WO2013046682A1 - ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体 - Google Patents

ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体 Download PDF

Info

Publication number
WO2013046682A1
WO2013046682A1 PCT/JP2012/006174 JP2012006174W WO2013046682A1 WO 2013046682 A1 WO2013046682 A1 WO 2013046682A1 JP 2012006174 W JP2012006174 W JP 2012006174W WO 2013046682 A1 WO2013046682 A1 WO 2013046682A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
polyphenylene sulfide
sulfide resin
weight
less
Prior art date
Application number
PCT/JP2012/006174
Other languages
English (en)
French (fr)
Inventor
宏之 井砂
齋藤 圭
松本 英樹
義臣 堀口
石王 敦
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020147007277A priority Critical patent/KR101397817B1/ko
Priority to CN201710696189.6A priority patent/CN107383877B/zh
Priority to US14/347,529 priority patent/US9068078B2/en
Priority to JP2012548287A priority patent/JP5273321B1/ja
Priority to CN201280046576.0A priority patent/CN103827213A/zh
Priority to EP12836972.5A priority patent/EP2762530B1/en
Publication of WO2013046682A1 publication Critical patent/WO2013046682A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/168Removing undesirable residual components, e.g. solvents, unreacted monomers; Degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/04Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a polyphenylene sulfide resin composition excellent in tracking resistance, gas generation rate, and mechanical properties, and a method for producing the same, and an electric part such as an electric / electronic part or an automobile electric part. In addition to being particularly useful for applications, it is applicable to a wide variety of fields.
  • Polyphenylene sulfide (hereinafter abbreviated as “PPS”) resin is an engineering plastic excellent in heat resistance, flame retardancy, chemical resistance, electrical insulation, moist heat resistance, mechanical strength and dimensional stability.
  • PPS resin can be molded into various molded products, fibers, films, etc. by various molding methods such as injection molding and extrusion molding. Therefore, PPS resin is put to practical use in a wide range of fields such as electrical / electronic parts, mechanical parts and automobile parts. ing.
  • PPS resin is inferior to other engineering plastics such as polyamide resin and polyester resin with respect to tracking breakdown that occurs when a high voltage is applied to the insulator surface.
  • Patent Document 1 is an application for improving tracking resistance by adding magnesium hydroxide and polyamide resin to PPS resin.
  • Patent Document 2 is an application for a composition in which magnesium hydroxide and a polyolefin polymer and / or a polyolefin copolymer, silicone, and a fluorine resin are added to a PPS resin.
  • Patent Document 3 is an application for a composition in which magnesium hydroxide and carnauba wax and / or carboxylic acid amide wax are added to PPS resin.
  • Patent Document 4 is an application for a PPS resin composition having improved tracking resistance using magnesium hydroxide having a specific primary particle size.
  • the resin composition proposed by the above-mentioned patent document requires a high magnesium hydroxide content in order to obtain sufficiently excellent tracking resistance. For this reason, it had the fault that the mechanical strength of a PPS resin composition falls remarkably.
  • the magnesium hydroxide contained a description regarding the primary particle diameter is recognized, but a description regarding the dispersion state in the composition or the molded product is not recognized. Further, there is no description about a kneading method taking into account the dispersed state.
  • a general melt-kneading method has a drawback in that secondary aggregation of magnesium hydroxide is likely to occur, and mechanical strength is reduced due to secondary aggregation.
  • Patent Document 1 a specific type of polyamide resin is added to the PPS resin. However, since the heat resistance at the melt processing temperature of the PPS resin is inferior, the physical properties of the composition are lowered.
  • Patent Document 5 describes a resin composition in which a large amount of polyamide resin is added to polyarylene sulfide (hereinafter abbreviated as “PAS”) resin as a method for improving tracking resistance of PPS resin without using magnesium hydroxide. It is an application. In the examples of this application, more than 80 parts of polyamide resin is added to 100 parts of PPS resin, and when a polyamide having a high melting point is added, the heat resistance is maintained, but the PPS resin is originally Low gas properties, flame retardancy, dimensional stability, and low water absorption are impaired.
  • PAS polyarylene sulfide
  • Patent Document 6 is an application for a composition in which the dispersion state of a polyamide resin in a PPS resin is improved. By reducing the dispersed particle diameter of the polyamide resin, the effect of improving the toughness is excellent. However, with the composition of the polyamide resin of Patent Document 6, a PPS resin composition having high tracking resistance cannot be obtained.
  • Track failure means that when a voltage is applied to a soiled insulator surface, a short-circuit current flows due to the formation of a carbonized conductive path.
  • the formation of the carbonized conductive path when a high voltage of about 600 V is applied is triggered by partial decomposition of the surface, and the conductive path is rapidly formed. For this reason, the resin composition which does not raise
  • an object of the present invention is to obtain a PPS resin composition excellent in tracking resistance without greatly degrading various properties such as excellent mechanical strength and low gas properties inherently possessed by the PPS resin.
  • the present invention provides a PPS resin composition containing a PPS resin, a polyamide resin, and a metal hydroxide in a specific composition.
  • a PPS resin composition excellent in tracking resistance, mechanical strength, and low gas properties is obtained.
  • the present invention has been made to solve at least a part of the above-described problems, and can be implemented as the following modes.
  • a polyphenylene sulfide resin composition comprising (b) 5 to 50 parts by weight of a polyamide resin and (c) 50 to 250 parts by weight of a metal hydroxide with respect to 100 parts by weight of the (a) polyphenylene sulfide resin, A polyphenylene sulfide resin composition in which the metal hydroxide is dispersed in the composition with an average secondary particle diameter of 5 ⁇ m or less.
  • polyphenylene sulfide resin composition according to (1) or (2), wherein the polyamide resin has a water absorption rate of 0.5% by weight or less after 24 hours under water immersion at 23 ° C.
  • a polyphenylene sulfide resin composition having a weight loss of 2.5% by weight or less at 320 ° C. in air for 2 hours.
  • polyphenylene sulfide resin composition according to any one of (1) to (4), wherein the polyamide resin is an aliphatic polyamide resin having an amide group concentration of 6 or more. .
  • polyphenylene sulfide resin composition according to (5), wherein the polyamide resin is one or more polyamide resins selected from the group consisting of nylon 610, nylon 612, nylon 11, and nylon 12. , Polyphenylene sulfide resin composition.
  • polyphenylene sulfide resin composition according to any one of (1) to (4), wherein the polyamide resin is a semi-aromatic polyamide resin having an amide group concentration exceeding 7. object.
  • polyamide resin is one or more polyamide resins selected from the group consisting of nylon 9T and nylon 10T. .
  • polyphenylene sulfide resin composition according to any one of (1) to (8), wherein the polyphenylene sulfide resin has an ash content of 0.3% by weight or less at 320 ° C. under vacuum.
  • a polyphenylene sulfide resin composition excellent in tracking resistance, mechanical strength, and low gas properties can be obtained.
  • PPS resin used in the embodiment of the present invention is a polymer having a repeating unit represented by the following structural formula.
  • the PPS resin is preferably a polymer containing 70 mol% or more, more preferably 90 mol% or more of the repeating unit represented by the above structural formula.
  • the PPS resin may be composed of a repeating unit having the following structure or the like in which less than 30 mol% of the repeating unit.
  • the melt viscosity of the PPS resin used in the embodiment of the present invention is not particularly limited, but from the viewpoint of fluidity during melt kneading and molding, suppression of metal hydroxide decomposition during melt kneading, and dispersibility control. 200 Pa ⁇ s (300 ° C., shear rate 1216 / s) or less is preferred, 100 Pa ⁇ s or less is more preferred, 70 Pa ⁇ s or less is more preferred, and 50 Pa ⁇ s or less is even more preferred. In general, a polymer compound tends to decrease in viscosity with a decrease in molecular weight.
  • the lower limit is preferably 1 Pa ⁇ s or more, more preferably 5 Pa ⁇ s or more, from the viewpoint of lowering the toughness associated with lower molecular weight.
  • a PPS resin having a melt viscosity exceeding 200 Pa ⁇ s is used and melt kneading with a metal hydroxide or other fillers, large shearing heat is generated and the metal hydroxide or polyamide resin is decomposed. Occurs. For this reason, such a PPS resin is not preferable.
  • the reason is not clear, when a PPS resin having a melt viscosity exceeding 200 Pa ⁇ s is used, the average secondary particle diameter of the metal hydroxide in the composition is increased.
  • the PPS resin having a melt viscosity exceeding 200 Pa ⁇ s has poor tracking resistance and mechanical strength.
  • the method of measuring melt viscosity the method of measuring using the Capillograph by Toyo Seiki Seisakusho Co., Ltd. can be illustrated.
  • the ash content of the PPS resin used in the embodiment of the present invention is preferably 0.3% by weight or less, more preferably 0.2% by weight or less, and more preferably 0.1% by weight or less from the viewpoint of improving tracking resistance. .
  • the mechanism is not clear, it is considered that the presence of a metal-containing substance measured as an ash content contributes to tracking generation at the time of voltage application.
  • the ash content was measured according to the following method. Weigh 5 g of dry PPS bulk powder in a crucible and bake until it becomes a black lump on an electric stove. Next, firing is continued in an electric furnace set at 550 ° C. until the carbide is completely fired. Then, after cooling in a desiccator, the weight is measured, and the ash content is calculated from comparison with the initial weight.
  • the amount of volatile components of the PPS resin used in the embodiment of the present invention when heated and melted at 320 ° C. for 120 minutes under vacuum is 0 in order to satisfy high tracking resistance, low gas generation amount, and high strength. 0.8% by weight or less, more preferably 0.6% by weight or less, and further preferably 0.4% by weight or less.
  • the amount of volatile components includes decomposed products of PPS resin and low molecular weight products. These components are considered to promote the formation of carbonized conductive paths during the tracking resistance test and to inhibit the strength of the PPS resin from being increased.
  • the “volatile component amount” means the amount of the adhesive component that is liquefied or solidified by cooling the component that volatilizes when the PPS resin is heated and melted under vacuum.
  • the amount of volatile components is measured by heating a glass ampoule in which a PPS resin is vacuum-sealed in a tubular furnace.
  • the abdomen is 100 mm ⁇ 25 mm
  • the neck is 255 mm ⁇ 12 mm
  • the wall thickness is 1 mm.
  • only the body of a glass ampoule in which PPS resin is vacuum-sealed is inserted into a 320 ° C.
  • Polyhalogenated aromatic compound refers to a compound having two or more halogen atoms in one molecule. Specific examples include p-dichlorobenzene, m-dichlorobenzene, o-dichlorobenzene, 1,3,5-trichlorobenzene, 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene, hexa Polyhalogenated aroma such as chlorobenzene, 2,5-dichlorotoluene, 2,5-dichloro-p-xylene, 1,4-dibromobenzene, 1,4-diiodobenzene, 1-methoxy-2,5-dichlorobenzene Group compounds, and p-dichlorobenzene is preferably used. It is also possible to combine two or more different polyhalogenated aromatic compounds into a copolymer, but it is preferable to use a p-dihal
  • the amount of polyhalogenated aromatic compound used is preferably 0.9 mol or more, preferably 0.95 mol or more, more preferably 0.95 mol or more per mol of sulfiding agent, from the viewpoint of obtaining a PPS resin having a viscosity suitable for processing.
  • 1.005 mol or more can be exemplified, and the upper limit can be exemplified by 2.0 mol or less, preferably 1.5 mol or less, more preferably 1.2 mol or less per mol of the sulfidizing agent.
  • sulfiding agent examples include alkali metal sulfides, alkali metal hydrosulfides, and hydrogen sulfide.
  • alkali metal sulfide examples include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide, cesium sulfide and a mixture of two or more of these, and sodium sulfide is preferably used.
  • These alkali metal sulfides can be used as hydrates or aqueous mixtures or in the form of anhydrides.
  • alkali metal hydrosulfide examples include, for example, sodium hydrosulfide, potassium hydrosulfide, lithium hydrosulfide, rubidium hydrosulfide, cesium hydrosulfide and a mixture of two or more of these. Preferably used.
  • These alkali metal hydrosulfides can be used as hydrates or aqueous mixtures or in the form of anhydrides.
  • alkali metal sulfide prepared in situ in the reaction system from alkali metal hydrosulfide and alkali metal hydroxide can be used.
  • an alkali metal sulfide can be prepared from an alkali metal hydrosulfide and an alkali metal hydroxide and transferred to a polymerization tank for use.
  • an alkali metal sulfide prepared in situ in a reaction system from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide can also be used.
  • an alkali metal sulfide can be prepared from an alkali metal hydroxide such as lithium hydroxide or sodium hydroxide and hydrogen sulfide, and transferred to a polymerization tank for use.
  • the amount of “charging” sulfidizing agent means the remaining amount obtained by subtracting the loss from the actual charging amount when a partial loss of the sulfidizing agent occurs before the start of the polymerization reaction due to dehydration operation or the like. To do.
  • alkali metal hydroxide and / or an alkaline earth metal hydroxide in combination with the sulfidizing agent.
  • alkali metal hydroxide include sodium hydroxide, potassium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and a mixture of two or more of these.
  • alkaline earth metal hydroxide include calcium hydroxide, strontium hydroxide, barium hydroxide, and the like. Among them, sodium hydroxide is preferably used.
  • an alkali metal hydrosulfide is used as the sulfiding agent, it is particularly preferable to use an alkali metal hydroxide at the same time, but the amount of alkali metal hydroxide used is 1 mol of alkali metal hydrosulfide,
  • the lower limit is 0.95 mol or more, preferably 1.00 mol or more, more preferably 1.005 mol or more, and the upper limit is 1.2 mol or less, preferably 1.15 mol or less, more preferably Is exemplified by 1.100 mol or less.
  • polymerization solvent an organic polar solvent is preferably used.
  • N-alkylpyrrolidones such as N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone
  • caprolactams such as N-methyl- ⁇ -caprolactam, 1,3-dimethyl-2-imidazolide.
  • NMP N-methyl-2-pyrrolidone
  • the amount of the organic polar solvent used is 2.0 mol or more, preferably 2.25 mol or more, more preferably 2.5 mol or more, with respect to 1 mol of the sulfidizing agent. 10 mol or less, preferably 6.0 mol or less, more preferably 5.5 mol or less is selected.
  • a monohalogen compound (not necessarily an aromatic compound) may be used in combination with the polyhalogenated aromatic compound in order to form the end of the PPS resin to be produced or to adjust the polymerization reaction or molecular weight. it can.
  • polymerization aid In order to obtain a PPS resin having a relatively high degree of polymerization in a shorter time, it is also one of preferred embodiments to use a polymerization aid.
  • the “polymerization aid” means a substance having an action of increasing the viscosity of the obtained PPS resin.
  • Specific examples of such polymerization aids include, for example, organic carboxylates, water, alkali metal chlorides, organic sulfonates, alkali metal sulfates, alkaline earth metal oxides, alkali metal phosphates and alkaline earths. Metal phosphates and the like. These may be used alone or in combination of two or more. Of these, organic carboxylates, water, and alkali metal chlorides are preferable. Further, alkali metal carboxylates are preferable as organic carboxylates, and lithium chloride is preferable as alkali metal chlorides.
  • the alkali metal carboxylate is a general formula R (COOM) n (wherein R is an alkyl group, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group having 1 to 20 carbon atoms).
  • M is an alkali metal selected from lithium, sodium, potassium, rubidium and cesium, and n is an integer of 1 to 3.
  • Alkali metal carboxylates can also be used as hydrates, anhydrides or aqueous solutions. Specific examples of the alkali metal carboxylate include, for example, lithium acetate, sodium acetate, potassium acetate, sodium propionate, lithium valerate, sodium benzoate, sodium phenylacetate, potassium p-toluate, and mixtures thereof. Can be mentioned.
  • the alkali metal carboxylate is a reaction in which an organic acid and one or more compounds selected from the group consisting of an alkali metal hydroxide, an alkali metal carbonate and an alkali metal bicarbonate are added at approximately equal chemical equivalents. You may form by.
  • the lithium salt is highly soluble in the reaction system and has a large auxiliary effect, but is expensive.
  • potassium, rubidium and cesium salts appear to have insufficient solubility in the reaction system. For this reason, sodium acetate which is inexpensive and has an appropriate solubility in the polymerization system is most preferably used.
  • the amount used when using these alkali metal carboxylates as polymerization aids is 0.01 mol or more as the lower limit relative to 1 mol of the charged alkali metal sulfide, and 0.1 in terms of obtaining a higher degree of polymerization.
  • the upper limit is preferably 2 moles or more, more preferably 0.2 moles or more, and the upper limit is 2 moles or less, preferably 0.6 moles or less, more preferably 0.5 moles or less in the sense of obtaining a higher degree of polymerization.
  • the lower limit is 0.3 mol or more as a lower limit with respect to 1 mol of charged alkali metal sulfide, and 0.6 mol or more is preferable in the sense of obtaining a higher degree of polymerization. 1 mol or more is more preferable, and the upper limit is 15 mol or less, and in the sense of obtaining a higher degree of polymerization, 10 mol or less is preferable, and 5 mol or less is more preferable.
  • the PPS resin can have a high molecular weight with a smaller amount of the alkali metal carboxylate and water. It becomes.
  • the timing for adding these polymerization aids is not particularly specified, and they may be added at any time during the previous step, at the start of polymerization, or during the polymerization described later, or may be added in multiple portions.
  • an alkali metal carboxylate as a polymerization aid, it is more preferable to add it simultaneously with other additives at the start of the previous step or at the start of the polymerization from the viewpoint of easy addition.
  • water is used as a polymerization aid, it is effective to add the polyhalogenated aromatic compound during the polymerization reaction after charging.
  • a polymerization stabilizer can also be used to stabilize the polymerization reaction system and prevent side reactions.
  • the polymerization stabilizer contributes to stabilization of the polymerization reaction system and suppresses undesirable side reactions.
  • One measure of side reactions is the generation of thiophenol. Generation of thiophenol can be suppressed by adding a polymerization stabilizer.
  • Specific examples of the polymerization stabilizer include compounds such as alkali metal hydroxides, alkali metal carbonates, alkaline earth metal hydroxides, and alkaline earth metal carbonates. Among these, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide are preferable.
  • the alkali metal carboxylate described above also acts as a polymerization stabilizer, it is one of the polymerization stabilizers.
  • an alkali metal hydrosulfide is used as a sulfidizing agent, it has been described above that it is particularly preferable to use an alkali metal hydroxide at the same time.
  • Oxides can also be polymerization stabilizers.
  • polymerization stabilizers can be used alone or in combination of two or more.
  • the polymerization stabilizer can be exemplified by 0.02 mol or more, preferably 0.03 mol or more, more preferably 0.04 mol or more, with respect to 1 mol of the charged alkali metal sulfide. Examples include 0.2 mol or less, preferably 0.1 mol or less, and more preferably 0.09 mol or less. If this ratio is small, the stabilizing effect is insufficient. Conversely, if it is too much, it is economically disadvantageous and the polymer yield tends to decrease.
  • the addition timing of the polymerization stabilizer is not particularly specified, and may be added at any time during the previous step, at the start of polymerization, or during the polymerization described later, or may be added in multiple times. It is more preferable because it is easy to add at the start of the process or at the start of the polymerization.
  • the sulfiding agent is usually used in the form of a hydrate. Before adding the polyhalogenated aromatic compound, the temperature of the mixture containing the organic polar solvent and the sulfiding agent is raised. It is preferable to remove an excessive amount of water out of the system.
  • a sulfidizing agent prepared from an alkali metal hydrosulfide and an alkali metal hydroxide in situ in the reaction system or in a tank different from the polymerization tank is also used as the sulfidizing agent.
  • an alkali metal hydrosulfide and an alkali metal hydroxide as the organic polar solvent in an inert gas atmosphere at room temperature to 150 ° C., preferably in the temperature range from room temperature to 100 ° C.
  • the temperature is raised to at least 150 ° C. or higher, preferably 180 to 260 ° C., and the water is distilled off.
  • a polymerization aid may be added at this stage.
  • moisture content you may react by adding toluene etc.
  • the amount of water in the polymerization system is preferably 0.3 to 10.0 moles per mole of the charged sulfiding agent.
  • the amount of water in the polymerization system is an amount obtained by subtracting the amount of water removed from the polymerization system from the amount of water charged in the polymerization system.
  • the water to be charged may be in any form such as water, an aqueous solution, and crystal water.
  • a PPS resin is produced by reacting a sulfidizing agent and a polyhalogenated aromatic compound in an organic polar solvent within a temperature range of 200 ° C. or higher and lower than 290 ° C.
  • the lower limit is room temperature or higher, preferably 100 ° C. or higher, and the upper limit is 240 ° C. or lower, preferably 230 ° C. or lower, An organic polar solvent, a sulfidizing agent and a polyhalogenated aromatic compound are mixed. A polymerization aid may be added at this stage.
  • the order in which these raw materials are charged may be out of order or may be simultaneous.
  • the temperature of this mixture is usually raised to a range of 200 ° C to 290 ° C.
  • the temperature raising rate is not particularly limited, but as the lower limit, a rate of 0.01 ° C./min or more is selected, and the range of 0.1 ° C./min or more is more preferable, and the upper limit is 5 ° C./min or less.
  • the speed is selected, and a range of 3 ° C./min or less is more preferable.
  • the temperature is finally raised to a temperature of 250 to 290 ° C., and at that temperature, the lower limit is usually 0.25 hours or more, preferably 0.5 hours or more, and the upper limit is 50 hours or less.
  • the reaction is preferably performed in 20 hours or less.
  • a method of reacting at a temperature of 200 ° C. to 260 ° C. for a certain time and then raising the temperature to 270 to 290 ° C. is effective in obtaining a higher degree of polymerization.
  • the reaction time at 200 ° C. to 260 ° C. is usually selected in the range of 0.25 hours to 20 hours, preferably in the range of 0.25 to 10 hours.
  • the polymerization may be effective to perform polymerization in multiple stages.
  • the conversion of the polyhalogenated aromatic compound in the system at 245 ° C. reaches 40 mol% or more, preferably 60 mol%.
  • the conversion rate of the polyhalogenated aromatic compound (herein abbreviated as “PHA”) is a value calculated by the following equation.
  • the residual amount of PHA can usually be determined by gas chromatography.
  • a method of slowly cooling and recovering the particulate polymer may be used.
  • the slow cooling rate at this time is not particularly limited, but is usually about 0.1 ° C./min to 3 ° C./min. It is not necessary to perform slow cooling at the same rate in the entire process of the slow cooling step, such as a method of gradually cooling at a rate of 0.1 to 1 ° C./min until the polymer particles are crystallized and precipitated, and then 1 ° C./min or more. It may be adopted.
  • a preferable method is a flash method.
  • the “flash method” is a method in which a polymerization reaction product is flushed from a high temperature and high pressure (usually 250 ° C. or more, 8 kg / cm 2 or more) into an atmosphere of normal pressure or reduced pressure, and the polymer is powdered simultaneously with solvent recovery. It is a method to collect.
  • “flash” means that a polymerization reaction product is ejected from a nozzle.
  • Specific examples of the atmosphere to be flushed include nitrogen or water vapor at normal pressure, and the temperature is usually in the range of 150 ° C. to 250 ° C.
  • the PPS resin may be produced through the above polymerization and recovery steps and then subjected to acid treatment, hot water treatment or washing with an organic solvent.
  • the acid treatment is as follows.
  • the acid used for the acid treatment of the PPS resin is not particularly limited as long as it does not have an action of decomposing the PPS resin, and examples thereof include acetic acid, hydrochloric acid, sulfuric acid, phosphoric acid, silicic acid, carbonic acid, and propyl acid. Of these, acetic acid and hydrochloric acid are more preferably used. On the other hand, those which decompose and degrade PPS resin such as nitric acid are not preferable.
  • the acid treatment method includes, for example, a method in which a PPS resin is immersed in an acid or an acid aqueous solution, and stirring or heating is also possible if necessary.
  • a PPS resin is immersed in an acid or an acid aqueous solution, and stirring or heating is also possible if necessary.
  • acetic acid a sufficient effect can be obtained by immersing the PPS resin powder in a pH 4 acetic acid aqueous solution heated to 80 to 200 ° C. and stirring for 30 minutes.
  • the pH after the treatment may be 4 or more, for example, about 4 to 8.
  • the water used for washing is preferably distilled water or deionized water so as not to impair the preferable chemical modification effect of the PPS resin by the acid treatment.
  • the temperature of the hot water is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 150 ° C. or higher, and particularly preferably 170 ° C. or higher. If it is less than 100 ° C., the effect of preferable chemical modification of the PPS resin is small, which is not preferable.
  • the water used is preferably distilled water or deionized water.
  • a predetermined amount of PPS resin is charged into a predetermined amount of water, and heated and stirred in a pressure vessel, or a method of continuously performing hot water treatment.
  • the ratio of the PPS resin to water is preferably higher, but usually a bath ratio of 200 g or less of PPS resin (cleaning liquid weight relative to the dry PPS weight) is selected per liter of water.
  • the treatment atmosphere is an inert atmosphere. Furthermore, in order to remove the remaining components, it is preferable to wash the PPS resin after the hot water treatment operation several times with warm water.
  • the organic solvent used for cleaning the PPS resin is not particularly limited as long as it does not have an action of decomposing the PPS resin.
  • nitrogen-containing polar solvents such as N-methyl-2-pyrrolidone, dimethylformamide, dimethylacetamide, 1,3-dimethylimidazolidinone, hexamethylphosphoramide, piperazinones, sulfoxides such as dimethylsulfoxide, dimethylsulfone, and sulfolane Sulfone solvents, acetone solvents such as acetone, methyl ethyl ketone, diethyl ketone and acetophenone, ether solvents such as dimethyl ether, dipropyl ether, dioxane and tetrahydrofuran, chloroform, methylene chloride, trichloroethylene, ethylene chloride, perchlorethylene, and monochloroethane , Halogen solvents such as dichloro
  • a method of washing with an organic solvent for example, there is a method of immersing a PPS resin in an organic solvent, and it is possible to appropriately stir or heat as necessary.
  • the washing temperature when washing the PPS resin with an organic solvent any temperature from room temperature to about 300 ° C. can be selected. The higher the cleaning temperature, the higher the cleaning efficiency tends to be. However, a sufficient effect is usually obtained at a cleaning temperature of room temperature to 150 ° C. It is also possible to wash under pressure in a pressure vessel at a temperature above the boiling point of the organic solvent.
  • the cleaning time There is no particular limitation on the cleaning time. Depending on the cleaning conditions, in the case of batch-type cleaning, a sufficient effect can be obtained usually by cleaning for 5 minutes or more. It is also possible to wash in a continuous manner.
  • any of acid treatment, hot water treatment and washing with an organic solvent is preferably performed, and it is preferable to use two or more treatments in combination from the viewpoint of removing impurities.
  • PPS obtained by introducing an alkali metal or an alkaline earth metal such as Ca into PPS may be used.
  • a method of introducing an alkali metal or alkaline earth metal, before the previous step, during the previous step, after the previous step a method of adding an alkali metal salt or alkaline earth metal salt, before the polymerization step, during the polymerization step, Examples include a method of adding an alkali metal salt or an alkaline earth metal salt into the polymerization kettle after the polymerization process, a method of adding an alkali metal salt or an alkaline earth metal salt at the first, middle or last stage of the above washing step. It is done.
  • the simplest method includes a method of adding an alkali metal salt or an alkaline earth metal salt after removing residual oligomers or residual salts by washing with an organic solvent or washing with warm water or hot water.
  • a method of introducing an alkali metal or alkaline earth metal into PPS in the form of an alkali metal ion such as acetate, hydroxide or carbonate, or an alkaline earth metal ion is preferred. Further, it is preferable to remove excess alkali metal salt or alkaline earth metal salt by washing with warm water or the like.
  • the concentration of alkali metal ions and alkaline earth metal ions at the time of introduction of the alkali metal and alkaline earth metal is preferably 0.001 mmol or more, more preferably 0.01 mmol or more with respect to 1 g of PPS.
  • concentration 50 degreeC or more is preferable, 75 degreeC or more is more preferable, and 90 degreeC or more is especially preferable.
  • there is no upper limit temperature it is usually preferably 280 ° C. or lower from the viewpoint of operability.
  • the bath ratio (the weight of the cleaning solution with respect to the dry PPS weight) is preferably 0.5 or more, more preferably 3 or more, and still more preferably 5 or more.
  • the PPS resin can be used after having been polymerized to have a high molecular weight by heating in an oxygen atmosphere or a thermal oxidative crosslinking treatment by heating with addition of a crosslinking agent such as peroxide.
  • the lower limit is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, and the upper limit is preferably 260 ° C. or lower, and 250 ° C. or lower. More preferred.
  • the oxygen concentration is preferably 5% by volume or more, more preferably 8% by volume or more. Although there is no restriction
  • the treatment time is preferably 0.5 hours or more as a lower limit, more preferably 1 hour or more, further preferably 2 hours or more, and the upper limit is preferably 100 hours or less, more preferably 50 hours or less, and 25 hours or less.
  • the heat treatment apparatus may be a normal hot air dryer or a rotary type or a heating apparatus with a stirring blade.
  • a heating device with a rotary type or a stirring blade.
  • dry heat treatment can be performed for the purpose of suppressing thermal oxidative crosslinking and removing volatile matter.
  • the temperature is preferably 130 to 250 ° C, more preferably 160 to 250 ° C.
  • the oxygen concentration is preferably less than 5% by volume, and more preferably less than 2% by volume.
  • the treatment time is preferably 0.5 hours or more as a lower limit, more preferably 1 hour or more, and the upper limit is preferably 50 hours or less, more preferably 20 hours or less, and even more preferably 10 hours or less.
  • the heat treatment apparatus may be a normal hot air dryer or a rotary type or a heating apparatus with a stirring blade. For efficient and more uniform treatment, it is more preferable to use a heating device with a rotary type or a stirring blade.
  • polyamide resin used in the embodiment of the present invention is not particularly limited as long as it is a known polyamide resin, but is generally a polyamide mainly composed of amino acids, lactams or diamines and dicarboxylic acids. .
  • main constituents include amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactams such as ⁇ -aminocaprolactam and ⁇ -laurolactam, tetramethylene Diamine, pentamethylenediamine, hexamethylenediamine, octamethylenediamine, nonanemethylenediamine, decamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5 -Methylnonamethylenediamine, metaxylenediamine, paraxylylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1-amino-3-aminomethyl-3,5 5-tori Methylcyclo
  • useful polyamide resins include polytetramethylene sebacamide (nylon 410), polypentamethylene sebacamide (nylon 510), polycaproamide (nylon 6), polyhexamethylene adipamide (Nylon 66), polyhexamethylene sebamide (nylon 610), polyhexamethylene dodecane (nylon 612), polydecane methylene sebamide (nylon 1010), polydodecanamide (nylon 12), polyundecanamide (nylon) 11), homopolyamides such as polyhexamethylene terephthalamide (nylon 6T), polyxylylene adipamide (nylon XD6), polynonanemethylene terephthalamide (nylon 9T), polydecamethylene terephthalamide (nylon 10T) Resins or copolymerized polyamides (nylon 6/66, nylon 6/10, nylon 6/66/610, 66 / 6T, 66 / 10T) and the like, and
  • the aliphatic polyamide resin is preferably a polyamide resin having an amide group concentration exceeding 6, and among them, nylon 610, nylon 612, nylon 11 and nylon 12 are more preferable. Further, as the semi-aromatic polyamide resin, a polyamide resin having an amide group concentration exceeding 7 is preferable, and among them, nylon 9T and nylon 10T are more preferable.
  • the reason for this is that the polyamide resin having a relatively long chain aliphatic is relatively excellent in heat resistance at the processing temperature of the PPS resin, and the formation of carbonized conductive paths during the tracking resistance test due to decomposition products or the like is suppressed. It is estimated that.
  • the “amide group concentration” is calculated as the number of carbon atoms per amide group in the structural formula of the polyamide resin.
