WO2013046298A1 - 車両の運転支援システム - Google Patents

車両の運転支援システム Download PDF

Info

Publication number
WO2013046298A1
WO2013046298A1 PCT/JP2011/071888 JP2011071888W WO2013046298A1 WO 2013046298 A1 WO2013046298 A1 WO 2013046298A1 JP 2011071888 W JP2011071888 W JP 2011071888W WO 2013046298 A1 WO2013046298 A1 WO 2013046298A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
host vehicle
dimensional object
driving
travel
Prior art date
Application number
PCT/JP2011/071888
Other languages
English (en)
French (fr)
Inventor
信之 五十嵐
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/071888 priority Critical patent/WO2013046298A1/ja
Priority to BR112014002752-8A priority patent/BR112014002752B1/pt
Priority to JP2013535658A priority patent/JP5768891B2/ja
Priority to CN201180073659.4A priority patent/CN103827940B/zh
Priority to US14/346,793 priority patent/US9196162B2/en
Priority to MYPI2014700310A priority patent/MY170852A/en
Priority to CA2843835A priority patent/CA2843835A1/en
Priority to EP11873132.2A priority patent/EP2763119B1/en
Priority to RU2014110658/11A priority patent/RU2570191C2/ru
Priority to KR1020147007462A priority patent/KR20140051444A/ko
Publication of WO2013046298A1 publication Critical patent/WO2013046298A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/207Steering angle of wheels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road

