WO2013046310A1 - 車両および車両の制御方法 - Google Patents

車両および車両の制御方法 Download PDF

Info

Publication number
WO2013046310A1
WO2013046310A1 PCT/JP2011/071975 JP2011071975W WO2013046310A1 WO 2013046310 A1 WO2013046310 A1 WO 2013046310A1 JP 2011071975 W JP2011071975 W JP 2011071975W WO 2013046310 A1 WO2013046310 A1 WO 2013046310A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
traveling
driving force
engine
power
Prior art date
Application number
PCT/JP2011/071975
Other languages
English (en)
French (fr)
Inventor
貴士 天野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/071975 priority Critical patent/WO2013046310A1/ja
Priority to CN201180073682.3A priority patent/CN103826900A/zh
Priority to EP11873088.6A priority patent/EP2762350A1/en
Priority to US14/239,816 priority patent/US20140214254A1/en
Publication of WO2013046310A1 publication Critical patent/WO2013046310A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a vehicle and a vehicle control method, and more particularly, to a travel control of a vehicle that travels while switching between traveling by driving force from a driving source and traveling by inertial force of the vehicle.
  • a vehicle that is mounted with a power storage device (for example, a secondary battery or a capacitor) and travels by using a driving force generated from electric power stored in the power storage device as an environment-friendly vehicle.
  • a power storage device for example, a secondary battery or a capacitor
  • Such vehicles include, for example, electric vehicles, hybrid vehicles, fuel cell vehicles, and the like.
  • JP-T-2008-520485 discloses that in a hybrid vehicle including an internal combustion engine and a motor generator, when the motor generator is in the generator mode, the output is higher than the actual power consumption of the vehicle electrical system.
  • a configuration for controlling the motor generator to alternately repeat a first interval for driving the motor generator to operate and a second interval for switching off the motor generator is disclosed.
  • Patent Document 1 when the motor generator operates as a generator, the motor generator is driven at an operating point with high efficiency in the first interval, and in the second interval. The motor generator is stopped. As a result, the operation of the motor generator is suppressed from being continued at a low efficiency during the power generation operation, so that the energy efficiency of the vehicle in the power generation operation can be improved.
  • Patent Document 2 Japanese Patent Laying-Open No. 2010-6309 describes a hybrid vehicle including an internal combustion engine and a motor generator in a traveling state using a driving force generated by the internal combustion engine and an inertia state in which the internal combustion engine is stopped.
  • working alternately is disclosed.
  • the internal combustion engine can be driven at a highly efficient operating point, so that fuel efficiency can be improved.
  • Patent Document 1 when power is generated by the motor generator, the driving and stopping of the motor generator are repeated, and the driving force generated by the motor generator is used. Was not taken into account when traveling.
  • Patent Document 2 Japanese Patent Laying-Open No. 2010-6309 only discloses a configuration that repeats driving and stopping of an engine that is an internal combustion engine in a hybrid vehicle, and does not consider the operation of a motor generator. It was.
  • the present invention has been made to solve such problems, and an object of the present invention is to improve energy efficiency during vehicle travel in a vehicle that can travel at least with the driving force of a motor generator. .
  • a vehicle according to the present invention is a vehicle capable of traveling using electric power from a power storage device, and controls the rotating electric machine for generating a driving force for driving the vehicle using electric power from the power storage device. And a control device.
  • the control device switches between a first traveling pattern that travels by the inertia force of the vehicle while stopping generation of the driving force by the rotating electrical machine and a second traveling pattern that travels by using the driving force generated by the rotating electrical machine.
  • An interval operation for running the vehicle is executed.
  • control device executes the interval operation when the change in the requested driving force from the user is within a predetermined range.
  • control device switches the first and second traveling patterns so that the speed of the vehicle is maintained within an allowable range during execution of the interval operation.
  • control device switches to the first travel pattern in response to the vehicle speed increasing to the upper limit of the allowable range, and the second response to the vehicle speed decreasing to the lower limit of the allowable range. Switch to a running pattern.
  • the vehicle further includes an engine capable of generating a driving force of the vehicle.
  • the control device operates the engine while the vehicle is operating in the second travel pattern.
  • the control device when the engine is operated and the driving force from the engine is used for traveling, the control device reduces the driving force generated by the rotating electrical machine more than when the engine is not operated.
  • the vehicle further includes a generator that is driven by an engine and configured to generate electric power for charging the power storage device.
  • the control device operates the engine when driving the generator to charge the power storage device.
  • control device drives the generator to charge the power storage device when the state of charge of the power storage device falls below a predetermined threshold value.
  • control device operates the engine in response to operating the rotating electrical machine with the second traveling pattern.
  • the vehicle further includes another rotating electric machine capable of generating the driving force of the vehicle.
  • the control device operates another rotating electrical machine during a period in which the vehicle is operating in the second traveling pattern.
  • the vehicle control method is a control method for a vehicle that can travel using a driving force from a rotating electrical machine.
  • the control method includes a step of executing a first traveling pattern in which generation of driving force by the rotating electrical machine is stopped and traveling by an inertial force of the vehicle, and a second traveling pattern in which traveling is performed using the driving force generated by the rotating electrical machine. And a step of executing an interval operation of traveling while switching between the first and second traveling patterns.
  • energy efficiency during vehicle travel can be improved in a vehicle that can travel at least with the driving force of the motor generator.
  • FIG. 1 is an overall block diagram of a vehicle according to a first embodiment.
  • 3 is a time chart for explaining an overview of inertial running control in the first embodiment. It is a time chart for demonstrating the operation
  • 4 is a flowchart for illustrating an inertial traveling control process executed by an ECU in the first embodiment.
  • FIG. 6 is an overall block diagram of a vehicle according to a second embodiment.
  • FIG. 10 is a diagram for illustrating a first example of inertial running control in a second embodiment.
  • FIG. 10 is a diagram for describing a second example of inertial traveling control in the second embodiment. In Embodiment 2, it is a flowchart for demonstrating the inertial running control process performed by ECU.
  • FIG. 10 is an overall block diagram of a vehicle according to a modification of the second embodiment.
  • FIG. 1 is an overall block diagram of a vehicle 100 according to the first embodiment of the present invention.
  • vehicle 100 is an electric vehicle that uses a rotating electrical machine as a drive source.
  • vehicle 100 includes a power storage device 110, a system main relay (SMR) 115, a drive control unit (PCU) 120, a motor generator 130, and a power transmission gear. 140, driving wheel 150, and ECU (Electronic Control Unit) 300 which is a control device.
  • PCU 120 includes a converter 121, an inverter 122, voltage sensors 180 and 185, and capacitors C1 and C2.
  • the power storage device 110 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 110 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, or a power storage element such as an electric double layer capacitor.
  • the power storage device 110 is connected to the PCU 120 via the power lines PL1 and NL1. Then, power storage device 110 supplies power for generating driving force of vehicle 100 to PCU 120. The power storage device 110 stores the electric power generated by the motor generator 130. The output of power storage device 110 is, for example, about 200V.
  • the power storage device 110 is provided with a voltage sensor 170 and a current sensor 175.
  • Voltage sensor 170 detects voltage VB of power storage device 110 and outputs the detection result to ECU 300.
  • Current sensor 175 detects current IB input to and output from the power storage device, and outputs the detected value to ECU 300.
  • the relay included in the SMR 115 has one end connected to the positive terminal and the negative terminal of the power storage device 110 and the other end connected to the power lines PL1 and NL1 connected to the PCU 120.
  • SMR 115 switches between power supply and cutoff between power storage device 110 and PCU 120 based on control signal SE ⁇ b> 1 from ECU 300.
  • Converter 121 performs voltage conversion between power lines PL1, NL1 and power lines PL2, NL1 based on control signal PWC from ECU 300.
  • the inverter 122 is connected to the power lines PL2 and NL1. Inverter 122 converts DC power supplied from converter 121 into AC power based on control signal PWI from ECU 300 and drives motor generator 130.
  • Capacitor C1 is provided between power lines PL1 and NL1, and reduces voltage fluctuation between power lines PL1 and NL1.
  • Capacitor C2 is provided between power lines PL2 and NL1, and reduces voltage fluctuation between power lines PL2 and NL1.
  • Voltage sensors 180 and 185 detect voltages VL and VH applied to both ends of capacitors C1 and C2, respectively, and output the detected values to ECU 300.
  • the motor generator 130 is an AC rotating electric machine, for example, a permanent magnet type synchronous motor including a rotor in which a permanent magnet is embedded.
  • the output torque of the motor generator 130 is transmitted to the drive wheels 150 via the power transmission gear 140 configured to include a speed reducer and a power split mechanism, thereby causing the vehicle 100 to travel.
  • the motor generator 130 can generate power by the rotation of the drive wheels 150 during the regenerative braking operation of the vehicle 100. Then, the generated power is converted into charging power for power storage device 110 by PCU 120.
  • a speed sensor 190 In order to detect the speed (vehicle speed) of the vehicle 100, a speed sensor 190 is provided in the vicinity of the drive wheel 150. Speed sensor 190 detects vehicle speed SPD based on the rotational speed of drive wheel 150 and outputs the detected value to ECU 300. Further, a rotation angle sensor (not shown) for detecting the rotation angle of motor generator 130 may be used as the speed sensor. In this case, ECU 300 indirectly calculates vehicle speed SPD based on a temporal change in the rotation angle of motor generator 130, a reduction ratio, and the like.
  • ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer, and inputs signals from each sensor and outputs control signals to each device and stores power.
  • the device 110 and each device of the vehicle 100 are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • ECU 300 generates and outputs a control signal for controlling PCU 120, SMR 115, and the like.
  • one control device is provided as the ECU 300.
  • a control device for the PCU 120, a control device for the power storage device 110, or the like is provided individually for each function or for each control target device. It is good also as a structure which provides a control apparatus.
  • ECU 300 calculates a state of charge (SOC) of power storage device 110 based on detected values of voltage VB and current IB from voltage sensor 170 and current sensor 175 provided in power storage device 110.
  • SOC state of charge
  • ECU 300 receives a required torque TR determined based on an operation of an accelerator pedal (not shown) by a user from a host ECU (not shown). ECU 300 generates control signals PWC and PWI for converter 121 and inverter 122 based on torque requested TR from the user, and drives motor generator 130.
  • ECU 300 receives a mode signal MOD set by the user.
  • This mode signal MOD is a signal for instructing whether or not to execute inertial traveling control to be described later.
  • the mode signal MOD is switched by a specific switch or setting on the operation screen. Alternatively, the mode signal MOD may be automatically set in response to the establishment of a specific condition.
  • ECU 300 for example, operates to perform inertial running control when mode signal MOD is set to ON, and does not perform inertial running control when mode signal MOD is set to OFF. It operates so as to perform the running.
  • inertial force is applied to the vehicle while the vehicle is traveling, even if the generation of the driving force by the motor generator is stopped during the traveling, the vehicle continues to coast by inertia for a while.
  • Inertia travel control for performing an operation (hereinafter also referred to as an “interval operation”) that repeatedly travels using the driving force from the generator and coasting with the driving force of the motor generator stopped is executed.
  • FIG. 2 is a time chart for explaining an overview of the inertial traveling control in the first embodiment.
  • the horizontal axis represents time
  • the vertical axis represents vehicle speed SPD, output of the motor generator, required power from the user, charge / discharge power of the power storage device, and SOC of the power storage device.
