of THPA, 1.64 g of PGMEA, and 0.15 g of TEABr were charged and stirred at 120 to 125 ° C. for 2 hours while heating. Further, the mixture was heated and stirred at 60 to 62 ° C. for 8 hours to obtain an alkali-soluble resin solution AD-B containing a carboxyl group-containing copolymer resin.
  • the obtained resin solution had a solid content of 56.5 wt%, an acid value (solid content conversion) of 88.1 mg KOH / g, an area percentage of the carboxyl group-containing copolymer in the resin solution by GPC analysis was 96%, and Mw was It was 5400.
  • Synthesis example 7 (Vinyl benzyl ether compound: for comparison) 92 g of bisphenol A and 45 g of potassium hydroxide were dissolved in 200 g of dimethyl sulfoxide and 30 g of water, and 124 g of chloromethylstyrene and 0.1 g of hydroquinone were dissolved in 100 g of dimethyl sulfoxide, and this was added dropwise at 70 ° C. over 1 hour. The reaction was further continued at 70 ° C. for 2 hours. Next, a large excess of water was added to the system and extracted with benzene. The benzene layer was washed with a sodium hydroxide aqueous solution and distilled water, neutralized and dried. After distilling off benzene, recrystallization with ethanol (yield 90%) gave a vinylbenzyl ether compound (VB) represented by the following formula (3).
  • Example 1 (Preparation of resin composition) 55 parts by weight of the alkali-soluble resin solution AD-A obtained in Synthesis Example 4 in terms of resin component, 10 parts by weight of trimethylolpropane triacrylate (TMPTA) as an unsaturated compound, and Synthesis Example 1 as a polyfunctional vinyl copolymer 7 parts by weight of the polyfunctional vinyl copolymer PV-A obtained in 1 above and 2-methyl-1- [4- (methylthio) phenyl] -2-monoforinopropan-1-one (start) as a photopolymerization initiator 2 parts by weight of agent A), 26 parts by weight of epoxy resin (Epototo YD-134 manufactured by Nippon Steel Chemical Co., Ltd.), 0.04 parts by weight of sensitizer (EABF manufactured by Hodogaya Chemical Co., Ltd.) and 100 parts by weight of ethyl acetate Were mixed with a stirrer for 1 hour to prepare a resin composition solution to prepare a photosensitive resin composition.
  • the protective film was peeled off from the dry film resist and laminated at 80 ° C., a transfer pressure of 3 kgf / cm 2 , and a transfer speed of 25 cm / min. Thereafter, the polyester film was cooled and peeled to form a photosensitive resin layer having a thickness of 30 ⁇ m on the conductor circuit pattern.
  • the substrate was washed with water for 1 minute, and then treated with N-466 neutralized solution at room temperature for 5 minutes to remove the residue of the surface potassium permanganate solution. Furthermore, after washing with water for 1 minute, washing with an ultrasonic cleaner was performed for 10 minutes, and drying was performed at 80 ° C. for 1 hour, thereby forming an anchor portion anchored on the surface of the insulating layer.
  • the polyester film was cooled and peeled to form an insulating layer having a thickness of 30 ⁇ m on the aluminum vapor deposited wafer.
  • UV light is applied under conditions of 250 mJ / cm 2 with an ultra-high pressure mercury lamp (manufactured by Hitech Co., Ltd., illuminance 11 mJ / cm 2 , I-line standard) through a negative mask provided with a test piece pattern on the insulating layer of the wafer.
  • a 1.2% tetramethylammonium hydride solution is used as a developer, and after developing for 1 minute until the aluminum vapor deposited wafer is exposed while swinging at 28 ° C., 3.0 kg / cm
  • a pure water rinse was performed at a pressure of 2 for 30 seconds to form various test pieces.
  • thermosetting was performed in an air atmosphere at 180 ° C. for 90 minutes to obtain a cured insulating film.
  • the test pieces thus obtained were used for various physical property measurements.
  • sensitivity measuring step tablet 21 stages of Kodak
  • an ultra-high pressure mercury lamp Hitech, Illuminance 11 mJ / cm 2
  • a conductor circuit pattern is exposed while swinging at 28 ° C. using a 1.2% tetramethylammonium hydride solution as a developer.
  • a portion of the exposed portion that is not removed after 30 minutes of pure water rinsing at a pressure of 3.0 kg / cm 2 is represented by a number (number of steps). The sensitivity was expressed by the obtained number.
  • Examples 2 to 7, Comparative Examples 1 to 3 A photosensitive resin composition and a dry film were prepared in the same manner as in Example 1 using the alkali-soluble resin component, unsaturated compound, epoxy resin, and other resins shown in Table 1, and various tests were performed. The results are summarized in Table 1.
  • (A) component, (B) component and (C) component are components corresponding to (A) component, (B) component and (C) component of the present invention (components for comparison and subcomponents).
  • the blending amount is in parts by weight.
  • the present invention it is possible to provide a photosensitive resin composition which is excellent in low dielectric constant and low dielectric loss tangent, has good workability, and does not impair photocurability, developability and other development characteristics. From this photosensitive resin composition, it is possible to provide a multilayer printed wiring board having a cured film obtained by curing it as an interlayer insulating film, and a dry film resist provided with a coating film of the photosensitive resin composition. Moreover, the photosensitive resin composition and dry film resist of the present invention are excellent in handleability and can be used as an interlayer insulating film or a solder resist film of a printed wiring board by being cured.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Photolithography (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 アルカリ性水溶液で現像でき、高感度で絶縁性、耐熱性等の諸特性とともに、誘電特性の優れた硬化膜を容易に形成することができる感光性樹脂組成物及びドライフィルムを提供する。 (A)成分:ジビニル化合物(a)20~99モル%及びモノビニル化合物(b)80~1モル%を共重合して得られる共重合体であって、ジビニル化合物(a)に由来するビニル基を側鎖に有する溶剤可溶性多官能ビニル共重合体、(B)成分:ポリオール化合物と多価カルボン酸類とを反応させて得られるカルボキシル基含有共重合体(b)を含むアルカリ可溶性樹脂成分と、(C)成分:光開始剤を含み、(A)成分~(C)成分の合計に対する(A)成分が1~98.9wt%、(B)成分が98.9~1wt%、(C)成分が0.1~10wt%であるアルカリ現像可能な感光性樹脂組成物。