Definitions

  • the present invention relates to a technology for performing driving support for avoiding a three-dimensional object existing on the course of the host vehicle.
  • the present invention has been made in view of the various circumstances as described above, and an object of the present invention is a technology that can provide driving assistance suitable for the driver's sense in a system that supports collision avoidance of a vehicle. On offer.
  • the present invention specifies a range of routes in which the host vehicle can travel in the future within a range of driving operations that the driver can normally perform in a system that supports collision avoidance of the vehicle.
  • driving assistance is implemented on the condition that there is no route that can avoid a three-dimensional object within the range.
  • the vehicle driving support system includes: Recognizing means for recognizing a three-dimensional object existing around the own vehicle; Acquisition means for acquiring the current momentum of the host vehicle; When the amount of change in the amount of exercise that occurs within the range of driving operations that the driver can normally perform is increased or decreased with respect to the amount of exercise acquired by the acquisition means, the range of travel that the vehicle can travel is Supporting means for implementing support for avoiding a collision with the three-dimensional object on the condition that there is no avoidance line that is a path that can avoid a collision with the three-dimensional object recognized by the recognition means; I was prepared to.
  • normal change on the basis of a change in the amount of movement of the own vehicle (hereinafter referred to as “normal change”) that increases or decreases according to a driving operation that can be normally performed by the driver, and the current amount of movement of the own vehicle.
  • the range (traveling range) of the route that can travel in the future is required.
  • Such a travel range is determined by the driver's driving operation state in the current state (assuming the vehicle's momentum remains in the current state) in addition to the route on which the host vehicle travels.
  • the “normal driving operation” here includes a steering operation (steering) in addition to a braking operation.
  • the driver can avoid a collision between the host vehicle and the three-dimensional object by performing a normal driving operation. Therefore, even if the driver has a willingness to perform a normal driving operation in the future, if the driving assistance is performed, the driver may feel annoyed.
  • the driving support system of the present invention has a case where an avoidance line exists in the traveling range, that is, when the driver can avoid a collision between the host vehicle and the three-dimensional object by performing a normal driving operation. Do not provide driving assistance. As a result, it is possible to avoid a situation in which driving assistance is performed even though the driver has the will to perform a normal driving operation.
  • the driver does not perform the normal driving operation when the driving support by the support means is not performed. For example, if the driver's consciousness level is low or the driver is looking aside, the driver may not perform a normal driving operation. However, if the driver does not perform a normal driving operation, the number of avoidance line options decreases as the vehicle approaches the three-dimensional object. Then, when the avoidance line no longer exists within the travel range, driving assistance is executed. As a result, even when the driver does not perform a normal driving operation, it is possible to avoid a collision between the host vehicle and the three-dimensional object.
  • the above-described normal change may be obtained in advance by an adaptation process using an experiment or the like, or may be learned based on the driving operation history of the driver.
  • the normal change may be a fixed value or a variable value that is increased or decreased according to the traveling speed of the host vehicle.
  • the normal change may be increased when the vehicle speed is low compared to when the vehicle speed is high. This is because when the vehicle speed is low, the range of driving operations that the driver can normally perform tends to be larger than when the vehicle speed is high, thereby increasing the amount of normal change.
  • the yaw rate acting on the host vehicle As the “momentum” of the host vehicle in the present invention, the yaw rate acting on the host vehicle, the acceleration acting in the longitudinal direction of the vehicle (longitudinal acceleration), the acceleration acting in the lateral direction of the vehicle (lateral acceleration), and the G acting in the longitudinal direction of the vehicle. (Front-rear G), G (left-right G) acting in the left-right direction of the vehicle, cornering force, and the like can be used.
  • the parameters used as the “momentum” of the host vehicle in the present invention are parameters such as the lateral acceleration and the left and right G that make the travel range narrower when the travel speed of the host vehicle is high than when the travel speed is low. It is desirable.
  • the traveling range becomes narrower when the vehicle speed is high than when the vehicle speed is low.
  • the timing at which the avoidance line does not exist in the travel range is earlier than when the vehicle speed is low. Therefore, even when the traveling speed of the host vehicle is high, it is possible to avoid a collision between the host vehicle and the three-dimensional object.
  • the support means may immediately implement the drive support, or the longest of the routes included in the travel range. Driving support may be performed when the length of the route becomes equal to or less than the threshold.
  • the driving assistance is implemented immediately, it will be easier to avoid a collision more reliably. However, depending on the driver, the driving operation may be started at a relatively late time. Therefore, if driving assistance is implemented immediately when there is no avoidance line in the travel range, the driver may feel annoyed. There is also sex. On the other hand, when driving assistance is performed at the time when the length of the longest route among the routes included in the travel range is equal to or less than the threshold value, the driver is not bothered as described above. , Driving assistance can be implemented.
  • the “threshold value” is a value obtained by adding a margin to the shortest length that can avoid a collision between the host vehicle and the three-dimensional object by performing driving support.
  • the driving assistance in the present invention includes a process of outputting at least one of a warning sound, a warning light, or a message to a speaker or a display, a process of automatically performing a steering angle operation (steering) and / or a braking operation.
  • a steering angle operation steering
  • a braking operation a steering angle operation (steering) and / or a braking operation.
  • the above-described threshold value can be made smaller than when driving assistance is performed only by either steering angle operation or braking operation. Therefore, it is possible to avoid a collision between the host vehicle and the three-dimensional object while delaying the execution timing of driving support as much as possible.
  • the present invention is applied to a system that determines a runway or an obstacle of the host vehicle and performs support for avoiding a deviation from the judged runway or a collision with an obstacle.
  • the “support” here is a process executed at a timing at which the host vehicle can avoid a three-dimensional object that is an obstacle, and a collision damage reduction process executed when a collision between the vehicle and the obstacle is unavoidable Performed earlier.
  • the structure demonstrated in the following example shows one embodiment of this invention, and does not limit the structure of this invention.
  • FIG. 1 is a block diagram showing the configuration of a vehicle driving support system to which the present invention is applied according to function.
  • a driving support control unit (ECU) 1 is mounted on the vehicle.
  • the ECU 1 is an electronic control unit including a CPU, a ROM, a RAM, a backup RAM, an I / O interface, and the like.
  • the ECU 1 is electrically connected with various sensors such as an external recognition device 2, a yaw rate sensor 3, a wheel speed sensor 4, an acceleration sensor 5, a brake sensor 6, an accelerator sensor 7, a rudder angle sensor 8, and a steering torque sensor 9.
  • the output signals of these sensors are input to the ECU 1.
  • the external environment recognition device 2 includes, for example, at least one of measurement devices such as LIDAR (Laser Imaging Detection And Ranging), LRF (Laser Range Finder), millimeter wave radar, and stereo camera, and is a solid that exists around the vehicle. Information related to the relative position between the object and the vehicle (for example, relative distance and relative angle) is detected.
  • LIDAR Laser Imaging Detection And Ranging
  • LRF Laser Range Finder
  • millimeter wave radar and stereo camera
  • the yaw rate sensor 3 is attached to the body of the host vehicle, for example, and outputs an electrical signal correlated with the yaw rate acting on the host vehicle.
  • the wheel speed sensor 4 is a sensor that is attached to the wheel of the host vehicle and outputs an electrical signal that correlates with the traveling speed (vehicle speed) of the vehicle.
  • the acceleration sensor 5 outputs an electrical signal correlated with acceleration acting in the front-rear direction of the host vehicle (longitudinal acceleration) and acceleration acting in the left-right direction of the host vehicle (lateral acceleration).
  • the brake sensor 6 is attached to, for example, a brake pedal in the passenger compartment, and outputs an electrical signal that correlates with the operation torque (depression force) of the brake pedal.
  • the accelerator sensor 7 is attached to, for example, an accelerator pedal in the passenger compartment, and outputs an electrical signal that correlates with the operation torque (depression force) of the accelerator pedal.
  • the steering angle sensor 8 is attached to, for example, a steering rod connected to a steering wheel in the vehicle interior, and outputs an electrical signal correlated with a rotation angle (steering angle) from the neutral position of the steering wheel.
  • the steering torque sensor 9 is attached to the steering rod and outputs an electrical signal correlated with torque (steering torque) input to the steering wheel.
  • the ECU 1 is connected to various devices such as a buzzer 10, a display device 11, an electric power steering (EPS) 12, and an electronically controlled brake (ECB) 13 so that these various devices are electrically controlled by the ECU 1. It has become.
  • the buzzer 10 is, for example, a device that is installed in the passenger compartment and outputs a warning sound.
  • the display device 11 is, for example, a device that is installed in the passenger compartment and displays various messages and warning lights.
  • the electric power steering (EPS) 12 is a device that assists the steering torque of the steering wheel by using the torque generated by the electric motor.
  • the electronically controlled brake (ECB) 13 is a device that electrically adjusts the operating hydraulic pressure (brake hydraulic pressure) of a friction brake provided on each wheel.
  • the ECU 1 has the following functions in order to control various devices using the output signals of the various sensors described above. That is, the ECU 1 includes a travel path recognition unit 100, a travel range prediction unit 101, a support determination unit 102, an alarm determination unit 103, a control determination unit 104, and a control amount calculation unit 105.
  • the travel path recognition unit 100 generates information related to the road (running path) from which the host vehicle will travel based on the information output from the external environment recognition device 2.
  • the runway recognition unit 100 uses a solid object that can be an obstacle to the host vehicle or an indicator that indicates a lane boundary (for example, a road marking such as a white line or a yellow line that indicates a lane boundary, Information on the position of a three-dimensional object such as a curb, a guard rail, a groove, a wall, and a pole extending along the lane and the posture of the host vehicle (distance, yaw angle, etc.) with respect to the three-dimensional object and the lane boundary is generated.
  • the travel path recognition unit 100 corresponds to a recognition unit according to the present invention.
  • the travel range prediction unit 101 specifies a route predicted to be passed by the host vehicle in the coordinate system generated by the travel path recognition unit 100. At that time, the travel range prediction unit 101 specifies a route range (travel range) in which the host vehicle can travel in the future in a range of driving operations that the driver can normally perform.
  • a route range travel range
  • the travel range prediction unit 101 acquires the current lateral acceleration Gy0 of the host vehicle A from the output signal of the acceleration sensor 5, and the host vehicle A maintains the current lateral acceleration Gy0.
  • a route a that is predicted to be passed when the vehicle travels while the vehicle is running is specified.
  • the travel range prediction unit 101 specifies the route b1 that the host vehicle A is predicted to pass when the normal change ⁇ Gy is added to the current lateral acceleration Gy0 of the host vehicle A, and the current range of the host vehicle A A route b2 that the host vehicle A is predicted to pass when the normal change ⁇ Gy is subtracted from the lateral acceleration Gy0 of the vehicle is specified.