  • discharging electric power is represented by the positive value and charging electric power is represented by the negative value.
  • the power required by the user is given as a substantially constant value.
  • the output of the motor generator 130 is continuously output with a substantially constant magnitude as indicated by a broken line W13 in FIG.
  • the vehicle speed SPD is maintained substantially constant as indicated by a broken line W11 in FIG.
  • the acceleration time may be set to a predetermined time, and the motor output may be set such that the vehicle speed SPD can be increased from the lower limit value LL to the upper limit value UL within that period.
  • the motor output used for acceleration may be set to a predetermined output, and the acceleration time may be achieved. If the acceleration time is too short, a large power is required, and torque shock may occur. On the other hand, if the motor output is too small, the acceleration time, that is, the drive time of the motor generator becomes long, and it becomes difficult to perform inertial running.
  • the motor generator may have a relatively low efficiency in the low output region, if it is driven for a long time at a low output, there is a possibility that the energy efficiency cannot be improved as a result. Therefore, the acceleration time and the motor output during acceleration are appropriately set in consideration of drivability and energy efficiency.
  • the interval operation as shown in FIG. 2 is executed when the power required by the user is substantially constant. In other words, the interval operation is not executed at the time of acceleration and deceleration when the required power from the user fluctuates.
  • FIG. 3 and FIG. 4 are diagrams for explaining operations during acceleration and deceleration, respectively, when inertial traveling control is applied. 3 and 4, similarly to FIG. 2, the horizontal axis represents time, and the vertical axis represents vehicle speed SPD, output of the motor generator, required power from the user, charge / discharge power of the power storage device, and power storage. The SOC of the device is shown.
  • the motor generator 130 may perform regenerative braking.
  • motor generator 130 outputs negative motor output PM5B by regenerative power generation (one-dot chain line W34 in FIG. 4) and charges power storage device 110 (one-dot chain line W37 in FIG. 4).
  • the SOC increases (one-dot chain line W40 in FIG. 4).
  • the SOC change indicated by the broken line W39 in FIG. 4 when the inertial traveling control is not applied shows a state in which the motor generator 130 performs regenerative braking at the time of deceleration request (time t24 to t25). Therefore, the SOC increases from time t24 to t25.
  • FIG. 5 is a flowchart for illustrating an inertial traveling control process executed by ECU 300 in the first embodiment.
  • Each step in the flowchart shown in FIG. 5 and FIG. 9 described later is realized by executing a program stored in advance in ECU 300 at a predetermined cycle.
  • dedicated hardware electronic circuit
  • step S 100 determines in step (hereinafter, step is abbreviated as S) 100 whether inertial running control is selected based on mode signal MOD set by the user. Determine.
  • mode signal MOD is set to OFF and inertial running control is not selected (NO in S100)
  • the subsequent processing is skipped, and ECU 300 returns the processing to the main routine.
  • mode signal MOD is set to ON and inertial running control is selected (YES in S100)
  • the process proceeds to S110, and ECU 300 next receives a request from user based on required torque TR. It is determined whether or not the required power is substantially constant.
  • the process proceeds to S120, and ECU 300 selects to execute the interval operation.
  • the motor generator 130 is stopped and inertial running is executed.
  • ECU 300 determines in S130 whether vehicle speed SPD has increased to upper limit value UL of the allowable speed range.
  • the motor generator 130 is first stopped and inertial running is executed, so that the vehicle speed SPD is lower than the upper limit value UL and the vehicle speed SPD gradually decreases.
  • the interval operation as described above is executed so that the vehicle speed SPD is maintained within the allowable speed range while the user request power is kept substantially constant.
  • Embodiment 2 describes a case where inertial traveling control is applied to a vehicle that travels using driving forces from a plurality of driving sources.
  • FIG. 6 is an overall block diagram of vehicle 100A according to the second embodiment.
  • the vehicle 100A is a hybrid vehicle that uses a rotating electrical machine and an engine that is an internal combustion engine as drive sources.
  • FIG. 6 the PCU 120 in FIG. 1 is replaced with the PCU 120A, and motor generators 130A and 130B and an engine 160 are provided as drive sources in place of the motor generator 130.
  • the description of the elements overlapping with those in FIG. 1 will not be repeated.
  • PCU 120A includes a converter 121, inverters 122A and 122B, capacitors C1 and C2, and voltage sensors 180 and 185.
  • Inverters 122A and 122B are connected in parallel to converter 121 via power lines PL2 and NL1.
  • Inverter 122A is controlled by control signal PWI1 from ECU 300, converts DC power from converter 121 to AC power, and drives motor generator 130A (hereinafter also referred to as “MG1”). Inverter 122 ⁇ / b> A converts AC power generated by motor generator 130 ⁇ / b> A into DC power, and charges power storage device 110 via converter 121.
  • Inverter 122B is controlled by control signal PWI2 from ECU 300, converts DC power from converter 121 to AC power, and drives motor generator 130B (hereinafter also referred to as “MG2”). Inverter 122 ⁇ / b> B converts AC power generated by motor generator 130 ⁇ / b> B into DC power, and charges power storage device 110 via converter 121.
  • Each output shaft of motor generators 130A and 130B is coupled to a power transmission gear 140A configured to include a power split mechanism such as a planetary gear. Then, the driving force from motor generators 130 ⁇ / b> A and 130 ⁇ / b> B is transmitted to driving wheel 150.
  • a power transmission gear 140A configured to include a power split mechanism such as a planetary gear.
  • motor generators 130A and 130B are also coupled to engine 160 through power transmission gear 140A.
  • Engine 160 is controlled by control signal DRV from ECU 300.
  • the driving force generated from engine 160 is transmitted to driving wheel 150 and motor generator 130A via power transmission gear 140A.
  • ECU 300 cooperatively controls the driving forces generated by motor generators 130A and 130B and engine 160 to cause the vehicle to travel.
  • motor generator 130A is used as a starter motor when starting engine 160 and is exclusively used as a generator that is driven by engine 160 to generate electric power.
  • Motor generator 130 ⁇ / b> B is exclusively used as an electric motor for driving drive wheels 150 using electric power from power storage device 110.
  • FIG. 6 shows an example of a configuration in which two motor generators and one engine are provided.
  • the number of motor generators is not limited to this. For example, even if there is only one motor generator, Good. Or the case where more than two motor generators are provided may be sufficient.
  • the horizontal axis represents time
  • the vertical axis represents vehicle speed SPD, motor generator output, required power from the user, power storage.
  • the charge / discharge power of the device and the SOC of the power storage device are shown.
  • engine 160 is cranked and started by motor generator 130A (MG1) prior to acceleration traveling by MG2 (FIG. 7 at time t34).
  • MG1 motor generator 130A
  • the driving force (output) generated by MG2 is set smaller than when engine 160 is not driven (PM3C ⁇ PM2C, PM4C). This is because when the engine 160 is driven at an excessively low load, the efficiency of the engine 160 itself may be deteriorated. That is, the engine 160 can be driven at a more efficient operating point by causing the engine 160 to output a certain amount of driving force. Along with this, the driving force generated in MG2 is reduced to reduce the power consumption in MG2, thereby improving the power consumption.
  • the driving force generated by MG2 may be set to zero when the power storage device 110 using MG1 can be charged while performing acceleration traveling only by the driving force from engine 160.
  • the charging of the power storage device 110 by driving the engine 160 is completed in one acceleration traveling. However, when sufficient charging cannot be performed in one acceleration traveling, a plurality of continuous acceleration traveling is performed. The engine 160 may be driven during this period.
  • FIG. 8 is an example in which the engine 160 is driven during acceleration running in the interval operation even when the power storage device 110 is not charged.
  • a state for example, when traveling at a constant required power in a relatively high output state, such as traveling on a highway, in order to obtain the required driving force, the MG 2 and the engine 160 The driving force from both of these is required.
  • MG1 is driven by the engine 160 to generate power (time t46 to t47 in FIG. 8).
  • the ratio of the driving force distributed to MG2 and engine 160 when executing the acceleration travel is appropriately determined in consideration of the efficiency of MG2 and engine 160. Therefore, depending on the efficiency of MG2 and engine 160, the driving force distributed to MG2 may be greater than the driving force distributed to engine 160, and vice versa.
  • FIG. 9 is a flowchart for illustrating an inertial traveling control process executed by ECU 300 in the second embodiment.
  • steps S140, S142, S144, S146, and S148 of FIG. 5 described in the first embodiment are replaced with S140A, S142A, S144A, S146A, and S148A, respectively, and steps S150 and S160 are added. It has become.
  • steps S150 and S160 are added. It has become.
  • FIG. 9 the description of the same steps as those in FIG. 5 will not be repeated.
  • S140A, S142A, S144A, S146A, and S148A in FIG. 9 are related to engine 160 in addition to motor generator 130B (MG2) in S140, S142, S144, S146, and S148 in FIG.
  • the drive / stop is added. That is, both MG2 and engine 160 are stopped in the case of inertia traveling, and both MG2 and engine 160 are driven in the case of acceleration traveling.
  • the engine 160 may not be driven when the power required by the user can be covered by the driving force generated only by MG2.
  • ECU 300 reduces the vehicle speed SPD to lower limit value LL (YES in S135), based on the user required power. Acceleration running is executed by driving MG2 and engine 160 using the driving force distributed at a predetermined ratio (S142A). When vehicle speed SPD increases to upper limit value UL (YES in S130), ECU 300 stops MG2 and engine 160 and executes inertial running (S140A).
  • ECU 300 causes MG2 and engine 160 to drive at a predetermined ratio when accelerating (YES in S127). If it is decelerating (NO in S127), MG2 and engine 160 are stopped or regenerative operation by MG2 is executed to decelerate (S148A).
  • Steps S150 and S160 added in FIG. 9 are processes used when charging the power storage device 110 with the generated power of the MG1.
  • ECU 300 determines in S150 whether or not it is necessary to charge power storage device 110 and recover the SOC.
  • ECU 300 increases the driving force generated by engine 160, and power storage device 110 is generated using the generated power generated in MG1. Charge.
  • ECU 300 changes the ratio of the driving force generated by MG2 and the driving force generated by engine 160 to reduce the driving force of MG2.
  • the drive timing and the stop timing of the motor generator and the engine are described as being substantially the same for ease of explanation, but the motor generator and the engine are driven. / Stop timing does not need to be exactly the same. That is, these timings can be set as appropriate in consideration of responsiveness of driving force in the motor generator and the engine. For example, the drive / stop timing of the motor generator with relatively high responsiveness may be used as a reference, and the drive / stop timing of the engine may be delayed or advanced accordingly.
  • the hybrid vehicle provided with an engine and a motor generator as a plurality of drive sources has been described as an example.
  • the present invention may be configured as a plurality of drive sources, for example, as shown in FIG.
  • the present invention can also be applied to a vehicle having another configuration such as an electric vehicle having a twin motor configuration capable of traveling using driving forces from two motor generators.
  • a vehicle 100B in FIG. 10 has a configuration in which the engine 160 is not provided in the vehicle 100A in FIG. 6, and the vehicle 100B travels using the driving power of both the motor generator 130A (MG1) and the motor generator 130B (MG2). To do.
  • MG1 motor generator 130A
  • MG2 motor generator 130B
  • power storage device 110 cannot be charged as in the second embodiment, but in FIG. 8 in the second embodiment, the driving force of engine 160 is replaced with the output of MG1, so that the interval operation is performed. Can be performed.
  • MG1 is also used as an electric motor instead of a generator, and when traveling using driving forces generated by three driving sources of MG1, MG2 and engine 160, The present invention can be applied.
  • ina traveling and “accelerated traveling” in the present embodiment correspond to “first traveling pattern” and “second traveling pattern” of the present invention, respectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 車両(100)は、蓄電装置(110)からの電力を用いて走行駆動力を発生させるためのモータジェネレータ(130)と、モータジェネレータ(130)を制御するためのECU(300)とを備える。ECU(300)は、ユーザ要求パワーがほぼ一定である場合に、モータジェネレータ(130)による駆動力の発生を停止して車両(100)の慣性力で走行する第1の走行パターン(惰性走行)と、モータジェネレータ(130)が発生する駆動力を用いて走行する第2の走行パターン(加速走行)とを切換えながら車両(100)を走行させるインターバル運転を実行する。これによって、車両(100)のエネルギ効率を向上させる。