Description

感光性樹脂組成物及びドライフィルムレジスト
 本発明は、高感度、高絶縁、誘電特性、耐熱性等に優れた感光性樹脂組成物及び該感光性樹脂組成物を使用したドライフィルムレジストに関する。
 近年、電子機器の分野における実装方法の小型化、高密度化への指向は著しいものがあり、それに伴って材料の面でもより優れた特性が要求されている。例えばプリント配線板に用いられる絶縁樹脂材料においても耐熱、微細加工性、電気特性等が要求されている。絶縁樹脂材料の微細加工の有効な手段としては露光、現像によってパターニングする方法が知られており、そこには感光性樹脂組成物が用いられてきたが高感度、基板に対する密着性、電気特性、耐メッキ性、耐熱性、寸法安定性等の多くの諸特性が要求されるようになってきている。特に、電気特性においては高周波領域での誘電特性が悪いという欠点を持っており、高周波数回路を搭載する多層プリント配線板の材料としては対応できないものとなっていた。
 一方、これらの分野において用いられる感光性樹脂組成物は、一般的に、不飽和二重結合を有する重合性オリゴマー、重合性モノマー、及び光重合開始剤を必須成分としている。感光性成分として主に用いられる上記重合性オリゴマーとしては、ポリエステルアクリレート、ウレタンアクリレート及びエポキシアクリレート等があり、これら重合性オリゴマーは、重合性の不飽和基を有しているので、光重合開始剤によるラジカルで他の重合性モノマーとともに反応し、架橋することで硬化物となる。
 これら重合性化合物は、一般に分子量が小さく、光照射により瞬間的に硬化するため、塗膜中に残留応力が生じ、基材への密着性、機械的特性が低下するといった問題があった。この問題点を解決するために、重合性化合物の高分子量化も検討されてはいるが、塗工可能な粘度に調整するためには多量の溶媒や反応性希釈剤が必要となり、そのため、このような感光性樹脂組成物は機械強度、耐薬品性などに乏しいものであった。さらに、高分子量化によりアルカリ現像液に対する溶解性が下がり、現像できないなどの問題もあった。また、これら感光性樹脂組成物を塗布乾燥したドライフィルムでは、基材への貼り付け前の状態でワレ、タックなどが無く、貼り付け時には基材への追従性、平坦性が求められている。
 特許文献1では、アルカリ現像性の感光性多官能のビニル化合物を使用することで、誘電特性を改善することが試みられている。また、特許文献2、3には溶剤可溶性の多官能ビニル共重合体が開示されているが、アルカリ現像性は有していなかった。
特開2004-27145号公報 特開2004-123873号公報 特開2005-213443号公報
 本発明の目的は、アルカリ性水溶液で現像でき、高感度であり、しかも、絶縁性、耐熱性等の諸特性とともに、従来これらの特性と同時に実現することが困難であった誘電特性の優れたパターン状薄膜を容易に形成することができる感光性樹脂組成物及びドライフィルムレジストを提供することにある。
 本発明は、(A)成分:ジビニル化合物(a)20~99モル%及びモノビニル化合物(b)80~1モル%を共重合して得られる共重合体であって、ジビニル化合物(a)に由来する下記式(a1)で表される未反応のビニル基を含有する構造単位の含有量が10~90モル%である溶剤可溶性多官能ビニル共重合体、
(B)成分:ポリオール化合物と多価カルボン酸類とを反応させて得られるカルボキシル基含有共重合体(b)を含み、酸価が50~200mgKOH/gであるアルカリ可溶性樹脂成分、及び
(C)成分:光開始剤
を含む感光性樹脂組成物であって、(A)成分、(B)成分及び(C)成分の合計に対する(A)成分の配合量が1~98.9wt%、(B)成分の配合量が98.9~1wt%、(C)成分の配合量が0.1~10wt%であることを特徴とするアルカリ現像可能な感光性樹脂組成物に関する。
Figure JPOXMLDOC01-appb-I000003
 
(式中、Rは炭素数6~30の芳香族炭化水素基を示す。)
 上記が溶剤可溶性多官能ビニル共重合体が末端にフェノール性水酸基を有し、その導入量が2.2個/分子以上であること、又は溶剤可溶性多官能ビニル共重合体が末端に下記式(a2)で表される不飽和結合を含有する末端基を有することが好ましい。
Figure JPOXMLDOC01-appb-I000004
 