  • the travel range prediction unit 101 calculates the turning radius R of the host vehicle A from the value obtained by adding or subtracting the normal change ⁇ Gy to the current lateral acceleration Gy0, and based on the calculated turning radius R, the route b1, What is necessary is just to specify b2.
  • the travel range prediction unit 101 specifies a route b0 when the steering angle or the lateral acceleration is changed by a certain amount in the range (travel range) from the route b1 to b2.
  • the normal change amount ⁇ Gy is an amount corresponding to the maximum change amount of the lateral acceleration within the range of the driving operation that can be normally performed by the driver, and is an amount obtained experimentally in advance. If the host vehicle A is already in a turning state (
  • the travel range prediction unit 101 may set the routes b1 and b2 that are predicted to pass when the host vehicle travels at the maximum lateral acceleration. For example, as shown in FIG. 3, the travel range prediction unit 101 sets a route b1 that is predicted to pass when the host vehicle travels while turning right at the maximum lateral acceleration, and the host vehicle A route that passes when the vehicle travels while turning left at an acceleration may be set as the route b2.
  • the support determination unit 102 determines whether or not to perform driving support based on the information generated by the travel path recognition unit 100 and the travel range predicted by the travel range prediction unit 101. Specifically, as illustrated in FIG. 4, the assistance determination unit 102 prohibits execution of driving assistance when a route (avoidance line) E that can avoid the three-dimensional object B exists within the travel range. On the other hand, as shown in FIG. 5, the assistance determination unit 102 permits the driving assistance to be performed when there is no avoidance line.
  • the warning determination unit 103 warns the driver by sounding the buzzer 10 or displaying a warning message or warning light by the display device 11 when the driving determination is permitted by the support determination unit 102. Prompt. For example, the warning determination unit 103 immediately causes the buzzer 10 to ring when the support determination unit 102 permits driving support (when the avoidance line no longer exists in the travel range), or causes the display device 11 to A warning message or a warning light may be displayed.
  • the warning determination unit 103 is configured to beep when the distance between the host vehicle and the three-dimensional object is equal to or less than a predetermined distance for the route having the longest distance between the host vehicle and the three-dimensional object among the routes included in the travel range. 10 may be sounded, or a warning message or warning light may be displayed on the display device 11. Further, the warning determination unit 103 calculates the time until the host vehicle A reaches the three-dimensional object B for the route having the longest distance between the host vehicle and the three-dimensional object, and the time when the calculation result is equal to or less than a predetermined time. The buzzer 10 may be sounded or a warning message or a warning light may be displayed on the display device 11.
  • the predetermined distance and the predetermined time described above may be changed according to the output signal of the yaw rate sensor 3 or the output signal of the wheel speed sensor 6.
  • the predetermined distance and the predetermined time may be set longer when the vehicle speed is high than when the vehicle speed is low.
  • the predetermined distance and the predetermined time may be set longer than when the yaw rate is small.
  • the length of each route included in the travel range is set to the predetermined distance, and the buzzer 10 is sounded when all the routes in the travel range interfere with the three-dimensional object, or the display device 11 has a warning message or warning.
  • a light may be displayed.
  • the warning method for the driver is not limited to a method of sounding the buzzer 10 or a method of displaying a warning message or a warning light on the display device 11. For example, a method of intermittently changing the tightening torque of the seat belt. It may be adopted.
  • the control determination unit 104 is configured to use an electric power steering (EPS) 12 or an electronically controlled brake in order to avoid a collision between the host vehicle and the three-dimensional object when the driving determination process is permitted by the support determination unit 102.
  • EPS electric power steering
  • EMB electronically controlled brake
  • the control determination unit 104 determines that the distance between the host vehicle and the three-dimensional object is equal to or less than a predetermined distance for the route having the longest distance between the host vehicle and the three-dimensional object among the routes included in the travel range. At that time, the electric power steering (EPS) 12 or the electronically controlled brake (ECB) 13 may be operated. Further, the control determination unit 104 calculates the time for the host vehicle to reach the three-dimensional object for the route having the longest distance between the host vehicle and the three-dimensional object among the routes included in the travel range, and the calculation result is a predetermined value. The electric power steering (EPS) 12 and the electronically controlled brake (ECB) 13 may be operated when the time becomes less than the time.
  • the timings of the electric power steering (EPS) 12 and the electronically controlled brake (ECB) 13 are determined with reference to the route having the longest distance between the host vehicle and the three-dimensional object, the timings are determined. It can be as slow as possible. As a result, driving assistance can be implemented without making the driver feel bothersome.
  • the length of each route included in the travel range is set to the predetermined distance, and when all the routes in the travel range interfere with the three-dimensional object, the electric power steering (EPS) 12 and the electronically controlled brake (ECB) 13 may be activated.
  • EPS electric power steering
  • EAB electronically controlled brake
  • the predetermined distance and the predetermined time used by the control determination unit 104 may be changed according to the vehicle speed and the yaw rate in the same manner as the predetermined distance and the predetermined time used by the alarm determination unit 103. It is assumed that it is set to be equal to or less than a predetermined distance and a predetermined time.
  • the control amount calculation unit 105 is configured to operate the electric power steering (EPS) 12 and the electronic control type when the control determination unit 104 determines the operation timing of the electric power steering (EPS) 12 and the electronic control type brake (ECB) 13.
  • the control amount of the brake (ECB) 13 is calculated, and the electric power steering (EPS) 12 and the electronically controlled brake (ECB) 13 are operated according to the calculated control amount and the timing determined by the control determination unit 104.
  • the control amount calculation unit 105 calculates a target yaw rate necessary for avoiding a collision between the host vehicle and the three-dimensional object.
  • the control amount calculation unit 105 controls the control amount (steering torque) of the electric power steering (EPS) 12 and the electronic control formula so that the actual yaw rate of the host vehicle (the output signal of the yaw rate sensor 3) matches the target yaw rate.
  • a control amount (brake hydraulic pressure) of the brake (ECB) 13 is determined.
  • the relationship between the target yaw rate and the steering torque, and the relationship between the target yaw rate and the brake hydraulic pressure may be mapped in advance.
  • the method of decelerating the vehicle is not limited to the method of operating the friction brake by the electronically controlled brake (ECB) 13, but the method of converting (regenerating) the kinetic energy of the vehicle into the electric energy or the transmission gear ratio.
  • a method of increasing the engine brake by changing may be used.
  • the method of changing the yaw rate of the vehicle is not limited to the method of changing the steering angle by the electric power steering (EPS) 12, and a method of applying different brake hydraulic pressures to the left and right wheels of the host vehicle may be used.
  • the travel range prediction unit 101, the support determination unit 102, the alarm determination unit 103, the control determination unit 104, and the control amount calculation unit 105 described above correspond to support means according to the present invention.
  • FIG. 6 is a processing routine that is repeatedly executed by the ECU 1 and is stored in advance in the ROM or the like of the ECU 1.
  • the ECU 1 In the processing routine of FIG. 6, first, in S101, the ECU 1 generates information (running road information) related to a running road on which the host vehicle will run in the future based on an output signal of the external recognition device 2. That is, the ECU 1 generates information on the position coordinates and the size of the three-dimensional object that can be an obstacle of the own vehicle and the index indicating the lane boundary in the coordinate system with the own vehicle as the origin, and the three-dimensional object and the lane boundary. Information on the attitude of the host vehicle is generated.
  • information running road information related to a running road on which the host vehicle will run in the future based on an output signal of the external recognition device 2. That is, the ECU 1 generates information on the position coordinates and the size of the three-dimensional object that can be an obstacle of the own vehicle and the index indicating the lane boundary in the coordinate system with the own vehicle as the origin, and the three-dimensional object and the lane boundary. Information on the attitude of the host vehicle is generated.
  • the ECU 1 determines whether or not there is a three-dimensional object that becomes an obstacle on the course of the host vehicle, based on the traveling path information generated in S101.
  • the “course” here is a route predicted to pass when the host vehicle travels while maintaining the current lateral acceleration Gy0. If a negative determination is made in S102, the ECU 1 once ends the execution of this routine. On the other hand, if a positive determination is made in S102, the ECU 1 proceeds to S103.
  • the ECU 1 reads the output signal (the lateral acceleration at the present time of the host vehicle) Gy0 of the acceleration sensor 5, and predicts the travel range of the host vehicle based on the read lateral acceleration Gy0. That is, as described in the explanation of FIG. 2 described above, the ECU 1 specifies the paths b1 and b2 by adding and subtracting the normal change ⁇ Gy to the current lateral acceleration Gy0. Next, the ECU 1 specifies the route b0 when the steering angle or the lateral acceleration is changed by a certain amount in the range from the route b1 to b2.
  • the ECU 1 compares the position of the three-dimensional object in the coordinate system generated in S101 with the travel range predicted in S103, and whether an avoidance line that can avoid the three-dimensional object exists in the travel range. Determine whether or not. In other words, it is determined whether or not the collision between the host vehicle and the three-dimensional object can be avoided by the driver performing a normal driving operation.
  • the ECU 1 performs driving assistance using the buzzer 10 or the display device 11, or performs driving assistance using the electric power steering (EPS) 12 and / or the electronically controlled brake (ECB) 13. .
  • EPS electric power steering
  • EB electronically controlled brake
  • the driving support system of the present embodiment when the driver does not have the intention to perform a normal driving operation (for example, when the driver's consciousness level is lowered, the driver looks aside). However, as long as there is an avoidance line within the driving range, driving assistance is not performed. However, when the host vehicle approaches the three-dimensional object, there is no avoidance line in the travel range, and thus driving assistance is performed before the host vehicle collides with the three-dimensional object. Therefore, even when the driver does not perform a normal driving operation, the collision between the host vehicle and the three-dimensional object can be avoided.
  • the lateral acceleration is used as a parameter indicating the amount of movement of the host vehicle.
  • yaw rate, left and right G, cornering force, and the like can also be used.
  • Lateral acceleration and left and right G increase as the yaw rate increases, and increase as the vehicle speed increases. Therefore, when lateral acceleration or right and left G is used as a parameter indicating the amount of movement of the host vehicle, the travel range predicted by the travel range prediction unit 101 is when the vehicle speed is low as shown in FIG. (B)) is higher ((a) in FIG. 7).
  • the timing at which the avoidance line does not exist in the travel range is earlier than when the vehicle speed is low. Therefore, even when the traveling speed of the host vehicle is high, it is possible to more reliably avoid the collision between the host vehicle and the three-dimensional object.
  • the difference between the first embodiment described above and this embodiment is that the magnitude of the normal change ⁇ Gy is changed according to the vehicle speed.
  • the magnitude of the lateral acceleration allowed when the driver performs a normal driving operation is larger in the low speed range than in the high speed range.
  • the normal change ⁇ Gy increases as the vehicle speed decreases in a region lower than the specific vehicle speed V0, and may be fixed to a constant value in a region higher than the specific vehicle speed V0.
  • the specific vehicle speed V0 is a value obtained statistically in advance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Regulating Braking Force (AREA)