Description

車両および車両の制御方法
 本発明は、車両および車両の制御方法に関し、より特定的には、駆動源からの駆動力による走行と車両の慣性力による走行とを切換えながら走行する車両の走行制御に関する。
 近年、環境に配慮した車両として、蓄電装置(たとえば二次電池やキャパシタなど)を搭載し、蓄電装置に蓄えられた電力から生じる駆動力を用いて走行する車両が注目されている。このような車両には、たとえば電気自動車、ハイブリッド自動車、燃料電池車などが含まれる。
 そして、これらの車両において、さらなる環境負荷の削減のために、燃費,電費を低減することによってエネルギ効率を向上することが求められている。
 特表2008-520485号公報(特許文献1)は、内燃機関とモータジェネレータとを備えたハイブリッド車両において、モータジェネレータが発電機モードの際に、車両電気系統の実消費電力よりも大きい高出力で動作するようにモータジェネレータを駆動する第1のインターバルと、モータジェネレータをスイッチオフする第2のインターバルとを交互に繰り返すように、モータジェネレータを制御する構成を開示する。
 特表2008-520485号公報(特許文献1)によれば、モータジェネレータが発電機として動作する際に、第1のインターバルにおいては効率の高い動作点でモータジェネレータを駆動し、第2のインターバルにおいてはモータジェネレータが停止される。これによって、発電動作時に効率の低い状態でモータジェネレータの運転が継続されることが抑制されるので、発電動作における車両のエネルギ効率を向上することができる。
 また、特開2010-6309号公報(特許文献2)は、内燃機関とモータジェネレータとを備えたハイブリッド車両において、内燃機関の発生する駆動力を用いた走行と、内燃機関を停止した惰性状態での走行とを交互に繰り返す構成を開示する。これにより、内燃機関を高効率の動作点で駆動することができるので、燃費を向上させることができる。
特表2008-520485号公報 特開2010-6309号公報 特開2009-298232号公報 特開2007-187090号公報
 しかしながら、上記の特表2008-520485号公報(特許文献1)においては、モータジェネレータで発電を行なう場合に、モータジェネレータの駆動と停止とを繰り返す構成であり、モータジェネレータの発生する駆動力を用いて走行する場合については考慮されていなかった。
 また、特開2010-6309号公報(特許文献2)は、ハイブリッド車両において、内燃機関であるエンジンの駆動と停止とを繰り返す構成を開示するのみであり、モータジェネレータの動作については考慮されていなかった。
 そのため、これらの特許文献に開示される技術においては、たとえば、電気自動車のようにモータジェネレータのみの駆動力で走行する場合、あるいは、ハイブリッド車両においてモータジェネレータの駆動力を優先的に使用して走行する場合には適用できないという課題があった。
 本発明は、このような課題を解決するためになされたものであって、その目的は、少なくともモータジェネレータの駆動力で走行が可能な車両において、車両走行時のエネルギ効率を向上することである。
 本発明による車両は、蓄電装置からの電力を用いて走行が可能な車両であって、蓄電装置からの電力を用いて車両の走行駆動力を発生させるための回転電機と、回転電機を制御するための制御装置とを備える。制御装置は、回転電機による駆動力の発生を停止して車両の慣性力で走行する第1の走行パターンと、回転電機が発生する駆動力を用いて走行する第2の走行パターンとを切換えながら車両を走行させるインターバル運転を実行する。
 好ましくは、制御装置は、ユーザからの要求駆動力の変化が所定範囲内の場合に、インターバル運転を実行する。
 好ましくは、制御装置は、インターバル運転の実行中は、車両の速度が許容範囲内に維持されるように、第1および第2の走行パターンを切換える。
 好ましくは、制御装置は、車両の速度が許容範囲の上限まで上昇したことに応答して第1の走行パターンに切換え、車両の速度が許容範囲の下限まで低下したことに応答して第2の走行パターンに切換える。
 好ましくは、車両は、車両の駆動力を発生することが可能なエンジンをさらに備える。制御装置は、車両が第2の走行パターンで運転している期間に、エンジンを運転する。
 好ましくは、制御装置は、エンジンが運転されてエンジンからの駆動力が走行に用いられる場合は、エンジンが運転されない場合よりも、回転電機により発生される駆動力を低下させる。
 好ましくは、車両は、エンジンにより駆動されて、蓄電装置を充電するための電力を発電するように構成された発電機をさらに備える。制御装置は、発電機を駆動して蓄電装置を充電する場合に、エンジンを運転する。
 好ましくは、制御装置は、蓄電装置の充電状態が、予め定められたしきい値を下回った場合に、発電機を駆動して蓄電装置を充電する。
 好ましくは、制御装置は、回転電機を第2の走行パターンで運転することに対応してエンジンを運転する。
 好ましくは、車両は、車両の駆動力を発生することが可能な他の回転電機をさらに備える。制御装置は、車両が第2の走行パターンで運転している期間に、他の回転電機を運転する。
 本発明による車両の制御方法は、回転電機からの駆動力を用いて走行が可能な車両についての制御方法である。制御方法は、回転電機による駆動力の発生を停止して車両の慣性力で走行する第1の走行パターンを実行するステップと、回転電機が発生する駆動力を用いて走行する第2の走行パターンを実行するステップと、第1および第2の走行パターンを切換えながら走行するインターバル運転を実行するステップとを備える。
 本発明によれば、少なくともモータジェネレータの駆動力で走行が可能な車両において、車両走行時のエネルギ効率を向上することができる。
実施の形態1に従う車両の全体ブロック図である。 実施の形態1における慣性走行制御の概要を説明するためのタイムチャートである。 慣性走行制御における加速時の動作を説明するためのタイムチャートである。 慣性走行制御における減速時の動作を説明するためのタイムチャートである。 実施の形態1において、ECUで実行される慣性走行制御処理を説明するためのフローチャートである。 実施の形態2に従う車両の全体ブロック図である。 実施の形態2における慣性走行制御の第1の例を説明するための図である。 実施の形態2における慣性走行制御の第2の例を説明するための図である。 実施の形態2において、ECUで実行される慣性走行制御処理を説明するためのフローチャートである。 実施の形態2の変形例に従う車両の全体ブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 [実施の形態1]
 図1は、本発明の実施の形態1に従う車両100の全体ブロック図である。以下で詳細に説明されるように、車両100は、駆動源として回転電機を用いる電気自動車である。
 図1を参照して、車両100は、蓄電装置110と、システムメインリレー(System Main Relay:SMR)115と、駆動装置であるPCU(Power Control Unit)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、制御装置であるECU(Electronic Control Unit)300とを備える。PCU120は、コンバータ121と、インバータ122と、電圧センサ180,185と、コンデンサC1,C2とを含む。
 蓄電装置110は、充放電可能に構成された電力貯蔵要素である。蓄電装置110は、たとえば、リチウムイオン電池、ニッケル水素電池または鉛蓄電池などの二次電池、あるいは電気二重層キャパシタなどの蓄電素子を含んで構成される。
 蓄電装置110は、電力線PL1およびNL1を介してPCU120に接続される。そして、蓄電装置110は、車両100の駆動力を発生させるための電力をPCU120に供給する。また、蓄電装置110は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置110の出力はたとえば200V程度である。
 蓄電装置110には、電圧センサ170および電流センサ175が設けられる。電圧センサ170は、蓄電装置110の電圧VBを検出し、その検出結果をECU300へ出力する。電流センサ175は、蓄電装置に入出力される電流IBを検出し、その検出値をECU300へ出力する。
 SMR115に含まれるリレーは、その一方端が蓄電装置110の正極端子および負極端子に接続され、他方端がPCU120に接続される電力線PL1,NL1に接続される。そして、SMR115は、ECU300からの制御信号SE1に基づいて、蓄電装置110とPCU120との間における電力の供給と遮断とを切換える。
 コンバータ121は、ECU300からの制御信号PWCに基づいて、電力線PL1,NL1と電力線PL2,NL1との間で電圧変換を行なう。
 インバータ122は、電力線PL2,NL1に接続される。インバータ122は、ECU300からの制御信号PWIに基づいて、コンバータ121から供給される直流電力を交流電力に変換し、モータジェネレータ130を駆動する。
 コンデンサC1は、電力線PL1およびNL1の間に設けられ、電力線PL1およびNL1間の電圧変動を減少させる。また、コンデンサC2は、電力線PL2およびNL1の間に設けられ、電力線PL2およびNL1間の電圧変動を減少させる。
 電圧センサ180および185は、それぞれコンデンサC1およびC2の両端にかかる電圧VLおよびVHを検出し、その検出値をECU300へ出力する。
 モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
 モータジェネレータ130の出力トルクは、減速機や動力分割機構を含んで構成される動力伝達ギヤ140を介して駆動輪150に伝達されて、車両100を走行させる。モータジェネレータ130は、車両100の回生制動動作時には、駆動輪150の回転によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置110の充電電力に変換される。
