WO2013044675A1 - 一种全扬程离心泵 - Google Patents

一种全扬程离心泵 Download PDF

Info

Publication number
WO2013044675A1
WO2013044675A1 PCT/CN2012/079141 CN2012079141W WO2013044675A1 WO 2013044675 A1 WO2013044675 A1 WO 2013044675A1 CN 2012079141 W CN2012079141 W CN 2012079141W WO 2013044675 A1 WO2013044675 A1 WO 2013044675A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal pump
impeller
lift
pump
flow
Prior art date
Application number
PCT/CN2012/079141
Other languages
English (en)
French (fr)
Inventor
陆伟刚
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2013044675A1 publication Critical patent/WO2013044675A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/063Multi-stage pumps of the vertically split casing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • F04D29/4273Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps suction eyes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape

Definitions

  • the invention relates to a low specific speed non-overload centrifugal pump, in particular to a full lift centrifugal pump which is used under high lift and small flow conditions and also under low lift and large flow conditions.
  • the well-known low-ratio number centrifugal pump mostly has the law that the pump shaft power increases with the lift down.
  • the low-ratio number centrifugal pump can only operate safely under high lift conditions. If it is used under low lift conditions, the power will be overloaded and the motor will be burned out.
  • many low-ratio centrifugal pumps, especially submersible pumps generally move to the location of use. Today, they are used under high-lift and low-flow conditions. They may be used under low-lift and high-flow conditions tomorrow, which will cause power overload. An accident that burned the motor. Or force us to use the big horse-drawn car, with high-power motors, which increases investment and wastes energy.
  • the invention provides a full lift centrifugal pump, which enables the low specific speed centrifugal pump to operate safely under high lift and small flow conditions, and can be reliably used under low lift and large flow conditions, and the impeller is easier to manufacture. The efficiency is also higher.
  • the full lift centrifugal pump of the invention consists of one or more pairs of impellers and a flow guiding shell connected in series, the impeller is a centrifugal impeller, and the diversion shell contains anti-leaf vane blades, and the pumped water flows through the anti-guide vane blades into the impeller.
  • the main innovation of the import is that the exit angle of the anti-guide vane is less than 50 degrees.
  • the exit angle of the anti-blade vane refers to the angle between the direction of the exit of the vane blade and the direction of rotation of the impeller.
  • the exit placement angle of the anti-leaf blade is less than 50 degrees is the main creation of the present invention.
  • the outlet angles of various anti-blade vanes of the existing multistage centrifugal pumps are all greater than 55 degrees. This is because the existing multistage centrifugal pump is configured to convert the circumferential velocity components of the flow velocity vector into axes.
  • the surface velocity component, therefore, the exit angle of the anti-guide vane blade is generally about 80 degrees, and the minimum is not less than 55 degrees.
  • the small exit angle anti-guide vane created by the present invention allows the flow velocity vector entering the impeller inlet to have a large circumferential velocity component, which reduces the original lift of the impeller.
  • the magnitude of the circumferential velocity component is proportional to the flow rate. Therefore, in the rated operating condition of the low specific speed centrifugal pump, that is, the small flow condition, the circumferential velocity component is small and the lift is reduced.
  • the circumferential speed component will be large, so the head reduction is also large, which can greatly reduce the water power of the large flow conditions, so that the low specific speed centrifugal pump is not overloaded under large flow conditions.
  • the flow angle of the impeller inlet is relatively large, so the impeller inlet angle of the present invention can be It is very large, which makes the wrap angle of the impeller blades much less, makes the impeller casting easier, and the pump efficiency is also improved.
  • first stage impeller is provided with an inlet guide vane, and the inlet vane vane has an outlet angle of less than 50 degrees.
  • the existing multi-stage centrifugal pump there is generally no inlet guide vane in front of the first stage impeller, and the individual pumps have inlet guide vanes, also to prevent the liquid flow from rotating, and the outlet angle of the outlet is much larger than 50 degrees.
  • the invention adds an inlet guide vane in front of the first stage impeller, and the outlet angle of the outlet is less than 50 degrees, so that the liquid flow entering the first stage impeller also has a large rotation speed, so that the first stage impeller also has full lift characteristic.