Abstract

 本発明は、車両の衝突回避を支援するシステムにおいて、運転者の感覚に適した運転支援を行うことができる技術の提供を課題とする。この課題を解決するために、本発明は、車両の衝突回避を支援するシステムにおいて、運転者が通常に行い得る運転操作の範囲において自車両が走行し得る経路の範囲である走行範囲を求め、走行範囲内に立体物を回避可能な経路が存在する場合は運転支援を実施せず、走行範囲内に立体物を回避可能な経路が存在しない場合は運転支援を実施するようにした。

Description

車両の運転支援システム
 本発明は、自車両の進路上に存在する立体物を回避するための運転支援を行う技術に関する。
 自車両の進路上に存在する立体物を検出し、自車両が立体物に到達する時間、或いは自車両と立体物の相対距離が閾値以下となったときに、運転者に警告したり、或いは制動装置をさせたりといった運転支援を行う技術が提案されている(たとえば、特許文献1を参照)。
特開平07-149193号公報
 ところで、上記した従来の技術においては、運転者の意志に反して運転支援が実施される可能性があるため、運転支援を実施するか否かの判定方法に改善の余地があった。
 本発明は、上記したような種々の実情に鑑みてなされたものであり、その目的は、車両の衝突回避を支援するシステムにおいて、運転者の感覚に適した運転支援を行うことができる技術の提供にある。
 本発明は、上記した課題を解決するために、車両の衝突回避を支援するシステムにおいて、運転者が通常に行い得る運転操作の範囲において自車両が将来的に走行し得る経路の範囲を特定し、その範囲内に立体物を回避可能な経路が存在しないことを条件に運転支援を実施するようにした。
 詳細には、本発明に係わる車両の運転支援システムは、
 自車両の周囲に存在する立体物を認識する認識手段と、
 自車両の現在の運動量を取得する取得手段と、
 前記取得手段により取得された運動量に対して運転者が通常に行い得る運転操作の範囲内で発生する運動量の変化分を増減させた場合に自車両が走行し得る経路の範囲である走行範囲に、前記認識手段により認識された立体物との衝突を回避可能な経路である回避ラインが存在しないことを条件として、前記立体物との衝突を回避するための支援を実施する支援手段と、
を備えるようにした。
 本発明によれば、運転者が通常に行い得る運転操作によって増減する自車両の運動量の変化分(以下、「通常変化分」と称する)と現在の自車両の運動量とに基づいて、自車両が将来的に走行し得る経路の範囲(走行範囲)が求められる。このような走行範囲は、運転者の運転操作状態が現状のままであると仮定した場合(車両の運動量が現状のままであると仮定した場合)に自車両が走行する経路に加え、運転者が通常の運転操作を行うと仮定した場合(運転者が通常の運転操作を行うことによって自車両の運動量が変化すると仮定した場合)に自車両が走行する経路を含むことになる。なお、ここでいう「通常の運転操作」には、制動操作に加え、ステアリング操作(操舵)も含まれるものとする。
 前記走行範囲内に回避ラインが存在する場合は、運転者が通常の運転操作を行うことにより、自車両と立体物の衝突を回避することができる。そのため、運転者が将来的に通常通りの運転操作を行う意志を持っているにもかかわらず、運転支援が実施されると、運転者が煩わしさを覚える可能性がある。
 これに対し、本発明の運転支援システムは、走行範囲内に回避ラインが存在する場合、すなわち、運転者が通常の運転操作を行うことにより自車両と立体物との衝突を回避可能な場合は、運転支援を実施しない。その結果、運転者が通常の運転操作を行う意志を持っているにもかかわらず、運転支援が実施される事態を回避することができる。
 なお、支援手段による運転支援が実施されなかった場合に、運転者が通常通りの運転操作を行わない可能性もある。たとえば、運転者の意識レベルが低かったり、運転者が脇見をしていたりすると、運転者が通常の運転操作を行わない可能性がある。ただし、運転者が通常の運転操作を行わない場合は、車両が立体物に近づくにつれ、回避ラインの選択肢が少なくなっていく。そして、走行範囲内に回避ラインが存在しなくなった時点で、運転支援が実行されることになる。その結果、運転者が通常の運転操作を行わなかった場合であっても、自車両と立体物との衝突を回避することが可能になる。
 ここで、上記した通常変化分は、予め実験などを利用した適合処理によって求められていてもよく、或いは運転者の運転操作履歴に基づいて学習されるようにしてもよい。その際、通常変化分は、固定値であってもよく、或いは自車両の走行速度に応じて増減される可変値であってもよい。通常変化分が走行速度に応じて増減される場合は、車速が低いときは高いときに比して通常変化分が大きくされてもよい。これは、車速が低いときは高いときに比べ、運転者が通常に行い得る運転操作の範囲が拡大する傾向があり、それによって通常変化分も大きくなるからである。
 本発明における自車両の「運動量」としては、自車両に作用するヨーレート、車両前後方向に作用する加速度(前後加速度)、車両左右方向に作用する加速度(横加速度)、車両前後方向に作用するG(前後G)、車両左右方向に作用するG(左右G)、コーナリングフォースなどを用いることができる。
 なお、本発明における自車両の「運動量」として用いられるパラメータは、横加速度や左右Gのように、自車両の走行速度が高いときは低いときに比べ、前記した走行範囲が狭くなるパラメータであることが望ましい。このようなパラメータが運動量として用いられると、車速が高いときは低いときに比べ、走行範囲が狭くなる。その結果、車速が高いときは低いときに比べ、走行範囲内に回避ラインが存在しなくなるタイミング(言い換えれば、運転支援が実施されるタイミング)が早くなる。よって、自車両の走行速度が高い場合であっても、自車両と立体物との衝突を回避することが可能になる。
 次に、本発明の車両の運転支援システムにおいて、前記走行範囲内に回避ラインが存在しない場合は、支援手段は、直ちに運転支援を実施してもよく、若しくは走行範囲に含まれる経路のうち最長の経路の長さが閾値以下となった時点で運転支援を実施してもよい。
 前記走行範囲内に回避ラインが存在しない場合に、直ちに運転支援が実施されると、より確実に衝突を回避し易くなる。ただし、運転者によっては比較的遅い時期に運転操作を開始する場合もあるため、前記走行範囲内に回避ラインが存在しないときに直ちに運転支援が実施されると、運転者が煩わしさを覚える可能性もある。これに対し、前記走行範囲に含まれる経路のうち、最長の経路の長さが閾値以下となった時点で運転支援が実施されると、上記したような運転者に煩わしさを覚えさせることなく、運転支援を実施することができる。なお、ここでいう「閾値」は、運転支援を実施することにより、自車両と立体物の衝突を回避することができる最短の長さにマージンを加算した値である。
 本発明における運転支援は、警告音、警告灯、或いはメッセージの少なくとも1つをスピーカやディスプレイに出力する処理や、舵角操作(操舵)およびまたは制動操作を自動的に行う処理などである。なお、舵角操作と制動操作を組み合わせた運転支援が実施される場合は、舵角操作或いは制動操作の何れか一方のみによる運転支援が実施される場合に比べ、前記した閾値を小さくすることができるため、運転支援の実施タイミングを可及的に遅らせつつ、自車両と立体物の衝突を回避することができる。
 本発明によれば、車両の衝突回避を支援するシステムにおいて、運転者の感覚に適した支援を行うことができる。
本発明に係わる車両の運転支援システムの構成を示す図である。 走行範囲を求める方法を示す図である。 走行範囲を求める他の方法を示す図である。 走行範囲内に回避ラインが存在する例を示す図である。 走行範囲内に回避ラインが存在しない例を示す図である。 運転支援の実行手順を示すフローチャートである。 車速と走行範囲の相関関係を示す図である。 通常変化分と車速との関係を示す図である。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。ここでは、自車両の走路や障害物を判定し、判定された走路からの逸脱や障害物との衝突を回避するための支援を行うシステムに本発明を適用する例について説明する。なお、ここでいう「支援」は、自車両が障害物たる立体物を回避可能なタイミングで実行される処理であり、車両と障害物との衝突が不可避な場合に実行される衝突被害軽減処理より早い時期に実行される。また、以下の実施例において説明する構成は、本発明の一実施態様を示すものであり、本発明の構成を限定するものではない。
 <実施例1>
 まず、本発明の第1の実施例について図1乃至図6に基づいて説明する。図1は、本発明を適用する車両の運転支援システムの構成を機能別に示すブロック図である。図1に示すように、車両には、運転支援用の制御ユニット(ECU)1が搭載されている。