 車両100の速度(車速)を検出するために、速度センサ190が駆動輪150の近傍に設けられる。速度センサ190は、駆動輪150の回転速度に基づいて車速SPDを検出し、その検出値をECU300に出力する。また、速度センサとして、モータジェネレータ130の回転角を検出するための回転角センサ(図示せず)を用いてもよい。この場合には、ECU300は、モータジェネレータ130の回転角の時間的変化および減速比などに基づいて、間接的に車速SPDを演算する。
 ECU300は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、蓄電装置110および車両100の各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 ECU300は、PCU120、SMR115などを制御するための制御信号を生成して出力する。なお、図1においては、ECU300として1つの制御装置を設ける構成としているが、たとえば、PCU120用の制御装置や蓄電装置110用の制御装置などのように、機能ごとまたは制御対象機器ごとに個別の制御装置を設ける構成としてもよい。
 ECU300は、蓄電装置110に備えられる電圧センサ170,電流センサ175からの電圧VBおよび電流IBの検出値に基づいて、蓄電装置110の充電状態SOC(State of Charge)を演算する。
 ECU300は、ユーザによるアクセルペダル(図示せず)の操作に基づいて定められる要求トルクTRを、上位ECU(図示せず)から受ける。ECU300は、ユーザからの要求トルクTRに基づいて、コンバータ121およびインバータ122の制御信号PWC,PWIをそれぞれ生成し、モータジェネレータ130を駆動する。
 また、ECU300は、ユーザにより設定されるモード信号MODを受ける。このモード信号MODは、以下に後述する慣性走行制御を実行するか否かを指示するための信号である。モード信号MODは、特定のスイッチや操作画面における設定などによって切換えられる。あるいは、特定の条件が成立したことに応答して、モード信号MODが自動的に設定されるようにしてもよい。
 ECU300は、たとえば、モード信号MODがオンに設定されている場合には、慣性走行制御を行なうように動作し、モード信号MODがオフに設定されている場合には、慣性走行制御を行なわない通常の走行を行なうように動作する。
 このような車両においては、モータジェネレータ130から駆動力が発生されると、蓄電装置の電力が消費される。蓄電装置110の容量は予め定められているので、蓄電装置に蓄えられた電力で、できるだけ長距離を走行するためには、走行中のエネルギ効率を向上させて電力消費を抑制することが必要となる。
 車両の走行中には車両には慣性力がはたらいているため、走行中にモータジェネレータによる駆動力の発生を停止しても、しばらくの間は、その慣性力により車両は惰性走行を継続する。
 この惰性走行中は、モータジェネレータが駆動されないので、蓄電装置からの電力が消費されない。そのため、慣性力による惰性走行を活用して走行を行なうことができれば、車両走行時のエネルギ効率を改善することが可能となり得る。
 そこで、本実施の形態においては、図1に示した電気自動車において、ユーザからの要求トルクがほぼ一定であり、それによって車速がほぼ一定に維持されるような走行がされている場合に、モータジェネレータからの駆動力を用いた走行と、モータジェネレータの駆動力を停止した惰性走行とを繰り返して走行する運転(以下、「インターバル運転」とも称する。)を行なう慣性走行制御を実行し、走行中におけるエネルギ効率の向上を図る。
 図2は、実施の形態1における慣性走行制御の概要を説明するためのタイムチャートである。図2においては、横軸には時間が示され、縦軸には車速SPD、モータジェネレータの出力、ユーザからの要求パワー、蓄電装置の充放電電力、および蓄電装置のSOCが示される。なお、蓄電装置の充放電電力については、放電電力を正値で表わし、充電電力を負値で表わしている。
 図1および図2を参照して、たとえば、車両100が、平坦な道路を一定の車速V1で走行する場合を考える。この場合、図2のように、ユーザから要求されるパワーは、ほぼ一定の値として与えられる。なお、「ユーザから要求されるパワーがほぼ一定の値である」とは、多少の変動はあるものの、ある所定時間内において、ユーザ要求パワーが予め定められた所定範囲内(たとえば、±3km/h)に維持される状態を意味する。
 実施の形態1の慣性走行制御を適用しない場合においては、モータジェネレータ130の出力は、図2中の破線W13のように、ほぼ一定の大きさで連続して出力される。これにより、車速SPDは、図2中の破線W11のように、ほぼ一定に維持される。
 このとき、蓄電装置110からは、図2中の破線W15のように一定の電力が連続して出力されるために、蓄電装置110のSOCは、図2中の破線W17のように、直線的に減少する。
 これに対して、実施の形態1の慣性走行制御を適用した場合には、モータジェネレータ130の駆動による加速走行と、モータジェネレータ130を停止した惰性走行とが交互に繰り返される。
 具体的には、時刻t1までは、実施の形態1の慣性走行制御が適用されていない状態であり、PM1のモータ出力が連続的に出力されている。
 時刻t1において、ユーザにより慣性走行制御の実行が指示されると、モータジェネレータ130が停止される(図2中の実線W12)。そうすると、モータジェネレータ130からの駆動力がなくなるので、図2中の実線W10のように、慣性力による惰性走行が開始され、徐々に車速SPDが低下する。
 このとき、蓄電装置110からの充放電電力がゼロとなるので、SOCの低下が抑制される。
 そして、車速SPDが、目標とする車速V1に対して予め定められた許容範囲の下限値LLまで低下すると(図2中の時刻t2)、モータジェネレータ130の駆動が再開される。このときのモータ出力は、車速V1を維持するために必要とされる出力PM1よりも大きいPM2に設定される。これによって、車両100が加速する。このとき、駆動力発生中は、惰性走行を行なわない場合に比べるとSOCの減少量は大きくなるが、時刻t1からt2までの惰性走行により電力が消費されていないため、トータルのSOCは高い状態が維持される(図2中の実線W16)。
 そして、車速SPDが予め定められた上記の許容範囲の上限値ULまで上昇すると、再びモータジェネレータ130が停止され(図2中の時刻t3)、惰性走行が実行される。
 その後、同様に、車速SPDが下限値LLまで低下するとモータジェネレータ130が駆動され、さらに車速SPDが上限値ULまで上昇するとモータジェネレータ130が停止される。
 このようなインターバル運転を繰り返すことによって、車速SPDは上記の許容範囲内では変動するものの、平均速度をほぼV1に維持しながら、蓄電装置のSOCの減少を抑制することができる。その結果、全体としてエネルギ効率が向上され、蓄電装置に蓄えられた電力による走行可能距離を拡大することができる。
 なお、モータジェネレータを駆動して加速する際のモータ出力、および加速時間については、任意に設定可能である。たとえば、加速時間を所定の時間に設定し、その期間内に車速SPDを下限値LLから上限値ULまで増加できるようなモータ出力とするようにしてもよい。あるいは、加速に用いるモータ出力を所定の出力にして、加速時間については成り行きとするようにしてもよい。加速時間が短すぎると、大きなパワーが必要となるので、トルクショックが生じる可能性がある。逆にモータ出力が小さすぎると、加速時間、すなわちモータジェネレータの駆動時間が長くなり、惰性走行が実施されにくくなる。また、モータジェネレータは、低出力領域では相対的に効率が低くなる場合があるので、低出力で長時間駆動を行なうと結果的にエネルギ効率の向上が図れないおそれがある。したがって、加速時間と加速時のモータ出力は、ドライバビリティおよびエネルギ効率を勘案して適切に設定される。
 実施の形態1の慣性走行制御においては、上述のように、ユーザからの要求パワーがほぼ一定である場合に、図2で示したようなインターバル運転が実行される。すなわち、ユーザからの要求パワーが変動する加速時および減速時には、インターバル運転は実行されない。
 図3および図4は、慣性走行制御が適用されている際の、加速時および減速時の動作をそれぞれ説明するための図である。図3および図4においても、図2と同様に、横軸には時間が示され、縦軸には車速SPD、モータジェネレータの出力、ユーザからの要求パワー、蓄電装置の充放電電力、および蓄電装置のSOCが示される。
 図1および図3を参照して、時刻t11においてユーザにより慣性走行制御の実行が指示されると、図2と同様に、時刻t14までは車速V1を維持するようにインターバル運転が実行される。
 そして、惰性走行中の時刻t14において、ユーザからの要求パワーが増加されて加速要求を受けると(図3中の実線W24)、ユーザ要求パワーが変動している間(時刻t14~t15)は、インターバル運転が中断される。そして、加速のためにモータ出力がPM3Aに増加される(図3中の実線W22)。
 そして、時刻t15において、ユーザによる加速動作が終了し、車速SPDがV2(V2>V1)で一定になったことに応答して、モータジェネレータ130からの出力が再び停止され、車速V2を維持するようにインターバル運転が再開される(図3中の実線W20)。
 次に、図4を用いて減速時の動作を説明する。図1および図4を参照して、時刻t24までは、図3の時刻t14までと同様に、車速V1でインターバル運転が実行される。