  • inlet guide vanes with an exit angle of less than 50 degrees not only makes the full lift characteristic of the multistage centrifugal pump better, but also enables the single stage centrifugal pump to have a full lift function. Therefore, the invention can be applied not only to a multistage centrifugal pump but also to a single stage centrifugal pump.
  • the invention has the beneficial effects that the low specific speed multistage centrifugal pump and the low specific speed single stage centrifugal pump manufactured by the invention have full lift characteristics, and can not only be used efficiently and reliably under high lift and small flow conditions, It can also guarantee the safe and non-overload of the pump under low lift and high flow conditions. Moreover, the low specific speed impeller casting of the present invention is relatively easy, and the pump efficiency is relatively high.
  • Figure 1 is a cross-sectional view of a shaft surface of a submersible pump according to an embodiment of the present invention.
  • FIG. 2 is a view of an anti-leaf blade according to an embodiment of the present invention.
  • Figure 3 is a view of an inlet guide vane blade in accordance with one embodiment of the present invention.
  • Figure 4 is a cross-sectional view of a side view of a submersible pump for mining according to another embodiment of the present invention.
  • Figure 5 is a cross-sectional view of a side view of a single stage centrifugal pump in accordance with yet another embodiment of the present invention.
  • FIG. 1 is an embodiment of the present invention in a submersible pump for wells, which is composed of a plurality of pairs of impellers 6 and a flow guiding casing 7 connected in series, the impeller 6 being a centrifugal impeller, and the diversion casing 7 containing the anti-guide vane blades 8
  • the pumped water flows through the anti-guide vane 8 into the impeller 6 inlet.
  • the difference from the existing submersible pump is that the outlet vane angle of the anti-blade vane is less than 50 degrees, which can be seen in Figure 2.
  • Another innovation of the invention is that the first stage impeller has an inlet guide vane 4 and the inlet vane vane 5 has an outlet angle 11 of less than 50 degrees, which can be seen clearly in Figure 3.
  • the water pump inlet section 3 is coupled to the submersible motor coupling base 1, and the four impellers 6 are mounted on the rotating shaft 2.
  • the rotating shaft 2 drives the impeller 6 to rotate, the water in the well passes.
  • the flow velocity of the impeller inlet increases with the increase of the flow rate in this embodiment, so the lift of the large flow condition is relatively low, the pump power is relatively low, and the pump is not overloaded due to the increase of the flow rate.
  • the impeller 6 pumps water out of the impeller
  • the flow velocity of the liquid flow is large, and the reverse vane vane 8 of the diversion casing 7 is used to change the flow of the high-speed rotation to the flow of the low-speed movement, due to the anti-guide vane of the present embodiment.
  • the exit angle 10 of the blade is less than 50 degrees, so the flow entering the next stage impeller 6 through the anti-leaf vane 8 is still rotating, except that its rotational speed is relatively small and smaller as the flow rate decreases.
  • the lift is similar to the existing pump in the rated working condition, but in the large flow condition, it passes through the reverse vane 8 into the lower impeller 6
  • the circumferential velocity component of the liquid flow will be large, so the lift is also greatly reduced, which greatly reduces the water power of the large flow conditions, and the pump will not be overloaded due to the increase in flow.
  • the outlet angle of the existing multi-stage centrifugal pump anti-blade vane is generally about 80 degrees, and the minimum is not less than 55 degrees, although the flow from the diversion shell to the lower impeller also has some circumferential velocity components, but the circumference The speed component is too small, and the drop of the large flow head is also small, so the water power of the large flow condition is large, resulting in overload of the pump power.
  • the impeller inlet angle can be made larger, which reduces the wrap angle of the impeller blade and makes the impeller casting easier. Efficiency has also improved.
  • Fig. 4 is an embodiment of the submersible pump of the present invention, the embodiment of which is substantially the same as the submersible pump for well.
  • Fig. 5 is an embodiment of the single-stage centrifugal pump of the present invention.
  • the inlet guide vane blade 5 is relatively easy to install in the axial direction, and the outlet angle 11 of the inlet guide vane blade is also less than 50 degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种全扬程离心泵,包括一对或多对串联的叶轮(6)和导流壳(7),所述导流壳(7)含有反导叶叶片(8),所述反导叶叶片的出口安放角(10)小于50度。所述离心泵的首级叶轮前装有进口导叶(4),所述进口导叶叶片的出口安放角(11)小于50度。所述离心泵为低比转速离心泵时,具有全扬程特性,不仅能够在高扬程小流量工况下高效可靠的使用,还能保证在低扬程大流量工况下安全无过载的使用。所述离心泵的低比转速叶轮铸造比较容易,离心泵效率比较高。

