WO2013042368A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2013042368A1
WO2013042368A1 PCT/JP2012/005986 JP2012005986W WO2013042368A1 WO 2013042368 A1 WO2013042368 A1 WO 2013042368A1 JP 2012005986 W JP2012005986 W JP 2012005986W WO 2013042368 A1 WO2013042368 A1 WO 2013042368A1
Authority
WO
WIPO (PCT)
Prior art keywords
wrap
movable
injection port
side wrap
tooth thickness
Prior art date
Application number
PCT/JP2012/005986
Other languages
English (en)
French (fr)
Inventor
加藤 勝三
覚 阪江
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020147010166A priority Critical patent/KR101611109B1/ko
Priority to ES12834245.8T priority patent/ES2563448T3/es
Priority to BR112014006295-1A priority patent/BR112014006295B1/pt
Priority to EP12834245.8A priority patent/EP2759708B1/en
Priority to US14/345,557 priority patent/US9163632B2/en
Priority to RU2014115677/06A priority patent/RU2560647C1/ru
Priority to CN201280044966.4A priority patent/CN103814218B/zh
Publication of WO2013042368A1 publication Critical patent/WO2013042368A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • F04C29/0014Injection of a fluid in the working chamber for sealing, cooling and lubricating with control systems for the injection of the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor

Definitions

  • the present invention relates to a scroll compressor having an intermediate injection mechanism, and more particularly to a structure for increasing an injection flow rate.
  • scroll compressors generally include a compression mechanism and a drive mechanism in a casing.
  • the compression mechanism has a fixed scroll and a movable scroll. Both scrolls have end plates arranged opposite to each other, and spiral wraps integrally formed with the end plates and meshing with each other.
  • a compression chamber is formed between a fixed scroll and a movable scroll by meshing a fixed scroll wrap (referred to as a fixed side wrap) and a movable scroll wrap (referred to as a movable side wrap).
  • a crankpin of a crankshaft (drive shaft) provided in the drive mechanism is connected to the movable scroll. Then, when the movable scroll turns with respect to the fixed scroll by rotating the crankshaft, the volume of the compression chamber repeatedly expands and contracts.
  • the compression mechanism sucks in the refrigerant when the volume of the compression chamber is expanded, and compresses and discharges the refrigerant when the volume is reduced.
  • some scroll compressors are provided with an injection mechanism for injecting a medium-pressure refrigerant into the compression mechanism (see, for example, Patent Document 1).
  • the compression mechanism described in Patent Literature 1 is formed with an injection port that passes through the end plate of the fixed scroll in the axial direction and opens to an intermediate pressure position in the compression chamber. This injection port is formed in the central part of the groove formed between the spirals of the fixed side wrap with a diameter smaller than the thickness of the movable side wrap.
  • the injection port includes the first compression chamber formed between the inner peripheral surface of the fixed wrap and the outer peripheral surface of the movable wrap, and the inner surfaces of the outer peripheral surface of the fixed wrap and the movable wrap. It communicates alternately with the second compression chamber formed between the peripheral surface. That is, when the orbiting scroll performs a turning motion, the movable side wrap moves across the injection port when reciprocating between the inner peripheral surface and the outer peripheral surface of the fixed side wrap, so that the movable side wrap and the injection port The injection port communicates with the first compression chamber when positioned between the outer peripheral surface of the fixed side wrap and the injection port when the movable side wrap is positioned between the injection port and the inner peripheral surface of the fixed side wrap. It communicates with the second compression chamber.
  • the injection port and the first compression chamber and the first compression chamber sandwich the movable wrap during the operation of the compression mechanism. It will communicate with 2 compression chambers simultaneously. And if a 1st compression chamber and a 2nd compression chamber communicate, a refrigerant
  • coolant will leak between the 1st compression chamber and 2nd compression chamber from which pressure differs, and the efficiency of a compressor will fall.
  • the movable scroll is increased by the thickness of the movable side wrap.
  • the present invention was devised in view of such problems, and its purpose is to increase the injection flow rate in a scroll compressor that performs intermediate injection, and to reduce the efficiency of the compressor and the compression mechanism. It is to suppress the increase in size and cost.
  • the first invention comprises a fixed scroll (50) having a fixed side end plate (51) and a spiral wall-like fixed side wrap (52) erected on the fixed side end plate (51), and a movable side end plate (41). ) And a movable scroll (40) having a spiral wall-like movable side wrap (42) erected on the movable side end plate (41), a fixed side wrap (52) and a movable side wrap (42) Is provided with a compression mechanism (30) in which a compression chamber (35a, 35b) is formed between both scrolls (40, 50).
  • the fixed scroll (50) is formed on the fixed side end plate (51). It is assumed that the scroll compressor is formed with an injection port (55) communicating with the compression chamber (35a, 35b) through the communicated passage.
  • the tooth thickness increases from the winding start side to the winding end side of the movable side wrap (42) at a portion corresponding to the injection port (55) in the movable side wrap (42).
  • a thick part (45) including a tooth thickness enlarged part (45a) is formed, and the thickness dimension of the thick part (45) is an injection port (55) in the tooth thickness direction of the movable wrap (42). It is characterized by being larger than the opening size.
  • the opening dimension is, for example, a diameter dimension when the injection port (55) is a circular hole, and a width dimension when the injection port (55) is a long hole.
  • the injection port (55) is formed between the inner peripheral surface of the fixed side wrap (52) and the outer peripheral surface of the movable side wrap (42). Alternately between the first compression chamber (35a, 35b) and the second compression chamber (35a, 35b) formed between the outer peripheral surface of the fixed wrap (52) and the inner peripheral surface of the movable wrap (42) Communicate with. In other words, when the movable scroll (40) performs a turning motion, the movable wrap (42) crosses the injection port (55) when reciprocating between the inner peripheral surface and the outer peripheral surface of the fixed side wrap (52).
  • the injection port (55) When the movable wrap (42) is positioned between the injection port (55) and the inner peripheral surface of the fixed wrap (52), the injection port (55) is in the first compression chamber (35a, 35b) When the movable wrap (42) is located between the injection port (55) and the outer peripheral surface of the fixed wrap (52), the injection port (55) is connected to the second compression chamber (35a, 35b). Communicate. When the injection port (55) communicates with the first compression chamber (35a, 35b), the intermediate pressure refrigerant is injected into the first compression chamber (35a, 35b), and the injection port (55) becomes the second compression chamber (35a, 35b). ), The intermediate pressure refrigerant is injected into the second compression chamber (35a, 35b).
  • the movable side wrap (42) is formed with a thick portion (45) whose thickness dimension is equal to or greater than the opening dimension of the injection port (55), so that the movable side wrap (42) is connected to the injection port (55).
  • the injection port (55) is blocked by the thick wall portion (45).
  • the first compression chamber (35a, 35b) and the second compression chamber (35a, 35b) are simultaneously communicated with each other in the present invention. A state does not arise.
  • the thick part (45) of the movable side wrap (42) has a tooth thickness reduced from the tooth thickness enlarged part (45a) side toward the winding end side of the wrap.
  • the tooth thickness reduction part (45b) to be included is included.
  • the injection port (55) is formed by a portion within the range of the tooth thickness enlarged portion (45a) to the tooth thickness reduced portion (45b) constituting the thick portion (45) of the movable side wrap (42). ) Is opened / closed.
  • the thick wall portion (45) of the movable wrap (42) is disposed between the tooth thickness enlarged portion (45a) and the tooth thickness reduced portion (45b). It includes a connecting portion (45c) connected to the thickness expanding portion (45a) and the tooth thickness reducing portion (45b).
  • the connecting part (45c) may be a part with a constant tooth thickness, or a part where the tooth thickness changes slowly between the tooth thickness enlarged part (45a) and the tooth thickness reduced part (45b). It may be.
  • the thick part (45) of the movable wrap (42) is based on the spiral shape of the inner peripheral surface of the movable wrap (42).
  • the fixed side wrap (52) corresponds to the thick part (45) of the movable side wrap (42).
  • a concave portion (57) in which the inner peripheral surface of (52) is recessed radially outward is formed.
  • the thick part (45) is formed by inflating the inner peripheral surface side of the movable wrap (42), or the inner peripheral surface side and the outer peripheral surface side.
  • the said thick part (45) is formed by inflating the outer peripheral surface side of a movable side wrap (42), and fixed side wrap ( In 52), a recess (57) corresponding to the inner peripheral surface is formed.
  • the movable scroll (40) has a surface of the thick part (45) of the movable side wrap (42) that is in contact with the surface of the recessed part (57) of the fixed side wrap (52).
  • the position changes along the way. Since the thick part (45) and the recessed part (57) are formed to correspond to each other, there is a malfunction between the thick part (45) and the recessed part (57) when the orbiting scroll (40) is turned. And no refrigerant leaks.
  • the injection port (55) includes a compression chamber (35a, 35b) immediately after the suction closing operation during the operation of the compression mechanism (30). It is characterized by being formed in a communicating position.
  • the injection port (55) can be formed at a position closer to the winding end side than the winding start side of the movable side wrap (42). Therefore, the thick part (45) of the movable side wrap (42) is also formed at a position near the winding end side, and the recessed part (57) of the fixed side wrap (52) is also formed at a position near the winding end side.
  • the compression mechanism (30) is different in the spiral length of the fixed side wrap (52) and the spiral length of the movable side wrap (42). It has an asymmetric spiral structure, and the injection port (55) is formed at the center of the spiral groove of the fixed side wrap (52).
  • the injection port (55) is formed in the central portion of the spiral groove of the fixed side wrap (52) with one injection port (55), so that the injection port (55) is formed in the first compression chamber (55).
  • 35a, 35b) and the second compression chamber (35a, 35b) can be shared, so that the injection port (55) is compressed in comparison with the case where there are two injection ports (55) near the fixed wrap (52).
  • the angle range opening to the chamber (35a, 35b) is narrowed.
  • the portion corresponding to the injection port (55) in the movable wrap (42) includes the tooth thickness expanding portion (45a) in which the tooth thickness increases from the winding start side to the winding end side of the wrap. Since the thick part (45) is formed and the thickness dimension of the thick part (45) is greater than the above opening dimension of the injection port (55), the injection port (55) When 55) is closed, the entire injection port (55) is closed with the movable wrap (42).
  • the first compression chamber (35a, 35b) and the second compression chamber (35a, 35b) do not communicate with each other, even if the opening size of the injection port (55) is increased, the first compression chamber (35a, 35b) It is possible to prevent the refrigerant from leaking between the second compression chambers (35a, 35b), and to suppress a reduction in the efficiency of the compressor. Moreover, since the said opening dimension of the injection port (55) can be enlarged, it also becomes possible to increase injection flow volume. Furthermore, the movable side wrap (42) only needs to be provided with a thick part (45) in a part thereof, and the increase in the mass of the movable scroll (40) can be suppressed. Cost increase can be suppressed.
  • the thick part (45) of the movable side wrap (42) is formed in the range of the said tooth thickness enlarged part (45a) to a tooth thickness reduced part (45b). Therefore, both the part of the winding start side of the movable side wrap (42) from the tooth thickness enlarged part (45a) and the part of the winding end side of the movable side wrap (42) from the tooth thickness reduced part (45b), It can be made thinner than the thick part (45). Therefore, it is possible to more reliably suppress an increase in the mass of the movable scroll (40).
  • the thick part (45) of the movable side wrap (42) is formed on the outer peripheral side of the movable side wrap (42), and the recessed part (57) of the fixed side wrap (52) is formed. Since it is formed on the inner peripheral side of the fixed side wrap (52) corresponding to the thick part (45), the thick part (45) and the recessed part ( 57) There will be no malfunction or refrigerant leakage. Moreover, since it is easy to process the expansion of the outer peripheral side of the movable side wrap (42) and the recess of the inner peripheral side of the fixed side wrap (52), it is possible to prevent the manufacturing from becoming complicated.
  • the injection port (55) can be formed at a position closer to the winding end side than the winding start side of the movable side wrap (42), the thick wall of the movable side wrap (42)
  • Both the part (45) and the recessed part (57) of the fixed side wrap (52) can be formed at positions close to the winding end side. If both the thick wall portion (45) and the recessed portion (57) are on the winding end side, they are easier to process than the winding start side, and manufacturing can be performed easily.
  • the compression mechanism (30) has an asymmetric spiral structure, and the injection port (55) is formed at the center of the spiral groove of the stationary wrap (52).
  • One injection port (55) can be shared by the first compression chamber (35a, 35b) and the second compression chamber (35a, 35b).
  • the port is located near the wrap.
  • the angle range in which the injection port (55) opens into the compression chambers (35a, 35b) is widened, whereas when the injection port (55) is made one, the injection port (55) is connected to the compression chambers (35a, 35b). ) Can be narrowed.
  • the injection port (55) is formed at a position communicating with the compression chamber (35a, 35b) immediately after the suction closing operation during the operation of the compression mechanism (30), so that the movable side wrap (42)
  • the thick wall part (45) and the recessed part (57) of the fixed wrap (52) can be formed on the outermost part of each wrap, and can be easily applied to the conventional asymmetric spiral structure. become.
  • FIG. 1 is a longitudinal sectional view of a scroll compressor according to an embodiment of the present invention.
  • FIG. 2 is a bottom view of the fixed scroll in a state where the fixed side wrap and the movable side wrap are engaged with each other.
  • 3A is a cross-sectional view showing the spiral shape of the movable side wrap
  • FIG. 3B is a bottom view showing the spiral shape of the fixed side wrap.
  • 4A and 4B are cross-sectional views showing the operating state of the compression mechanism, where FIG. 4A is a state where the crank angle is 0 ° (360 °), FIG. 4B is a state where the crank angle is 90 °, and FIG. FIG. 4C shows a state where the crank angle is 180 °, and FIG. 4D shows a state where the crank angle is 270 °.
  • FIG. 5 is a partially enlarged view showing a modification of the thick portion of the movable side wrap.
  • FIG. 6 is a view showing a modification of the injection port.
  • a scroll compressor (1) performs a compression process of a refrigerant circuit (not shown) that performs a vapor compression refrigeration cycle, and compresses a low-pressure refrigerant sucked from an evaporator into a high-pressure condenser ( Discharge to a radiator.
  • FIG. 1 is a longitudinal sectional view of the scroll compressor (1)
  • FIG. 2 is a view showing the structure of the compression mechanism.
  • Scroll compressor (1) is provided with a vertically long and sealed casing-like casing (10). Inside the casing (10), an electric motor (20) and a compression mechanism (30) are arranged from bottom to top.
  • the electric motor (20) includes a stator (21) fixed to the body portion of the casing (10), and a rotor (22) disposed inside the stator (21).
  • a crankshaft (25) is connected to the rotor (22).
  • the compression mechanism (30) includes a movable scroll (40) and a fixed scroll (50).
  • the movable scroll (40) includes a substantially disc-shaped movable side end plate (41) and a spiral wall-shaped movable side wrap (42) standing on the movable side end plate (41).
  • a cylindrical protrusion (43) into which the eccentric part (26) of the crankshaft (25) is inserted is erected on the back surface (lower surface) of the movable side end plate (41).
  • the movable scroll (40) is supported by the lower housing (32) via the Oldham coupling (31).
  • the fixed scroll (50) includes a substantially disc-shaped fixed side end plate (51) and a spiral wall-shaped fixed side wrap (52) erected on the fixed side end plate (51).
  • the fixed side wrap (52) and the movable side wrap (42) mesh with each other, thereby forming a plurality of compression chambers (35) between the contact portions of both wraps (42, 52). ing.
  • the plurality of compression chambers (35) include a first compression chamber (35a) configured between an inner peripheral surface of the fixed side wrap (52) and an outer peripheral surface of the movable side wrap (42), and a fixed side wrap ( 52) and a second compression chamber (35b) configured between the outer peripheral surface of the movable side wrap (42).
  • a suction port (36) is formed at the outer edge of the fixed scroll (50).
  • one suction port (36) communicates with both the first compression chamber (35a) and the second compression chamber (35b).
  • a suction pipe (11) is connected to the suction port (36).
  • the suction port (36) intermittently communicates with each of the first compression chamber (35a) and the second compression chamber (35b) as the movable scroll (40) revolves.
  • the suction port (36) is provided with a suction check valve (not shown) that prohibits the flow of refrigerant from the compression chamber (35) to the suction pipe (11).