  • the polyamide resin in the embodiment of the present invention preferably has a water absorption of 0.5% by weight or less, more preferably 0.3% by weight or less after 24 hours of immersion in water at 23 ° C. preferable. This is because, in order to maintain excellent tracking resistance, mechanical strength, dimensional stability, and wet heat stability, the water absorption rate of the added polyamide resin is controlled by the PPS resin composition upon water absorption. This is because it is preferable.
  • Water absorption is expressed as a percentage by immersing the polyamide resin in water at 23 ° C. for 24 hours in accordance with ASTM-D570 and dividing the weight difference between the polyamide resin before and after the treatment by the weight of the polyamide resin before the treatment. It is the value.
  • the water absorption of the polyamide resin is greatly influenced by amide bonds, and the lower the ratio of amide bonds per unit volume, the lower the water absorption. Therefore, in order to obtain a low water-absorbing polyamide resin considered to be a preferred range of embodiments of the present invention, it is preferable to have a long-chain alkyl group in the constituent component of the polyamide resin, specifically, having 8 or more carbon atoms. It preferably has an alkyl group. Moreover, having an alicyclic ring or an aromatic ring as a constituent component of the polyamide resin is also effective in obtaining a low water absorption within a preferable range in the embodiment of the present invention.
  • the weight loss (heating loss) when heated in air at 320 ° C. for 2 hours is preferably 2.5% by weight or less, and 2.0% by weight or less. More preferably, it is 1.5% by weight or less.
  • a small weight loss during resin heating means excellent low gas properties during melting, which leads to prevention of productivity reduction in melt kneading and molding.
  • it is set as a PPS resin composition in order to maintain the outstanding heat resistance which a PPS resin originally has, it is preferable that there is especially little heat loss of a polyamide resin.
  • the large amount of heat loss can be used as an index of the ease of generating decomposition products in melt-kneading and molding processes. From the viewpoint of suppressing a decrease in tracking resistance due to the decomposition product, it is preferable that the heat loss of the polyamide resin is small.
  • heat loss means the amount of components that volatilize when the polyamide resin is heated, and is calculated by the following method. 10 g of polyamide resin pellets are placed in an aluminum cup and pre-dried at 130 ° C. for 3 hours. The pellet weight is measured, treated for 2 hours in an atmosphere at 320 ° C., and then the pellet weight is measured again. The weight loss due to heating at 320 ° C. is expressed as a percentage by dividing the weight loss due to the treatment at 320 ° C. by the weight of the pellets before the treatment.
  • a more thermally stable component in the repeating structure from the viewpoint of low decomposability during heating, specifically Preferably has a long-chain alkyl group having 8 or more carbon atoms or an aromatic ring.
  • the polyamide resin in the embodiment of the present invention preferably contains a plant-derived component.
  • any one of 1,5-pentamethylenediamine, 1,10-decanamethylenediamine, sebacic acid, dodecanedioic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid derived from plants is used as a raw material component.
  • the blending amount of the polyamide resin in the embodiment of the present invention is selected in the range of 5 to 50 parts by weight of the polyamide resin with respect to 100 parts by weight of the PPS resin, and more preferably 5 to 40 parts by weight of the polyamide resin. If the amount of the polyamide resin exceeds 50 parts by weight, the excellent properties such as low gas resistance, wet heat resistance, flame retardancy, dimensional stability, and low water absorption, which the PPS resin has, are not preferable. Further, if the polyamide resin is less than 5 parts by weight, the effect of developing tracking resistance is reduced, which is not preferable.
  • the degree of polymerization of these polyamide resins is not particularly limited, but as a relative viscosity measured at 25 ° C. in a 98% concentrated sulfuric acid solution having a sample concentration of 0.01 g / ml, the lower limit is preferably 1.5 or more, A polyamide resin of 1.8 or more is particularly preferable, and the upper limit is preferably 6.0 or less, and particularly preferably 4.0 or less. A relative viscosity of less than 1.5 is not preferable because it leads to a decrease in mechanical strength. On the other hand, when the relative viscosity exceeds 6.0, the melt viscosity of the composition is remarkably increased. As a result, when melt kneading with a metal hydroxide or other filler is performed, large shearing heat is generated, and decomposition of the metal hydroxide or polyamide resin occurs, which is not preferable.
  • metal hydroxide used in the embodiment of the present invention examples include magnesium hydroxide, aluminum hydroxide, and calcium hydroxide, but considering the effect of improving tracking resistance. It is preferable to use magnesium hydroxide.
  • magnesium hydroxide used in the embodiment of the present invention include relatively high-purity magnesium hydroxide containing 80 wt% or more of the inorganic substance represented by the chemical formula Mg (OH) 2 .
  • the inorganic substance represented by Mg (OH) 2 is preferably 80% by weight or more, CaO content 5% by weight or less, chlorine content 1% by weight or less, more preferably Mg ( OH) 2 is 95% by weight or more, CaO content is 1% by weight or less, chlorine content is 0.5% by weight or less, more preferably Mg (OH) 2 is 98% by weight or more and CaO content is 0.1% by weight or less.
  • High purity magnesium hydroxide having a chlorine content of 0.1% by weight or less is suitable.
  • the shape of magnesium hydroxide used in the embodiment of the present invention may be any of particles, flakes, and fibers, but from the viewpoint of dispersibility, the particles and flakes are most preferable. .
  • the specific surface area is preferably 15 m 2 / g or less, more preferably 10 m 2 / g or less. If the specific surface area exceeds 15 m 2 / g, it may affect the dispersibility of magnesium hydroxide. This is not preferable because it adversely affects mechanical strength.
  • the “specific surface area” is a value measured by the BET method using nitrogen as an adsorption gas.
  • the average primary particle size is in the range of 0.3 to 5 ⁇ m, preferably 0.3 to 3 ⁇ m.
  • the “average primary particle size” is a value measured by a laser diffraction / scattering method.
  • an average fiber diameter of 0.1 to 2 ⁇ m and an aspect ratio of 20 to 60, preferably an average fiber diameter of 0.3 to 2 ⁇ m and an aspect ratio of 30 to 50 is appropriate. is there.
  • “Aspect ratio” refers to the ratio of the long side dimension of the substance divided by the short side dimension.
  • vinylsilane compounds such as vinyltriethoxysilane and vinyltrichlorosilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane
  • Epoxysilane compounds such as ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, aminosilane compounds such as ⁇ -aminopropyltrimethoxysilane, ⁇ -isocyanato Propyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇
  • a metal hydroxide surface-treated with an epoxy silane compound, an amino silane compound, or an isocyanato silane compound is suitable in terms of suppressing aggregation in the composition or molded body, and in terms of tracking resistance and mechanical strength. is there.
  • the compounding amount of the metal hydroxide is 50 parts by weight or more, preferably 60 parts by weight or more, more preferably 70 parts by weight or more, and 250 parts by weight as the upper limit with respect to 100 parts by weight of the PPS resin. Part or less, preferably 200 parts by weight or less, more preferably 150 parts by weight or less. If the addition amount is less than 50 parts by weight, the effect of improving tracking resistance is insufficient, which is not preferable. If the addition amount exceeds 250 parts by weight, the adverse effect on the mechanical strength, fluidity and the like of the resin composition is increased, which is not preferable.
  • Fibrous and / or non-fibrous fillers other than metal hydroxides In the PPS resin composition obtained by the method of the embodiment of the present invention, a range not impairing the effects of the embodiment of the present invention. It is also possible to mix and use fibrous and / or non-fibrous fillers other than metal hydroxides. Specific examples of such fillers include glass fiber, carbon fiber, carbon nanotube, carbon nanohorn, potassium titanate whisker, zinc oxide whisker, calcium carbonate whisker, wollastonite whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber.
  • Fiber fillers such as ceramic fiber, asbestos fiber, masonry fiber, metal fiber, or fullerene, talc, wollastonite, zeolite, sericite, mica, kaolin, clay, pyrophyllite, bentonite, asbestos, alumina silicate, etc.
  • These may be hollow, and two or more of these fillers can be used in combination. These fillers may be used after pretreatment with a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, and an epoxy compound.
  • a coupling agent such as an isocyanate compound, an organic silane compound, an organic titanate compound, an organic borane compound, and an epoxy compound.
  • glass fibers and carbon fibers are preferable for obtaining the effect of improving the rigidity of the material, and glass fibers are more preferable from the viewpoint of material cost.
  • the blending amount of the fibrous and / or non-fibrous filler other than the metal hydroxide is 0 parts by weight or more, preferably 20 parts by weight or more, preferably 350 parts by weight or less with respect to 100 parts by weight of the PPS resin. Part by weight or less, preferably 200 parts by weight or less is selected.
  • the resin composition which was further excellent in the balance of melt fluidity and mechanical strength can be obtained.
  • Organosilane compound Adding an organosilane compound to the PPS resin composition according to the embodiment of the present invention is a metal hydroxide or a fibrous and / or non-fibrous filler other than the metal hydroxide. It is useful for increasing the affinity between PPS and PPS resin, and is effective in improving mechanical strength.
  • the addition of the organosilane compound is effective in increasing the dispersibility of the polyamide resin relative to the PPS resin and reducing the dispersed particle size of the polyamide resin.
  • the presence of coarsely dispersed polyamide resin in the system means that there is a portion where the PPS resin composition is locally high. For this reason, it is considered that the tracking resistance at a high voltage is lowered.
  • organic silane compounds include epoxy group-containing compounds such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, and ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane.
  • alkoxysilane compounds such as alkoxysilane compounds, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ - (2- Ureido group-containing alkoxysilane compounds such as ureidoethyl) aminopropyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropylmethyldimeth Isocyanato group-containing alkoxysilane compounds such as xysilane, ⁇ -isocyanatopropylmethyldiethoxysilane, ⁇ -isocyanatopropylethyldimethoxysilane
  • the amount of the organic silane compound added is preferably 0.1 parts by weight or more, particularly preferably 0.2 parts by weight or more, and the upper limit is 5 parts by weight or less with respect to 100 parts by weight of the PPS resin. Particularly preferred is 3 parts by weight or less.
  • a resin other than the polyamide resin may be added and blended as long as the effects of the embodiment of the present invention are not impaired.
  • Specific examples thereof include polybutylene terephthalate resin, polyethylene terephthalate resin, modified polyphenylene ether resin, polysulfone resin, polyallyl sulfone resin, polyketone resin, polyetherimide resin, polyarylate resin, liquid crystal polymer, polyether sulfone resin, Examples include polyether ketone resins, polythioether ketone resins, polyether ether ketone resins, polyimide resins, polyamideimide resins, and tetrafluoropolyethylene resins.
  • Plasticizers such as polyalkylene oxide oligomer compounds, thioether compounds, ester compounds, organophosphorus compounds, crystal nucleating agents such as talc, kaolin, organophosphorus compounds, polyetheretherketone, montanic acid waxes, lithium stearate , Metal soaps such as aluminum stearate, ethylenediamine / stearic acid / sebacic acid polycondensate, mold release agents such as silicone compounds, anti-coloring agents such as hypophosphite, etc., lubricants, UV protection agents, coloring agents Ordinary additives such as foaming agents can be blended. If any of the above compounds exceeds 20% by weight of the total composition, the original properties of the PPS resin are impaired, and therefore it is not preferred, and 10% by weight or less, more preferably 1% by weight or less is added.
  • the upper limit of the kneading part is a balance between the length of the kneading part per place and the interval between the kneading parts, but is preferably 10 or less, and more preferably 8 or less.
  • the “L / D” (L: screw length, D: screw diameter) of the twin screw extruder is preferably 20 or more, and more preferably 30 or more.
  • the upper limit of L / D of a twin screw extruder is usually 60.
  • As the peripheral speed at this time 15 m / min or more is selected as the lower limit, 20 m / min or more is more preferably selected, and 50 m / min or less is selected as the upper limit, and 40 m / min or less is more preferably selected.
  • the ratio of the total length of the kneading portion to the total length of the screw of the extruder is as a lower limit.
  • the upper limit is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.
  • the upper limit is preferably 60% or less, more preferably 55% or less, and still more preferably 50% or less.
  • the length of the kneading portion per point in the screw of the extruder is “Lk” and the screw diameter is “D”, from the viewpoint of kneadability, “Lk / D”
  • the lower limit is preferably 0.1 or more, more preferably 1 or more, still more preferably 2 or more, and the upper limit is preferably 10 or less, more preferably 8 or less, and even more preferably 6 or less.
  • the lower limit of “Ld / D” is preferably 0.5 or more, more preferably 1 or more, further preferably 2 or more, and the upper limit is preferably 10 or less, and 8 or less. More preferred is 6 or less.
  • the melting peak temperature of the PPS resin + 5 ° C. or higher is selected, more preferably + 10 ° C. or higher, and as the upper limit, the melting peak temperature of the PPS resin + 100 ° C. or lower is selected, and + 70 ° C.
  • the resin temperature during mixing is preferably 350 ° C. or lower, and more preferably 340 ° C. or lower.
  • the temperature difference between the resin temperature of the polyphenylene sulfide resin composition in the discharge part and the cylinder temperature of the extruder is preferably 0 ° C. or more and 50 ° C. or less, and 0 ° C. or more and 40 ° C. or less.
  • the temperature is more preferably 0 ° C. or lower, and further preferably 0 ° C. or higher and 30 ° C. or lower.
  • the shear heat generation cannot be controlled, and as a result, the polyamide resin to be kneaded and the metal hydroxide are decomposed, which is not preferable.
  • the “notch” refers to a portion shown in 1 of FIG. 1 and is obtained by partially cutting a mountain portion of a screw flight.
  • the notch type mixing screw can increase the resin filling rate, and the molten resin passing through the kneading part connected to the notch type mixing screw is easily affected by the temperature of the extruder cylinder. Therefore, even a molten resin that generates heat due to shear during kneading is efficiently cooled at the notch mixing screw portion, and the resin temperature can be lowered. As a result, decomposition of the metal hydroxide or polyamide resin due to heat generation can be suppressed.
  • the screw pitch length is 0.1D to 0.3D and the number of notches is A notch type mixing screw with 10 to 15 per pitch is preferred.
  • the length of the screw pitch means the screw length between the crest portions of the screw when the screw rotates 360 degrees.
  • the method include mixing the remaining raw materials and then mixing the remaining raw materials using a side feeder during melt-kneading with a single-screw or twin-screw extruder.
  • “L / D” is 20 or more in the presence of PPS resin, polyamide resin, and metal hydroxide.
  • the PPS resin composition of the embodiment of the present invention has excellent tracking resistance as well as excellent mechanical strength and low gas properties inherently possessed by the PPS resin.
  • it is desirable that the average secondary particle diameter of the metal hydroxide in the PPS resin composition is dispersed at 5 ⁇ m or less, and the average secondary particle diameter is 4 ⁇ m or less. More preferably, it is 3 ⁇ m or less.
  • the lower limit depends on the particle size of the primary particles used, but considering the productivity of primary particles, the average secondary particle size of the metal hydroxide in the PPS resin composition is preferably 0.3 ⁇ m or more. .
  • the average secondary particle diameter exceeds 5 ⁇ m, it is not desirable because it leads to a decrease in mechanical strength and a decrease in tracking resistance.
  • Relatively large agglomerates not only serve as the starting point of the breaking point in tensile tests and bending tests, but also with regard to tracking resistance, the coarse dispersion of the metal hydroxide increases the density of the metal hydroxide. This is thought to lead to a decline.
  • the improvement of dispersibility is also preferable from the viewpoint of water absorption.
  • the average secondary particle size of the metal hydroxide in the PPS resin composition As means for controlling the average secondary particle size of the metal hydroxide in the PPS resin composition to 5 ⁇ m or less, at least (a) PPS resin, (b) polyamide resin, (c) biaxial extrusion of metal hydroxide In the melt-kneading in a machine, it is necessary to satisfy the conditions of “L / D” of 20 or more, two or more kneading portions, and a peripheral speed of 15 to 50 m / min.
  • the “average secondary particle size” is determined by molding a ASTM No. 1 dumbbell test piece at a molding temperature of PPS resin +20 to 40 ° C. and forming a thin piece of 0.1 ⁇ m or less from the center at room temperature.
  • the sample is cut in the direction of the cross-sectional area and observed with a H-7100 transmission electron microscope (resolution (particle image) 0.38 nm, magnification of 500 to 600,000 times) manufactured by Hitachi, Ltd., magnified 1000 times
  • the 100 metal hydroxide components first, the maximum diameter and the minimum diameter of each of the 100 metal hydroxide components are measured, and the average value is used as the dispersed particle diameter.
  • the number average value of the dispersed particle diameters of the 100 metal hydroxide components is Say.
  • the loss on heating at 320 ° C. for 2 hours in air is preferably 5% by weight or less, more preferably 3% by weight or less.
  • the heating loss is within the above range, mold deposits are less likely to occur on the mold surface and mold vent, which does not cause transfer defects and molding defects, and the frequency of mold disassembly cleaning is reduced, resulting in increased productivity. improves.
  • the lower limit of heating loss There is no particular limitation on the lower limit of heating loss.
  • the polyamide resin used has a great influence on the heat loss of the PPS resin composition.
  • having a heat-stable component in the constituent components of the polyamide resin is effective in reducing the heat loss of the resin composition. Therefore, in order to control the heat loss of the PPS resin composition to 5% by weight or less, selection of the polyamide resin to be used and its composition are important. Specifically, it is preferable to use a polyamide resin having a long-chain alkyl group having 8 or more carbon atoms or an aromatic ring. In order to reduce the heat loss of the PPS resin composition, it is also effective to remove volatile components out of the resin composition using a vacuum pump during melt kneading by a twin screw extruder.
  • heat loss means the amount of components that volatilize when the PPS resin composition is heated, and is calculated by the following method. 10 g of pellets of the resin composition are put in an aluminum cup and pre-dried in an atmosphere at 130 ° C. for 3 hours. The pellet weight is measured, treated for 2 hours in an atmosphere at 320 ° C., and then the pellet weight is measured again. The weight loss due to heating at 320 ° C. is expressed as a percentage by dividing the weight loss due to the treatment at 320 ° C. by the weight of the pellets before the treatment.
  • the PPS resin composition of the embodiment of the present invention has a small weight loss upon heating, it can be said that the mold soiling property at the time of melt molding is improved and the material is excellent in moldability.
  • the range of tensile strength (measured in accordance with ASTM No. 1 dumbbell test piece, tensile speed 10 mm / min, 23 ° C., ASTM-D638), which is one of physical property values indicating material strength, is preferably 80 MPa or more, and 90 MPa. The above is more preferable.
  • a range of bending strength (length 127 mm, width 12.7 mm, thickness 6.35 mm bending test piece, fulcrum distance 100 mm, crosshead speed 3 mm / min, 23 ° C., measured in accordance with ASTM-D790) Is preferably 110 MPa or more, and more preferably 125 MPa or more.
  • the phase structure of the polyamide resin in the PPS resin composition of the embodiment of the present invention it is desirable that the PPS resin forms a sea phase (continuous phase or matrix) and the polyamide resin forms an island phase (dispersed phase).
  • the number average dispersed particle size of the polyamide resin is preferably less than 1000 nm, more preferably 500 nm or less, and further preferably 300 nm or less.
  • the lower limit is preferably 1 nm or more from the viewpoint of productivity.
  • the PPS resin phase forms a continuous phase and the polyamide resin is present with good dispersibility, so that the PPS resin has excellent mechanical strength, low gas resistance, heat resistance, chemical resistance, low water absorption, etc. High tracking resistance can be exhibited.
  • the “number average dispersed particle size of polyamide resin” means that the ASTM No. 1 test piece was molded at a molding temperature of PPS resin melting peak temperature + 20 to 40 ° C., and 0.1 ⁇ m or less at ⁇ 20 ° C. from the center. First, the maximum diameter and the minimum diameter of each of the 100 dispersed portions of the polyamide resin when the thin section is cut in the cross-sectional area direction of the dumbbell piece and observed with a transmission electron microscope at a magnification of about 1000 to 5000 times. The average value is obtained by measuring and then the number average value obtained from them is said.
  • the maximum voltage at which tracking breakdown does not occur is preferably 525 V or more, more preferably It is preferably 550 V or more, and more preferably 600 V. Being able to withstand a higher voltage means that the limit of the use range of the PPS resin composition is reduced, and it is possible to develop it for many purposes.
  • a PPS resin composition containing at least (a) a PPS resin, (b) a polyamide resin, and (c) a metal hydroxide in a specific composition, It is necessary to control the average secondary particle diameter of the metal hydroxide in the PPS resin composition to 5 ⁇ m or less.
  • the PPS resin composition obtained according to the embodiment of the present invention can be obtained without significantly impairing the thermal stability, melt fluidity, mechanical strength, electrical insulation, and low water absorption inherent in the PPS resin composition. It is a resin composition to which a new characteristic, which is insufficient for the conventional PPS resin, is said to be improved in tracking resistance.
  • the PPS resin composition thus obtained can be applied to various known molding methods such as injection molding, extrusion molding, compression molding, blow molding, injection compression molding, etc., but is particularly suitable for injection molding. It is.
  • the molded product of the PPS resin composition of the embodiment of the present invention includes a generator, an electric motor, a transformer, a current transformer, a voltage regulator, a rectifier, an inverter, a relay, a power contact, a switch, a machine breaker, and a knife switch.
  • the residual water content in the system per mole of the alkali metal hydrosulfide charged at this time was 1.01 moles including the water consumed for the hydrolysis of NMP. Moreover, since the amount of hydrogen sulfide scattered was 1.40 mol, the sulfidizing agent in the system after this step was 68.60 mol.
  • the obtained recovered material and 74 liters of ion-exchanged water were placed in an autoclave equipped with a stirrer, washed at 75 ° C. for 15 minutes, and then filtered through a filter to obtain a cake. After performing this washing and filtration operation four times, 74 liters of cake and ion-exchanged water were placed in an autoclave equipped with a stirrer, the inside of the autoclave was replaced with nitrogen, and the temperature was raised to 195 ° C. Thereafter, the autoclave was cooled and the contents were taken out. The contents were filtered through a filter to obtain a cake.
  • the recovered product obtained in the previous step, the polymerization reaction step, and the recovery step and 74 liters of ion-exchanged water were placed in an autoclave equipped with a stirrer and washed at 75 ° C. for 15 minutes. Then, it filtered with the filter and obtained the cake. After performing this operation four times, the obtained cake, 74 liters of ion-exchanged water, and 0.816 kg of acetic acid were placed in an autoclave equipped with a stirrer, the interior of the autoclave was replaced with nitrogen, and the temperature was raised to 195 ° C. Thereafter, the autoclave was cooled and the contents were taken out.
  • the contents were filtered through a filter to obtain a cake.
  • the obtained cake was dried at 120 ° C. under a nitrogen stream to obtain a dry PPS resin (a-2).
  • the melt viscosity was 35 Pa ⁇ s (300 ° C., shear rate 1216 / s).
  • the ash content was 0.6% by weight, and the amount of volatile components was 1.4% by weight.
  • the residual water content in the system per mole of the alkali metal hydrosulfide charged at this time was 1.01 moles including the water consumed for the hydrolysis of NMP. Moreover, since the amount of hydrogen sulfide scattered was 1.40 mol, the sulfidizing agent in the system after this step was 68.60 mol.
  • the content was diluted with about 35 liters of NMP, stirred as a slurry at 85 ° C. for 30 minutes, and then filtered through an 80 mesh wire mesh (aperture 0.175 mm) to obtain a solid.
  • the obtained solid was similarly washed and filtered with about 35 liters of NMP.
  • the operation of diluting the obtained solid with 70 liters of ion-exchanged water, stirring at 70 ° C. for 30 minutes, and filtering through an 80 mesh wire net to collect the solid was repeated a total of 3 times.
  • the obtained solid and 32 g of acetic acid were diluted with 70 liters of ion exchange water, stirred at 70 ° C. for 30 minutes, filtered through an 80 mesh wire mesh, and further obtained solids were diluted with 70 liters of ion exchange water.
  • the mixture was stirred at 70 ° C. for 30 minutes and then filtered through an 80 mesh wire net to collect a solid.
  • the solid material thus obtained was dried at 120 ° C. under a nitrogen stream to obtain a dry PPS resin (a-3).
  • the melt viscosity was 45 Pa ⁇ s (300 ° C., shear rate 1216 / s).
  • the ash content was 0.03% by weight, and the amount of volatile components was 0.4% by weight.
  • the residual water content in the system per mole of the alkali metal hydrosulfide charged was 1.06 mol including the water consumed for the hydrolysis of NMP.
  • the sulfidizing agent in the system after this step was 68.70 mol.
  • the mixture was gradually cooled from 250 ° C. to 220 ° C. over 75 minutes, and then rapidly cooled to near room temperature, and the contents were taken out.
  • the content was diluted with about 35 liters of NMP, stirred as a slurry at 85 ° C. for 30 minutes, and then filtered through an 80 mesh wire mesh (aperture 0.175 mm) to obtain a solid.
  • the obtained solid was similarly washed and filtered with about 35 liters of NMP.
  • the operation of diluting the obtained solid with 70 liters of ion-exchanged water, stirring at 70 ° C. for 30 minutes, and filtering through an 80 mesh wire net to collect the solid was repeated a total of 3 times.
  • the obtained solid and 32 g of acetic acid were diluted with 70 liters of ion exchange water, stirred at 70 ° C. for 30 minutes, filtered through an 80 mesh wire mesh, and further obtained solids were diluted with 70 liters of ion exchange water.
  • the mixture was stirred at 70 ° C. for 30 minutes and then filtered through an 80 mesh wire net to collect a solid.
  • the solid material thus obtained was dried at 120 ° C. under a nitrogen stream to obtain a dry PPS resin (a-4).
  • the melt viscosity was 200 Pa ⁇ s (300 ° C., shear rate 1216 / s).
  • the ash content was 0.03% by weight, and the amount of volatile components was 0.4% by weight.
  • b-1 Nylon 6 (CM1017 manufactured by Toray Industries, Inc.), water absorption 1.8% by weight, loss on heating 3.3% by weight, amide group concentration 6, relative viscosity 2.7 b-2: Nylon 66 (CM3001-N manufactured by Toray Industries, Inc.), water absorption 1.2 wt%, loss on heating 2.7 wt%, amide group concentration 6, relative viscosity 2.9 b-3: Nylon 610 (CM2001 manufactured by Toray Industries, Inc.), water absorption 0.3% by weight, heat loss 1.2% by weight, amide group concentration 8, relative viscosity 2.7, sebacic acid derived from plants Is used as a raw material.
  • Nylon 9T N1000A manufactured by Kuraray Co., Ltd.
  • water absorption 0.3% by weight, loss on heating 2.0% by weight amide group concentration 8.5
  • relative viscosity 2.6 b-5 Nylon 10T (Destel Evonik Co., Ltd. Vestamide HTplus, M3000), water absorption 0.3% by weight, loss on heating 2.4% by weight, amide group concentration 9, relative viscosity 2.5 b-6: Nylon XD6 (S6011 manufactured by Mitsubishi Engineer Plastics Co., Ltd.), water absorption 0.3% by weight, loss on heating 3.2% by weight, amide group concentration 7, relative viscosity 2.8
  • c-1 Surface-treated magnesium hydroxide (Kisuma 5E manufactured by Kyowa Chemical Industry Co., Ltd.), Mg (OH) 2 content: 99.6%, average primary particle size: 0.8 ⁇ m, specific surface area: 6.0 m 2 / g, surface treatment agent: aliphatic organic compound
  • c-2 Surface-treated magnesium hydroxide (Kisuma 5P manufactured by Kyowa Chemical Industry Co., Ltd.), Mg (OH) 2 content: 99.8%, average primary particle size: 0.8 ⁇ m, specific surface area: 5.6 m 2 / g, surface treatment agent: methacryloxysilane compound c-3: magnesium hydroxide (Kisuma 5C manufactured by Kyowa Chemical Industry Co., Ltd.): Mg (OH) 2 content: 99.8%, average primary particle size: 1.0 ⁇ m, specific surface area: 6.2 m 2 / g, no surface treatment
  • e-1 ⁇ - (3,4 Epoxycyclohexyl) ethyltrimethoxysilane (KBM-303, Shin-Etsu Chemical Co., Ltd.)
  • e-2 ⁇ -isocyanatopropyltriethoxysilane (KBE-9007 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the respective maximum diameter and minimum diameter are measured, and the average value is defined as the dispersed particle diameter.
  • the number average value of the dispersed particle diameters of these 100 polyamide resins is defined as The number average dispersed particle size was obtained by calculation.
  • [Tracking resistance] Conforms to IEC60112 4th edition using a square plate (80 mm x 80 mm x 3.0 mm thickness) molded at an injection molding machine (SE75DUZ-C250) manufactured by Sumitomo Heavy Industries, Ltd. with a cylinder temperature of 320 ° C and a mold temperature of 130 ° C. The maximum voltage at which tracking breakdown does not occur was determined. A 0.1% ammonium chloride aqueous solution was used as the electrolytic solution.
  • a sample 3 g was weighed into a glass ampoule having an abdomen of 100 mm ⁇ 25 mm, a neck of 255 mm ⁇ 12 mm, and a wall thickness of 1 mm, and then vacuum-sealed. Only the barrel of this glass ampoule was inserted into a ceramic electric tubular furnace ARF-30K manufactured by Asahi Rika Seisakusho and heated at 320 ° C. for 2 hours. After the ampoule was taken out, the ampoule neck which was not heated by the tubular furnace and was attached with volatile components was cut out with a file and weighed.
  • the adhering gas was dissolved and removed with 5 g of chloroform, dried for 1 hour in a glass dryer at 60 ° C., and then weighed again.
  • the weight difference between the ampoule neck before and after the removal of the volatile component was defined as the amount of volatile component (% by weight based on the polymer).
  • Method A This kneading method is referred to as Method A (Table 1).
  • the temperature of the molten resin discharged from the extruder was 335 ° C.
  • pellets dried with hot air at 120 ° C. for 8 hours were subjected to injection molding.
  • Table 1 shows the evaluation results of the average secondary particle diameter of the metal hydroxide, the number average dispersed particle diameter of the PA resin, the tensile strength, the bending strength, the heat loss, and the tracking resistance.
  • PPS resin (a-1 to 3), polyamide resin (b-1 to 6), magnesium hydroxide (c-1 to 3), glass fiber (d-1), organosilane compound (e-1, 2)
  • a PPS resin composition was prepared by the same method as in Example 1 except that the composition shown in Tables 1 and 2 was used, and the physical properties were evaluated in the same manner as in Example 1. The evaluation results are as shown in Tables 1 and 2.
  • Example 10 The PPS resin (a-4), polyamide resin (b-3), magnesium hydroxide (c-1), glass fiber (d-1), and organosilane compound (e-1) were blended as shown in Table 1. Except for the above, a PPS resin composition was prepared in the same manner as in Example 7, and the physical properties were evaluated in the same manner. The evaluation results are as shown in Table 1.
  • Table 2 describes this kneading method as Method D. After pelletizing with a strand cutter, pellets dried with hot air at 120 ° C. for 8 hours were subjected to injection molding. Table 2 shows the evaluation results of the average secondary particle size of metal hydroxide, the number average dispersed particle size of PA resin, tensile strength, bending strength, loss on heating, and tracking resistance.
  • Comparative Example 4 the composition ratio of the polyamide resin to the PPS resin was increased as compared with Example 3, but the heat loss increased and the moldability was poor. A decrease in mechanical strength was also observed.
  • Comparative Example 5 the composition ratio of magnesium hydroxide with respect to the PPS resin was reduced as compared with Example 3, but improved mechanical strength and reduced heat loss were observed, but tracking resistance was improved. The result was a significant drop.
  • the PPS resin composition can be applied to various known molding methods such as injection molding, extrusion molding, compression molding, blow molding, injection compression molding, etc., but is a resin composition particularly suitable for injection molding.
  • the molded product of the PPS resin composition of the present invention includes a generator, an electric motor, a transformer, a current transformer, a voltage regulator, a rectifier, an inverter, a relay, a power contact, a switch, a machine breaker, a knife switch, and other poles. It is particularly suitable for applications as electrical equipment parts such as rods, electrical component cabinets, light sockets, various terminal boards, plugs, and power modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】 本発明では、PPS樹脂が本来有する優れた機械的強度、低ガス性などの諸性質を大きく損なうことなく、耐トラッキング性にも優れたPPS樹脂組成物を得ることを課題とする。 【解決手段】 (a)ポリフェニレンスルフィド樹脂100重量部に対して、(b)ポリアミド樹脂5~50重量部、(c)金属水酸化物50~250重量部を含むポリフェニレンスルフィド樹脂組成物であって、前記組成物中に前記金属水酸化物が平均二次粒子径5μm以下で分散している