Description

一种全扬程离心泵 技术领域
本发明是一种低比转数无过载离心泵,尤其是既要在高扬程小流量工况下使用,也要在低扬程大流量工况下使用的全扬程离心泵。
背景技术
目前,公知的低比转数离心泵大多存在水泵轴功率随扬程降低而增高的规律,当配套电机的功率不太大的时候,低比转数离心泵只能在高扬程工况下安全运行,如果在低扬程工况下使用,就会功率超载而烧坏电动机。但是,很多低比转数离心泵,尤其是潜水泵一般都会移动使用地点,今天在高扬程小流量工况下使用,明天可能在低扬程大流量工况下使用,这就会发生功率超载而烧坏电动机的事故。或者逼迫我们采用大马拉小车的方法,配套大功率电动机,这样又加大了投资,浪费了能源。
为此,先有的专利技术89212885.2号专利“用于旋转式流体机械的渐开线叶轮”、90214606.8号专利“一种无过载低比速离心泵叶轮”和ZL200410014937.0发明专利“一种低比转数离心泵叶轮设计方法”等,通过改变叶轮设计方法来改善低比转数离心泵轴功率的变化规律,虽然取得了明显的效果但仍然存在两个问题:1.叶轮叶片的包角太大或者流道间隙太小,给铸造工艺增加了难度;2.在改善低比转数离心泵轴功率变化规律的同时,水泵效率有所降低以至于很难达到国家标准规定的节能指标。
技术问题
为了克服现有的低比转数离心泵不能在水泵的全部扬程工况下使用的不足, 本发明提供一种全扬程离心泵,使低比转数离心泵既能在高扬程小流量工况下安全运行,又能在低扬程大流量工况下可靠使用,并且叶轮制造更容易,水泵效率也更高。
技术解决方案
本发明的技术方案是:
1. 本发明的全扬程离心泵,由一对或多对叶轮和导流壳串联组成,其叶轮是离心式叶轮,其导流壳含有反导叶叶片,泵送的水流通过反导叶叶片进入叶轮进口,其主要创新是:反导叶叶片的出口安放角小于50度。
反导叶叶片的出口安放角是指反导叶叶片出口的指向与叶轮旋转方向的夹角。反导叶叶片的出口安放角小于50度是本发明的主要创造。现有的多级离心泵的各种反导叶叶片的出口安放角都大于55度,这是因为现有的多级离心泵设置反导叶的作用就是把流速矢量的圆周速度分量转变为轴面速度分量,因此反导叶叶片的出口安放角一般取80度左右,最小也不会小于55度。
本发明创造的小出口角反导叶,使进入叶轮进口的流速矢量具有较大的圆周速度分量,这会降低叶轮原先的扬程。但圆周速度分量的大小与流量大小成正比,因此在低比转数离心泵的额定工况即小流量工况,其圆周速度分量很小,扬程降低也很少。而大流量工况,其圆周速度分量会很大,因此扬程降低也很大,这就可以大大降低大流量工况的水功率,从而使低比转数离心泵在大流量工况不超载。
由于本发明进入叶轮进口的流速矢量具有较大的圆周速度分量,并且液流的旋转方向与叶轮的旋转方向相同,叶轮进口的液流角就比较大,因此本发明的叶轮进口安放角就可以做得很大,这就使叶轮叶片的包角减小许多,使叶轮铸造比较容易,水泵效率也有所提高。
2. 本发明另一个创新是:首级叶轮前装有进口导叶,进口导叶叶片的出口安放角小于50度。
现有的多级离心泵,在首级叶轮前一般没有进口导叶,个别泵有进口导叶,也是为了防止液流旋转,其出口安放角远远大于50度。本发明在首级叶轮前增加了一个进口导叶,并且其出口安放角小于50度,就可以使进入首级叶轮的液流也有较大的旋转速度,从而使首级叶轮也有全扬程特性。
采用出口安放角小于50度的进口导叶,不仅可以使多级离心泵的全扬程特性更好,而且可以使单级离心泵也具有全扬程功能。所以这个发明不仅可用于多级离心泵,也可以用于单级离心泵。