 そして、惰性走行中の時刻t24において、ユーザからの要求パワーが低減されて減速要求を受けると(図4中の実線W35)、ユーザ要求パワーが変動している間(時刻t24~t25)は、インターバル運転が中断される。このとき、モータ出力はゼロのままとされ、惰性走行状態を継続しながら減速を行なう(図4中の実線W32)。なお、加速走行中に減速要求を受けた場合には、加速動作を中止して惰性走行へ移行する。
 あるいは、より迅速に減速を行なうことが必要な場合には、モータジェネレータ130で回生制動を行なうようにしてもよい。この場合には、モータジェネレータ130は、回生発電により負のモータ出力PM5Bを出力し(図4中の一点鎖線W34)、蓄電装置110を充電する(図4中の一点鎖線W37)。これによって、SOCが増加する(図4中の一点鎖線W40)。
 なお、図4中の破線W39で示される、慣性走行制御を適用しない場合のSOC変化においては、減速要求時(時刻t24~t25)にモータジェネレータ130で回生制動を行なう状態を示したものであり、そのため、時刻t24~t25においては、SOCが増加している。
 一方、減速要求時(時刻t24~t25)に惰性走行が実行される場合には、図4には示されないが、時刻t24~t25の間においては、モータジェネレータ130による電力消費および発電のいずれも実行されないので、図4中の破線W39のSOCは変化せず、ほぼ一定となる。
 このように、慣性走行制御が適用されている間に、ユーザ要求パワーの変化に対応して車両の加減速が行なわれる場合は、モータジェネレータ130のインターバル運転が中断される。
 図5は、実施の形態1において、ECU300で実行される慣性走行制御処理を説明するためのフローチャートである。図5および後述する図9に示されるフローチャート中の各ステップについては、ECU300に予め格納されたプログラムを所定周期で実行することによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
 図1および図5を参照して、ECU300は、ステップ(以下、ステップをSと略す。)100にて、ユーザによって設定されるモード信号MODに基づいて、慣性走行制御が選択されているか否かを判定する。
 モード信号MODがオフに設定されており、慣性走行制御が選択されていない場合(S100にてNO)は、以降の処理がスキップされ、ECU300は処理をメインルーチンに戻す。
 モード信号MODがオンに設定されており、慣性走行制御が選択されている場合(S100にてYES)は、処理がS110に進められ、ECU300は、次に、要求トルクTRに基づいて、ユーザからの要求パワーがほぼ一定であるか否かを判定する。
 ユーザ要求パワーがほぼ一定である場合(S110にてYES)は、処理がS120に進められて、ECU300は、インターバル運転を実行するように選択する。なお、図5には示されていないが、インターバル運転の開始直後は、図2~図4に示されるように、まず、モータジェネレータ130が停止されて惰性走行が実行される。
 そして、ECU300は、S130にて、車速SPDが速度許容範囲の上限値ULまで上昇したか否かを判定する。
 上記のように、インターバル運転の開始直後は、まずモータジェネレータ130が停止されて惰性走行が実行されるので、車速SPDは上限値ULよりも低く、かつ徐々に車速SPDは低下する。
 すなわち、車速SPDが速度許容範囲の上限値ULまで上昇していないので(S130にてNO)、処理がS135に進められて、次に、ECU300は、車速SPDが速度許容範囲の下限値LLまで低下したか否かを判定する。
 車速SPDが速度許容範囲内で低下中(LL<SPD<UL)の場合、すなわち、車速SPDが速度許容範囲の下限値LLまで低下していない場合(S135にてNO)は、処理がS144に進められ、ECU300は、現在のモータジェネレータ130の状態を保持し、惰性走行を継続する。その後、メインルーチンに処理が戻され、次回の制御周期において再びS100から処理が実行される。
 惰性走行が継続されている間に、車速SPDが速度許容範囲の下限値LLまで低下した場合(SPD≦LL)(S135にてYES)は、処理がS142に進められ、ECU300は、モータジェネレータ130を駆動して加速走行を実行する。これにより、車速SPDが上昇する。
 この加速走行が実行されて速度許容範囲内で車速が上昇している間は、S130およびS135でNOが選択されて、ECU300は、S144にて、車速SPDが速度許容範囲の上限値ULに到達するまで加速走行を継続する。
 そして、車速SPDが速度許容範囲の上限値ULまで上昇すると(S130にてYES)、処理がS140に進められて、ECU300は、モータジェネレータ130を停止して、惰性走行を実行する。
 ユーザ要求パワーがほぼ一定に保持されている間は、車速SPDが速度許容範囲内に維持されるように、上記のようなインターバル運転が実行される。
 一方、加速または減速のために、ユーザからの要求パワーが変動した場合(S110にてNO)は、処理がS125に進められて、ECU300は、インターバル運転を中断する。
 そして、ECU300は、ユーザ要求パワーによって加速が指示されている場合(S127にてYES)は、モータジェネレータ130を力行状態で駆動して、車両100を加速する(S146)。
 一方、ユーザから減速が指示されている場合(S127にてNO)は、処理がS148に進められ、ECU300は、モータジェネレータ130を停止した惰性走行による減速、および、モータジェネレータ130を回生状態で駆動することによる回生制動を伴う減速のいずれかを実行する。あるいは、惰性走行による減速と回生制動を伴う減速とを切換えながら減速するようにしてもよい。
 その後、ユーザによる加速または減速動作が終了して、ユーザ要求パワーがほぼ一定である状態になると(S110にてYES)、インターバル運転が再開される。
 以上のような処理に従って制御を行なうことによって、ユーザからの要求パワーがほぼ一定である状態において、惰性走行と加速走行とが繰り返されるインターバル運転が実行でき、それによって、車両走行時のエネルギ効率を向上させることができる。
 [実施の形態2]
 実施の形態1では、1台のモータジェネレータで発生される駆動力で走行する電気自動車の場合において、惰性走行と加速走行とを繰り返すインターバル運転を行なう慣性走行制御について説明した。
 実施の形態2においては、複数の駆動源からの駆動力を用いて走行する車両について慣性走行制御を適用する場合について説明する。
 図6は、実施の形態2に従う車両100Aの全体ブロック図である。車両100Aは、回転電機と内燃機関であるエンジンとを駆動源とするハイブリッド車両である。
 図6においては、図1におけるPCU120がPCU120Aに置き換わり、駆動源として、モータジェネレータ130に代えて、モータジェネレータ130A,130Bおよびエンジン160が備えられる構成となっている。図6において、図1と重複する要素の説明は繰り返さない。
 図6を参照して、PCU120Aは、コンバータ121と、インバータ122A,122Bと、コンデンサC1,C2と、電圧センサ180,185とを含む。
 インバータ122A,122Bは、電力線PL2,NL1を介して、コンバータ121に並列に接続される。
 インバータ122Aは、ECU300からの制御信号PWI1により制御され、コンバータ121からの直流電力を交流電力に変換して、モータジェネレータ130A(以下、「MG1」とも称する。)を駆動する。また、インバータ122Aは、モータジェネレータ130Aで発電された交流電力を直流電力に変換し、コンバータ121を介して蓄電装置110を充電する。
 インバータ122Bは、ECU300からの制御信号PWI2により制御され、コンバータ121からの直流電力を交流電力に変換して、モータジェネレータ130B(以下、「MG2」とも称する。)を駆動する。また、インバータ122Bは、モータジェネレータ130Bで発電された交流電力を直流電力に変換し、コンバータ121を介して蓄電装置110を充電する。
 モータジェネレータ130A,130Bの各出力軸は、たとえばプラネタリギヤのような動力分割機構を含んで構成される動力伝達ギヤ140Aに結合される。そして、モータジェネレータ130A,130Bからの駆動力が駆動輪150に伝達される。
 また、モータジェネレータ130A,130Bは、動力伝達ギヤ140Aを介して、エンジン160とも結合される。エンジン160は、ECU300からの制御信号DRVによって制御される。エンジン160から発生される駆動力は、動力伝達ギヤ140Aを介して駆動輪150およびモータジェネレータ130Aに伝達される。ECU300は、モータジェネレータ130A,130Bおよびエンジン160で発生される駆動力を協調的に制御して、車両を走行させる。
 なお、実施の形態2においては、モータジェネレータ130Aは、エンジン160を始動する際のスタータモータとして用いられるとともに、エンジン160により駆動されて発電を行なう発電機として専ら用いられるものとする。また、モータジェネレータ130Bは、蓄電装置110からの電力を用いて駆動輪150を駆動するための電動機として専ら用いられるものとする。
 また、図6においては、2台のモータジェネレータと1台のエンジンが備えられる構成の例が示されるが、モータジェネレータの数はこれに限定されず、たとえば、モータジェネレータが1台であってもよい。あるいは、2台より多くのモータジェネレータが備えられる場合であってもよい。
 次に、図7および図8を用いて、実施の形態2における慣性走行制御の概要を説明する。図7および図8においては、実施の形態1における図2~図4と同様に、横軸には時間が示され、縦軸には車速SPD、モータジェネレータの出力、ユーザからの要求パワー、蓄電装置の充放電電力、および蓄電装置のSOCが示される。
 図6および図7を参照して、時刻t31にて、ユーザにより慣性走行制御の実行が指示されると、実施の形態1で説明したのと同様に、モータジェネレータ130B(MG2)の駆動力を停止した惰性走行と、MG2の駆動力により加速する加速走行とを繰り返すインターバル運転が実行される。