  • a discharge port (53) is formed at the center of the fixed side end plate (51).
  • the discharge port (53) intermittently communicates with each of the first compression chamber (35a) and the second compression chamber (35b) as the movable scroll (40) revolves.
  • the discharge port (53) opens into the muffler space (54) on the upper side of the fixed scroll (50).
  • the casing (10) is partitioned into an upper suction side space (15) and a lower discharge side space (16) by the disk-shaped housing (32).
  • the discharge side space (16) communicates with the muffler space (54) through the communication passage (56). Since the discharge refrigerant from the discharge port (53) flows through the muffler space (54), the discharge side space (16) during operation becomes a high-pressure space filled with the refrigerant compressed by the compression mechanism (30).
  • a discharge pipe (13) fixed to the casing (10) is opened in the discharge side space (16).
  • An oil sump for storing refrigerating machine oil is formed at the bottom of the casing (10).
  • a first oil supply passage (27) that opens to the oil reservoir is formed in the crankshaft (25).
  • the movable end plate (41) has a second oil supply passage (44) connected to the first oil supply passage (27).
  • the refrigerating machine oil in the oil reservoir is supplied to the compression chamber (35) on the low pressure side through the first oil supply passage (27) and the second oil supply passage (44).
  • the fixed scroll (50) is formed with an injection port (55) communicating with the compression chamber (35) through a communication path formed in the fixed side end plate (51).
  • An injection pipe (12) is connected to the injection port (55).
  • the injection tube (12) is fixed to the fixed side end plate (51).
  • the injection port (55) is formed at a position communicating with the compression chambers (35a, 35b) immediately after the suction closing operation during operation of the compression mechanism (30), and sucks refrigerant into the compression chambers (35a, 35b).
  • the injection port (55) communicates with the first compression chamber (35a) or the second compression chamber (35b) as soon as it is closed and closed.
  • the injection port (55) in the figure showing the lap shape of FIG. 3 (A), the spiral-shaped movable side wrap (42) from the winding start side (center side) to the winding end side (outer peripheral side).
  • the fixed scroll (50) is formed so as to correspond to the position of the boundary (FIG. 3B).
  • the movable side wrap has a constant tooth thickness from the winding start side to the winding end side.
  • the tooth thickness of the movable side wrap is made thinner at a uniform rate from the winding start side to the winding end side.
  • the fixed side wrap and the movable side wrap of a scroll compressor are formed by involute curves, and when the tooth thickness is constant from the winding start side to the winding end side, the basic circle radius of the involute is constant throughout the wrap. There is no change. Further, in the configuration in which the tooth thickness is uniformly reduced from the winding start side to the winding end side, the base circle radius of the involute is decreased from the winding start side to the winding end side.
  • the tooth thickness of the movable wrap (42) is constant and the same in the first section (Z1) and the fourth section (Z4), and toward the end of winding in the second section (Z2).
  • the third section (Z3) is thinner toward the end of winding.
  • the basic circle radius of the involute in the first section (Z1) and the fourth section (Z4) is the same, and in the second section (Z2), the basic circle radius of the involute is the first section (Z1) and the fourth section. It is larger than the section (Z4), and the basic circle radius of the involute is smaller than the first section (Z1) and the fourth section (Z4) in the third section (Z3).
  • the base circle center of the involute in the second section (Z2) and the third section (Z3) may be the same position as the base circle center of the involute in the first section (Z1) and the fourth section (Z4), or in a different position It may be set.
  • the shape of the conventional movable side wrap formed by constant tooth thickness from the winding start to the winding end is shown by the virtual line in FIG.
  • the injection port (55) is a circular hole formed with a diameter slightly larger than the tooth thickness of the first section (Z1) and the fourth section (Z4) of the movable side wrap (42).
  • FIG. 3B shows, by phantom lines, an injection port (55 ′) that can be closed by a conventional general movable side wrap formed with a constant tooth thickness.
  • the movable side wrap (42) of the present embodiment is formed so that the thickness dimension of the second section (Z2) and the third section (Z3) is equal to or larger than the diameter dimension of the injection port (55).
  • the tooth thickness increasing portion where the tooth thickness increases from the winding start side to the winding end side of the movable side wrap (42) at a portion corresponding to the injection port (55).
  • a thick part (45) including (45a) is formed.
  • the thick portion (45) includes a tooth thickness reduction portion (45b) that reduces the tooth thickness from the tooth thickness enlargement portion (45a) toward the winding end side of the movable wrap (42). Yes.
  • the tooth thickness expanding portion (45a) is formed in the second section (Z2) of the movable side wrap, and the tooth thickness reducing portion (45b) is formed in the third section (Z3) of the movable side wrap.
  • the tooth thickness dimension of the said thick part (45) is more than the diameter dimension of an injection port (55).
  • the thick portion (45) of the movable wrap (42) has an outer peripheral surface (outer flank surface) that bulges outward in the radial direction with reference to the spiral shape of the inner peripheral surface of the movable wrap (42). It is formed by.
  • the inner peripheral surface (inner flank surface) of the fixed side wrap (52) has a radial direction corresponding to the thick part (45) of the movable side wrap (42).
  • a recessed portion (57) recessed outward is formed.
  • the injection port (55) is connected to the fixed side wrap (52) as shown in FIG. )
  • the outer peripheral surface of the movable wrap (42), the first compression chamber (35a), the outer peripheral surface of the fixed wrap (52) and the inner periphery of the movable wrap (42) It communicates alternately with the second compression chamber (35b) formed between the surfaces.
  • the movable scroll (40) performs a turning operation in the order of FIGS. 4 (A), (B), (C), and (D), and the movable side wrap (42) is fixed side wrap (52). It reciprocates while turning between the inner peripheral surface and the outer peripheral surface. At this time, the movable wrap (42) moves across the injection port (55) from radially outward to inward or from radially inward to outward.
  • the injection port (55) When the movable wrap (42) is positioned between the injection port (55) and the outer peripheral surface of the fixed wrap (52) (see FIG. 4B), the injection port (55) is in the first compression chamber. (35a), when the movable wrap (42) is located between the injection port (55) and the inner peripheral surface of the fixed wrap (52) (see FIG. 4D), the injection port (55) communicates with the second compression chamber (35b).
  • the injection port (55) communicates with the first compression chamber (35a)
  • intermediate pressure refrigerant is injected into the first compression chamber (35a)
  • the injection port (55) communicates with the second compression chamber (35b)
  • Intermediate pressure refrigerant is injected into the second compression chamber (35b).
  • the movable side wrap (42) is formed with a thick part (45) whose thickness is equal to or greater than the diameter of the injection port (55), so the movable side wrap (42) crosses the injection port (55). At times (FIGS. 4A and 4C), the injection port (55) is closed by the thick portion (45). Thus, since the whole injection port (55) is closed by the movable side wrap (42), in this embodiment, a state occurs in which the first compression chamber (35a) and the second compression chamber (35b) are simultaneously communicated. Absent.
  • the said thick part (45) can be formed by inflating the inner peripheral surface side of a movable side wrap (42), or can be formed by inflating both an inner peripheral surface side and an outer peripheral surface side.
  • the thick portion (45) is formed by inflating the outer peripheral surface of the movable side wrap (42), and the fixed side wrap (52) has a recessed portion (57 ).
  • the surface of the thick wall portion (45) on the outer peripheral side of the movable side wrap (42) is the concave portion (57 on the inner peripheral side of the fixed side wrap (52). )
  • the position changes along the surface. Since the thick part (45) and the recessed part (57) are formed to correspond to each other, there is a malfunction between the thick part (45) and the recessed part (57) when the orbiting scroll (40) is turned. And no refrigerant leaks.
  • the injection port (55) is positioned closer to the winding end side than the winding start side of the movable wrap (42) so as to communicate with the compression chambers (35a, 35b) immediately after the suction closing. Forming. Therefore, the thick part (45) of the movable side wrap (42) is also formed at a position near the winding end side, and the recessed part (57) of the fixed side wrap (52) is also formed at a position near the winding end side. Therefore, when the movable scroll (40) is turned, the injection port (55) is opened and closed at the position at the winding end side of the wrap (42, 52).
  • the compression chamber is also symmetrical, so there are generally two injection ports (55).
  • the injection port (55) is also provided. Can be one.
  • the injection port (55) is formed in the central portion of the spiral groove of the fixed side wrap (52) with one injection port (55), so that the injection port (55) is formed in the first compression chamber (55).
  • 35a) and the second compression chamber (35b) can be shared, so that the angle range in which the injection port (55) opens into each compression chamber is narrower than when there are two injection ports (55).
  • the injection port (55) is closed while the injection port (55) communicates alternately with the first compression chamber (35a) and the second compression chamber (35b), the pressure rise due to the volume change of the compression chamber There will be fewer states.
  • the injection port (55) is formed in the low pressure portion on the winding end side of the movable side wrap (42) as described above, the injection port (55) closes faster and the intermediate pressure is reduced accordingly. The rise can be suppressed.
  • the tooth thickness of the movable side wrap (42) corresponding to the injection port (55) increases in tooth thickness from the winding start side to the winding end side of the movable side wrap (42).
  • a thick part (45) including the enlarged part (45a) is formed, and the thickness dimension of the thick part (45) is equal to or greater than the diameter dimension of the injection port (55). Therefore, even if the injection port (55) is enlarged as in the present embodiment, when the injection port (55) is closed, the entire injection port (55) is blocked by the movable side wrap (42).
  • the first compression chamber (35a) and the second compression chamber (35b) do not communicate with each other during the turning of the movable scroll (40). Therefore, even if the diameter of the injection port (55) is increased, the first compression chamber (35a) is not in communication.
  • the refrigerant can be prevented from leaking between the chamber (35a) and the second compression chamber (35b), and the efficiency of the compressor (1) can be prevented from decreasing.
  • the diameter of the injection port (55) can be increased, the injection flow rate can be increased.
  • the movable side wrap (42) only needs to be provided with a thick part (45) at a part thereof, and the movable scroll (40) compared with the case where the entire tooth thickness of the movable side wrap (42) is increased. Therefore, the increase in the size and cost of the mechanism can be suppressed.
  • the thick part (45) of the movable wrap (42) is formed in the range of the tooth thickness enlarged part (45a) and the tooth thickness reduced part (45b), it is more than the tooth thickness enlarged part (45a).
  • the compression mechanism has an asymmetric spiral structure and the injection port (55) is formed at the center of the spiral groove of the fixed side wrap (52), the injection port (55) is combined into one.
  • the first compression chamber (35a) and the second compression chamber (35b) can be shared. If the injection port (55) for the first compression chamber (35a) and the injection port (55) for the second compression chamber (35b) are provided separately, an injection port (55) is provided in each compression chamber (35a, 35b). While the opening angle range is wide, if the number of injection ports (55) is one, the angle range at which the injection port (55) opens into the compression chambers (35a, 35b) can be narrowed.
  • the injection port (55) is formed at a position communicating with the compression chamber immediately after the suction closing operation during the operation of the compression mechanism (30), so that the thick-walled portion (45 ) And the recessed portion (57) of the fixed side wrap (52) can be formed in the portion near the outermost periphery of each wrap, and can be easily applied to a conventional asymmetric spiral structure.
  • the thick part (45) of the movable side wrap (42) is formed on the outer peripheral side of the movable side wrap (42), and the concave part (57) of the fixed side wrap (52) is formed on the thick part (45). Since it is formed on the inner peripheral side of the fixed side wrap (52) corresponding to the movement of the movable scroll (40), the movement between the thick part (45) and the recessed part (57) This does not cause a malfunction or refrigerant leakage.
  • the thick part (45) of the movable side wrap (42) is also fixed side Since the recessed part (57) of the wrap (52) can also be formed at a position close to the winding end side, it is easier to process than forming the thick part (45) and the recessed part (57) on the winding start side, Manufacture can be performed easily.
  • the base circle radius of the involute can be manipulated to increase the tooth thickness, and both the inner flank surface of the fixed scroll (50) and the outer flank surface of the movable scroll (40) can be operated only at the outermost periphery. Therefore, the reflection to the conventional spiral (asymmetrical spiral) is relatively easy, and it is possible to cope with the change by only changing the spiral shape without increasing the end plate diameter of the spiral. Furthermore, when the structure of the present invention is applied to the conventional asymmetric spiral shape, the center of gravity position of the spiral is close to the center of the spiral, so that the weight necessary for balancing the movable scroll (40) can be reduced.
  • the tooth thickness of the second section (Z2) and the third section (Z3) of the movable side wrap (42) is larger than the tooth thickness of the first section (Z1) and the fourth section (Z4).
  • the thick section (45) is formed, but the third section (Z3) and the fourth section (Z4) are formed with the thickness of the winding end of the second section (Z2), and the first section
  • the tooth thickness of the fourth section (Z4) may be thicker than (Z1).
  • the first section (Z1) to the second section (Z2) of the movable wrap (42) are made one section so that the tooth thickness gradually increases, and the third section (Z3) and the fourth section (Z4) ) May be formed in the same manner as in FIG.
  • the injection flow rate by enlarging the injection port (55), and the entire injection port (55) is covered by the thick wall part (45) of the movable wrap (42). Since it can be closed, the refrigerant does not leak from the first compression chamber (35a) to the second compression chamber (35b). Further, since it is not necessary to increase the overall tooth thickness of the movable side wrap (42), an increase in size and an increase in cost can be suppressed. In short, the shape of the thick portion (45) of the present invention may be appropriately changed as long as the injection port (55) can be enlarged without increasing the total tooth thickness of the movable side wrap (42). .
  • the injection port (55) does not necessarily have to be formed at a position communicating with the compression chamber immediately after the suction is closed. In some cases, the injection port (55) is formed at a position closer to the inner periphery of the spiral than the position of FIG. May be.
  • the thick portion (45) of the movable side wrap (42) is formed between the tooth thickness enlarged portion (45a) and the tooth thickness reduced portion (45b).
  • You may comprise so that the connection part (45c) connected to a thickness expansion part (45a) and a tooth thickness reduction
  • the articulated part (45c) is the part where the tooth thickness changes slowly You can do it.
  • the injection port (55) has a circular hole, but the injection port (55) may have a long hole as shown in the modification of FIG.
  • the shape of the injection port (55) is not limited to the above embodiment, and the tooth thickness dimension of the thick portion (45) is the opening of the injection port (55) in the tooth thickness direction. As long as the dimension is equal to or larger than the dimension (diameter dimension of the circular hole in the above embodiment), it can be appropriately changed.
  • the present invention may be applied to a scroll compressor having a symmetrical spiral structure.
  • the present invention is useful for a scroll compressor having an intermediate injection mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

