WO2013042596A1 - ガラス研磨用複合粒子 - Google Patents

ガラス研磨用複合粒子 Download PDF

Info

Publication number
WO2013042596A1
WO2013042596A1 PCT/JP2012/073350 JP2012073350W WO2013042596A1 WO 2013042596 A1 WO2013042596 A1 WO 2013042596A1 JP 2012073350 W JP2012073350 W JP 2012073350W WO 2013042596 A1 WO2013042596 A1 WO 2013042596A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polishing
glass
cerium oxide
oxide particles
Prior art date
Application number
PCT/JP2012/073350
Other languages
English (en)
French (fr)
Inventor
勇児 川▲崎▼
弘享 川岸
務 山本
勝 見上
敦樹 寺部
Original Assignee
堺化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺化学工業株式会社 filed Critical 堺化学工業株式会社
Priority to EP12833447.1A priority Critical patent/EP2759526B1/en
Priority to KR1020147006198A priority patent/KR101951502B1/ko
Priority to JP2013504045A priority patent/JP5278631B1/ja
Priority to CN201280045874.8A priority patent/CN103814102B/zh
Publication of WO2013042596A1 publication Critical patent/WO2013042596A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • C09K3/1445Composite particles, e.g. coated particles the coating consisting exclusively of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic

Definitions

  • the present invention relates to composite particles for polishing glass.
  • Cerium oxide-based abrasives are used for polishing optical glasses that require high transparency and accuracy, such as lenses and prisms, and for polishing glass substrates that are used in display glasses and magnetic hard disks. .
  • This abrasive is produced by firing and pulverizing minerals rich in so-called rare earths (rare earths).
  • Polishing of glass products using cerium oxide is performed by chemical mechanical polishing (also referred to as CMP (Chemical Mechanical Polishing)) that combines mechanical polishing and chemical polishing.
  • CMP Chemical Mechanical Polishing
  • the chemical mechanical polishing is a method of making mechanical polishing with an abrasive easy to occur by utilizing the fact that the glass is denatured by chemical reaction between the abrasive and glass to be polished.
  • Chemical mechanical polishing is suitable for polishing precise optical glass and glass substrates that require high transparency and smoothness because a high polishing rate and a smooth flat surface can be obtained.
  • Patent Document 1 discloses a glass polishing abrasive comprising a cerium oxide abrasive and a hard abrasive made of aluminum oxide and / or silicon carbide. A glass polishing abrasive containing 5 to 50 parts by weight is described. Patent Document 2 describes a glass polishing method characterized by polishing glass polished with an abrasive such as cerium oxide with a glass polishing abrasive composition containing titanium oxide fine particles. .
  • Patent Document 1 the abrasive for glass polishing described in Patent Document 1 is not an abrasive made of cerium oxide alone, the main abrasive is a cerium oxide abrasive, so that the amount of cerium oxide used is still large.
  • Patent Document 2 polishing is performed using titanium oxide. Titanium oxide has high Mohs hardness, but has low reactivity with the glass that is the object to be polished, and so-called chemical polishing does not occur. Therefore, there is a problem that the polishing rate is lowered. Patent Document 2 describes that it is desirable to perform polishing using an abrasive composition having a high polishing efficiency such as cerium oxide before polishing with titanium oxide. In other words, the glass polishing method described in Patent Document 2 is not a polishing method that can reduce the amount of cerium oxide used because it is necessary to use cerium oxide as an abrasive.
  • An object of the present invention is to provide glass polishing particles that have a small amount of cerium, which is a rare earth, and have polishing performance that can replace the conventionally used cerium oxide.
  • the first aspect of the present invention is: Base material particles selected from titanium oxide particles, zirconium oxide particles, barium sulfate particles, synthetic mica, zinc oxide particles, and calcium carbonate particles; Cerium oxide particles supported on the surface of the substrate particles; This invention relates to the composite particle for glass grinding
  • the composite particles for glass polishing of the present invention have base particles selected from titanium oxide particles, zirconium oxide particles, barium sulfate particles, synthetic mica, zinc oxide particles, and calcium carbonate particles.
  • base particles selected from titanium oxide particles, zirconium oxide particles, barium sulfate particles, synthetic mica, zinc oxide particles, and calcium carbonate particles.
  • the glass polishing composite particles of the present invention are supported on the surface of the substrate particles selected from titanium oxide particles, zirconium oxide particles, barium sulfate particles, synthetic mica, zinc oxide particles, and calcium carbonate particles. And cerium oxide particles. It is preferable that the cerium oxide particles are supported in an island shape on the substrate particles.
  • FIG. 1 is an example of an electron micrograph of the glass polishing composite particles of the present invention.
  • the composite particle 1 for glass polishing shown in FIG. 1 has titanium oxide particles 10 as base particles, and cerium oxide particles 20 are supported on the surface of the titanium oxide particles 10 in an island shape.
  • “Supported in an island shape” means a state in which cerium oxide particles are supported in a state where the outline of each particle can be distinguished in an electron micrograph, and the cerium oxide particles protrude from the surface of the base particle. I mean. Specifically, it means that there are cerium oxide particles protruding 0.01 ⁇ m or more from the surface of the substrate particles. That is, when the surface of the substrate particles is the sea, a state where the cerium oxide particles appear to be an island floating in the sea is referred to as an “island shape”.
  • the titanium oxide particles are not particularly limited in the production method, shape, crystal type and particle diameter.
  • the titanium oxide particles may be produced by a chlorine method or a sulfuric acid method.
  • the crystal type is preferably a rutile type because the polishing rate is high, but it may be an anatase type, a brookite type, or a mixture thereof.
  • the base particles are titanium oxide particles, but zirconium oxide particles, barium sulfate particles, or synthetic mica particles may be used in place of the titanium oxide particles.
  • the zirconium oxide particles may be cubic or tetragonal, or a mixture thereof.
  • the sedimentary barium sulfate obtained by the method called the mirabilite method or a sulfuric acid method, and the fertile barium sulfate obtained by beneficiating and crushing barite are mentioned.
  • Specific examples of commercially available products include precipitated barium sulfate BF-1 (0.05 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.).
  • the synthetic mica particles are not particularly limited, and examples thereof include fluorine phlogopite and tetrasilicon mica.
  • the base particles may be zinc oxide particles or calcium carbonate particles.
  • Examples of zinc oxide particles include Japanese Industrial Standards 1, 2, and 3 types of zinc oxide particles.
  • Examples of commercially available products include LPZINC-2 (2 ⁇ m, manufactured by Sakai Chemical Industry Co., Ltd.). *
  • Examples of the calcium carbonate particles include so-called heavy calcium carbonate made by pulverizing limestone, and synthetic calcium carbonate made by a chemical reaction.
  • synthetic calcium carbonate white gloss flower O (0.03 ⁇ m, manufactured by Shiroishi Kogyo Co., Ltd.) can be mentioned.
  • the shape of the substrate particles may be spherical, plate-shaped, or needle-shaped.
  • the substrate particles are titanium oxide, barium sulfate, synthetic mica, and zinc oxide
  • plate-like particles can also be preferably used.
  • the polishing rate is high with respect to the spherical zinc oxide particles.
  • the average primary particle size of the substrate particles is not particularly limited, but is preferably 0.01 to 5 ⁇ m.
  • the thickness is more preferably 0.1 to 3 ⁇ m, and further preferably 0.2 to 2 ⁇ m.
  • the average primary particle diameter of the titanium oxide particles is less than 0.01 ⁇ m, the polishing rate may be lowered.
  • the average primary particle diameter of the titanium oxide particles exceeds 5 ⁇ m, the scratch property may be deteriorated and the glass surface may be damaged.
  • the average primary particle diameter of the particles is a particle defined by a fixed direction diameter (interval between two parallel lines in a fixed direction sandwiching the particles) in a field of view of 20,000 times that of a transmission electron microscope (TEM) photograph. It is a diameter ( ⁇ m), and the average value is obtained by measuring the constant direction diameters of 1000 independent particles that do not overlap in the TEM photograph.
  • TEM transmission electron microscope
  • the substrate particles may be further surface-treated with alumina.
  • Particles obtained by surface-treating the substrate with alumina and then supporting the cerium oxide particles and firing them at a temperature of about 900 ° C. to 950 ° C. are preferred in terms of improving the polishing rate.
  • composite particles obtained by firing at a temperature of about 950 ° C. to 1000 ° C. are preferable in that the polishing rate is further improved.