 SOCが低下して所定のしきい値を下回り、蓄電装置110の充電が必要となると、MG2による加速走行に先立って、エンジン160がモータジェネレータ130A(MG1)によりクランキングされて始動される(図7中の時刻t34)。
 そして、車速SPDが許容範囲の下限値LLまで低下すると(図7中の時刻t35)、MG2およびエンジン160からの駆動力を用いた加速走行が実行される(図7中の時刻t35~t36)。このとき、エンジン160の駆動力の一部によりMG1が駆動され、MG1による発電電力によって蓄電装置110が充電される(図7中の実線W54,W55)。
 その後、車速SPDが許容範囲の上限値ULまで上昇すると、MG2およびエンジン160が停止され、再び惰性走行が実行される。
 なお、MG2およびエンジン160の双方が駆動される時刻t35~t36の間においては、MG2で発生される駆動力(出力)は、エンジン160が駆動されない場合よりも小さく設定される(PM3C<PM2C,PM4C)。これは、エンジン160をあまりに低負荷で駆動した場合には、エンジン160自身の効率がかえって悪くなるおそれがあるためである。すなわち、エンジン160にある程度の駆動力を出力させることによって、より効率のよい動作ポイントでエンジン160が駆動できるようにする。そして、これに伴ってMG2で発生される駆動力を少なくしてMG2での消費電力を低減し、それによって電費を向上させる。
 したがって、エンジン160からの駆動力のみによって、加速走行を行ないつつ、さらにMG1を用いた蓄電装置110の充電が可能である場合には、MG2により発生される駆動力をゼロとしてもよい。また、図7においては、エンジン160の駆動による蓄電装置110の充電が1回の加速走行で完了しているが、1回の加速走行では十分に充電ができない場合は、連続する複数の加速走行の期間においてエンジン160が駆動されるようにしてもよい。
 図7に示される例では、蓄電装置110の充電が必要である状態において、エンジン160がMG2とともに駆動される場合について説明した。すなわち、蓄電装置110の充電を行なうとき以外は、MG2によって発生される駆動力のみで走行するいわゆるEV(Electric Vehicle)走行が実行される場合である。
 図8は、インターバル運転における加速走行の際には、蓄電装置110を充電する場合以外においても、エンジン160が駆動される例である。このような状態としては、たとえば、高速道路における走行のように、比較的高出力の状態において一定の要求パワーで走行する場合であって、要求される駆動力を得るために、MG2とエンジン160の双方からの駆動力が必要とされる状態である。
 図8においては、時刻t41で、ユーザから慣性走行制御の実行が指示されると、インターバル運転によって、惰性走行および加速走行が繰り返される。そして、加速走行が実行される、図8中の時刻t43~t44,t46~47,t49~t50においては、MG2およびエンジン160の双方が駆動される(図8中の実線W62,W63)。このように、加速走行に必要な駆動力が、MG2のみで発生される駆動力では十分ではない場合には、加速走行の度にエンジン160が始動され(時刻t42,t45,t48)、MG2およびエンジン160によって発生される駆動力が走行に用いられる。
 この場合においても、SOCが低下して蓄電装置110の充電が必要となった場合には、エンジン160によってMG1が駆動されて発電が行なわれる(図8中の時刻t46~t47)。
 なお、図8において、加速走行を実行する際に、MG2およびエンジン160に配分する駆動力の比率については、MG2およびエンジン160の効率を考慮して適宜決定される。したがって、MG2およびエンジン160の効率に依存して、MG2に分配される駆動力がエンジン160に分配される駆動力よりも大きい場合もあり得るし、その逆の場合もあり得る。
 図9は、実施の形態2において、ECU300で実行される慣性走行制御処理を説明するためのフローチャートである。図9は、実施の形態1において説明した図5のステップS140,S142,S144,S146,S148が、それぞれS140A,S142A,S144A,S146A,S148Aに置き換えられ、さらにステップS150およびS160が追加されたものとなっている。図9において、図5と重複するステップの説明は繰り返さない。
 図6および図9を参照して、図9におけるS140A,S142A,S144A,S146A,S148Aは、図5におけるS140,S142,S144,S146,S148において、モータジェネレータ130B(MG2)に加えてエンジン160についての駆動/停止が追加されたものである。すなわち、惰性走行の場合にはMG2およびエンジン160の双方が停止され、加速走行の場合にはMG2およびエンジン160の双方が駆動される。ただし、図7および図8で説明したように、ユーザから要求されるパワーがMG2のみで発生される駆動力でカバーできる場合には、エンジン160が駆動されない場合もあり得る。
 したがって、ユーザ要求パワーが一定でありインターバル運転が実行される場合(S110にてYES)には、ECU300は、車速SPDが下限値LLまで低下すると(S135にてYES)、ユーザ要求パワーに基づいて予め定められた比率で分配された駆動力を用いてMG2およびエンジン160を駆動して加速走行を実行する(S142A)。そして、ECU300は、車速SPDが上限値ULまで上昇すると(S130にてYES)、MG2およびエンジン160を停止して惰性走行を実行する(S140A)。
 また、ユーザ要求パワーが変動しインターバル運転が中断される場合(S110にてNO)には、ECU300は、加速中であれば(S127にてYES)MG2およびエンジン160を所定の比率の駆動力を用いて駆動して加速し(S146A)、減速中であれば(S127にてNO)MG2およびエンジン160を停止、あるいはMG2による回生動作を実行して減速する(S148A)。
 図9において追加されたステップS150およびS160は、MG1の発電電力によって蓄電装置110を充電する際に用いられる処理である。
 S142Aにて、インターバル運転における加速走行が選択されると、ECU300はS150にて、蓄電装置110を充電してSOCを回復する必要があるか否かを判定する。
 SOCの回復が必要な場合(S150にてYES)は、S160に処理が進められ、ECU300は、エンジン160により発生される駆動力を増加し、MG1で発生する発電電力を用いて蓄電装置110を充電する。また、ECU300は、これと共に、MG2で発生する駆動力とエンジン160で発生する駆動力との比率を変更し、MG2の駆動力を低下する。
 一方、SOCの回復が必要でない場合(S150にてNO)は、S160の処理がスキップされて、ユーザ要求パワーに基づいて予め定められた比率で分配された駆動力を用いて、MG2およびエンジン160を駆動する。
 以上のような処理に従って制御を行なうことによって、エンジンとモータジェネレータとを備えるハイブリッド車両において、ユーザ要求パワーがほぼ一定である場合に、インターバル運転を実行することによって、エネルギ効率を向上させることが可能となる。さらに、SOCが低下した場合には、インターバル運転を継続しつつ、インターバル運転の加速走行時にエンジンの駆動力を増加して、モータジェネレータを用いた発電を行なうことでSOCを回復させることが可能となる。
 なお、上記の図7および図8においては、説明を容易にするために、モータジェネレータとエンジンとの駆動タイミングおよび停止タイミングがほぼ同時であるように記載されているが、モータジェネレータおよびエンジンの駆動/停止タイミングは、厳密に一致する必要はない。すなわち、これらのタイミングは、モータジェネレータおよびエンジンにおける駆動力の応答性等を考慮して適宜設定可能である。たとえば、相対的に応答性の高いモータジェネレータの駆動/停止タイミングを基準とし、それに対応させてエンジンの駆動/停止タイミングを遅延させたり、あるいは早めたりするようにしてもよい。
 [実施の形態2の変形例]
 上記の実施の形態2においては、複数の駆動源としてエンジンとモータジェネレータとが備えられるハイブリッド車両を例として説明したが、本発明は、複数の駆動源として、たとえば、図10に示されるような、2つのモータジェネレータからの駆動力を用いて走行することが可能なツインモータ構成の電気自動車などの、他の構成を有する車両にも適用可能である。
 図10の車両100Bは、図6の車両100Aにおいてエンジン160が装備されていない構成であり、車両100Bは、モータジェネレータ130A(MG1)およびモータジェネレータ130B(MG2)の両方の駆動力を用いて走行する。
 この場合には、実施の形態2のように蓄電装置110を充電することはできないが、実施の形態2における図8において、エンジン160の駆動力をMG1で出力するように置き換えることで、インターバル運転を行なうことが可能である。
 また、実施の形態2の図6の構成において、MG1についても発電機ではなく電動機として用い、MG1,MG2およびエンジン160の3つの駆動源で発生される駆動力を用いて走行する場合においても、本発明の適用が可能である。
 なお、本実施の形態における「惰性走行」および「加速走行」は、それぞれ本発明の「第1の走行パターン」および「第2の走行パターン」に対応する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100,100A,100B 車両、110 蓄電装置、115 SMR、120 PCU、121 コンバータ、122,122A,122B インバータ、130A,130B モータジェネレータ、140,140A 動力伝達ギヤ、150 駆動輪、160 エンジン、170,180,185 電圧センサ、175 電流センサ、190 速度センサ、300 ECU、C1,C2 コンデンサ、NL1,PL1,PL2 電力線。

Claims (11)

  1.  蓄電装置(110)からの電力を用いて走行が可能な車両であって、
     前記蓄電装置(110)からの電力を用いて前記車両(100,100A,100B)の走行駆動力を発生させるための回転電機(130,130B)と、
     前記回転電機(130,130B)を制御するための制御装置(300)とを備え、
     前記制御装置(300)は、前記回転電機(130,130B)による駆動力の発生を停止して前記車両(100,100A,100B)の慣性力で走行する第1の走行パターンと、前記回転電機(130,130B)が発生する駆動力を用いて走行する第2の走行パターンとを切換えながら前記車両(100,100A,100B)を走行させるインターバル運転を実行する、車両。
  2.  前記制御装置(300)は、ユーザからの要求駆動力の変化が所定範囲内の場合に、前記インターバル運転を実行する、請求項1に記載の車両。
  3.  前記制御装置(300)は、前記インターバル運転の実行中は、前記車両(100,100A,100B)の速度が許容範囲内に維持されるように、前記第1および第2の走行パターンを切換える、請求項2に記載の車両。
  4.  前記制御装置(300)は、前記車両(100,100A,100B)の速度が前記許容範囲の上限まで上昇したことに応答して前記第1の走行パターンに切換え、前記車両(100,100A,100B)の速度が前記許容範囲の下限まで低下したことに応答して前記第2の走行パターンに切換える、請求項3に記載の車両。
  5.  前記車両(100A)の駆動力を発生することが可能なエンジン(160)をさらに備え、
     前記制御装置(300)は、前記車両(100A)が前記第2の走行パターンで運転している期間に、前記エンジン(160)を運転する、請求項1に記載の車両。
  6.  前記制御装置(300)は、前記エンジン(160)が運転されて前記エンジン(160)からの駆動力が走行に用いられる場合は、前記エンジン(160)が運転されない場合よりも、前記回転電機(130B)により発生される駆動力を低下させる、請求項5に記載の車両。
  7.  前記エンジン(160)により駆動されて、前記蓄電装置(110)を充電するための電力を発電するように構成された発電機(130A)をさらに備え、
     前記制御装置(300)は、前記発電機(130A)を駆動して前記蓄電装置(110)を充電する場合に、前記エンジン(160)を運転する、請求項5に記載の車両。
  8.  前記制御装置(300)は、前記蓄電装置(110)の充電状態が、予め定められたしきい値を下回った場合に、前記発電機(130A)を駆動して前記蓄電装置(110)を充電する、請求項7に記載の車両。
  9.  前記制御装置(300)は、前記回転電機(130B)を前記第2の走行パターンで運転することに対応して前記エンジン(160)を運転する、請求項5に記載の車両。
  10.  前記車両(100B)の駆動力を発生することが可能な他の回転電機(130A)をさらに備え、
     前記制御装置(300)は、前記車両(100B)が前記第2の走行パターンで運転している期間に、前記他の回転電機(130A)を運転する、請求項1に記載の車両。
  11.  回転電機(130,130B)からの駆動力を用いて走行が可能な車両の制御方法であって、
     前記回転電機(130,130B)による駆動力の発生を停止して前記車両(100,100A,100B)の慣性力で走行する第1の走行パターンを実行するステップと、
     前記回転電機(130,130B)が発生する駆動力を用いて走行する第2の走行パターンを実行するステップと、
     前記第1および第2の走行パターンを切換えながら走行するインターバル運転を実行するステップとを備える、車両の制御方法。
PCT/JP2011/071975 2011-09-27 2011-09-27 車両および車両の制御方法 WO2013046310A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2011/071975 WO2013046310A1 (ja) 2011-09-27 2011-09-27 車両および車両の制御方法
CN201180073682.3A CN103826900A (zh) 2011-09-27 2011-09-27 车辆和车辆的控制方法
EP11873088.6A EP2762350A1 (en) 2011-09-27 2011-09-27 Vehicle and control method for vehicle
US14/239,816 US20140214254A1 (en) 2011-09-27 2011-09-27 Vehicle and method of controlling vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071975 WO2013046310A1 (ja) 2011-09-27 2011-09-27 車両および車両の制御方法

Publications (1)

Publication Number Publication Date
WO2013046310A1 true WO2013046310A1 (ja) 2013-04-04

Family

ID=47994427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071975 WO2013046310A1 (ja) 2011-09-27 2011-09-27 車両および車両の制御方法

Country Status (4)

Country Link
US (1) US20140214254A1 (ja)
EP (1) EP2762350A1 (ja)
CN (1) CN103826900A (ja)
WO (1) WO2013046310A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104670209A (zh) * 2013-11-29 2015-06-03 铃木株式会社 车辆用控制装置
WO2018155082A1 (ja) * 2017-02-22 2018-08-30 日立オートモティブシステムズ株式会社 車両用制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346363B2 (en) * 2012-08-13 2016-05-24 Mitsubishi Electric Corporation Propulsion control apparatus of engine hybrid railroad vehicle
JP6090434B2 (ja) * 2013-04-10 2017-03-08 トヨタ自動車株式会社 ハイブリッド車両の走行制御装置
JP6992460B2 (ja) * 2017-12-05 2022-01-13 トヨタ自動車株式会社 ハイブリッド自動車およびこれに搭載される制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187090A (ja) 2006-01-13 2007-07-26 Toyota Motor Corp 速度維持制御装置
JP2007291919A (ja) * 2006-04-24 2007-11-08 Toyota Motor Corp 車両用走行制御装置
JP2008520485A (ja) 2004-11-16 2008-06-19 フォルクスワーゲン・アクチェンゲゼルシャフト ハイブリッド自動車及びハイブリッド自動車の動作制御法
JP2009298232A (ja) 2008-06-11 2009-12-24 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2010006309A (ja) 2008-06-30 2010-01-14 Toyota Motor Corp 車両用制御装置
JP2010280363A (ja) * 2009-06-08 2010-12-16 Toyota Motor Corp 車両用制御装置
JP2011011648A (ja) * 2009-07-02 2011-01-20 Honda Motor Co Ltd ハイブリッド車両の制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539696B2 (ja) * 1995-02-10 2004-07-07 富士重工業株式会社 電気自動車の定速走行制御装置
CN1880141B (zh) * 2005-05-31 2011-10-05 通用汽车环球科技运作公司 用于混合车辆动力系控制的方法
JP5183594B2 (ja) * 2009-07-31 2013-04-17 日立オートモティブシステムズ株式会社 モータの制御装置及びそれを備えたモータシステム
US8494711B2 (en) * 2010-01-04 2013-07-23 GM Global Technology Operations LLC Automated start-stop systems and methods for internal combustion engines

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520485A (ja) 2004-11-16 2008-06-19 フォルクスワーゲン・アクチェンゲゼルシャフト ハイブリッド自動車及びハイブリッド自動車の動作制御法
JP2007187090A (ja) 2006-01-13 2007-07-26 Toyota Motor Corp 速度維持制御装置
JP2007291919A (ja) * 2006-04-24 2007-11-08 Toyota Motor Corp 車両用走行制御装置
JP2009298232A (ja) 2008-06-11 2009-12-24 Toyota Motor Corp ハイブリッド車およびその制御方法
JP2010006309A (ja) 2008-06-30 2010-01-14 Toyota Motor Corp 車両用制御装置
JP2010280363A (ja) * 2009-06-08 2010-12-16 Toyota Motor Corp 車両用制御装置
JP2011011648A (ja) * 2009-07-02 2011-01-20 Honda Motor Co Ltd ハイブリッド車両の制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104670209A (zh) * 2013-11-29 2015-06-03 铃木株式会社 车辆用控制装置
WO2018155082A1 (ja) * 2017-02-22 2018-08-30 日立オートモティブシステムズ株式会社 車両用制御装置
JPWO2018155082A1 (ja) * 2017-02-22 2019-07-11 日立オートモティブシステムズ株式会社 車両用制御装置
CN110290991A (zh) * 2017-02-22 2019-09-27 日立汽车系统株式会社 车辆用控制装置
CN110290991B (zh) * 2017-02-22 2022-06-03 日立安斯泰莫株式会社 车辆用控制装置

Also Published As

Publication number Publication date
EP2762350A1 (en) 2014-08-06
US20140214254A1 (en) 2014-07-31
CN103826900A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5692405B2 (ja) 車両および車両の制御方法
JP5804074B2 (ja) 車両および車両の制御方法
JP6100690B2 (ja) 車両
JP5696791B2 (ja) 車両および車両の制御方法
JP5765194B2 (ja) 車両および車両の制御方法
JP5811181B2 (ja) 車両および車両の制御方法
JP5696790B2 (ja) 車両および車両の制御方法
US20160244048A1 (en) Hybrid vehicle
WO2013046310A1 (ja) 車両および車両の制御方法
WO2013046312A1 (ja) 車両および車両の制御方法
CN103889771B (zh) 车辆和车辆的控制方法
WO2013061414A1 (ja) 車両および車両の制御方法
JPWO2013046310A1 (ja) 車両および車両の制御方法
JP2013099227A (ja) 車両および車両の制御方法
JPWO2013061414A1 (ja) 車両および車両の制御方法
JP5765192B2 (ja) 車両および車両の制御方法
JP2013086725A (ja) 車両および車両の制御方法
JPWO2013046312A1 (ja) 車両および車両の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14239816

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013535669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011873088

Country of ref document: EP