Description

ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体
 本発明は、耐トラッキング性、ガス発生率、機械物性に優れたポリフェニレンスルフィド樹脂組成物、および、その製造方法とその成形体に関するものであり、電気・電子部品、あるいは自動車電装部品などの電気部品用途に特に有用に適用されるほか、種々の広い分野に適用される。
 ポリフェニレンスルフィド(以下、「PPS」と略す)樹脂は、耐熱性、難燃性、耐薬品性、電気絶縁性、耐湿熱性および機械的強度や寸法安定性などに優れたエンジニアリングプラスチックである。PPS樹脂は、射出成形や押出成形などの各種成形法により、各種成形品や繊維、フィルムなどに成形可能であるため、電気・電子部品、機械部品および自動車部品など広範な分野において実用に供されている。
 しかしながら、絶縁体表面へ高電圧を印加した際に生じるトラッキング破壊に関して、PPS樹脂は、ポリアミド樹脂やポリエステル樹脂等の他のエンジニアリングプラスチックに比較して劣る。
 そのため、上記に示したPPS樹脂が有する良好な耐熱性、難燃性、耐薬品性、電気絶縁性、耐湿熱性および機械的強度や寸法安定性等の特性にも関わらず、比較的高い電圧に晒される環境下においては、PPS樹脂の使用が制限されている。このため、PPS樹脂組成物の耐トラッキング性の向上が望まれてきた。
 これまでにもPPS樹脂の耐トラッキング性を改良する試みがされており、PPS樹脂に水酸化マグネシウムや他のポリマーおよび添加剤を加えることで、耐トラッキング性を改良する出願が行われている。
 例えば、特許文献1は、PPS樹脂に水酸化マグネシウムとポリアミド樹脂を添加することで耐トラッキング性を向上させる出願である。特許文献2は、PPS樹脂に水酸化マグネシウムとポリオレフィン系重合体および/またはポリオレフィン系共重合体、シリコーン、フッ素系樹脂を添加した組成物についての出願である。特許文献3は、PPS樹脂に水酸化マグネシウムとカルナバワックスおよび/またはカルボン酸アマイド系ワックスを添加した組成物についての出願である。また、特許文献4は、特定の一次粒子径を有する水酸化マグネシウムを用い、耐トラッキング性を向上したPPS樹脂組成物についての出願である。
 しかしながら、上記した特許文献が提案する樹脂組成物は、十分に優れた耐トラッキング性を得るため、高い水酸化マグネシウム含有量が必須となっている。このため、PPS樹脂組成物の機械的強度が著しく低下する欠点を有していた。また含有する水酸化マグネシウムについて、一次粒子径に関する記載は認められるものの、組成物あるいは成形品中での分散状態に関する記載は認められない。また、分散状態を考慮した混練方法については何ら記載されていない。一般的な溶融混練方法では、水酸化マグネシウムの二次凝集が生じ易く、二次凝集が起因となった機械的強度の低下が生じるという欠点がある。また、特許文献1では特定の種類のポリアミド樹脂をPPS樹脂に添加しているが、PPS樹脂の溶融加工温度における耐熱性に劣るため、組成物としての物性低下を招く。
 特許文献5は、水酸化マグネシウムを用いずにPPS樹脂の耐トラッキング性を向上させる方法として、ポリアリーレンスルフィド(以下、「PAS」と略す)樹脂に多量のポリアミド樹脂を添加した樹脂組成物についての出願である。この出願の実施例では、PPS樹脂100部に対して80部を越えるポリアミド樹脂が添加されており、高融点を有するポリアミドを添加した場合には、耐熱性は保たれるが、PPS樹脂が本来有する低ガス性や難燃性、寸法安定性、低吸水性が損なわれる。
 特許文献6は、PPS樹脂中でのポリアミド樹脂の分散状態を向上させた組成物についての出願である。ポリアミド樹脂の分散粒子径を低下させることで、靱性向上の効果に優れるが、特許文献6のポリアミド樹脂の組成では、高い耐トラッキング性を有するPPS樹脂組成物を得ることは出来ない。
特開平5-271542号公報 特開平8-291253号公報 特開2008-13617号公報 特開2001-288363号公報 特開平10-279801号公報 国際公開2006-30577号
 「トラッキング破壊」とは、汚損した絶縁体表面に対して電圧を印加した際に、炭化導電路が形成されることにより短絡電流が流れることをいう。600V付近の高電圧印加における炭化導電路の形成は、表面の部分的な分解が引き金となり、急速に導電路の形成に至る。このため、トラッキング破壊を起こしにくい樹脂組成物が求められている。
 そこで、本発明では、PPS樹脂が本来有する優れた機械的強度、低ガス性などの諸性質を大きく損なうことなく、耐トラッキング性にも優れたPPS樹脂組成物を得ることを課題とする。
 本発明は、かかる課題を解決すべく鋭意検討を行った結果、PPS樹脂、ポリアミド樹脂、金属水酸化物を特定の組成で含有したPPS樹脂組成物において、この組成物中における金属水酸化物の分散状態を改良することにより、耐トラッキング性、機械的強度、低ガス性に優れたPPS樹脂組成物を得る。
 すなわち、本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態として実施可能である。
 (1)(a)ポリフェニレンスルフィド樹脂100重量部に対して、(b)ポリアミド樹脂5~50重量部、(c)金属水酸化物50~250重量部を含むポリフェニレンスルフィド樹脂組成物であって、前記組成物中に前記金属水酸化物が平均二次粒子径5μm以下で分散している、ポリフェニレンスルフィド樹脂組成物。
 (2)(1)記載のポリフェニレンスルフィド樹脂組成物であって、前記組成物中に前記ポリアミド樹脂が数平均分散粒子径1μm未満で分散している、ポリフェニレンスルフィド樹脂組成物。
 (3)(1)または(2)記載のポリフェニレンスルフィド樹脂組成物であって、前記ポリアミド樹脂の23℃、水中浸漬下での24時間経過時の吸水率が0.5重量%以下であり、320℃空気中、2時間での加熱減量が2.5重量%以下である、ポリフェニレンスルフィド樹脂組成物。
 (4)(1)~(3)のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、前記ポリアミド樹脂が、植物由来成分を含む、ポリフェニレンスルフィド樹脂組成物。
 (5)(1)~(4)のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、前記ポリアミド樹脂が、アミド基濃度6を越える脂肪族ポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
 (6)(5)記載のポリフェニレンスルフィド樹脂組成物であって、前記ポリアミド樹脂が、ナイロン610、ナイロン612、ナイロン11、およびナイロン12から構成される群から選択される1以上のポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
 (7)(1)~(4)のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、前記ポリアミド樹脂が、アミド基濃度7を越える半芳香族ポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
 (8)(7)記載のポリフェニレンスルフィド樹脂組成物であって、前記ポリアミド樹脂が、ナイロン9T、およびナイロン10Tから構成される群から選択される1以上のポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
 (9)(1)~(8)のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、前記ポリフェニレンスルフィド樹脂が、灰分率が0.3重量%以下であり、真空下320℃で120分間加熱溶融した際の揮発性成分量が0.8重量%以下である、ポリフェニレンスルフィド樹脂組成物。
 (10)(1)~(9)のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、前記金属水酸化物が、脂肪族有機化合物あるいは有機シラン化合物で表面処理されたものである、ポリフェニレンスルフィド樹脂組成物。
 (11)(1)~(10)いずれか1項に記載のポリフェニレンスルフィド樹脂組成物の製造方法であって、二軸押出機による溶融混練において、ニーディング部を2箇所以上組み込んだスクリューアレンジで、周速度15~50m/分で溶融混練する、ポリフェニレンスルフィド樹脂組成物の製造方法。
 (12)(11)に記載のポリフェニレンスルフィド樹脂組成物の製造方法であって、前記溶融混練において、吐出部のポリフェニレンスルフィド樹脂組成物の樹脂温度が350℃以下で、前記樹脂温度と前記二軸押出機のシリンダー温度との温度差が0℃~50℃である、ポリフェニレンスルフィド樹脂組成物の製造方法。
 (13)(11)または(12)に記載のポリフェニレンスルフィド樹脂組成物の製造方法であって、前記溶融混練において、切り欠き型ミキシングスクリューを組み込んだスクリューアレンジで溶融混練する、ポリフェニレンスルフィド樹脂組成物の製造方法。
 (14)(1)~(10)のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物を、射出成形して得られる成形体。
 (15)(14)に記載の成形体であって、前記成形体が電気機器部品用である、成形体。
 本発明によれば、耐トラッキング性、機械的強度、低ガス性に優れたポリフェニレンスルフィド樹脂組成物を得ることが出来る。
切り欠き型ミキシングスクリューの説明図である。
 以下、本発明の実施の形態を詳細に説明する。
 (1)(a)ポリフェニレンスルフィド樹脂
 本発明の実施形態で用いられるPPS樹脂は、下記構造式で示される繰り返し単位を有する重合体である。
Figure JPOXMLDOC01-appb-C000001
 
 耐熱性の観点から、PPS樹脂は、上記構造式で示される繰り返し単位を70モル%以上、更には90モル%以上含む重合体が好ましい。またPPS樹脂は、その繰り返し単位の30モル%未満程度が、下記の構造を有する繰り返し単位等で構成されていてもよい。
Figure JPOXMLDOC01-appb-C000002
 