  • the raw material for the cerium oxide particles is not particularly limited, and examples thereof include cerium chloride, nitrate, halide, sulfate, carbonate, and ammonium nitrate.
  • alkali water such as ammonia water and sodium hydroxide, inorganic acid or organic acid such as sulfuric acid and oxalic acid
  • the resulting hydroxide or oxalate precipitate is obtained.
  • these cerium oxide precursors are heated and fired, cerium oxide particles are obtained.
  • the obtained cerium oxide precursor may be heated at a high temperature and high pressure to form cerium oxide by a so-called solvothermal method.
  • a fluorine compound, phosphoric acid, alkali metal salt, alkaline earth metal salt in terms of oxide is added to 100% by weight of titanium oxide
  • a cerium oxide precursor containing fluorine, phosphorus, alkali metal, or alkaline earth metal is obtained by adding an alkali, inorganic acid, or organic acid, and this is heated and fired to obtain fluorine, phosphorus, alkali metal, and alkaline earth.
  • cerium oxide particles there is an effect of increasing the polishing rate by combining cerium oxide particles with fluorine compound, phosphorus compound, alkali metal compound, alkaline earth metal compound, but fluorine, phosphorus, alkali metal, alkaline earth added If the metal exceeds 25% by weight in terms of oxide, the effect of addition is saturated, while the proportion of the base particles decreases, so the polishing rate may decrease.
  • the average primary particle diameter of the island-shaped cerium oxide particles supported on the surface of the substrate particles is preferably 0.02 to 0.10 ⁇ m.
  • the cerium valence in the cerium oxide particles may be trivalent or tetravalent, and the composite particles of the present invention more preferably support cerium oxide particles containing trivalent cerium in view of further chemical polishing. .
  • the glass polishing composite particles of the present invention are used as a glass abrasive, first, chemical polishing proceeds because the cerium oxide particles supported on the surface of the substrate particles are in contact with the glass surface.
  • chemical polishing a high polishing rate similar to that obtained when a conventional glass abrasive mainly composed of cerium oxide is used can be obtained. Since the above-mentioned substrate particles have a high Mohs hardness, they are not easily worn away, and physical polishing can be performed effectively. Therefore, a high polishing rate can be maintained for a long time.
  • the composite particles for glass polishing of the present invention maintain a high polishing rate for a long time by a combination of chemical polishing with cerium oxide, which is highly reactive with glass, and physical polishing with the substrate particles having high Mohs hardness. And an abrasive capable of reducing the amount of cerium oxide used.
  • the composite particle for glass polishing of the present invention is Coating a cerium oxide precursor on the surface of a substrate particle selected from titanium oxide particles, zirconium oxide particles, barium sulfate particles, synthetic mica, zinc oxide particles, and calcium carbonate particles; A step of heating and firing the particles after coating with the cerium oxide precursor at 250 to 1200 ° C .; It is obtained through a step of pulverizing the particles after the heat and baking.
  • the substrate particles may be surface-treated with alumina.
  • base material particles are added to water, a cerium oxide precursor raw material is added to a slurry maintained at a temperature of 20 to 90 ° C., and then a cerium oxide precursor raw material is added.
  • the resulting slurry is neutralized with an aqueous sodium hydroxide solution to adjust the pH to 6-8. Further, it is aged over about 10 to 60 minutes.
  • the slurry is washed, solid-liquid separated, and dried. The drying temperature and time are preferably about 100 to 150 ° C. and about 1 to 8 hours. Thereby, the covering body of the cerium oxide precursor is formed on the surface of the substrate particles.
  • the addition amount of the raw material of the cerium oxide precursor is preferably 1 to 50% by weight in terms of cerium oxide with respect to 100% by weight of the base particles. More preferably, it is 3 to 20% by weight, and further preferably 5 to 10% by weight.
  • the addition amount of the raw material of the cerium oxide precursor is less than 1% by weight in terms of cerium oxide, the supported amount of cerium oxide may be insufficient and the polishing rate may be lowered. Further, even if the amount of the cerium oxide precursor added exceeds 50% by weight in terms of cerium oxide, a polishing rate commensurate with the increase in the amount added cannot be obtained, and the consumption of cerium oxide increases. It is not preferable.
  • a step of heating and firing the particles obtained by the above step and having the surface of the substrate particles coated with the cerium oxide precursor is performed.
  • the cerium oxide precursor becomes cerium oxide particles, and is supported in the form of islands on the surface of the substrate particles to form composite particles.
  • the state of the composite particles for glass polishing obtained by the above process is the state shown in FIG.
  • the baking temperature is preferably 250 to 1200 ° C. More preferably, the temperature is 500 to 1000 ° C, and still more preferably 700 to 1000 ° C.
  • the heating and baking time is preferably 0.5 to 3 hours. When the heating and baking temperature is less than 250 ° C., the cerium oxide particles may not be supported in an island shape, and the polishing rate may be lowered. When the heating and baking temperature exceeds 1200 ° C., the scratch property is deteriorated and the glass surface may be damaged.
  • FIG. 2 is an example of an electron micrograph of particles in which the surface of the titanium oxide particles is coated with a cerium oxide precursor and is not subjected to heat baking treatment.
  • grains shown in FIG. 2 are the particles which passed through the grinding
  • the surface of the titanium oxide particles 110 is coated with cerium hydroxide 120, which is a kind of cerium oxide precursor.
  • the cerium hydroxide 120 is coated around the titanium oxide particles 110 in a state of an expanded layer, not in the form of particles. As shown in FIG.
  • a method by a so-called solid phase method in which base particles and the above cerium oxide raw material and / or cerium oxide are mixed and heated and fired at 250 to 1200 ° C. Good.
  • Example 1 Rutile titanium oxide having an average primary particle size of 0.40 ⁇ m obtained by the sulfuric acid method was added to water to obtain an aqueous slurry having a TiO 2 concentration of 400 g / L. 0.5 L of this slurry was adjusted to 70 ° C. while stirring, and while maintaining this temperature, 40% cerium nitrate aqueous solution in an amount corresponding to 10 parts by weight in terms of CeO 2 was added per 100 parts by weight of TiO 2 . Next, the pH of the resulting slurry was neutralized to 7 with an aqueous sodium hydroxide solution and then aged for 60 minutes to form a cerium hydroxide coating on the TiO 2 surface.
  • the slurry after forming the coating band was washed, separated into solid and liquid, and dried at a temperature of 120 ° C. for 8 hours. Next, the obtained dried product was heated and fired at 900 ° C. for 1 hour. Further, the mixture was pulverized using a hammer mill to obtain composite particles for glass polishing in which cerium oxide was supported in the form of islands on the surface of base material particles made of TiO 2 particles.
  • Example 2 Composite particles for glass polishing were obtained by the same procedure as in Example 1 except that rutile type titanium oxide having an average primary particle size of 0.40 ⁇ m was changed to rutile type titanium oxide having an average primary particle size of 0.26 ⁇ m.
  • Example 3 Composite particles for glass polishing were obtained by the same procedure as in Example 1 except that an amount of 40% cerium nitrate aqueous solution corresponding to 5 parts by weight in terms of CeO 2 was added.
  • Example 4 Composite particles for glass polishing were obtained by the same procedure as in Example 1 except that an amount of 40% cerium nitrate aqueous solution corresponding to 20 parts by weight in terms of CeO 2 was added.
  • Example 5 Composite particles for glass polishing were obtained by the same procedure as in Example 1 except that an amount of 40% cerium nitrate aqueous solution corresponding to 50 parts by weight in terms of CeO 2 was added.
  • Example 6 Add 40% cerium nitrate aqueous solution in an amount corresponding to 10 parts by weight in terms of CeO 2 to rutile-type titanium oxide powder with an average primary particle size of 0.40 ⁇ m obtained by the sulfuric acid method, and mix well so that the whole is uniform. After that, it was heated and fired at 900 ° C. for 1 hour. Furthermore, the composite particle
  • Example 7 Composite particles for glass polishing were obtained in the same procedure as in Example 3, except that zirconium oxide particles having an average primary particle size of 1.00 ⁇ m were used instead of titanium oxide particles serving as base particles.
  • Example 8 In Example 1, after adding 40% aqueous cerium nitrate solution, an amount of magnesium carbonate corresponding to 5 parts by weight in terms of MgO is added per 100 parts by weight of TiO 2 , and then with an aqueous sodium hydroxide solution, Glass polishing particles were obtained by the same procedure as in Example 1 except that the pH was neutralized to 7.
