WO2013044626A1 - 一种执行臂末端运动的控制系统及控制方法 - Google Patents

一种执行臂末端运动的控制系统及控制方法 Download PDF

Info

Publication number
WO2013044626A1
WO2013044626A1 PCT/CN2012/074304 CN2012074304W WO2013044626A1 WO 2013044626 A1 WO2013044626 A1 WO 2013044626A1 CN 2012074304 W CN2012074304 W CN 2012074304W WO 2013044626 A1 WO2013044626 A1 WO 2013044626A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera
image
real
arm
scale
Prior art date
Application number
PCT/CN2012/074304
Other languages
English (en)
French (fr)
Inventor
周翔
周继辉
向瑶
Original Assignee
湖南三一智能控制设备有限公司
三一重工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011103016120A external-priority patent/CN102501252A/zh
Priority claimed from CN201110301629.6A external-priority patent/CN102508495B/zh
Application filed by 湖南三一智能控制设备有限公司, 三一重工股份有限公司 filed Critical 湖南三一智能控制设备有限公司
Publication of WO2013044626A1 publication Critical patent/WO2013044626A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39394Compensate hand position with camera detected deviation, new end effector attitude
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40538Barcode reader to detect position
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40613Camera, laser scanner on end effector, hand eye manipulator, local

Definitions

  • the invention relates to the technical field of engineering machinery, and in particular to a control method for performing end movement of an arm.
  • the invention also relates to a control system that performs arm end motion.
  • a variety of construction machinery has a boom structure, such as concrete pump trucks, cranes, fire trucks, etc.
  • the boom frame is used to transport manpower or materials to a designated construction site.
  • the boom is often required to move stably according to the same state.
  • the position parameters of the end of the boom need to be accurately collected, and the distance of the end of the boom relative to the initial state is calculated according to the change of the position parameter, thereby controlling the end of the boom in real time.
  • the trajectory of movement is used to transport manpower or materials to a designated construction site.
  • the position of the end of the boom is usually obtained by indirect calculation, and the end of the arm is moved at a fixed position.
  • the main calculation method is as follows:
  • a distance measuring sensor is arranged at the end of the boom to measure the positional parameters of the end of the boom.
  • This method can directly measure the vertical height of the end of the boom, but the measuring distance is limited and the precision is not high, especially when there is an object with a constantly changing height below the end of the boom (for example, when the concrete pump truck pumps the pump, the ground below the end of the boom is stacked. When the concrete height is constantly changing, the measurement results are not accurate.
  • an object of the present invention is to provide a control method for performing end movement of an arm, which directly acquires the displacement of the end of the actuator arm in real time by means of image processing, thereby enabling precise control of the movement trajectory of the end of the actuator arm.
  • Another object of the present invention is to provide a control system that performs end arm motion.
  • the present invention provides a control method for performing arm end motion, comprising the following steps:
  • the camera acquires the image of the identifier in real time
  • a scale is further disposed at a near end of the window of the camera, and the position of the scale relative to the camera is kept constant;
  • step 12 the camera acquires an image including the identifier and the scale; in step 13), the pre-stored initial position includes the identifier and an initial image of the scale, and the initial image is compared and the real-time acquired includes The identification and the image of the scale are calculated to obtain a real-time displacement of the end of the actuator arm relative to the initial position.
  • the set ruler is an intersecting horizontal scale and a vertical scale; in step 13), the identifier in the initial image and the identifier in the real-time acquired image are both associated with the horizontal scale of the scale and the vertical
  • the imaging of the straight scale is comparatively analyzed, and the left and right displacement and the up and down displacement of the end of the actuator arm relative to the initial position are obtained.
  • step 11 an angle sensor is disposed on the camera
  • step 12 the camera tracks the center position of the identifier, and acquires an image of the identifier
  • step 13 the horizontal angle and the vertical angle of the camera detected by the angle sensor with respect to the initial position are recorded, and the initial image and the real-time acquired identification image are compared and analyzed, and the camera is obtained from the center position of the identifier.
  • the initial distance and the real-time distance, the real-time displacement of the end of the actuator arm relative to the initial position is obtained according to the initial distance, the real-time distance, the initial horizontal angle, the initial vertical angle, the real-time horizontal angle, and the real-time vertical angle.
  • step 12 There are also the following steps between step 12) and step 13):
  • the focal length of the camera is controlled according to the acquired image of the identifier.
  • step 11 at least two cameras or at least two markers are disposed in a working area around the end of the actuator arm.
  • the control system for performing the end movement of the arm provided by the invention directly analyzes the initial image of the comparison mark and the image acquired in real time by the image processing module, obtains the real-time displacement of the mark according to the change amount, and further knows the real-time displacement of the end of the execution arm, and
  • the actuator arm controller executes an arm controller output that controls the execution of the arm motion.
  • the control system has high-precision analytical control capability and higher accuracy than the prior art method of superimposing calculation using multiple sensor data signals. .
  • the scale when the scale is set at the proximal end of the camera, the scale can be used as a reference standard for the analysis mark, and the error caused by the camera shake can be eliminated; moreover, since the image of the scale is relatively clear and stable, it is easy to design for easy reference to the comparative shape.
  • the processing program of the image processing module can be compressed to improve the accuracy; in addition, in the case of a change in the focal length, the focal length variable can be calculated by the change of the scale of the scale image, thereby accurately calculating the real-time displacement of the marker without obtaining the focal length variable by other means. .
  • the present invention also provides a control for performing arm end motion System, including:
  • a camera and a camera movable relative to the identifier wherein the identifier and the camera are disposed at an end of the execution arm, and the camera is capable of acquiring an image of the identifier;
  • An image processing module configured to receive an image acquired by the camera, and prestore an initial image of the identifier in an initial position, and compare and analyze the initial image and the image of the identifier obtained in real time, and calculate and obtain an end of the execution arm Real-time displacement of the initial position;
  • An arm controller is configured to receive a real-time displacement of the end of the actuator arm obtained by the image processing module, and perform movement of the arm end according to real-time displacement control of the end of the actuator arm.
  • the identifier is disposed at an end of the execution arm, and the camera is disposed at a position where an end movement of the actuator arm is observed;
  • the camera is disposed at an end of the execution arm, and the identifier is disposed in a visible area of the camera.
  • the method further includes a scale disposed at a near end of the window of the camera; the camera acquires an image including the identifier and the scale; and the image processing module pre-stores an initial position including the identifier and an initial of the scale And comparing and analyzing the image obtained by the initial image analysis including the identifier and the scale in real time, and calculating a real-time displacement of the end of the execution arm.
  • the scale is an intersecting horizontal scale and a vertical scale; the image processing performs imaging of the identification in the initial image and the identification in the real-time acquisition image with the corresponding horizontal scale of the scale and the vertical scale In contrast analysis, the left and right displacement and the up and down displacement of the end of the actuator arm relative to the initial position are obtained.
  • control module further includes a camera, and when the initial position is located, the control module adjusts the camera according to the acquired image of the identifier, so that the window center of the camera aligns the center position of the identifier.
  • the camera is provided with an angle sensor; the camera tracks the center position of the identifier, and acquires an image of the identifier; the image processing module records the camera detected by the angle sensor relative to an initial position a horizontal angle and a vertical angle, and comparatively analyzing the initial image and the real-time acquired identification image to obtain an initial distance and a real-time distance from the camera to the center of the marker, according to an initial distance, a real-time distance, an initial horizontal angle, and an initial The vertical angle, the real-time horizontal angle, and the real-time vertical angle calculation obtain a real-time displacement of the end of the actuator arm relative to the initial position.
  • the indicia is made of a reflective material; and is configured to identify an overhead light that provides illumination, the control end of the overhead light being coupled to the control module of the camera.
  • control module controls the focal length of the camera according to the acquired image of the identifier.
  • the working area around the end of the actuator arm is provided with at least two cameras or at least two markers.
  • the identification is part of a hose at the end of the actuator arm.
  • the control system for performing the end movement of the arm provided by the invention directly analyzes the initial image of the comparison mark and the image acquired in real time by the image processing module, obtains the real-time displacement of the mark according to the change amount, and further knows the real-time displacement of the end of the execution arm, and
  • the actuator arm motion controller outputs an instruction to control the movement of the arm.
  • the control system has high-precision analysis and control capability.
  • the above-described control system can also be used to transmit the near-end operating condition image of the working end of the arm to the display device in the control system for remote remote operation.
  • the image of the end of the actuator arm can be analyzed by the above control system, and the end of the arm can be prevented from colliding with a large obstacle, thereby achieving intelligent obstacle avoidance at the end of the actuator arm.
  • FIG. 1 is a flow chart of a first embodiment of a method for controlling the end movement of an actuator arm according to the present invention
  • FIG. 2 is a flow chart showing a second embodiment of a method for controlling the end movement of an actuator arm according to the present invention
  • FIG. 3 is a flow chart of a third embodiment of a method for controlling the end movement of an actuator arm according to the present invention.
  • FIG. 4 is a flow chart of a fourth embodiment of a method for controlling the end movement of an actuator arm according to the present invention.
  • Figure 5 is a flow chart showing a fifth embodiment of a method for controlling the end movement of an actuator arm according to the present invention.
  • FIG. 6 is a flow chart of a sixth embodiment of a method for controlling the end movement of an actuator arm according to the present invention.
  • Figure 7 is a first specific calculation method for controlling the end motion of the actuator arm provided by the present invention.
  • FIG. 8 is a schematic diagram of a second specific calculation method for controlling the end movement of an actuator arm according to the present invention.
  • FIG. 9 is a schematic diagram showing a third specific calculation method for controlling the end movement of the actuator arm according to the present invention.
  • FIG. 10 is a schematic diagram of a fourth specific calculation method for controlling the end motion of an actuator arm according to the present invention.
  • FIG. 11 is a schematic structural view of a specific embodiment of an actuator arm end motion control system according to the present invention.
  • FIG. 12 is a schematic structural view of another embodiment of an actuator arm end motion control system according to the present invention.
  • Figure 13 is a schematic diagram of the control principle of the control system of Figures 11 and 12.
  • the core of the present invention is to provide a control method for performing the end movement of the arm, which uses the image processing method to directly acquire the displacement of the end of the actuator arm in real time, thereby enabling precise control of the motion trajectory of the end of the execution arm.
  • Another core of the present invention is to provide a control system that performs end arm motion.
  • FIG. 1 is a flow chart of a first embodiment of a method for controlling the end movement of an actuator arm according to the present invention.
  • Step S11) setting an identifier that moves as the end of the actuator arm moves, and sets a camera at a position where the end movement of the actuator arm can be observed;
  • the movement track of the identification mark is consistent with the movement track of the end of the execution arm.
  • the identifier may be a part of the end of the actuator arm; or other structural member disposed at the end of the actuator arm and maintained in a relatively fixed state thereto.
  • the structural member may be a structural member of the construction machine or may be specifically provided.
  • a preferred solution is to use the self-contained structural member at the end of the arm as an identifier to fully utilize the self-owned resources to achieve the object of the present invention. For example, for a multi-section pump truck, you can A part of the hose at the end of the row arm is used as a marker.
  • a specific embodiment may be: the middle portion of the hose is colored, the color of the portion is different from the color of the other portion, or the sleeve is jacketed with other colors at both ends of the hose, and the middle portion can be used as the logo.
  • the middle portion is white, the other portions are black, or the middle portion is black, and the other portions are white, and other colors are clearly distinguishable, and have a striking effect, facilitating imaging and image analysis mentioned in the steps described later.
  • the background color is prevented from being similar to the color of the logo, and the image is unclear; at the same time, the structure of the logo is preferably a regular shape, such as a rod shape, and is also convenient for imaging and image analysis mentioned in the steps described later; in addition, since the control arm is mainly required to be controlled The movement of the end in the height direction, the height dimension of the marking should be as large as possible to meet the imaging requirements, for the hose solution, even if the length of the middle part of the hose is long.