 ECU1は、CPU、ROM、RAM、バックアップRAM、I/Oインターフェイスなどを備えた電子制御ユニットである。ECU1には、外界認識装置2、ヨーレートセンサ3、車輪速センサ4、加速度センサ5、ブレーキセンサ6、アクセルセンサ7、舵角センサ8、操舵トルクセンサ9などの各種センサが電気的に接続され、それらセンサの出力信号がECU1へ入力されるようになっている。
 外界認識装置2は、たとえば、LIDAR(Laser Imaging Detection And Ranging)、LRF(Laser Range Finder)、ミリ波レーダ、ステレオカメラなどの測定装置のうち、少なくとも1つを含み、車両の周囲に存在する立体物と自車両との相対位置に関する情報(たとえば、相対距離や相対角度)を検出する。
 ヨーレートセンサ3は、たとえば、自車両の車体に取り付けられ、自車両に作用しているヨーレートと相関する電気信号を出力する。車輪速センサ4は、自車両の車輪に取り付けられ、車両の走行速度(車速)に相関する電気信号を出力するセンサである。加速度センサ5は、自車両の前後方向に作用している加速度(前後加速度)、並びに自車両の左右方向に作用している加速度(横加速度)に相関する電気信号を出力する。
 ブレーキセンサ6は、たとえば、車室内のブレーキペダルに取り付けられ、ブレーキペダルの操作トルク(踏力)に相関する電気信号を出力する。アクセルセンサ7は、たとえば、車室内のアクセルペダルに取り付けられ、アクセルペダルの操作トルク(踏力)に相関する電気信号を出力する。舵角センサ8は、たとえば、車室内のステアリングホイールに接続されたステアリングロッドに取り付けられ、ステアリングホイールの中立位置からの回転角度(操舵角)に相関する電気信号を出力する。操舵トルクセンサ9は、ステアリングロッドに取り付けられ、ステアリングホイールに入力されるトルク(操舵トルク)に相関する電気信号を出力する。
 また、ECU1には、ブザー10、表示装置11、電動パワーステアリング(EPS)12、電子制御式ブレーキ(ECB)13などの各種機器が接続され、それら各種機器がECU1によって電気的に制御されるようになっている。
 ブザー10は、たとえば、車室内に取り付けられ、警告音などを出力する装置である。表示装置11は、たとえば、車室内に取り付けられ、各種メッセージや警告灯を表示する装置である。電動パワーステアリング(EPS)12は、電動モータが発生するトルクを利用して、ステアリングホイールの操舵トルクを助勢する装置である。電子制御式ブレーキ(ECB)13は、各車輪に設けられた摩擦ブレーキの作動油圧(ブレーキ油圧)を電気的に調整する装置である。
 ECU1は、上記した各種センサの出力信号を利用して各種機器を制御するために、以下のような機能を有している。すなわち、ECU1は、走路認識部100、走行範囲予測部101、支援判定部102、警報判定部103、制御判定部104、および制御量演算部105を備えている。
 走路認識部100は、前記外界認識装置2から出力される情報に基づいて、自車両がこれから走行する道路(走路)に関する情報を生成する。たとえば、走路認識部100は、自車両を原点とする座標系において、自車両の障害物となり得る立体物や車線境界を示す指標(たとえば、車線境界を示す白線や黄色線などの道路標示や、車線脇に延在する縁石、ガードレール、溝、壁、ポールなどの立体物など)の位置や、それら立体物や車線境界に対する自車両の姿勢(距離やヨー角など)に関する情報を生成する。なお、走路認識部100は、本発明に係わる認識手段に相当する。
 走行範囲予測部101は、前記走路認識部100により生成された座標系において、自車両がこれから通ると予測される経路を特定する。その際、走行範囲予測部101は、運転者が通常に行い得る運転操作の範囲において自車両が将来的に走行し得る経路の範囲(走行範囲)を特定する。
 具体的には、走行範囲予測部101は、図2に示すように、加速度センサ5の出力信号から自車両Aの現在の横加速度Gy0を取得し、自車両Aが現在の横加速度Gy0を維持したまま走行した場合に通ると予測される経路aを特定する。次に、走行範囲予測部101は、自車両Aの現在の横加速度Gy0に通常変化分ΔGyを加算した場合に自車両Aが通ると予測される経路b1を特定するとともに、自車両Aの現在の横加速度Gy0から通常変化分ΔGyを減算した場合に自車両Aが通ると予測される経路b2を特定する。その際、走行範囲予測部101は、現在の横加速度Gy0に通常変化分ΔGyを加算又は減算した値から自車両Aの旋回半径Rを演算し、算出された旋回半径Rに基づいて経路b1,b2を特定すればよい。なお、旋回半径Rは、車速Vをヨーレートγで除算することにより求めることができるとともに(R=V/γ)、ヨーレートγは横加速度Gyを車速Vで除算することにより求めることができる(γ=Gy/V)。次に、走行範囲予測部101は、前記した経路b1からb2までの範囲(走行範囲)において、操舵角又は横加速度を一定量ずつ変化させた場合の経路b0を特定する。
 ここで、前記通常変化分ΔGyは、運転者が通常に行い得る運転操作の範囲内における横加速度の最大変化量に相当する量であり、予め実験的に求められている量である。なお、自車両Aが現時点において既に旋回状態にある場合(|Gy0|>0)は、現在の横加速度Gy0に通常変化分ΔGyを加減した値の絶対値(|Gy0±ΔGy|)が運転者の通常の運転操作によって発生し得る最大横加速度(たとえば、0.2Gから0.3G)より大きくなる可能性がある。よって、通常変化分ΔGyの大きさは、現在の横加速度Gy0に通常変化分ΔGyを加減した値の絶対値が前記最大横加速度以下となるように制限されてもよい。
 また、走行範囲予測部101は、走行範囲を特定する際に、自車両が前記最大横加速度で走行した場合に通ると予測される経路を経路b1,b2に設定してもよい。たとえば、走行範囲予測部101は、図3に示すように、自車両が最大横加速度で右旋回しながら走行した場合に通ると予測される経路を経路b1に設定するとともに、自車両が最大横加速度で左旋回しながら走行した場合に通る経路を経路b2に設定してもよい。
 次に、支援判定部102は、走路認識部100により生成された情報と走行範囲予測部101により予測された走行範囲とに基づいて、運転支援を実施するか否かを判別する。具体的には、支援判定部102は、図4に示すように、立体物Bを回避可能な経路(回避ライン)Eが前記走行範囲内に存在する場合は、運転支援の実行を禁止する。一方、支援判定部102は、図5に示すように、回避ラインが存在しない場合は、運転支援の実施を許可する。
 警報判定部103は、前記支援判定部102により運転支援の実施が許可された場合に、ブザー10の鳴動や、表示装置11による警告メッセージ若しくは警告灯の表示などを行うことにより、運転者に警告を促す。たとえば、警報判定部103は、前記支援判定部102により運転支援の実施が許可されたとき(前記走行範囲に回避ラインが存在しなくなったとき)に直ちにブザー10を鳴動させ、又は表示装置11に警告メッセージ若しくは警告灯を表示させてもよい。
 また、警報判定部103は、前記走行範囲に含まれる経路のうち、自車両と立体物との距離が最も長い経路について、自車両と立体物との距離が所定距離以下になった時点でブザー10を鳴動させ、又は表示装置11に警告メッセージ若しくは警告灯を表示させてもよい。さらに、警報判定部103は、自車両と立体物との距離が最も長い経路について、自車両Aが立体物Bに到達するまでの時間を演算し、その演算結果が所定時間以下となった時点でブザー10を鳴動させ、又は表示装置11に警告メッセージ若しくは警告灯を表示させるようにしてもよい。このように、自車両と立体物との距離が最も長い経路を基準にして、ブザー10の鳴動タイミングや表示装置11による警告メッセージ若しくは警告灯の表示タイミングが決定されると、それらのタイミングを可及的に遅くすることができる。その結果、運転者に対して煩わしさを覚えさせることなく、運転支援を実施することができる。
 ここで、前記した所定距離や所定時間は、ヨーレートセンサ3の出力信号や車輪速センサ6の出力信号に応じて変更されてもよい。たとえば、車速が高いときは低いときに比べ、所定距離や所定時間が長く設定されてもよい。また、ヨーレートが大きいときは小さいときに比べ、所定距離や所定時間が長く設定されてもよい。
 なお、走行範囲に含まれる各経路の長さを前記所定距離に設定し、走行範囲内の全ての経路が立体物と干渉した時点でブザー10を鳴動させ、又は表示装置11に警告メッセージ若しくは警告灯を表示させるようにしてもよい。また、運転者に対する警告の方法は、ブザー10を鳴動させる方法や、表示装置11に警告メッセージ若しくは警告灯を表示させる方法に限られず、たとえば、シートベルトの締め付けトルクを断続的に変化させる方法を採用してもよい。
 制御判定部104は、前記支援判定部102により運転支援処理の実行が許可された場合に、自車両と立体物との衝突を回避するために、電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13を作動させるタイミングを決定する。