  • Example 9 Rutile titanium oxide having an average primary particle size of 0.40 ⁇ m obtained by the sulfuric acid method was added to water to obtain an aqueous slurry having a TiO 2 concentration of 400 g / L.
  • the slurry 0.5 L was adjusted to 70 ° C. with stirring, and while maintaining this temperature, an aqueous solution of sodium aluminate corresponding to 10 parts by weight in terms of Al 2 O 3 was added per 100 parts by weight of TiO 2 . .
  • the pH of the slurry obtained with 30% sulfuric acid was neutralized to 7 and then aged for 60 minutes to form an alumina hydroxide coating band on the TiO 2 surface.
  • the slurry after forming the coating band was washed, separated into solid and liquid, and dried at a temperature of 120 ° C. for 8 hours.
  • the obtained dried product was pulverized using a fluid energy mill.
  • this pulverized product was added to water to obtain an aqueous slurry having a concentration of 400 g / L.
  • 0.5L of this slurry was adjusted to 70 ° C. while stirring, and stirred while maintaining this temperature, and 40% cerium nitrate aqueous solution in an amount corresponding to 10 parts by weight in terms of CeO 2 was added per 100 parts by weight of TiO 2. did.
  • the pH of the resulting slurry was neutralized to 7 with an aqueous sodium hydroxide solution, and then aged for 60 minutes. From the inside, the alumina hydroxide and cerium hydroxide coating bands were formed on the TiO 2 surface in order. Formed. The slurry after forming the coating band was washed, separated into solid and liquid, and dried at a temperature of 120 ° C. for 8 hours. Next, the obtained dried product (A) was heated at 900 ° C. for 1 hour. Furthermore by grinding with a hammer mill, the TiO 2 particles aluminum oxide layer was coated to obtain a titanium oxide-containing composite particles of the present invention carrying the cerium oxide.
  • Example 10 Composite particles for glass polishing were obtained in the same procedure as in Example 9 except that the dried product (A) obtained in Example 9 was heated in an atmosphere of 950 ° C. for 1 hour.
  • Example 11 A composite for polishing glass in the same procedure as in Example 9 except that spherical zinc oxide having an average particle diameter of 2 ⁇ m (trade name LP-ZINC-2, manufactured by Sakai Chemical Industry Co., Ltd.) is used instead of rutile titanium oxide. Particles were obtained.
  • spherical zinc oxide having an average particle diameter of 2 ⁇ m (trade name LP-ZINC-2, manufactured by Sakai Chemical Industry Co., Ltd.) is used instead of rutile titanium oxide. Particles were obtained.
  • Example 12 Glass-polishing composite particles were obtained in the same procedure as in Example 9, except that calcium carbonate particles having an average particle size of 0.15 ⁇ m were used instead of rutile titanium oxide.
  • Example 13 Glass polishing composite particles were obtained in the same procedure as in Example 9 except that hexagonal plate-like zinc oxide particles having an average particle diameter of 1.0 ⁇ m were used instead of rutile titanium oxide.
  • Rutile titanium oxide having an average primary particle size of 0.26 ⁇ m obtained by the sulfuric acid method was added to water to obtain an aqueous slurry having a TiO 2 concentration of 400 g / L.
  • the slurry was adjusted to 70 ° C. while stirring, and while maintaining this temperature, a 150 g / L sodium aluminate aqueous solution in an amount corresponding to 2 parts by weight in terms of Al 2 O 3 per 100 parts by weight of TiO 2.
  • the pH of the resulting slurry was neutralized with an aqueous sulfuric acid solution to 7 and then aged for 60 minutes to form an alumina hydroxide coating on the TiO 2 surface.
  • the slurry after forming the coating band was washed, separated into solid and liquid, and dried at a temperature of 120 ° C. for 8 hours. Furthermore by grinding with a hammer mill to obtain a glass abrasive particles to be compared with the aluminum hydroxide layer on the base particle surface made of TiO 2 particles.
  • Rutile titanium oxide having an average primary particle size of 0.26 ⁇ m obtained by the sulfuric acid method was added to water to obtain an aqueous slurry having a TiO 2 concentration of 400 g / L.
  • 0.5 L of this slurry was adjusted to 70 ° C. while stirring, and while maintaining this temperature, 40% cerium nitrate aqueous solution in an amount corresponding to 10 parts by weight in terms of CeO 2 was added per 100 parts by weight of TiO 2 .
  • the pH of the resulting slurry was neutralized to 7 with an aqueous sodium hydroxide solution and then aged for 60 minutes to form a cerium hydroxide coating on the TiO 2 surface.
  • the slurry after forming the coating band was washed, separated into solid and liquid, and dried at a temperature of 120 ° C. for 8 hours. Furthermore by grinding with a hammer mill to obtain a glass abrasive particles to be compared to the base particle surface made of TiO 2 particles with a cerium hydroxide layer.
  • abrasive slurry was prepared using the glass polishing particles prepared in each Example and Comparative Example as an abrasive.
  • the abrasive was added to pure water so that the concentration of the abrasive was 30% by weight. Further, the slurry was dispersed using a high-speed mixer to prepare a water-dispersed abrasive slurry.
  • Glass plate polishing test The glass plate was polished using each abrasive slurry under the following conditions.
  • Glass plate used Soda-lime glass (Matsunami Glass Co., Ltd., S-1111 size 76 x 26 x 0.8 mm)
  • Polishing machine single-axis tabletop polishing machine (manufactured by WINGO, L-1000 polishing plate diameter 205 mm ⁇ )
  • Polishing pad Cerium pad (made by WINGO) Polishing pressure: 260 g / cm2
  • Surface plate rotation speed 100 rpm
  • Abrasive slurry supply rate 3 ml / min Polishing time: 30 min
  • polishing rate evaluation The weight of the glass plate before and after the glass plate polishing test was measured with an electronic balance. The thickness reduction amount of the glass plate was calculated from the weight reduction amount, the area of the glass plate, and the specific gravity of the glass plate, and the average polishing rate ( ⁇ m / 30 min) per polishing time of 30 minutes was calculated. The values obtained by polishing 10 glass plates and averaging the 10 polishing rates were used as polishing rate values in each Example and Comparative Example, and are shown in Tables 1 and 2 collectively.
  • the polishing rate was as high as 22.1 ⁇ m / 30 min and no scratches were generated on the glass polishing surface. That is, in each Example, although the amount of cerium oxide used was as small as 5 to 50% by weight of the entire abrasive, a high polishing rate could be maintained.
  • Example 9 is a composite particle for polishing different from Example 1 only in that it has an aluminum oxide layer on the surface of titanium oxide particles as base particles.
  • Aluminum oxide on the surface of the substrate is a substance having a higher Mohs hardness than titanium oxide, and has a higher mechanical polishing effect than titanium oxide, and therefore has a higher polishing rate than that of Example 1.
  • Zinc oxide particles and calcium carbonate particles are substances that are readily soluble in acids, and in a cleaning process in glass polishing, the cleaning performance is higher than that of a polishing material based on cerium oxide, titanium oxide particles, or zirconium oxide for glass polishing in Comparative Example 7. Is excellent, and no residual foreign matter remains on the glass surface after cleaning.
  • Example 13 uses plate-like particles as base particles. Examples 11 and 13 are both based on zinc oxide, which is excellent in detergency. However, the example using the particles of Example 13 containing plate-like base particles is based on spherical particles as base particles. A polishing rate higher than 11 could be achieved.
  • Comparative Example 5 only the titanium oxide and cerium oxide were mixed, and the polishing rate was low because cerium oxide was not supported on the surface of the substrate particles in the glass polishing particles.
  • the glass polishing particles produced in Comparative Example 6 were used as an abrasive, although the polishing rate was high, the surface of the zirconium oxide particles directly touched the glass surface, so that scratches were generated on the polishing surface.
  • cerium oxide for polishing glass is used as an abrasive. Comparing the results of Comparative Example 7 and each example, it can be seen that the glass polishing particles obtained in each example have substantially the same performance as cerium oxide for glass polishing.
  • the base material is zinc oxide that is easily dissolved in acid, so that the cleaning performance is excellent, but cerium oxide is supported on the surface of the base particles. As a result, the polishing rate was low.
  • Comparative Example 9 since the zinc oxide particles as the base particles are further plate-like, the cleaning properties are excellent, and the polishing rate is high compared to Comparative Example 8, Since no cerium oxide was supported on the surface, the polishing rate was low as compared with Example 13.
  • Titanium oxide particles 20 Cerium oxide particles 110 Titanium oxide particles 120 Cerium hydroxide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Glass Compositions (AREA)

Abstract

セリウムの使用量が少なく、かつ、従来から使用されている酸化セリウムを用いた研磨材に代替え可能な、ガラス研磨用酸化物粒子を提供する。本発明は、球状又は板状の酸化チタン粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、合成マイカ、酸化亜鉛粒子、及び炭酸カルシウム粒子から選択される基材粒子と、該基材粒子の表面に担持された酸化セリウム粒子と、を含有するガラス研磨用酸化物粒子に関する。

Description

ガラス研磨用複合粒子
本発明は、ガラス研磨用複合粒子に関する。
レンズやプリズム等、高い透明性と精度を要求される精密な光学ガラスの研磨や、ディスプレイガラスや磁気ハードディスク等に利用されるガラス基盤の研磨には、酸化セリウム系の研磨材が用いられている。
この研磨材は、いわゆるレアアース(希土類)を多く含む鉱物を焼成して粉砕することによって製造される。
酸化セリウムを用いたガラス製品の研磨は、機械研磨と化学研磨とを合わせた、化学機械研磨(CMP(Chemical Mechanical Polishing)とも呼ばれる)により行われる。
化学機械研磨とは、研磨材と研磨対象物であるガラスが化学反応することによりガラスが変質することを利用して、研磨材による機械的な研磨が起こりやすくなるようにする方法である。化学機械研磨は、高い研磨速度を得るとともに、平滑な平面を得ることができるため、高い透明性と平滑性の精度を要求される精密な光学ガラスやガラス基盤の研磨に適している。
特許文献1には、酸化セリウム砥材と酸化アルミニウムおよび/または炭化ケイ素からなる硬質砥材とからなるガラス研磨用砥材であって、酸化セリウム砥材100重量部に対し硬質砥材を0.5~50重量部の割合で含有するガラス研磨用砥材が記載されている。
また、特許文献2には、酸化セリウム等の研磨材で研磨されたガラスを、酸化チタン微粒子を含むガラス研磨用研磨材組成物で研磨することを特徴とするガラスの研磨方法が記載されている。
特開2000-256657号公報 特開2000-345143号公報
近年、レアアースの需要が増大し、その供給が不安定になっていることから、セリウムの使用量を低減させる技術と代替材料の開発が望まれている。
特許文献1に記載されたガラス研磨用砥材は、酸化セリウムのみからなる砥材ではないものの、主たる砥材は酸化セリウム砥材であるため、酸化セリウムの使用量としては依然として多い。
特許文献2に記載されたガラスの研磨方法では、酸化チタンを用いて研磨を行う。酸化チタンは、モース硬度は高いものの、研磨対象物であるガラスとの反応性が低く、いわゆる化学研磨が起こらない。そのため、研磨レートが低くなるという問題がある。
特許文献2では、酸化チタンによる研磨の前に、酸化セリウム等の研磨能率が高い研磨材組成物を用いた研磨を行うことが望ましい旨が記載されている。
すなわち、特許文献2に記載されたガラスの研磨方法は、酸化セリウムを研磨材として使用する必要があることから、酸化セリウムの使用量を少なくすることのできる研磨方法とはいえない。
本発明は、レアアースであるセリウムの使用量が少なく、かつ、従来から使用されている酸化セリウムに代替え可能な研磨性能を有する、ガラス研磨用粒子を提供することを目的とする。
すなわち、本発明の第1の態様は、
酸化チタン粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、合成マイカ、酸化亜鉛粒子、及び炭酸カルシウム粒子から選択される基材粒子と、
該基材粒子の表面に担持された酸化セリウム粒子と、
を含有する、ガラス研磨用複合粒子に関する。
本発明のガラス研磨用複合粒子は、酸化チタン粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、合成マイカ、酸化亜鉛粒子、及び炭酸カルシウム粒子から選択される基材粒子を有する。本発明のガラス研磨用複合粒子は、ガラス研磨材として使用されたとき、先ず、基材粒子の表面に担持された酸化セリウム粒子がガラス表面と接するので化学研磨が進み、酸化セリウムを主成分とする研磨材を用いた場合と同程度の研磨レートが得られる。基材粒子はモース硬度が大きいので容易に摩滅することがなく、研磨レートを維持することができる。
本発明のガラス研磨用複合粒子を用いることによって、レアアースであるセリウムの使用量を少なくすることができる。
本発明のガラス研磨用複合粒子の電子顕微鏡写真の一例である。 酸化チタン粒子表面に酸化セリウム前駆体を被覆し、加熱焼成処理を行っていない粒子の電子顕微鏡写真の一例である。
以下、本発明のガラス研磨用複合粒子について説明する。
本発明のガラス研磨用複合粒子は、酸化チタン粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、合成マイカ、酸化亜鉛粒子、及び炭酸カルシウム粒子から選択される基材粒子と、該基材粒子の表面に担持された酸化セリウム粒子とを含有することを特徴とする。
上記酸化セリウム粒子は、上記基材粒子上にアイランド状に担持されることが好ましい。
図1は、本発明のガラス研磨用複合粒子の電子顕微鏡写真の一例である。
図1に示すガラス研磨用複合粒子1は、酸化チタン粒子10を基材粒子とし、酸化チタン粒子10の表面に酸化セリウム粒子20がアイランド状に担持されている。
「アイランド状に担持」とは、酸化セリウム粒子が、電子顕微鏡写真において1つ1つの粒子の輪郭が区別できる状態で担持されており、基材粒子の表面から酸化セリウム粒子が突出している状態を意味している。具体的には、基材粒子の表面から0.01μm以上突出した酸化セリウム粒子が存在することを意味する。
すなわち、基材粒子の表面を海とした場合に、酸化セリウム粒子が海に浮かぶ島になっているように見える状態を「アイランド状」ということとする。
酸化チタン粒子は、その製法、形状、結晶型及び粒子径において特に限定されない。例えば、酸化チタン粒子の製法については、塩素法によって製造されたものでもよく、硫酸法によって製造されたものであってもよい。
更に、結晶型は、ルチル型であると研磨レートが高くなるため好ましいが、アナタース型であってもよく、ブルカイト型であってもよく、また、それらの混合物であってもよい。
図1に示すガラス研磨用複合粒子では、基材粒子は酸化チタン粒子であるが、酸化チタン粒子に代えて酸化ジルコニウム粒子、硫酸バリウム粒子、又は合成マイカ粒子を用いてもよい。
上記酸化ジルコニウム粒子は、立方晶でも正方晶であってもよく、また、それらの混合物であってもよい。
上記硫酸バリウム粒子としては、特に限定されないが、芒硝法や硫酸法と呼ばれる方法で得られる沈降性硫酸バリウム、及び、重晶石を選鉱、粉砕して得られる簸性硫酸バリウムが挙げられる。市販品の具体例としては、沈降性硫酸バリウムBF-1(0.05μm、堺化学工業株式会社製)が挙げられる。
合成マイカ粒子としては、特に限定されないが、フッ素金雲母及び四珪素雲母が挙げられる。
さらに、上記基材粒子は酸化亜鉛粒子又は炭酸カルシウム粒子であってもよい。
酸化亜鉛粒子としては、日本工業規格1種、2種、3種の酸化亜鉛粒子が挙げられる。市販品の例としては、LPZINC-2(2μm、堺化学工業株式会社製)が挙げられる。 
炭酸カルシウム粒子としては、石灰石を粉砕して作る、いわゆる重質炭酸カルシウム、及び化学反応によって作られる合成炭酸カルシウムが挙げられる。市販品の例としては、合成炭酸カルシウム白艶華O(0.03μm、白石工業株式会社製)が挙げられる。
上記基材粒子の形状は、球状でも、板状でも、針状でもよい。特に基材粒子が酸化チタン、硫酸バリウム、合成マイカ、及び酸化亜鉛の場合、板状粒子も好ましく用いることができる。中でも特に板状の酸化亜鉛を基材粒子とした場合、球状酸化亜鉛粒子に対して研磨レートが高い点で好ましい。
また上記基材粒子の平均一次粒子径は特に限定されないものの、0.01~5μmが好ましい。0.1~3μmであることがより好ましく、0.2~2μmであることがさらに好ましい。酸化チタン粒子の平均一次粒子径が0.01μm未満であると、研磨レートが低くなることがある。また、酸化チタン粒子の平均一次粒子径が5μmを超えると、スクラッチ性が悪くなり、ガラス表面に傷がついてしまうことがある。
ここで粒子の平均一次粒子径とは、透過型電子顕微鏡(TEM)写真の2万倍の視野での一定方向径(粒子をはさむ一定方向の二本の平行線の間隔)で定義される粒子径(μm)であって、TEM写真内の重なっていない独立した粒子1000個の一定方向径を測定して平均値を求めたものである。
上記基材粒子は、さらにアルミナで表面処理されていてもよい。基材をアルミナで表面処理し、その後酸化セリウム粒子を担持させて900℃~950℃程度の温度で焼成して得られる粒子は、研磨レートが向上する点で好ましい。更に950℃~1000℃程度の温度で焼成して得られる複合粒子は、更に研磨レートが向上する点で好ましい。
次に上記酸化セリウム粒子について説明する。上記酸化セリウム粒子の原料としては、特に限定されるものではないが、例えば、セリウムの塩化物、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩、硝酸アンモニウム塩などが挙げられる。これら原料の水溶液にアンモニア水、水酸化ナトリウムなどのアルカリや硫酸やシュウ酸などの無機酸や有機酸を加えることによって、得られた水酸化物あるいはシュウ酸塩の沈殿を得て、酸化セリウムの前駆体とする。
これらの酸化セリウム前駆体を加熱焼成すると、酸化セリウム粒子となる。
または、得られた酸化セリウム前駆体を高温高圧下で加熱する、いわゆるソルボサーマル法によって酸化セリウムとする方法でもよい。
または、酸化セリウム粒子の原料と共に、更に、酸化チタン100重量%に対し、酸化物換算で0.01~25重量%のフッ素化合物やリン酸、アルカリ金属塩、アルカリ土類金属塩を加え、次いでアルカリや無機酸、有機酸を加えて、フッ素やリン、アルカリ金属、アルカリ土類金属を含む酸化セリウム前駆体を得て、これを加熱焼成することで、フッ素、リン、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の元素を含む化合物と複合化している酸化セリウム粒子を形成してもよい。
なお、酸化セリウム粒子と、フッ素化合物やリン化合物、アルカリ金属化合物、アルカリ土類金属化合物とを複合化することで研磨レートが上がる効果があるが、添加するフッ素やリン、アルカリ金属、アルカリ土類金属が酸化物換算で25重量%を超えると添加の効果が飽和する一方で、基材粒子の割合が少なくなるため、研磨レートが下がることがある。
基材粒子表面上に担持されたアイランド状の酸化セリウム粒子の平均一次粒子径は0.02~0.10μmであることが好ましい。
酸化セリウム粒子中のセリウムの価数は3価でも4価でもよく、より化学研磨が進む点で、本発明の複合粒子は、3価のセリウムを含む酸化セリウムの粒子を担持するのがより好ましい。
本発明のガラス研磨用複合粒子がガラス研磨材として使用されると、まず、基材粒子表面に担持された酸化セリウム粒子がガラス表面と接するので化学研磨が進む。化学研磨により、従来の酸化セリウムを主成分とするガラス研磨材を用いた場合と同様の高い研磨レートが得られる。上述の基材粒子はモース硬度が高いため、容易に磨滅することがなく、物理研磨を効果的に行うことができる。そのため、高い研磨レートを長時間にわたって維持することができる。
すなわち、本発明のガラス研磨用複合粒子は、ガラスとの反応性の高い酸化セリウムによる化学研磨と、モース硬度の高い上記基材粒子による物理研磨の組み合わせにより、高い研磨レートを長時間にわたって維持することができ、かつ、酸化セリウムの使用量を少なくすることのできる研磨材となる。
以下に、本発明のガラス研磨用複合粒子を製造する方法の一例について説明する。
本発明のガラス研磨用複合粒子は、
酸化チタン粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、合成マイカ、酸化亜鉛粒子、及び炭酸カルシウム粒子から選択される基材粒子の表面に酸化セリウム前駆体を被覆する工程と、
酸化セリウム前駆体被覆後の粒子を250~1200℃で加熱焼成する工程と、
上記加熱焼成後の粒子を粉砕する工程とを経て得られる。上記基材粒子はアルミナで表面処理されているものであってもよい。
上記工程の具体的な方法としては、基材粒子を水に添加し、温度20~90℃に保持したスラリー中に酸化セリウム前駆体の原料を添加し、次いで、酸化セリウム前駆体の原料が添加されたスラリーを、水酸化ナトリウム水溶液等を用いて中和してpHを6~8に調整する。さらに、10~60分間程度かけて熟成する。
次いで、スラリーの洗浄、固液分離、乾燥を行う。
乾燥温度、時間は100~150℃、1~8時間程度とすることが好ましい。
これにより、基材粒子の表面に酸化セリウム前駆体の被覆体が形成される。
酸化セリウム前駆体の原料の添加量は、基材粒子100重量%に対し、酸化セリウムに換算して、1~50重量%が好ましい。より好ましくは3~20重量%であり、さらに好ましくは5~10重量%である。
酸化セリウム前駆体の原料の添加量が、酸化セリウムに換算して1重量%未満であると、酸化セリウムの担持量が不足して、研磨レートが低くなることがある。また、酸化セリウム前駆体の原料の添加量が、酸化セリウムに換算して50重量%を超えたとしても、添加量の増加に見合う研磨レートが得られず、酸化セリウムの消費量が多くなるため好ましくない。
続いて、上記工程で得られた、基材粒子の表面に酸化セリウム前駆体が被覆された粒子を、加熱焼成する工程を行う。
この工程により、酸化セリウム前駆体は、酸化セリウム粒子となり、基材粒子の表面にアイランド状に担持されて複合粒子を形成する。
上記工程により得られるガラス研磨用複合粒子の状態は、図1に示された状態である。
加熱焼成温度は250~1200℃が好ましい。より好ましくは500~1000℃であり、さらに好ましくは700~1000℃である。
なお、加熱焼成時間は0.5~3時間が好ましい。
加熱焼成温度が250℃未満であると、酸化セリウム粒子がアイランド状に担持されないことがあり、研磨レートが低くなることがある。
加熱焼成温度が1200℃を超えると、スクラッチ性が悪くなり、ガラス表面に傷がついてしまうことがある。
図2は、酸化チタン粒子表面に酸化セリウム前駆体を被覆し、加熱焼成処理を行っていない粒子の電子顕微鏡写真の一例である。
なお、図2に示す粒子は、加熱焼成処理を行わずに粉砕工程を経た粒子である。
図2では、酸化チタン粒子110の表面に酸化セリウム前駆体の1種である水酸化セリウム120が被覆されている。水酸化セリウム120は、粒子状ではなく、広がった層のような状態で酸化チタン粒子110の周囲に被覆されている。
図2に示すように、加熱焼成工程を行わないために、酸化チタン粒子表面上の酸化セリウム前駆体が酸化セリウムにならずに基材粒子上に被覆されている粒子を研磨材として用いた場合には、研磨レートが高くならない。
その理由は、水酸化セリウムのような酸化セリウム前駆体では化学研磨が進まないためである。
続いて、強い凝集を緩和するために、必要に応じてハンマーミル等を用いて粉砕を行うことによって、基材粒子の表面に酸化セリウム粒子がアイランド状に担持されたガラス研磨用複合粒子が得られる。
本発明のガラス研磨用粒子を得る別の方法としては、基材粒子と上記酸化セリウムの原料および/または酸化セリウムとを混合し、250~1200℃で加熱焼成する、いわゆる固相法による方法でもよい。
アイランド状の酸化セリウム粒子が、均一に基材粒子表面上に形成され、その結果、研磨レートが高くなる点において酸化セリウム前駆体を基材粒子表面に被覆し、その後、加熱焼成する方法がより好ましい。
以下、本発明の実施例について説明するが、本発明はこれらによって限定されるものではない。なお、以下の記載において、「%」とは、「重量%」を意味する。
(実施例1)
硫酸法で得られた平均一次粒子径0.40μmのルチル型酸化チタンを水に添加して、TiO濃度400g/Lの水性スラリーを得た。このスラリー0.5Lを攪拌しながら70℃に調整し、この温度を維持しながら、TiO100重量部当たり、CeO換算で10重量部に相当する量の40%硝酸セリウム水溶液を添加した。次いで水酸化ナトリウム水溶液で、得られたスラリーのpHを7に中和した後、60分間かけて熟成し、TiO表面上にセリウム水酸化物の被覆帯を形成した。被覆帯形成後のスラリーを洗浄、固液分離して、120℃の温度で8時間乾燥した。次いで得られた乾燥品を900℃雰囲気で1時間加熱焼成した。更にハンマーミルを用いて粉砕することにより、TiO粒子からなる基材粒子表面に酸化セリウムがアイランド状に担持されたガラス研磨用複合粒子を得た。
(実施例2)
平均一次粒子径0.40μmのルチル型酸化チタンを平均一次粒子径0.26μmのルチル型酸化チタンとすること以外は実施例1と同じ手順にてガラス研磨用複合粒子を得た。
(実施例3)
CeO換算で5重量部に相当する量の40%硝酸セリウム水溶液を添加すること以外は実施例1と同じ手順にてガラス研磨用複合粒子を得た。
(実施例4)
CeO換算で20重量部に相当する量の40%硝酸セリウム水溶液を添加すること以外は実施例1と同じ手順にてガラス研磨用複合粒子を得た。
(実施例5)
CeO換算で50重量部に相当する量の40%硝酸セリウム水溶液を添加すること以外は実施例1と同じ手順にてガラス研磨用複合粒子を得た。
(実施例6)
硫酸法で得られた平均一次粒子径0.40μmのルチル型酸化チタン粉末にCeO換算で10重量部に相当する量の40%硝酸セリウム水溶液を添加し、全体が均一になるようによく混合した後に900℃雰囲気で1時間加熱焼成した。更にハンマーミルを用いて粉砕することによりガラス研磨用複合粒子を得た。
すなわち、実施例6では固相法によりガラス研磨用複合粒子を得た。
(実施例7)
基材粒子となる酸化チタン粒子の代わりに平均一次粒子径1.00μmの酸化ジルコニウム粒子を用いたこと以外は実施例3と同じ手順にてガラス研磨用複合粒子を得た。
(実施例8)
実施例1において40%硝酸セリウム水溶液を添加した後、TiO100重量部当たり、MgO換算で5重量部に相当する量の炭酸マグネシウムを添加し、次いで水酸化ナトリウム水溶液で、得られたスラリーのpHを7に中和すること以外は実施例1と同じ手順にてガラス研磨用粒子を得た。
(実施例9)
硫酸法で得られた平均一次粒子径0.40μmのルチル型酸化チタンを水に添加して、TiO濃度400g/Lの水性スラリーを得た。このスラリー0.5Lを攪拌しながら70℃に調整し、この温度を維持しながら、TiO100重量部当たり、Al換算で10重量部に相当する量のアルミン酸ソーダ水溶液を添加した。次いで30%硫酸で得られたスラリーのpHを7に中和した後60分間かけて熟成し、TiO表面上にアルミナ水酸化物の被覆帯を形成した。被覆帯形成後のスラリーを洗浄、固液分離して、120℃の温度で8時間乾燥した。次いで得られた乾燥品を流体エネルギーミルを用いて粉砕した。更にこの粉砕品を水に添加して、濃度400g/Lの水性スラリーを得た。このスラリー0.5Lを攪拌しながら70℃に調整し、この温度を維持しながら攪拌し、TiO100重量部当たり、CeO換算で10重量部に相当する量の40%硝酸セリウム水溶液を添加した。次いで水酸化ナトリウム水溶液で、得られたスラリーのpHを7に中和した後、60分間かけて熟成し、内側から順に、TiO表面上にアルミナ水酸化物およびセリウム水酸化物の被覆帯を形成した。被覆帯形成後のスラリーを洗浄、固液分離して、120℃の温度で8時間乾燥した。次いで得られた乾燥品(A)を900℃雰囲気で1時間加熱した。更にハンマーミルを用いて粉砕することにより、酸化アルミニウム層が被覆されたTiO粒子に、酸化セリウムを担持した本発明の酸化チタン含有複合粒子を得た。
(実施例10)
実施例9において得られた乾燥品(A)を950℃雰囲気で1時間加熱すること以外は実施例9と同じ手順にてガラス研磨用複合粒子を得た。
(実施例11)
ルチル型酸化チタンに代えて、平均粒子径2μmの球状酸化亜鉛(商品名LP-ZINC-2、堺化学工業株式会社製)を使用すること以外は実施例9と同じ手順にてガラス研磨用複合粒子を得た。
(実施例12)
ルチル型酸化チタンに代えて、平均粒子径0.15μmの炭酸カルシウム粒子を使用すること以外は実施例9と同じ手順にてガラス研磨用複合粒子を得た。
(実施例13)
ルチル型酸化チタンに代えて、平均粒子径1.0μmの六角板状酸化亜鉛粒子を使用すること以外は実施例9と同じ手順にてガラス研磨用複合粒子を得た。
(比較例1)
平均一次粒子径0.26μmのルチル型酸化チタンを比較対象のガラス研磨用粒子とした。
(比較例2)
平均一次粒子径0.40μmのルチル型酸化チタンを比較対象のガラス研磨用粒子とした。
(比較例3)
硫酸法で得られた平均一次粒子径0.26μmのルチル型酸化チタンを水に添加して、TiO濃度400g/Lの水性スラリーを得た。このスラリー0.5Lを攪拌しながら70℃に調整し、この温度を維持しながら、TiO100重量部当たり、Al換算で2重量部に相当する量の150g/Lアルミン酸ソーダ水溶液を添加した。次いで硫酸水溶液で、得られたスラリーのpHを7に中和した後、60分間かけて熟成し、TiO表面上にアルミナ水酸化物の被覆帯を形成した。被覆帯形成後のスラリーを洗浄、固液分離して、120℃の温度で8時間乾燥した。更にハンマーミルを用いて粉砕することにより、TiO粒子からなる基材粒子表面に水酸化アルミニウム層を備えた比較対象のガラス研磨用粒子を得た。
(比較例4)
硫酸法で得られた平均一次粒子径0.26μmのルチル型酸化チタンを水に添加して、TiO濃度400g/Lの水性スラリーを得た。このスラリー0.5Lを攪拌しながら70℃に調整し、この温度を維持しながら、TiO100重量部当たり、CeO換算で10重量部に相当する量の40%硝酸セリウム水溶液を添加した。次いで水酸化ナトリウム水溶液で、得られたスラリーのpHを7に中和した後、60分間かけて熟成し、TiO表面上にセリウム水酸化物の被覆帯を形成した。被覆帯形成後のスラリーを洗浄、固液分離して、120℃の温度で8時間乾燥した。更にハンマーミルを用いて粉砕することにより、TiO粒子からなる基材粒子表面に水酸化セリウム層を備えた比較対象のガラス研磨用粒子を得た。
(比較例5)
平均一次粒子径0.26μmのルチル型酸化チタンとガラス研磨用酸化セリウムSHOROX A-10(昭和電工株式会社製)を重量比で10対1で混合し比較対象のガラス研磨用粒子を得た。
(比較例6)
平均一次粒子径1.00μmの酸化ジルコニウムを比較対象のガラス研磨用粒子とした。
(比較例7)
ガラス研磨用酸化セリウムSHOROX A-10(昭和電工株式会社製)を比較対象のガラス研磨用粒子とした。
(比較例8)
平均粒子径2.0μmの球状酸化亜鉛(LP-ZINC-2:堺化学工業株式会社製)を比較対象のガラス研磨用粒子とした。
(比較例9)
平均粒子径1.0μmの六角板状酸化亜鉛粒子を比較対象のガラス研磨用粒子とした。
(性能評価)
以下の手順により、各実施例及び比較例で作製したガラス研磨用粒子の性能を評価した。
(研磨材スラリーの作製)
各実施例及び比較例で作製したガラス研磨用粒子を研磨材として研磨材スラリーを作製した。
研磨材の濃度が30重量%になるように、研磨材を純水に添加した。
さらに、高速ミキサーを用いて分散し、水分散系の研磨材スラリーを作製した。
(ガラス板研磨試験)
以下の条件により、各研磨材スラリーを用いてガラス板の研磨を行った。
使用ガラス板:ソーダライム系ガラス(松浪硝子株式会社製、S-1111 サイズ76×26×0.8mm)
研磨機:一軸卓上型研磨機(株式会社WINGO製、L-1000 研磨定盤径205mmφ)
研磨パッド:セリウムパッド(株式会社WINGO製)
研磨圧力:260g/cm2
定盤回転数:100rpm
研磨材スラリー供給量:3ml/min
研磨時間:30min
(研磨レート評価)
ガラス板研磨試験前後のガラス板の重量を電子天秤で測定した。重量減少量、ガラス板の面積、ガラス板の比重からガラス板の厚さ減少量を算出し、研磨時間30分当たりの平均研磨レート(μm/30min)を算出した。
10枚のガラス板を研磨して、10枚の研磨レートを平均した値を各実施例及び比較例における研磨レートの値とし、表1及び表2にまとめて示した。
(洗浄性評価)
各条件における研磨後のガラス板を温度70℃の20重量%硫酸に5分間浸漬し、更に純水、IPAで超音波洗浄し、乾燥した後、ガラス表面の残留異物の有無を観察した。評価基準は以下のとおりである。
○:同一条件研磨のガラス板10枚に残留異物が全く無い。
×:残留異物が観察される。カッコ内は異物が観察されたガラスの枚数を示す。
(スクラッチ性評価)
ガラス板研磨試験後のガラス板の研磨面を目視で観察し、スクラッチが生じているかを判断し、結果を表1及び表2にまとめて示した。
スクラッチがない場合は○(=OK)、スクラッチがある場合は×(=Defect)で示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
各実施例で作製したガラス研磨用複合粒子を研磨材とした場合、研磨レートが22.1μm/30min以上と高く、ガラス研磨面にスクラッチは生じていなかった。
すなわち、各実施例では、酸化セリウムの使用量が研磨材全体の5~50重量%と少ないにも関わらず、高い研磨レートを維持できていた。
実施例9は実施例1と比較して、基材粒子である酸化チタン粒子表面に酸化アルミニウム層を有する点でのみ異なる研磨用複合粒子である。基材表面の酸化アルミニウムは酸化チタンよりもモース硬度の高い物質であり、酸化チタンよりも更に高い機械研磨効果を有するために実施例1よりも研磨レートが高い。
実施例11及び実施例12は実施例9の酸化チタン粒子の代わりに酸化亜鉛粒子、又は炭酸カルシウム粒子を基材粒子としている。酸化亜鉛粒子や炭酸カルシウム粒子は酸に易溶な物質であり、ガラス研磨における洗浄工程において比較例7のガラス研磨用酸化セリウムや酸化チタン粒子や酸化ジルコニウムを基材とする研磨材よりも洗浄性が優れており、洗浄後のガラス表面上に残留異物は全く残っていない。
実施例13は板状粒子を基材粒子としている。実施例11と13はいずれも洗浄性に優れる酸化亜鉛を基材としているが、板状の基材粒子を含む実施例13の粒子を用いた方が、球状粒子を基材粒子とした実施例11に比べ高い研磨レートを達成することができた。
比較例1又は2で作製したガラス研磨用粒子を研磨材とした場合、研磨材に酸化セリウムが含まれていないため、化学研磨が起こらず、研磨レートが低くなっていた。
また、比較例3で作製したガラス研磨用粒子を研磨材とした場合、研磨材に酸化セリウムが含まれていないため、化学研磨が起こらず、研磨レートが低くなっていた。さらに、水酸化アルミニウム層の存在に起因して、研磨面にスクラッチが生じていた。
比較例4では、酸化セリウム前駆体を被覆した後の加熱焼成工程が行われておらず、ガラス研磨用粒子において基材粒子の表面に酸化セリウムが担持されていないため、研磨レートが低くなっていた。
比較例5では、酸化チタンと酸化セリウムが混合されただけであり、ガラス研磨用粒子において基材粒子の表面に酸化セリウムが担持されていないため、研磨レートが低くなっていた。
比較例6で作製したガラス研磨用粒子を研磨材とした場合、研磨レートは高いものの、酸化ジルコニウム粒子表面が直接ガラス表面に触れることから研磨面にスクラッチが生じていた。
比較例7では、ガラス研磨用酸化セリウムを研磨材として用いた場合である。比較例7と各実施例の結果を比較すると、各実施例で得られたガラス研磨用粒子が、ガラス研磨用酸化セリウムと比較してほぼ同等の性能を有することが分かる。
比較例8で作製したガラス研磨用粒子を研磨材とした場合、酸に溶解しやすい酸化亜鉛を基材としているために洗浄性は優れているが、基材粒子の表面に酸化セリウムが担持されていないため、研磨レートが低くなっていた。
比較例9では、基材粒子である酸化亜鉛粒子でさらには板状であるために、洗浄性に優れており、比較例8に対しては研磨レートが高くなっているが、基材粒子の表面に酸化セリウムが担持されていないため、実施例13と比較すると研磨レートが低くなっていた。
1 ガラス研磨用複合粒子
10 酸化チタン粒子
20 酸化セリウム粒子
110 酸化チタン粒子
120 水酸化セリウム

Claims (9)

  1. 酸化チタン粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、合成マイカ、酸化亜鉛粒子、及び炭酸カルシウム粒子から選択される基材粒子と、
    該基材粒子の表面に担持された酸化セリウム粒子と、
    を含有するガラス研磨用複合粒子。
  2. 前記基材粒子の形状が球状又は板状である請求項1に記載の粒子。
  3. 前記酸化セリウム粒子は、前記基材粒子上にアイランド状に担持される、請求項1に記載の粒子。
  4. 前記酸化セリウム粒子は、フッ素、リン、アルカリ金属、及びアルカリ土類金属からなる群から選択される少なくとも1種の元素を含む化合物と複合化している請求項1~3のいずれか一項に記載の粒子。
  5. 前記基材粒子がアルミナで表面処理されている
    請求項1~4のいずれか一項に記載の粒子。
  6. 前記基材粒子の平均一次粒子径が0.01~5μmである請求項1~5のいずれかに記載の粒子。
  7. 前記基材粒子100重量部に対し、前記酸化セリウム粒子が1~50重量部含まれる請求項1~6のいずれかに記載の粒子。
  8. 酸化チタン粒子、酸化ジルコニウム粒子、硫酸バリウム粒子、合成マイカ、酸化亜鉛粒子、及び炭酸カルシウム粒子から選択される基材粒子の表面に酸化セリウム前駆体を被覆する工程と、
    前記被覆後の粒子を250~1200℃で加熱焼成する工程と、
    前記加熱焼成後の粒子を粉砕する工程と
    を経て得られる粒子。
  9. 前記基材粒子をアルミナで表面処理する工程をさらに含む方法で得られる
    請求項8記載の粒子。
PCT/JP2012/073350 2011-09-20 2012-09-12 ガラス研磨用複合粒子 WO2013042596A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12833447.1A EP2759526B1 (en) 2011-09-20 2012-09-12 Composite particles for polishing glass
KR1020147006198A KR101951502B1 (ko) 2011-09-20 2012-09-12 유리 연마용 복합 입자
JP2013504045A JP5278631B1 (ja) 2011-09-20 2012-09-12 ガラス研磨用複合粒子
CN201280045874.8A CN103814102B (zh) 2011-09-20 2012-09-12 玻璃研磨用复合颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-205029 2011-09-20
JP2011205029 2011-09-20

Publications (1)

Publication Number Publication Date
WO2013042596A1 true WO2013042596A1 (ja) 2013-03-28

Family

ID=47914367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073350 WO2013042596A1 (ja) 2011-09-20 2012-09-12 ガラス研磨用複合粒子

Country Status (6)

Country Link
EP (1) EP2759526B1 (ja)
JP (1) JP5278631B1 (ja)
KR (1) KR101951502B1 (ja)
CN (1) CN103814102B (ja)
TW (1) TWI546370B (ja)
WO (1) WO2013042596A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012311A (ja) * 2012-07-04 2014-01-23 Noritake Co Ltd 研磨材およびその製造方法
CN103923570A (zh) * 2014-05-06 2014-07-16 济南大学 一种稀土掺杂碳化硅复合抛光粉的制备方法
JP2015054967A (ja) * 2013-09-12 2015-03-23 ユービーマテリアルズ インコーポレイテッド 研磨粒子、研磨スラリー及びこれを用いた半導体素子の製造方法
WO2015098945A1 (ja) 2013-12-24 2015-07-02 堺化学工業株式会社 酸化セリウム被覆酸化亜鉛粒子、その製造方法、紫外線遮蔽剤及び化粧料
WO2019151145A1 (ja) * 2018-02-05 2019-08-08 Jsr株式会社 化学機械研磨用組成物及び研磨方法
US10696563B2 (en) 2014-02-07 2020-06-30 Sakai Chemical Industry Co., Ltd. Hexagonal plate-shaped zinc oxide particles, method for production of the same, and cosmetic, filler, resin composition, infrared reflective material, and coating composition containing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694018B (zh) * 2015-03-23 2017-04-19 济南大学 一种用于二氧化锆陶瓷抛光的抛光粉的制备方法
CN115558426A (zh) * 2022-09-23 2023-01-03 无锡兴华衡辉科技有限公司 芯片表面研磨的方法、用于芯片表面研磨的悬浮磨抛液及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114808A (ja) * 1997-10-15 1999-04-27 Toray Ind Inc 研磨材用複合粒子およびスラリー状研磨材
JP2000256657A (ja) 1999-03-04 2000-09-19 Asahi Glass Co Ltd ガラス研磨用砥材およびガラス研磨方法
JP2000345143A (ja) 1999-06-03 2000-12-12 Showa Denko Kk ガラス研磨用研磨材組成物およびそれを用いた研磨方法
JP2002097456A (ja) * 2000-09-25 2002-04-02 Nihon Micro Coating Co Ltd 研磨粒子及びその製造方法
JP2007258606A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 化学的機械的研磨用研磨液
JP2012214337A (ja) * 2011-03-31 2012-11-08 Kawai Sekkai Kogyo Kk ベーマイト複合粒子及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849177B2 (ja) * 1996-04-25 2006-11-22 堺化学工業株式会社 紫外線吸収組成物及びその製造方法
JP2002138218A (ja) * 2000-11-06 2002-05-14 Ishihara Sangyo Kaisha Ltd 二酸化チタン顔料及びその製造方法
JP4100898B2 (ja) * 2001-12-05 2008-06-11 ポーラ化成工業株式会社 二酸化チタン酸化セリウムコンポジットの製造方法
US6645265B1 (en) * 2002-07-19 2003-11-11 Saint-Gobain Ceramics And Plastics, Inc. Polishing formulations for SiO2-based substrates
KR100574225B1 (ko) * 2003-10-10 2006-04-26 요업기술원 실리카에 세리아/실리카가 코팅된 화학적 기계적 연마용연마재 및 그 제조방법
CN101302404A (zh) * 2008-07-01 2008-11-12 上海大学 纳米氧化铈复合磨粒抛光液的制备方法
CN101747842B (zh) * 2008-12-19 2014-12-31 安集微电子(上海)有限公司 一种化学机械抛光液
EP2438133B1 (en) * 2009-06-05 2018-07-11 Basf Se Polishing slurry containing raspberry-type metal oxide nanostructures coated with CeO2
JP2012121128A (ja) * 2010-12-10 2012-06-28 Admatechs Co Ltd 複合砥粒およびそれを用いた研磨用組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114808A (ja) * 1997-10-15 1999-04-27 Toray Ind Inc 研磨材用複合粒子およびスラリー状研磨材
JP2000256657A (ja) 1999-03-04 2000-09-19 Asahi Glass Co Ltd ガラス研磨用砥材およびガラス研磨方法
JP2000345143A (ja) 1999-06-03 2000-12-12 Showa Denko Kk ガラス研磨用研磨材組成物およびそれを用いた研磨方法
JP2002097456A (ja) * 2000-09-25 2002-04-02 Nihon Micro Coating Co Ltd 研磨粒子及びその製造方法
JP2007258606A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 化学的機械的研磨用研磨液
JP2012214337A (ja) * 2011-03-31 2012-11-08 Kawai Sekkai Kogyo Kk ベーマイト複合粒子及びその製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014012311A (ja) * 2012-07-04 2014-01-23 Noritake Co Ltd 研磨材およびその製造方法
JP2015054967A (ja) * 2013-09-12 2015-03-23 ユービーマテリアルズ インコーポレイテッド 研磨粒子、研磨スラリー及びこれを用いた半導体素子の製造方法
US9469800B2 (en) 2013-09-12 2016-10-18 Industrial Bank Of Korea Abrasive particle, polishing slurry, and method of manufacturing semiconductor device using the same
WO2015098945A1 (ja) 2013-12-24 2015-07-02 堺化学工業株式会社 酸化セリウム被覆酸化亜鉛粒子、その製造方法、紫外線遮蔽剤及び化粧料
US20160319131A1 (en) * 2013-12-24 2016-11-03 Sakai Chemical Industry Co., Ltd. Cerium oxide-coated zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
JPWO2015098945A1 (ja) * 2013-12-24 2017-03-23 堺化学工業株式会社 酸化セリウム被覆酸化亜鉛粒子、その製造方法、紫外線遮蔽剤及び化粧料
US20180127591A1 (en) * 2013-12-24 2018-05-10 Sakai Chemical Industry Co., Ltd. Cerium oxide-coated zinc oxide particle, method for producing the same, ultraviolet shielding agent, and cosmetic
US10696563B2 (en) 2014-02-07 2020-06-30 Sakai Chemical Industry Co., Ltd. Hexagonal plate-shaped zinc oxide particles, method for production of the same, and cosmetic, filler, resin composition, infrared reflective material, and coating composition containing the same
CN103923570A (zh) * 2014-05-06 2014-07-16 济南大学 一种稀土掺杂碳化硅复合抛光粉的制备方法
WO2019151145A1 (ja) * 2018-02-05 2019-08-08 Jsr株式会社 化学機械研磨用組成物及び研磨方法

Also Published As

Publication number Publication date
KR101951502B1 (ko) 2019-02-22
JP5278631B1 (ja) 2013-09-04
EP2759526A4 (en) 2015-09-30
TW201313887A (zh) 2013-04-01
EP2759526A1 (en) 2014-07-30
EP2759526B1 (en) 2019-01-09
TWI546370B (zh) 2016-08-21
CN103814102A (zh) 2014-05-21
JPWO2013042596A1 (ja) 2015-03-26
CN103814102B (zh) 2017-12-05
KR20140064848A (ko) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5278631B1 (ja) ガラス研磨用複合粒子
TWI554601B (zh) 研磨材料及研磨用組成物
TWI417245B (zh) 氧化鋁粒子及含有該氧化鋁粒子之研磨用組成物
JP2010070449A (ja) ベーマイト粒子の製造方法及びアルミナ粒子の製造方法
JP4178222B2 (ja) 研磨材
JP5979340B1 (ja) 研磨用複合粒子、研磨用複合粒子の製造方法及び研磨用スラリー
CN102337085A (zh) 铈锆复合氧化物抛光粉制备方法
US8727833B2 (en) Cerium-based particle composition and the preparation thereof
JP2014024960A (ja) 研磨用組成物、酸化物材料の研磨方法及び酸化物材料基板の製造方法
TWI705947B (zh) 帶負電性基板之硏磨方法、及高表面平滑性之帶負電性基板之製造方法
JP2014024156A (ja) 研磨材、研磨用組成物、硬脆材料の研磨方法及び硬脆材料基板の製造方法
JPH03277683A (ja) 精密研磨用組成物
JP5861277B2 (ja) ジルコニア系研磨剤
CN118359222A (zh) 一种含纳米晶的氧化铈片状粉体及其制备方法
JP2015140402A (ja) 遊離砥粒、遊離砥粒研磨用研磨剤及びその製造方法
JP2014084420A (ja) 遊離砥粒研磨用酸化マンガン研磨剤及びその製造方法
JPH10195421A (ja) アルミニウムディスクの研磨用組成物及びその研磨用組成物を用いる研磨方法
JP2014024155A (ja) 研磨材、研磨用組成物、硬脆材料の研磨方法及び硬脆材料基板の製造方法
JPH01188264A (ja) 研磨用組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013504045

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147006198

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012833447

Country of ref document: EP