  • the camera is set at a position where the end movement of the arm is observed, so that in step S13), the camera acquires an image of the logo located at the end of the actuator arm.
  • Step S12 the camera acquires the image of the logo in real time
  • the camera can obtain the identified video image as needed.
  • Step S13) pre-storing the initial image of the initial position identifier, analyzing the image corresponding to the initial image and the real-time acquired identifier, and calculating a real-time displacement of the end position of the execution arm relative to the initial position;
  • Step S14 Performing the movement of the end of the arm according to the real-time displacement control of the end of the actuator arm.
  • the real-time displacement of the marker actually performs the displacement of the end of the arm, and the movement trajectory of the end of the actuator can be controlled according to the displacement and the actual motion requirement.
  • the control method for the end motion of the actuator arm provided by the present invention can directly obtain the real-time displacement of the marker by analyzing and comparing the initial image and the real-time acquired marker image, thereby obtaining the real-time displacement of the end of the actuator arm, and output control.
  • the instruction to perform the arm movement Directly through the image comparison calculation, compared with the prior art method of superimposing calculation using a plurality of sensor data signals, the invention has higher accuracy; moreover, the invention only sets the identification at the end of the execution arm, and does not need to perform the end installation of the arm. Sensor-type electronic components, therefore, have high measurement stability and safety, and are suitable for occasions with complicated working conditions. Please refer to FIG. 2.
  • FIG. 2 is a flow chart of a second embodiment of a method for controlling the end movement of an actuator arm according to the present invention.
  • step S21 setting a mark that moves with the end movement of the execution arm, and setting a camera at a position where the end movement of the actuator arm can be observed, and setting a scale at a near end of the window of the camera;
  • the ruler can always be imaged by the camera, and the positional relationship between the scale and the camera is kept constant, that is, the imaging size of the scale is always equal when the focal length is constant, and the focal length is changed according to the size of the scale.
  • the change can also calculate the change in focal length in order to accurately calculate the change in the size of the logo image due to the change in focal length, so that the image analysis of the logo has a stable reference frame.
  • the ruler can be fixed in front of the camera lens or inside the camera.
  • the ruler can also be fixed with other components to ensure that the lens position relative to the camera is unchanged.
  • step S22 the camera acquires an image including the logo and the scale; since the scale can always be imaged, the image acquired by the camera includes both the logo and the scale, and of course, in the case of the logo movement, the images obtained at different times are obtained.
  • the relative positional relationship and relative size of the logo and the ruler may change dynamically.
  • the pre-stored initial position includes an initial image of the logo and the scale, and the initial image and the real-time acquired image including the marker and the scale are compared and calculated, and the real-time displacement of the end of the actuator arm relative to the initial position is calculated.
  • step S13 The analytical calculation principle in this step is the same as step S13). Since the imaging of the scale is relatively clear and stable, it is easy to design for the reference comparison shape. At this time, the scale can be used as a reference for identifying the image change calculation, and the real-time displacement of the marker can be calculated. Therefore, the setting of the ruler can optimize the processing procedure of the image processing module to improve the accuracy; in addition, in the case of changing the focal length, the focal length variable can be calculated by the change of the imaging size of the scale, thereby accurately calculating the real-time displacement of the marker without passing through Other ways to get the focus variable.
  • Step S24 Performing the movement of the end of the arm according to the real-time displacement control of the end of the actuator arm. Same as step S14).
  • FIG. 3 is a flow chart of a third specific embodiment of the method for controlling the end movement of an actuator arm according to the present invention. Including the following steps:
  • Step S33 adjust the camera, and in the initial position, align the center of the window of the camera with the center of the mark.
  • this step is added. After adding this step, during the initialization process, the height or angle of the camera can be adjusted, and the camera window is aligned with the center position of the marker as much as possible, and the initial image of the obtained logo is located in the middle of the entire image, and thus, the logo moves after a certain distance. The imaging is still within the coverage of the camera lens, and the calculation error is relatively low.
  • Step S34 pre-storing the initial position including the initial image of the marker and the ruler, comparing and analyzing the initial image and the image obtained by the real-time acquisition including the marker and the ruler, and calculating a real-time displacement of the end position of the execution arm relative to the initial position;
  • Step S35 Performing the movement of the end of the arm according to the real-time displacement control of the end of the actuator arm.
  • Step S34) is the same as step S23
  • step S35) is the same as step S24) and step S14).
  • FIG. 4 is a flowchart of a fourth specific implementation manner of a method for controlling the end movement of an actuator arm according to the present invention, which mainly includes the following steps:
  • Step S41 setting a camera at the end of the execution arm, and setting a logo in a visible area of the camera;
  • the visible area at the end of the actuator arm refers to the position of the working object at the end of the arm, or near the position, so that the camera at the end of the actuator arm acquires the image of the identification in the step described later.
  • the camera When the camera is placed at the end of the actuator arm, the camera moves with the movement of the end of the actuator arm, that is, coincides with the movement trajectory of the end of the actuator arm.
  • Step S42 the camera acquires the image of the logo in real time
  • Step S43 pre-storing the initial image of the initial position identification, and comparing and analyzing the initial image and the image of the identification acquired in real time, and calculating a real-time displacement of the end position of the execution arm relative to the initial position; during the movement of the end of the execution arm, the camera moves with the same
  • the identification is set in the visible area at the end of the actuator arm, so the imaging in the camera is marked as a dynamic change process. Therefore, by analyzing the amount of change of the identified image relative to the initial image, real-time execution of the arm relative to the initial position can be obtained. Displacement.
  • Step S44 Performing the movement of the end of the arm according to the identified real-time displacement.
  • the logo and the camera have relative motion.
  • the marker is moved to the left, it is equivalent to the camera moving to the right, and the displacement of the camera is consistent with the end of the actuator arm. Therefore, according to the displacement of the obtained end of the actuator arm, combined with the actual movement needs , you can control the movement of the end of the actuator arm.
  • control method for the end motion of the actuator arm provided by the present invention can directly obtain the real-time displacement of the end of the actuator arm relative to the initial position by analyzing and comparing the initial image and the real-time acquired logo image, thereby obtaining the end of the execution arm.
  • Real-time displacement the output controls the command to perform arm movement.
  • image comparison calculation it has higher accuracy than the prior art method of superimposing calculation using multiple sensor data signals.
  • FIG. 5 is a flow chart of a fifth specific embodiment of a method for controlling the end movement of an actuator arm according to the present invention. Including the following steps:
  • Step S51 setting a camera at the end of the execution arm, setting an identifier in a visible area of the camera, and setting a scale at a near end of the window of the camera;
  • the ruler can always be imaged by the camera, and the positional relationship between the scale and the camera is kept constant, that is, the imaging size of the scale is always equal when the focal length is constant, and the focal length is changed according to the size of the scale.
  • the change can also calculate the change in focal length in order to accurately calculate the change in the size of the logo image due to the change in focal length, so that the image analysis of the logo has a stable reference frame.
  • the ruler can be fixed in front of the camera lens or inside the camera.
  • the ruler can also be fixed with other components to ensure that it is not in the same position as the lens of the camera. can.
  • Step S52 the camera acquires an image including the logo and the ruler
  • the image acquired by the camera includes both the logo and the scale.
  • the relative positional relationship and relative size of the logo and the scale may be dynamically changed in the images obtained at different times.
  • Step S53) the pre-stored initial position includes an initial image of the logo and the scale, and the initial image and the real-time acquired image including the logo and the scale are compared and calculated, and the real-time displacement of the end of the actuator arm is obtained.
  • step S53 The analytical calculation principle in this step is the same as step S53). Since the imaging of the scale is relatively clear and stable, it is easy to design for the reference comparison shape. At this time, the scale can be used as a reference for the identification of the imaging change, and the real-time displacement of the end of the actuator arm can be calculated. Therefore, the setting of the ruler can also reduce the processing of the image processing module to improve the accuracy; in addition, when the focal length changes In the next step, the focal length variable can be calculated by changing the size of the scale image, and the real-time displacement of the end of the actuator arm can be accurately calculated without obtaining the focal length variable by other means.
  • Step S54 Performing the motion of the end of the arm according to the identified real-time displacement control. Same as step S54).
  • FIG. 6 for a flow chart of a sixth specific embodiment of the method for controlling the end movement of an actuator arm according to the present invention. Including the following steps:
  • Step S61 setting a camera at the end of the execution arm, and setting a logo in a visible area of the camera, and setting a scale at a near end of the window of the camera;
  • Step S62 the camera acquires an image including the logo and the ruler
  • Step S61), step S62) are the same as steps S51) and S52).
  • Step S63 adjusting the camera so that the center of the window of the camera in the initial position is aligned with the center position of the logo.
  • this step is added. After adding this step, during the initialization process, the height or angle of the camera can be adjusted, and the camera window is aligned with the center position of the marker as much as possible, and the initial image of the obtained logo is located in the middle of the entire image, and thus, the logo moves after a certain distance. The imaging is still within the coverage of the camera lens, and the calculation error is relatively low.
  • Step S64) the pre-stored initial position includes an initial image of the logo and the scale, and the initial image and the real-time acquired image including the logo and the scale are compared and calculated, and the real-time displacement of the end of the actuator arm is obtained.
  • Step S65 Performing the motion of the end of the arm according to the identified real-time displacement control.
  • Step S64) and step S53), step S55) are the same as step S54) and step S44).
  • FIG. 7 is a schematic diagram showing the first specific calculation method for controlling the end movement of the actuator arm according to the present invention.
  • the specific calculation method is a method for comparing the initial imaging of the marker 10 with the imaging of the other time and the imaging of the scale 20.
  • the identifier may be 10 is set to intersect horizontal scale 201 and vertical scale 202 (cross-shaped ruler), which is equivalent to establishing a vertical plane coordinate system.
  • the height A1 of the upper end of the initial image of the marker 10 to the horizontal scale 201 can be measured, and the lower end of the initial image of the marker 10 is identified.
  • the initial imaging end of the marker 10 is extended to the length D1 of the vertical scale 202, the initial image of the marker 10 is at an angle Q1 with the horizontal scale 201, and the mark 10 at a certain moment is imaged from the two ends to the height of the horizontal scale 201.
  • A2 and B2 respectively, the length from one end to the vertical scale 202 is D2, the angle from the horizontal scale 201 is Q2, and the actual length of the marker 10 is L.
  • the upper and lower relative positions of the arm ends can be calculated by the following formula. Moving distance Y:
  • the method can also calculate the left and right movement of the end of the actuator arm relative to the initial position by the following formula.
  • the above angles Q1 and Q2 can also be calculated by the height and length of the mark 10 image. Accordingly, the height of the image can also be obtained by the measured angle and length, and the above calculation method can be flexibly set.
  • the structure of the marker 10 can be set to a cross-shaped identifier, that is, the vertical marker and the horizontal marker are included, and the calculation method is the same as the first calculation method, and the difference is only
  • the upper and lower displacements are calculated according to the vertical identification imaging extending substantially in the vertical direction, and the left and right displacements are calculated according to the horizontal identification image extending substantially in the horizontal direction.
  • the image processing law can be used for conventional image processing (such as imaging size, binocular ranging, etc.).
  • the above calculation formula needs to be appropriately deformed, and the length of the initial imaging of the marker 10, the imaging length at a certain moment, and the change relationship between the two length values are corrected, and the input variable in the above formula is corrected.
  • the program can be reinitialized, with the new position as the reference point.
  • FIG. 8 is a schematic diagram of a second specific calculation method for controlling the end movement of the actuator arm according to the present invention.
  • the marker 10 is set in the form of a grating 101, and the width of each set of the grating 101 can be designed according to the control precision requirement (for example, the control precision is 0.1 m, and the width of the grating 101 can be designed to be 0.05 m).
  • the width of the grating 101 is satisfied.
  • the accuracy of the control should be as wide as possible, which is convenient for imaging analysis.