 具体的には、制御判定部104は、前記走行範囲に含まれる経路のうち、自車両と立体物との距離が最も長い経路について、自車両と立体物との距離が所定距離以下になった時点で電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13を作動させてもよい。また、制御判定部104は、前記走行範囲に含まれる経路のうち、自車両と立体物との距離が最も長い経路について、自車両が立体物に到達する時間を演算し、その演算結果が所定時間以下となった時点で電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13を作動させてもよい。
 このように、自車両と立体物との距離が最も長い経路を基準にして、電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13の作動タイミングが決定されると、それらのタイミングを可及的に遅くすることができる。その結果、運転者に対して煩わしさを覚えさせることなく、運転支援を実施することができる。
 なお、走行範囲に含まれる各経路の長さを前記所定距離に設定し、走行範囲内の全ての経路が立体物と干渉した時点で電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13を作動させるようにしてもよい。
 制御判定部104が使用する所定距離や所定時間は、前記警報判定部103が使用する所定距離や所定時間と同様に車速やヨーレートに応じて変更されてもよいが、前記警報判定部103が使用する所定距離や所定時間と同等以下に設定されるものとする。
 制御量演算部105は、前記制御判定部104により電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13の作動タイミングが決定されたときに、電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13の制御量を演算するとともに、算出された制御量と前記制御判定部104により判定されたタイミングに応じて電動パワーステアリング(EPS)12や電子制御式ブレーキ(ECB)13を作動させる。
 たとえば、制御量演算部105は、自車両と立体物との衝突を回避するために必要な目標ヨーレートを演算する。次いで、制御量演算部105は、自車両の実際のヨーレート(ヨーレートセンサ3の出力信号)が目標ヨーレートと一致するように、電動パワーステアリング(EPS)12の制御量(操舵トルク)と電子制御式ブレーキ(ECB)13の制御量(ブレーキ油圧)を決定する。その際、目標ヨーレートと操舵トルクとの関係、および目標ヨーレートとブレーキ油圧との関係は、予めマップ化されていてもよい。
 なお、車両を減速させる方法は、電子制御式ブレーキ(ECB)13により摩擦ブレーキを作動させる方法に限られず、車両の運動エネルギを電気エネルギに変換(回生)させる方法や、変速機の変速比を変更させてエンジンブレーキを増大させる方法を用いてもよい。また、車両のヨーレートを変更する方法は、電動パワーステアリング(EPS)12により舵角を変化させる方法に限られず、自車両の左右輪に対して異なるブレーキ油圧を印加する方法を用いてもよい。
 ここで、前記した走行範囲予測部101、支援判定部102、警報判定部103、制御判定部104、及び制御量演算部105は、本発明に係わる支援手段に相当する。
 以下、本実施例における運転支援の実行手順について図6に沿って説明する。図6は、ECU1によって繰り返し実行される処理ルーチンであり、ECU1のROMなどに予め記憶されている。
 図6の処理ルーチンでは、ECU1は、先ずS101において、外界認識装置2の出力信号に基づいて、自車両が将来走行する走路に関する情報(走路情報)を生成する。すなわち、ECU1は、自車両を原点とする座標系において、自車両の障害物となり得る立体物や車線境界を示す指標の位置座標や大きさに関する情報を生成するとともに、それら立体物や車線境界に対する自車両の姿勢に関する情報を生成する。
 S102では、ECU1は、前記S101で生成された走路情報に基づいて、自車両の進路上に障害物となる立体物が存在するか否かを判別する。ここでいう「進路」は、自車両が現在の横加速度Gy0を維持したまま走行した場合に通ると予測される経路である。S102において否定判定された場合は、ECU1は、本ルーチンの実行を一旦終了する。一方、S102において肯定判定された場合は、ECU1は、S103へ進む。
 S103では、ECU1は、加速度センサ5の出力信号(自車両の現時点における横加速度)Gy0を読み込み、読み込まれた横加速度Gy0を基準にして自車両の走行範囲を予測する。すなわち、ECU1は、前述した図2の説明で述べたように、現時点の横加速度Gy0に通常変化分ΔGyを加算及び減算することにより、経路b1,b2を特定する。次いで、ECU1は、経路b1からb2までの範囲において舵角又は横加速度を一定量ずつ変化させた場合の経路b0を特定する。
 S104では、ECU1は、前記S101で生成された座標系における立体物の位置と前記S103で予測された走行範囲とを比較し、立体物を回避可能な回避ラインが前記走行範囲内に存在するか否かを判別する。言い換えれば、運転者が通常の運転操作を行うことにより、自車両と立体物との衝突を回避可能であるか否かを判別する。
 前記S104において肯定判定された場合は、ECU1は、運転支援を実施せずに本ルーチンの実行を終了する。一方、前記S104において否定判定された場合は、ECU1は、S105へ進む。
 S105では、ECU1は、ブザー10若しくは表示装置11を利用して運転支援を実施し、或いは、電動パワーステアリング(EPS)12およびまたは電子制御式ブレーキ(ECB)13を利用して運転支援を実施する。
 以上述べた実施例によれば、運転者が通常の運転操作を行うことにより自車両と立体物との衝突を回避することができる場合は、運転支援が実施されないことになる。そのため、運転者が通常の運転操作を行う意志を持っているにもかかわらず、運転支援が実施されることがなくなる。
 なお、本実施例の運転支援システムによれば、運転者が通常の運転操作を行う意志を持っていない場合(たとえば、運転者の意識レベルが低下している場合、運転者が脇見している場合など)であっても、走行範囲内に回避ラインが存在する限りは運転支援が実施されないことになる。しかしながら、自車両が立体物に接近すると、走行範囲内に回避ラインが存在しなくなるため、自車両が立体物に衝突する前に運転支援が実施されることになる。よって、運転者が通常の運転操作を行わない場合であっても、自車両と立体物との衝突を回避することができる。
 また、本実施例においては、自車両の運動量を示すパラメータとして、横加速度を用いたが、ヨーレート、左右G、コーナリングフォースなどを用いることもできる。ただし、横加速度や左右Gのように、ヨーレートと車速に相関するパラメータを用いることが好ましい。横加速度や左右Gは、ヨーレートが大きくなるほど大きくなるとともに、車速が高くなるほど大きくなる。よって、自車両の運動量を示すパラメータとして横加速度又は左右Gが用いられる場合に、前記走行範囲予測部101により予測される走行範囲は、図7に示すように、車速が低いとき(図7中の(b))より高いとき(図7中の(a))の方が狭くなる。その結果、車速が高いときは低いときに比べ、走行範囲内に回避ラインが存在しなくなるタイミング(運転支援が実施されるタイミング)が早くなる。よって、自車両の走行速度が高い場合であっても、自車両と立体物との衝突をより確実に回避することが可能になる。
<実施例2>
 次に、本発明の第2の実施例について図8に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との相違点は、通常変化分ΔGyの大きさが車速に応じて変更される点にある。一般に、運転者が通常の運転操作を行う際に許容する横加速度の大きさは、高速域より低速域の方が大きくなる。
 そこで、通常変化分ΔGyは、図8に示すように、特定の車速V0より低い領域では車速が低くなるほど大きな値となり、特定の車速V0以上の領域では一定値に固定されるようにしてもよい。ここで、特定の車速V0は、予め統計的に求められた値である。
 このように通常変化分ΔGyが車速に応じて変更されると、自車両が低速走行しているときに、運転者の意図に反して運転支援が実施される機会を減少させることができるとともに、運転支援の実施タイミングを可及的に遅らせることができる。また、自車両が高速走行しているときに、運転支援の実施タイミングが遅くなる事態を回避することもできる。
1 ECU
2 外界認識装置
3 ヨーレートセンサ
4 車輪速センサ
5 加速度センサ
6 ブレーキセンサ
7 アクセルセンサ
8 舵角センサ
9 操舵トルクセンサ
10 ブザー
11 表示装置
12 電動パワーステアリング
13 電子制御式ブレーキ
100 走路認識部
101 走行範囲予測部
102 支援判定部
103 警報判定部
104 制御判定部
105 制御量演算部