(ここで、Rはエーテル性の酸素原子又はチオエーテル性の硫黄原子を含んでもよい炭素数1~18の炭化水素基であり、Rは水素又はメチル基である。)
 また、上記カルボキシル基含有共重合体(b)の重量平均分子量が3,000~40,000であることが好ましい。
 更に、本発明は、剥離可能な支持基材上に感光性樹脂層が設けられたドライフィルムレジストにおいて、感光性樹脂層が上記の感光性樹脂組成物から構成されていることを特徴とするドライフィルムレジストに関する。
 以下、本発明を詳細に説明する。
 本発明の感光性樹脂組成物は、溶剤可溶性多官能ビニル共重合体(以下、(A)成分、又は多官能ビニル共重合体ともいう)と、(B)成分としてのアルカリ水溶液による現像が可能なアルカリ可溶性樹脂成分主たる成分とする。本明細書中、主たる成分とは50wt%以上、好ましくは80wt%以上含むことをいう。このアルカリ可溶性樹脂成分は、露光後においてアルカリ水溶液による現像が可能となる樹脂を与える成分を含有していれば特に限定されるものではないが、光で重合可能な樹脂(樹脂の他、モノマー等の樹脂となる成分を含む意味である)を含有することが好ましい。以下の説明においては、感光性樹脂組成物中の多官能ビニル共重合体を除く樹脂又は樹脂形成成分を単にアルカリ可溶性樹脂と称することもある。
 また、(A)成分、(B)成分及び(C)成分の合計に対する(A)成分の配合量が1~98.9wt%、(B)成分の配合量が98.9~1wt%である。好ましくは(A)成分の配合量が1~50wt%、更に好ましくは5~24wt%であり、(A)成分の配合量が少ないと低誘電性、耐湿性に対する効果が低くなる。多すぎると現像性が悪化するため好ましくない。
 (A)成分の多官能ビニル共重合体は、公知であり、これらを選択して使用することができる。例えば、特開2004-123873号公報、特開2005-213443号公報、WO2009/110453等に開示されている方法に準じて得ることができる。具体的には、ジビニル化合物と少なくとも1種以上のモノビニル化合物を使用し、共重合させて、式(a1)で示される反応性のペンダントビニル基を有する共重合体を得るものである。さらに、上記特許文献に記載されるように末端にビニル基以外の他の末端基が導入されたものを使用することもでき、特にフェノキシメタクリレート類のような不飽和結合を分子内に有する化合物にて末端変性されたものは(a1)以外にも架橋点として作用することが可能となるため好ましい。この場合は、末端の不飽和結合含有構造単位(a2)もビニル基を有するので、式(a1)の構造単位との合計のモル分率(a3)は、全体のビニル基の存在量を示すことになる。
 ここで使用するジビニル化合物としては、ジビニルベンゼンに代表されるジビニル芳香族化合物類やエチレングリコールジ(メタ)アクリレートに代表される肪族族、脂環式(メタ)アクリレート類等が例示される。
 また、ここで使用するモノビニル化合物としては、スチレンと共重合可能なオレフィン性二重結合を有するものであればよく、パラメチルスチレン等の芳香族ビニル系モノマー類、アクリル酸、メタクリル酸等のアクリル酸モノマー、アクリロニトリル、メタクリロニトリル等のシアン化ビニルモノマー、アクリル酸ブチル、メタクリル酸メチル等のアクリル系モノマーや無水マレイン酸、フマル酸等のα,β-エチレン不飽和カルボン酸類、フェニルマレイミド、シクロヘキシルマレイミド等のイミド系モノマー類が挙げられる。
 多官能ビニル共重合体の製造方法としては、例えば、ジビニル芳香族化合物、モノビニル芳香族化合物及び他のモノビニル化合物から選ばれる2種以上の化合物を、ルイス酸触媒、エステル化合物から選ばれる助触媒の存在下、カチオン共重合させることにより得ることができる。また(メタ)アクリレート系のジビニル、モノビニル化合物を使用する場合は、カチオン重合では反応が進行しないため過酸化物等のラジカル触媒の存在下でラジカル重合することにより得ることができる。
 ジビニル化合物とモノビニル化合物の使用量は、本発明で使用される多官能ビニル共重合体の組成を与えるように決められるが、ジビニル化合物を20~99モル%、好ましくは全単量体の20~50モル%、より好ましくは30~50モル%使用する。モノビニル化合物を80~1モル%、好ましくは全単量体の80~50モル%、より好ましくは70~50モル%使用する。ここで、2-フェノキシエチルメタクリレートのようなカチオン重合においては末端変性剤として作用するものは単量体としては計算しない。
 多官能ビニル共重合体の製造で用いられるルイス酸触媒としては、金属イオン(酸)と配位子(塩基)からなる化合物であって、電子対を受け取ることのできるものであれば特に制限なく使用できる。分子量及び分子量分布の制御及び重合活性の観点から、三フッ化ホウ素のエーテル(ジエチルエーテル、ジメチルエーテル等)錯体が最も好ましく使用される。ルイス酸触媒は単量体化合物1モルに対して、0.001~10モルの範囲内で用いるが、より好ましくは0.001~0.01モルである。ルイス酸触媒の使用量が過大であると、重合速度が大きくなりすぎるため、分子量分布の制御が困難となるので好ましくない。
 助触媒としてはエステル化合物から選ばれる1種以上が挙げられる。その中で、重合速度及び共重合体の分子量分布制御の観点から炭素数4~30のエステル化合物が好適に使用される。入手の容易さの観点から、酢酸エチル、酢酸プロピル及び酢酸ブチルが好適に使用される。助触媒は単量体化合物1モルに対して0.001~10モルの範囲内で使用するが、より好ましくは0.01~1モルである。助触媒の使用量が過大であると、重合速度が減少し、共重合体の収率が低下する。一方、助触媒の使用量が過少であると、重合反応の選択性が低下し、分子量分布の増大、ゲルの生成等が生じる他、重合反応の制御が困難となる。
 またラジカル重合で多官能ビニル共重合体を製造する際に用いられる触媒としては、アゾビスイソブチロニトリルに代表されるアゾ系化合物、ジベンゾイルパーオキサイド、t-ブチルパーオキシベンゾエート等の単官能性の過酸化物や1,1-ビス(t-ブチルパーオキシ)シクロヘキサンのような2官能性以上の多官能性の過酸化物が例示され、単独または2種以上を併用して使用することができる。
 本発明で使用する多官能ビニル共重合体は上記のような製造方法で得ることができるが、単量体として使用するジビニル化合物のビニル基の一部は重合させずに残すことが必要である。そして、少なくとも平均して1分子中に2以上、好ましくは3以上のビニル基が存在するようにする。このビニル基は主として上記式(a1)で表わされる構造単位として存在する。そして、ビニル基の一部は重合させずに残すことにより架橋反応を抑制し、溶剤可溶性を与えることができる。ここで、溶剤可溶性とは、トルエン、キシレン、THF、ジクロロエタン又はクロロホルムに可溶であることをいい、具体的にはこれらの溶媒100gに、25℃において5g以上が溶解し、ゲルが発生しないことをいう。一方、ジビニル化合物の一部は2つビニル基が反応して架橋又は分岐することが必要であり、これにより分岐構造を有する共重合体とすることができる。このように、ジビニル化合物の一部については2つビニル基の一つは反応させ、一つは重合させずに残し、他の一部については2つビニル基を反応させることにより本発明で使用する多官能ビニル共重合体を得ることができる。このような多官能ビニル共重合体を得る重合方法は、上記のように公知であり、上記のようにして製造することができる。
 多官能ビニル共重合体の重量平均分子量(Mw)は、1,000~100,000であることが好ましく、5,000~70,000がより好ましい。1000より小さい場合は、感光性樹脂組成物とした時の粘度が低くなり、塗工した場合の厚膜の形成が困難になる、ドライフィルムとしたときタックが発生するなど、加工、取り扱い性が低下する。また、Mwが100,000以上であると、組成物としたときの溶解性が低下し、外観不良が発生したり、高分子量化によりアルカリ溶解性が低下するため現像性が悪化する傾向にある。
 また、多官能ビニル共重合体はその末端の一部に重合添加剤に由来するフェノール性水酸基または上記式(2)で表される構造単位を有していることが好ましく、さらにフェノール性水酸基の末端への導入量は2.2個/分子以上であることが好ましい。末端にフェノール性水酸基が導入されることによって、アルカリ溶液による現像特性が向上した樹脂組成物を得ることができる。なお、多官能ビニル共重合体の末端の一部にフェノール性水酸基が導入された場合、アルカリ可溶性樹脂としての性能を示す場合があるが、この場合は多官能ビニル共重合体として計算し、アルカリ可溶性樹脂としては計算しない。上記式(2)において、R2及びR3は上記の意味を有するが、R2としては炭素数1~6のアルキレン基が好ましい。
 多官能ビニル共重合体に導入されるジビニル化合物由来のビニル基を含有するユニットは上記式(a1)で表わされる構造単位を有するが、この構造単位(a1)のモル分率は、0.1~0.9であることがよく、好ましくは0.1~0.5、より好ましくは0.1~0.3である。モル分率が、0.1より少ない場合は、硬化物の架橋密度が低くなり、耐水性や耐マイグレーション、耐熱性が低下するため好ましくない。一方、0.9を超える場合は、硬化物の過度の架橋が進行し、脆くなるため好ましくない。また、上記したように不飽和結合を分子内に有する化合物にて末端変性したものは、式(a1)で表わされる構造単位の他に、末端の不飽和結合含有構造単位(a2)もビニル基を有するので、両者の合計のモル分率(a3)が、0.1~0.9であることがよく、好ましくは0.1~0.5、より好ましくは0.1~0.3である。この末端の不飽和結合含有構造単位(a2)は光反応性に優れており、この構造が導入されることで解像性、感度が向上する。上記モル分率の計算においては、共重合体を構成する主鎖、側鎖及び末端を形成する単位(基)の合計を1として計算する。
 式(a1)において、R1はジビニル化合物由来の2価の基であり、ジビニル化合物がジビニルベンゼンである場合は、R1はフェニレン基である。
 B)成分のアルカリ可溶性樹脂成分は、ポリオール化合物と多価カルボン酸類とを反応させて得られるカルボキシル基含有共重合体(b)を含み、酸価が50~200mgKOH/gである。このカルボキシル基含有共重合体(b)は、酸価が50~200mgKOH/gで、重量平均分子量が3,000~40,000であることが好ましい。カルボキシル基含有共重合体(b)は、アルカリ可溶性樹脂成分にアルカリ可溶性を与える主たる成分となる。そのため、カルボキシル基含有共重合体(b)は、(A)成分と(B)成分の合計100重量部に対して、10~30重量部で含有されていることが好ましい。
 B)成分のアルカリ可溶性樹脂成分は、硬化後においてアルカリ可溶性を与えることができる酸価を有する。B)成分のアルカリ可溶性樹脂成分は、上記カルボキシル基含有共重合体(b)のみからなってもよいが、樹脂組成物に要求される各種の物性を調整するため、カルボキシル基含有共重合体(b)を含むアルカリ可溶性樹脂成分を得る際に、原料中に光重合可能なエチレン性不飽和結合を一分子中に1つ以上含む不飽和化合物(c)、及びエポキシ樹脂(d)を存在させ、これらを共重合又は重合又は混合させたものとすることがよく、好ましくは共重合させることである。この場合も、アルカリ可溶性樹脂成分の酸価が上記範囲となるように、カルボキシル基含有化合物の使用量を調整する。ポリオール化合物と多価カルボン酸類のいずれかが不飽和結合を有すれば、不飽和化合物(c)との共重合が可能となり、エポキシ樹脂(d)はポリオール化合物と多価カルボン酸類のOH基又はCOOH基と反応性であるので、少なくとも一部は共重合すると考えられる。
 上記カルボキシル基含有共重合体(b)を得るためのポリオール化合物としては、重合反応時の分子量増加の観点から、分子中に2つのヒドロキシル基を持つものが好ましく、このヒドロキシル基と多価カルボン酸類、好ましくは酸二無水物中の2つの酸無水物基との反応性が等しくなる、例えば対称な分子構造を有するものが好ましい。
 ポリオール化合物の好ましい具体例としては、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、水添ビスフェノールA、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシフェニル)スルホン、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、9,9-ビス(4-ヒドロキフェニル)フルオレン、ビス(4-ヒドロキシフェニル)ジメチルシラン、4,4’-ビフェノール、フェノールノボラック、クレゾールノボラック、あるいはフェノールノボラックやクレゾールノボラックの一部がグリシジルエーテル化された化合物等が挙げられる。また、これらポリオール化合物から誘導した各種ポリグリシジルエーテルと(メタ)アクリル酸との付加化合物、脂環系エポキシと(メタ)アクリル酸との付加物、前述のビスフェノール類とエチレンオキシドあるいはプロピレンオキシドとの付加物等が好ましく挙げられる。特に、(メタ)アクリル酸付加物は多価カルボン酸類との反応後に同一分子中に重合性不飽和結合とアルカリ可溶性カルボキシル基を持つために、露光感度の向上と高解像度化に対して好ましい。
 カルボキシル基含有共重合体の中でも、優れた耐熱性を発現させるために、単位構造中にフルオレン骨格を有する樹脂(以下、フルオレン骨格含有樹脂という)が好ましく、カルボキシル基含有共重合体中30重量%以上、好ましくは50重量%以上用いることが樹脂組成物の耐熱性発現に効果がある。
 フルオレン骨格含有樹脂として特に好ましいのは、ビスフェノールフルオレンエポキシ(メタ)アクリレートを多価カルボン酸又はその無水物と反応させて得られるフルオレン骨格を有する樹脂である。ビスフェノールフルオレン型エポキシ(メタ)アクリレートを多価カルボン酸又はその酸無水物と反応させることにより、アルカリ可溶性とすることができる。
 多価カルボン酸類としては、多価カルボン酸、その酸無水物、酸塩化物等が挙げられるが、酸無水物が好ましい。多価カルボン酸としては、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、クロレンド酸、メチルテトラヒドロフタル酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ビフェニルエーテルテトラカルボン酸等を挙げることができるが、少なくとも一部はテトラカルボン酸又は酸二無水物であることが好ましい。これらはその1種のみを単独で用いることができるほか、2種以上を併用することもできる。
 エポキシ(メタ)アクリレート等のポリオール化合物と多価カルボン酸類との反応は公知の方法で行うことができる。また、使用する多価カルボン酸類については、得られたフルオレン骨格含有樹脂の酸価を10mgKOH/g以上にして十分なアルカリ可溶性を発現させるために、好ましくは3塩基酸以上である多価カルボン酸の酸無水物若しくはこれらの混合物であるのがよい。
 光重合可能なエチレン性不飽和結合を一分子中に1つ以上含む単量体(c)を使用する場合、その代表的なものとしては、アクリレート類が挙げられる。アクリレート類としては、例えばポリエチレングリコール(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート等の水酸基を有するものや、例えばアリル(メタ)アクリレート、ブトキシトリエチレングリコール(メタ)アクリレート、メタクリロキシプロピルトリメトキシシラン、グリシジル(メタ)アクリレート、テトラフロオロプロピル(メタ)アクリレート、ジブロモプロピル(メタ)アクリレート等の脂肪族(メタ)アクリレート類や、例えばシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の脂環式変性(メタ)アクリレート類、その他芳香族(メタ)アクリレート類、リン含有(メタ)アクリレート類等が挙げられる。また、ジエチレングリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、テトラブロモビスフェノールAジ(メタ)アクリレート等の二官能化合物が挙げられる。更に、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ウレタントリ(メタ)アクリレート等の三官能以上の化合物が挙げられる。
 そして、エチレン性不飽和結合を有する上記の単官能化合物、二官能化合物及び三官能以上の化合物に関して、そのカプロラクトン、プロピレンオキサイド、エチレンオキサイド変性物等も同様に使用可能である。また、他の重合性モノマー、例えばビニルアセテート、ビニルカプロラクタム、ビニルピロリドン、スチレン等のビニル化合物等の単官能化合物も必要により使用することができる。更に、ポリエステル樹脂、ポリビニル系樹脂等も必要により使用することができる。そして、これらの単官能化合物、二官能化合物及び三官能以上の化合物並びにその変性物又は樹脂については、その1種のみを単独で使用できることはもちろん、2種以上を併用して使用することもできる。また、1分子当たりの平均のエチレン性不飽和結合の数は1.5以上であることが好ましい。
 特に、本発明の感光性樹脂組成物として、アルカリ可溶性に加えて優れた光硬化性、すなわち高感度化が要求される場合には、重合可能な二重結合を1分子中に2つ(二官能)以上、より好ましくは3つ(三官能)以上有する樹脂又はモノマーを配合することが好ましい。光重合可能なエチレン性不飽和結合を一分子中に1つ以上含む単量体(c)の使用量は、上記(A)成分と(B)成分の合計100重量部に対して3~25重量部の範囲にあることが好ましい。
 エポキシ樹脂(d)を配合する場合、エポキシ樹脂としては、例えばフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂等のエポキシ樹脂、フェニルグリシジルエーテル、p-ブチルフェノールグリシジルエーテル、トリグリシジルイソシアヌレート、ジグリシジルイソシアヌレート、アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を少なくとも1個有する化合物等が挙げられる。このエポキシ樹脂の使用量は、アルカリ可溶性樹脂のアルカリ可溶性の性質が維持される範囲内で配合するのがよく、上記(A)成分と(B)成分の合計100重量部に対して10~35重量部の範囲で配合するのがよい。
 光重合開始剤(C)としては、例えばミヒラーズケトン等のラジカル発生型のものや、トリアリールスルフォニウム塩、ジアリールヨウドニウム塩等のカチオン発生型等が挙げられる。そして、これらは単独でも、また、2種類以上を併用することもできる。この光重合開始剤の使用量は、上記(A)成分と(B)成分、(C)成分の合計100重量部に対して0.1~10重量部、好ましくは1~5重量部の範囲で配合するのがよい。10重量部を超えると吸光割合が大きくなり、光が下部まで浸透しなくなるおそれがある。
 これら光重合開始剤としては、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1-オンなどのアセトフェノン類;2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントンなどのチオキサントン類;アセトフエノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド類等が挙げられる。
 また、このような光重合開始剤の他に、例えばN,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、トリエタノールアミン、トリエチルアミン等のような公知の光増感剤と組み合わせて用いることができ、その際にこれらの光増感剤は単独で用いることができるほか、2種類以上を組み合わせて用いてもよい。光増感剤は光重合開始剤に対し10~70重量%の範囲で使用することが好ましい。
 更に、本発明の感光性樹脂組成物には、硬化物の低熱膨張化、弾性率や吸湿性の改善等を目的に、例えばシリカ、アルミナ、酸化チタン、窒化ホウ素等の無機フィラーの1種又は2種以上を配合してもよい。また、本発明の感光性樹脂組成物には、必要に応じて、エポキシ樹脂硬化促進剤、重合禁止剤、可塑剤、レベリング剤、消泡剤、さらには難燃剤として、臭素系化合物、リン系化合物、アンチモン類等の添加剤を配合することができる。また、過マンガン酸塩溶液等による表面粗面化のための助剤として、ポリブタジエンなどのゴム成分も添加してよい。さらにエポキシ樹脂硬化剤や溶媒可溶性樹脂等を配合することもできるが、硬化剤や樹脂はアルカリ可溶性樹脂として計算する。溶媒可溶性樹脂としては、多官能ビニル共重合体との相溶性に優れるポリフェニレンエーテル系樹脂が好ましい。ポリフェニレンエーテル系樹脂は硬化物の耐熱性の向上とともに誘電特性に優れる。
 エポキシ樹脂硬化促進剤としては、例えばアミン化合物類、イミダゾール化合物、カルボン酸類、フェノール類、第4級アンモニウム塩類又はメチロール基含有化合物類等が挙げられる。熱重合禁止剤としては、例えばハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、tert-ブチルカテコール、フェノチアジン等が挙げられる。可塑剤としては、例えばジブチルフタレート、ジオクチルフタレート、トリクレジル等が挙げられる。消泡剤、レベリング剤としては、例えばシリコン系、フッ素系、アクリル系の化合物等が挙げられる。
 本発明の感光性樹脂組成物は、必要に応じて溶剤を配合してその粘度を調整することもできる。溶剤としては、上記感光性樹脂組成物のアルカリ可溶性樹脂成分を溶解し、かつ、アルカリ可溶性樹脂成分の樹脂及び添加剤と反応しないものである必要があり、これらの条件を満たせば特に制限されるものではない。
 本発明の感光性樹脂組成物は、上記のように溶剤、フィラー等を配合することができるが、溶剤及びフィラーを除いた感光性樹脂組成物として、上記(A)成分、(B)成分及び(C)成分を次の範囲で含むことが好ましい。%はwt%である。
 (A)成分:1~50%、好ましくは5~24%
 (B)成分:50~98%、好ましくは75~94%
 (C)成分:0.1~10%、好ましくは0.5~5%
 本発明の感光性樹脂組成物の使用方法は、1)ワニスとして調整した後、これを目的対象物に塗布して絶縁樹脂層を形成して使用する方法や2)感光性樹脂組成物を予め後に剥離除去される支持基材上に塗布し、溶剤を除去した積層体(ドライフィルム)を形成して使用する方法が挙げられる。
 ワニスとして使用する場合は、例えばワニス状に調整した本発明の感光性樹脂組成物をスピンコート、カーテンコート等の手段により基板上に塗布し、乾燥、露光、現像により、パターンを形成した後、熱硬化する方法が挙げられる。また、予めドライフィルムレジストを形成して使用する場合には、本発明の感光性樹脂組成物を支持基材上に均一に塗布し、熱風乾燥などにより溶剤を乾燥後、必要に応じて保護フィルムをかけて巻きとる方法が例示される。乾燥温度は、不飽和化合物の熱安定性と生産性を考えて80~120℃が好ましい。また、乾燥時の塗膜表面の皮張り現象、発泡を防ぐために多段階で昇温するのが望ましい。
 本発明のドライフィルムレジストは、上記のようにして製造することができる。乾燥後の樹脂層には、有機溶剤が残存することが多いが、その含有量は15重量%以下、好ましくは10重量%以下にすることが望ましい。ここでいう含有量は乾燥後の樹脂層重量を100重量%として、再び200℃にて30分間乾燥した後を絶対乾燥重量としたときの減少した重量%である。これが15重量%を越えるとコ-ルドフロ-が生じやすくなる。
 感光性樹脂組成物からなる乾燥後の絶縁樹脂層の厚みは、用途によって異なるが、液晶ディスプレイ向けには1~10μm、回路基板用には5~100μmである。樹脂層の厚みが薄いほど解像度は向上し、樹脂層の厚みと同等以下のヴィア並びに微細なラインを形成することができる。例えば、30μm膜厚のとき、30μmのヴィア、20μmのライン&スペ-スを形成可能である。また、5μmでは20μmの孤立ライン、孤立ドットも形成可能である。
 感光性樹脂組成物を塗布する支持基材(フィルム)としては、活性光を透過する透明なものが望ましい。このような活性光を透過する支持層としては、公知のポリエチレンテレフタレートフィルム、ポリアクリロニトリルフィルム、光学用ポリプロピレンフィルム、セルロース誘導体フィルムなどがあげられる。これらのフィルムの厚みは薄い方が画像形成性、経済性の面で有利だが、強度を維持する必要等から10~30μmのものが一般的である。また、本発明の積層体においては、支持基材とは接しない方の絶縁樹脂層表面に、必要に応じて保護フィルムを積層することが出来る。この保護フィルムは、支持フィルムよりも感光性樹脂組成物層との密着力が十分に小さく、容易に剥離できることが望ましい。このようなフィルムとしては、例えばポリエチレンフィルムがある。
 本発明の感光性樹脂組成物の硬化膜を用いた回路基板の作成、マルチチップモジュールの作成、液晶ディスプレイ用カラーフィルターやスペーサーの作成は、公知の技術により行われるが、以下に回路基板の作成を例にその工程を簡単に述べる。
 保護フィルムがある場合は、まず保護フィルムを剥離した後、絶縁樹脂層を基板表面にホットロールラミネーターなどにより加熱圧着し積層する。この時の加熱温度は70~120℃、好ましくは80~110℃である。70℃を下回ると基板との密着性に劣り、120℃を越えるとサイドエッジから感光性樹脂層がはみ出して膜厚精度が損なわれる。次に、支持基材を剥離しマスクを通して活性光により画像露光する。続いて、アルカリ水溶液を用いて感光性樹脂層の未露光部を現像除去する。アルカリ水溶液としては、炭酸ナトリウム、炭酸カリウム、水酸化カリウム、ジエタノ-ルアミン、テトラメチルアンモニウムヒドロキサイド等の水溶液を用いることができる。これらの現像液は樹脂層の特性に合わせて選択されるが、界面活性剤との併用も可能である。そして、熱により重合又は硬化(両者を合わせて硬化ということがある)を完結させ永久絶縁膜等の硬化物とする。このとき、樹脂に耐熱性を付与するため、160~200℃の範囲での熱硬化が好ましい。
 熱硬化された樹脂層表面は、必要に応じバフ研磨による平坦化処理を行い、次いで、過マンガン酸塩を用いた公知のデスミアプロセスを適用することで粗化を行い、次いで公知の手段により無電解銅メッキを施し、必要により電解銅メッキを行い、導体層を形成する。なお、電解銅メッキ後は、アニール処理することが好ましい。導体層を選択的にエッチング除去することで回路を形成した後、再び絶縁層を積層する工程から繰り返せば、多層の回路基板を形成できる。
 以下、合成例、実施例、比較例により、本発明を更に詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、以下の合成例における樹脂の評価は、断りのない限り以下の通りである。
[固形分濃度]
 得られた樹脂溶液の約1g強を、ガラスフィルターW0(g)に含浸させて秤量W1(g)し、160℃にて2時間加熱した後の重量W2(g)から次式により求めた。
固形分濃度(重量%)=100×(W2-W0)/(W1-W0)
[酸価]
 得られた樹脂溶液を、ジオキサン-エタノール等量混合溶液にいれ、フェノールフタレインを指示薬として1/10N-KOHエタノ-ル(50%)水溶液で滴定して求めた。
[分子量]
 テトラヒドロフランを展開溶媒としてRI(屈折率)検出器を備えたゲルパーミエーションクロマトグラフィー(GPC)により求めた。示した分子量は、未反応原料を除いたカルボキシル基含有共重合体部分のポリスチレン換算の重量平均分子量(Mw)である。
[ポリマーの構造]
 日本電子製JNM-LA600型核磁気共鳴分光装置を用い、13C-NMR及び1H-NMR分析により決定した。溶媒としてクロロホルム-d1を使用し、テトラメチルシランの共鳴線を内部標準として使用し、構造単位(a1)のモル分率を求めた。
[末端フェノール性水酸基]
 上記のGPC測定より得られる数平均分子量と1H-NMR測定と元素分析の結果より得られる末端のフェノール性水酸基量とから算出した。
 また、合成例、実施例で使用する略号は次のとおりである。
FHPA:フルオレンビスフェノール型エポキシ樹脂とアクリル酸との等当量反応物(新日鐵化学社製、ASF-400の溶液:固形分濃度50wt%、固形分換算の酸価1.28mgKOH/g、エポキシ当量21300)
BPDA:ビフェニルテトラカルボン酸二無水物
THPA:テトラヒドロ無水フタル酸
PGMEA:プロピレングリコールモノメチルエーテルアセテート
TEABr:テトラエチルアンモニウムブロミド
TMPTA:トリメチロールプロパントリアクリレート
DPHA:KAYARAD DPHA(日本化薬株式会社製)
YD-134及び128:ビスフェノールA型エポキシ樹脂(新日鐵化学株式会社製エポトート)
PPE:ポリフェニレンエーテル(三菱ガス化学株式会社製、極限粘度0.45品)
合成例1
(多官能ビニル共重合体 PV-A)
 ジビニルベンゼン159.8g(14.4wt%)、エチルビニルベンゼン93.8g(8.5wt%)、スチレン223.2g(20.1wt%)、2-フェノキシエチルメタクリレート632.7g(57.0wt%)、トルエン1081gを3Lの反応器内に投入し、50℃で56.8gの三フッ化ホウ素のジエチルエーテル錯体を添加し、6時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、多官能ビニル共重合体PV-Aを340.8g(収率:30.7wt%)得た。この多官能ビニル共重合体αの重量平均分子量Mwは8000で、ジビニル化合物由来のビニル基を含有する構造単位(a1)のモル分率は0.18、末端の2-フェノキシエチルメタクリレート由来の二重結合(a2)は0.02、両者を合わせた合計のモル分率(a3)は0.20であった。
合成例2
(多官能ビニル共重合体 PV-B)
 ジビニルベンゼン332.0g(26.2wt%)、エチルビニルベンゼン195.0g(15.4wt%)、スチレン109.6g(8.6wt%)、2-フェノキシエチルメタクリレート631.1g(49.8wt%)、トルエン865.0gを3Lの反応器内に投入し、50℃で35.5gの三フッ化ホウ素のジエチルエーテル錯体を添加し、3時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、多官能ビニル共重合体PV-Bを564g(収率:44.5wt%)得た。この多官能ビニル共重合体PV-BのMwは8000で、ジビニル化合物由来のビニル基を含有する構造単位(a1)のモル分率は0.34、末端の2-フェノキシエチルメタクリレート由来の二重結合(a2)は0.03、両者を合わせた合計のモル分率(a3)は0.37であった。
合成例3
(多官能ビニル共重合体 PV-C)
 ジビニルベンゼン4230g(58.6wt%)、エチルビニルベンゼン169g(2.3wt%)、スチレン1170g(16.2wt%)、2,6-キシレノール1649g(22.8wt%)、酢酸エチル158g、トルエン12745gを30Lの反応器内に投入し、70℃で18g(120ミリモル)の三フッ化ホウ素のジエチルエーテル錯体を添加し、2時間反応させた。重合溶液を1-ブタノール53.3gで停止させた後、室温で反応混合液を大量のn-へキサンに投入し、多官能ビニル共重合体を析出させた。得られた共重合体をn-へキサンで洗浄し、濾別、乾燥、秤量して、多官能ビニル共重合体PV-Cを3948g(収率:70.9wt%)得た。
 得られた多官能ビニル共重合体PV-CのMnは2820、Mwは10800、Mw/Mnは3.84であった。元素分析結果を行った結果、C:88.2wt%、H:7.9wt%、O:3.3wt%であった。元素分析結果と標準ポリスチレン換算の数平均分子量から算出される可溶性多官能ビニル芳香族重合体のフェノール性水酸基の導入量は5.8(個/分子)であった。また、ジビニルベンゼン由来の構造単位を79.2モル%及びスチレンとエチルベンゼン由来の構造単位を合計20.7モル%含有していた。多官能ビニル共重合体PV-C中に含まれるジビニル化合物由来のビニル基を含有する構造単位(a1)のモル分率は0.32であった。共重合体PV-Cはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
合成例4
(アルカリ可溶性樹脂溶液 AD-A)
 還留冷却器付き300ml四つ口フラスコ中にFHPA溶液96.0gと、BPDA14.4g、PGMEA2.5g及びTEABr0.15gを仕込み、120~125℃に加熱下に2時間撹拌し、更に60~62℃にて8時間の加熱撹拌を行って、カルボキシル基含有共重合樹脂を含むアルカリ可溶性樹脂溶液AD-Aを得た。得られた樹脂溶液の固形分は56.5wt%、酸価(固形分換算)は90.3mgKOH/g、GPC分析による樹脂溶液中のカルボキシル基含有共重合体の面積%は90%、重量平均分子量は15000であった。
合成例5
(アルカリ可溶性樹脂溶液 AD-B)
 還留冷却器付き300ml四つ口フラスコ中にFHPA溶液96.0gと、BPDA10.8g、THPA5.6g、PGMEA1.64g及びTEABr0.15gを仕込み、120~125℃に加熱下に2時間撹拌し、更に60~62℃にて8時間の加熱撹拌を行って、カルボキシル基含有共重合樹脂を含むアルカリ可溶性樹脂溶液AD-Bを得た。得られた樹脂溶液の固形分は56.5wt%、酸価(固形分換算)は88.1mgKOH/g、GPC分析による樹脂溶液中のカルボキシル基含有共重合体の面積%は96%、Mwは5400であった。
合成例6
(アルカリ可溶性樹脂溶液 AD-C)
 エチルカルビトールアセテート中において、エポキシ当量が220で、かつ1分子中に平均して7個のフェノール残基と、エポキシ基を有するクレゾールノボラック型エポキシ樹脂のエポキシ基1モルに対し、アクリル酸を1モルの割合で反応させて得られた反応物に、THPAを0.6モルの割合で反応させ、カルボキシル基含有共重合樹脂を含むアルカリ可溶性樹脂溶液AD-Cを得た。得られた樹脂溶液の固形分は66.7wt%の粘ちょうな液体であり、樹脂分の酸価は88mgKOH/gであった。
合成例7
(ビニルベンジルエーテル化合物:比較用)
 ビスフェノールA92g、水酸化カリウム45gをジメチルスルホキシド200g、水30g中に溶解し、これにクロルメチルスチレン124g、ハイドロキノン0.1gをジメチルスルホキシド100gに溶解したものを、70℃で1時間かけて滴下し、さらに70℃で2時間反応を続けた。次に、系内に大過剰の水を加え、ベンゼンで抽出した。ベンゼン層は、水酸化ナトリウム水溶液、蒸留水で洗浄、中和、乾燥した。ベンゼン溜去後、エタノールで再結晶し(収率90%)、下記式(3)で示されるビニルベンジルエーテル化合物(VB)を得た。
Figure JPOXMLDOC01-appb-I000005
 
実施例1      
(樹脂組成物の調製)
 前記合成例4で得られたアルカリ可溶性樹脂溶液AD-Aを樹脂成分換算で55重量部、不飽和化合物としてトリメチロールプロパントリアクリレート(TMPTA)10重量部、多官能ビニル共重合体として合成例1で得られた多官能ビニル共重合体PV-Aを7重量部、光重合開始剤として2-メチル-1-[4-(メチルチオ)フェニル]-2-モノフォリノプロパン-1-オン(開始剤A)を2重量部、エポキシ樹脂(新日鐵化学株式会社製エポトートYD-134)を26重量部、増感剤(保土ヶ谷化学工業製EABF)を0.04重量部と酢酸エチル100重量部とを混合し、攪拌機により1時間、溶解させて樹脂組成物溶液を調製し感光性樹脂組成物を調製した。
(ドライフィルムレジストの作成)
 上記のように調整した樹脂組成物溶液をダイコーターにより厚み25μm、幅600mmのポリエステルフィルムに塗布し、80~120℃の温度範囲で設定した連続4段乾燥炉中で乾燥し、残存溶剤率2.3%、膜厚30μmの絶縁樹脂層を得た。その乾燥塗膜上に厚さ60μmのポリエチレン製保護フィルムをラミネートし、ドライフィルムレジストを作製した。
(多層プリント配線板の製造)
 市販の0.8mm厚のガラスエポキシ基板上の導体回路パターンを黒化処理した後、上記ドライフィルムレジストから保護フィルムを剥がし、80℃、転写圧力3kgf/cm、転写速度25cm/分でラミネートした後、ポリエステルフィルムを冷却後剥離して、導体回路パターン上に30μm厚の感光性樹脂層を形成した。次に、上記パネルの感光性樹脂層上にバイアホールパターンを設けたネガ型マスクを介して超高圧水銀ランプ(ハイテック社製、照度11mJ/cm、I線基準)で250mJ/cm の条件で紫外線照射による露光を行った後、1.2%テトラメチルアンモニウムヒドリド溶液を現像液として使用し、28℃で揺動しながら導体回路パターンが露出するまで1分間の現像の後、3.0kg/cmの圧力で純水リンスを30秒間行い、直径30μmのバイアホールを形成した。引き続き、空気雰囲気下で180℃、60分の条件で熱硬化させ絶縁膜を得た。
(絶縁膜の粗化プロセス)
 得られた絶縁膜の表面を♯1000の紙やすりで3g/cm相当バフ研磨した後、荏原電産デスミアプロセスに従い、DI-464の50%水溶液を用い液温70℃の条件で5分間浸漬して表面を膨潤させて直ちに水洗1分、50℃での湯洗2分を行った後、過マンガン酸カリウム系の粗化液PM‐465A(50g/l)、PM‐465B(15%)を用い液温60℃の条件で5分間浸漬させ表面を祖化した。引き続き水洗を1分間行った後、表面の過マンガン酸カリウム液の残渣を除去するためにN‐466中和液を用い室温にて5分間処理した。更に、水洗1分の後に超音波洗浄器により10分間の洗浄を行い、80℃で1時間乾燥することで絶縁層の表面に祖化されたアンカー部分を形成した。
(粗化表面のメッキ工程)
 次に上記基板を奥野製薬工業株式会社OPCプロセスにより無電解銅メッキを行った後、上村工業株式会社ピロブライトプロセスにて電流密度2~2.5A/dmで電解メッキを行い、ピンホールのない厚さ18μmの析出メッキを形成し、更に、110℃の条件で60分間、次いで180℃の条件で60分間熱処理を行うことで、上層に銅箔導体層が形成された絶縁膜を形成した。
(導体層のパターン形成工程)
 引き続き、形成された導体上に周知のエッチングレジストを形成して不要部分の銅を除去し、レジストを溶解することにより、メッキバイアホールを有する多層プリント配線板が得られた。
 次に、上記のように作成したドライフィルム、多層プリント配線板の評価を下記の様に行った。
 一方、絶縁膜そのものの物性として、市販の4インチシリコンウエハにアルミニウムを蒸着したアルミ蒸着ウエハを用い、保護フィルムを剥がした前記積層体を80℃の条件で、転写圧力3kgf/cm、転写速度25cm/分でラミネ-トした後、ポリエステルフィルムを冷却後剥離して、アルミ蒸着ウエハ上に30μm厚の絶縁層を形成した。次に、上記ウエハの絶縁層上に試験片パターンを設けたネガ型マスクを介して超高圧水銀ランプ(ハイテック社製、照度11mJ/cm、I線基準)で250mJ/cmの条件で紫外線照射による露光を行った後、1.2%テトラメチルアンモニウムヒドリド溶液を現像液として使用し、28℃で揺動しながらアルミ蒸着ウエハが露出するまで1分間の現像の後、3.0kg/cmの圧力で純水リンスを30秒間行い、各種試験片を形成した。引き続き、空気雰囲気下で180℃、90分の条件で熱硬化させ、硬化した絶縁膜を得た。このようにして得た試験片を各種物性測定に使用した。
[タック性]
 上記のドライフィルムの乾燥した塗膜表面に指を軽く押しつけ、指に対する張り付き程度を以下の基準で評価した。
A:全く張り付きなし
B:殆ど張り付きなし
C:ほんの僅かに張り付きあり
×:張り付きあり
[感度]
 上記のドライフィルムを黒化処理銅箔上にラミネートした後、感度測定用ステップタブレット(コダック21段)を設置し、このステップタブレットを通して、超高圧水銀ランプ(ハイテック社製、照度11mJ/cm、I線基準)で250mJ/cmの条件で紫外線照射による露光を行った後、1.2%テトラメチルアンモニウムヒドリド溶液を現像液として使用し、28℃で揺動しながら導体回路パターンが露出するまで1分間の現像の後、3.0kg/cmの圧力で純水リンスを30秒間行った後の露光部分の除去されない部分を数字(ステップ数)で表す方法(ステップ数が大きいほど感光特性が良好)により測定し、その得られた数字で感度を表した。
[ガラス転移温度(Tg)]
 硬化した絶縁膜を動的粘弾性法を用いて測定した。
[誘電率、誘電正接(Tanδ)]
 硬化した絶縁膜を測定装置としてインピーダンスアナライザーHP4291(アジレントテクノロジー社製)を用いて、1GHzで測定を行なった。
[密着性]
 JIS-C6481に従って絶縁膜上に形成された銅箔の90度ピール試験を行い、引き剥がし強さ(kg/cm)を測定した。
[耐湿性]
 上記の硬化膜上に銅メッキが施された基板を試験片として、その試験片をプレッシャークッカー装置内に投入し、温度121℃、圧力2気圧、湿度100%の雰囲気下で200時間放置後、その層間絶縁膜の状態を目視により観察し、以下の基準に従い評価した。
A:全く変化が認められないもの
B:ほんの僅か変化しているもの
C:顕著に変化しているもの
×:塗膜が膨潤して剥離したもの
[はんだ耐熱性(耐熱性)]
 上記の硬化膜上に銅メッキが施された基板を試験片として、JIS-C6481の試験方法に従って、260℃のはんだ槽に30秒浸漬後、粘着テープによるピーリング試験を計3サイクル行い、塗膜状態を目視により観察し、以下の基準に従い評価した。
A:3サイクル後も塗膜に変化がないもの
B:3サイクル後に僅かに変化しているもの
C:2サイクル後に変化しているもの
×:1サイクル後に剥離が生じているもの
実施例2~7、比較例1~3
 アルカリ可溶性樹脂成分、不飽和化合物、エポキシ樹脂、その他樹脂を表1に示す配合として、実施例1と同様に感光性樹脂組成物、ドライフィルムを作成し、各種試験を行った。結果をまとめて表1に示す。表中、(A)成分、(B)成分及び(C)成分は、本発明の(A)成分、(B)成分及び(C)成分に対応する成分(比較のための成分、副成分を含む)であり、配合量は重量部である。
Figure JPOXMLDOC01-appb-T000006
 
産業上の利用の可能性
 本発明によれば、低誘電率、低い誘電正接に優れ、作業性がよく、光硬化性、現像性その他の現像特性も損なわないことが可能な感光性樹脂組成物を提供することができる。この感光性樹脂組成物からは、これを硬化して得られる硬化膜を層間絶縁膜として有する多層プリント配線板や、感光性樹脂組成物の塗膜を設けたドライフィルムレジストを提供することができる。また、本発明の感光性樹脂組成物、ドライフィルムレジストは、取り扱い性に優れ、硬化することでプリント配線板の層間絶縁膜やソルダーレジス膜として用いることができる。

Claims (5)

  1.  (A)成分:ジビニル化合物(a)20~99モル%及びモノビニル化合物(b)80~1モル%を共重合して得られる共重合体であって、ジビニル化合物(a)に由来する下記式(a1)で表される未反応のビニル基を含有する構造単位の含有量が10~90モル%である溶剤可溶性多官能ビニル共重合体、
    Figure JPOXMLDOC01-appb-I000001
     
     式中、Rは炭素数6~30の芳香族炭化水素基を示す。
    (B)成分:ポリオール化合物と多価カルボン酸類とを反応させて得られるカルボキシル基含有共重合体(b)を含み、酸価が50~200mgKOH/gであるアルカリ可溶性樹脂成分、及び
    (C)成分:光開始剤
    を含む感光性樹脂組成物であって、(A)成分、(B)成分及び(C)成分の合計に対する(A)成分の配合量が1~98.9wt%、(B)成分の配合量が98.9~1wt%、(C)成分の配合量が0.1~10wt%であることを特徴とするアルカリ現像可能な感光性樹脂組成物。
  2.  溶剤可溶性多官能ビニル共重合体が、末端にフェノール性水酸基を有し、その導入量が2.2個/分子以上であることを特徴とする請求項1に記載の感光性樹脂組成物。
  3.  溶剤可溶性多官能ビニル共重合体が、末端に下記式(a2)で表される不飽和結合を含有する末端基を有することを特徴とする請求項1に記載の感光性樹脂組成物。 
    Figure JPOXMLDOC01-appb-I000002
     
     ここで、Rは(チオ)エーテル性の酸素原子又は硫黄原子を含んでもよい炭素数1~18の炭化水素基であり、Rは水素又はメチル基である。
  4.  カルボキシル基含有共重合体(b)が、一つ以上のビニル基を有するポリオール化合物と多価カルボン酸類とを反応させて得られるカルボキシル基含有共重合体であって、重量平均分子量が3,000~40,000、酸価が50~200mgKOH/gである請求項1に記載の感光性樹脂組成物。
  5.  剥離可能な支持基材上に感光性樹脂層が設けられたドライフィルムレジストにおいて、感光性樹脂層が請求項1~4のいずれかに記載の感光性樹脂組成物から構成されていることを特徴とするドライフィルムレジスト。
PCT/JP2012/073999 2011-09-26 2012-09-20 感光性樹脂組成物及びドライフィルムレジスト WO2013047305A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147011187A KR20140084074A (ko) 2011-09-26 2012-09-20 감광성 수지 조성물 및 드라이 필름 레지스트
CN201280046740.8A CN103842908A (zh) 2011-09-26 2012-09-20 感光性树脂组合物及干膜抗蚀剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011208768 2011-09-26
JP2011-208768 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013047305A1 true WO2013047305A1 (ja) 2013-04-04

Family

ID=47995337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073999 WO2013047305A1 (ja) 2011-09-26 2012-09-20 感光性樹脂組成物及びドライフィルムレジスト

Country Status (5)

Country Link
JP (1) JPWO2013047305A1 (ja)
KR (1) KR20140084074A (ja)
CN (1) CN103842908A (ja)
TW (1) TW201329618A (ja)
WO (1) WO2013047305A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194307A (ja) * 2018-04-27 2019-11-07 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP2021076643A (ja) * 2019-11-06 2021-05-20 昭和電工マテリアルズ株式会社 感光性樹脂組成物、及びそれを用いた配線層と半導体装置
JP2021182149A (ja) * 2016-04-14 2021-11-25 旭化成株式会社 感光性樹脂組成物及び硬化レリーフパターンの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI531860B (zh) * 2014-09-12 2016-05-01 Chi Mei Corp Photosensitive resin composition for color filter and its application
US10338468B2 (en) * 2014-09-24 2019-07-02 Asahi Kasei Kabushiki Kaisha Photosensitive resin composition, photosensitive resin laminate, resin pattern production method, cured film, and display device
JP2022000683A (ja) * 2019-12-13 2022-01-04 旭化成株式会社 感光性樹脂組成物、感光性樹脂組成物を用いた転写フィルム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385538A (ja) * 1986-09-29 1988-04-16 Asahi Chem Ind Co Ltd 光硬化性積層体およびそれを用いた画像形成方法
JP2004027145A (ja) * 2002-06-28 2004-01-29 Tamura Kaken Co Ltd 塗工用硬化性樹脂組成物、多層プリント配線板、プリント配線板及びドライフィルム
WO2009110453A1 (ja) * 2008-03-04 2009-09-11 新日鐵化学株式会社 多官能ビニル芳香族共重合体、その製造方法及び樹脂組成物
JP2010229261A (ja) * 2009-03-26 2010-10-14 Nippon Steel Chem Co Ltd 末端変性多官能ビニル芳香族共重合体及びレジスト組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839261A (en) * 1986-09-29 1989-06-13 Asahi Kasei Kogyo Kabushiki Kaisha Photocurable laminate
CN102718914B (zh) * 2007-03-26 2015-04-22 新日铁住金化学株式会社 可溶性多官能乙烯基芳香族共聚物及其制造方法
JP5443806B2 (ja) * 2009-03-26 2014-03-19 新日鉄住金化学株式会社 末端変性可溶性多官能ビニル芳香族共重合体、硬化性樹脂組成物及び硬化物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385538A (ja) * 1986-09-29 1988-04-16 Asahi Chem Ind Co Ltd 光硬化性積層体およびそれを用いた画像形成方法
JP2004027145A (ja) * 2002-06-28 2004-01-29 Tamura Kaken Co Ltd 塗工用硬化性樹脂組成物、多層プリント配線板、プリント配線板及びドライフィルム
WO2009110453A1 (ja) * 2008-03-04 2009-09-11 新日鐵化学株式会社 多官能ビニル芳香族共重合体、その製造方法及び樹脂組成物
JP2010229261A (ja) * 2009-03-26 2010-10-14 Nippon Steel Chem Co Ltd 末端変性多官能ビニル芳香族共重合体及びレジスト組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021182149A (ja) * 2016-04-14 2021-11-25 旭化成株式会社 感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP2019194307A (ja) * 2018-04-27 2019-11-07 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7190649B2 (ja) 2018-04-27 2022-12-16 パナソニックIpマネジメント株式会社 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP2021076643A (ja) * 2019-11-06 2021-05-20 昭和電工マテリアルズ株式会社 感光性樹脂組成物、及びそれを用いた配線層と半導体装置

Also Published As

Publication number Publication date
CN103842908A (zh) 2014-06-04
TW201329618A (zh) 2013-07-16
KR20140084074A (ko) 2014-07-04
JPWO2013047305A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
JP4606684B2 (ja) 光硬化性・熱硬化性樹脂組成物、その感光性ドライフィルム及びそれを用いたパターン形成方法
JP3943883B2 (ja) 絶縁用樹脂組成物及びこれを用いた積層体
WO2013047305A1 (ja) 感光性樹脂組成物及びドライフィルムレジスト
JP3121213B2 (ja) 感光性樹脂組成物
TWI795506B (zh) 樹脂組成物
JP6111248B2 (ja) アルカリ現像型樹脂、それを用いた感光性樹脂組成物
JP7452715B2 (ja) 感光性フィルム
JP2023118726A (ja) 感光性樹脂組成物
JP2024036371A (ja) 感光性樹脂組成物、感光性樹脂フィルム、多層プリント配線板及び半導体パッケージ、並びに多層プリント配線板の製造方法
TWI727175B (zh) 感光性樹脂組成物、乾膜、及印刷線路板
JP3953854B2 (ja) 光硬化性・熱硬化性樹脂組成物
KR20180109731A (ko) 감광성 수지 조성물
JP2018165796A (ja) 感光性樹脂組成物
JPH08123016A (ja) 感光性ソルダーレジスト組成物、これを用いたプリント回路板の製造法、プリント回路板及びこのプリント回路板を用いた機器
JP3731778B2 (ja) 樹脂組成物、永久レジスト樹脂組成物及びこれらの硬化物
JP4147508B2 (ja) 感光性樹脂組成物及びこれを用いた感光性フイルム
WO2003032090A1 (fr) Composition de resine photosensible
JP7354963B2 (ja) 感光性樹脂組成物
JP2001154351A (ja) 感光性樹脂組成物及びこれを用いた感光性フイルム
TW202349121A (zh) 感光性多層樹脂膜、印刷線路板、半導體封裝體及印刷線路板的製造方法
TW202400720A (zh) 感光性樹脂膜、印刷線路板、半導體封裝體及印刷線路板的製造方法
TW202348640A (zh) 感光性樹脂薄膜、印刷線路板、半導體封裝體及印刷線路板的製造方法
JP2010066282A (ja) 感光性樹脂組成物、感光性フィルム、永久マスクレジスト及びその製造方法
JP2022149899A (ja) 感光性樹脂組成物
TW202348427A (zh) 感光性多層樹脂薄膜、印刷線路板、半導體封裝體及印刷線路板的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147011187

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12836161

Country of ref document: EP

Kind code of ref document: A1