  • the scale 20 is horizontal, and the scale imaging can accommodate a grating 101. Let the width of the grating 101 be A, and the number of movements of the grating 101 be M. Through the initial image and image analysis at a certain time, the number of movements of the grating 101 can be obtained, and the up and down displacement of the marker 10 is obtained.
  • L A x M .
  • the logo image shown in the figure extends substantially in the vertical direction.
  • the marker 10 can be set to have a horizontal logo and a vertical logo, and both are set to a grating form, and when the left and right displacement is calculated, The calculation principle of the up and down displacement is the same.
  • the position of the scale can be corrected according to the change in the imaging width of the grating for error compensation.
  • the displacement of the marker 10 can also be obtained by other calculation methods.
  • the imaging of the scale 20 is taken as a reference.
  • the virtual scale can also be set in the later image processing. It should be noted that when the scale 20 is fixed on other structures, even if the camera 100 has slight jitter, the imaging angle of the scale 20 remains stable, so the set physical scale 20 can always be accurately used as the identifier with respect to the virtual scale. 10
  • the reference standard for image change so it is preferable to set the scale 20 to form a reference scale.
  • FIG. 9 is a schematic diagram of a third specific calculation method for controlling the end movement of the actuator arm according to the present invention, and the calculation method is applicable to the first, second and third embodiments.
  • the camera 100 is in the tracking state, and rotates correspondingly with the change of the position of the marker 10 to track the middle position of the marker 10 in real time.
  • the distance S1 from the center position of the camera 100 to the marker 10 the distance S2 from the camera 100 to the center position of the marker 10 at a certain time can be acquired, and the camera can be acquired by the angle sensor provided on the camera 100.
  • 100 horizontal angle Pl, vertical angle Q1, and horizontal angle P2 and vertical angle Q2 in the current state (for ease of understanding, the XYZ three-dimensional coordinate system is established in the figure), the upper and lower moving distance of the end of the actuator arm relative to the initial position can be calculated by the following formula Y:
  • Y Y1 - Y2 ;
  • the distance between the center position of the marker 10 and the camera 100 can be obtained by analyzing and calculating the imaging of the scale 20 and the marker 10, or by image analysis methods such as dual camera ranging.
  • the first to third embodiments described above are each established in such a position that the camera is positioned to observe the end movement of the actuator arm, and the range of motion of the end of the actuator arm is small.
  • the camera may not be able to continue to observe the end movement of the actuator arm, and at least two cameras can be set in the entire work area.
  • the working area around the end of the actuator arm refers to any area that can be reached at a certain position at the end of the actuator arm. More than two cameras can be set to expand the monitoring range of the end of the actuator arm.
  • the arm can be operated in any direction. The camera is monitored by a corresponding camera to obtain a continuous position signal with a wider range of control.
  • FIG. 10 is a schematic diagram of a fourth specific calculation method for controlling the end motion of the actuator arm according to the present invention.
  • the calculation method is applicable to the fourth to sixth embodiments.
  • the camera is in the tracking state, and the corresponding position is rotated with the change of the position of the marker 10, and the middle position of the marker 10 is tracked in real time.
  • the distance S1 from the camera to the center position of the marker 10, the distance S2 from the camera to the center position of the marker 10 at a certain time, and the initial position of the camera can be obtained by the angle sensor provided on the camera.
  • the horizontal angle P1, the vertical angle Q1, and the horizontal angle P2 and the vertical angle Q2 in the current state (for ease of understanding, the XYZ three-dimensional coordinate system is established in the drawing), the up and down moving distance of the arm end 500 relative to the initial position can be calculated by the following formula Y:
  • the distance between the center position of the marker 10 and the camera can be calculated by the imaging analysis of the scale 20 and the marker 10, or can be obtained by an image analysis method such as dual camera ranging.
  • the focal length of the camera 100 can also be controlled based on the image of the logo 10 acquired in real time.
  • the zoom of the camera 100 can be controlled, and when the analysis is performed, the amount of image size change caused by the zoom is introduced into the calculation formula.
  • the fourth to sixth embodiments described above are each established in that the marker 10 is located in the viewable area of the end 500 of the actuator arm, and the range of motion of the arm end 500 is small.
  • the construction position of the arm end 500 is changed and the amplitude is large, that is, when the visible area of the arm end 500 is changed, at least two marks can be set in the entire work area, and one of them is selected as the calculation mark 10.
  • the visible area of the arm end 500 refers to any area that can be observed by the camera at the end of the arm. 500.
  • Multiple markers can be set to enlarge the monitoring range of the camera at the end of the arm, and the movement of the arm in any direction is ensured.
  • the identification is available for reference to obtain a continuous position signal with a wider range of regulation.
  • the above calculation method can calculate the up, down, left and right, and front and rear displacements of the end of the actuator arm, and at the initial position, if a certain position is selected as the coordinate origin, the three-dimensional space coordinate system of the end of the execution arm can be established.
  • the position parameter of the end of the actuator arm is monitored in real time according to the calculated displacement. When the arm end conversion working position needs to be performed, this parameter can be used as a reference to accurately control the movement of the end of the actuator arm with the camera to any position in the working area.
  • the ends of the plurality of actuator arms may work simultaneously (the working areas of the ends of the plurality of actuator arms coincide), and the plurality of markers 10 that can be set prevent the single marker 10 from being blocked by the ends of the other actuator arms. , to achieve the simultaneous control of the movement trajectory of the end of multiple actuator arms, to achieve precise intelligent control.
  • FIG. 11 is a schematic structural diagram of a specific embodiment of an actuator arm end motion control system according to the present invention.
  • FIG. 12 is another specific embodiment of an actuator arm end motion control system provided by the present invention. Schematic diagram of the structure of the embodiment;
  • FIG. 13 is a schematic diagram of the control principle of the control system of FIGS. 11 and 12.
  • the control system includes an indicia 10 that moves with the end of the actuator arm, a camera 100, an image processing module 200, and an actuator arm controller 300.
  • control system includes an identification 10 disposed at the end of the work arm, a camera, an image processing module, and an actuator controller.
  • the identification 10 has been discussed in the above control method, and will not be described herein.
  • the camera 100 is disposed at a position where the end movement of the arm is observed to acquire the image of the identifier 10, and the obtained image signal is sent to the image processing module 200 in real time, and the camera 100 and the image processing module 200 can be connected by wire or wirelessly.
  • the specific solution may be as follows: a bracket (such as a tripod) is disposed at a position where the end movement of the arm is observed, and the camera 100 is placed on the bracket, and the center of the bracket can also hang the heavy object to the ground. Prevent the bracket from moving or tilting when the camera is vibrating. When the bracket is set, the scale 20 can be directly fixed to the bracket.
  • more than one surveillance camera can be placed in the working area around the end of the actuator arm to move the end of the actuator arm to either The orientations are monitored by at least one corresponding camera.
  • the position difference between the different cameras 100 can be incorporated into the calculation program of the image processing module 200, so that the reference frame of the image analysis is kept uniform;
  • the corresponding camera performs analysis processing according to a preset reference frame; or as described above, by providing a plurality of cameras 100, a three-dimensional space coordinate system at the end of the actuator arm can be established, precisely Control the movement of the end of the actuator arm to any position within the work area, When there are multiple actuator arm ends in the work area, a large-scale actuator control system can be established.
  • At least two markers 10 may be provided in the work area around the end of the actuator arm 500 to move the actuator arm end 500 to any position within the work area, each having at least one corresponding The marker 10 is included in the viewable area of the camera end 500 of the executive arm for reference.
  • the position difference between the different markers 10 can be incorporated into the calculation program of the image processing module 200, so that the reference frame of the image analysis is kept uniform; or the execution arm enters a different identifier than the pre-selected
  • the image processing module 200 can be re-initialized, and the image of the marker 10 in the working range is taken as the re-selected initial image; or as described above, by setting the plurality of markers 10, the execution arm end 500 can be established.
  • the three-dimensional space coordinate system precisely controls the movement of the actuator arm end 500 to any position within the working area. When there are multiple actuator arm ends 500 in the working area, a large-scale actuator arm control system can be established.
  • the camera 100 executing the arm end 500 can acquire an image of the marker 10 near the center of the window of the camera 100 to facilitate imaging resolution and size of the camera 100 according to the marker 10. , Select the appropriate logo 10 as the tracking target.
  • the camera 100 is disposed at the end of the actuator arm 500 and moves with the movement of the arm end 500 to acquire the image of the identifier 10 and transmit the obtained image signal to the image processing module 200 in real time.
  • the camera 100 and the image processing module 200 may be wired or Connect wirelessly.
  • the image processing module 200 is configured to receive the image acquired by the camera 100, and pre-store the initial image of the initial position identifier 10, and analyze the image of the identifier 10 obtained in real time according to the initial image, calculate and obtain the real-time displacement of the end of the execution arm, and obtain the obtained Real-time displacement is sent to the actuator controller
  • the control module 400 that controls the camera 100 can be set to control the change of the height or angle of the camera 100.
  • the control module 400 of the camera 100 can be connected to the execution arm controller 300 or the image processing module 200. Both the execution arm controller 300 and the image processing module 200 can determine the initial position according to the acquired image of the identifier 10, and whether the image of the identifier 10 is suitable as Initial image, and send corresponding control signals to the control of the camera 100
  • the module 400 controls the height and angle of the camera 100 by the control module 400.
  • the arm controller 300 is configured to receive a real-time image of the marker 10 obtained by the image processing module 200, calculate a real-time displacement of the end of the actuator arm based on the initial image and the real-time image of the marker 10, and thereby control the motion of the end of the actuator arm.
  • the executive arm controller 300 and the image processing module 200 can also be connected by wire or wirelessly, and both can be integrated on the same module.
  • the control system for performing the end movement of the arm provided by the present invention directly analyzes the initial image of the comparison marker 10 and the image acquired in real time by the image processing module 200, and acquires the real-time displacement of the end of the actuator arm relative to the initial position according to the amount of change and is performed by the execution arm.
  • the controller execution arm controller 300 outputs an instruction to control the movement of the actuator arm.
  • the control system has high-precision analysis and control capability; moreover, the control system only sets the identifier 10 at the end of the execution arm, and does not need to install the sensor at the end of the execution arm. Electronic components, therefore, have high measurement stability and safety, and are suitable for occasions with complicated working conditions.
  • control system may further include a scale 20 disposed at a proximal end of the window of the camera 100, such as a cross-shaped scale as shown in FIG. 10, and the positional relationship between the scale 20 and the camera 100 is kept constant. Then, the image acquired by the camera 100 includes the marker 10 and the scale 20, and the image size of the scale 20 remains constant when the focal length is constant.
  • the image processing module 200 prestores the initial image including the initial image of the marker 10 and the scale 20, and calculates the real-time displacement of the end of the actuator arm based on the image obtained by the initial image analysis including the marker 10 and the scale 20.
  • the working principle of the scale 20 and the resulting technical effects are also discussed in the embodiment of the control method and will not be described here.
  • the control module 400 of the camera 100 described above can also control the focal length of the camera 100 based on the acquired image of the logo 10. During the movement of the end of the arm, the zoom of the control module 400 can be controlled, and the change of the mark 10 or the scale 20 image caused by the change of the focal length will be included in the calculation formula.
  • the logo 10 may be made of a reflective material to facilitate image recognition in order to facilitate work at night or when there is insufficient light.
  • the control end of the remote light can be connected to the control module 400 of the camera 100.
  • the remote light is preferably disposed in the vicinity of the camera 100.
  • the near-end working condition image of the working area of the end of the arm is collected by the camera 100, and the image is displayed on the display device of the construction machine, so that the remote working condition of the end of the construction machine can be realized.
  • the image of the end of the execution arm is analyzed by the image processing module 200.
  • the image processing module 200 When the end of the arm is close to a large obstacle (for example, a vertical wall), the image processing module 200 generates an alarm message and sends it to the actuator controller 300.
  • the actuator arm controller 300 controls the movement of the stop arm or modifies the motion path, so that the intelligent obstacle avoidance at the end of the actuator can be realized.
  • Related image analysis processing methods are well known to those skilled in the art and will not be described herein.