 中間インジェクションを行うスクロール圧縮機において、インジェクションポート(55)を吸入閉じ切り直後の圧縮室(35a,35b)に連通する位置に形成する。また、可動側ラップ(42)に、巻き始め側から巻き終わり側に向かって歯厚が拡大する歯厚拡大部(45a)と、その歯厚拡大部(45a)から巻き終わり側に向かって歯厚が縮小する歯厚縮小部(45b)とを有する厚肉部(45)を形成し、インジェクションポート(55)の直径を厚肉部(45)に合わせて大きくする。そうすることにより、インジェクション流量を増やせるようにするとともに、圧縮機の効率低下や圧縮機構の大型化及びコスト増大を抑える。

Description

スクロール圧縮機
 本発明は、中間インジェクション機構を備えたスクロール圧縮機に関し、特に、インジェクション流量を増やすための構造に関するものである。
 従来より、スクロール圧縮機は、一般に、ケーシング内に圧縮機構と駆動機構とを備えている。圧縮機構は、固定スクロールと可動スクロールとを有し、両スクロールは、互いに対向して配置される鏡板と、各鏡板に一体的に形成されて互いに噛み合う渦巻き状のラップとを有している。
 スクロール圧縮機の圧縮機構では、固定スクロールのラップ(固定側ラップという)と可動スクロールのラップ(可動側ラップという)が噛み合うことにより、固定スクロールと可動スクロールの間に圧縮室が形成されている。可動スクロールには、駆動機構に設けられているクランク軸(駆動軸)のクランクピンが連結されている。そして、クランク軸が回転することにより、可動スクロールが固定スクロールに対して旋回すると、圧縮室の容積が拡大と縮小を繰り返す。圧縮機構は、圧縮室の容積が拡大するときに冷媒を吸入し、縮小するときに冷媒を圧縮して吐出する。
 一方、スクロール圧縮機には、圧縮機構に中間圧の冷媒をインジェクションするためのインジェクション機構を備えたものがある(例えば、特許文献1参照)。特許文献1に記載された圧縮機構には、固定スクロールの鏡板を軸方向に貫通して圧縮室の中間圧位置に開口するインジェクションポートが形成されている。このインジェクションポートは、固定側ラップの渦巻きの間に形成される溝の中央部に、可動側ラップの厚さ寸法よりも小さな直径寸法で形成されている。
 この構成によれば、上記インジェクションポートは、固定側ラップの内周面と可動側ラップの外周面との間に形成される第1圧縮室と、固定側ラップの外周面と可動側ラップの内周面との間に形成される第2圧縮室とに交互に連通する。つまり、可動スクロールが旋回動作を行うと、可動側ラップが固定側ラップの内周面と外周面の間を往復動作するときに上記インジェクションポートを横切って移動して、可動側ラップがインジェクションポートと固定側ラップの外周面との間に位置するときにインジェクションポートが第1圧縮室に連通し、可動側ラップがインジェクションポートと固定側ラップの内周面との間に位置するときにインジェクションポートが第2圧縮室に連通する。
 一方、性能向上のために、インジェクション流量をより多くするように圧縮機構を構成したものもある(例えば、特許文献2,3参照)。特許文献2,3の圧縮機構では、可動側ラップの歯厚寸法よりも直径寸法が大きなインジェクションポートを固定スクロールに形成し、インジェクション流量を増やすようにしている。
特開平11-107945号公報 米国特許第6,619,936号明細書 特開昭63-243481号公報
 しかしながら、特許文献2,3のようにインジェクションポートの直径寸法を可動側ラップの厚さ寸法よりも大きくすると、圧縮機構の動作中にインジェクションポートが該可動側ラップを挟んで第1圧縮室と第2圧縮室とに同時に連通してしまう。そして、第1圧縮室と第2圧縮室が連通すると、圧力が異なる第1圧縮室と第2圧縮室の間で冷媒が漏れて、圧縮機の効率が低下してしまう。
 また、インジェクションポートの直径を大きくする構成において、可動側ラップの厚さ寸法も厚くして第1圧縮室と第2圧縮室が連通しないようにすると、可動側ラップが厚くなった分だけ可動スクロールの質量が大きくなり、圧縮機構の大型化やコスト増大を招いてしまう。
 本発明は、このような問題点に鑑みて創案されたものであり、その目的は、中間インジェクションを行うスクロール圧縮機において、インジェクション流量を増やせるようにするとともに、圧縮機の効率低下や圧縮機構の大型化及びコスト増大を抑えることである。
 第1の発明は、固定側鏡板(51)と該固定側鏡板(51)に立設された渦巻き壁状の固定側ラップ(52)とを有する固定スクロール(50)と、可動側鏡板(41)と該可動側鏡板(41)に立設された渦巻き壁状の可動側ラップ(42)とを有する可動スクロール(40)とを有し、固定側ラップ(52)と可動側ラップ(42)が噛み合わされて両スクロール(40,50)の間に圧縮室(35a,35b)が形成される圧縮機構(30)を備え、上記固定スクロール(50)に、上記固定側鏡板(51)に形成された連通路を通じて上記圧縮室(35a,35b)に連通するインジェクションポート(55)が形成されたスクロール圧縮機を前提としている。
 そして、このスクロール圧縮機では、上記可動側ラップ(42)におけるインジェクションポート(55)に対応する部位に、該可動側ラップ(42)の巻き始め側から巻き終わり側に向かって歯厚が拡大する歯厚拡大部(45a)を含む厚肉部(45)が形成され、該厚肉部(45)の厚さ寸法が、上記可動側ラップ(42)の歯厚方向へのインジェクションポート(55)の開口寸法以上であることを特徴としている。この開口寸法は、例えばインジェクションポート(55)が円形孔である場合は直径寸法であり、長孔である場合は幅寸法である。
 この第1の発明では、可動スクロール(40)が旋回すると、インジェクションポート(55)は、固定側ラップ(52)の内周面と可動側ラップ(42)の外周面との間に形成される第1圧縮室(35a,35b)と、固定側ラップ(52)の外周面と可動側ラップ(42)の内周面との間に形成される第2圧縮室(35a,35b)とに交互に連通する。つまり、可動スクロール(40)が旋回動作を行うと、可動側ラップ(42)が固定側ラップ(52)の内周面と外周面の間を往復動作するときに上記インジェクションポート(55)を横切って移動し、可動側ラップ(42)がインジェクションポート(55)と固定側ラップ(52)の内周面との間に位置するときにインジェクションポート(55)が第1圧縮室(35a,35b)に連通し、可動側ラップ(42)がインジェクションポート(55)と固定側ラップ(52)の外周面との間に位置するときにインジェクションポート(55)が第2圧縮室(35a,35b)に連通する。インジェクションポート(55)が第1圧縮室(35a,35b)に連通すると該第1圧縮室(35a,35b)へ中間圧冷媒が注入され、インジェクションポート(55)が第2圧縮室(35a,35b)に連通すると該第2圧縮室(35a,35b)へ中間圧冷媒が注入される。
 可動側ラップ(42)には、厚さ寸法がインジェクションポート(55)の上記開口寸法以上の厚肉部(45)が形成されているので、可動側ラップ(42)がインジェクションポート(55)を横切るときには、インジェクションポート(55)は厚肉部(45)で閉塞される。このように、インジェクションポート(55)の全体が可動側ラップ(42)で塞がれるため、この発明において第1圧縮室(35a,35b)と第2圧縮室(35a,35b)が同時に連通する状態は生じない。
 第2の発明は、第1の発明において、上記可動側ラップ(42)の厚肉部(45)が、上記歯厚拡大部(45a)側からラップの巻き終わり側に向かって歯厚が縮小する歯厚縮小部(45b)を含んでいることを特徴としている。
 この第2の発明では、可動側ラップ(42)の厚肉部(45)を構成する歯厚拡大部(45a)から歯厚縮小部(45b)の範囲内の部分により、上記インジェクションポート(55)の開閉動作が行われる。
 第3の発明は、第2の発明において、上記可動側ラップ(42)の厚肉部(45)が、上記歯厚拡大部(45a)と歯厚縮小部(45b)との間で該歯厚拡大部(45a)と歯厚縮小部(45b)に連接する連接部(45c)を含んでいることを特徴としている。この連接部(45c)は、歯厚が一定の部分であってもよいし、歯厚拡大部(45a)と歯厚縮小部(45b)の間に歯厚変化の緩やかな部分を設けたものであってもよい。
 この第3の発明では、可動側ラップ(42)の厚肉部(45)を構成する歯厚拡大部(45a)から連接部(45c)を経て歯厚縮小部(45b)に跨る範囲内の部分により、上記インジェクションポート(55)の開閉動作が行われる。
 第4の発明は、第1,第2または第3の発明において、上記可動側ラップ(42)の厚肉部(45)が、該可動側ラップ(42)の内周面の渦巻き形状を基準として外周面が径方向外方へ膨出することにより形成され、上記固定側ラップ(52)には、上記可動側ラップ(42)の厚肉部(45)に対応して、該固定側ラップ(52)の内周面が径方向外方へ凹んだ凹陥部(57)が形成されていることを特徴としている。
 上記第1,第2,第3の発明では、上記厚肉部(45)を可動側ラップ(42)の内周面側を膨らませることにより形成したり、内周面側と外周面側の両方を膨らませることにより形成することが可能であるが、この第4の発明では、上記厚肉部(45)を可動側ラップ(42)の外周面側を膨らませて形成し、固定側ラップ(52)には内周面側にそれに対応した凹陥部(57)を形成するようにしている。
 この第4の発明では、上記可動スクロール(40)は、その旋回時に、可動側ラップ(42)の厚肉部(45)の表面が固定側ラップ(52)の凹陥部(57)の表面に沿いながら位置が変化する。上記厚肉部(45)と凹陥部(57)が対応するように形成されているので、可動スクロール(40)の旋回時に厚肉部(45)と凹陥部(57)の間で動作の不具合や冷媒の漏れは生じない。
 第5の発明は、第1から第4の発明のいずれか1つにおいて、上記インジェクションポート(55)が、圧縮機構(30)の作動中における吸入閉じ切り直後の圧縮室(35a,35b)と連通する位置に形成されていることを特徴としている。
 この第5の発明では、インジェクションポート(55)を可動側ラップ(42)の巻き始め側よりも巻き終わり側に近い位置に形成することができる。したがって、可動側ラップ(42)の厚肉部(45)も巻き終わり側に近い位置に形成され、固定側ラップ(52)の凹陥部(57)も巻き終わり側に近い位置に形成される。
 第6の発明は、第1から第5の発明のいずれか1つにおいて、上記圧縮機構(30)が、固定側ラップ(52)の渦巻き長さと可動側ラップ(42)の渦巻き長さが異なる非対称渦巻き構造に構成され、上記インジェクションポート(55)が固定側ラップ(52)の渦巻きの溝の中央部に形成されていることを特徴としている。
 対称渦巻き構造では可動側ラップ(42)と固定側ラップ(52)の巻き終わり端の吸入開口が2つあり、圧縮室(35a,35b)も対称構造であるためにインジェクションポート(55)も2つ固定側ラップ(52)の近傍に設けられるが、この第6の発明では、非対称渦巻き構造を採用しているから、可動側ラップ(42)と固定側ラップ(52)の巻き終わり端の吸入開口が1つであり、インジェクションポート(55)も1つにすることができる。
 また、非対称渦巻き構造であれば、インジェクションポート(55)を1つにして固定側ラップ(52)の渦巻きの溝の中央部に形成することにより、該インジェクションポート(55)を第1圧縮室(35a,35b)と第2圧縮室(35a,35b)で共用できるので、インジェクションポート(55)が2つ固定側ラップ(52)の近傍にある場合に比べて、インジェクションポート(55)が各圧縮室(35a,35b)に開口する角度範囲が狭くなる。その結果、インジェクションポート(55)が第1圧縮室(35a,35b)と第2圧縮室(35a,35b)に交互に連通する間にインジェクションポート(55)が閉じられるとき、圧縮室(35a,35b)の容積変化による圧力上昇が少ない状態となる。
 本発明によれば、可動側ラップ(42)におけるインジェクションポート(55)に対応する部位に、ラップの巻き始め側から巻き終わり側に向かって歯厚が拡大する歯厚拡大部(45a)を含む厚肉部(45)を形成し、この厚肉部(45)の厚さ寸法をインジェクションポート(55)の上記開口寸法以上としているので、インジェクションポート(55)を大きくしても、インジェクションポート(55)が閉じられるときには、インジェクションポート(55)全体が可動側ラップ(42)で塞がれる。
 したがって、第1圧縮室(35a,35b)と第2圧縮室(35a,35b)が連通しないので、インジェクションポート(55)の上記開口寸法を大きくしても第1圧縮室(35a,35b)と第2圧縮室(35a,35b)の間で冷媒が漏れるのを防止でき、圧縮機の効率低下を抑えられる。また、インジェクションポート(55)の上記開口寸法を大きくできるので、インジェクション流量を多くすることも可能になる。さらに、可動側ラップ(42)には、その一部に厚肉部(45)を設けるだけでよく、可動スクロール(40)の質量が増加してしまうのも抑えられるので、機構の大型化やコストアップも抑えられる。