 かかる構造を一部有するPPS共重合体は、融点が低くなるため、このような樹脂組成物は成形性の点で有利となる。
 本発明の実施形態で用いられるPPS樹脂の溶融粘度に特に制限はないが、溶融混練および成形加工時の流動性や、溶融混練時の金属水酸化物の分解抑制や、分散性制御の観点から、200Pa・s(300℃、剪断速度1216/s)以下が好ましく、100Pa・s以下がより好ましく、70Pa・s以下がさらに好ましく、50Pa・s以下がさらに好ましい。一般に、高分子化合物は分子量の低下とともに粘度が低下する傾向を有する。そのため、下限については低分子量化に伴う靱性低下の点から1Pa・s以上であることが好ましく、5Pa・s以上であることがより好ましい。一方、200Pa・sを越える溶融粘度を有するPPS樹脂を用い、金属水酸化物やその他のフィラーとの溶融混練を行った場合には、大きなせん断発熱が生じ、金属水酸化物やポリアミド樹脂の分解が発生する。このため、このようなPPS樹脂は好ましくない。また、理由は明確ではないが、200Pa・sを越える溶融粘度を有するPPS樹脂を用いた場合、組成物中での金属水酸化物の平均二次粒子径が大きくなる。結果として、200Pa・sを越える溶融粘度を有するPPS樹脂は、耐トラッキング性や機械的強度が低下する。なお、溶融粘度を測定する方法としては、(株)東洋精機製作所社製キャピログラフを用いて測定する方法が例示できる。
 本発明の実施形態で用いられるPPS樹脂の灰分率は、耐トラッキング性向上の観点から0.3重量%以下が好ましく、0.2重量%以下が更に好ましく、0.1重量%以下がより好ましい。機構は明確ではないが、灰分率として測定される金属含有物質の存在が、電圧印加時のトラッキング生成に寄与していると考えられる。
 なお、灰分率の測定は、以下の方法に従った。乾燥状態のPPS原末5gを坩堝に測り取り、電気コンロ上で黒色塊状物となるまで焼成する。次いでこれを550℃に設定した電気炉中で炭化物が焼成しきるまで焼成を続ける。その後デシケータ中で冷却後、重量を測定し、初期重量との比較から灰分率を計算する。
 本発明の実施形態で用いられるPPS樹脂の、真空下320℃で120分間加熱溶融した際の揮発性成分量は、高い耐トラッキング性、低ガス発生量、高強度化を満たすためには、0.8重量%以下、より好ましくは0.6重量%以下、さらに0.4重量%以下が好ましい。揮発性成分量にはPPS樹脂の分解物や、低分子量物が含まれている。これらの成分が、耐トラッキング試験時に炭化導電路の形成を促進させたり、PPS樹脂の高強度化を阻害すると考えられる。
 なお、「揮発性成分量」とは、PPS樹脂を真空下で加熱溶融した際に揮発する成分が冷却されて液化または固化した付着性成分の量を意味する。揮発性成分量は、PPS樹脂を真空封入したガラスアンプルを管状炉で加熱することにより測定される。ガラスアンプルの形状としては、腹部が100mm×25mm、首部が255mm×12mm、肉厚が1mmである。具体的な測定方法としては、PPS樹脂を真空封入したガラスアンプルの胴部のみを320℃の管状炉に挿入して120分間加熱することにより、管状炉によって加熱されていないアンプルの首部で揮発性ガスが冷却されて付着する。この首部を切り出して秤量した後、付着した揮発性成分をクロロホルムに溶解して除去する。次いで、この首部を乾燥してから再び秤量する。揮発性成分を除去した前後のアンプル首部の重量差を求め、測定に使用したPPS樹脂の重量に対する割合で揮発性成分量を算出する。
 以下に、本発明の実施形態に用いるPPS樹脂の製造方法について説明するが、上記構造のPPS樹脂が得られれば下記方法に限定されるものではない。
 まず、製造方法において使用するポリハロゲン化芳香族化合物、スルフィド化剤、重合溶媒、分子量調節剤、重合助剤および重合安定剤の内容について説明する。
 [ポリハロゲン化芳香族化合物]
 「ポリハロゲン化芳香族化合物」とは、1分子中にハロゲン原子を2個以上有する化合物をいう。具体例としては、p-ジクロロベンゼン、m-ジクロロベンゼン、o-ジクロロベンゼン、1,3,5-トリクロロベンゼン、1,2,4-トリクロロベンゼン、1,2,4,5-テトラクロロベンゼン、ヘキサクロロベンゼン、2,5-ジクロロトルエン、2,5-ジクロロ-p-キシレン、1,4-ジブロモベンゼン、1,4-ジヨードベンゼン、1-メトキシ-2,5-ジクロロベンゼンなどのポリハロゲン化芳香族化合物が挙げられ、好ましくはp-ジクロロベンゼンが用いられる。また、異なる2種以上のポリハロゲン化芳香族化合物を組み合わせて共重合体とすることも可能であるが、p-ジハロゲン化芳香族化合物を主要成分とすることが好ましい。
 ポリハロゲン化芳香族化合物の使用量は、加工に適した粘度のPPS樹脂を得る点から、下限については、スルフィド化剤1モル当たり0.9モル以上、好ましくは0.95モル以上、更に好ましくは1.005モル以上が例示でき、上限については、スルフィド化剤1モル当たり2.0モル以下、好ましくは1.5モル以下、更に好ましくは1.2モル以下が例示できる。
 [スルフィド化剤]
 スルフィド化剤としては、アルカリ金属硫化物、アルカリ金属水硫化物、および硫化水素が挙げられる。
 アルカリ金属硫化物の具体例としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化ナトリウムが好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。
 アルカリ金属水硫化物の具体例としては、例えば水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化ナトリウムが好ましく用いられる。これらのアルカリ金属水硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。
 また、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、アルカリ金属水硫化物とアルカリ金属水酸化物からアルカリ金属硫化物を調整し、これを重合槽に移して用いることができる。
 あるいは、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素からアルカリ金属硫化物を調整し、これを重合槽に移して用いることができる。
 「仕込み」スルフィド化剤の量は、脱水操作などにより重合反応開始前にスルフィド化剤の一部損失が生じる場合には、実際の仕込み量から当該損失分を差し引いた残存量を意味するものとする。
 なお、スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。アルカリ金属水酸化物の具体例としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物を好ましいものとして挙げることができる。アルカリ土類金属水酸化物の具体例としては、例えば水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、なかでも水酸化ナトリウムが好ましく用いられる。
 スルフィド化剤として、アルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいが、アルカリ金属水酸化物の使用量はアルカリ金属水硫化物1モルに対し、下限については、0.95モル以上、好ましくは1.00モル以上、更に好ましくは1.005モル以上が例示でき、上限については、1.2モル以下、好ましくは1.15モル以下、更に好ましくは1.100モル以下が例示できる。
 [重合溶媒]
 重合溶媒としては、有機極性溶媒を用いるのが好ましい。具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンなどのN-アルキルピロリドン類、N-メチル-ε-カプロラクタムなどのカプロラクタム類、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、ジメチルスルホン、テトラメチレンスルホキシドなどに代表されるアプロチック有機溶媒、およびこれらの混合物などが挙げられる。これらの重合溶媒はいずれも反応の安定性が高いために好ましく使用される。これらのなかでも、特にN-メチル-2-ピロリドン(以下、「NMP」と略記することもある)が好ましく用いられる。
 有機極性溶媒の使用量は、スルフィド化剤1モルに対し、下限については、2.0モル以上、好ましくは2.25モル以上、より好ましくは2.5モル以上が選ばれ、上限については、10モル以下、好ましくは6.0モル以下、より好ましくは5.5モル以下が選ばれる。
 [分子量調節剤]
 生成するPPS樹脂の末端を形成させるため、あるいは重合反応や分子量を調節するためなどにより、モノハロゲン化合物(必ずしも芳香族化合物でなくともよい)を、上記ポリハロゲン化芳香族化合物と併用することができる。
 [重合助剤]
 比較的に高重合度のPPS樹脂を、より短時間で得るために、重合助剤を用いることも好ましい態様の一つである。ここで「重合助剤」とは、得られるPPS樹脂の粘度を増大させる作用を有する物質を意味する。このような重合助剤の具体例としては、例えば有機カルボン酸塩、水、アルカリ金属塩化物、有機スルホン酸塩、硫酸アルカリ金属塩、アルカリ土類金属酸化物、アルカリ金属リン酸塩およびアルカリ土類金属リン酸塩などが挙げられる。これらは単独であっても、また2種以上を同時に用いることもできる。なかでも、有機カルボン酸塩、水、およびアルカリ金属塩化物が好ましく、さらに有機カルボン酸塩としてはアルカリ金属カルボン酸塩が、アルカリ金属塩化物としては塩化リチウムが好ましい。
 上記アルカリ金属カルボン酸塩とは、一般式R(COOM)n(式中、Rは、炭素数1~20を有するアルキル基、シクロアルキル基、アリール基、アルキルアリール基またはアリールアルキル基である。Mは、リチウム、ナトリウム、カリウム、ルビジウムおよびセシウムから選ばれるアルカリ金属である。nは1~3の整数である。)で表される化合物である。アルカリ金属カルボン酸塩は、水和物、無水物または水溶液としても用いることができる。アルカリ金属カルボン酸塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、吉草酸リチウム、安息香酸ナトリウム、フェニル酢酸ナトリウム、p-トルイル酸カリウム、およびそれらの混合物などを挙げることができる。
 アルカリ金属カルボン酸塩は、有機酸と、水酸化アルカリ金属、炭酸アルカリ金属塩および重炭酸アルカリ金属塩からなる群から選ばれる一種以上の化合物とを、ほぼ等化学当量ずつ添加して反応させることにより形成させてもよい。上記アルカリ金属カルボン酸塩の中で、リチウム塩は反応系への溶解性が高く助剤効果が大きいが高価である。一方、カリウム、ルビジウムおよびセシウム塩は反応系への溶解性が不十分であると思われる。このため、安価で、重合系への適度な溶解性を有する酢酸ナトリウムが最も好ましく用いられる。
 これらアルカリ金属カルボン酸塩を重合助剤として用いる場合の使用量は、仕込みアルカリ金属硫化物1モルに対し、下限としては、0.01モル以上、より高い重合度を得る意味においては0.1モル以上が好ましく、0.2モル以上がより好ましく、上限としては、2モル以下、より高い重合度を得る意味においては0.6モル以下が好ましく、0.5モル以下がより好ましい。
 また水を重合助剤として用いる場合の添加量は、仕込みアルカリ金属硫化物1モルに対し、下限としては、0.3モル以上、より高い重合度を得る意味においては0.6モル以上が好ましく、1モル以上がより好ましく、上限としては、15モル以下、より高い重合度を得る意味においては10モル以下が好ましく、5モル以下がより好ましい。
 これら重合助剤は2種以上を併用することももちろん可能であり、例えばアルカリ金属カルボン酸塩と水を併用すると、より少量のアルカリ金属カルボン酸塩と水をでPPS樹脂の高分子量化が可能となる。
 これら重合助剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよい。重合助剤としてアルカリ金属カルボン酸塩を用いる場合は前工程開始時或いは重合開始時に他の添加物と同時に添加することが、添加が容易である点からより好ましい。また水を重合助剤として用いる場合は、ポリハロゲン化芳香族化合物を仕込んだ後、重合反応途中で添加することが効果的である。
 [重合安定剤]
 重合反応系を安定化し、副反応を防止するために、重合安定剤を用いることもできる。重合安定剤は、重合反応系の安定化に寄与し、望ましくない副反応を抑制する。副反応の一つの目安としては、チオフェノールの生成が挙げられる。重合安定剤の添加によりチオフェノールの生成を抑えることができる。重合安定剤の具体例としては、アルカリ金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属水酸化物、およびアルカリ土類金属炭酸塩などの化合物が挙げられる。そのなかでも、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムなどのアルカリ金属水酸化物が好ましい。上述のアルカリ金属カルボン酸塩も重合安定剤として作用するので、重合安定剤の一つに入る。また、スルフィド化剤としてアルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいことを前述したが、ここでスルフィド化剤に対して過剰となるアルカリ金属水酸化物も重合安定剤となり得る。
 これら重合安定剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。重合安定剤は、仕込みアルカリ金属硫化物1モルに対して、下限については、0.02モル以上、好ましくは0.03モル以上、更に好ましくは0.04モル以上が例示でき、上限については、0.2モル以下、好ましくは0.1モル以下、更に好ましくは0.09モル以下が例示できる。この割合が少ないと安定化効果が不十分であり、逆に多すぎても経済的に不利益であり、ポリマー収率が低下する傾向となる。
 重合安定剤の添加時期には特に指定はなく、後述する前工程時、重合開始時、重合途中のいずれの時点で添加してもよく、また複数回に分けて添加してもよいが、前工程開始時或いは重合開始時に同時に添加することが容易である点からより好ましい。
 次に、本発明の実施形態に用いるPPS樹脂の好ましい製造方法について、前工程、重合反応工程、回収工程、および後処理工程と、順を追って具体的に説明するが、勿論この方法に限定されるものではない。
 [前工程]
 PPS樹脂の製造方法において、通常、スルフィド化剤は水和物の形で使用されるが、ポリハロゲン化芳香族化合物を添加する前に、有機極性溶媒とスルフィド化剤を含む混合物を昇温し、過剰量の水を系外に除去することが好ましい。
 また、上述したように、スルフィド化剤として、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで、あるいは重合槽とは別の槽で調製されるスルフィド化剤も用いることができる。この方法には特に制限はないが、望ましくは不活性ガス雰囲気下において、常温~150℃、好ましくは常温から100℃の温度範囲で、有機極性溶媒にアルカリ金属水硫化物とアルカリ金属水酸化物を加え、常圧または減圧下、少なくとも150℃以上、好ましくは180~260℃まで昇温し、水分を留去させる方法が挙げられる。この段階で重合助剤を加えてもよい。また、水分の留去を促進するため、トルエンなどを加えて反応を行ってもよい。
 重合反応における、重合系内の水分量は、仕込みスルフィド化剤1モル当たり0.3~10.0モルであることが好ましい。ここで「重合系内の水分量」とは、重合系に仕込まれた水分量から重合系外に除去された水分量を差し引いた量である。また、仕込まれる水は、水、水溶液、結晶水などのいずれの形態であってもよい。
 [重合反応工程]
 有機極性溶媒中でスルフィド化剤とポリハロゲン化芳香族化合物とを200℃以上290℃未満の温度範囲内で反応させることによりPPS樹脂を製造する。
 重合反応工程を開始するに際しては、望ましくは不活性ガス雰囲気下、下限としては、常温以上、好ましくは100℃以上の温度で、上限としては、240℃以下、好ましくは230℃以下の温度で、有機極性溶媒とスルフィド化剤とポリハロゲン化芳香族化合物を混合する。この段階で重合助剤を加えてもよい。これらの原料の仕込み順序は、順不同であってもよく、同時であってもさしつかえない。
 この混合物を通常200℃~290℃の範囲に昇温する。昇温速度に特に制限はないが、下限としては、0.01℃/分以上の速度が選択され、0.1℃/分以上の範囲がより好ましく、上限としては、5℃/分以下の速度が選択され、3℃/分以下の範囲がより好ましい。
 一般的に、最終的には250~290℃の温度まで昇温し、その温度で、下限としては、通常0.25時間以上、好ましくは0.5時間以上で、上限としては、50時間以下、好ましくは20時間以下で反応させる。
 最終温度に到達させる前の段階で、例えば200℃~260℃で一定時間反応させた後、270~290℃に昇温する方法は、より高い重合度を得る上で有効である。この際、200℃~260℃での反応時間としては、通常0.25時間から20時間の範囲が選択され、好ましくは0.25~10時間の範囲が選ばれる。
 なお、より高重合度のポリマーを得るためには、複数段階で重合を行うことが有効である場合がある。複数段階で重合を行う際は、245℃における系内のポリハロゲン化芳香族化合物の転化率が、40モル%以上、好ましくは60モル%に達した時点であることが有効である。
 なお、ポリハロゲン化芳香族化合物(ここでは「PHA」と略記する)の転化率は、以下の式で算出した値である。PHA残存量は、通常、ガスクロマトグラフ法によって求めることができる。
 (A)ポリハロゲン化芳香族化合物をアルカリ金属硫化物に対しモル比で過剰に添加した場合
転化率=〔PHA仕込み量(モル)-PHA残存量(モル)〕/〔PHA仕込み量(モル)-PHA過剰量(モル)〕
 (B)上記(A)以外の場合
転化率=〔PHA仕込み量(モル)-PHA残存量(モル)〕/〔PHA仕込み量(モル)〕
 [回収工程]
 PPS樹脂の製造方法においては、重合終了後に、重合体、溶媒などを含む重合反応物から固形物を回収する。回収方法については、公知の如何なる方法を採用しても良い。
 例えば、重合反応終了後、徐冷して粒子状のポリマーを回収する方法を用いても良い。この際の徐冷速度には特に制限は無いが、通常0.1℃/分~3℃/分程度である。徐冷工程の全行程において同一速度で徐冷する必要はなく、ポリマー粒子が結晶化析出するまでは0.1~1℃/分、その後1℃/分以上の速度で徐冷する方法などを採用しても良い。
 また上記の回収を急冷条件下に行うことも好ましい方法の一つである。この回収方法のうち、好ましい方法としてはフラッシュ法が挙げられる。「フラッシュ法」とは、重合反応物を高温高圧(通常250℃以上、8kg/cm2以上)の状態から常圧もしくは減圧の雰囲気中へフラッシュさせ、溶媒回収と同時に重合体を粉末状にして回収する方法である。ここで、「フラッシュ」とは、重合反応物をノズルから噴出させることを意味する。フラッシュさせる雰囲気は、具体的には、常圧中の窒素または水蒸気が挙げられ、その温度は通常150℃~250℃の範囲が選ばれる。
 [後処理工程]
 PPS樹脂は、上記重合、回収工程を経て生成した後、酸処理、熱水処理または有機溶媒による洗浄を施されたものであってもよい。
 酸処理を行う場合は、次のとおりである。PPS樹脂の酸処理に用いる酸は、PPS樹脂を分解する作用を有しないものであれば特に制限はなく、酢酸、塩酸、硫酸、リン酸、珪酸、炭酸およびプロピル酸などが挙げられる。なかでも酢酸および塩酸がより好ましく用いられる。一方、硝酸のようなPPS樹脂を分解、劣化させるものは好ましくない。
 酸処理の方法は、例えば酸または酸の水溶液にPPS樹脂を浸漬せしめる方法があり、必要により撹拌または加熱することも可能である。例えば、酢酸を用いる場合、pH4の酢酸水溶液を80~200℃に加熱した中にPPS樹脂粉末を浸漬し、30分間撹拌することにより十分な効果が得られる。処理後のpHは4以上となってもよく、例えばpH4~8程度となっても良い。酸処理を施されたPPS樹脂から残留している酸または塩などを除去するため、水または温水で数回洗浄することが好ましい。洗浄に用いる水は、酸処理によるPPS樹脂の好ましい化学的変性の効果を損なわないために、蒸留水、脱イオン水であることが好ましい。
 熱水処理を行う場合は次のとおりである。PPS樹脂を熱水処理するにあたり、熱水の温度を100℃以上、より好ましくは120℃以上、さらに好ましくは150℃以上、特に好ましくは170℃以上とすることが好ましい。100℃未満ではPPS樹脂の好ましい化学的変性の効果が小さいため好ましくない。
 熱水洗浄によるPPS樹脂の好ましい化学的変性の効果を発現するため、使用する水は蒸留水あるいは脱イオン水であることが好ましい。熱水処理の操作に特に制限は無い。所定量の水に所定量のPPS樹脂を投入し、圧力容器内で加熱、撹拌する方法や、連続的に熱水処理を施す方法などにより行われる。PPS樹脂と水との割合は、水の多い方が好ましいが、通常、水1リットルに対し、PPS樹脂200g以下の浴比(乾燥PPS重量に対する洗浄液重量)が選ばれる。
 また、末端基の分解が好ましくないので、これを回避するため、処理の雰囲気は不活性雰囲気下とすることが望ましい。さらに、残留している成分を除去するため、この熱水処理操作を終えたPPS樹脂は、温水で数回洗浄するのが好ましい。
 有機溶媒で洗浄する場合は次のとおりである。PPS樹脂の洗浄に用いる有機溶媒は、PPS樹脂を分解する作用などを有しないものであれば特に制限はない。例えばN-メチル-2-ピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチルイミダゾリジノン、ヘキサメチルホスホラスアミド、ピペラジノン類などの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホン、スルホランなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、ジオキサン、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、パークロルエチレン、モノクロルエタン、ジクロルエタン、テトラクロルエタン、パークロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコール、ポリプロピレングリコールなどのアルコール・フェノール系溶媒およびベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などがPPS樹脂の洗浄に用いる有機溶媒として挙げられる。これらの有機溶媒のうちでも、N-メチル-2-ピロリドン、アセトン、ジメチルホルムアミドおよびクロロホルムなどの使用が特に好ましい。また、これらの有機溶媒は、1種類または2種類以上の混合で使用される。
 有機溶媒による洗浄の方法としては、例えば有機溶媒中にPPS樹脂を浸漬せしめる方法があり、必要により適宜撹拌または加熱することも可能である。有機溶媒でPPS樹脂を洗浄する際の洗浄温度については特に制限はなく、常温~300℃程度の任意の温度が選択できる。洗浄温度が高くなる程洗浄効率が高くなる傾向があるが、通常は常温~150℃の洗浄温度で十分効果が得られる。圧力容器中で、有機溶媒の沸点以上の温度で加圧下に洗浄することも可能である。また、洗浄時間についても特に制限はない。洗浄条件にもよるが、バッチ式洗浄の場合、通常5分間以上洗浄することにより十分な効果が得られる。また連続式で洗浄することも可能である。
 後処理工程は、酸処理、熱水処理、有機溶媒による洗浄のいずれかを施すことが好ましく、2種以上の処理を併用することが、不純物除去の観点から好ましい。
 本発明の実施形態においては、PPS中にアルカリ金属やCaなどのアルカリ土類金属を導入したPPSを用いても良い。アルカリ金属、アルカリ土類金属を導入する方法としては、上記前工程の前、前工程中、前工程後にアルカリ金属塩、アルカリ土類金属塩を添加する方法や、重合行程前、重合行程中、重合行程後に重合釜内にアルカリ金属塩、アルカリ土類金属塩を添加する方法や、上記洗浄工程の最初、中間、最後の段階でアルカリ金属塩、アルカリ土類金属塩を添加する方法などが挙げられる。もっとも容易な方法としては、有機溶剤洗浄や、温水または熱水洗浄により残留オリゴマーや残留塩を除いた後に、アルカリ金属塩、アルカリ土類金属塩を添加する方法が挙げられる。アルカリ金属、アルカリ土類金属を、酢酸塩、水酸化物、炭酸塩などのアルカリ金属イオン、アルカリ土類金属イオンの形でPPS中に導入する方法が好ましい。また、温水洗浄などにより、過剰のアルカリ金属塩、アルカリ土類金属塩は取り除く方が好ましい。上記アルカリ金属、アルカリ土類金属導入の際のアルカリ金属イオン、アルカリ土類金属イオン濃度としてはPPS1gに対して0.001mmol以上が好ましく、0.01mmol以上がより好ましい。温度としては、50℃以上が好ましく、75℃以上がより好ましく、90℃以上が特に好ましい。上限温度は特にないが、操作性の観点から通常280℃以下が好ましい。浴比(乾燥PPS重量に対する洗浄液重量)としては0.5以上が好ましく、3以上がより好ましく、5以上が更に好ましい。
 PPS樹脂は、重合終了後に酸素雰囲気下においての加熱や過酸化物などの架橋剤を添加しての加熱による熱酸化架橋処理により高分子量化して用いることも可能である。
 熱酸化架橋による高分子量化を目的として乾式熱処理する場合には、その温度は、下限として、160℃以上が好ましく、170℃以上がより好ましく、上限として、260℃以下が好ましく、250℃以下がより好ましい。また、酸素濃度は5体積%以上、更には8体積%以上とすることが望ましい。酸素濃度の上限には特に制限はないが、50体積%程度が限界である。処理時間は、下限としては、0.5時間以上が好ましく、1時間以上がより好ましく、2時間以上がさらに好ましく、上限としては、100時間以下が好ましく、50時間以下がより好ましく、25時間以下がさらに好ましい。加熱処理の装置は通常の熱風乾燥機もしくは回転式あるいは撹拌翼付の加熱装置であってもよい。効率よく、より均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのが好ましい。
 また、熱酸化架橋を抑制し、揮発分除去を目的として乾式熱処理を行うことが可能である。その温度は130~250℃が好ましく、160~250℃の範囲がより好ましい。また、この場合の酸素濃度は5体積%未満、更には2体積%未満とすることが望ましい。処理時間は、下限としては、0.5時間以上が好ましく、1時間以上がより好ましく、上限としては、50時間以下が好ましく、20時間以下がより好ましく、10時間以下がさらに好ましい。加熱処理の装置は通常の熱風乾燥機もしくは回転式あるいは撹拌翼付の加熱装置であってもよい。効率よく、より均一に処理する場合は、回転式あるいは撹拌翼付の加熱装置を用いるのがより好ましい。
 (2)(b)ポリアミド樹脂
 本発明の実施形態において用いるポリアミド樹脂は、公知のポリアミド樹脂であれば特に制限はないが、一般にアミノ酸、ラクタムあるいはジアミンとジカルボン酸を主たる構成成分とするポリアミドである。その主要構成成分の代表例としては、6-アミノカプロン酸、11-アミノウンデカン酸、12-アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ε-アミノカプロラクタム、ω-ラウロラクタムなどのラクタム、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメレンジアミン、オクタメチレンジアミン、ノナンメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-/2,4,4-トリメチルヘキサメチレンジアミン、5-メチルノナメチレンジアミン、メタキシレンジアミン、パラキシリレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、ビス(3-メチル-4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジン、2-メチルペンタメチレンジアミンなどの脂肪族、脂環族、芳香族のジアミン、およびアジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テレフタル酸、イソフタル酸、2-クロロテレフタル酸、2-メチルテレフタル酸、5-メチルイソフタル酸、5-ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの脂肪族、脂環族、芳香族のジカルボン酸が挙げられる。本発明の実施形態においては、これらの原料から誘導されるポリアミドホモポリマまたはコポリマを各々単独または混合物の形で用いることができる。
 本発明の実施形態において、有用なポリアミド樹脂としては、ポリテトラメチレンセバカミド(ナイロン410)、ポリペンタメチレンセバカミド(ナイロン510)、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリヘキサメチレンセバカミド(ナイロン610)、ポリヘキサメチレンドデカミド(ナイロン612)、ポリデカメチレンセバカミド(ナイロン1010)、ポリドデカンアミド(ナイロン12)、ポリウンデカンアミド(ナイロン11)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリキシリレンアジパミド(ナイロンXD6)、ポリノナンメチレンテレフタルアミド(ナイロン9T)、ポリデカメチレンテレフタルアミド(ナイロン10T)などのホモポリアミド樹脂ないしはこれらの共重合体である共重合ポリアミド(ナイロン6/66、ナイロン6/10、ナイロン6/66/610、66/6T、66/10T)などが挙げられ、これらのポリアミド樹脂は混合物として用いることもできる(「/」は共重合を表す。以下同じ)。
 上記のなかでも、耐トラッキング性向上の観点から、脂肪族ポリアミド樹脂としては、アミド基濃度が6を越えるポリアミド樹脂が好ましく、中でもナイロン610、ナイロン612、ナイロン11、ナイロン12がより好ましい。また、半芳香族ポリアミド樹脂としては、アミド基濃度が7を越えるポリアミド樹脂が好ましく、中でもナイロン9T、ナイロン10Tがより好ましい。この理由としては、比較的長鎖の脂肪族を有するポリアミド樹脂は、PPS樹脂の加工温度において比較的に耐熱性に優れており、分解物等による耐トラッキング試験時の炭化導電路形成が抑制されるためと推定される。なお、「アミド基濃度」とは、ポリアミド樹脂の構造式中アミド基1個あたりの炭素原子数として算出される。
 本発明の実施形態におけるポリアミド樹脂としては、23℃、水中浸漬下での24時間経過時の吸水率が0.5重量%以下であることが好ましく、0.3重量%以下であることがより好ましい。この理由としては、吸水した際のPPS樹脂組成物が、優れた耐トラッキング性や機械的強度、寸法安定性、湿熱安定性を維持するためには、特に添加するポリアミド樹脂の吸水率を制御することが好ましいためである。
 なお、「吸水率」とは、ポリアミド樹脂を、ASTM-D570に従って、23℃、水中24時間浸漬処理し、処理前後のポリアミド樹脂の重量差を処理前のポリアミド樹脂の重量で除してパーセント表示した値である。
 ポリアミド樹脂の吸水率はアミド結合による影響が大きく、単位体積あたりのアミド結合の割合が低いほど低吸水性を示す傾向にある。そのため、本発明の実施形態が好ましい範囲と考える低吸水性のポリアミド樹脂を得るためには、ポリアミド樹脂の構成成分中に長鎖アルキル基を有することが好ましく、具体的には炭素が8以上のアルキル基を有することが好ましい。また、ポリアミド樹脂の構成成分として、脂肪環あるいは芳香環を有することも本発明の実施形態で好ましい範囲の低吸水性を得るのに効果的である。
 さらに、本発明の実施形態におけるポリアミド樹脂としては、320℃空気中、2時間加熱した際の重量減量(加熱減量)が2.5重量%以下であることが好ましく、2.0重量%以下であることがより好ましく、1.5重量%以下であることがさらに好ましい。樹脂加熱時の重量減少が少ないということは、溶融時の低ガス性に優れることを意味し、溶融混練や成形加工における生産性の低下を防ぐことにつながる。また、PPS樹脂組成物とした際に、本来PPS樹脂が有する優れた耐熱性を維持するためには、特にポリアミド樹脂の加熱減量が少ないことが好ましい。さらに、加熱減量の多さは、溶融混練や成形加工における分解物の生成のし易さの指標として用いることが出来る。分解物に起因する耐トラッキング性の低下を抑制する観点からも、ポリアミド樹脂の加熱減量が少ないことが好ましい。
 なお、「加熱減量」とは、ポリアミド樹脂を加熱した際に揮発する成分の量を意味しており、以下の方法で算出する。ポリアミド樹脂のペレット10gをアルミカップに入れ、130℃の雰囲気で3時間予備乾燥する。ペレット重量を測定し、320℃の雰囲気で2時間処理後、再度ペレット重量を測定する。320℃の処理による重量の減量を処理前のペレットの重量で除してパーセント表示したのが加熱減量である。
 本発明の実施形態が好ましいと考える加熱減量の範囲のポリアミド樹脂を得るためには、加熱時の低分解性の観点から、繰り返し構造内により熱安定的な成分を有することが望ましく、具体的には炭素が8以上の長鎖アルキル基や芳香環を有することが好ましい。
 近年環境問題が重視されてきており、化石燃料の枯渇問題や大気中の二酸化炭素増加といった地球規模での環境負荷に対する対応が必要となっている。これに対し、ポリアミド樹脂の原料として植物から誘導された原料(植物由来成分)を用いることにより、化石燃料枯渇問題とは無関係となり、植物の育成により二酸化炭素が吸収されるため二酸化炭素削減にも貢献可能である。このような観点から、本発明の実施形態におけるポリアミド樹脂は植物由来成分を含むことが好ましい。具体的には、植物から誘導された1、5-ペンタメチレンジアミン、1、10-デカメチレンジアミン、セバシン酸、ドデカン二酸、11-アミノウンデカン酸、12-アミノドデカン酸のいずれかを原料成分として含むポリアミド樹脂が好ましい。その代表例としては、ナイロン510、ナイロン610、ナイロン612、ナイロン1010、ナイロン11、ナイロン12が挙げられる。
 本発明の実施形態におけるポリアミド樹脂の配合量は、PPS樹脂100重量部に対して、ポリアミド樹脂5~50重量部の範囲が選択され、より好ましくはポリアミド樹脂が5~40重量部である。ポリアミド樹脂の量が50重量部を越えると、PPS樹脂が有する優れた低ガス性や耐湿熱性や難燃性、寸法安定性、低吸水性等の特性が損なわれるため好ましくない。また、ポリアミド樹脂が5重量部未満では、耐トラッキング性発現効果が減退するため好ましくない。
 これらポリアミド樹脂の重合度には特に制限はないが、サンプル濃度0.01g/mlの98%濃硫酸液溶液中、25℃で測定した相対粘度として、下限としては、1.5以上が好ましく、特に1.8以上のポリアミド樹脂が好ましく、上限としては、6.0以下が好ましく、特に4.0以下のポリアミド樹脂が好ましい。相対粘度が1.5よりも小さい場合は、機械的強度の低下に繋がるため好ましくない。一方、相対粘度が6.0を越える場合は、組成物の溶融粘度が著しく増加する。これにより、金属水酸化物やその他のフィラーとの溶融混練を行った場合には、大きなせん断発熱が生じ、金属水酸化物やポリアミド樹脂の分解が発生するため好ましくない。
 (3)(c)金属水酸化物
 本発明の実施形態において用いられる金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムがあげられるが、耐トラッキング性の向上効果を考慮すると、水酸化マグネシウムを用いることが好ましい。本発明の実施形態において用いられる水酸化マグネシウムとしては、化学式Mg(OH)2で示される無機物を80重量%以上含む比較的純度の高い水酸化マグネシウムが挙げられる。耐トラッキング性、機械的強度、溶融粘度の点から、好ましくはMg(OH)2で示される無機物を80重量%以上、CaO含量5重量%以下、塩素含量1重量%以下、より好ましくはMg(OH)2を95重量%以上含み且つ、CaO含量1重量%以下、塩素含量0.5重量%以下、更に好ましくはMg(OH)298重量%以上含み且つ、CaO含量0.1重量%以下、塩素含量0.1重量%以下の高純度水酸化マグネシウムが適している。
 本発明の実施形態で使用される水酸化マグネシウムの形状は、粒子状、フレ-ク状、繊維状いずれでもよいが、分散性などの観点から、粒子状、フレ-ク状が最も好適である。また比表面積は15m2 /g以下、更には10m/g以下であることが好ましく、比表面積が15m2/gを越えると水酸化マグネシウムの分散性に影響するためか耐トラッキング性向上効果、機械的強度などに悪影響を与えるため好ましくない。なお、「比表面積」とは、窒素を吸着ガスとしてBET法により測定される値である。粒子状、フレ-ク状の水酸化マグネシウムを用いる場合その平均一次粒径は0.3~5μm、好ましくは0.3~3μmの範囲のものが耐トラッキング性向上効果、機械的強度、溶融粘性のバランスにおいて適している。なお、「平均一次粒径」とは、レーザー回折・散乱法により測定される値である。また繊維状の水酸化マグネシウムを用いる場合、平均繊維径が0.1~2μmでアスペクト比20~60、好ましくは平均繊維径0.3~2μmでアスペクト比30~50の範囲のものが適当である。なお、「アスペクト比」とは、その物質の長辺の寸法を短辺の寸法で割った比率をいう。
 また、ビニルトリエトキシシラン、ビニルトリクロロシランなどのビニルシラン化合物、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノシラン化合物、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどのメタクリロキシシラン化合物、ステアリン酸、オレイン酸、モンタン酸、ステアリルアルコールなどの長鎖脂肪酸または長鎖脂肪族アルコールにより、金属水酸化物を表面処理して使用することは好ましい。特にエポキシシラン化合物、アミノシラン化合物、イソシアナトシラン化合物で表面処理した金属水酸化物の適用は、組成物あるいは成形体中での凝集抑制の点、および耐トラッキング性や機械的強度の点で好適である。
 かかる金属水酸化物の配合量は、PPS樹脂100重量部に対し、下限としては、50重量部以上、好ましくは60重量部以上、より好ましくは70重量部以上であり、上限としては、250重量部以下、好ましくは200重量部以下、より好ましくは150重量部以下である。添加量が50重量部に満たないと耐トラッキング性向上効果が不十分であるため好ましくない。添加量が250重量部を越えると樹脂組成物の機械的強度、流動性などへの悪影響が大きくなるため好ましくない。
 (4)(d)金属水酸化物以外の繊維状および/または非繊維状充填材
 本発明の実施形態の方法により得られるPPS樹脂組成物には、本発明の実施形態の効果を損なわない範囲で金属水酸化物以外の繊維状および/または非繊維状充填材を配合して使用することも可能である。かかる充填材の具体例としてはガラス繊維、炭素繊維、カーボンナノチューブ、カーボンナノホーン、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、炭酸カルシウムウィスカー、ワラステナイトウィスカー、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填材、あるいはフラーレン、タルク、ワラステナイト、ゼオライト、セリサイト、マイカ、カオリン、クレー、パイロフィライト、ベントナイト、アスベスト、アルミナシリケートなどの珪酸塩、酸化珪素、酸化マグネシウム、アルミナ、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラスビーズ、ガラスフレーク、ガラス粉、セラミックビーズ、窒化ホウ素、炭化珪素、カーボンブラックおよびシリカ、黒鉛などの非繊維状充填材が挙げられる。これらは中空であってもよく、さらにはこれら充填材を2種類以上併用することも可能である。また、これらの充填材をイソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物およびエポキシ化合物などのカップリング剤で予備処理して使用してもよい。
 中でも材料の剛性を向上する効果を得る上で、ガラス繊維および炭素繊維であることが好ましく、さらに材料コストの観点から、ガラス繊維であることがより好ましい。
 かかる金属水酸化物以外の繊維状および/または非繊維状充填材の配合量はPPS樹脂100重量部に対し、下限としては、0重量部以上、好ましくは20重量部以上、上限としては、350重量部以下、好ましくは200重量部以下が選択される。好ましい配合量とすることで、さらに溶融流動性と機械的強度のバランスのより優れた樹脂組成物を得ることができる。
 (5)(e)有機シラン化合物
 本発明の実施形態のPPS樹脂組成物に有機シラン化合物を添加することは、金属水酸化物あるいは金属水酸化物以外の繊維状および/または非繊維状充填材とPPS樹脂との親和性を高めることに有用であり、機械的強度向上に効果的である。
 また、有機シラン化合物の添加は、PPS樹脂に対するポリアミド樹脂の分散性を高め、ポリアミド樹脂の分散粒子径を低下させることにおいても効果的である。系内に粗大分散化したポリアミド樹脂が存在するということは、局所的にPPS樹脂組成が高い部分が存在することを意味する。このため、高電圧における耐トラッキング性が低下すると考えられる。
 かかる有機シラン化合物の具体例としては、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有アルコキシシラン化合物、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシランなどのメルカプト基含有アルコキシシラン化合物、γ-ウレイドプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシシラン、γ-(2-ウレイドエチル)アミノプロピルトリメトキシシランなどのウレイド基含有アルコキシシラン化合物、γ-イソシアナトプロピルトリエトキシシラン、γ-イソシアナトプロピルトリメトキシシラン、γ-イソシアナトプロピルメチルジメトキシシラン、γ-イソシアナトプロピルメチルジエトキシシラン、γ-イソシアナトプロピルエチルジメトキシシラン、γ-イソシアナトプロピルエチルジエトキシシラン、γ-イソシアナトプロピルトリクロロシランなどのイソシアナト基含有アルコキシシラン化合物、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシランなどのアミノ基含有アルコキシシラン化合物などの有機シラン化合物を挙げることができる。かかる有機シラン化合物の添加量は、PPS樹脂100重量部に対して、下限としては、0.1重量部以上が好ましく、特に0.2重量部以上が好ましく、上限としては、5重量部以下が好ましく、特に3重量部以下が好ましい。
 (6)その他の添加物
 さらに、本発明の実施形態のPPS樹脂組成物には本発明の実施形態の効果を損なわない範囲において、ポリアミド樹脂以外の樹脂を添加配合しても良い。その具体例としては、ポリブチレンテレフタレート樹脂、ポリエチレンテレフタレート樹脂、変性ポリフェニレンエーテル樹脂、ポリサルフォン樹脂、ポリアリルサルフォン樹脂、ポリケトン樹脂、ポリエーテルイミド樹脂、ポリアリレート樹脂、液晶ポリマー、ポリエーテルサルフォン樹脂、ポリエーテル
ケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、四フッ化ポリエチレン樹脂などが挙げられる。
 また、改質を目的として、以下のような化合物の添加が可能である。ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン系化合物などの可塑剤、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重縮合物、シリコーン系化合物などの離型剤、次亜リン酸塩などの着色防止剤、その他、滑剤、紫外線防止剤、着色剤、発泡剤などの通常の添加剤を配合することができる。上記化合物は何れも組成物全体の20重量%を越えるとPPS樹脂本来の特性が損なわれるため好ましくなく、10重量%以下、更に好ましくは1重量%以下の添加がよい。
 (7)樹脂組成物の製造方法
 溶融混練としては、少なくとも(a)PPS樹脂、(b)ポリアミド樹脂、(c)金属水酸化物を、二軸の押出機に供給してPPS樹脂の融解ピーク温度+5~100℃の加工温度で混練する方法を代表例として挙げることができる。金属水酸化物の分散やPA樹脂の分散をより細かくするには、せん断力を比較的強くする必要がある。具体的には、二軸押出機を使用することを必須とし、ニーディング部を2箇所以上有することが好ましく、ニーディング部が3箇所以上あることがより好ましい。ニーディング部の上限としては、一箇所あたりのニーディング部の長さとニーディング部の間隔との兼ね合いであるが、10箇所以下が好ましく、8箇所以下がより好ましい。二軸押出機の「L/D」(L:スクリュー長さ、D:スクリュー直径)としては、20以上が望ましく、30以上がより好ましい。二軸押出機のL/Dの上限は通常60である。この際の周速度としては、下限としては、15m/分以上が選択され、20m/分以上がより好ましく選択され、上限としては、50m/分以下が選択され、40m/分以下がより好ましく選択される。二軸押出機の「L/D」が20未満の場合には、混練部分が不足となる。このため、金属水酸化物の分散性が低下し、本発明の実施形態が規定する金属水酸化物の平均二次粒子径を得ることが出来ず、PPS樹脂組成物の機械的強度、耐トラッキング性の低下を招く。また、ニーディング部が2箇所未満の場合、あるいは周速度が15m/分未満の場合も、剪断力の低下に伴い金属水酸化物の分散性が低下するため、所望の物性を得ることが出来ない。一方、周速度が50m/分を越える場合には、二軸押出機への負荷が大きくなるため生産性において好ましくない。
 また、本発明の実施形態において、金属水酸化物の分散やPA樹脂の分散をより細かくするためには、押出機のスクリューの全長に対するニーディング部の合計の長さの割合が、下限としては、10%以上が好ましく、より好ましくは15%以上、さらに好ましくは20%以上であり、上限としては、60%以下が好ましく、より好ましくは55%以下、さらに好ましくは50%以下である。全長に対するニーディング部の合計の長さの割合が10%未満である場合には、混練不足となり、金属水酸化物やPA樹脂の分散性が低下し、PPS樹脂組成物の機械的強度、耐トラッキング性の低下を招く。一方、全長に対するニーディング部の合計の長さの割合が60%を越える場合には、過剰なせん断による発熱が生じるため、樹脂温度が上昇し、混練する金属水酸化物やPA樹脂の分解を招く。
 また、本発明の実施形態において、押出機のスクリューにおける一箇所あたりのニーディング部の長さを「Lk」とし、スクリュー直径を「D」とすると、混練性の観点から、「Lk/D」としては、下限としては、0.1以上が好ましく、1以上がより好ましく、2以上がさらに好ましく、上限としては、10以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。
 また、本発明の実施形態において、押出機のスクリューにおけるニーディング部同士の間隔を「Ld」とし、スクリュー直径を「D」とすると、連続するニーディング部でのせん断による、溶融樹脂の過剰な発熱を抑制する観点から、「Ld/D」としては、下限としては、0.5以上が好ましく、1以上がより好ましく、2以上がさらに好ましく、上限としては、10以下が好ましく、8以下がより好ましく、6以下がさらに好ましい。
 混合時の樹脂温度は、下限としては、PPS樹脂の融解ピーク温度+5℃以上が選択され、+10℃以上がより好ましく、上限としては、PPS樹脂の融解ピーク温度+100℃以下が選択され、+70℃以下がより好ましい。具体的には、混合時の樹脂温度は、350℃以下であることが好ましく、340℃以下であることがより好ましい。混練温度がPPS樹脂の融解ピーク+5℃よりも低い場合には、部分的に融解しないPPS樹脂の存在により、組成物の粘度が大幅に上昇する。これにより、二軸押出機への付加が大きくなるため生産性上好ましくない。一方、混練温度がPPS樹脂の融解ピーク+100℃を越える場合には、混練するポリアミド樹脂や金属水酸化物の分解が生じるため好ましくない。
 上記の通り、金属水酸化物の分散やポリアミド樹脂の分散をより細かくするには、せん断力を比較的強くする必要がある。一方で、強いせん断力は同時に大きな発熱を生じるため、樹脂温度が上昇し、混練するポリアミド樹脂や金属水酸化物の分解が生じる。そのため、二軸押出機による溶融混練において、吐出部のポリフェニレンスルフィド樹脂組成物の樹脂温度と押出機のシリンダー温度との温度差は、0℃以上50℃以下であることが好ましく、0℃以上40℃以下であることがより好ましく、さらに0℃以上30℃以下であることが好ましい。樹脂温度とシリンダー温度の温度差が50℃を越える場合には、せん断発熱の制御が出来ておらず、結果として混練するポリアミド樹脂や金属水酸化物の分解が生じるため好ましくない。
 このような混練時に発生するせん断発熱を抑制する方法として、切り欠き型ミキシングスクリューを組み込んだスクリューアレンジを用いて溶融混練する方法がある。ここで「切り欠き」とは、図1の1に示す部分であり、スクリューフライトの山部分を一部削って出来たものをいう。切り欠き型ミキシングスクリューは樹脂充填率を高くすることが可能であり、その切り欠き型ミキシングスクリューを連結させたニーディング部を通過する溶融樹脂は、押出機シリンダー温度の影響を受けやすい。そのため、混練時のせん断により発熱した溶融樹脂でも切り欠き型ミキシングスクリュー部分で効率的に冷却され、樹脂温度を低下させることが可能となる。その結果、発熱による金属水酸化物やポリアミド樹脂の分解を抑制することが出来る。
 切り欠き型ミキシングスクリューとしては、樹脂充満による溶融樹脂の冷却効率向上、混練性向上の観点から、スクリュー直径をDとするとスクリューピッチの長さが0.1D~0.3D、かつ切り欠き数が1ピッチあたり10~15個である切り欠き型ミキシングスクリューであることが好ましい。ここで「スクリューピッチの長さ」とは、スクリューが360度回転したときの、スクリューの山部分間のスクリュー長さをいう。
 原料の混合順序には特に制限はない。全ての原材料を配合した後に上記の方法により溶融混練する方法や、一部の原材料を配合した後に上記の方法により溶融混練し、更に残りの原材料を配合した後に溶融混練する方法や、あるいは一部の原材料を配合した後に単軸あるいは二軸の押出機により溶融混練中にサイドフィーダーを用いて残りの原材料を混合する方法などが、方法として挙げられる。ただし、いずれの場合であっても、金属水酸化物の一次粒子同士の凝集を防ぐ観点から、PPS樹脂、ポリアミド樹脂、金属水酸化物の存在下で、「L/D」が20以上の二軸の押出機にて、ニーディング部を2箇所以上経る必要があり、その際の周速度が15~50m/分に設定する必要がある。また、少量添加剤成分については、他の成分を上記の方法などで混練しペレット化した後、成形前に添加して成形に供することも可能である。
 (8)ポリフェニレンスルフィド樹脂組成物
 本発明の実施形態のPPS樹脂組成物は、PPS樹脂が本来有する優れた機械的強度や低ガス性等とともに、優れた耐トラッキング性を有するものである。かかる特性を発現させるためには、PPS樹脂組成物中における、金属水酸化物の平均二次粒子径が5μm以下で分散していることが望ましく、平均二次粒子径が4μm以下であることがより好ましく、3μm以下であることがさらに好ましい。下限としては、用いる一次粒子の粒子径程度によるが、一次粒子の生産性を考慮すると、PPS樹脂組成物中での金属水酸化物の平均二次粒子径が0.3μm以上であることが好ましい。一方、平均二次粒子径が5μmを越える範囲においては、機械的強度の低下や耐トラッキング性の低下につながるため望ましくない。比較的大きな凝集体は、引張試験や曲げ試験での破断点の起点となるのみならず、耐トラッキング性に関して、粗大分散化することにより金属水酸化物の疎密度合いが大きくなるため、耐トラッキング性の低下につながると考えられる。また吸水率の観点からも分散性の向上が好ましい。PPS樹脂組成物中の金属水酸化物の平均二次粒子径を5μm以下に制御する手段としては、少なくとも(a)PPS樹脂、(b)ポリアミド樹脂、(c)金属水酸化物の二軸押出機での溶融混練において、「L/D」が20以上、ニーディング部を2箇所以上有する、周速度が15~50m/分の条件を満たすことが必要である。
 なお、「平均二次粒子径」は、PPS樹脂の融解ピーク温度+20~40℃の成形温度でASTM1号ダンベル試験片を成形し、その中心部から室温にて0.1μm以下の薄片をダンベル片の断面積方向に切削し、日立製作所製H-7100型透過型電子顕微鏡(分解能(粒子像)0.38nm、倍率50~60万倍)にて、1000倍に拡大して観察した際の任意の100個の金属水酸化物成分について、まずそれぞれの最大径と最小径を測定して平均値をその分散粒子径とし、それら100個の金属水酸化物成分の分散粒子径の数平均値をいう。
 本発明の実施形態のPPS樹脂組成物は、空気中320℃、2時間での加熱減量が5重量%以下であることが好ましく、より好ましくは3重量%以下が望ましい。加熱減量が上記範囲であると、金型表面や金型ベント部にモールドデポジットが発生しにくくなり、転写不良や成形不良を引き起こさず、さらに、金型の解体清掃の頻度が減り、生産性が向上する。加熱減量の下限については特に制限はない。