有益效果
本发明的有益效果是,用本发明制造的低比转数多级离心泵和低比转数单级离心泵都具有全扬程特性,不仅能够在高扬程小流量工况下高效可靠的使用,还能保证该泵在低扬程大流量工况下安全无过载的使用。而且本发明的低比转数叶轮铸造比较容易,水泵效率也比较高。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明一个实施例——井用潜水泵的轴面剖视图。
图2是本发明一个实施例的反导叶叶片图。
图3是本发明一个实施例的进口导叶叶片图。
图4是本发明另一个实施例——矿用潜水泵的轴面剖视图。
图5是本发明又一个实施例——单级离心泵的轴面剖视图。
图中:1.潜水电机联结座,2. 旋转轴,3.水泵进水节,4.进口导叶,5.进口导叶叶片,6.叶轮,7. 导流壳,8. 反导叶叶片, 9. 水泵出水部件, 10.反导叶叶片的出口安放角,11. 进口导叶叶片的出口安放角。
本发明的实施方式
图1是本发明在井用潜水泵中的实施例,它是由多对叶轮6和导流壳7串联组成的,其叶轮6是离心式叶轮,其导流壳7含有反导叶叶片8,泵送的水流通过反导叶叶片8进入叶轮6进口,其与现有井用潜水泵的不同点是反导叶叶片的出口安放角10小于50度,这在图2中可以看得很清楚。本发明另一个创新是:首级叶轮前有进口导叶4,进口导叶叶片5的出口安放角11小于50度,这在图3中可以看得很清楚。
在这个实施例中,水泵进水节3与潜水电机联结座1联结在一起,4个叶轮6都装在旋转轴2上,当旋转轴2带动叶轮6旋转时,机井中的水就会通过进水节3和进口导叶4,再进入叶轮6,最后从水泵出水部件9打出水泵。从机井中进入进水节3的液流是不旋转的,从进水节3进入进口导叶4的液流也是不旋转的,但从进口导叶4进入叶轮6的液流是旋转的,因为进口导叶叶片5的出口安放角11小于50度,而且其旋转速度与流量成正比,这与没有进口导叶4的现有水泵有很大不同。因为叶轮的扬程是随叶轮进口液流的旋转速度提高而降低的,现有水泵进入首级叶轮的液流基本不旋转,因此叶轮的扬程比较高,其水泵功率自然比较大。但本实施例叶轮进口的液流旋转速度随流量增加而增加,因此大流量工况的扬程比较低,其水泵功率也比较低,水泵也就不会因为流量增加而超载了。当叶轮6把水打出叶轮的时候,液流旋转速度很大,导流壳7的反导叶叶片8用来把高速旋转的液流改变为低速运动的水流,由于本实施例的反导叶叶片的出口安放角10小于50度,所以通过反导叶叶片8进入下一级叶轮6的液流仍然是旋转的,只不过其旋转速度比较小,并且随流量减小而更小。因为低比转数离心泵主要用于高扬程小流量,因此在额定使用工况,其扬程与现有水泵差不多,但是在大流量工况,其通过反导叶叶片8进入下一级叶轮6的液流圆周速度分量会很大,因此扬程降低也很大,这就大大降低了大流量工况的水功率,水泵也就不会因为流量增加而超载了。现有的多级离心泵反导叶叶片的出口安放角一般取80度左右,最小也不会小于55度,虽然从导流壳进入下一级叶轮的液流也有一些圆周速度分量,但圆周速度分量太小,对大流量扬程降低也很小,因此大流量工况的水功率很大,导致水泵功率超载。
由于本实施例进入叶轮进口的流速矢量具有较大的圆周速度分量,因此叶轮进口安放角就可以做得更大些,这就使叶轮叶片的包角减小许多,使叶轮铸造比较容易,水泵效率也有所提高。
图4是本发明在矿用潜水泵的实施例,其实施方式与井用潜水泵基本相同。图5是本发明在单级离心泵的实施例,其进口导叶叶片5以轴向安装比较方便,其进口导叶叶片的出口安放角11也小于50度。

Claims (2)

  1. 一种全扬程离心泵,由一对或多对叶轮和导流壳串联组成,其叶轮是离心式叶轮,其导流壳含有反导叶叶片,泵送的水流通过反导叶叶片进入叶轮进口,其特征是:反导叶叶片的出口安放角小于50度。
  2. 如权利要求1所述的一种全扬程离心泵,其特征是:首级叶轮前装有进口导叶,进口导叶叶片的出口安放角小于50度。
PCT/CN2012/079141 2011-09-28 2012-07-25 一种全扬程离心泵 WO2013044675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011103063992A CN102392832A (zh) 2011-09-28 2011-09-28 一种全扬程离心泵
CN201110306399.2 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013044675A1 true WO2013044675A1 (zh) 2013-04-04

Family

ID=45860197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079141 WO2013044675A1 (zh) 2011-09-28 2012-07-25 一种全扬程离心泵

Country Status (2)

Country Link
CN (1) CN102392832A (zh)
WO (1) WO2013044675A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869317A (zh) * 2018-06-22 2018-11-23 湖南天奥星泵业有限公司 一种串联前置泵的主泵加液力回收透平机组及其设计方法
CN110159595A (zh) * 2019-05-29 2019-08-23 江苏大学 一种增高流道的多级泵反导叶以及流道增高方法
CN110500314A (zh) * 2018-05-18 2019-11-26 郑州宇通客车股份有限公司 一种叶轮、离心泵及车辆
CN111966956A (zh) * 2020-08-25 2020-11-20 河北省水资源研究与水利技术试验推广中心 一种井用多级潜水泵扬程及流量的计算方法
CN116085248A (zh) * 2023-03-16 2023-05-09 山东鑫海矿业技术装备股份有限公司 一种具有防护功能的矿用双级泵

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102392832A (zh) * 2011-09-28 2012-03-28 江苏大学 一种全扬程离心泵
CN102878091B (zh) * 2012-10-11 2015-04-22 江苏大学 一种基于内流测量的离心泵全工况理论扬程确定方法
CN106122081A (zh) * 2016-08-16 2016-11-16 台州锦霸工贸有限公司 一种深井泵中的叶轮组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201027656Y (zh) * 2006-09-19 2008-02-27 邹节廉 节能型液力耦合器调速主给水泵
CN101639085A (zh) * 2008-08-01 2010-02-03 清华大学 离心泵前置导叶调节节能装置及节能方法
WO2011106829A1 (en) * 2010-03-05 2011-09-09 Weir Minerals Australia Ltd Pump intake device
CN102392832A (zh) * 2011-09-28 2012-03-28 江苏大学 一种全扬程离心泵
CN202417951U (zh) * 2011-09-28 2012-09-05 江苏大学 一种全扬程离心泵

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS175720B1 (zh) * 1974-04-01 1977-05-31
SU1726851A1 (ru) * 1990-04-26 1992-04-15 Производственное объединение "Невский завод" им.В.И.Ленина Промежуточна ступень центробежного компрессора
CN100432443C (zh) * 2005-12-13 2008-11-12 江苏大学 一种深井离心泵
CN201568310U (zh) * 2009-09-11 2010-09-01 上海凯泉泵业(集团)有限公司 不锈钢桶形卧式多级离心泵

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201027656Y (zh) * 2006-09-19 2008-02-27 邹节廉 节能型液力耦合器调速主给水泵
CN101639085A (zh) * 2008-08-01 2010-02-03 清华大学 离心泵前置导叶调节节能装置及节能方法
WO2011106829A1 (en) * 2010-03-05 2011-09-09 Weir Minerals Australia Ltd Pump intake device
CN102392832A (zh) * 2011-09-28 2012-03-28 江苏大学 一种全扬程离心泵
CN202417951U (zh) * 2011-09-28 2012-09-05 江苏大学 一种全扬程离心泵

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAO, SHULIANG ET AL.: "Design and experiment of inlet guide vane for centrifugal pump", TRANSACTIONS OF THE CHINESE SOCIETY FOR AGRICULTURAL MACHINERY, vol. 41, September 2010 (2010-09-01), pages 7 - 11 *
TAO, JINGMINGET ET AL.: "Experimental Study on raising efficiency of hydraulic elements of the waterflood pump", JOURNAL OF DAQING PETROLEUM INSTITUTE, December 1982 (1982-12-01), pages 3 - 17 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500314A (zh) * 2018-05-18 2019-11-26 郑州宇通客车股份有限公司 一种叶轮、离心泵及车辆
CN110500314B (zh) * 2018-05-18 2024-05-10 宇通客车股份有限公司 一种叶轮、离心泵及车辆
CN108869317A (zh) * 2018-06-22 2018-11-23 湖南天奥星泵业有限公司 一种串联前置泵的主泵加液力回收透平机组及其设计方法
CN110159595A (zh) * 2019-05-29 2019-08-23 江苏大学 一种增高流道的多级泵反导叶以及流道增高方法
CN111966956A (zh) * 2020-08-25 2020-11-20 河北省水资源研究与水利技术试验推广中心 一种井用多级潜水泵扬程及流量的计算方法
CN111966956B (zh) * 2020-08-25 2024-01-26 河北省水资源研究与水利技术试验推广中心 一种井用多级潜水泵扬程及流量的计算方法
CN116085248A (zh) * 2023-03-16 2023-05-09 山东鑫海矿业技术装备股份有限公司 一种具有防护功能的矿用双级泵

Also Published As

Publication number Publication date
CN102392832A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2013044675A1 (zh) 一种全扬程离心泵
CN102003407A (zh) 一种高效无过载旋流泵叶轮设计方法
CN101839254A (zh) 一种全扬程旋流泵叶轮设计方法
CN103994096A (zh) 一种无堵塞旋流泵的水力设计方法
CN101793262A (zh) 一种带折边叶片的无过载涡流泵叶轮设计方法
CN101852217A (zh) 一种带高低折边叶片的无过载涡流泵叶轮设计方法
CN103775377B (zh) 一种采用长短叶片旋流泵水力设计方法
CN101793260A (zh) 一种带高低叶片的无过载涡流泵叶轮设计方法
CN105041720B (zh) 一种高效大过流旋流泵准环形压水室水力设计方法
CN205243867U (zh) 一种旋流泵
CN204663967U (zh) 一种与径向导叶匹配的多级离心泵叶轮
CN102011748A (zh) 一种高效涡流泵叶轮设计方法
CN103742417B (zh) 一种大过流旋流泵水力设计方法
CN203297143U (zh) 一种用于喷水推进的双级不等速对旋轴流泵过流部件
CN103539272A (zh) 新型潜水推流器叶轮
CN109098974A (zh) 一种可气液混输的高扬程多级侧流道泵
CN102141050A (zh) 一种提高涡流泵效率的叶轮设计方法
CN202417951U (zh) 一种全扬程离心泵
CN107218227A (zh) 一种双叶轮离心式水泵
CN103573693A (zh) 低比速离心泵叶轮
CN103498797A (zh) 一种并联式自平衡型多级离心泵
CN2816434Y (zh) 用于水泵的加涡室结构
CN108626165A (zh) 一种离心泵半开式叶轮
CN101818732A (zh) 一种核电站用离心式上充泵
CN208503101U (zh) 一种离心泵半开式叶轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835168

Country of ref document: EP

Kind code of ref document: A1