Abstract

一种控制执行臂末端运动的方法及控制系统,方法包括以下步骤:11)于执行臂末端(500)设置摄像头(100),并于摄像头(100)的可视区域设置标识(10);12)摄像头(100)实时获取标识(10)的图像;13)预存初始位置标识的初始图像,对比分析初始图像和实时获取的标识的图像,计算获得执行臂(500)末端相对初始位置的实时位移;14)根据执行臂末端(500)的实时位移控制执行臂末端(500)的运动。该控制方法及控制系统可直接通过图像分析,获知执行臂末端(500)的实时位移,输出控制执行臂运动的指令。直接通过图像比较计算的方式,相对于现有技术中利用多个传感器数据信号叠加计算的方式,具有更高的精确度。

Description

一种执行臂末端运动的控制系统及控制方法 本申请要求于 2011 年 09 月 28 日提交中国专利局、 申请号为 201110301629.6、 发明名称为 "一种执行臂末端运动的控制系统及控制方 法"和 2011年 09月 28 日提交中国专利局、 申请号为 201110301612.0、 发 明名称为 "一种执行臂末端运动的控制系统及控制方法"的两项中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及工程机械技术领域, 特别涉及一种执行臂末端运动的控制 方法。 本发明还涉及一种执行臂末端运动的控制系统。
背景技术
多种工程机械具有臂架结构, 比如混凝土泵车、 起重机、 消防车等, 臂架用以输送人力或物料至指定施工地点。 在施工过程中, 经常需要臂架 依照同一状态稳定运动, 此时, 需要准确采集臂架末端的位置参数, 根据 位置参数变化计算出臂架末端相对初始状态移动的距离, 进而实时控制臂 架末端运动的轨迹。
现有技术中, 通常采取间接计算的方式获取臂架末端的位置, 执行臂 末端在某一固定位置运动, 主要计算方式如下:
( 1 )在臂架的各节臂均安装角度传感器分别测量各节臂的角度,再结 合各节臂的长度计算臂架末端的位置。 然而,各节臂在工作过程中会不断 产生形变, 通过角度和未产生形变的臂架长度来计算末端的竖直高度是不 准确的。 即使, 在各节臂安装位移传感器, 计算出各节臂的形变, 结合形 变量再计算, 也无法保证计算结果的精确性。 主要由于, 臂架包含多节节 臂, 各节臂的叠加运算势必会降低计算结果的精确度, 无法满足智能化、 自动化施工操作需求。
( 2 )在臂架末端设置测距传感器, 用以测量臂架末端的位置参数。 该 种方式可以直接测量臂架末端的竖直高度, 但测量距离有限、 精度不高, 特别是当臂架末端下方存在高度不断变化的物体(比如混凝土泵车打泵时 臂架末端下方地面堆积的混凝土高度会不断变化)时,测量结果并不准确。
而且,针对上述采集方式, 均需要在各节臂上设置传感器类电子元件, 安装难度较高, 工况复杂时, 精确度不高。
因此, 如何改进臂架末端运动的控制方法, 提高控制精度, 是本领域 技术人员需要解决的技术问题。
发明内容
鉴于上述技术问题, 本发明的目的为提供一种执行臂末端运动的控制 方法, 该控制方法利用图像处理方式直接实时获取执行臂末端的位移, 从 而能够精确地控制执行臂末端的运动轨迹。 本发明的另一目的是提供一种 执行臂末端运动的控制系统。
为达到本发明的第一目的, 本发明提供一种执行臂末端运动的控制方 法, 包括以下步骤:
11 )设置随所述执行臂末端移动而移动的标识, 并于可观察到所述执 行臂末端运动的位置设置摄像头; 或于所述执行臂末端设置摄像头, 并于 所述摄像头的可视区域设置标识;
12 )所述摄像头实时获取所述标识的图像;
13 )预存初始位置所述标识的初始图像, 对比分析所述初始图像和实 时获取的所述标识的图像, 计算获得所述执行臂末端相对初始位置的实时 位移;
14 )根据所述执行臂末端的实时位移控制所述执行臂末端的运动。 优选地 ,
步骤 11 ) 中, 还在所述摄像头的窗口近端设置标尺, 所述标尺相对所 述摄像头的位置保持恒定;
步骤 12 ) 中, 所述摄像头获取包括所述标识和所述标尺的图像; 步骤 13 ) 中, 预存初始位置包括所述标识和所述标尺的初始图像, 对 比分析初始图像和实时获取的包括所述标识和所述标尺的图像, 计算获得 所述执行臂末端相对初始位置的实时位移。
优选地 ,
步骤 11 ) 中, 设置的所述标尺为交叉的水平标尺和竖直标尺; 步骤 13 )中, 将初始图像中的标识和实时获取图像中的标识均与对应 的所述标尺的水平标尺以及竖直标尺的成像进行对比分析, 计算获得所述 执行臂末端相对初始位置的左右位移和上下位移。 优选地 ,
步骤 11 ) 中, 在所述摄像头上设置角度传感器;
步骤 12 ) 中, 所述摄像头跟踪所述标识的中心位置, 并获取所述标识 的图像;
步骤 13 )中, 记录所述角度传感器检测的所述摄像头相对于初始位置 的水平角度和垂直角度, 对比分析所述初始图像和实时获取的标识图像, 获得所述摄像头至所述标识中心位置的初始距离和实时距离, 根据初始距 离、 实时距离、 初始水平角度、 初始垂直角度、 实时水平角度和实时垂直 角度计算获得所述执行臂末端相对初始位置的实时位移。
优选地,
在步骤 12 )和步骤 13 )之间还具有以下步骤:
123 )调整摄像头,使在初始位置所述摄像头的窗口中心对准所述标识 的中心位置。
优选地, 步骤 14 ) 中, 根据获取的所述标识的图像控制所述摄像头的 焦距。
优选地, 步骤 11 ) 中, 在所述执行臂末端四周的工作区域设置至少两 个摄像头或者至少两个标识。
本发明所提供的执行臂末端运动的控制系统, 由图像处理模块直接分 析比较标识的初始图像和实时获取的图像, 根据变化量获取标识的实时位 移, 进而获知执行臂末端的实时位移, 并由执行臂控制器执行臂控制器输 出控制执行臂运动的指令。 直接通过图像比较计算的方式, 相对于现有技 术中利用多个传感器数据信号叠加计算的方式, 该控制系统具备高精度的 分析控制能力, 而且具有更高的精确度。。
在进一步的技术方案中, 在摄像头的近端设置标尺, 标尺作为分析标 识的参考标准时, 可以消除摄像头抖动引起的误差; 而且, 由于标尺的成 像较为清晰稳定, 易于设计为便于参考比较的形状, 可以筒化图像处理模 块的处理程序, 提高精确度; 此外, 在焦距改变的情况下, 可以通过标尺 成像大小的改变计算焦距变量, 进而准确计算标识的实时位移, 而无需通 过其他途径获取焦距变量。
为了达到本发明的第二目的, 本发明还提供一种执行臂末端运动的控 制系统, 包括:
标识及与所述标识可相对运动的摄像头, 所述标识和摄像头的其一设 置于所述执行臂末端, 所述摄像头能够获取所述标识的图像;
图像处理模块, 用于接收所述摄像头获取的图像, 且预存初始位置所 述标识的初始图像, 并对比分析所述初始图像和实时获取的所述标识的图 像, 计算获得所述执行臂末端相对初始位置的实时位移;
执行臂控制器, 用于接收所述图像处理模块获得的所述执行臂末端的 实时位移, 根据所述执行臂末端的实时位移控制执行臂末端的运动。
优选地, 所述标识设于所述执行臂末端, 所述摄像头设置于可观察到 所述执行臂末端运动的位置; 或
所述摄像头设于所述执行臂末端, 所述标识设置于所述摄像头可视区 域。
优选地, 还包括设置于所述摄像头的窗口近端的标尺; 所述摄像头获 取包括所述标识和所述标尺的图像; 所述图像处理模块预存初始位置包括 所述标识和所述标尺的初始图像, 并对比分析所述初始图像分析实时获取 的包括所述标识和所述标尺的图像,计算获得所述执行臂末端的实时位移。
优选地, 所述标尺为交叉的水平标尺和竖直标尺; 所述图像处理将初 始图像中的标识和实时获取图像中的标识均与对应的所述标尺的水平标尺 以及竖直标尺的成像进行对比分析, 计算获得所述执行臂末端相对初始位 置的左右位移和上下位移。
优选地, 还包括摄像头的控制模块, 位于初始位置时, 所述控制模块 根据获取的所述标识的图像调整所述摄像头, 使所述摄像头的窗口中心对 准所述标识的中心位置。
优选地, 所述摄像头上设有角度传感器; 所述摄像头跟踪所述标识的 中心位置, 并获取所述标识的图像; 所述图像处理模块记录所述角度传感 器检测的所述摄像头相对于初始位置的水平角度和垂直角度, 并对比分析 所述初始图像和实时获取的标识图像, 获得所述摄像头至所述标识中心位 置的初始距离和实时距离, 根据初始距离、 实时距离、 初始水平角度、 初 始垂直角度、 实时水平角度和实时垂直角度计算获得所述执行臂末端相对 初始位置的实时位移。 优选地,所述标识由反光材料制成; 且设置为标识提供照明的远照灯, 所述远照灯的控制端连接所述摄像头的所述控制模块。
优选地, 所述控制模块根据获取的所述标识的图像控制所述摄像头的 焦距。
优选地, 所述执行臂末端四周的工作区域设有至少两个摄像头或者至 少两个标识。
优选地, 所述标识为所述执行臂末端的软管的一部分。
本发明所提供的执行臂末端运动的控制系统, 由图像处理模块直接分 析比较标识的初始图像和实时获取的图像, 根据变化量获取标识的实时位 移, 进而获知执行臂末端的实时位移, 并由执行臂运动控制器输出控制执 行臂运动的指令。 相对于现有技术中利用多个传感器数据信号叠加计算的 方式, 该控制系统具备高精度的分析控制能力。 而且, 在执行臂移动的过 程中, 还可以利用上述控制系统将执行臂末端工作区域的近端工况图像传 输给控制系统中的显示装置, 以便进行远程遥控操作。 更进一步可以通过 上述控制系统对执行臂末端图像进行分析, 避免执行臂末端与大型障碍物 碰撞, 实现执行臂末端的智能避障。
附图说明
图 1为本发明所提供控制执行臂末端运动方法的第一种具体实施方式 的流程图;
图 2为本发明所提供控制执行臂末端运动方法的第二种具体实施方式 的流程图;
图 3为本发明所提供控制执行臂末端运动方法的第三种具体实施方式 的流程图;
图 4为本发明所提供控制执行臂末端运动方法的第四种具体实施方式 的流程图;
图 5为本发明所提供控制执行臂末端运动方法的第五种具体实施方式 的流程图;
图 6为本发明所提供控制执行臂末端运动方法的第六种具体实施方式 的流程图;
图 7为本发明所提供控制执行臂末端运动方法第一种具体计算方式的 示意图;
图 8为本发明所提供控制执行臂末端运动方法第二种具体计算方式的 示意图;
图 9为本发明所提供控制执行臂末端运动方法第三种具体计算方式的 示意图;
图 10 为本发明所提供控制执行臂末端运动方法第四种具体计算方式 的示意图;
图 11 为本发明所提供执行臂末端运动控制系统的一种具体实施方式 的结构示意图;
图 12 为本发明所提供执行臂末端运动控制系统的另一种实施方式的 结构示意图;
图 13为图 11、 12中控制系统的控制原理示意图。
具体实施方式
本发明的核心为提供一种执行臂末端运动的控制方法, 该控制方法利 用图像处理方式直接实时获取执行臂末端的位移, 从而能够精确地控制执 行臂末端的运动轨迹。 本发明的另一核心是提供一种执行臂末端运动的控 制系统。
为了使本领域的技术人员更好地理解本发明的技术方案, 下面结合附 图和具体实施例对本发明作进一步的详细说明。
请参考图 1 , 图 1为本发明所提供控制执行臂末端运动方法第一具体 实施方式的流程图。
本发明第一具体实施方式所提供的控制执行臂末端运动的方法, 主要 包括以下步骤:
步骤 S11 )设置随执行臂末端移动而移动的标识, 并于可观察到执行 臂末端运动的位置设置摄像头;
即保证标识的运动轨迹与执行臂末端的运动轨迹一致。 则该标识可以 是执行臂末端的一部分; 或是设置于执行臂末端并与其保持相对固定状态 的其他结构件, 当然, 该结构件可以是工程机械自有结构件, 也可以专门 设置该标识。 优选的方案是将执行臂末端的自有结构件作为标识, 从而充 分利用自有资源实现本发明的目的。 比如, 针对多节臂泵车, 可以将其执 行臂末端的软管的一部分作为标识。
具体的实施方案可以为: 将软管的中间部分涂上颜色, 该部分颜色区 别于其他部分的颜色, 或将软管的两端均外套其他颜色的管套, 则可以将 中间部分作为标识。 优选采用中间部分为白色, 其他部分为黑色, 或中间 部分为黑色, 其他部分为白色, 也可以是其他具有明显区别的颜色组合, 具备醒目的效果, 便于后述步骤提及的成像以及图像分析, 即防止背景色 与标识颜色相似而造成成像不清晰; 同时, 标识的结构优选为规则形状, 如杆状, 亦便于后述步骤提及的成像以及图像分析; 另外, 由于主要需要 控制执行臂末端在高度方向上的运动, 则标识的高度尺寸在满足成像需求 的情况下, 应尽量较大, 针对软管的方案, 即使软管中间部分的长度较长。
于可观察到执行臂末端运动的位置设置摄像头, 以便于在步骤 S13 ) 中, 摄像头获取位于执行臂末端的标识的图像。
步骤 S12 )摄像头实时获取标识的图像;
摄像头可以根据需要获取标识的视频图像。
步骤 S13 )预存初始位置标识的初始图像, 分析比对初始图像和实时 获取的标识的图像, 计算获得执行臂末端相对初始位置的实时位移;
当执行臂末端在固定位置上下运动的过程中, 标识随其移动, 故标识 在摄像头中的成像为动态变化的过程, 因此, 分析标识的图像相对于初始 图像的变化量, 可以获得标识相对初始位置的实时位移, 进而得到执行臂 末端的实时位移。
步骤 S14 )根据执行臂末端的实时位移控制执行臂末端的运动。
标识的实时位移实际上即执行臂末端的位移, 则可以根据该位移, 结 合实际运动需要, 控制执行臂末端的运动轨迹。
通过上述论述可知, 本发明所提供的执行臂末端运动的控制方法, 可 以直接通过初始图像和实时获取的标识图像的分析比较, 获取标识的实时 位移, 进而获知执行臂末端的实时位移, 输出控制执行臂运动的指令。 直 接通过图像比较计算的方式, 相对于现有技术中利用多个传感器数据信号 叠加计算的方式, 具有更高的精确度; 而且, 本发明仅在执行臂末端设置 标识, 无需于执行臂末端安装传感器类电子部件, 故具备较高的测量稳定 性和安全性, 适用于工况复杂恶劣的场合。 请参考图 2, 图 2为本发明所提供控制执行臂末端运动方法的第二种 具体实施方式的流程图。
该具体实施方式, 步骤 S21 ), 设置随执行臂末端移动而移动的标识, 并于可观察到所述执行臂末端运动的位置设置摄像头, 还在摄像头的窗口 近端设置标尺;
设置于窗口的近端, 即保证标尺始终可以通过摄像头成像, 标尺与摄 像头的位置关系保持恒定, 即在焦距不变的情况下, 标尺的成像大小始终 相等, 焦距改变时, 根据标尺成像大小的变化也可以计算出焦距的变化, 以便准确计算由于焦距变化而导致的标识成像大小的变化, 使标识的图像 分析具有稳定的参考系。 标尺的设置方式有多种, 比如, 标尺可以固定于 摄像头镜头的前方, 也可以设于摄像头的内部, 标尺还可以与其他部件固 定, 保证其相对于摄像头的镜头位置不变即可。
相应地, 步骤 S22 ) 中, 摄像头获取包括标识和标尺的图像; 由于标尺始终可以成像, 故摄像头获取的图像同时包括标识和标尺, 当然, 在标识移动的情况下, 获得的不同时刻的图像中, 标识和标尺的相 对位置关系及相对大小均可能产生动态变化。
相应地, 步骤 S23 ) 中, 预存初始位置包括标识和标尺的初始图像, 对比分析初始图像和实时获取的包括标识和标尺的图像, 计算获得执行臂 末端相对初始位置的实时位移。
该步骤中的分析计算原理与步骤 S13 )相同。 由于标尺的成像较为清 晰稳定, 易于设计为便于参考比较的形状, 此时, 可以将标尺作为标识成 像变化计算的参考, 计算标识的实时位移。 因此, 标尺的设置可以筒化图 像处理模块的处理程序, 提高精确度; 此外, 在焦距改变的情况下, 可以 通过标尺成像大小的改变计算焦距变量, 进而准确计算标识的实时位移, 而无需通过其他途径获取焦距变量。
步骤 S24 )根据执行臂末端的实时位移控制执行臂末端的运动。 与步 骤 S14 )相同。
请参考图 3 , 图 3本发明所提供控制执行臂末端运动方法的第三种具 体实施方式的流程图。 包括下述步骤:
步骤 S31 )设置随执行臂末端移动而移动的标识, 并于可观察到所述 执行臂末端运动的位置设置摄像头, 还在摄像头的窗口近端设置标尺; 步骤 S32 )摄像头获取包括标识和标尺的图像;
步骤 S33 ), 调整摄像头, 在初始位置, 使摄像头的窗口中心对准标识 的中心位置。
与第一种具体实施方式的区别在于, 增加了该步骤。 添加该步骤后, 在初始化过程中, 可以调整摄像头的高度或角度, 尽量使摄像头窗口对准 标识的中心位置, 则获得的标识的初始图像位于整个图像的中部, 于是, 标识移动一定距离后其成像尚在摄像头镜头覆盖范围以内, 同时计算误差 也相对较低。
步骤 S34 )预存初始位置包括标识和标尺的初始图像, 对比分析初始 图像和实时获取的包括标识和标尺的图像, 计算获得执行臂末端相对初始 位置的实时位移;
步骤 S35 )根据执行臂末端的实时位移控制执行臂末端的运动。 步骤 S34 )与步骤 S23 )相同, 步骤 S35 )与步骤 S24 )和步骤 S14 )相同。
请参考图 4, 图 4为本发明所提供控制执行臂末端运动方法的第四种 具体实施方式的流程图, 主要包括以下步骤:
步骤 S41 ) 于执行臂末端设置摄像头, 并于摄像头的可视区域设置标 识;
执行臂末端的可视区域, 指执行臂末端作业对象的位置, 或该位置附 近, 以便于在后述步骤中, 位于执行臂末端的摄像头获取标识的图像。
将摄像头设置于执行臂末端, 则摄像头随执行臂末端的移动而移动, 即与执行臂末端的运动轨迹一致。
步骤 S42 )摄像头实时获取标识的图像;
步骤 S43 )预存初始位置标识的初始图像, 并对比分析初始图像和实 时获取的标识的图像, 计算获得执行臂末端相对初始位置的实时位移; 在执行臂末端的运动过程中, 摄像头随其移动, 而标识设置于执行臂 末端的可视区域中, 故标识在摄像头中的成像为动态变化的过程, 因此, 分析标识的图像相对于初始图像的变化量, 可以获得执行臂末端相对初始 位置的实时位移。
步骤 S44 )根据标识的实时位移控制执行臂末端的运动。 执行臂末端移动时, 标识和摄像头存在相对运动, 比如, 标识左移时, 相当于摄像头右移, 而摄像头的位移与执行臂末端一致, 故根据获取的执 行臂末端的位移, 结合实际运动需要, 即可控制执行臂末端的运动轨迹。
通过上述论述可知, 本发明所提供的执行臂末端运动的控制方法, 可 以直接通过初始图像和实时获取的标识图像的分析比较, 获取执行臂末端 相对初始位置的实时位移, 进而获知执行臂末端的实时位移, 输出控制执 行臂运动的指令。 直接通过图像比较计算的方式, 相对于现有技术中利用 多个传感器数据信号叠加计算的方式, 具有更高的精确度。
请参考图 5 , 图 5为本发明所提供控制执行臂末端运动方法的第五种 具体实施方式的流程图。 包括下述步骤:
步骤 S51 ), 于执行臂末端设置摄像头, 并于摄像头的可视区域设置标 识, 还在摄像头的窗口近端设置标尺;
设置于窗口的近端, 即保证标尺始终可以通过摄像头成像, 标尺与摄 像头的位置关系保持恒定, 即在焦距不变的情况下, 标尺的成像大小始终 相等, 焦距改变时, 根据标尺成像大小的变化也可以计算出焦距的变化, 以便准确计算由于焦距变化而导致的标识成像大小的变化, 使标识的图像 分析具有稳定的参考系。 标尺的设置方式有多种, 比如, 设置摄像头时, 标尺可以固定于摄像头镜头的前方, 也可以设于摄像头的内部, 标尺还可 以与其他部件固定, 保证其相对于摄像头的镜头位置不变即可。
步骤 S52 ) , 摄像头获取包括标识和标尺的图像;
由于标尺始终可以成像, 故摄像头获取的图像同时包括标识和标尺, 当然, 在标识移动的情况下, 获得的不同时刻的图像中, 标识和标尺的相 对位置关系及相对大小均可能产生动态变化。
步骤 S53 ), 预存初始位置包括标识和标尺的初始图像, 并对比分析初 始图像和实时获取的包括标识和标尺的图像, 计算获得执行臂末端的实时 位移。
该步骤中的分析计算原理与步骤 S53 )相同。 由于标尺的成像较为清 晰稳定, 易于设计为便于参考比较的形状, 此时, 可以将标尺作为标识成 像变化计算的参考, 计算执行臂末端的实时位移。 因此, 标尺的设置还可 以筒化图像处理模块的处理程序, 提高精确度; 此外, 在焦距改变的情况 下, 可以通过标尺成像大小的改变计算焦距变量, 进而准确计算执行臂末 端的实时位移, 而无需通过其他途径获取焦距变量。
步骤 S54 )根据标识的实时位移控制执行臂末端的运动。 与步骤 S54 ) 相同。
请参考图 6, 图 6本发明所提供控制执行臂末端运动方法的第六种具 体实施方式的流程图。 包括下述步骤:
步骤 S61 ), 于执行臂末端设置摄像头, 并于摄像头的可视区域设置标 识, 还在摄像头的窗口近端设置标尺;
步骤 S62 ) , 摄像头获取包括标识和标尺的图像;
步骤 S61 )、 步骤 S62 )和步骤 S51 )、 步骤 S52 )相同。
步骤 S63 ), 调整摄像头, 使在初始位置摄像头的窗口中心对准标识的 中心位置。
与第五种具体实施方式的区别在于, 增加了该步骤。 添加该步骤后, 在初始化过程中, 可以调整摄像头的高度或角度, 尽量使摄像头窗口对准 标识的中心位置, 则获得的标识的初始图像位于整个图像的中部, 于是, 标识移动一定距离后其成像尚在摄像头镜头覆盖范围以内, 同时计算误差 也相对较低。
步骤 S64 ), 预存初始位置包括标识和标尺的初始图像, 并对比分析初 始图像和实时获取的包括标识和标尺的图像, 计算获得执行臂末端的实时 位移。
步骤 S65 )根据标识的实时位移控制执行臂末端的运动。 步骤 S64 ) 和步骤 S53 ), 步骤 S55 )与步骤 S54 )和步骤 S44 )相同。 请参考图 7, 图 7为本发明所提供控制执行臂末端运动方法第一种具 体计算方式的示意图。
该具体计算方式是将标识 10的初始成像和其他时刻的成像与标尺 20 的成像进行比对计算的方法, 为便于计算标识 10左右位移和上下位移(竖 直高度方向的位移), 可以将标识 10设置为交叉的水平标尺 201和竖直标 尺 202 (十字形标尺), 相当于建立竖直平面坐标系。 处理时, 可以测出标 识 10初始成像的上端到水平标尺 201的高度 A1 ,标识 10初始成像的下端 到水平标尺 201的高度 B1 ,标识 10初始成像一端到竖直标尺 202长度 D1 , 标识 10初始成像与水平标尺 201的夹角 Q1 , 而某一时刻的标识 10成像 两端到水平标尺 201的高度分别为 A2、 B2 , 其一端至竖直标尺 202的长 度为 D2, 与水平标尺 201的夹角为 Q2, 标识 10的实际长度为 L, 则可 以通过如下公式计算执行臂末端相对初始位置的上下移动距离 Y:
Y = Y2 - Yl ;
Yl = L x SINQ1 x (Λ1 - 5ΐ)/(Λ1 + Bl);
Y2 = L x SINQ2 x (A! - B1)/(A1 + Bl);
该方法还可以通过如下公式计算执行臂末端相对初始位置的左右移动 巨离 X
X = X2 - Xl ;
XI = L x SINQl x Dl/(Al + Bl) ;
X2 = L x SINQ2 x D2 /(A! + Bl)。
实际上, 上述角度 Ql和 Q2也可以通过标识 10成像的高度以及长度 计算得出, 相应地, 通过测出的角度和长度, 也可以得出成像的高度, 上 述计算方法可以灵活设置。 对上下位移和左右位移的精度要求均较高时, 可以将标识 10的结构设置为十字形标识, 即包括竖直标识和水平标识,该 计算方法与第一种计算方式的原理相同, 区别仅在于上下位移根据大致沿 竖直方向延伸的竖直标识成像计算, 左右位移根据大致沿水平方向延伸的 水平标识成像计算。
当执行臂末端前后产生位移时,标识 10成像的大小会发生改变,相应 的宽度和长度均会发生改变,可以单独通过成像规律作常规的图像处理(如 成像大小、 双目测距等处理方式)计算前后位移, 还可以综合采取激光测 距、 红外测距等方法实现前后距离测量。 当然, 前后产生位移时, 上述计 算公式也需要作适当的变形,可以测出标识 10初始成像的长度, 某一时刻 的成像长度, 通过两个长度值的变化关系, 修正上述公式中的输入变量, 进而消除前后移动所带来的计算误差; 当然, 长度发生变化超过一定范围 影响时, 也可以重新初始化程序, 以新的位置作为参考点。
请参考图 8 , 图 8为本发明所提供控制执行臂末端运动方法第二种具 体计算方式的示意图。 该计算方式中,标识 10设置为光栅 101形式,每组光栅 101的宽度可 以根据控制精度要求设计(比如控制精度为 0.1米, 光栅 101宽度可设计 为 0.05米), 当然, 光栅 101宽度在满足控制精度的前提下应尽量宽一些, 便于成像分析, 标尺 20呈水平状态, 标尺成像可以容纳一个光栅 101。 设 光栅 101宽度为 A, 光栅 101移动数量为 M, 通过初始图像和某一时刻 的图像分析, 可以得出光栅 101的移动数量, 则标识 10的上下位移
L = A x M 。 图中所示的标识成像大致沿竖直方向延伸, 需要测量左右位移 时,可以将标识 10设置为具有水平标识和竖直标识的结构,且均设为光栅 形式, 则计算左右位移时, 与上下位移的计算原理相同。 当执行臂末端前 后产生位移时, 可根据光栅的成像宽度变化修正标尺位置进行误差补偿。
当然, 根据标识 10形式的不同, 还可以由其他计算方式获取标识 10 的位移。
在上述两种计算方式中, 均以标尺 20的成像作为参考, 实际上, 也可 以在后期的图像处理过程中, 设置虚拟标尺。 需要说明的是, 当标尺 20 固定于其他结构上时, 即使摄像头 100具有轻微抖动,标尺 20的成像的角 度依然保持稳定,故设定的实体标尺 20相对于虚拟标尺, 能够始终准确地 作为标识 10图像变化的参考标准, 故优选设置标尺 20形成参考的标尺。
请参考图 9, 图 9为本发明所提供控制执行臂末端运动方法第三种具 体计算方式的示意图, 该种计算方式适用于第一、 第二及第三具体实施方 式。
该计算方式中,摄像头 100处于跟踪状态, 随标识 10位置的改动而作 相应的角度转动, 实时跟踪标识 10的中间位置。 根据拍摄的图像, 可以获 取初始位置时, 摄像头 100至标识 10的中心位置的距离 S1,某一时刻摄像 头 100至标识 10中心位置的距离 S2, 并可以由设于摄像头 100上的角度 传感器获取摄像头 100水平角度 Pl、 垂直角度 Q1以及当前状态下的水平 角度 P2、 垂直角度 Q2 (为便于理解, 图中建立 XYZ三维坐标系), 则可 以通过如下公式计算执行臂末端相对初始位置的上下移动距离 Y:
Y = Y1 - Y2 ;
Yl = Sl x SINQl ;
Y2 = S2 x SINQ2 ; 执行臂末端相对初始位置的左右移动距离 X:
X
Figure imgf000016_0001
XI =SlxCOSQl;
X2 =S2xCOSQ2
P=|P2-Pl|;
执行臂末端相对初始位置的前后移动距离 Z
Ζ = Ζί-Ζ2;
Zl =SlxCOSQlxSINPl;
Z2 =S2xCOSQ2xSINP2
第三种计算方式中,标识 10中心位置与摄像头 100之间的距离可以通 过分析计算标尺 20与标识 10的成像得出, 也可以通过双摄像头测距等图 像分析方法获得。
上述第一至第三具体实施方式均建立于, 摄像头位于可观察到执行臂 末端运动的位置, 且执行臂末端的动作范围较小。 当执行臂末端的施工位 置改变, 且变幅较大时, 摄像头可能无法继续观察到执行臂末端运动, 可 以在整个工作区域设置至少两个摄像头。 执行臂末端四周的工作区域指执 行臂末端在一定位置可以达到的任何区域, 设置两个以上摄像头, 可以扩 大对执行臂末端的监控范围, 设置多个摄像头后, 执行臂在任何方向的动 作, 均有相应的摄像头对其进行监控, 可以获得连续的位置信号, 调控的 范围更广。
请参考图 10, 图 10为本发明所提供控制执行臂末端运动方法第四种 具体计算方式的示意图, 该种计算方法适用于第四至第六具体实施方式。
该计算方式中,摄像头处于跟踪状态, 随标识 10位置的改动而作相应 的角度转动, 实时跟踪标识 10的中间位置。 根据拍摄的图像, 可以获取初 始位置时, 摄像头至标识 10的中心位置的距离 S1,某一时刻摄像头至标识 10中心位置的距离 S2,并可以由设于摄像头上的角度传感器获取摄像头初 始位置的水平角度 Pl、 垂直角度 Q1以及当前状态下的水平角度 P2、 垂直 角度 Q2(为便于理解, 图中建立 XYZ三维坐标系), 则可以通过如下公式 计算执行臂末端 500相对初始位置的上下移动距离 Y:
Y = Yl-Y2; Yl =Sl SINQl;
Y2 =S2xSINQ2
执行臂末端 500相对初始位置的左右移动距离 X:
X =Xl-X2;
XI =SlxCOSQlxCOSPl;
X2 =S2xCOSQ2xCOSP2
执行臂末端 500相对初始位置的前后移动距离 Z
Ζ = Ζί-Ζ2;
Zl =SlxCOSQlxSINPl;
Z2 =S2xCOSQ2xSINP2
第四种计算方式中,标识 10中心位置与摄像头之间的距离可以通过标 尺 20与标识 10的成像分析计算得出, 也可以通过双摄像头测距等图像分 析方法获得。
此外, 针对上述各实施例, 步骤 S14)或步骤 S44) 中, 还可以根据 实时获取的标识 10的图像控制摄像头 100的焦距。当预先设定的焦距可能 无法获取满足清晰度要求的标识 10图像时,可以控制摄像头 100变焦,分 析计算时, 将变焦引起的图像大小变化量引入计算公式中。
上述第四至第六具体实施方式均建立于, 标识 10位于执行臂末端 500 的可视区域内, 且执行臂末端 500的动作范围较小。 当执行臂末端 500的 施工位置改变, 且变幅较大时, 即执行臂末端 500可视区域发生改变时, 可以在整个工作区域设置至少两个标识,选择其中 1个作为计算用标识 10。 执行臂末端 500的可视区域指执行臂末端 500摄像头可观察到的任何区域, 设置多个标识, 可以扩大执行臂末端 500摄像头的监控范围, 保证执行臂 在任何方向的动作, 均有相应的标识可供参考,从而获得连续的位置信号, 调控的范围更广。
以上计算方式可以筒便地计算出执行臂末端的上下、左右、前后位移, 而在初始位置, 选定某位置为坐标原点, 则可以建立执行臂末端的三维空 间坐标系。 根据计算的位移实时监控执行臂末端的位置参数, 当需要执行 臂末端转换工作位置时, 可以以此参数为参考, 精确地控制带有摄像头的 执行臂末端运动至工作区域内的任意位置。 实际上, 在执行臂的工作区域内, 多个执行臂末端可能同时工作 (多 个执行臂末端的工作区域重合), 则可设置的多个标识 10避免单一标识 10 被其它执行臂末端所遮挡, 达到同时控制多个执行臂末端的运动轨迹, 实 现精确的智能化操控的目的。
除了上述控制方法, 本发明还提供一种执行臂末端运动的控制系统。 请参考图 11、 图 12和图 13 , 图 11为本发明所提供执行臂末端运动控制系 统一种具体实施方式的结构示意图;图 12为本发明所提供执行臂末端运动 控制系统另一种具体实施方式的结构示意图;图 13为图 11和图 12中控制 系统的控制原理示意图。
该控制系统包括随执行臂末端移动而移动的标识 10、 摄像头 100、 图 像处理模块 200, 以及执行臂控制器 300。
或该控制系统包括设置于执行臂末端工作台面的标识 10、 摄像头、 图 像处理模块, 以及执行臂控制器。
标识 10在上述控制方法中已有相关论述, 在此不赘述。
摄像头 100设置于可观察到执行臂末端运动的位置, 用以获取标识 10 图像, 并将获得的图像信号实时发送至图像处理模块 200, 摄像头 100与 图像处理模块 200可以通过有线或无线的方式连接。 采用摄像头 100获取 标识 10图像时,具体方案可以如下: 在可观察到执行臂末端运动的位置处 设置支架(比如三角架), 将摄像头 100置于支架上, 支架中心还可以悬挂 重物至地面, 防止摄像头所在位置振动时支架移动或倾翻, 设置支架时, 标尺 20可以直接与支架固定。
为了扩大对执行臂末端运动的控制范围, 除了于可观察到执行臂末端 运动的位置设置摄像头, 还可以在执行臂末端四周的工作区域设置一个以 上的监控摄像头, 使执行臂末端运动至任一方位, 均具有至少一个相应的 摄像头对其实行监控。 不同位置的摄像头 100监控执行臂末端时, 可以将 不同摄像头 100之间的位置差量合并入图像处理模块 200的计算程序中, 使图像分析的参考系保持统一; 或执行臂末端进入不同于预先采用的摄像 头 100的可视范围内时, 相应的摄像头按照预先设定的参考系进行分析处 理; 或由上述方法可知, 设置多个摄像头 100, 可以建立执行臂末端的三 维空间坐标系, 精确地控制执行臂末端运动至工作区域内的任意位置, 在 工作区域内具有多个执行臂末端时 , 可以建立规模化的执行臂控制系统。 为了扩大对执行臂末端运动的控制范围, 还可以在执行臂末端 500四 周的工作区域设置至少两个标识 10,使执行臂末端 500运动至工作区域内 的任一位置,均具有至少一个相应的标识 10纳入执行臂末端 500摄像头的 可视区域内, 以供参考。 选取不同位置的标识 10时, 可以将不同标识 10 之间的位置差量合并入图像处理模块 200的计算程序中, 使图像分析的参 考系保持统一; 或执行臂进入不同于预先选定的标识 10的范围内时,可以 使图像处理模块 200重新初始化,将作业范围内的标识 10的图像作为重新 选定的初始图像; 或由上述方法可知, 设置多个标识 10, 可以建立执行臂 末端 500的三维空间坐标系, 精确地控制执行臂末端 500运动至工作区域 内的任意位置, 在工作区域内具有多个执行臂末端 500时, 可以建立规模 化的执行臂控制系统。
在执行臂末端 500的可视区域处设置一个以上标识 10时,执行臂末端 500的摄像头 100可以获取靠近摄像头 100窗口中心的标识 10的图像, 以 便于摄像头 100根据标识 10的成像清晰度以及大小, 选择合适的标识 10 作为跟踪目标。
摄像头 100设置于执行臂末端 500, 随执行臂末端 500移动而移动, 用以获取标识 10图像,并将获得的图像信号实时发送至图像处理模块 200, 摄像头 100与图像处理模块 200可以通过有线或无线的方式连接。
图像处理模块 200用以接收摄像头 100获取的图像, 且预存初始位置 标识 10的初始图像, 并根据初始图像分析实时获取的标识 10的图像, 计 算获得执行臂末端的实时位移, 并将得出的实时位移发送至执行臂控制器
300。
位于初始位置时,可以调整摄像头 100和标识 10的相对位置,其优势 在控制方法(主要针对第一和第二种计算方法中,将标识调整至摄像头 100 的中心位置) 中已有论述, 相应地, 可以设置控制摄像头 100的控制模块 400,控制摄像头 100高度或角度的变化。摄像头 100的控制模块 400可以 与执行臂控制器 300或图像处理模块 200连接, 执行臂控制器 300和图像 处理模块 200均可以根据获取的标识 10图像, 判断初始位置, 标识 10的 图像是否适合作为初始图像, 并发送相应的控制信号至摄像头 100的控制 模块 400, 由控制模块 400控制摄像头 100的高度和角度。
执行臂控制器 300, 用以接收图像处理模块 200获得的标识 10的实时 图像,根据标识 10的初始图像和实时图像计算执行臂末端的实时位移,进 而控制执行臂末端的运动。 执行臂控制器 300和图像处理模块 200也可以 通过有线或无线的方式连接, 二者也可以集成于同一模块上。
则本发明所提供的执行臂末端运动的控制系统, 由图像处理模块 200 直接分析比较标识 10的初始图像和实时获取的图像,根据变化量获取执行 臂末端相对初始位置的实时位移并由执行臂控制器执行臂控制器 300输出 控制执行臂运动的指令。 相对于现有技术中利用多个传感器数据信号叠加 计算的方式, 该控制系统具备高精度的分析控制能力; 而且, 该控制系统 仅于执行臂末端设置标识 10, 无需于执行臂末端安装传感器类电子部件, 故具备较高的测量稳定性和安全性, 适用于工况复杂恶劣的场合。
进一步地, 控制系统还可以包括设置于摄像头 100的窗口近端的标尺 20, 如图 10所示的十字形标尺, 且标尺 20与摄像头 100的位置关系保持 恒定。 则摄像头 100获取的图像中包括标识 10和标尺 20, 且在焦距不变 的情况下, 标尺 20 的成像大小保持恒定。 初始化时, 图像处理模块 200 预存初始位置包括标识 10和标尺 20的初始图像, 并根据初始图像分析实 时获取的包括标识 10和标尺 20的图像,计算获得执行臂末端的实时位移。 标尺 20 的工作原理以及产生的技术效果在控制方法的实施方式中也已论 述, 在此不赘述。
上述摄像头 100的控制模块 400还可以根据获取的标识 10的图像控制 摄像头 100的焦距。在执行臂末端运动的过程中,均可以控制控制模块 400 的变焦, 焦距变化引起的标识 10或标尺 20成像的变化, 将计入计算公式 当中。
在控制方法中, 已就图像处理模块的具体计算方式进行了描述, 可以 参照理解。
另外, 为便于夜晚或光线不足时作业, 标识 10可以由反光材料制成, 以便于图像识别。 而且, 还可以设置为标识 10提供照明的远照灯, 则在远 照灯的作用下,便于获取清晰的标识 10图像。远照灯的控制端可以连接摄 像头 100的控制模块 400, 摄像头根据标识 10的位置调整角度或高度时, 保证远照灯的光线可以始终射向标识 10, 鉴于此, 远照灯优选设置于摄像 头 100的附近。
另外, 通过摄像头 100采集执行臂末端工作区域的近端工况图像, 将 此图像在工程机械的显示装置上显示, 可以实现对工程机械执行臂末端进 行远程工况观察。 更进一步通过图像处理模块 200对执行臂末端的图像进 行分析, 当执行臂末端靠近某个大型障碍物(例如垂直的墙壁时), 图像处 理模块 200产生告警信息并发送给执行臂控制器 300, 执行臂控制器 300 控制停止执行臂的运动或修改运动路径, 从而可以实现执行臂末端的智能 避障。 相关图像分析处理方法为本领域技术人员所熟知, 在此不再赘述。
以上对本发明所提供的一种执行臂末端运动的控制方法及控制系统进 阐述, 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。 应当指出, 对于本技术领域的普通技术人员来说, 在不脱离本发明原理的 前提下, 还可以对本发明进行若干改进和修饰, 这些改进和修饰也落入本 发明权利要求的保护范围内。

Claims

权 利 要 求
1、 一种控制执行臂末端运动的方法, 其特征在于, 包括以下步骤:
11 )设置随所述执行臂末端移动而移动的标识, 并于可观察到所述执 行臂末端运动的位置设置摄像头; 或于所述执行臂末端设置摄像头, 并于 所述摄像头的可视区域设置标识;
12 )所述摄像头实时获取所述标识的图像;
13 )预存初始位置所述标识的初始图像, 对比分析所述初始图像和实 时获取的所述标识的图像, 计算获得所述执行臂末端相对初始位置的实时 位移;
14 )根据所述执行臂末端的实时位移控制所述执行臂末端的运动。
2、 根据权利要求 1所述的控制执行臂末端运动的方法, 其特征在于, 步骤 11 ) 中, 还在所述摄像头的窗口近端设置标尺, 所述标尺相对所 述摄像头的位置保持恒定;
步骤 12 ) 中, 所述摄像头获取包括所述标识和所述标尺的图像; 步骤 13 ) 中, 预存初始位置包括所述标识和所述标尺的初始图像, 对 比分析初始图像和实时获取的包括所述标识和所述标尺的图像, 计算获得 所述执行臂末端相对初始位置的实时位移。
3、 根据权利要求 2所述的控制执行臂末端运动的方法, 其特征在于, 步骤 11 ) 中, 设置的所述标尺为交叉的水平标尺和竖直标尺; 步骤 13 )中, 将初始图像中的标识和实时获取图像中的第一标识均与 对应的所述标尺的水平标尺以及竖直标尺的成像进行对比分析, 计算获得 所述执行臂末端相对初始位置的左右位移和上下位移。
4、 根据权利要求 2所述的控制执行臂末端运动的方法, 其特征在于, 步骤 11 ) 中, 在所述摄像头上设置角度传感器;
步骤 12 ) 中, 所述摄像头跟踪所述标识的中心位置, 并获取所述标识 的图像;
步骤 13 )中, 记录所述角度传感器检测的所述摄像头的水平角度和垂 直角度, 对比分析所述初始图像和实时获取的标识图像, 获得所述摄像头 至所述标识中心位置的初始距离和实时距离, 根据初始距离、 实时距离、 初始水平角度、 初始垂直角度、 实时水平角度和实时垂直角度计算获得所 述执行臂末端相对初始位置的实时位移。
5、根据权利要求 1至 3任一项所述的控制执行臂末端运动的方法,其 特征在于,
在步骤 12 )和步骤 13 )之间还具有以下步骤:
123 )调整摄像头,使在初始位置所述摄像头的窗口中心对准所述标识 的中心位置。
6、 根据权利要求 1至 4任一项所述的控制方法, 其特征在于, 步骤 14 ) 中, 根据获取的所述标识的图像控制所述摄像头的焦距。
7、 根据权利要求 1至 4任一项所述的控制方法, 其特征在于, 步骤 11 ) 中, 在所述执行臂末端四周的工作区域设置至少两个摄像头 或者至少两个标识。
8、 一种执行臂末端运动的控制系统, 其特征在于, 包括:
标识及与所述标识可相对运动的摄像头, 所述标识和摄像头的其一设 置于所述执行臂末端, 所述摄像头能够获取所述标识的图像;
图像处理模块, 用于接收所述摄像头获取的图像, 且预存初始位置所 述标识的初始图像, 并对比分析所述初始图像和实时获取的所述标识的图 像, 计算获得所述执行臂末端相对初始位置的实时位移;
执行臂控制器, 用于接收所述图像处理模块获得的所述执行臂末端的 实时位移, 根据所述执行臂末端的实时位移控制执行臂末端的运动。
9、 根据权利要求 8所述的执行臂末端运动的控制系统, 其特征在于, 所述标识设于所述执行臂末端, 所述摄像头设置于可观察到所述执行臂末 端运动的位置; 或
所述摄像头设于所述执行臂末端, 所述标识设置于所述摄像头可视区 域。
10、根据权利要求 8所述的执行臂末端运动的控制系统,其特征在于, 还包括设置于所述摄像头的窗口近端的标尺; 所述摄像头获取包括所 述标识和所述标尺的图像; 所述图像处理模块预存初始位置包括所述标识 和所述标尺的初始图像, 并对比分析所述初始图像分析实时获取的包括所 述标识和所述标尺的图像, 计算获得所述执行臂末端相对初始位置的实时 位移。
11、根据权利要求 10所述的执行臂末端运动的控制系统,其特征在于, 所述标尺为交叉的水平标尺和竖直标尺; 所述图像处理模块将初始图像中 的标识和实时获取图像中的标识均与对应的所述标尺的水平标尺以及竖直 标尺的成像进行对比分析, 计算获得所述执行臂末端相对初始位置的左右 位移和上下位移。
12、根据权利要求 8所述的执行臂末端运动的控制系统,其特征在于, 还包括摄像头的控制模块, 位于初始位置时, 所述控制模块根据获取的所 述标识的图像调整所述摄像头, 使所述摄像头的窗口中心对准所述标识的 中心位置。
13、根据权利要求 12所述的执行臂末端运动的控制系统,其特征在于, 所述摄像头上设有角度传感器; 所述摄像头跟踪所述标识的中心位置, 并 获取所述标识的图像; 所述图像处理模块记录所述角度传感器检测的所述 摄像头的水平角度和垂直角度, 并对比分析所述初始图像和实时获取的标 识图像, 获得所述摄像头至所述标识中心位置的初始距离和实时距离, 根 据初始距离、 实时距离、 初始水平角度、 初始垂直角度、 实时水平角度和 实时垂直角度计算获得所述执行臂末端的实时位移。
14、根据权利要求 12所述的执行臂末端运动的控制系统,其特征在于, 所述标识由反光材料制成; 且设置为标识提供照明的远照灯, 所述远照灯 的控制端连接所述摄像头的所述控制模块。
15、根据权利要求 12所述的执行臂末端运动的控制系统,其特征在于, 所述控制模块根据获取的所述标识的图像控制所述摄像头的焦距。
16、 根据权利要求 8至 15任一项所述的执行臂末端运动的控制系统, 其特征在于, 所述执行臂末端四周的工作区域设置至少两个摄像头或者两 个标识。
17、 根据权利要求 8至 15任一项所述的执行臂末端运动的控制系统, 其特征在于, 所述标识为所述执行臂末端的软管的一部分。
PCT/CN2012/074304 2011-09-28 2012-04-18 一种执行臂末端运动的控制系统及控制方法 WO2013044626A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110301629.6 2011-09-28
CN201110301612.0 2011-09-28
CN2011103016120A CN102501252A (zh) 2011-09-28 2011-09-28 一种控制执行臂末端运动的方法及控制系统
CN201110301629.6A CN102508495B (zh) 2011-09-28 2011-09-28 一种控制执行臂末端运动的方法及控制系统

Publications (1)

Publication Number Publication Date
WO2013044626A1 true WO2013044626A1 (zh) 2013-04-04

Family

ID=47994214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074304 WO2013044626A1 (zh) 2011-09-28 2012-04-18 一种执行臂末端运动的控制系统及控制方法

Country Status (1)

Country Link
WO (1) WO2013044626A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617335A (en) * 1992-01-30 1997-04-01 Fujitsu Limited System for and method of recognizating and tracking target mark
JPH09160651A (ja) * 1995-12-11 1997-06-20 Mitsubishi Electric Corp ワーク位置決め装置
JPH11320465A (ja) * 1998-05-01 1999-11-24 Murata Mach Ltd ロボットアームの制御方法
JP2002254361A (ja) * 2001-02-27 2002-09-10 National Institute Of Advanced Industrial & Technology 移動マニピュレータの遠隔操作装置
US7634336B2 (en) * 2005-12-08 2009-12-15 Electronics And Telecommunications Research Institute Localization system and method of mobile robot based on camera and landmarks
CN101817182A (zh) * 2010-03-30 2010-09-01 杭州电子科技大学 一种智能移动机械臂控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5617335A (en) * 1992-01-30 1997-04-01 Fujitsu Limited System for and method of recognizating and tracking target mark
JPH09160651A (ja) * 1995-12-11 1997-06-20 Mitsubishi Electric Corp ワーク位置決め装置
JPH11320465A (ja) * 1998-05-01 1999-11-24 Murata Mach Ltd ロボットアームの制御方法
JP2002254361A (ja) * 2001-02-27 2002-09-10 National Institute Of Advanced Industrial & Technology 移動マニピュレータの遠隔操作装置
US7634336B2 (en) * 2005-12-08 2009-12-15 Electronics And Telecommunications Research Institute Localization system and method of mobile robot based on camera and landmarks
CN101817182A (zh) * 2010-03-30 2010-09-01 杭州电子科技大学 一种智能移动机械臂控制系统

Similar Documents

Publication Publication Date Title
CN109552665B (zh) 用于使用悬索平台测量和检查结构的方法
US9667923B2 (en) Camera attitude detection device and work region line display device
US9300954B2 (en) Surrounding information-obtaining device for working vehicle
CN102501252A (zh) 一种控制执行臂末端运动的方法及控制系统
JP6061205B2 (ja) 構造物変位の常時監視方法及びその装置
US20150377606A1 (en) Projection system
US20100121540A1 (en) Industrial machine
JP2007120993A (ja) 物体形状測定装置
JP5971994B2 (ja) クレーン作業監視装置
JP2011079648A (ja) 固定映像表示システム
CN103090845A (zh) 一种基于多影像的远程测距方法
CN102798456A (zh) 一种工程机械臂架系统工作幅度的测量方法、装置及系统
KR101204870B1 (ko) 감시 카메라 시스템 및 그의 제어방법
JP6097063B2 (ja) 高さ測定装置及び高さ測定方法
JP7155516B2 (ja) 建設機械
CN102508495B (zh) 一种控制执行臂末端运动的方法及控制系统
JP6421451B2 (ja) カメラ姿勢検出装置
JP2017052045A (ja) 位置関係データ取得装置と遠隔操縦装置
KR101665388B1 (ko) 카메라 제어 방법
WO2013044626A1 (zh) 一种执行臂末端运动的控制系统及控制方法
JP6528474B2 (ja) 画像表示装置
US20150172606A1 (en) Monitoring camera apparatus with depth information determination
WO2021210456A1 (ja) ロボットの制御座標系における視覚センサの位置を取得する装置、ロボットシステム、方法、及びコンピュータプログラム
JP2007189559A (ja) 監視カメラシステム及びカメラの制御方法
JP2007171018A (ja) 物体位置認識方法及び物体位置認識装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835481

Country of ref document: EP

Kind code of ref document: A1