Claims (5)

  1.  自車両の周囲に存在する立体物を認識する認識手段と、
     自車両の現在の運動量を取得する取得手段と、
     前記取得手段により取得された運動量に対して運転者が通常に行い得る運転操作の範囲内で発生する運動量の変化分を増減させた場合に自車両が走行し得る経路の範囲である走行範囲に、前記認識手段により認識された立体物との衝突を回避可能な経路である回避ラインが存在しないことを条件として、前記立体物との衝突を回避するための支援を実施する支援手段と、
    を備える車両の運転支援システム。
  2.  請求項1において、自車両の走行速度が低いときは高いときに比べ、前記変化分が大きくされる車両の運転支援システム。
  3.  請求項1又は2において、前記運動量は、自車両の走行速度が高いときは低いときに比べ、前記走行範囲が狭くなるパラメータである車両の運転支援システム。
  4.  請求項3において、前記運動量は、自車両の左右方向の加速度に相関するパラメータである車両の運転支援システム。
  5.  請求項1乃至4の何れか1項において、前記走行範囲内に回避ラインが存在しない場合は、前記支援手段は、前記走行範囲に含まれる経路のうち最長の経路の長さが閾値以下となったときに、前記立体物との衝突を回避するための支援を実施する車両の運転支援システム。
PCT/JP2011/071888 2011-09-26 2011-09-26 車両の運転支援システム WO2013046298A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2011/071888 WO2013046298A1 (ja) 2011-09-26 2011-09-26 車両の運転支援システム
BR112014002752-8A BR112014002752B1 (pt) 2011-09-26 2011-09-26 sistema de suporte de condução veicular
JP2013535658A JP5768891B2 (ja) 2011-09-26 2011-09-26 車両の運転支援システム
CN201180073659.4A CN103827940B (zh) 2011-09-26 2011-09-26 车辆的驾驶辅助系统
US14/346,793 US9196162B2 (en) 2011-09-26 2011-09-26 Vehicular driving support system
MYPI2014700310A MY170852A (en) 2011-09-26 2011-09-26 Vehicular driving support system
CA2843835A CA2843835A1 (en) 2011-09-26 2011-09-26 Vehicular driving support system
EP11873132.2A EP2763119B1 (en) 2011-09-26 2011-09-26 Vehicle driving assistance system
RU2014110658/11A RU2570191C2 (ru) 2011-09-26 2011-09-26 Вспомогательная система управления транспортным средством
KR1020147007462A KR20140051444A (ko) 2011-09-26 2011-09-26 차량의 운전 지원 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/071888 WO2013046298A1 (ja) 2011-09-26 2011-09-26 車両の運転支援システム

Publications (1)

Publication Number Publication Date
WO2013046298A1 true WO2013046298A1 (ja) 2013-04-04

Family

ID=47994416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071888 WO2013046298A1 (ja) 2011-09-26 2011-09-26 車両の運転支援システム

Country Status (9)

Country Link
US (1) US9196162B2 (ja)
EP (1) EP2763119B1 (ja)
JP (1) JP5768891B2 (ja)
KR (1) KR20140051444A (ja)
CN (1) CN103827940B (ja)
BR (1) BR112014002752B1 (ja)
CA (1) CA2843835A1 (ja)
RU (1) RU2570191C2 (ja)
WO (1) WO2013046298A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9669826B2 (en) 2012-11-21 2017-06-06 Toyota Jidosha Kabushiki Kaisha Driving-assistance device and driving-assistance method
RU2697359C2 (ru) * 2015-01-05 2019-08-13 Ниссан Мотор Ко., Лтд. Устройство формирования целевого маршрута и устройство управления приведением в движение
US10421398B2 (en) 2012-11-21 2019-09-24 Toyota Jidosha Kabushiki Kaisha Driving-assistance device and driving-assistance method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102386317B1 (ko) * 2015-08-12 2022-04-13 현대모비스 주식회사 차량 및 그 충돌 회피 방법
DE102016109856A1 (de) * 2016-05-30 2017-11-30 Valeo Schalter Und Sensoren Gmbh Verfahren zur Vermeidung einer Kollision eines Kraftfahrzeugs mit einem Objekt auf Grundlage eines maximal vorgebbaren Radlenkwinkels, Fahrerassistenzsystem sowie Kraftfahrzeug
JP6972744B2 (ja) * 2017-08-01 2021-11-24 トヨタ自動車株式会社 運転支援装置
KR102334158B1 (ko) * 2017-10-30 2021-12-02 현대모비스 주식회사 자동 긴급 제동장치 및 그 제어방법
CN108196546A (zh) * 2018-01-03 2018-06-22 驭势(上海)汽车科技有限公司 智能驾驶车辆的安全性监控系统及方法
CN109353339B (zh) * 2018-09-29 2020-06-26 中国铁建重工集团股份有限公司 一种车辆导航方法以及系统
JP7343837B2 (ja) * 2019-10-03 2023-09-13 トヨタ自動車株式会社 運転支援装置
CN112193243B (zh) * 2020-10-20 2022-01-28 河北工业大学 一种基于避障系统的多转向模式控制方法
EP4082853A1 (en) * 2021-04-28 2022-11-02 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Evaluation apparatus for evaluating a trajectory hypothesis for a vehicle
JP2023141765A (ja) * 2022-03-24 2023-10-05 トヨタ自動車株式会社 運転支援装置、運転支援方法及び運転支援プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149193A (ja) 1993-11-30 1995-06-13 Toyota Motor Corp 車両衝突防止装置
JP2010163164A (ja) * 2010-02-19 2010-07-29 Hitachi Automotive Systems Ltd 走行支援装置
JP2011150577A (ja) * 2010-01-22 2011-08-04 Toyota Motor Corp 警報装置
JP2011186878A (ja) * 2010-03-10 2011-09-22 Nissan Motor Co Ltd 移動体走行経路生成装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3031758B2 (ja) * 1991-08-22 2000-04-10 マツダ株式会社 車両の自動操舵装置
JP3319984B2 (ja) * 1997-07-09 2002-09-03 本田技研工業株式会社 車両の衝突回避装置
SE512695C2 (sv) * 1998-07-02 2000-05-02 Volvo Lastvagnar Ab Anordning och metod vid bromssystem hos motorfordon
DE102004008894A1 (de) 2004-02-24 2005-09-08 Robert Bosch Gmbh Sicherheitssystem für ein Fortbewegungsmittel sowie hierauf bezogenes Verfahren
JP4333639B2 (ja) * 2005-06-13 2009-09-16 株式会社豊田中央研究所 障害物回避制御装置及び障害物回避制御プログラム
JP4446984B2 (ja) * 2006-07-10 2010-04-07 本田技研工業株式会社 車両の走行安全装置
DE102006042666A1 (de) * 2006-09-12 2008-03-27 Robert Bosch Gmbh Verfahren zur Vermeidung bzw. Folgenminderung der Kollision eines Fahrzeugs mit mindestens einem Objekt
JP2008242544A (ja) 2007-03-26 2008-10-09 Hitachi Ltd 衝突回避装置および方法
JP4706654B2 (ja) * 2007-03-27 2011-06-22 トヨタ自動車株式会社 衝突回避装置
RU2388057C2 (ru) * 2007-10-15 2010-04-27 Андрей Станиславович Гурин Способ обеспечения активной безопасности транспортных средств при движении в колонне
JP5043760B2 (ja) 2008-06-17 2012-10-10 日産自動車株式会社 車両用障害物回避支援装置及び車両用障害物回避支援方法
JP2010179843A (ja) * 2009-02-06 2010-08-19 Nissan Motor Co Ltd 運転操作支援装置および運転操作支援方法
DE102009012226A1 (de) * 2009-03-07 2010-09-09 Daimler Ag Verfahren zur Vermeidung oder Folgenminderung einer Kollision eines Fahrzeugs mit einem Hindernis
DE102009020649A1 (de) * 2009-05-08 2010-11-18 Daimler Ag Verfahren und Vorrichtung zur Kollisionsvermeidung für ein Fahrzeug durch Ausweichen vor einem Hindernis
JP2011005893A (ja) * 2009-06-23 2011-01-13 Nissan Motor Co Ltd 車両の走行制御装置および車両の走行制御方法
JP5657997B2 (ja) * 2010-10-29 2015-01-21 アイシン精機株式会社 車両の横方向運動制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07149193A (ja) 1993-11-30 1995-06-13 Toyota Motor Corp 車両衝突防止装置
JP2011150577A (ja) * 2010-01-22 2011-08-04 Toyota Motor Corp 警報装置
JP2010163164A (ja) * 2010-02-19 2010-07-29 Hitachi Automotive Systems Ltd 走行支援装置
JP2011186878A (ja) * 2010-03-10 2011-09-22 Nissan Motor Co Ltd 移動体走行経路生成装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763119A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9669826B2 (en) 2012-11-21 2017-06-06 Toyota Jidosha Kabushiki Kaisha Driving-assistance device and driving-assistance method
US10421398B2 (en) 2012-11-21 2019-09-24 Toyota Jidosha Kabushiki Kaisha Driving-assistance device and driving-assistance method
RU2697359C2 (ru) * 2015-01-05 2019-08-13 Ниссан Мотор Ко., Лтд. Устройство формирования целевого маршрута и устройство управления приведением в движение

Also Published As

Publication number Publication date
EP2763119A4 (en) 2016-08-10
JP5768891B2 (ja) 2015-08-26
US9196162B2 (en) 2015-11-24
BR112014002752B1 (pt) 2021-06-08
US20140257593A1 (en) 2014-09-11
BR112014002752A2 (pt) 2017-02-21
KR20140051444A (ko) 2014-04-30
CA2843835A1 (en) 2013-04-04
EP2763119B1 (en) 2019-04-03
RU2014110658A (ru) 2015-11-10
CN103827940A (zh) 2014-05-28
RU2570191C2 (ru) 2015-12-10
CN103827940B (zh) 2016-04-06
JPWO2013046298A1 (ja) 2015-03-26
EP2763119A1 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP5768891B2 (ja) 車両の運転支援システム
JP5729480B2 (ja) 車両の運転支援システム
WO2013046293A1 (ja) 車両の運転支援システム
JP5910754B2 (ja) 運転支援装置、及び、運転支援方法
US10108190B2 (en) Autonomous driving apparatus
JP5761360B2 (ja) 車両の運転支援システム
JP5510255B2 (ja) 車両の操作状態判定システム
JP5765431B2 (ja) 車両の運転支援システム
US9105190B2 (en) Driving support system for a vehicle
JP5910753B2 (ja) 運転支援装置、及び、運転支援方法
WO2013098996A1 (ja) 車両の運転支援装置
KR101478068B1 (ko) 차량 충돌 방지 장치 및 그 방법
JP5761089B2 (ja) 車両の運転支援システム
JP5867368B2 (ja) 車両の運転支援装置及び運転支援方法
JP5761088B2 (ja) 車両の運転支援システム
JP2016122456A (ja) 車両の運転支援装置
US20240199161A1 (en) Controller and control method for assistance system
JP2012232639A (ja) 走行支援装置及び方法
JP2011195082A (ja) 車両制御装置
JPWO2013046293A1 (ja) 車両の運転支援システム
JP2014149627A (ja) 運転支援装置及び運転支援方法
JPWO2013098996A1 (ja) 車両の運転支援装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180073659.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535658

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2843835

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011873132

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147007462

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346793

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014110658

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002752

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002752

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140204