 上記第2,第3の発明によれば、可動側ラップ(42)の厚肉部(45)を上記歯厚拡大部(45a)から歯厚縮小部(45b)の範囲内に形成しているので、歯厚拡大部(45a)よりも可動側ラップ(42)の巻き始め側の部分と、歯厚縮小部(45b)よりも可動側ラップ(42)の巻き終わり側の部分の両方を、厚肉部(45)よりも薄くすることができる。したがって、可動スクロール(40)の質量が増加するのをより確実に抑えることが可能になる。
 上記第4の発明によれば、可動側ラップ(42)の厚肉部(45)を該可動側ラップ(42)の外周側に形成し、固定側ラップ(52)の凹陥部(57)を上記厚肉部(45)に対応して該固定側ラップ(52)の内周側に形成しているので、可動スクロール(40)が旋回するときに該厚肉部(45)と凹陥部(57)の間での動作の不具合や冷媒の漏れは生じない。また、可動側ラップ(42)の外周側を膨らませることも固定側ラップ(52)の内周側を凹ませることも加工が容易であるから、製造が複雑になるのを防止できる。
 上記第5の発明によれば、インジェクションポート(55)を可動側ラップ(42)の巻き始め側よりも巻き終わり側に近い位置に形成することができるので、可動側ラップ(42)の厚肉部(45)も固定側ラップ(52)の凹陥部(57)も巻き終わり側に近い位置に形成することができる。厚肉部(45)も凹陥部(57)も巻き終わり側であれば巻き始め側よりも加工しやすく、製造を容易に行うことができる。
 上記第6の発明によれば、上記圧縮機構(30)を非対称渦巻き構造にし、上記インジェクションポート(55)を固定側ラップ(52)の渦巻きの溝の中央部に形成するようにしているので、インジェクションポート(55)を1つにして第1圧縮室(35a,35b)と第2圧縮室(35a,35b)で共用できる。第1圧縮室(35a,35b)用のインジェクションポート(55)と第2圧縮室(35a,35b)用のインジェクションポート(55)を別々に設けると、ポートがラップの近傍に位置するために、インジェクションポート(55)が各圧縮室(35a,35b)に開口する角度範囲が広くなるのに対して、インジェクションポート(55)を1つにするとインジェクションポート(55)が各圧縮室(35a,35b)に開口する角度範囲を狭くすることができる。その結果、圧縮室(35a,35b)の容積変化による圧力上昇が少ない状態でインジェクションポート(55)を閉じることが可能になり、中間圧の上昇を抑えることができる。したがって、圧縮機の効率が悪くなるのを防止できる。
 また、特に、上記インジェクションポート(55)を、圧縮機構(30)の作動中における吸入閉じ切り直後の圧縮室(35a,35b)と連通する位置に形成することにより、可動側ラップ(42)の厚肉部(45)も固定側ラップ(52)の凹陥部(57)も各ラップの最外周の部分に形成することが可能になり、従来形状の非対称渦巻き構造に容易に適用することが可能になる。
図1は、本発明の実施形態に係るスクロール圧縮機の縦断面図である。 図2は、固定側ラップと可動側ラップを噛み合わせた状態での固定スクロールの底面図である。 図3(A)は、可動側ラップの渦巻き形状を示す断面図であり、図3(B)は、固定側ラップの渦巻き形状を示す底面図である。 図4は、圧縮機構の動作状態を示す断面図であり、図4(A)はクランク角度が0°(360°)の状態、図4(B)はクランク角度が90°の状態、図4(C)はクランク角度が180°の状態、そして図4(D)はクランク角度が270°の状態を示している。 図5は、可動側ラップの厚肉部の変形例を示す部分拡大図である。 図6は、インジェクションポートの変形例を示す図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 この実施形態に係るスクロール圧縮機(1)は、蒸気圧縮式冷凍サイクルを行う図示しない冷媒回路の圧縮行程を行うものであり、蒸発器から吸入した低圧の冷媒を高圧に圧縮して凝縮器(放熱器)へ吐出する。図1はスクロール圧縮機(1)の縦断面図、図2は圧縮機構の構造を示す図である。
 スクロール圧縮機(1)は、縦長で密閉容器状のケーシング(10)を備えている。ケーシング(10)の内部には、下から上へ向かって、電動機(20)と圧縮機構(30)とが配置されている。電動機(20)は、ケーシング(10)の胴部に固定されたステータ(21)と、ステータ(21)の内側に配置されたロータ(22)とを備えている。ロータ(22)には、クランク軸(25)が連結されている。
 圧縮機構(30)は、可動スクロール(40)と固定スクロール(50)とを備えている。可動スクロール(40)は、略円板状の可動側鏡板(41)と、該可動側鏡板(41)に立設された渦巻き壁状の可動側ラップ(42)とを備えている。可動側鏡板(41)の背面(下面)には、クランク軸(25)の偏心部(26)が挿入される円筒状の突出部(43)が立設されている。可動スクロール(40)は、オルダム継手(31)を介して、可動スクロール(40)の下側のハウジング(32)に支持されている。一方、固定スクロール(50)は、略円板状の固定側鏡板(51)と、該固定側鏡板(51)に立設された渦巻き壁状の固定側ラップ(52)とを備えている。圧縮機構(30)では、固定側ラップ(52)と可動側ラップ(42)とが互いに噛み合うことによって、両ラップ(42,52)の接触部の間に複数の圧縮室(35)が形成されている。
 本実施形態のスクロール圧縮機(1)では、いわゆる非対称渦巻き構造が採用されており、固定側ラップ(52)と可動側ラップ(42)とで巻き数(渦巻きの長さ)が相違している。上記複数の圧縮室(35)は、固定側ラップ(52)の内周面と可動側ラップ(42)の外周面との間に構成される第1圧縮室(35a)と、固定側ラップ(52)の外周面と可動側ラップ(42)の内周面との間に構成される第2圧縮室(35b)とから構成されている。
 圧縮機構(30)では、固定スクロール(50)の外縁部に吸入ポート(36)が形成されている。この実施形態では、非対称渦巻き構造を採用したことにより、1つの吸入ポート(36)が第1圧縮室(35a)と第2圧縮室(35b)の両方に連通するようになっている。吸入ポート(36)には吸入管(11)が接続されている。吸入ポート(36)は、可動スクロール(40)の公転運動に伴って、第1圧縮室(35a)と第2圧縮室(35b)のそれぞれに間欠的に連通する。吸入ポート(36)には、圧縮室(35)から吸入管(11)へ戻る冷媒の流れを禁止する吸入逆止弁が設けられている(図示省略)。
 また、圧縮機構(30)では、固定側鏡板(51)の中央部に吐出ポート(53)が形成されている。吐出ポート(53)は、可動スクロール(40)の公転運動に伴って、第1圧縮室(35a)と第2圧縮室(35b)のそれぞれに間欠的に連通する。吐出ポート(53)は、固定スクロール(50)の上側のマフラー空間(54)に開口している。
 ケーシング(10)内は、円盤状の上記ハウジング(32)によって、上側の吸入側空間(15)と下側の吐出側空間(16)とに区画されている。吐出側空間(16)は、連絡通路(56)を通じてマフラー空間(54)に連通している。運転中の吐出側空間(16)は、吐出ポート(53)からの吐出冷媒がマフラー空間(54)を通じて流入するので、圧縮機構(30)で圧縮された冷媒で満たされる高圧空間になる。吐出側空間(16)には、ケーシング(10)に固定された吐出管(13)が開口している。
 ケーシング(10)の底部には、冷凍機油が貯留される油溜まりが形成されている。クランク軸(25)の内部には、油溜まりに開口する第1給油通路(27)が形成されている。また、可動側鏡板(41)には、第1給油通路(27)に接続する第2給油通路(44)が形成されている。このスクロール圧縮機(1)では、油溜まりの冷凍機油が第1給油通路(27)及び第2給油通路(44)を通じて低圧側の圧縮室(35)に供給される。
 次に、上記圧縮機構(30)において、圧縮室(35a,35b)に中間圧冷媒をインジェクションするための構造について説明する。
 上記固定スクロール(50)には、上記固定側鏡板(51)に形成された連通路を通じて上記圧縮室(35)に連通するインジェクションポート(55)が形成されている。このインジェクションポート(55)にはインジェクション管(12)が接続されている。インジェクション管(12)は固定側鏡板(51)に固定されている。
 上記インジェクションポート(55)は、圧縮機構(30)の作動中に吸入閉じ切り直後の圧縮室(35a,35b)と連通する位置に形成され、各圧縮室(35a,35b)への冷媒の吸入が終わって閉じ切られるとすぐにインジェクションポート(55)が第1圧縮室(35a)または第2圧縮室(35b)と連通するようになっている。インジェクションポート(55)は、具体的には、図3(A)のラップ形状を示す図において、渦巻き形状の可動側ラップ(42)を巻き始め側(中心側)から巻き終わり側(外周側)に向かって、第1区間(Z1)、第2区間(Z2)、第3区間(Z3)及び第4区間(Z4)に分けたときに、第2区間(Z2)と第3区間(Z3)の境界となる位置に対応するように、固定スクロール(50)に形成されている(図3(B))。また、この実施形態では、インジェクションポート(55)は1つであり、その1つのインジェクションポート(55)が固定側ラップ(52)の渦巻きの溝の中央部に形成されている。
 ここで、一般的なスクロール圧縮機において、可動側ラップは巻き始め側から巻き終わり側まで歯厚が一定である。また、その他の例としては、可動側ラップの歯厚を巻き始め側から巻き終わり側に向かって一様な割合で薄くなるようにしたものもある。一般に、スクロール圧縮機の固定側ラップと可動側ラップはインボリュート曲線で形成されており、巻き始め側から巻き終わり側まで歯厚が一定の構成では、ラップの全体にわたってインボリュートの基礎円半径が一定であって変化しない。また、巻き始め側から巻き終わり側まで歯厚が一様に薄くなる構成では、ラップの巻き始め側から巻き終わり側に向かってインボリュートの基礎円半径が小さくなるようになっている。
 本実施形態では、可動側ラップ(42)の歯厚は、第1区間(Z1)と第4区間(Z4)では一定で同じ厚さであり、第2区間(Z2)では巻き終わり側に向かって厚くなり、第3区間(Z3)では巻き終わり側に向かって薄くなっている。この構成において、第1区間(Z1)と第4区間(Z4)のインボリュートの基礎円半径は同じであり、第2区間(Z2)ではインボリュートの基礎円半径が第1区間(Z1)と第4区間(Z4)よりも大きくなり、第3区間(Z3)ではインボリュートの基礎円半径が第1区間(Z1)と第4区間(Z4)よりも小さくなっている。第2区間(Z2)と第3区間(Z3)のインボリュートの基礎円中心は、第1区間(Z1)と第4区間(Z4)のインボリュートの基礎円中心と同じ位置でもよいし、異なる位置に設定してもよい。なお、巻き始めから巻き終わりまで歯厚が一定で形成される従来の可動側ラップの形状を、図3(A)に仮想線で示している。
 上記インジェクションポート(55)は、可動側ラップ(42)の第1区間(Z1)と第4区間(Z4)の歯厚寸法よりも若干大きな直径寸法で形成された円形の孔である。比較のため、図3(B)には、一定の歯厚で形成される従来の一般的な可動側ラップで閉塞可能なインジェクションポート(55')を仮想線で示している。本実施形態の可動側ラップ(42)は、第2区間(Z2)と第3区間(Z3)の厚さ寸法がインジェクションポート(55)の直径寸法以上の寸法になるように形成されていて、第1区間(Z1)と第4区間(Z4)のラップの歯厚寸法よりも大きな直径寸法で形成されたインジェクションポート(55)を、第2区間(Z2)から第3区間(Z3)の範囲で閉塞できるようになっている。
 具体的に、可動側ラップ(42)には、インジェクションポート(55)に対応する部位に、可動側ラップ(42)の巻き始め側から巻き終わり側に向かって歯厚が拡大する歯厚拡大部(45a)を含む厚肉部(45)が形成されている。また、この厚肉部(45)には、上記歯厚拡大部(45a)から可動側ラップ(42)の巻き終わり側に向かって歯厚が縮小する歯厚縮小部(45b)が含まれている。この歯厚拡大部(45a)は上記可動側ラップの第2区間(Z2)に形成され、上記歯厚縮小部(45b)は可動側ラップの第3区間(Z3)に形成されている。そして、上記厚肉部(45)の歯厚寸法がインジェクションポート(55)の直径寸法以上となっている。
 上記可動側ラップ(42)の厚肉部(45)は、該可動側ラップ(42)の内周面の渦巻き形状を基準として外周面(外側フランク面)が径方向外方へ膨出することにより形成されている。一方、上記固定側ラップ(52)には、上記可動側ラップ(42)の厚肉部(45)に対応して、該固定側ラップ(52)の内周面(内側フランク面)が径方向外方へ凹んだ凹陥部(57)が形成されている。
  -運転動作-
 この実施形態では、可動スクロール(40)が旋回すると、インジェクションポート(55)は、可動スクロール(40)が旋回する様子を90°間隔で表している図4に示すように、固定側ラップ(52)の内周面と可動側ラップ(42)の外周面との間に形成される第1圧縮室(35a)と、固定側ラップ(52)の外周面と可動側ラップ(42)の内周面との間に形成される第2圧縮室(35b)とに交互に連通する。
 具体的には、可動スクロール(40)は、図4(A),(B),(C),(D)の順に旋回動作を行い、可動側ラップ(42)は、固定側ラップ(52)の内周面と外周面の間を旋回しながら往復動作をする。このとき、可動側ラップ(42)は、上記インジェクションポート(55)を径方向外方から内方へ、あるいは径方向内方から外方へ横切って移動する。
 可動側ラップ(42)がインジェクションポート(55)と固定側ラップ(52)の外周面との間に位置するとき(図4(B)参照)には、インジェクションポート(55)が第1圧縮室(35a)に連通し、可動側ラップ(42)がインジェクションポート(55)と固定側ラップ(52)の内周面との間に位置するとき(図4(D)参照)には、インジェクションポート(55)が第2圧縮室(35b)に連通する。インジェクションポート(55)が第1圧縮室(35a)に連通すると、該第1圧縮室(35a)へ中間圧冷媒が注入され、インジェクションポート(55)が第2圧縮室(35b)に連通すると、該第2圧縮室(35b)へ中間圧冷媒が注入される。
 可動側ラップ(42)には、厚さ寸法がインジェクションポート(55)の直径寸法以上の厚肉部(45)が形成されているので、可動側ラップ(42)がインジェクションポート(55)を横切るとき(図4(A),(C))には、インジェクションポート(55)は厚肉部(45)で閉塞される。このように、インジェクションポート(55)の全体が可動側ラップ(42)で塞がれるため、この実施形態において第1圧縮室(35a)と第2圧縮室(35b)が同時に連通する状態は生じない。
 なお、上記厚肉部(45)は、可動側ラップ(42)の内周面側を膨らませることにより形成したり、内周面側と外周面側の両方を膨らませることにより形成することが可能であるが、この実施形態では、上記厚肉部(45)を可動側ラップ(42)の外周面側を膨らませて形成し、固定側ラップ(52)には、それに対応した凹陥部(57)を形成するようにしている。このことにより、上記可動スクロール(40)は、その旋回時に、可動側ラップ(42)の外周側の厚肉部(45)の表面が固定側ラップ(52)の内周側の凹陥部(57)の表面に沿いながら位置が変化する。上記厚肉部(45)と凹陥部(57)が対応するように形成されているので、可動スクロール(40)の旋回時に厚肉部(45)と凹陥部(57)の間で動作の不具合や冷媒の漏れは生じない。
 また、この実施形態では、インジェクションポート(55)を吸入閉じ切り直後の圧縮室(35a、35b)と連通するように、可動側ラップ(42)の巻き始め側よりも巻き終わり側に近い位置に形成している。したがって、可動側ラップ(42)の厚肉部(45)も巻き終わり側に近い位置に形成され、固定側ラップ(52)の凹陥部(57)も巻き終わり側に近い位置に形成される。したがって、可動スクロール(40)の旋回時に、ラップ(42,52)の巻き終わり側の位置でインジェクションポート(55)が開閉される。
 さらに、対称渦巻き構造では可動側ラップ(42)と固定側ラップ(52)の巻き終わり端の吸入開口が2つあり、圧縮室も対称構造であるためにインジェクションポート(55)も一般に2つ設けられるが、この実施形態では、非対称渦巻き構造を採用しているから、可動側ラップ(42)と固定側ラップ(52)の巻き終わり端の吸入開口が1つであり、インジェクションポート(55)も1つにすることができる。
 また、非対称渦巻き構造であれば、インジェクションポート(55)を1つにして固定側ラップ(52)の渦巻きの溝の中央部に形成することにより、該インジェクションポート(55)を第1圧縮室(35a)と第2圧縮室(35b)で共用できるので、インジェクションポート(55)が2つある場合に比べて、インジェクションポート(55)が各圧縮室に開口する角度範囲が狭くなる。その結果、インジェクションポート(55)が第1圧縮室(35a)と第2圧縮室(35b)に交互に連通する間にインジェクションポート(55)が閉じられるとき、圧縮室の容積変化による圧力上昇が少ない状態となる。また、上述のようにインジェクションポート(55)を可動側ラップ(42)の巻き終わり側の低圧部分に形成しているから、その分だけインジェクションポート(55)の閉じ切りも早くなり、中間圧の上昇を抑えられる。
  -実施形態の効果-
 本実施形態によれば、可動側ラップ(42)におけるインジェクションポート(55)に対応する部位に、該可動側ラップ(42)の巻き始め側から巻き終わり側に向かって歯厚が拡大する歯厚拡大部(45a)を含む厚肉部(45)を形成し、この厚肉部(45)の厚さ寸法をインジェクションポート(55)の直径寸法以上としている。したがって、本実施形態のようにインジェクションポート(55)を大きくしても、インジェクションポート(55)が閉じられるときには、インジェクションポート(55)の全体が可動側ラップ(42)で塞がれる。
 したがって、可動スクロール(40)の旋回中に第1圧縮室(35a)と第2圧縮室(35b)が連通する状態が生じないので、インジェクションポート(55)の直径を大きくしても第1圧縮室(35a)と第2圧縮室(35b)の間で冷媒が漏れるのを防止でき、圧縮機(1)の効率低下を抑えられる。また、インジェクションポート(55)の直径を大きくできるので、インジェクション流量を多くすることも可能になる。さらに、可動側ラップ(42)には、その一部に厚肉部(45)を設けるだけでよく、可動側ラップ(42)の全体の歯厚を大きくする場合に比べて可動スクロール(40)の質量が増加してしまうのも抑えられるので、機構の大型化やコストアップも抑えられる。
 また、可動側ラップ(42)の厚肉部(45)を上記歯厚拡大部(45a)と歯厚縮小部(45b)の範囲に形成しているので、歯厚拡大部(45a)よりも可動側ラップ(42)の巻き始め側の部分と、歯厚縮小部(45b)よりも可動側ラップ(42)の巻き終わり側の部分の両方を、厚肉部(45)よりも薄くすることができる。したがって、可動スクロール(40)の質量が増加するのをより確実に抑えることが可能になる。
 また、上記圧縮機構を非対称渦巻き構造にし、上記インジェクションポート(55)を固定側ラップ(52)の渦巻きの溝の中央部に形成するようにしているので、インジェクションポート(55)を1つにして第1圧縮室(35a)と第2圧縮室(35b)で共用できる。第1圧縮室(35a)用のインジェクションポート(55)と第2圧縮室(35b)用のインジェクションポート(55)を別々に設けると、インジェクションポート(55)が各圧縮室(35a,35b)に開口する角度範囲が広くなるのに対して、インジェクションポート(55)を1つにするとインジェクションポート(55)が各圧縮室(35a,35b)に開口する角度範囲を狭くすることができる。その結果、圧縮室(35a,35b)の容積変化による圧力上昇が少ない状態でインジェクションポート(55)を閉じることが可能になり、中間圧の上昇を抑えることができる。したがって、圧縮機の効率が悪くなるのを防止できる。
 また、特に、上記インジェクションポート(55)を、圧縮機構(30)の作動中における吸入閉じ切り直後の圧縮室と連通する位置に形成することにより、可動側ラップ(42)の厚肉部(45)も固定側ラップ(52)の凹陥部(57)も各ラップの最外周寄りの部分に形成することが可能になり、従来形状の非対称渦巻き構造に容易に適用することが可能になる。
 そして、可動側ラップ(42)の厚肉部(45)を該可動側ラップ(42)の外周側に形成し、固定側ラップ(52)の凹陥部(57)を上記厚肉部(45)に対応して該固定側ラップ(52)の内周側に形成しているので、可動スクロール(40)が旋回するときに該厚肉部(45)と凹陥部(57)の間での動作の不具合や冷媒の漏れは生じない。
 また、インジェクションポート(55)を可動側ラップ(42)の巻き始め側よりも巻き終わり側に近い位置に形成することができるので、可動側ラップ(42)の厚肉部(45)も固定側ラップ(52)の凹陥部(57)も巻き終わり側に近い位置に形成することができるから、厚肉部(45)も凹陥部(57)も巻き始め側に形成するよりも加工しやすく、製造を容易に行うことができる。
 さらに、可動側ラップ(42)の外周側を膨らませることも固定側ラップ(52)の内周側を凹ませることも、加工は容易であるから、このことも製造が複雑になるのを防止するのに寄与する。このように、歯厚を厚くするためにインボリュートの基礎円半径を操作する範囲が、固定スクロール(50)の内側フランク面及び可動スクロール(40)の外側フランク面のいずれも最外周部のみで可能であるから、従来の渦巻き(非対称渦巻き)への反映が比較的容易であるし、渦巻きの鏡板径を拡大することなく、渦巻き形状の変更だけで対応することも可能である。さらに、従来の非対称渦巻き形状に本発明の構造を適用する場合、渦巻きの重心位置が渦巻き中心に近くなるため、可動スクロール(40)のバランス取りに必要な重量を低減することもできる。
 《その他の実施形態》
 上記実施形態については、以下のような構成としてもよい。
 例えば、上記実施形態では、可動側ラップ(42)の第2区間(Z2)と第3区間(Z3)の歯厚を第1区間(Z1)と第4区間(Z4)の歯厚よりも大きくして厚肉部(45)を形成するようにしているが、第3区間(Z3)と第4区間(Z4)を第2区間(Z2)の巻き終わりの厚さで形成し、第1区間(Z1)よりも第4区間(Z4)の歯厚が厚くなるようにしてもよい。また、可動側ラップ(42)の第1区間(Z1)から第2区間(Z2)を一つの区間にして徐々に歯厚が太くなるようにし、第3区間(Z3)と第4区間(Z4)は図3(A)と同じように形成してもよい。これらのいずれの構成でも、インジェクションポート(55)を大きくすることによりインジェクション流量を増やすことが可能であるし、インジェクションポート(55)の全体を可動側ラップ(42)の厚肉部(45)で塞ぐことができるので、第1圧縮室(35a)から第2圧縮室(35b)への冷媒の漏れは生じない。また、可動側ラップ(42)の全体の歯厚を太くしなくてもよいので、大型化やコスト増大も抑えられる。要するに、本発明の厚肉部(45)は、可動側ラップ(42)の歯厚の全体を太くせずにインジェクションポート(55)を大きくできるものであれば、形状は適宜変更してもよい。
 また、インジェクションポート(55)は、必ずしも吸入閉じ切り直後の圧縮室に連通する位置に形成しなくてもよく、場合によっては図3(B)の位置よりも渦巻きの内周寄りの位置に形成してもよい。
 また、図5の変形例に示すように、上記可動側ラップ(42)の厚肉部(45)は、上記歯厚拡大部(45a)と歯厚縮小部(45b)との間で該歯厚拡大部(45a)と歯厚縮小部(45b)に連接する連接部(45c)を含むように構成してもよい。歯厚拡大部(45a)の巻き終わり側端部と歯厚縮小部(45b)の巻き始め側端部の厚さが同じ場合は、連接部(45c)の歯厚は一定にすればよいし、歯厚拡大部(45a)の巻き終わり側端部と歯厚縮小部(45b)の巻き始め側端部の厚さが若干異なる場合は、連接部(45c)は歯厚変化が緩やかな部分にすればよい。
 また、上記実施形態ではインジェクションポート(55)を円形孔にしているが、図6の変形例に示すようにインジェクションポート(55)は長孔にしてもよい。このように、インジェクションポート(55)の形状は、上記実施形態に限定されるものではなく、上記厚肉部(45)の歯厚寸法が、その歯厚方向へのインジェクションポート(55)の開口寸法(上記実施形態では円形孔の直径寸法)以上の寸法になっている限りは、適宜変更することが可能である。
 さらに、上記実施形態では、本発明を非対称渦巻き構造のスクロール圧縮機に適用した例を説明したが、本発明は、対称渦巻き構造のスクロール圧縮機に適用してもよい。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、中間インジェクション機構を備えたスクロール圧縮機について有用である。
 1  スクロール圧縮機
 30 圧縮機構
 35a 第1圧縮室
 35b 第2圧縮室
 40 可動スクロール
 41 可動側鏡板
 42 可動側ラップ
 45 厚肉部
 45a 歯厚拡大部
 45b 歯厚縮小部
 50 固定スクロール
 51 固定側鏡板
 52 固定側ラップ
 55 インジェクションポート
 57 凹陥部

Claims (6)

  1.  固定側鏡板(51)と該固定側鏡板(51)に立設された渦巻き壁状の固定側ラップ(52)とを有する固定スクロール(50)と、可動側鏡板(41)と該可動側鏡板(41)に立設された渦巻き壁状の可動側ラップ(42)とを有する可動スクロール(40)とを有し、固定側ラップ(52)と可動側ラップ(42)が噛み合わされて両スクロール(40,50)の間に圧縮室(35a,35b)が形成される圧縮機構(30)を備え、
     上記固定スクロール(50)に、上記固定側鏡板(51)に形成された連通路を通じて上記圧縮室(35a,35b)に連通するインジェクションポート(55)が形成されているスクロール圧縮機であって、
     上記可動側ラップ(42)には、インジェクションポート(55)に対応する部位に、該可動側ラップ(42)の巻き始め側から巻き終わり側に向かって歯厚が拡大する歯厚拡大部(45a)を含む厚肉部(45)が形成され、該厚肉部(45)の厚さ寸法が、上記可動側ラップ(42)の歯厚方向へのインジェクションポート(55)の開口寸法以上であることを特徴とするスクロール圧縮機。
  2.  請求項1において、
     上記可動側ラップ(42)の厚肉部(45)は、上記歯厚拡大部(45a)側から該可動側ラップ(42)の巻き終わり側に向かって歯厚が縮小する歯厚縮小部(45b)を含んでいることを特徴とするスクロール圧縮機。
  3.  請求項2において、
     上記可動側ラップ(42)の厚肉部(45)は、上記歯厚拡大部(45a)と歯厚縮小部(45b)との間で該歯厚拡大部(45a)と歯厚縮小部(45b)に連接する連接部(45c)を含んでいることを特徴とするスクロール圧縮機。
  4.  請求項1において、
     上記可動側ラップ(42)の厚肉部(45)は、該可動側ラップ(42)の内周面の渦巻き形状を基準として外周面が径方向外方へ膨出することにより形成され、
     上記固定側ラップ(52)には、上記可動側ラップ(42)の厚肉部(45)に対応して、該固定側ラップ(52)の内周面が径方向外方へ凹んだ凹陥部(57)が形成されていることを特徴とするスクロール圧縮機。
  5.  請求項1において、
     上記インジェクションポート(55)は、圧縮機構(30)の作動中における吸入閉じ切り直後の圧縮室(35a,35b)と連通する位置に形成されていることを特徴とするスクロール圧縮機。
  6.  請求項1において、
     上記圧縮機構(30)は、固定側ラップ(52)の渦巻き長さと可動側ラップ(42)の渦巻き長さが異なる非対称渦巻き構造に構成され、
     上記インジェクションポート(55)が固定側ラップ(52)の渦巻きの溝の中央部に形成されていることを特徴とするスクロール圧縮機。
PCT/JP2012/005986 2011-09-21 2012-09-20 スクロール圧縮機 WO2013042368A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020147010166A KR101611109B1 (ko) 2011-09-21 2012-09-20 스크롤 압축기
ES12834245.8T ES2563448T3 (es) 2011-09-21 2012-09-20 Compresor de espiral
BR112014006295-1A BR112014006295B1 (pt) 2011-09-21 2012-09-20 compressor caracol excêntrico
EP12834245.8A EP2759708B1 (en) 2011-09-21 2012-09-20 Scroll compressor
US14/345,557 US9163632B2 (en) 2011-09-21 2012-09-20 Injection port and orbiting-side wrap for a scroll compressor
RU2014115677/06A RU2560647C1 (ru) 2011-09-21 2012-09-20 Спиральный компрессор
CN201280044966.4A CN103814218B (zh) 2011-09-21 2012-09-20 涡旋压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011206133 2011-09-21
JP2011-206133 2011-09-21

Publications (1)

Publication Number Publication Date
WO2013042368A1 true WO2013042368A1 (ja) 2013-03-28

Family

ID=47914156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005986 WO2013042368A1 (ja) 2011-09-21 2012-09-20 スクロール圧縮機

Country Status (9)

Country Link
US (1) US9163632B2 (ja)
EP (1) EP2759708B1 (ja)
JP (1) JP5182446B1 (ja)
KR (1) KR101611109B1 (ja)
CN (1) CN103814218B (ja)
BR (1) BR112014006295B1 (ja)
ES (1) ES2563448T3 (ja)
RU (1) RU2560647C1 (ja)
WO (1) WO2013042368A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173036A (ja) * 2017-03-31 2018-11-08 株式会社Soken スクロール圧縮機
US20220282731A1 (en) * 2014-08-19 2022-09-08 Lg Electronics Inc. Scroll compressor with recesses and protrusions

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978823B2 (ja) * 2012-07-17 2016-08-24 株式会社豊田自動織機 スクロール型圧縮機
KR102068234B1 (ko) * 2013-10-07 2020-01-20 엘지전자 주식회사 스크롤 압축기 및 이를 포함하는 공기 조화기
JP6484796B2 (ja) * 2014-04-24 2019-03-20 パナソニックIpマネジメント株式会社 スクロール圧縮機
CN104251204A (zh) * 2014-07-11 2014-12-31 湖南联力精密机械有限公司 涡旋空气压缩机
US10208751B2 (en) * 2014-11-20 2019-02-19 Mitsubishi Electric Corporation Scroll compressor having injection ports provided in outer circumferential surface between opening ends of communication paths and inlet ports for injecting liquid refrigerant in direction toward the inlet ports
KR102487906B1 (ko) 2016-04-26 2023-01-12 엘지전자 주식회사 스크롤 압축기
KR102489482B1 (ko) * 2016-04-26 2023-01-17 엘지전자 주식회사 스크롤 압축기
US11092362B2 (en) 2017-04-24 2021-08-17 Mitsubishi Electric Corporation Air-conditioning device
KR102385789B1 (ko) * 2017-09-01 2022-04-13 삼성전자주식회사 스크롤 압축기
KR102492941B1 (ko) * 2018-05-10 2023-01-27 엘지전자 주식회사 개선된 랩 구조를 구비한 압축기
JP6742567B1 (ja) * 2019-12-12 2020-08-19 三菱電機株式会社 スクロール圧縮機および冷凍サイクル装置
RU2763334C1 (ru) * 2021-05-18 2021-12-28 Леонид Михайлович Курин Спираль механизма сжатия спирального компрессора

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243481A (ja) 1987-03-31 1988-10-11 Toshiba Corp スクロ−ルコンプレツサ
JPH06213176A (ja) * 1992-12-07 1994-08-02 Carrier Corp 最小径スクロール圧縮機
JPH09158852A (ja) * 1995-12-13 1997-06-17 Hitachi Ltd スクロール形流体機械
JPH11107945A (ja) 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd スクロール圧縮機
JPH11223187A (ja) * 1997-11-03 1999-08-17 Carrier Corp スクロールコンプレッサ
JP2000038995A (ja) * 1998-07-13 2000-02-08 Carrier Corp エコノマイザとサクション部の間に除負荷バルブを設けたスクロ―ルコンプレッサ
JP2000064971A (ja) * 1998-08-17 2000-03-03 Carrier Corp スクロ―ル圧縮機およびその形成方法
US6619936B2 (en) 2002-01-16 2003-09-16 Copeland Corporation Scroll compressor with vapor injection

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617676B2 (ja) * 1985-02-15 1994-03-09 株式会社日立製作所 ヘリウム用スクロ−ル圧縮機
US4974427A (en) * 1989-10-17 1990-12-04 Copeland Corporation Compressor system with demand cooling
JP3016311B2 (ja) * 1992-08-03 2000-03-06 日本電気株式会社 Edc lsiチェック装置
JPH1037868A (ja) * 1996-07-19 1998-02-13 Matsushita Electric Ind Co Ltd スクロール圧縮機
US6089839A (en) 1997-12-09 2000-07-18 Carrier Corporation Optimized location for scroll compressor economizer injection ports
US7278832B2 (en) * 2004-01-07 2007-10-09 Carrier Corporation Scroll compressor with enlarged vapor injection port area
US7338264B2 (en) * 2005-05-31 2008-03-04 Scroll Technologies Recesses for pressure equalization in a scroll compressor
US7228710B2 (en) * 2005-05-31 2007-06-12 Scroll Technologies Indentation to optimize vapor injection through ports extending through scroll wrap
JP4966951B2 (ja) * 2008-11-21 2012-07-04 日立アプライアンス株式会社 密閉形スクロール圧縮機
JP5719685B2 (ja) * 2011-05-17 2015-05-20 日立アプライアンス株式会社 ヘリウム用密閉形スクロール圧縮機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243481A (ja) 1987-03-31 1988-10-11 Toshiba Corp スクロ−ルコンプレツサ
JPH06213176A (ja) * 1992-12-07 1994-08-02 Carrier Corp 最小径スクロール圧縮機
JPH09158852A (ja) * 1995-12-13 1997-06-17 Hitachi Ltd スクロール形流体機械
JPH11107945A (ja) 1997-10-06 1999-04-20 Matsushita Electric Ind Co Ltd スクロール圧縮機
JPH11223187A (ja) * 1997-11-03 1999-08-17 Carrier Corp スクロールコンプレッサ
JP2000038995A (ja) * 1998-07-13 2000-02-08 Carrier Corp エコノマイザとサクション部の間に除負荷バルブを設けたスクロ―ルコンプレッサ
JP2000064971A (ja) * 1998-08-17 2000-03-03 Carrier Corp スクロ―ル圧縮機およびその形成方法
US6619936B2 (en) 2002-01-16 2003-09-16 Copeland Corporation Scroll compressor with vapor injection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2759708A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220282731A1 (en) * 2014-08-19 2022-09-08 Lg Electronics Inc. Scroll compressor with recesses and protrusions
JP2018173036A (ja) * 2017-03-31 2018-11-08 株式会社Soken スクロール圧縮機

Also Published As

Publication number Publication date
US9163632B2 (en) 2015-10-20
JP5182446B1 (ja) 2013-04-17
EP2759708B1 (en) 2016-01-20
EP2759708A1 (en) 2014-07-30
EP2759708A4 (en) 2015-04-22
JP2013079643A (ja) 2013-05-02
KR20140063830A (ko) 2014-05-27
CN103814218B (zh) 2016-03-09
BR112014006295A2 (pt) 2017-04-11
CN103814218A (zh) 2014-05-21
ES2563448T3 (es) 2016-03-15
RU2560647C1 (ru) 2015-08-20
US20150004040A1 (en) 2015-01-01
KR101611109B1 (ko) 2016-04-08
BR112014006295B1 (pt) 2021-05-11

Similar Documents

Publication Publication Date Title
JP5182446B1 (ja) スクロール圧縮機
JP4379489B2 (ja) スクロール圧縮機
JP2003269346A (ja) スクロール型流体機械
JP2007170253A (ja) スクロール圧縮機
EP2581605A2 (en) Scroll compressor with bypass hole
JP2009030469A (ja) スクロール圧縮機
JP5187418B2 (ja) スクロール型圧縮機
JP4789623B2 (ja) スクロール圧縮機
JP5709503B2 (ja) スクロール圧縮機及びそのスクロール圧縮機を備えた冷凍サイクル装置
JP5195774B2 (ja) スクロール圧縮機
JP5217818B2 (ja) 回転式圧縮機
JP5506839B2 (ja) スクロール圧縮機及び空気調和装置
JP4844642B2 (ja) スクロール圧縮機
JP4423024B2 (ja) スクロール圧縮機
CN113544383B (zh) 涡旋压缩机
WO2017081845A1 (ja) 圧縮機
JP4653994B2 (ja) スクロール圧縮機
JP5724706B2 (ja) 回転式圧縮機
JP5736739B2 (ja) スクロール圧縮機
JP2008121490A (ja) 回転式圧縮機
JP6008516B2 (ja) スクロール圧縮機
JP5181463B2 (ja) 流体機械
JP2008082267A (ja) 圧縮機
JP2016176416A (ja) スクロール圧縮機
JP2017082841A (ja) 軸受構造、及びスクロール型圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280044966.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345557

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012834245

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147010166

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014115677

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006295

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006295

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140317