 PPS樹脂組成物の加熱減量には、用いるポリアミド樹脂の影響が大きい。前述の通りポリアミド樹脂の構成成分内に熱安定的な成分を有することが、樹脂組成物の加熱減量低減にも効果的である。そのため、PPS樹脂組成物の加熱減量を5重量%以下に制御するためには、用いるポリアミド樹脂の選択とその組成が重要である。具体的には炭素が8以上の長鎖アルキル基や芳香環を有するポリアミド樹脂を用いることが好ましい。また、PPS樹脂組成物の加熱減量の低減には、二軸押出機による溶融混練時に、真空ポンプを用いて揮発成分を樹脂組成物外に除去することも効果的である。
 なお、「加熱減量」とは、PPS樹脂組成物を加熱した際に揮発する成分の量を意味しており、以下の方法で算出する。樹脂組成物のペレット10gをアルミカップに入れ、130℃の雰囲気で3時間予備乾燥する。ペレット重量を測定し、320℃の雰囲気で2時間処理後、再度ペレット重量を測定する。320℃の処理による重量の減量を処理前のペレットの重量で除してパーセント表示したのが加熱減量である。
 本発明の実施形態のPPS樹脂組成物は、加熱時の重量減少が少ないことから、溶融成形加工時の金型汚れ性が改善され、成形性に優れた材料といえる。
 材料強度を示す物性値の一つである引張強度(ASTM1号ダンベル試験片、引張速度10mm/min、23℃、ASTM-D638に準拠して測定する)の範囲としては、80MPa以上が好ましく、90MPa以上がより好ましい。一方、曲げ強度(長さ127mm、幅12.7mm、厚み6.35mm曲げ試験片、支点間距離100mm、クロスヘッド速度3mm/min、23℃、ASTM-D790に準拠して測定する)の範囲としては、110MPa以上が好ましく、125MPa以上がより好ましい。
 本発明の実施形態のPPS樹脂組成物におけるポリアミド樹脂の相構造としては、PPS樹脂が海相(連続相あるいはマトリックス)を形成し、ポリアミド樹脂が島相(分散相)を形成することが望ましい。さらにポリアミド樹脂の数平均分散粒子径が1000nm未満であることが好ましく、より好ましくは500nm以下、更には300nm以下が好ましい。下限としては、生産性の点から1nm以上であることが好ましい。PPS樹脂相が連続相を形成し、ポリアミド樹脂が分散性良く存在することで、PPS樹脂が本来有する優れた機械的強度、低ガス性、耐熱性、耐薬品性、低吸水性等とともに、優れた耐トラッキング性を発現することができる。
 なお、「ポリアミド樹脂の数平均分散粒子径」とは、PPS樹脂の融解ピーク温度+20~40℃の成形温度でASTM1号試験片を成形し、その中心部から-20℃にて0.1μm以下の薄片をダンベル片の断面積方向に切削し、透過型電子顕微鏡で1000~5000倍程度の倍率で観察した際の任意の100個のポリアミド樹脂の分散部分について、まずそれぞれの最大径と最小径を測定して平均値を求め、その後にそれらから求めた数平均値をいう。
 本発明の実施形態で得られるPPS樹脂組成物の耐トラッキング性としては、IEC60112第4版に準拠した耐トラッキング試験において、トラッキング破壊が生じない最大電圧が525V以上であることが好ましく、より好ましくは550V以上であり、更には600Vであることが好ましい。より高電圧に耐えうることは、PPS樹脂組成物の使用範囲の制限が小さくなることを意味し、多用途での展開が可能となる。本発明の実施形態のPPS樹脂組成物の耐トラッキング性向上には、少なくとも(a)PPS樹脂、(b)ポリアミド樹脂、(c)金属水酸化物を特定の組成で含むPPS樹脂組成物において、PPS樹脂組成物中の金属水酸化物の平均二次粒子径を5μm以下に制御する必要がある。
 (9)用途
 本発明の実施形態により得られるPPS樹脂組成物は、PPS樹脂組成物の本来有する熱安定性、溶融流動性、機械的強度、電気絶縁性、低吸水性を大きく損なうことなく、耐トラッキング性の向上と言う従来のPPS樹脂に不足していた新たな特性が付与された樹脂組成物である。こうして得られたPPS樹脂組成物は、射出成形、押出成形、圧縮成形、吹込成形、射出圧縮成形など各種公知の成形法への適用が可能であるが、特に射出成形には好適な樹脂組成物である。
 本発明の実施形態のPPS樹脂組成物の成形体は、発電機、電動機、変圧器、変流器、電圧調整器、整流器、インバーター、継電器、電力用接点、開閉器、機遮断機、ナイフスイッチ、他極ロッド、電気部品キャビネット、ライトソケット、各種端子板、プラグ、パワーモジュールなどの電気機器部品用途に特に適している他、センサー、LEDランプ、コネクター、抵抗器、リレーケース、小型スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、変成器、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品等に代表される電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)・コンパクトディスク等の音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品等に代表される家庭、事務電気製品部品;オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライターなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター,ICレギュレーター、ライトディヤー用ポテンシオメーターベース、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース等の自動車・車両関連部品等、各種用途に適用できる。
 次に、本発明の実施形態を実施例及び比較例によって更に具体的に説明するが、本発明はこれらの例に限定されるものではない。
 実施例および比較例において、(a)PPS樹脂、(b)ポリアミド樹脂、(c)金属水酸化物、(d)ガラス繊維、(e)有機シラン化合物として以下のものを用いた。
 [(a)PPS樹脂(a-1)]
 撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.26kg(70.00モル)、96%水酸化ナトリウム2.94kg(70.63モル)、N-メチル-2-ピロリドン(NMP)14.57kg(147.00モル)、及びイオン交換水3.19kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水7.53kgおよびNMP0.28kgを留出した時点で加熱を終え冷却を開始した。この時点での仕込みアルカリ金属水硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.01モルであった。また、硫化水素の飛散量は1.40モルであったため、本工程後の系内のスルフィド化剤は68.60モルであった。
 その後200℃まで冷却し、p-ジクロロベンゼン(p-DCB)10.34kg(70.32モル)、NMP5.55kg(56.00モル)を加えた後に反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から276℃まで昇温し、276℃で63分反応した。その後、オートクレーブ底部の抜き出しバルブを開放し、窒素で加圧しながら内容物を攪拌機付き容器に15分かけてフラッシュし、250℃でしばらく攪拌して、大半のNMPを除去した。
 得られた回収物およびイオン交換水74リットルを攪拌機付きオートクレーブに入れ、75℃で15分洗浄した後、フィルターで濾過し、ケークを得た。この洗浄および濾過の操作を4回実施した後、ケークおよびイオン交換水74リットルを攪拌機付きオートクレーブに入れ、オートクレーブ内部を窒素で置換した後、195℃まで昇温した。その後、オートクレーブを冷却し、内容物を取り出した。内容物をフィルターで濾過し、ケークを得た。その後、得られたケークおよびイオン交換水74リットル、酢酸0.816kgを攪拌機付きオートクレーブに入れ、オートクレーブ内部を窒素で置換した後、195℃まで昇温した。その後、オートクレーブを冷却し、内容物を取り出した。内容物をフィルターで濾過し、ケークを得た。得られたケークを窒素気流下、120℃で乾燥することで、乾燥PPS樹脂(a-1)を得た。なお、(株)東洋精機製作所社製キャピログラフを用いて測定した溶融粘度は30Pa・s(300℃、剪断速度1216/s)であった。また、灰分率は0.18重量%であり、揮発性成分量は0.6重量%であった。
 [(a)PPS樹脂(a-2)]
 PPS樹脂(a-1)と同様の方法で、前工程、重合反応工程、回収工程を行って得られた回収物に対して、以下の方法で後処理工程を実施し、PPS樹脂(a-2)を得た。
 PPS樹脂(a-1)と同様の方法で、前工程、重合反応工程、回収工程を行って得られた回収物およびイオン交換水74リットルを攪拌機付きオートクレーブに入れ、75℃で15分洗浄した後、フィルターで濾過し、ケークを得た。この操作を4回実施した後、得られたケークおよびイオン交換水74リットル、酢酸0.816kgを攪拌機付きオートクレーブに入れ、オートクレーブ内部を窒素で置換した後、195℃まで昇温した。その後、オートクレーブを冷却し、内容物を取り出した。内容物をフィルターで濾過し、ケークを得た。得られたケークを窒素気流下、120℃で乾燥することで、乾燥PPS樹脂(a-2)を得た。なお、溶融粘度は35Pa・s(300℃、剪断速度1216/s)であった。また、灰分率は0.6重量%であり、揮発性成分量は1.4重量%であった。
 [(a)PPS樹脂(a-3)]
 撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.26kg(70.00モル)、96%水酸化ナトリウム2.94kg(70.63モル)、N-メチル-2-ピロリドン(NMP)14.57kg(147.00モル)、及びイオン交換水3.19kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水7.53kgおよびNMP0.28kgを留出した時点で加熱を終え冷却を開始した。この時点での仕込みアルカリ金属水硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.01モルであった。また、硫化水素の飛散量は1.40モルであったため、本工程後の系内のスルフィド化剤は68.60モルであった。
 その後200℃まで冷却し、p-ジクロロベンゼン(p-DCB)10.34kg(70.32モル)、NMP5.55kg(56.00モル)を加えた後に反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から276℃まで昇温し、276℃で63分反応した。その後、276℃から250℃まで15分かけて冷却しながら水2.40kg(133モル)を圧入した。ついで250℃から220℃まで75分かけて徐々に冷却した後、室温近くまで急冷し内容物を取り出した。内容物を約35リットルのNMPで希釈し、スラリーとして85℃で30分撹拌後、80メッシュ金網(目開き0.175mm)で濾別して固形物を得た。得られた固形物を同様にNMP約35リットルで洗浄濾別した。得られた固形物を70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収する操作を合計3回繰り返した。得られた固形物および酢酸32gを70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過し、更に得られた固形物を70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収した。このようにして得られた固形物を窒素気流下、120℃で乾燥することにより、乾燥PPS樹脂(a-3)を得た。なお、溶融粘度は45Pa・s(300℃、剪断速度1216/s)であった。また、灰分率は0.03重量%であり、揮発性成分量は0.4重量%であった。
 [(a)PPS樹脂(a-4)]
 撹拌機および底栓弁付きの70リットルオートクレーブに、47.5%水硫化ナトリウム8.267kg(70.00モル)、96%水酸化ナトリウム2.957kg(70.97モル)、N-メチル-2-ピロリドン(NMP)11.434kg(115.50モル)、酢酸ナトリウム2.583kg(31.50モル)、及びイオン交換水10.500kgを仕込み、常圧で窒素を通じながら245℃まで約3時間かけて徐々に加熱し、水14.780kgおよびNMP0.28kgを留出した時点で加熱を終え冷却を開始した。この時点での仕込みアルカリ金属水硫化物1モル当たりの系内残存水分量は、NMPの加水分解に消費された水分を含めて1.06モルであった。また、硫化水素の飛散量は1.30モルであったため、本工程後の系内のスルフィド化剤は68.70モルであった。
 その後、160℃まで冷却し、p-ジクロロベンゼン(p-DCB)10.235kg(69.63モル)、NMP9.090kg(91.00モル)を加えた後に反応容器を窒素ガス下に密封し、240rpmで撹拌しながら0.6℃/分の速度で200℃から238℃まで昇温した。238℃で95分反応を行った後、0.8℃/分の速度で270℃まで昇温した。270℃で100分反応した後、270℃から250℃まで15分かけて冷却しながら水1.260kg(70.00モル)を圧入した。ついで250℃から220℃まで75分かけて徐々に冷却した後、室温近傍まで急冷し内容物を取り出した。内容物を約35リットルのNMPで希釈し、スラリーとして85℃で30分撹拌後、80メッシュ金網(目開き0.175mm)で濾別して固形物を得た。得られた固形物を同様にNMP約35リットルで洗浄濾別した。得られた固形物を70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収する操作を合計3回繰り返した。得られた固形物および酢酸32gを70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過し、更に得られた固形物を70リットルのイオン交換水で希釈し、70℃で30分撹拌後、80メッシュ金網で濾過して固形物を回収した。このようにして得られた固形物を窒素気流下、120℃で乾燥することにより、乾燥PPS樹脂(a-4)を得た。なお、溶融粘度は200Pa・s(300℃、剪断速度1216/s)であった。また、灰分率は0.03重量%であり、揮発性成分量は0.4重量%であった。
 [(b)ポリアミド樹脂(b-1~5)]
 b-1:ナイロン6(東レ(株)社製CM1017)、吸水率1.8重量%、加熱減量3.3重量%、アミド基濃度6、相対粘度2.7
 b-2:ナイロン66(東レ(株)社製CM3001-N)、吸水率1.2重量%、加熱減量2.7重量%、アミド基濃度6、相対粘度2.9
 b-3:ナイロン610(東レ(株)社製CM2001)、吸水率0.3重量%、加熱減量1.2重量%、アミド基濃度8、相対粘度2.7、植物から誘導されたセバシン酸を原料として用いている。
 b-4:ナイロン9T((株)クラレ社製N1000A)、吸水率0.3重量%、加熱減量2.0重量%、アミド基濃度8.5、相対粘度2.6
 b-5:ナイロン10T(ダイセルエボニック(株)社製ベスタミドHTplus、M3000)、吸水率0.3重量%、加熱減量2.4重量%、アミド基濃度9、相対粘度2.5
 b-6:ナイロンXD6、(三菱エンジニアプラスチックス(株)社製S6011)、吸水率0.3重量%、加熱減量3.2重量%、アミド基濃度7、相対粘度2.8
 [(c)金属水酸化物(c-1~3)]
 c-1:表面処理水酸化マグネシウム(協和化学工業(株)社製キスマ5E)、Mg(OH)2 含有量:99.6%、平均一次粒径:0.8μm、比表面積:6.0m2/g、表面処理剤:脂肪族有機化合物 
 c-2:表面処理水酸化マグネシウム(協和化学工業(株)社製キスマ5P)、Mg(OH)2 含有量:99.8%、平均一次粒径:0.8μm、比表面積:5.6m2/g、表面処理剤:メタクリロキシシラン化合物
 c-3:水酸化マグネシウム(協和化学工業(株)社製キスマ5C):Mg(OH)2 含有量:99.8%、平均一次粒径:1.0μm、比表面積:6.2m2/g、表面処理なし
 [(d)ガラス繊維(GF:d-1)]
d-1:チョップドストランド(日本電気硝子(株)社製T-747)、平均繊維直径13μm
 [(e)有機シラン化合物(e-1、2)]
e-1:β-(3、4エポキシシクロヘキシル)エチルトリメトキシシラン(信越化学工業(株)社製KBM-303)
e-2:γ-イソシアネートプロピルトリエトキシシラン(信越化学工業(株)社製KBE-9007)
 実施例及び比較例で用いた評価・測定方法を以下に示す。
 [金属水酸化物の平均二次粒子径]
 PPS樹脂の融解ピーク温度+20~40℃の成形温度でASTM1号ダンベル試験片を成形し、その中心部から室温にて0.1μm以下の薄片をダンベル片の断面積方向に切削し、日立製作所製H-7100型透過型電子顕微鏡(分解能(粒子像)0.38nm、倍率50~60万倍)にて、1000倍に拡大して観察した際の任意の100個の金属水酸化物成分について、まずそれぞれの最大径と最小径を測定して平均値をその分散粒子径とし、それら100個の金属水酸化物成分の分散粒子径の数平均値を計算して平均二次粒子径を得た。
 [ポリアミド樹脂の数平均分散粒子径]
 住友重機械工業製射出成形機(SE75DUZ-C250)を用い、樹脂温度310℃、金型温度130℃にて、長さ127mm、幅12.7mm、厚み6.35mmの曲げ試験片を成形した。この試験片の中央部を流れ方向に対して直角方向に切断し、その断面の中心部を染色した後、0.1μm以下の薄片を切削し、透過型電子顕微鏡にて、2000倍に拡大して観察した際の任意の100個のポリアミド樹脂について、まずそれぞれの最大径と最小径を測定して平均値をその分散粒子径とし、それら100個のポリアミド樹脂の分散粒子径の数平均値を計算して数平均分散粒子径を得た。
 [吸水率]
 用いるポリアミド樹脂についてASTM-D570に従い、23℃、水中24時間浸漬時の吸水率を求めた。
 [加熱減量]
 用いるポリアミド樹脂またはPPS樹脂組成物のペレット10gをアルミカップに入れ、130℃の雰囲気で3時間予備乾燥する。ペレット重量を測定し、320℃の雰囲気で2時間処理後、再度ペレット重量を測定する。320℃の処理による重量の減量を処理前のペレットの重量で除してパーセント表示したのが加熱減量である。この加熱減量が少ない樹脂組成物ほど、低ガス性や成形加工性に優れる。
 [引張強度]
 住友重機械工業製射出成形機(SE75DUZ-C250)を用い、樹脂温度310℃、金型温度130℃にて、ASTM1号ダンベル試験片を成形した。得られた試験片について、支点間距離114mm、引張速度10mm/min、温度23℃×相対湿度50%条件下で、ASTM D638に従って引張強度を測定した。
 [相対粘度]
 98%硫酸中、0.01g/ml濃度、25℃でオストワルド式粘度計を用いて測定を行った。
 [曲げ強度]
 住友重機械工業製射出成形機(SE75DUZ-C250)を用い、樹脂温度310℃、金型温度130℃にて、長さ127mm、幅12.7mm、厚み6.35mmの曲げ試験片を成形した。この試験片を用い、支点間距離100mm、クロスヘッド速度3mm/min、温度23℃×相対湿度50%条件下で、ASTM D790に従って曲げ強度を測定した。
 [耐トラッキング性]
 住友重機械工業製射出成形機(SE75DUZ-C250)にて、シリンダー温度320℃、金型温度130℃で成形した角板(80mm×80mm×3.0mm厚み)を用い、IEC60112第4版に準拠し、トラッキング破壊が生じない最大電圧を求めた。電解液には0.1%塩化アンモニウム水溶液を用いた。
 [灰分率]
 乾燥状態のPPS原末5gを坩堝に測り取り、電気コンロ上で黒色塊状物となるまで焼成する。次いでこれを550℃に設定した電気炉中で炭化物が焼成しきるまで焼成を続ける。その後デシケータ中で冷却後、重量を測定し、初期重量との比較から灰分率を計算する。
 [揮発性成分量]
 腹部が100mm×25mm、首部が255mm×12mm、肉厚が1mmのガラスアンプルにサンプル3gを計り入れてから真空封入した。このガラスアンプルの胴部のみを、アサヒ理化製作所製のセラミックス電気管状炉ARF-30Kに挿入して320℃で2時間加熱した。アンプルを取り出した後、管状炉によって加熱されておらず揮発性成分の付着したアンプル首部をヤスリで切り出して秤量した。次いで付着ガスを5gのクロロホルムで溶解して除去した後、60℃のガラス乾燥機で1時間乾燥してから再度秤量した。揮発性成分を除去した前後のアンプル首部の重量差を揮発性成分量(ポリマーに対する重量%)とした。
 [実施例1]
 PPS樹脂(a-1)100重量部、ポリアミド(b-1)20重量部、水酸化マグネシウム(c-1)105重量部、有機シラン化合物(e-1)2.5重量部をドライブレンドした後、(株)日本製鋼所社製TEX30α型二軸押出機(L/D=30、ニーディング部3箇所、切り欠き型ミキシングスクリュー部有り)に投入した。一方、ガラス繊維(d-1)120重量部は該二軸押出機のサイドフィーダーから原料の投入をおこなった。溶融混練は、温度320℃、周速度28m/分の条件で実施した。この混練方法をA法とする(表1)。押出機より吐出した溶融樹脂の温度は335℃であった。ストランドカッターによりペレット化した後、120℃にて8時間熱風乾燥したペレットを射出成形に供した。金属水酸化物の平均二次粒子径、PA樹脂の数平均分散粒子径、引張強度、曲げ強度、加熱減量、耐トラッキング性の評価結果は表1に示すとおりであった。
 [実施例2~5、8、9、11~17]
 PPS樹脂(a-1~3)、ポリアミド樹脂(b-1~6)、水酸化マグネシウム(c-1~3)、ガラス繊維(d-1)、有機シラン化合物(e-1、2)を表1、2に示す配合組成とした以外は実施例1と同様の方法によりPPS樹脂組成物を調製し、実施例1と同様の方法に物性評価を行った。評価結果は表1、2に示すとおりであった。
 [実施例6]
 PPS樹脂(a-1)100重量部、ポリアミド(b-3)20重量部、水酸化マグネシウム(c-1)105重量部、有機シラン化合物(e-1)2.5重量部をドライブレンドした後、(株)日本製鋼所社製TEX30α型二軸押出機(L/D=30、ニーディング部2箇所、切り欠き型ミキシングスクリュー部無し)に投入した。一方、ガラス繊維(d-1)120重量部は該二軸押出機のサイドフィーダーから原料の投入をおこなった。溶融混練は、温度320℃、周速度19m/分の条件で実施した。この混練方法をB法とする(表1)。ストランドカッターによりペレット化した後、120℃にて8時間熱風乾燥したペレットを射出成形に供した。評価結果は表1に示すとおりであった。
 [実施例7]
 PPS樹脂(a-1)100重量部、ポリアミド(b-3)20重量部、水酸化マグネシウム(c-1)105重量部、有機シラン化合物(e-1)2.5重量部をドライブレンドした後、(株)日本製鋼所社製TEX30α型二軸押出機(L/D=30、ニーディング部3箇所、切り欠き型ミキシングスクリュー部無し)に投入した。一方、ガラス繊維(d-1)120重量部は該二軸押出機のサイドフィーダーから原料の投入をおこなった。溶融混練は、温度320℃、周速度19m/分の条件で実施した。この混練方法をC法とする(表1)。ストランドカッターによりペレット化した後、120℃にて8時間熱風乾燥したペレットを射出成形に供した。評価結果は表1に示すとおりであった。
 [実施例10]
 PPS樹脂(a-4)、ポリアミド樹脂(b-3)、水酸化マグネシウム(c-1)、ガラス繊維(d-1)、有機シラン化合物(e-1)を表1に示す配合組成とした以外は実施例7と同様の方法によりPPS樹脂組成物を調製し、同様に物性評価を行った。評価結果は表1に示すとおりであった。
 [比較例1]
 PPS樹脂(a-1)100重量部、ポリアミド(b-2)20重量部、水酸化マグネシウム(c-1)105重量部、有機シラン化合物(e-1)2.5重量部をドライブレンドした後、(株)日本製鋼所社製TEX30α型二軸押出機(L/D=30、ニーディング部無し、切り欠き型ミキシングスクリュー部無し)に投入した。一方、ガラス繊維(d-1)120重量部は該二軸押出機のサイドフィーダーから原料の投入をおこなった。溶融混練は、温度320℃、周速度9m/分の条件下で実施した。表2にはこの混練方法をD法と記載した。ストランドカッターによりペレット化した後、120℃にて8時間熱風乾燥したペレットを射出成形に供した。金属水酸化物の平均二次粒子径、PA樹脂の数平均分散粒子径、引張強度、曲げ強度、加熱減量、耐トラッキング性の評価結果は表2に示すとおりであった。
 [比較例2]
 PPS樹脂(a-1)、ポリアミド樹脂(b-3)、水酸化マグネシウム(c-1)、ガラス繊維(d-1)、有機シラン化合物(e-1)を表2に示す配合組成とした以外は比較例1と同様の方法によりPPS樹脂組成物を調製し、比較例1と同様に物性評価を行った。評価結果は表2に示すとおりであった。
 比較例1、2ではニーディング部を有さないスクリューおよび、周速度9m/分に設定して溶融混練を行ったため、実施例2または3と同組成にもかかわらず、金属水酸化物の平均二次粒子径は大きく、機械的強度と耐トラッキング性が劣る結果となっている。
 [比較例3~5]
 PPS樹脂(a-1)、ポリアミド樹脂(b-3)、水酸化マグネシウム(c-1)、ガラス繊維(d-1)、有機シラン化合物(e-1)を表2に示す配合組成とした以外は実施例1と同様の方法によりPPS樹脂組成物を調製し、実施例1と同様に物性評価を行った。評価結果は表2に示すとおりであった。
 比較例3では、実施例1に比較して、ポリアミド樹脂を用いなかったため、加熱減量の低下は認められたが、耐トラッキング性が低下する結果となった。
 比較例4では、実施例3に比較して、PPS樹脂に対してのポリアミド樹脂の組成比を増加させたが、加熱減量が増加し、成形性に劣る結果であった。また、機械的強度の低下も認められた。
 比較例5では、実施例3に比較して、PPS樹脂に対しての水酸化マグネシウムの組成比を低減させたが、機械的強度の向上と加熱減量の低減は認められるものの、耐トラッキング性が大幅に低下する結果となった。
 [比較例6]
 PPS樹脂(a-1)、ポリアミド樹脂(b-3)、水酸化マグネシウム(c-1)、ガラス繊維(d-1)、有機シラン化合物(e-1)を表2に示す配合組成とした以外は実施例1と同様の方法によりPPS樹脂組成物の調製を試みたが、充填材成分が多く、混練不能であった。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 PPS樹脂組成物は、射出成形、押出成形、圧縮成形、吹込成形、射出圧縮成形など各種公知の成形法への適用が可能であるが、特に射出成形に好適な樹脂組成物である。本発明のPPS樹脂組成物の成形体は、発電機、電動機、変圧器、変流器、電圧調整器、整流器、インバーター、継電器、電力用接点、開閉器、機遮断機、ナイフスイッチ、他極ロッド、電気部品キャビネット、ライトソケット、各種端子板、プラグ、パワーモジュールなどの電気機器部品としての用途に特に適している。
1:切り欠き
2:スクリューピッチ
3:スクリュー直径D

Claims (15)

  1.  (a)ポリフェニレンスルフィド樹脂100重量部に対して、(b)ポリアミド樹脂5~50重量部、(c)金属水酸化物50~250重量部を含むポリフェニレンスルフィド樹脂組成物であって、
     前記組成物中に前記金属水酸化物が平均二次粒子径5μm以下で分散している、ポリフェニレンスルフィド樹脂組成物。
  2.  請求項1記載のポリフェニレンスルフィド樹脂組成物であって、
     前記組成物中に前記ポリアミド樹脂が数平均分散粒子径1μm未満で分散している、ポリフェニレンスルフィド樹脂組成物。
  3.  請求項1または2記載のポリフェニレンスルフィド樹脂組成物であって、
     前記ポリアミド樹脂の23℃、水中浸漬下での24時間経過時の吸水率が0.5重量%以下であり、320℃空気中、2時間での加熱減量が2.5重量%以下である、ポリフェニレンスルフィド樹脂組成物。
  4.  請求項1~3のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、
     前記ポリアミド樹脂が、植物由来成分を含む、ポリフェニレンスルフィド樹脂組成物。
  5.  請求項1~4のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、
     前記ポリアミド樹脂が、アミド基濃度6を越える脂肪族ポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
  6.  請求項5記載のポリフェニレンスルフィド樹脂組成物であって、
     前記ポリアミド樹脂が、ナイロン610、ナイロン612、ナイロン11、およびナイロン12から構成される群から選択される1以上のポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
  7.  請求項1~4のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、
     前記ポリアミド樹脂が、アミド基濃度7を越える半芳香族ポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
  8.  請求項7記載のポリフェニレンスルフィド樹脂組成物であって、
     前記ポリアミド樹脂が、ナイロン9T、およびナイロン10Tから構成される群から選択される1以上のポリアミド樹脂である、ポリフェニレンスルフィド樹脂組成物。
  9.  請求項1~8のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、
     前記ポリフェニレンスルフィド樹脂が、灰分率が0.3重量%以下であり、真空下320℃で120分間加熱溶融した際の揮発性成分量が0.8重量%以下である、ポリフェニレンスルフィド樹脂組成物。
  10.  請求項1~9のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物であって、
     前記金属水酸化物が、脂肪族有機化合物あるいは有機シラン化合物で表面処理されたものである、ポリフェニレンスルフィド樹脂組成物。
  11.  請求項1~10いずれか1項に記載のポリフェニレンスルフィド樹脂組成物の製造方法であって、
     二軸押出機による溶融混練において、ニーディング部を2箇所以上組み込んだスクリューアレンジで、周速度15~50m/分で溶融混練する、ポリフェニレンスルフィド樹脂組成物の製造方法。
  12.  請求項11に記載のポリフェニレンスルフィド樹脂組成物の製造方法であって、
     前記溶融混練において、吐出部のポリフェニレンスルフィド樹脂組成物の樹脂温度が350℃以下で、前記樹脂温度と前記二軸押出機のシリンダー温度との温度差が0℃~50℃である、ポリフェニレンスルフィド樹脂組成物の製造方法。
  13.  請求項11または12に記載のポリフェニレンスルフィド樹脂組成物の製造方法であって、
     前記溶融混練において、切り欠き型ミキシングスクリューを組み込んだスクリューアレンジで溶融混練する、ポリフェニレンスルフィド樹脂組成物の製造方法。
  14.  請求項1~10のいずれか1項に記載のポリフェニレンスルフィド樹脂組成物を、射出成形して得られる成形体。
  15.  請求項14に記載の成形体であって、
     前記成形体が電気機器部品用である、成形体。
PCT/JP2012/006174 2011-09-30 2012-09-27 ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体 WO2013046682A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020147007277A KR101397817B1 (ko) 2011-09-30 2012-09-27 폴리페닐렌설파이드 수지 조성물, 그 제조 방법, 및 그 성형체
CN201710696189.6A CN107383877B (zh) 2011-09-30 2012-09-27 聚苯硫醚树脂组合物、其制造方法和其成型体
US14/347,529 US9068078B2 (en) 2011-09-30 2012-09-27 Polyphenylene sulfide resin composition, production method thereof and molded product thereof
JP2012548287A JP5273321B1 (ja) 2011-09-30 2012-09-27 ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体
CN201280046576.0A CN103827213A (zh) 2011-09-30 2012-09-27 聚苯硫醚树脂组合物、其制造方法和其成型体
EP12836972.5A EP2762530B1 (en) 2011-09-30 2012-09-27 Polyphenylene sulfide resin composition, method for producing same, and molded product of same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011217024 2011-09-30
JP2011-217024 2011-09-30
JP2012142790 2012-06-26
JP2012-142790 2012-06-26

Publications (1)

Publication Number Publication Date
WO2013046682A1 true WO2013046682A1 (ja) 2013-04-04

Family

ID=47994758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006174 WO2013046682A1 (ja) 2011-09-30 2012-09-27 ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体

Country Status (6)

Country Link
US (1) US9068078B2 (ja)
EP (1) EP2762530B1 (ja)
JP (1) JP5273321B1 (ja)
KR (1) KR101397817B1 (ja)
CN (2) CN107383877B (ja)
WO (1) WO2013046682A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170015826A1 (en) * 2014-03-31 2017-01-19 Evonik Degussa Gmbh Polymer composition, fibre-composite semi-finished product and method for the production thereof
WO2018016138A1 (ja) * 2016-07-19 2018-01-25 ダイセル・エボニック株式会社 ポリアミド粒子及びその製造方法、樹脂組成物並びに成形品
JP2019006884A (ja) * 2017-06-23 2019-01-17 東レ株式会社 ポリフェニレンスルフィド樹脂組成物からなるプラスチックファスナー
JP2019147943A (ja) * 2018-02-27 2019-09-05 東レ株式会社 ポリフェニレンサルファイド樹脂組成物および成形品
CN111484747A (zh) * 2020-05-30 2020-08-04 山东高速集团有限公司创新研究中心 一种超薄路面专用高性能改性沥青及其制备方法
JP2020128460A (ja) * 2019-02-07 2020-08-27 出光ライオンコンポジット株式会社 樹脂組成物及び成形体
WO2023074799A1 (ja) * 2021-10-28 2023-05-04 ポリプラスチックス株式会社 車載用トランス及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018003303B1 (pt) * 2015-08-24 2022-06-21 Aei Compounds Ltd Compósito de polímero reticulável
KR102492258B1 (ko) * 2016-04-26 2023-01-26 에이치디씨폴리올 주식회사 내가수분해성이 우수한 폴리아릴렌 설파이드 수지 조성물
WO2018003700A1 (ja) * 2016-06-29 2018-01-04 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれを用いた中空成形品
WO2018015160A1 (en) * 2016-07-19 2018-01-25 Dsm Ip Assets B.V. Polyarylene sulfide composition
EP3354679B1 (en) * 2017-01-31 2022-05-25 Solvay Specialty Polymers USA, LLC. Use of polyamide 6 (pa6) as a heat-aging stabilizer in polymer compositions comprising polyphenylene sulfide (pps)
RU2673850C1 (ru) * 2018-01-23 2018-11-30 Общество с ограниченной ответственностью "Терморан" (ООО "Терморан") Способ получения стеклонаполненной композиции на основе полифениленсульфида
WO2019158406A1 (en) * 2018-02-14 2019-08-22 Solvay Specialty Polymers Usa, Llc Polyphenylene sulfide polymer blends and corresponding articles
JP7170566B2 (ja) * 2019-03-15 2022-11-14 旭化成株式会社 樹脂組成物の製造方法
EP4063096A4 (en) * 2019-11-19 2023-09-27 Toray Industries, Inc. POLYPHENYLENE SULFIDE RESIN COMPOSITION FOR MOTOR VEHICLE COOLING COMPONENT AND MOTOR VEHICLE COOLING COMPONENT
US20220380598A1 (en) * 2019-11-19 2022-12-01 Toray Industries, Inc. Polyphenylene sulfide resin composition for automotive cooling parts, and automotive cooling parts
JP6976366B2 (ja) * 2020-02-14 2021-12-08 ポリプラスチックス株式会社 ポリアリーレンサルファイド樹脂組成物

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271542A (ja) 1992-02-05 1993-10-19 Solvay & Cie ポリフェニレンスルフィドを基材とする組成物
JPH08291253A (ja) 1995-02-24 1996-11-05 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH10279801A (ja) 1997-03-31 1998-10-20 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH10298430A (ja) * 1997-04-25 1998-11-10 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2001288363A (ja) 2000-02-01 2001-10-16 Polyplastics Co 耐トラッキング性が良好な強化ポリアリーレンサルファイド樹脂組成物
JP2005015792A (ja) * 2003-06-05 2005-01-20 Toray Ind Inc レーザー溶着用ポリフェニレンスルフィド樹脂組成物およびそれを用いた複合成形体
WO2006030577A1 (ja) 2004-09-17 2006-03-23 Toray Industries, Inc. ポリフェニレンスルフィド樹脂組成物
JP2008013617A (ja) 2006-07-04 2008-01-24 Tosoh Corp ポリアリーレンスルフィド組成物
JP2008231249A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP2008291248A (ja) * 2007-04-24 2008-12-04 Toray Ind Inc 樹脂組成物およびそれからなる成形品
WO2010107022A1 (ja) * 2009-03-16 2010-09-23 東レ株式会社 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
JP2011063015A (ja) * 2009-08-21 2011-03-31 Toray Ind Inc 熱可塑性樹脂組成物の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1514081A (en) * 1975-05-30 1978-06-14 Kyowa Chem Ind Co Ltd Particulate magnesium hydroxide
GB8703160D0 (en) * 1987-02-11 1987-03-18 Bip Chemicals Ltd Polyamide compositions
US5252633A (en) * 1988-06-17 1993-10-12 Ube Industries, Ltd. Polyarylene sulfide resin composition
US5422092A (en) * 1992-09-08 1995-06-06 Kabushiki Kaisha Kaisui Kagaku Kenkyujo Flame retardant and flame-retardant resin composition
DE4230680A1 (de) * 1992-09-14 1994-03-17 Bayer Ag Flammwidrige thermoplastische Formmassen mit hoher Kriechstromfestigkeit
US6025424A (en) * 1995-12-19 2000-02-15 Kyowa Chemical Industry Co Ltd Heat deterioration resistant flame retardant, resin composition and molded articles
JP3724174B2 (ja) * 1998-02-16 2005-12-07 東レ株式会社 ポリフェニレンスルフィド樹脂組成物および成形体
WO2001057138A1 (fr) * 2000-02-01 2001-08-09 Polyplastics Co., Ltd. Composition de resine de sulfure de polyarylene renforcee presentant une resistance au cheminement elevee
US7384690B2 (en) * 2002-01-10 2008-06-10 Toray Industries, Inc. Biaxially oriented thermoplastic resin film
KR101028652B1 (ko) 2003-06-05 2011-04-11 도레이 카부시키가이샤 폴리페닐렌 술피드 수지 조성물
CN101296978B (zh) * 2005-10-27 2012-03-21 普雷斯曼电缆及系统能源有限公司 低烟自熄电缆和含天然氢氧化镁的阻燃组合物
JP5041209B2 (ja) * 2005-12-28 2012-10-03 Dic株式会社 耐熱性樹脂組成物、その製造方法、耐熱性樹脂成形物、及び表面実装用電子部品
MY159043A (en) * 2007-11-08 2016-12-15 Toray Industries Process for production of polyphenylene sulfide resin
KR101323507B1 (ko) * 2008-12-22 2013-10-29 미쓰이 가가쿠 가부시키가이샤 난연성 폴리아마이드 조성물

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271542A (ja) 1992-02-05 1993-10-19 Solvay & Cie ポリフェニレンスルフィドを基材とする組成物
JPH08291253A (ja) 1995-02-24 1996-11-05 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH10279801A (ja) 1997-03-31 1998-10-20 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH10298430A (ja) * 1997-04-25 1998-11-10 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JP2001288363A (ja) 2000-02-01 2001-10-16 Polyplastics Co 耐トラッキング性が良好な強化ポリアリーレンサルファイド樹脂組成物
JP2005015792A (ja) * 2003-06-05 2005-01-20 Toray Ind Inc レーザー溶着用ポリフェニレンスルフィド樹脂組成物およびそれを用いた複合成形体
WO2006030577A1 (ja) 2004-09-17 2006-03-23 Toray Industries, Inc. ポリフェニレンスルフィド樹脂組成物
JP2008013617A (ja) 2006-07-04 2008-01-24 Tosoh Corp ポリアリーレンスルフィド組成物
JP2008231249A (ja) * 2007-03-20 2008-10-02 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびその製造方法
JP2008291248A (ja) * 2007-04-24 2008-12-04 Toray Ind Inc 樹脂組成物およびそれからなる成形品
WO2010107022A1 (ja) * 2009-03-16 2010-09-23 東レ株式会社 繊維強化樹脂組成物、成形材料および繊維強化樹脂組成物の製造方法
JP2011063015A (ja) * 2009-08-21 2011-03-31 Toray Ind Inc 熱可塑性樹脂組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762530A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170015826A1 (en) * 2014-03-31 2017-01-19 Evonik Degussa Gmbh Polymer composition, fibre-composite semi-finished product and method for the production thereof
US10882993B2 (en) * 2014-03-31 2021-01-05 Volkswagen Aktiengesellschaft Polymer composition, fibre-composite semi-finished product and method for the production thereof
WO2018016138A1 (ja) * 2016-07-19 2018-01-25 ダイセル・エボニック株式会社 ポリアミド粒子及びその製造方法、樹脂組成物並びに成形品
US11142613B2 (en) 2016-07-19 2021-10-12 Daicel-Evonik Ltd. Polyamide particles, production process therefor, resin composition, and molded article
JP2019006884A (ja) * 2017-06-23 2019-01-17 東レ株式会社 ポリフェニレンスルフィド樹脂組成物からなるプラスチックファスナー
JP2019147943A (ja) * 2018-02-27 2019-09-05 東レ株式会社 ポリフェニレンサルファイド樹脂組成物および成形品
JP7238429B2 (ja) 2018-02-27 2023-03-14 東レ株式会社 ポリフェニレンサルファイド樹脂組成物および成形品
JP2020128460A (ja) * 2019-02-07 2020-08-27 出光ライオンコンポジット株式会社 樹脂組成物及び成形体
CN111484747A (zh) * 2020-05-30 2020-08-04 山东高速集团有限公司创新研究中心 一种超薄路面专用高性能改性沥青及其制备方法
WO2023074799A1 (ja) * 2021-10-28 2023-05-04 ポリプラスチックス株式会社 車載用トランス及びその製造方法
JP7316480B1 (ja) * 2021-10-28 2023-07-27 ポリプラスチックス株式会社 車載用トランス及びその製造方法

Also Published As

Publication number Publication date
JPWO2013046682A1 (ja) 2015-03-26
EP2762530B1 (en) 2016-07-13
US20140256864A1 (en) 2014-09-11
CN107383877A (zh) 2017-11-24
KR101397817B1 (ko) 2014-05-20
CN103827213A (zh) 2014-05-28
US9068078B2 (en) 2015-06-30
CN107383877B (zh) 2022-07-22
KR20140043846A (ko) 2014-04-10
EP2762530A1 (en) 2014-08-06
EP2762530A4 (en) 2015-03-04
JP5273321B1 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5273321B1 (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法、およびその成形体
CN109415562B (zh) 聚苯硫醚树脂组合物以及使用了该聚苯硫醚树脂组合物的中空成型品
WO2012053505A1 (ja) 熱可塑性樹脂組成物の製造方法、熱可塑性樹脂組成物および成形品
US20100249342A1 (en) Process for production of polyphenylene sulfide resin
JP4887904B2 (ja) ポリフェニレンスルフィド樹脂、その製造方法およびそれからなる成形品
JP2016188289A (ja) ポリフェニレンスルフィド樹脂組成物からなる自動車冷却モジュール
JP5276247B2 (ja) ポリアリーレンスルフィド樹脂組成物の製造方法
JP7067052B2 (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2016121263A (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法、およびそれからなる成形品
JP7081500B2 (ja) ポリフェニレンスルフィド樹脂組成物、その製造方法および成形体
JP2009280794A (ja) ポリフェニレンスルフィド樹脂の処理方法
JP2018141149A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2009179757A (ja) ポリフェニレンサルファイド樹脂組成物、射出成形体および箱型成形体部品
JP7501359B2 (ja) ポリフェニレンサルファイド樹脂組成物および成形品
JP7238429B2 (ja) ポリフェニレンサルファイド樹脂組成物および成形品
JP2010070656A (ja) ポリフェニレンサルファイド樹脂組成物およびそれからなる成形品
JP4900365B2 (ja) ポリフェニレンスルフィド樹脂の製造方法
JP5131125B2 (ja) ポリフェニレンサルファイド樹脂組成物および成形体
JP2009275197A (ja) ポリフェニレンサルファイド樹脂組成物および成形体
WO2021100758A1 (ja) 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品
WO2021100757A1 (ja) 自動車冷却部品用ポリフェニレンスルフィド樹脂組成物および自動車冷却部品
JP2020105261A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2019195909A (ja) ポリフェニレンスルフィド樹脂組成物からなる成形品
JP2013181043A (ja) ポリアリーレンスルフィド樹脂組成物および成形体
JP2020169228A (ja) ポリフェニレンサルファイド樹脂組成物および成形品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012548287

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147007277

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012836972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012836972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14347529

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE