WO2013040045A1 - Multilayered waterproof moisture management athletic garments - Google Patents

Multilayered waterproof moisture management athletic garments Download PDF

Info

Publication number
WO2013040045A1
WO2013040045A1 PCT/US2012/054878 US2012054878W WO2013040045A1 WO 2013040045 A1 WO2013040045 A1 WO 2013040045A1 US 2012054878 W US2012054878 W US 2012054878W WO 2013040045 A1 WO2013040045 A1 WO 2013040045A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
garment
water
micro
perforations
Prior art date
Application number
PCT/US2012/054878
Other languages
French (fr)
Inventor
Luke A. PEZZIMENTI
Original Assignee
Nike International Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nike International Ltd. filed Critical Nike International Ltd.
Priority to CN201280044165.8A priority Critical patent/CN103796538B/en
Priority to EP12832179.1A priority patent/EP2755509B1/en
Publication of WO2013040045A1 publication Critical patent/WO2013040045A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/10Impermeable to liquids, e.g. waterproof; Liquid-repellent
    • A41D31/102Waterproof and breathable
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/04Vests, jerseys, sweaters or the like
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D1/00Garments
    • A41D1/06Trousers
    • A41D1/08Trousers specially adapted for sporting purposes
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/02Layered materials
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • A41D31/125Moisture handling or wicking function through layered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2200/00Components of garments
    • A41D2200/20Hoods
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2600/00Uses of garments specially adapted for specific purposes
    • A41D2600/10Uses of garments specially adapted for specific purposes for sport activities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes

Definitions

  • the present invention relates to moisture management garments. More particularly, the present invention relates to multilayered water proof moisture management garments, particularly for use in athletic training and/or competition.
  • a garment may comprise either an outer layer garment or a base layer garment.
  • a garment in accordance with the present invention may be worn as part of multiple layers of garments.
  • a garment may comprise water resistant outer layer with optional zoned vapor permeability. Water resistance of an outer layer may be provided by inherent properties of a textile or by appropriate treatment of an otherwise non-water resistant textile.
  • the outer layer may, for example, comprise a knit or woven textile treated with a durable water repellant (DWR) finish to provide water resistance, with vapor permeability provided, for example, by micro-perforations formed through the textile.
  • the micro-perforations in the water resistant outer layer may be made in a predetermined configuration to provide zonal vapor permeability, with some regions of the garment having greater vapor permeability than others if desired. Additionally and/or alternatively, vapor permeability may be created by selecting appropriate knit and/or weave properties of the outer layer to provide a desired degree of vapor permeability.
  • the garment may further comprise an inner layer, which may provide moisture management properties, if desired.
  • the inner layer may comprise a moisture management fabric to facilitate the transmission of perspiration across the fabric layer from the wearer's skin to the external side of the inner layer, although any type of textile may be used for inner layer. If moisture management properties are desired, the inner layer may comprise any type of moisture management fabric. Examples of appropriate moisture management fabrics are fabrics that facilitate the movement of perspiration using capillary action, denier differential mechanisms, or other processes.
  • the inner layer and the outer layer may be joined using an intermediate layer, which may be a water resistant or water proof film or a water proof breathable film, such as a PTFE film.
  • the intermediate layer may have a plurality of holes to enhance vapor transport from the inner layer through a vapor permeable portion of the outer layer at locations of the garment where enhance breathability is desired.
  • the adhesive layer may comprise a grid of adhesive material in a predetermined configuration to form holes or voids corresponding to at least a portion of a plurality of micro-perforations in the outer layer.
  • intermediate layer may comprise a PTFE film, which provides at least some inherent vapor permeability, with an adhesive applied to one or both sides of the PTFE film.
  • a PTFE film may have its breathability further enhanced by forming holes at selected locations.
  • vapor and/or perspiration may move away from the skin of an athlete through the inner layer, through the holes of the intermediate layer, and then exit the micro-perforations or inherently open structure of the outer layer, while rain or other precipitation will first encounter the outer layer, which may have water resistant properties, for example either due to its construction or a DWR finish, with an intermediate layer that may possess further water resistant or water proof properties underlying the outer layer.
  • the micro-perforations in the outer layer may be of a size, such as 0.5 millimeters in diameter, that permits water vapor to evaporate through the micro-perforation but that substantially prevents liquid water entering the garment through the micro-perforation.
  • Holes in the intermediate layer and/or micro- perforations in the outer layer may be positioned relative to one another and/or on the finished garment to provide a desired amount of water protection versus vapor permeability at different locations of the garment.
  • a garment constructed in accordance with the present invention may provide protection from precipitation while also allowing an athlete to regulate his or her body temperature appropriately by permitting the evaporation of perspiration through the garment.
  • Methods in accordance with the present invention may be used to fabricate a water resistant and vapor permeable garment with optional performance zoning.
  • Methods in accordance with the present invention may comprise steps such as preparing a water resistant outer layer optionally having microperf orations or other zoned vapor permeability, preparing an intermediate layer with holes, preparing an inner layer, aligning the layers, which may involve aligning at least some of the holes of the intermediate layer with at least a portion of the micro-perforations of the outer layer, bonding the outer layer to the inner layer using the intermediate layer, and joining the resulting multi-layered piece with other pieces to form a garment.
  • FIG. 1 illustrates the layers of a garment in accordance with the present invention in exploded form.
  • FIG. 2 illustrates a cross-section of the layers of a garment in accordance with the present invention in exploded form.
  • FIG. 3 illustrates a cross-section of the layers of a garment in accordance with the present invention.
  • FIG. 4 illustrates an example of a method of constructing a garment in accordance with the present invention.
  • FIG. 5 illustrates examples of garments in accordance with the present invention.
  • FIG. 6 illustrates a further method in accordance with the present invention.
  • FIG. 7 illustrates examples of directionally oriented micro-perforations that may be used in garments in accordance with the present invention.
  • Garments in accordance with the present invention may provide a desired amount of water resistance and vapor permeability, with the amount of water resistance versus vapor permeability being capable of varying at different locations of the garment. Accordingly, garments in accordance with the present invention may effectively protect the wearer from falling precipitation while still permitting vapor escape.
  • Outer layer 110 which may be a water resistant layer, may comprise a textile that has been treated or constructed to possess water repellant properties.
  • Outer layer 110 may comprise, for example, a stretch woven textile formed of any type of fiber treated with a durable water repellant finish. Whether worn as an outer layer or a base layer, a stretch woven textile with a DWR finish will possess desirable durability and abrasion resistance. However, any type of knitted or woven textile may be used for outer layer.
  • Outer layer 110 may have formed therein a plurality of micro- perforations 112 to provide vapor permeability, although other methods may be used to provide vapor permeability, such as knit and/or weave selection.
  • the plurality of micro- perforations 112 may be arranged in a predetermined configuration. While FIG. 1 illustrates one example of one configuration of micro-perforations in groups 114 evenly distributed over outer layer 110, other configurations and/or arrangements of micro-perforations may be used. For example, the density of micro-perforations may vary at different locations in a predetermined fashion based, for example, on the amount of vapor permeability and water resistance desired at a given location of a garment.
  • micro-perforations may be larger and/or more numerous per unit area in zones of the garment where higher vapor permeability is desired than in zones where less vapor permeability is desired.
  • Each group 114 of micro-perforations illustrated in FIG. 1 are arranged in a substantially circular fashion, with each group 114 of micro-perforations having a location in a larger regularly spaced grid of circles of micro-perforations.
  • other configurations of micro-perforations are within the scope of the present invention.
  • micro-perforations need not be grouped at all, or may be grouped in different numbers and/or shapes.
  • the spacing of micro-perforations and/or groups of micro-perforations may vary over a garment, as may the size and/or shape of the micro-perforations and/or groups of micro-perforations.
  • an inner layer 130 may comprise a moisture management textile, although any type of textile may be used.
  • the inner layer may comprise a knit textile of polyester or any other type of fiber.
  • One example of an appropriate selection of moisture management textile 130 are textiles that utilize capillary action to move moisture from one side of the textile to the other side of the textile.
  • Another example of an appropriate selection of moisture management textile 130 are textiles constructed with layers having different denier values to create a denier differential from one face of the textile to the other face of the textile that facilitates the movement of moisture across the textile.
  • a moisture management textile 130 may primarily transfer moisture in a single direction, in which case a garment in accordance with the present invention the moisture management textile may be oriented to transport moisture toward the outer layer 110 when assembled.
  • intermediate layer 120 may comprise an adhesive layer.
  • Intermediate layer 120 may, for example, comprise a heat activated adhesive film that will bond the outer layer 110 to the inner layer 130 when appropriate heat and pressure are applied to the assembled three layers.
  • suitable adhesive films that may be used as intermediate layers are adhesive films available from the Bemis Company.
  • intermediate layer 120 may comprise a water proof and breathable material, such as a PTFE film, which may have an adhesive applied on one or both sides of the film to facilitate construction as described herein.
  • Intermediate layer 120 may provide water resistance and/or water proof properties where present beneath outer layer 110, as well as enhancing the structural strength of an assembled garment.
  • Intermediate layer 120 may further possess varying degrees of tackiness on one or both faces of the intermediate layer 120 to facilitate the assembly of the layers of the garment prior to applying heat and pressure to activate any adhesive provided in intermediate layer 120 and bond the outer layer 110 to inner layer 130.
  • Intermediate layer 120 may be formed to possess a plurality of holes 126 that correspond to at least a portion of the plurality of micro-perforations 112 formed in outer layer 110 when the layers 100 are fully assembled. In the example illustrated in FIG. 1, this configuration is achieved by, for example, die cutting a plurality of holes 126 in a substantially grid-like fashion in intermediate layer 120, thereby leaving a plurality of horizontal sections 122 and a plurality of vertical sections 124 to form the bond between outer layer 110 and inner layer 130. While the example of FIG.
  • FIG. 1 illustrates plurality of holes 126 as being substantially square and repeating in a regular fashion, other shapes and/or spacings of holes are within the scope of the present invention. For example, fewer or even no holes may be provided for areas of a garment likely to require a high amount of strength and/or water proofness, such as for a hood or shoulder area where precipitation is particularly likely to strike.
  • the presence of a plurality of holes 126 creates sections of an assembled garment from layers 100 where outer layer 110 is not bonded to inner layer 130, such that at least a portion of micro-perforations 112 may permit perspiration transported through inner layer 130 to evaporate, thereby assisting the wearer in regulating his or her temperature.
  • Inner layer 130 possesses both a skin facing side 133 and an outer facing side 131. Particularly for use in base layer garments, inner layer 130 may optionally, possess moisture management properties. Whether a moisture management inner layer 130 transports moisture via capillary action, denier differential mechanisms, or other mechanisms, perspiration will be moved from skin facing side 133 to outer facing side 131 of inner layer 130.
  • the plurality of holes 126 formed in intermediate layer 120 provide openings for perspiration to evaporate from inner layer 130 through outer layer 110 via the micro-perforations 112.
  • outer layer 110 may have an outer face 111 and an inner face 113.
  • a water resistant treatment such as a DWR finish, may be applied to only outer face 111 or to both outer face 111 and inner face 113. While water resistant treatment may be applied to only inner face 113, such an approach could permit outer layer 110 to absorb some moisture and thereby increase the weight of a garment upon the athlete.
  • intermediate layer 120 may possess an inner face 123 and an outer face 121. It should be noted that in the example illustrated in FIG. 2, a cross- section of intermediate layer 120 is illustrated to indicate some of the plurality of holes 126, thereby revealing only a portion of the intersecting grid of sections of adhesive layer 120 illustrated in FIG 1. One or both of outer face 121 and inner face 123 may be sufficiently tacky to be temporarily or even permanently engaged to either outer layer 110 or inner layer 130 during garment assembly.
  • outer face 121 of intermediate layer 120 may comprise a PTFE film with a glue or other adhesive applied to it so that intermediate layer 120 may be initially adhered to outer layer 110 to assure that holes 126 of intermediate layer 120 are appropriately aligned with at least a portion of the plurality of micro-perforations 112 in outer layer 110. Holes 126 must be aligned with at least a portion of micro-perforations 112 to permit perspiration transported through moisture management inner layer 130 and other vapor to evaporate through micro-perforations 112 of outer layer 110 to enhance the comfort and performance of the wearer.
  • outer layer 110 may have a plurality of micro-perforations 112 with only a subset of that plurality of micro-perforations 112 corresponding to the plurality of holes 126 of intermediate layer 120.
  • Such an approach would facilitate the construction of a garment in accordance with the present invention by simplifying the alignment of the holes of the intermediate layer 120 with the micro- perforations of the outer layer 110, but could also require a larger number of micro- perforations in outer layer 110 to ensure that at least some micro-perforations are aligned with holes 126.
  • outer layer 110 has been bound to inner layer 130 using intermediate layer 120 as an adhesive. Heat and pressure may be applied to layers 100 to form a bond between outer layer 110 and inner layer 130 using adhesives provided with intermediate layer 120.
  • the plurality of micro-perforations 122 are aligned with the plurality of holes 126 to permit perspiration to move across inner layer 130 through holes 126 and to evaporate through micro-perforations 112, as indicated by perspiration movement arrow 302.
  • the water resistance such as durable water resistance treatment, applied to outer layer 110 prevents rain or other precipitation from moving past outer layer 110, as indicated by precipitation movement arrow 304.
  • Micro-perforations 112 may be of a variety of sizes, dimensions, and spacings, but if the micro-perforations 112 are sufficiently small, such as having a diameter of approximately 0.5 millimeters, such micro-perforations 112 will not permit liquid water to penetrate through outer layer 110 in any substantial amount. Accordingly, the layers of garment illustrated in FIG. 3 permit perspiration to evaporate from the skin of a wearer, as indicated by arrow 302, while preventing precipitation from reaching the skin of a wearer, as indicated by arrow 304. Referring now to FIG. 4, a method 400 of constructing a water proof moisture management garment in accordance with the present invention is illustrated. Method 400 begins by applying a durable water repellant treatment to an outer layer.
  • the outer layer of a garment in accordance with the present invention may, for example, comprise a stretch woven fabric.
  • the outer layer may be micro-perforated in a predetermined configuration.
  • the predetermined configuration of micro-perforations applied in step 420 may permit at least a portion of the micro-perforations to receive evaporated perspiration through the other layers of the garment, as previously described.
  • an adhesive intermediate layer may be prepared with a grid geometry corresponding with the predetermined configuration of micro-perforations. As described above, the geometry of the adhesive intermediate layer may provide holes that correspond to at least a portion of the micro-perforations of the outer layer. As also described above, not all micro-perforations in the outer layer need correspond to a hole in the adhesive intermediate layer.
  • a moisture managing inner layer may be prepared.
  • An appropriate moisture management layer is DRI-FIT textiles used in clothing sold by Nike, Inc.
  • the inner layer may comprise a knit fabric that transports moisture from an inner skin facing side to an outer face via capillary action, denier differential mechanisms, or any other process.
  • the outer layer may be bonded to the inner layer using the adhesive intermediate layer.
  • Step 450 may comprise applying heat and pressure to the stacked layers to activate the adhesive intermediate layer.
  • Step 450 may be facilitated by a substep of using one or more tacky sides of the adhesive intermediate layer to temporarily affix the adhesive intermediate layer to one or both of the outer layer and the inner layer.
  • one face of the adhesive intermediate layer may have a glue applied to it that will permit the adhesive intermediate layer to be temporarily adhered to the outer layer, for example after a backing has been removed to expose the glue.
  • a temporary application may facilitate the alignment of holes in the adhesive intermediate layer with at least a portion of the plurality of micro- perforations in the outer layer.
  • steps illustrated in FIG. 4 may be performed in different orders or simultaneously. Further, additional steps may be added to the method without departing from the scope of the present invention. For example, additional steps of cutting, stitching, and joining portions of a garment may be added without departing from the scope of the present invention.
  • garments 500 in accordance with the present invention are illustrated.
  • wearer 505 may be an athlete or other individual, and may be participating in athletic training and/or competition during inclement weather.
  • Garments 500 may comprise, but need not be limited to, an upper garment 510 and a lower garment 520.
  • upper garment 510 comprises a hooded shirt
  • lower garment 520 comprises pants.
  • Upper garment 510 may provide one or more of a hood 511, a shoulder section 512, a chest section 513, arm sections 514, a mid section 515, an underarm section 516, and a side section 517.
  • Lower garment 520 may provide one or more of a waist section 521, a hip section 522, a thigh section 523, a crotch section 524, a knee section 525, a lower leg section 526, and an ankle section 527.
  • garments in accordance with the present invention may cover additional sections of a wearer's body and/or fewer sections of a wearer's body. As explained herein, different sections of a garment may fact different exposures to precipitation and/or have different vapor permeability needs.
  • FIG. 5 further illustrates the zonal attributes possible for garments in accordance with the present invention.
  • the wearer 505 may particularly desire protection from water falling from above while still desiring ventilation for purposes of evaporating perspiration in areas of his or her body less likely to be impacted by falling precipitation.
  • vapor permeable zones 530 may provide the highest degree of vapor permeability of a garment, for example, by providing micro-perforations corresponding, at least in part, to holes of an underlying intermediate layer, as further described herein. Such a vapor permeable zone 530 would still provide resistance to water, but would permit the ready evaporation of perspiration from inside the garment 510, 520.
  • micro- perforations in a zone 530 may enhance the breathability and vapor permeability of particular zones of a garment wherein perspiration may be anticipated to be greatest and/or the risk of becoming wet due to precipitation is lowest.
  • An intermediate breathability section 540 may comprise, for example, one or more regions of a garment wherein an intermediate layer still provides holes to permit a limited amount of vapor permeability through an outer layer without forming micro- perforations in that outer layer.
  • An intermediate vapor permeability region 540 may, for example, correspond to areas of a garment that, when worn, may benefit from a degree of breathability and are not subjected to the most extreme risk of becoming wet due to precipitation, etc., but that would still benefit from enhanced water resistance.
  • a third highly water resistant area 550 may be formed, for example, at the regions of a garment for which maximum water resistance is desired.
  • a highly water resistant region 550 may be located at the shoulders, head, thigh, or other areas of a garment that may reasonably be anticipated to experience the greatest contact from falling precipitation.
  • Zones 550 may be formed from a water resistant outer layer with no additional micro-perforation, an intermediate layer with no holes provided, and, optionally, an inner layer that may possess moisture management properties or otherwise provide comfortable skin-facing contact. In this fashion, a desired amount of vapor permeability may be attained in regions of a garment requiring a degree of water resistance but less than other areas of a garment.
  • areas of a garment requiring a high degree of water proofness may have a correspondingly high degree of resistance to penetration by water.
  • the desired properties of a garment may be achieved in a way that varies at different locations of a garment.
  • Properties desired in a garment in accordance with the present invention may vary based upon the type of garment, the type of activity to be engaged in while wearing the garment, the preferences of a person wearing the garment, etc.
  • an outer layer may be prepared.
  • the outer layer prepared in step 610 may be, for example, a woven or knit textile possessing water resistance.
  • Step 610 may involve sub-steps such as treating a knit or woven textile with a durable water repellant, forming a textile of inherently water resistant fibers, and cutting or otherwise forming a water repellant layer to a desired size and shape.
  • micro-perforations may optionally be formed through the outer layer in a desired pattern.
  • Step 620 may be omitted if the knit, weave, or other characteristics of the outer layer prepared in step 610 provides sufficient vapor permeability for the garment intended to be constructed via method 600.
  • the forming of micro- perforations in step 620 may be accomplished in a variety of ways, such as through use of a laser, a physical cutting press or die, or any other methodology.
  • step 620 may form one or more micro-perforations with a directional quality to further facilitate in providing desired vapor permeability of the resulting garment while orienting the micro-perforation in a fashion that may resist penetration by water, such as falling precipitation.
  • an intermediate layer may be prepared.
  • Step 630 may form holes that, when the garment is assembled, will correspond to at least some of the micro- perforations optionally formed in step 620, if such micro-perforations were indeed formed.
  • the intermediate layer prepared in step 630 may, for example, comprise a water proof or water resistant film that will provide additional water resistance and/or strength and physical integrity to the assembled garment.
  • Step 630 may involve cutting or otherwise forming an intermediate layer to a size and shape desired for the assembly process, such as corresponding roughly to the size and shape of the outer layer prepared in step 610. Holes may be formed by any appropriate mechanism, such as die-cutting.
  • an inner layer may be prepared.
  • Step 640 may comprise cutting or otherwise forming a textile, such as a moisture management textile, to a desired size and/or shape, for example, a size and shape corresponding to the outer layer formed in step 610 and/or the intermediate layer formed in step 630.
  • Step 640 may further comprise orienting a moisture management textile used as an inner layer in a proper fashion to transport water from the skin-facing side of the moisture management layer to the outer layer side of the moisture management textile when a garment is worn.
  • Such orientation of the inner layer in step 640 may be particularly valuable if moisture management layer is a textile such as a denier differential textile that preferentially transports moisture in a single direction across the width of the textile.
  • step 650 the layers prepared in step 610, step 630, and/or step 640 may be aligned.
  • holes formed in intermediate layer may be aligned with micro-perforations formed in outer layer.
  • step 660 the outer layer and the inner layer may be bound together using the intermediate layer.
  • Step 660 may comprise, for example, using a heat press to activate an adhesive film to bond the outer water repellant layer to the inner moisture management layer using the water proof adhesive layer.
  • a garment in accordance with the present invention may be formed by joining the assembled outer layer, intermediate layer, and inner layer formed in steps 610- 660 to other pieces to form a completed garment.
  • the other pieces used to join to the assembled layers may comprise similar layered pieces or other types of pliable materials used to form a garment, such as a jacket, shirts, pants, shorts, etc., to be worn by an individual. Any one or more joining technologies may be used in step 670, such as stitching, gluing, seam taping, adhesives, rivets, or other mechanisms to structurally join multiple pieces together to form a single garment.
  • steps 610-660 may be performed for each piece.
  • FIG. 7 the directional possibilities of forming a micro- perforation in another layer 710 are illustrated.
  • outer layer 710 there may be an outside 712 corresponding to the side of the water resistant layer 710 facing away from the wearer of a garment and an inside 714 corresponding to the side of the outer layer 710 facing toward the wearer of a garment.
  • an outside 712 corresponding to the side of the water resistant layer 710 facing away from the wearer of a garment
  • inside 714 corresponding to the side of the outer layer 710 facing toward the wearer of a garment.
  • other methodologies may provide a physical dimensionality to a resulting micro-perforation.
  • the outer layer 710 textile may have a lip or other slight protrusion corresponding to the direction with which the micro- perforation was formed.
  • a micro-perforation may be formed by applying a die or other physical cutting device from the outside 712 of the outer layer 710.
  • a cutting implement may be directed to the outer layer 710 directly perpendicular to the surface 720, at an angle coming from above relative to when the garment will be worn 722, or from below 724.
  • different orientations of a micro-perforation may be preferable or undesirable.
  • puncturing angle 722 may affectively funnel water running down a garment into the interior of a garment, and might be undesirable, while in other locations such an orientation might be preferable as facilitating evaporation of perspiration while not being located at a position that is likely to receive precipitation directly or indirectly.
  • FIG. 7 further illustrates various directional punctures that may be made to form a micro-perforation through outer layer 710 from what will ultimately be the inside 714 of a garment.
  • a perpendicular angle 740 may be used to form a micro- perforation
  • an approach from above perpendicular 742 may be used, or an approach from below perpendicular 744 may be used.
  • micro-perforation angle 742 may be desirable if some vapor permeability is desired such that a micro-perforation is desired in a region, but at the same time the resulting micro-perforation from puncture angle 742 may provide sufficient overhang that precipitation traveling down the outside 712 face of outer layer 710 will not be funneled into the inside 714 and, in fact, may be shed by any lip or other edge formed for a micro-perforation created using angle 742.
  • garments in accordance with the present invention may have additional layers beyond those described herein.
  • garments in accordance with the present invention may be constructed using varying textiles, films, and/or water proofing treatments. The configurations, sizes, spacing, and arrangements of micro-perforations and/or holes may vary from the examples illustrated herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Laminated Bodies (AREA)

Abstract

A water proof moisture management garment and a method of constructing such a garment in accordance with the present invention utilizes at least three layers. An outer layer may comprise a stretch woven textile treated with a durable water repellant finish. The outer layer may be micro-perforated to permit perspiration to evaporate through the micro-perforations. An inner layer may comprise a moisture management textile to facilitate the transport of perspiration away from the skin of a wearer. An intermediate layer may bond the outer layer to the inner layer. The intermediate layer may provide holes to permit the evaporation of perspiration from the inner layer through the micro-perforations of the outer layer.

Description

MULTILAYERED WATERPROOF MOISTURE MANAGEMENT ATHLETIC
GARMENTS
FIELD OF THE INVENTION
The present invention relates to moisture management garments. More particularly, the present invention relates to multilayered water proof moisture management garments, particularly for use in athletic training and/or competition.
BACKGROUND OF THE INVENTION
Athletic competition and training often requires an individual to engage in strenuous activity out of doors during inclement weather. An athlete training or competing during rain, for example, may prefer and even benefit from protection from precipitation, but that same athlete may suffer discomfort or even performance consequences from overheating and discomfort due to accumulated perspiration if they wear typical water protection gear that traps perspiration inside the garment in addition to keeping precipitation outside of the garment. Unfortunately, most apparel that protects a wearer's skin from precipitation also tends to trap that wearer's perspiration within the garment, thereby requiring an athlete to choose between prioritizing protection from precipitation and prioritizing moisture management.
SUMMARY OF THE INVENTION
The present invention provides protection from precipitation or other ambient moisture while also providing moisture management by facilitating the evaporation of perspiration from a wearer, such as an athlete engaged in training or competition. In accordance with the present invention, a garment may comprise either an outer layer garment or a base layer garment. Alternatively, a garment in accordance with the present invention may be worn as part of multiple layers of garments. A garment may comprise water resistant outer layer with optional zoned vapor permeability. Water resistance of an outer layer may be provided by inherent properties of a textile or by appropriate treatment of an otherwise non-water resistant textile. The outer layer may, for example, comprise a knit or woven textile treated with a durable water repellant (DWR) finish to provide water resistance, with vapor permeability provided, for example, by micro-perforations formed through the textile. The micro-perforations in the water resistant outer layer may be made in a predetermined configuration to provide zonal vapor permeability, with some regions of the garment having greater vapor permeability than others if desired. Additionally and/or alternatively, vapor permeability may be created by selecting appropriate knit and/or weave properties of the outer layer to provide a desired degree of vapor permeability. The garment may further comprise an inner layer, which may provide moisture management properties, if desired. The inner layer may comprise a moisture management fabric to facilitate the transmission of perspiration across the fabric layer from the wearer's skin to the external side of the inner layer, although any type of textile may be used for inner layer. If moisture management properties are desired, the inner layer may comprise any type of moisture management fabric. Examples of appropriate moisture management fabrics are fabrics that facilitate the movement of perspiration using capillary action, denier differential mechanisms, or other processes. The inner layer and the outer layer may be joined using an intermediate layer, which may be a water resistant or water proof film or a water proof breathable film, such as a PTFE film. The intermediate layer may have a plurality of holes to enhance vapor transport from the inner layer through a vapor permeable portion of the outer layer at locations of the garment where enhance breathability is desired. For example, the adhesive layer may comprise a grid of adhesive material in a predetermined configuration to form holes or voids corresponding to at least a portion of a plurality of micro-perforations in the outer layer. Alternatively, intermediate layer may comprise a PTFE film, which provides at least some inherent vapor permeability, with an adhesive applied to one or both sides of the PTFE film. Such a PTFE film may have its breathability further enhanced by forming holes at selected locations. Accordingly, in one example, when a garment is assembled from these three layers, vapor and/or perspiration may move away from the skin of an athlete through the inner layer, through the holes of the intermediate layer, and then exit the micro-perforations or inherently open structure of the outer layer, while rain or other precipitation will first encounter the outer layer, which may have water resistant properties, for example either due to its construction or a DWR finish, with an intermediate layer that may possess further water resistant or water proof properties underlying the outer layer. The micro-perforations in the outer layer may be of a size, such as 0.5 millimeters in diameter, that permits water vapor to evaporate through the micro-perforation but that substantially prevents liquid water entering the garment through the micro-perforation. Holes in the intermediate layer and/or micro- perforations in the outer layer may be positioned relative to one another and/or on the finished garment to provide a desired amount of water protection versus vapor permeability at different locations of the garment. In this way, a garment constructed in accordance with the present invention may provide protection from precipitation while also allowing an athlete to regulate his or her body temperature appropriately by permitting the evaporation of perspiration through the garment.
Methods in accordance with the present invention may be used to fabricate a water resistant and vapor permeable garment with optional performance zoning. Methods in accordance with the present invention may comprise steps such as preparing a water resistant outer layer optionally having microperf orations or other zoned vapor permeability, preparing an intermediate layer with holes, preparing an inner layer, aligning the layers, which may involve aligning at least some of the holes of the intermediate layer with at least a portion of the micro-perforations of the outer layer, bonding the outer layer to the inner layer using the intermediate layer, and joining the resulting multi-layered piece with other pieces to form a garment.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all its features. Further areas of applicability will become apparent from the description provided herein. The description and specific examples of the summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWING
The drawings described herein are for illustrative purposes only of selected examples and not all possible implementations, and are not intended to limit the scope of the present disclosure.
FIG. 1 illustrates the layers of a garment in accordance with the present invention in exploded form.
FIG. 2 illustrates a cross-section of the layers of a garment in accordance with the present invention in exploded form.
FIG. 3 illustrates a cross-section of the layers of a garment in accordance with the present invention. FIG. 4 illustrates an example of a method of constructing a garment in accordance with the present invention.
FIG. 5 illustrates examples of garments in accordance with the present invention.
FIG. 6 illustrates a further method in accordance with the present invention.
FIG. 7 illustrates examples of directionally oriented micro-perforations that may be used in garments in accordance with the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Garments in accordance with the present invention may provide a desired amount of water resistance and vapor permeability, with the amount of water resistance versus vapor permeability being capable of varying at different locations of the garment. Accordingly, garments in accordance with the present invention may effectively protect the wearer from falling precipitation while still permitting vapor escape.
Referring now to FIG. 1, examples of layers 100 of a garment in accordance with the present invention are illustrated. Outer layer 110, which may be a water resistant layer, may comprise a textile that has been treated or constructed to possess water repellant properties. Outer layer 110 may comprise, for example, a stretch woven textile formed of any type of fiber treated with a durable water repellant finish. Whether worn as an outer layer or a base layer, a stretch woven textile with a DWR finish will possess desirable durability and abrasion resistance. However, any type of knitted or woven textile may be used for outer layer. Outer layer 110 may have formed therein a plurality of micro- perforations 112 to provide vapor permeability, although other methods may be used to provide vapor permeability, such as knit and/or weave selection. The plurality of micro- perforations 112 may be arranged in a predetermined configuration. While FIG. 1 illustrates one example of one configuration of micro-perforations in groups 114 evenly distributed over outer layer 110, other configurations and/or arrangements of micro-perforations may be used. For example, the density of micro-perforations may vary at different locations in a predetermined fashion based, for example, on the amount of vapor permeability and water resistance desired at a given location of a garment. For example, micro-perforations may be larger and/or more numerous per unit area in zones of the garment where higher vapor permeability is desired than in zones where less vapor permeability is desired. Each group 114 of micro-perforations illustrated in FIG. 1 are arranged in a substantially circular fashion, with each group 114 of micro-perforations having a location in a larger regularly spaced grid of circles of micro-perforations. However, other configurations of micro-perforations are within the scope of the present invention. For example, micro-perforations need not be grouped at all, or may be grouped in different numbers and/or shapes. Further, the spacing of micro-perforations and/or groups of micro-perforations may vary over a garment, as may the size and/or shape of the micro-perforations and/or groups of micro-perforations.
Still referring to FIG. 1, an inner layer 130 may comprise a moisture management textile, although any type of textile may be used. The inner layer may comprise a knit textile of polyester or any other type of fiber. One example of an appropriate selection of moisture management textile 130 are textiles that utilize capillary action to move moisture from one side of the textile to the other side of the textile. Another example of an appropriate selection of moisture management textile 130 are textiles constructed with layers having different denier values to create a denier differential from one face of the textile to the other face of the textile that facilitates the movement of moisture across the textile. In some instances, a moisture management textile 130 may primarily transfer moisture in a single direction, in which case a garment in accordance with the present invention the moisture management textile may be oriented to transport moisture toward the outer layer 110 when assembled.
Between outer layer 110 and inner layer 130 is intermediate layer 120, which may comprise an adhesive layer. Intermediate layer 120 may, for example, comprise a heat activated adhesive film that will bond the outer layer 110 to the inner layer 130 when appropriate heat and pressure are applied to the assembled three layers. One example of suitable adhesive films that may be used as intermediate layers are adhesive films available from the Bemis Company. Additionally/alternatively, intermediate layer 120 may comprise a water proof and breathable material, such as a PTFE film, which may have an adhesive applied on one or both sides of the film to facilitate construction as described herein. Intermediate layer 120 may provide water resistance and/or water proof properties where present beneath outer layer 110, as well as enhancing the structural strength of an assembled garment. Intermediate layer 120 may further possess varying degrees of tackiness on one or both faces of the intermediate layer 120 to facilitate the assembly of the layers of the garment prior to applying heat and pressure to activate any adhesive provided in intermediate layer 120 and bond the outer layer 110 to inner layer 130. Intermediate layer 120 may be formed to possess a plurality of holes 126 that correspond to at least a portion of the plurality of micro-perforations 112 formed in outer layer 110 when the layers 100 are fully assembled. In the example illustrated in FIG. 1, this configuration is achieved by, for example, die cutting a plurality of holes 126 in a substantially grid-like fashion in intermediate layer 120, thereby leaving a plurality of horizontal sections 122 and a plurality of vertical sections 124 to form the bond between outer layer 110 and inner layer 130. While the example of FIG. 1 illustrates plurality of holes 126 as being substantially square and repeating in a regular fashion, other shapes and/or spacings of holes are within the scope of the present invention. For example, fewer or even no holes may be provided for areas of a garment likely to require a high amount of strength and/or water proofness, such as for a hood or shoulder area where precipitation is particularly likely to strike. The presence of a plurality of holes 126 creates sections of an assembled garment from layers 100 where outer layer 110 is not bonded to inner layer 130, such that at least a portion of micro-perforations 112 may permit perspiration transported through inner layer 130 to evaporate, thereby assisting the wearer in regulating his or her temperature.
Referring now to FIG. 2, a cross-section of layers 100 is illustrated to further depict an example of the present invention. Inner layer 130 possesses both a skin facing side 133 and an outer facing side 131. Particularly for use in base layer garments, inner layer 130 may optionally, possess moisture management properties. Whether a moisture management inner layer 130 transports moisture via capillary action, denier differential mechanisms, or other mechanisms, perspiration will be moved from skin facing side 133 to outer facing side 131 of inner layer 130. The plurality of holes 126 formed in intermediate layer 120 provide openings for perspiration to evaporate from inner layer 130 through outer layer 110 via the micro-perforations 112.
Still referring to FIG. 2, outer layer 110 may have an outer face 111 and an inner face 113. A water resistant treatment, such as a DWR finish, may be applied to only outer face 111 or to both outer face 111 and inner face 113. While water resistant treatment may be applied to only inner face 113, such an approach could permit outer layer 110 to absorb some moisture and thereby increase the weight of a garment upon the athlete.
Still referring to FIG. 2, intermediate layer 120 may possess an inner face 123 and an outer face 121. It should be noted that in the example illustrated in FIG. 2, a cross- section of intermediate layer 120 is illustrated to indicate some of the plurality of holes 126, thereby revealing only a portion of the intersecting grid of sections of adhesive layer 120 illustrated in FIG 1. One or both of outer face 121 and inner face 123 may be sufficiently tacky to be temporarily or even permanently engaged to either outer layer 110 or inner layer 130 during garment assembly. For example, outer face 121 of intermediate layer 120 may comprise a PTFE film with a glue or other adhesive applied to it so that intermediate layer 120 may be initially adhered to outer layer 110 to assure that holes 126 of intermediate layer 120 are appropriately aligned with at least a portion of the plurality of micro-perforations 112 in outer layer 110. Holes 126 must be aligned with at least a portion of micro-perforations 112 to permit perspiration transported through moisture management inner layer 130 and other vapor to evaporate through micro-perforations 112 of outer layer 110 to enhance the comfort and performance of the wearer. Optionally, outer layer 110 may have a plurality of micro-perforations 112 with only a subset of that plurality of micro-perforations 112 corresponding to the plurality of holes 126 of intermediate layer 120. Such an approach would facilitate the construction of a garment in accordance with the present invention by simplifying the alignment of the holes of the intermediate layer 120 with the micro- perforations of the outer layer 110, but could also require a larger number of micro- perforations in outer layer 110 to ensure that at least some micro-perforations are aligned with holes 126.
Referring now to FIG. 3, the assembled layers 100 are illustrated. As shown in FIG. 3, outer layer 110 has been bound to inner layer 130 using intermediate layer 120 as an adhesive. Heat and pressure may be applied to layers 100 to form a bond between outer layer 110 and inner layer 130 using adhesives provided with intermediate layer 120. As illustrated in FIG. 3, the plurality of micro-perforations 122 are aligned with the plurality of holes 126 to permit perspiration to move across inner layer 130 through holes 126 and to evaporate through micro-perforations 112, as indicated by perspiration movement arrow 302. However, the water resistance, such as durable water resistance treatment, applied to outer layer 110 prevents rain or other precipitation from moving past outer layer 110, as indicated by precipitation movement arrow 304. Micro-perforations 112 may be of a variety of sizes, dimensions, and spacings, but if the micro-perforations 112 are sufficiently small, such as having a diameter of approximately 0.5 millimeters, such micro-perforations 112 will not permit liquid water to penetrate through outer layer 110 in any substantial amount. Accordingly, the layers of garment illustrated in FIG. 3 permit perspiration to evaporate from the skin of a wearer, as indicated by arrow 302, while preventing precipitation from reaching the skin of a wearer, as indicated by arrow 304. Referring now to FIG. 4, a method 400 of constructing a water proof moisture management garment in accordance with the present invention is illustrated. Method 400 begins by applying a durable water repellant treatment to an outer layer. The outer layer of a garment in accordance with the present invention may, for example, comprise a stretch woven fabric. In step 420, the outer layer may be micro-perforated in a predetermined configuration. The predetermined configuration of micro-perforations applied in step 420 may permit at least a portion of the micro-perforations to receive evaporated perspiration through the other layers of the garment, as previously described. In step 430, an adhesive intermediate layer may be prepared with a grid geometry corresponding with the predetermined configuration of micro-perforations. As described above, the geometry of the adhesive intermediate layer may provide holes that correspond to at least a portion of the micro-perforations of the outer layer. As also described above, not all micro-perforations in the outer layer need correspond to a hole in the adhesive intermediate layer. In step 440, a moisture managing inner layer may be prepared. One example of an appropriate moisture management layer is DRI-FIT textiles used in clothing sold by Nike, Inc. The inner layer may comprise a knit fabric that transports moisture from an inner skin facing side to an outer face via capillary action, denier differential mechanisms, or any other process. In step 450, the outer layer may be bonded to the inner layer using the adhesive intermediate layer. Step 450 may comprise applying heat and pressure to the stacked layers to activate the adhesive intermediate layer. Step 450 may be facilitated by a substep of using one or more tacky sides of the adhesive intermediate layer to temporarily affix the adhesive intermediate layer to one or both of the outer layer and the inner layer. For example, one face of the adhesive intermediate layer may have a glue applied to it that will permit the adhesive intermediate layer to be temporarily adhered to the outer layer, for example after a backing has been removed to expose the glue. Such a temporary application may facilitate the alignment of holes in the adhesive intermediate layer with at least a portion of the plurality of micro- perforations in the outer layer. Once the holes of the adhesive intermediate layer are appropriately aligned with the micro-perforations of the outer layer, a moisture management textile comprising the inner layer may be positioned, and then the entire assembly may be treated using a heat press.
The steps illustrated in FIG. 4 may be performed in different orders or simultaneously. Further, additional steps may be added to the method without departing from the scope of the present invention. For example, additional steps of cutting, stitching, and joining portions of a garment may be added without departing from the scope of the present invention.
Referring now to FIG. 5, example of garments 500 in accordance with the present invention are illustrated. In the example of FIG. 5, wearer 505 may be an athlete or other individual, and may be participating in athletic training and/or competition during inclement weather. Garments 500 may comprise, but need not be limited to, an upper garment 510 and a lower garment 520. In the example of FIG. 5, upper garment 510 comprises a hooded shirt, while lower garment 520 comprises pants. Upper garment 510 may provide one or more of a hood 511, a shoulder section 512, a chest section 513, arm sections 514, a mid section 515, an underarm section 516, and a side section 517. Lower garment 520 may provide one or more of a waist section 521, a hip section 522, a thigh section 523, a crotch section 524, a knee section 525, a lower leg section 526, and an ankle section 527. Of course, garments in accordance with the present invention may cover additional sections of a wearer's body and/or fewer sections of a wearer's body. As explained herein, different sections of a garment may fact different exposures to precipitation and/or have different vapor permeability needs.
FIG. 5 further illustrates the zonal attributes possible for garments in accordance with the present invention. For example, if an athlete 505 is wearing garments 500 during rain, the wearer 505 may particularly desire protection from water falling from above while still desiring ventilation for purposes of evaporating perspiration in areas of his or her body less likely to be impacted by falling precipitation. Accordingly, vapor permeable zones 530 may provide the highest degree of vapor permeability of a garment, for example, by providing micro-perforations corresponding, at least in part, to holes of an underlying intermediate layer, as further described herein. Such a vapor permeable zone 530 would still provide resistance to water, but would permit the ready evaporation of perspiration from inside the garment 510, 520. Even if an outer layer of a garment has a limited degree of vapor permeability prior to the forming of micro-perforations, the formation of micro- perforations in a zone 530 may enhance the breathability and vapor permeability of particular zones of a garment wherein perspiration may be anticipated to be greatest and/or the risk of becoming wet due to precipitation is lowest.
An intermediate breathability section 540 may comprise, for example, one or more regions of a garment wherein an intermediate layer still provides holes to permit a limited amount of vapor permeability through an outer layer without forming micro- perforations in that outer layer. An intermediate vapor permeability region 540 may, for example, correspond to areas of a garment that, when worn, may benefit from a degree of breathability and are not subjected to the most extreme risk of becoming wet due to precipitation, etc., but that would still benefit from enhanced water resistance.
A third highly water resistant area 550 may be formed, for example, at the regions of a garment for which maximum water resistance is desired. For example, a highly water resistant region 550 may be located at the shoulders, head, thigh, or other areas of a garment that may reasonably be anticipated to experience the greatest contact from falling precipitation. Zones 550 may be formed from a water resistant outer layer with no additional micro-perforation, an intermediate layer with no holes provided, and, optionally, an inner layer that may possess moisture management properties or otherwise provide comfortable skin-facing contact. In this fashion, a desired amount of vapor permeability may be attained in regions of a garment requiring a degree of water resistance but less than other areas of a garment. Meanwhile, areas of a garment requiring a high degree of water proofness may have a correspondingly high degree of resistance to penetration by water. By varying the number of holes in an adhesive layer, the size of holes in an adhesive layer, the size and amount of micro-perforations formed in an outer layer, the arrangement of holes and corresponding micro-perforations, and/or the moisture transporting properties of an inner layer, the desired properties of a garment may be achieved in a way that varies at different locations of a garment. Properties desired in a garment in accordance with the present invention may vary based upon the type of garment, the type of activity to be engaged in while wearing the garment, the preferences of a person wearing the garment, etc.
Referring now to FIG. 6, a method 600 in accordance with the present invention for constructing a water resistant and vapor permeable garment is illustrated. In step 610, an outer layer may be prepared. The outer layer prepared in step 610 may be, for example, a woven or knit textile possessing water resistance. Step 610 may involve sub-steps such as treating a knit or woven textile with a durable water repellant, forming a textile of inherently water resistant fibers, and cutting or otherwise forming a water repellant layer to a desired size and shape. In step 620, micro-perforations may optionally be formed through the outer layer in a desired pattern. Step 620 may be omitted if the knit, weave, or other characteristics of the outer layer prepared in step 610 provides sufficient vapor permeability for the garment intended to be constructed via method 600. The forming of micro- perforations in step 620 may be accomplished in a variety of ways, such as through use of a laser, a physical cutting press or die, or any other methodology. As explained further below, step 620 may form one or more micro-perforations with a directional quality to further facilitate in providing desired vapor permeability of the resulting garment while orienting the micro-perforation in a fashion that may resist penetration by water, such as falling precipitation.
In step 630, an intermediate layer may be prepared. Step 630 may form holes that, when the garment is assembled, will correspond to at least some of the micro- perforations optionally formed in step 620, if such micro-perforations were indeed formed. The intermediate layer prepared in step 630 may, for example, comprise a water proof or water resistant film that will provide additional water resistance and/or strength and physical integrity to the assembled garment. Step 630 may involve cutting or otherwise forming an intermediate layer to a size and shape desired for the assembly process, such as corresponding roughly to the size and shape of the outer layer prepared in step 610. Holes may be formed by any appropriate mechanism, such as die-cutting.
In step 640, an inner layer may be prepared. Step 640 may comprise cutting or otherwise forming a textile, such as a moisture management textile, to a desired size and/or shape, for example, a size and shape corresponding to the outer layer formed in step 610 and/or the intermediate layer formed in step 630. Step 640 may further comprise orienting a moisture management textile used as an inner layer in a proper fashion to transport water from the skin-facing side of the moisture management layer to the outer layer side of the moisture management textile when a garment is worn. Such orientation of the inner layer in step 640 may be particularly valuable if moisture management layer is a textile such as a denier differential textile that preferentially transports moisture in a single direction across the width of the textile.
In step 650 the layers prepared in step 610, step 630, and/or step 640 may be aligned. For example, in step 650 holes formed in intermediate layer may be aligned with micro-perforations formed in outer layer. In step 660, the outer layer and the inner layer may be bound together using the intermediate layer. Step 660 may comprise, for example, using a heat press to activate an adhesive film to bond the outer water repellant layer to the inner moisture management layer using the water proof adhesive layer.
In step 670 a garment in accordance with the present invention may be formed by joining the assembled outer layer, intermediate layer, and inner layer formed in steps 610- 660 to other pieces to form a completed garment. The other pieces used to join to the assembled layers may comprise similar layered pieces or other types of pliable materials used to form a garment, such as a jacket, shirts, pants, shorts, etc., to be worn by an individual. Any one or more joining technologies may be used in step 670, such as stitching, gluing, seam taping, adhesives, rivets, or other mechanisms to structurally join multiple pieces together to form a single garment.
The steps of method 600 may be performed in different orders than those described herein. Further, different steps of method 600 may be performed in parallel, or omitted altogether. If a garment is to be formed of multiple layered pieces having different water resistance and vapor permeability properties, steps 610-660 may be performed for each piece.
Referring now to FIG. 7, the directional possibilities of forming a micro- perforation in another layer 710 are illustrated. As shown in FIG. 7, relative to outer layer 710 there may be an outside 712 corresponding to the side of the water resistant layer 710 facing away from the wearer of a garment and an inside 714 corresponding to the side of the outer layer 710 facing toward the wearer of a garment. While a variety of technologies may be used to create micro-perforations, such as lasers, that do not provide any sort of a lip or other contour in the resulting micro-perforation, other methodologies may provide a physical dimensionality to a resulting micro-perforation. For example, if a spike, die, or other puncturing structure is used to form a micro-perforation, the outer layer 710 textile may have a lip or other slight protrusion corresponding to the direction with which the micro- perforation was formed. For example, a micro-perforation may be formed by applying a die or other physical cutting device from the outside 712 of the outer layer 710. A cutting implement may be directed to the outer layer 710 directly perpendicular to the surface 720, at an angle coming from above relative to when the garment will be worn 722, or from below 724. Depending upon what region of a garment a micro-perforation is to be located at on a garment, different orientations of a micro-perforation may be preferable or undesirable. For example, in some locations puncturing angle 722 may affectively funnel water running down a garment into the interior of a garment, and might be undesirable, while in other locations such an orientation might be preferable as facilitating evaporation of perspiration while not being located at a position that is likely to receive precipitation directly or indirectly.
FIG. 7 further illustrates various directional punctures that may be made to form a micro-perforation through outer layer 710 from what will ultimately be the inside 714 of a garment. For example, a perpendicular angle 740 may be used to form a micro- perforation, an approach from above perpendicular 742 may be used, or an approach from below perpendicular 744 may be used. Once again, it may be preferable to use an approach from the inside 714 rather than the outside 712 in some circumstances, such as to provide a structure to a micro-perforation to facilitate the shedding of water that might be running down or striking outer layer 710 when a garment is worn. For example, micro-perforation angle 742 may be desirable if some vapor permeability is desired such that a micro-perforation is desired in a region, but at the same time the resulting micro-perforation from puncture angle 742 may provide sufficient overhang that precipitation traveling down the outside 712 face of outer layer 710 will not be funneled into the inside 714 and, in fact, may be shed by any lip or other edge formed for a micro-perforation created using angle 742.
Further, garments in accordance with the present invention may have additional layers beyond those described herein. Also, garments in accordance with the present invention may be constructed using varying textiles, films, and/or water proofing treatments. The configurations, sizes, spacing, and arrangements of micro-perforations and/or holes may vary from the examples illustrated herein.
The foregoing description of examples of the present invention have been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular example are generally not limited to that particular example, but, where applicable, are interchangeable and may be used in a selected example, even if not specifically shown or described.

Claims

CLAIMS What is claimed is:
1. A water resistant moisture management garment comprising: an outer layer, the outer layer comprising a textile with water resistant properties; a plurality of micro- perforations formed through the outer layer; an inner layer, the inner layer comprising a moisture management textile that transports perspiration from a skin facing side to an outer facing side of the inner layer; and an intermediate layer bonding the outer layer to the inner layer, the intermediate layer comprising a plurality of holes where the outer layer is not bonded to the inner layer, the plurality of holes of the intermediate layer corresponding to at least a portion of the plurality of micro-perforations through the outer layer, such that perspiration transported from the skin facing side to the outer facing side of the inner layer may evaporate through the micro-perforations.
2. The water resistant moisture management garment of claim 1, wherein the outer layer comprises a stretch woven fabric.
3. The water resistant moisture management of claim 2, wherein the outer layer has durable water repellent finish.
4. The water resistant moisture management garment of claim 2, wherein the inner layer transports perspiration via capillary action.
5. The water resistant moisture management garment of claim 2, wherein the inner layer transports perspiration via a denier differential mechanism.
6. The water resistant moisture management garment of claim 3, wherein the plurality of micro-perforations have a diameter of about 0.5 mm.
7. The water resistant moisture management garment of claim 1, wherein the intermediate layer comprises a grid of adhesive film forming the plurality of holes.
8. The water resistant moisture management garment of claim 7, wherein the plurality of micro-perforations are arranged in groups that correspond spatially with the plurality of holes formed in the grid of adhesive film.
9. A water resistant garment comprising: a water repellant outer layer comprising a textile on the exterior layer of the garment when the garment is worn; and a water proof film adhered to the inner surface of the water repellant layer when the garment is worn, the water proof film having a plurality of holes at least large enough to permit water vapor to pass through the water proof film.
10. The water resistant garment of claim 9, further comprising a plurality of micro-perforations, at least some of the plurality of the plurality of perforations.
11. The water resistant garment of claim 10, wherein the plurality of micro-perforations comprise groups of micro-perforations, each of the groups of micro- perforations oriented to physically correspond to a hole in the water proof film.
12. The water resistant garment of claim 11, further comprising a moisture management layer located between the water proof film layer and the skin of a person wearing the garment when the garment is worn.
13. The water resistant garment of claim 12, wherein the water proof film bonds the moisture management layer to the water repellant layer.
14. The water resistant garment of claim 13, wherein the water repellant layer comprises a textile treated with a durable water repellant.
15. The water resistant garment of claim 14, wherein the moisture management layer transports perspiration away from the skin of the wearer via capillary action.
16. The water resistant garment of claim 14 wherein the moisture management layer transports perspiration away from the skin of the wearer via a denier differential mechanism.
17. The water resistant garment of claim 14, wherein the micro- perforations are circular and have a diameter of less than 0.5 millimeters.
18. The water resistant garment of claim 14, wherein the micro- perforations are circular and have a diameter of about 0.5 millimeters.
19. A method for fabricating a water resistant moisture management garment, the method comprising: preparing a water repellant outer layer to predetermined dimensions; forming a plurality of micro-perforations through the water repellant layer in a predetermined pattern; preparing a water proof adhesive intermediate layer to predetermined dimensions and having a plurality of holes; preparing a moisture management inner layer to predetermined dimensions, the moisture management inner layer comprising a textile that transports moisture away from a first side; bonding the water repellant outer layer to the moisture management inner layer using the water proof adhesive intermediate layer, such that the first side of the moisture management layer faces away from the water proof adhesive intermediate layer and the water repellant outer layer and such that at least a portion of the holes of the water proof adhesive intermediate layer are aligned with at least a portion of the plurality of micro-perforations formed in the water repellant outer layer; and forming a garment by joining the assembled water repellant outer layer, water proof adhesive intermediate layer, and moisture management inner layer to other pliable pieces.
PCT/US2012/054878 2011-09-12 2012-09-12 Multilayered waterproof moisture management athletic garments WO2013040045A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280044165.8A CN103796538B (en) 2011-09-12 2012-09-12 Multilayered waterproof moisture management athletic garments
EP12832179.1A EP2755509B1 (en) 2011-09-12 2012-09-12 Multilayered waterproof moisture management athletic garments

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161533611P 2011-09-12 2011-09-12
US61/533,611 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013040045A1 true WO2013040045A1 (en) 2013-03-21

Family

ID=47828492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/054878 WO2013040045A1 (en) 2011-09-12 2012-09-12 Multilayered waterproof moisture management athletic garments

Country Status (4)

Country Link
US (4) US9420837B2 (en)
EP (1) EP2755509B1 (en)
CN (1) CN103796538B (en)
WO (1) WO2013040045A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9107459B2 (en) 2011-01-10 2015-08-18 Nike, Inc. Aerographics and denier differential zoned garments
US8702469B2 (en) 2011-01-10 2014-04-22 Nike, Inc. Moisture management support garment with a denier differential mechanism
EP2701542B1 (en) * 2011-03-03 2017-12-06 NIKE Innovate C.V. Garments with enhanced visual properties
EP2755509B1 (en) 2011-09-12 2016-10-26 NIKE Innovate C.V. Multilayered waterproof moisture management athletic garments
US11606992B2 (en) 2012-04-18 2023-03-21 Nike, Inc. Vented garment
US12035770B2 (en) 2012-04-18 2024-07-16 Nike, Inc. Vented garment
US10111480B2 (en) 2015-10-07 2018-10-30 Nike, Inc. Vented garment
US9392825B2 (en) 2012-04-18 2016-07-19 Nike, Inc. Cold weather vented garment
US10391736B2 (en) 2013-06-11 2019-08-27 Chen-Cheng Huang Breathable and waterproof composite fabric and a method of making the same
TWI523757B (en) * 2013-06-11 2016-03-01 zhen-zheng Huang Breathable waterproof composite cloth
JP6568520B2 (en) * 2013-12-02 2019-08-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Headgear with hydrophilic wicking material
US10660381B2 (en) * 2014-11-19 2020-05-26 Acushnet Company Golf jacket having weather-protective collar
ES2571442B9 (en) * 2014-11-25 2017-12-26 Mat Product & Technology, S.L. Breathable garment
US11406148B2 (en) 2015-10-07 2022-08-09 Nike, Inc. Vented garment
US11297888B2 (en) 2016-01-15 2022-04-12 Nike, Inc. Garment with integral wipe zones
US20170303605A1 (en) * 2016-04-25 2017-10-26 Raul Barasa Pants featuring ventilation system in legs
US10743596B2 (en) 2016-10-06 2020-08-18 Nike, Inc. Insulated vented garment formed using non-woven polymer sheets
US11019865B2 (en) 2016-10-06 2021-06-01 Nike, Inc. Insulated garment
US11412796B2 (en) * 2016-11-16 2022-08-16 Nike, Inc. Garment with wipe zones
US10874154B2 (en) 2017-03-27 2020-12-29 Lauren Aitch Jacket with expandable scalloped shoulder regions
US10993484B2 (en) 2017-10-18 2021-05-04 Nike, Inc. Wetness indicator garment
US11034126B2 (en) 2018-09-11 2021-06-15 Eliot Dow Visually dynamic multi-layer elastomeric materials
US20200108282A1 (en) * 2018-10-05 2020-04-09 Honeywell International Inc. Particulate protective articles
CN109623137B (en) * 2018-11-14 2020-07-10 华中科技大学 Method for accurately and continuously regulating and controlling water adhesion force on surface of polytetrafluoroethylene
CN110720691B (en) * 2019-11-21 2021-03-02 李若畅 Sweating hollow-out unit, sweating hollow-out structure and clothes using structure
US11324263B2 (en) * 2019-11-30 2022-05-10 Simms Fishing Products Llc Fishing wader with breathable stocking foot bootie
US11109626B2 (en) * 2020-01-28 2021-09-07 The Paracosm Group, Llc Heat shielding sleeve
CN115190770A (en) * 2020-03-10 2022-10-14 香港理工大学 Evaporative cooling garment with capillary bed fiber tube liquid and sweat management system
DE202020102447U1 (en) * 2020-04-30 2021-01-22 Trans-Textil Gmbh Textile laminate for protective clothing and protective clothing
US20230233997A1 (en) * 2020-06-09 2023-07-27 The Hong Kong Polytechnic University Controllable liquid transport material, system, and method for preparing thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098770A (en) * 1988-10-14 1992-03-24 Lainiere De Picardie Composite fireproof and waterproof textile and clothing and seat comprising such a textile
US20030104734A1 (en) * 2001-01-24 2003-06-05 Mario Polegato Moretti Clothing ventilation device allowing the human body to breathe, and method for producing the device
US20070093162A1 (en) * 2004-10-22 2007-04-26 Holcombe Barry V Fabric and a method of making the fabric
US20100242149A1 (en) * 2009-03-31 2010-09-30 Under Armour, Inc. Multi-layer passive water barrier system
US20110197331A1 (en) 2001-12-12 2011-08-18 Reynolds Eric M Body Form-Fitting Rainwear

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US385306A (en) * 1888-06-26 Ventilated garment
US4591523A (en) * 1985-05-31 1986-05-27 The Procter & Gamble Company Apertured macroscopically expanded three-dimensional polymeric web exhibiting breatheability and resistance to fluid transmission
US5098771A (en) * 1989-07-27 1992-03-24 Hyperion Catalysis International Conductive coatings and inks
GB9727469D0 (en) * 1997-12-30 1998-02-25 Sugden Kurt D Fabric material
IT1306681B1 (en) * 1999-07-06 2001-10-02 Nottington Holding Bv BREATHABLE HEAD STRUCTURE TO WEAR TO IMPROVE THE COMFORT OF THE HUMAN BODY.
US20020132091A1 (en) * 2001-01-25 2002-09-19 Worley James Brice Micro-perforated temperature regulating fabrics, garments and articles having improved softness, flexibility, breathability and moisture vapor transport properties
US20030054141A1 (en) * 2001-01-25 2003-03-20 Worley James Brice Coated articles having enhanced reversible thermal properties and exhibiting improved flexibility, softness, air permeability, or water vapor transport properties
US7581248B2 (en) 2004-06-28 2009-08-25 International Business Machines Corporation Federated identity brokering
US7581258B2 (en) 2004-10-14 2009-09-01 Nike, Inc. Article of apparel incorporating a flocked material
US7851267B2 (en) 2007-10-18 2010-12-14 Infineon Technologies Ag Power semiconductor module method
EP2755509B1 (en) 2011-09-12 2016-10-26 NIKE Innovate C.V. Multilayered waterproof moisture management athletic garments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098770A (en) * 1988-10-14 1992-03-24 Lainiere De Picardie Composite fireproof and waterproof textile and clothing and seat comprising such a textile
US20030104734A1 (en) * 2001-01-24 2003-06-05 Mario Polegato Moretti Clothing ventilation device allowing the human body to breathe, and method for producing the device
US20110197331A1 (en) 2001-12-12 2011-08-18 Reynolds Eric M Body Form-Fitting Rainwear
US20070093162A1 (en) * 2004-10-22 2007-04-26 Holcombe Barry V Fabric and a method of making the fabric
US20100242149A1 (en) * 2009-03-31 2010-09-30 Under Armour, Inc. Multi-layer passive water barrier system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2755509A4

Also Published As

Publication number Publication date
EP2755509B1 (en) 2016-10-26
CN103796538B (en) 2017-02-15
US10786024B2 (en) 2020-09-29
US9420837B2 (en) 2016-08-23
CN103796538A (en) 2014-05-14
US11638451B2 (en) 2023-05-02
EP2755509A1 (en) 2014-07-23
US20130061366A1 (en) 2013-03-14
US20200383410A1 (en) 2020-12-10
US10327489B2 (en) 2019-06-25
US20160331055A1 (en) 2016-11-17
EP2755509A4 (en) 2015-05-20
US20190246722A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
US11638451B2 (en) Multilayered waterproof moisture management athletic garments
US11992072B2 (en) Vented garment
US11229250B2 (en) Cold weather vented garment
CA3001345C (en) Vented garment
US11771156B2 (en) Insulated vented garment formed using non-woven polymer sheets
EP3522743B1 (en) Insulated vented garment formed using sections of non-woven polymer material
CA3034404C (en) Vented garment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832179

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012832179

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012832179

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE