WO2013039021A1 - Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device - Google Patents

Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device Download PDF

Info

Publication number
WO2013039021A1
WO2013039021A1 PCT/JP2012/073000 JP2012073000W WO2013039021A1 WO 2013039021 A1 WO2013039021 A1 WO 2013039021A1 JP 2012073000 W JP2012073000 W JP 2012073000W WO 2013039021 A1 WO2013039021 A1 WO 2013039021A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
electrode
photoelectric conversion
wires
conductive
Prior art date
Application number
PCT/JP2012/073000
Other languages
French (fr)
Japanese (ja)
Inventor
善孝 長草
洋一 川村
Original Assignee
トヨタ自動車東日本株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/071053 external-priority patent/WO2013038539A1/en
Priority claimed from PCT/JP2011/071052 external-priority patent/WO2013038538A1/en
Application filed by トヨタ自動車東日本株式会社 filed Critical トヨタ自動車東日本株式会社
Priority to JP2013533650A priority Critical patent/JP6083675B2/en
Publication of WO2013039021A1 publication Critical patent/WO2013039021A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a flexible display device, an electrode for a photoelectric conversion device used for a photoelectric conversion device, a photoelectric conversion device using the same, and a method for manufacturing the photoelectric conversion device.
  • a photoelectric conversion device is a device that converts electrical energy into light and a device that converts light into electrical energy.
  • Examples of the former include a display device using a light emitting element, and examples of the latter include a solar cell.
  • organic EL display devices there are monochromatic or color organic EL display devices using organic EL (Electro Luminescence), liquid crystal display devices using white EL illumination for backlight illumination, and the like.
  • organic EL Electro Luminescence
  • active matrix type organic EL display device in which a light emitting element and a TFT are formed for each pixel on a glass substrate or a transparent plastic substrate.
  • a light emitting device is formed by laminating an ITO anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a metal cathode sequentially on a glass substrate or a transparent plastic substrate. Is formed.
  • organic thin film solar cell using an organic semiconductor is known as a solar cell. Since organic thin film solar cells can be formed by a simple film formation method, they are attracting attention as solar cells that are easy to manufacture and suitable for mass production. Various organic thin-film solar cells having so-called bulk heterojunction structures and nanophase separation structures have been proposed. In these structures, since a wide contact interface between the p-type organic semiconductor and the n-type organic semiconductor can be secured, the photoelectric conversion efficiency can be improved.
  • Such an organic thin film solar cell is prepared, for example, by dissolving a hole transport material and an electron transport material in various solvents to prepare a material-containing liquid, and depositing the material-containing liquid on the surface of the electrode. It is manufactured by forming a photoelectric conversion layer including an organic semiconductor or an n-type organic semiconductor.
  • Patent Document 1 proposes an organic thin-film solar cell in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate.
  • a cathode is formed at a low temperature but also an organic metal by forming a laminated structure in which a cathode made of silver oxide and a reducing agent and an electron transport layer doped with an organic metal are applied in the vicinity of the cathode. It is said that the junction between the doped layer and the cathode is improved.
  • Patent Document 2 proposes a method of manufacturing a photovoltaic element or the like by joining a mesh electrode body woven with metal wires onto the surface of a photovoltaic body.
  • Patent Document 2 by wiring a metal wire, the aspect ratio between the thinness and thickness of the wire can be appropriately adjusted as compared with the wiring using printing, lithography, etc., the cost can be reduced, and the mesh can be woven. It is said that wiring can be speeded up.
  • the conventional display device has a complicated structure and it is difficult to reduce the thickness.
  • a type using a glass substrate does not have flexibility, and a type using a plastic plate has a limit in flexibility.
  • a liquid crystal display device using EL illumination as backlight illumination it is necessary to form the EL light emitting layer as a uniform film, and in addition, an alkali metal is applied to reduce the electrical resistance at the interface between the electrode and the EL light emitting layer. Sometimes it is done.
  • the conventional photoelectric conversion device it was necessary to provide a pair of electrodes across a region to be a pn junction. For this reason, the light irradiation side electrode is required to have good light transmission and low electrical resistance, and the light irradiation side electrode needs to be formed by vapor deposition or plating of an expensive rare metal. Along with that, the process steps were also complicated. Further, the conventional solar cell has no flexibility, and when it is attached to the surface of a curved member, it must be divided and attached.
  • a flexible electrode using a conventional conductive wire having conductivity when a plurality of wires are arranged, the arrangement of the wires such as misalignment, bending, distortion, and deformation often occurs. .
  • the arrangement of the wires is disturbed, the distance between the electrodes varies, the abundance of the p-type organic semiconductor and the n-type organic semiconductor arranged between the electrodes and the moving distance of the carriers become uneven, and the performance of photoelectric conversion is improved. It was falling.
  • a first object of the present invention is to provide a display device having a simple structure and a small flexibility limit.
  • a second object of the present invention is to provide an electrode structure for a photoelectric conversion device that does not require light transmittance as an electrode material and a photoelectric conversion device using the same.
  • a third object of the present invention is to provide a production method capable of easily producing a flexible photoelectric conversion device while ensuring the performance of photoelectric conversion.
  • a display device includes a light emitting layer made of an organic EL material, a light emitting layer provided on one side of the light emitting layer, extending in the horizontal direction and spaced in the vertical direction.
  • One line electrode group consisting of conductive wires arranged side by side, and the other line electrode consisting of conductive wire materials provided on the other surface side of the light emitting layer and extending in the vertical direction and arranged at intervals in the horizontal direction A group.
  • the display device of the present invention includes a light emitting layer made of an organic EL material corresponding to each color, and a conductive layer provided on one surface side in each light emitting layer and extending in the horizontal direction and spaced in the vertical direction.
  • a wire for adjusting the arrangement extending in the lateral direction is provided between the conductive wires, and the interval between the conductive wires is maintained by the wire for adjusting the arrangement.
  • a wire for adjusting the arrangement extending in the vertical direction is provided between the conductive wires, and the distance between the conductive wires is maintained by the wire for adjusting the arrangement.
  • the gap between the conductive wire and the arrangement adjusting wire is in the same order as the equivalent cross-sectional dimension of the conductive wire.
  • one switching control unit that applies a voltage to an arbitrary conductive wire, and the other switching control unit that applies a voltage to an arbitrary conductive wire in the other linear electrode group, Is provided.
  • the electrode for a photoelectric conversion device that achieves the second object is an electrode for a photoelectric conversion device provided on both sides of a photoelectric conversion layer that converts light and electric energy, and is provided on a lower surface side of the photoelectric conversion layer.
  • a side electrode part and an upper electrode part provided on the upper surface side of the photoelectric conversion layer, the lower electrode part and the upper electrode part are provided with a plurality of vertical wires and a plurality of horizontal wires, and the vertical wires are mutually It consists of a plurality of conductive wires provided at a distance, a horizontal wire consists of a plurality of insulating wires provided at a distance from each other, and one of the lower electrode portion and the upper electrode portion functions as a p-type electrode, The other of the lower electrode portion and the upper electrode portion functions as an n-type electrode.
  • Another electrode for a photoelectric conversion device that achieves the second object is an electrode provided on both sides of a photoelectric conversion layer for converting light and electric energy, and is a lower electrode provided on the lower surface side of the photoelectric conversion layer And an upper electrode portion provided on the upper surface side of the photoelectric conversion layer, and a support portion that supports the upper electrode portion with respect to the lower electrode portion so that the lower electrode portion and the upper electrode portion face each other at a predetermined distance
  • the lower electrode portion and the upper electrode portion include a plurality of vertical wires and a plurality of horizontal wires, and the vertical wires are composed of a plurality of conductive wires provided at a distance from each other.
  • It consists of a plurality of insulated wires provided at a distance from each other, and one of the lower electrode portion and the upper electrode portion functions as a p-type electrode, and the other of the lower electrode portion and the upper electrode portion functions as an n-type electrode. It is characterized by that. At least one of the insulated wires may be provided between the conductive wires constituting the upper electrode portion and the lower electrode portion.
  • a p-layer organic semiconductor made of a hole transport material is provided on the P-type electrode, and the n-type electrode is provided on the P-type electrode. Is provided with an n-layer organic semiconductor made of an electron transport material.
  • a material-containing liquid containing at least one of a hole transport material and an electron transport material in a solvent is attached to the electrode structure, and the electrode structure
  • a plurality of conductive wires are integrated together with a placement adjusting wire that adjusts a spacing between conductive wires.
  • An electrode structure having a plurality of electrode portions and supported by a support wire in a state where the plurality of electrode portions are opposed to each other is prepared using a solvent capable of dissolving the arrangement adjusting wire and not dissolving the support wire.
  • a material-containing liquid is prepared, and the material-containing liquid is brought into contact with the electrode structure to dissolve the arrangement adjusting wire and to attach at least one material to the conductive wire to form an organic semiconductor.
  • an electrode structure in which conductive wires are separated from each other at a predetermined interval can be prepared by interposing an arrangement adjusting wire between conductive wires.
  • a material-containing liquid containing a hole transport material and an electron transport material is prepared and brought into contact with the electrode structure, and the p-type organic semiconductor is formed in a state of being connected to some conductive wires, and n It is preferable to form the type organic semiconductor in a state where it is connected to the other part of the conductive wire.
  • the material-containing liquid may be attached to one side of the electrode structure.
  • the photoelectric conversion device of the present invention that achieves the above object is an electrode structure for producing a photoelectric conversion device in which a plurality of conductive wires are integrated with an arrangement adjusting wire, and an arrangement adjusting wire for a solvent for producing a photoelectric conversion device. Is a structure having a higher solubility than the conductive material.
  • one linear electrode group is provided on one surface side of the light emitting layer, and the other linear electrode group is provided on the other surface side of the light emitting layer.
  • Each linear electrode group itself is easily deformable, such as curved, by an external force, unlike a resin molded sheet or film.
  • the structure is also very simple, and there is no need to provide a TFT for each pixel.
  • the electrode for a photoelectric conversion device of the present invention the electrode provided on the surface of the photoelectric conversion layer on which light is incident has a plurality of gaps for passing light, so that it is not necessary to configure the electrode with a transparent electrode, and transparent There is no need to use rare metals for the electrodes. Therefore, an inexpensive electrode material such as Cu or Al can be used for the electrode for the photoelectric conversion device. Further, since the photoelectric conversion device is formed of a flexible net, the photoelectric conversion device can be attached to a curved surface after being formed in a flat shape. Furthermore, since light can be taken in from both surfaces of the photoelectric conversion layer, improvement in conversion efficiency can be expected.
  • the method for manufacturing a photoelectric conversion device of the present invention since an electrode structure in which a plurality of conductive wires are integrally connected together with a wire for arrangement adjustment is used, even a flexible conductive wire can be easily arranged. Moreover, while the arrangement
  • the hole transport material of the material containing liquid is disposed at the portion where the arrangement adjusting wire is arranged.
  • an electron transport material can be arranged. Therefore, many organic semiconductors can be uniformly arranged between the conductive wires, and the performance of photoelectric conversion can be ensured. Therefore, it is possible to easily manufacture a photoelectric conversion device having flexibility while ensuring the performance of photoelectric conversion.
  • FIG. 5 is a schematic perspective view of a part of one and the other linear electrode group in the display unit shown in FIG. 4. It is sectional drawing of the photoelectric conversion device which concerns on 3rd Embodiment of this invention.
  • FIG. 1 is a diagram schematically showing a display device according to a first embodiment of the present invention.
  • 2 is a diagram schematically showing a cross section of the display unit of the display device shown in FIG. 1, and
  • FIG. 3A shows one of the linear electrode groups in the display unit shown in FIG.
  • FIG. 5 is a diagram schematically showing the other linear electrode group in the display unit.
  • the display device 1 is an example of a photoelectric conversion device including a display unit 2 and a control unit 3 as shown in FIG.
  • the display unit 2 includes a light emitting layer 61 made of an organic EL material, one linear electrode group 62 provided on one surface side of the light emitting layer 61, and the other surface in the light emitting layer 61. And the other linear electrode group 63 provided above.
  • protective layers may be provided on the upper and lower surfaces of the light emitting layer 61.
  • the light emitting layer 61 is formed in a layer shape with various organic EL materials.
  • One linear electrode group 62 and the other linear electrode group 63 exist on different surfaces and do not cross each other, that is, in a twisted positional relationship.
  • One line electrode group 62 is provided on one surface side of the light emitting layer 61.
  • One line electrode group 62 is formed by arranging conductive wires 62a extending in the horizontal direction at intervals in the vertical direction.
  • a laterally extending arrangement adjusting wire 62b may be disposed between the conductive wires 62a, 62a extending in the lateral direction, and the wires extending in the lateral direction may be disposed.
  • 62a and 62b may be knitted by the wire 62c for arrangement adjustment extended in the vertical direction.
  • the conductive wire 62a extending in the horizontal direction and the arrangement adjusting wire 62b extending in the horizontal direction are arranged at intervals in the vertical direction, and these are arranged for vertical adjustment.
  • One filament electrode group 62 may be constituted by being knitted in a lattice shape by the wire rod 62b.
  • the other filament electrode group 63 is provided on the other surface side of the light emitting layer 61.
  • One line electrode group 63 is formed by arranging conductive wires 63a extending in the vertical direction at intervals in the horizontal direction.
  • a wire 63b for adjusting the arrangement extending in the vertical direction may be arranged between the conductive wires 63a, 63a extending in the vertical direction, and these wires extending in the vertical direction.
  • 63a and 63b may be knitted by the wire 63c for arrangement adjustment extended in the horizontal direction.
  • the conductive wire 63a extending in the vertical direction and the arrangement adjusting wire 63b extending in the vertical direction are arranged at intervals in the horizontal direction, and these are arranged for horizontal adjustment.
  • the other filament electrode group 63 may be configured by being knitted in a lattice shape by the wire 63b.
  • the conductive wire rods 62a and 63a are made of a linear member having a circular cross section, an elliptical cross section, or a flat cross section, and may be a monofilament or a multifilament.
  • the filament may be a conductive wire made of metal or the like.
  • the metal may be plated on the outer periphery of the monofilament or multifilament, and the plating layer may be formed on the outer periphery of the filament.
  • the metal copper having a low resistivity is preferable, but another metal may be used, and stainless steel may be used.
  • the wire rods 62b, 62c, 63b, and 63c for adjusting the arrangement are made of linear members having a circular cross section, an elliptical cross section, and a flat cross section, and may be monofilaments or multifilaments.
  • the material of the wires 62b, 62c, 63b, 63c for adjusting the arrangement is preferably an insulating fiber. This is because the liquid crystal is lit in dots. However, when the wires 62a and 63a are not misaligned in a state where various organic EL materials are cured, a material that dissolves with an organic solvent or the like may be used as the material for the arrangement adjusting wires 62b, 62c, 63b, and 63c. Good. In that case, the insulating fiber is not necessarily required.
  • the materials of the alignment adjusting wire materials 62b, 62c, 63b, and 63c are included in the coating agent when the organic EL material is applied to the one linear electrode group 62 and the other linear electrode group 63 and cured. It may be dissolved by an organic solvent.
  • the gaps between the conductive wire materials 62a and 63a and the arrangement adjusting wire materials 62b and 63b are in the same order as the equivalent cross-sectional dimensions of the conductive wire materials 62a and 63a. May be.
  • the conductive wires 62a and 63a and the arrangement adjusting wires 62b and 63b have a wire diameter of 10 to 25 ⁇ m, and the gap between the conductive wires 62a and 63a and the arrangement adjusting wires 62b and 63b is 10 mm. ⁇ 25 ⁇ m.
  • the gap between the alignment adjusting wires 62c and 63b is 10 to 25 ⁇ m.
  • These numbers are values before weaving each wire.
  • the thickness of one linear electrode group 62 is 20 to 30 ⁇ m
  • the thickness of the other linear electrode group 63 is 20 to 30 ⁇ m.
  • the shortest distance between one filament electrode group 62 and the other filament electrode group 63 is 10 to 30 ⁇ m, particularly 10 to 20 ⁇ m.
  • the thickness of the light emitting layer 61 is, for example, 60 to 90 ⁇ m.
  • the string-like thickness of each wire is approximately the same as the size of the mesh formed by these wires, or has the same order of dimensions. Therefore, the gaps between the wires are maintained by the arrangement-positive wires 62b, 62c, 63b, and 63c.
  • the wire diameter of each wire is preferably uniform, but may be within a predetermined range, for example, 80% to 120% with respect to the average diameter. Thereby, the space
  • the alignment adjusting wires 62b, 62c, 63b, and 63c are provided to maintain the interval between the conductive wires 62a and the interval between the conductive wires 63a until the organic EL material is cured. Therefore, when the organic EL material is cured by applying an organic EL material to one of the linear electrode group 62 and the other linear electrode group 63 to form the light emitting layer 61, the thickness of the light emitting layer 61 is increased.
  • the conductive wire members 62a and 63a of the first electrode group 62 and the other electrode group 63 are held. Note that the arrangement adjusting wires 62b, 62c, 63b, and 63c do not have to be completely dissolved by the organic solvent, and may remain partially undissolved.
  • the alignment adjusting wires 62b, 62c, 63b, and 63c for example, acrylic fibers or vinyl fibers can be used.
  • the coating agent contains an organic solvent such as toluene or acetic acid. Just do it.
  • the organic solvent can be appropriately selected according to the organic EL material, the curing agent, and the like.
  • a support member 64 for maintaining a distance may be provided.
  • the support member 64 is made of a non-conductive, that is, insulating wire, and is made of a fiber that hardly melts depending on an organic solvent such as polyethylene terephthalate. This is different from the arrangement adjusting wires 62b, 62c, 63b, and 63c, in which an application agent containing an organic EL material is applied to or impregnated into one of the linear electrode groups 62 and the other of the linear electrode groups 63. This is to prevent melting.
  • the control unit 3 includes one switching control unit 15a and the other switching control unit 15b.
  • the voltage supply unit 16 is connected to the input side of the one switching control unit 15a and the other switching control unit 15b, and the respective conductive properties of the one line electrode group 62 and the other line electrode group 63 are connected to the output side.
  • the ends of the wires 62a and 63a are connected.
  • the conductive wire material 62a extending laterally on one surface side of the light emitting layer 61 is arranged in the vertical direction, and on the other surface side of the light emitting layer 61.
  • Conductive wire 63a extending vertically is arranged side by side in the horizontal direction.
  • the conductive wire 62a being provided on one surface side of the light emitting layer 61 means that the conductive wire 62a is provided so as to be embedded in the light emitting layer 61 on the upper surface side of the light emitting layer 61 as shown in FIG. In addition, it may be a case where the light emitting layer 61 partially protrudes from the upper surface.
  • the conductive wire 63a is provided on the other surface side of the light emitting layer 61 as well as the case where the conductive wire 63a is provided so as to be embedded in the light emitting layer 61 on the lower surface side of the light emitting layer 61 as shown in FIG. Further, it may be a case where the light emitting layer 61 partially protrudes from the lower surface.
  • a transparent protective layer 19 that transmits light from the light emitting layer 61 as much as possible is provided on either or both sides of the light emitting layer 61.
  • the light emitting layer 61 partially protrudes from the upper and lower surfaces, the light emitting layer 61 is covered with the protective layer 19 together with the upper and lower surfaces of the light emitting layer 61.
  • one of the line electrode groups 62 includes a conductive wire material 62a and non-conductive wire materials 62b and 62c arranged in a lattice shape, and the other wire electrode
  • the strip electrode group 63 has a configuration in which vertically extending conductive wire 63a and non-conductive wire 63b, 63b are arranged in a grid pattern. Therefore, the wire 62a and the wire 62b are arranged side by side so as to intersect with each other across the central axis of the light emitting layer 61 in plan view.
  • the wire diameter of each wire is very small, the wire extending in the lateral direction may be referred to as weft and the wire extending in the vertical direction may be referred to as warp.
  • the conductive wire materials 62a and 63a intersect each other in plan view, and the linear electrode groups 62 and 63 are formed by non-conductive wire materials 62b and 63b. Since they are arranged alternately, they can be referred to as alternately arranged planar electrodes. Note that the number of non-conductive wires 62b and 63b is not limited to one and may be a plurality.
  • the display unit 2 of the display device 1 has the alternately arranged planar electrodes as described above. Therefore, by turning on each switch of one switching control unit 15a, the first voltage is applied to the conductive wire material 62a connected to the turned on switch. By turning on each switch of the other switching control unit 15b, the second voltage is applied to the conductive wire 63a connected to the turned-on switch. Therefore, a constant voltage can be applied between the conductive wire 62a specified in one of the linear electrode groups 62 and the conductive wire 63a specified in the other of the linear electrode groups 63.
  • the constant voltage is a difference between the first voltage and the second voltage, and either one of the first voltage and the second voltage may be 0V.
  • the display unit 1 since it is not necessary to provide a switching TFT for each pixel in the display unit 2, the display unit 1 itself does not have a complicated laminated structure.
  • each of the wire members 62a, 62b, 62c, 63a, 63b, 63c extending in the vertical direction and the horizontal direction and the light emitting layer 61 are used.
  • the ITO film since the ITO film is not formed on the thin film or sheet, the ITO film does not peel from the film or sheet. In addition, the bending of the film or sheet itself is not hindered. Therefore, the display unit 2 of the display device 1 according to the first embodiment of the present invention can be deformed such as curved.
  • the conductive wire rods 62a and 63a and the wire rods 62b, 62c, 63b, and 63c for arrangement adjustment exist on one surface side and the other surface side of the light emitting layer 61. These wires improve contrast and produce a so-called smoke effect. Therefore, there is no need to provide a light gray film called a smoke film.
  • FIG. 4 is a diagram schematically showing a cross section of a display unit of a display device according to a second embodiment of the present invention
  • FIG. 5 is a schematic diagram showing a part of one and the other linear electrode groups in the display unit shown in FIG. FIG.
  • the display unit 2 of the display device according to the second embodiment of the present invention has the following structure. That is, the light emitting layers 21, 31, 41 emitting different colors are laminated, and one line electrode group 22, 32, 42 is provided on one surface side of each light emitting layer 21, 31, 41, On the other surface side of each light emitting layer 21, 31, 41, the other linear electrode groups 23, 33, 43 are provided.
  • Each line electrode group 22, 32, 42 has the same configuration as that shown in FIG. 2, and includes conductive wires 22a, 32a, 42a extending in the horizontal direction and arrangement adjusting wires 22b extending in the horizontal direction. 32b and 42b are knitted by arrangement adjusting wire rods 22c, 32c and 42c extending in the vertical direction, and are formed in a net shape.
  • the other configuration of the other line electrode groups 23, 33, 43 is the same as that shown in FIG. 2, and the conductive wire members 23a, 33a, 43a extending in the vertical direction and the wire rods 23b, 33b for adjusting the arrangement extending in the vertical direction are provided. 43b is knitted by a wire 23c, 33c, 43c for adjusting the arrangement extending in the lateral direction, and is formed in a net shape.
  • the conductive wire rods 22a, 32a, and 42a are connected to the respective switches of the one switching control unit 15a, and the other wire electrode group.
  • the conductive wires 23a, 33a and 43a are connected to the respective switches in the other switching control unit 15b.
  • each light emitting layer 21,31,41 it exists in the specific conductive wire material 22a, 32a, 42a in one linear electrode group 22,32,42, and the other linear electrode group 23,33,43.
  • a predetermined voltage is applied between the specific conductive wires 23a, 33a, 43a.
  • one linear electrode group 22, 32, 42 and the other linear electrode group 23, 33, 43 are linearly supported in a vertical direction. , 34, 44.
  • interval of one filament electrode group 22,32,42 and the other filament electrode group 23,33,43 can be made constant.
  • the specific conductive wire rods 22 a, 32 a, 42 a in the one line electrode group 22, 32, 42 and the other line electrode groups 23, 33, 43 are present.
  • a voltage within a certain range can be applied between the specific conductive wire materials 23a, 33a, and 43a, and unevenness of light emission can be prevented.
  • the light emitting layer 21, the light emitting layer 31, and the light emitting layer 41 emit light of different wavelengths.
  • three color lights of R, B, and G are generated in three light emitting layers.
  • one pixel 54 is formed by a configuration in which conductive wire materials 23 a, 33 a, and 43 a are horizontally arranged by the light emitting layers 21, 31, and 41.
  • the conductive wire 42a and the intersecting region of the conductive wire 43a provided in the light emitting layer 41 are arranged so as not to overlap each other. Specifically, in the 1st light emitting layer 21, the space
  • two arrangement adjusting wire members 23 b are interposed between the conductive wire members 23 a of the other filament electrode group 23.
  • two arrangement adjusting wire members 33 b are interposed between the conductive wire members 33 a of the other filament electrode group 33.
  • two arrangement adjusting wire rods 43 b are interposed between the conductive wire rods 43 a of the other filament electrode group 43.
  • the number of wires for adjusting the arrangement is not limited to two, and may be four, six, or any other number.
  • the wire for adjusting the arrangement may be dissolved by a solvent or the like, but the supporting members 24, 34, 44 for maintaining the distance are not dissolved, and one of the linear electrode groups 22, The distance between 32 and 42 and the other linear electrode group 23, 33, 43 is maintained. Thereby, when the display part 2 is curved etc., the space
  • the regions where one of the linear electrode groups 22, 32, 42 and the conductive linear members 23a, 33a, 43 in the other linear electrode groups 23, 33, 43 intersect are arranged side by side in a plan view.
  • One pixel 54 is formed.
  • the intersecting regions may be arranged so as to be arranged at the vertices of the triangle in plan view, arranged so as to be arranged at the vertices of the L shape, or arranged at the vertices of other shapes. You may line up.
  • the conductive wire members 22a, 32a, and 42a do not overlap with each other in plan view, and the conductive wire members 23a, 33a, and 43a do not overlap with each other in plan view.
  • One pixel is formed by three regions where the conductive wire members 22a, 32a, 42a of one of the line electrode groups 22, 32, 42 intersect the conductive wire members 23a, 33a, 43a of the other line electrode group 23, 33, 43. Composed. Since each light emitting layer 21, 31 and 41 is laminated
  • a gap 51 is provided between the light emitting layer 21 and the light emitting layer 31, and a gap 52 is provided between the light emitting layer 31 and the light emitting layer 41.
  • the gaps 51 and 52 can be used as insulating layers so that no voltage is generated between the conductive wires with other light emitting layers.
  • alternately arranged plane electrodes can be stacked and crossed, and a predetermined voltage can be applied to the intersecting region in plan view.
  • Each of the one line electrode group and the other line electrode group is configured by a fine yarn cloth by weaving a conductive wire extending in one direction with an insulating wire. Therefore, one line electrode group and the other line electrode group can be arranged on the opposite side by a thread-like support member, and one or a plurality of organic EL materials can be applied or immersed to form a light emitting layer. In that case, a hardening
  • the formation of the light emitting layer in the first and second embodiments of the present invention is not described in detail, various known organic EL materials can be used, and those described later are used. Is also possible.
  • a method for immersing and curing the organic EL material a known technique such as coating by an ink jet method, a dipping impregnation method, or a wetting method using a roller can be used, and a method described later can also be used.
  • one line electrode group and the other line electrode group are not limited to a rectangular mesh such as a square in plan view, but may be a rhombus mesh.
  • a photoelectric conversion device will be described assuming a solar cell as a device that converts light into electric energy, but it can be similarly applied to devices that convert electric energy into light energy such as a display device. it can.
  • FIG. 6 is a cross-sectional view of the photoelectric conversion device 1 according to the third embodiment of the present invention
  • FIG. 7 is a perspective view of the photoelectric conversion device 1.
  • the photoelectric conversion device 1 is composed of an electrode 12 and a photoelectric conversion layer 13. In FIG. 7, the display of the photoelectric conversion layer 13 is omitted.
  • the electrode 12 includes a lower electrode part 120 and an upper electrode part 220 provided to face the lower electrode part 120 at a predetermined distance.
  • the lower electrode portion 120 includes a plurality of vertical wires 120A and a plurality of horizontal wires 120B.
  • the vertical wire 120A and the horizontal wire 120B are woven so as to intersect each other. That is, the lower electrode portion 120 is formed in a plain weave net shape.
  • the vertical wire 120A two types of wires, specifically, the first conductive wire 121 and the first insulating wire 122 are used. As shown in FIG. 7, the first conductive wire 121 and the first insulating wire 122 are alternately arranged. The first conductive wire 121 and the first insulating wire 122 are juxtaposed at a predetermined interval so as not to contact each other.
  • first conductive wire 121 for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used.
  • One end 121E of each first conductive wire 121 is connected to the first bus bar 121A as shown in FIG.
  • the first insulating wire 122 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • the second insulating wire is used as the horizontal wire 12B. Similar to the first insulating wire 122, the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the upper electrode section 220 includes a plurality of vertical wires 220A and a plurality of horizontal wires 220B.
  • the vertical wire 220A and the horizontal wire 220B are woven so as to intersect each other. That is, the upper electrode portion 220 is formed in a plain weave net shape.
  • the vertical wire 220A two types of wires, specifically, the second conductive wire 221 and the third insulating wire 222 are used. As shown in FIG. 7, the second conductive wire 221 and the third insulating wire 222 are alternately arranged. The second conductive wire 221 and the third insulating wire 222 are juxtaposed at a predetermined interval so as not to contact each other.
  • the second conductive wire 22 for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used.
  • One end 221E of each second conductive wire 221 is connected to the second bus bar 221A as shown in FIG.
  • the third insulating wire 222 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a fourth insulating wire is used as the horizontal wire 220B. Similar to the third insulating wire 222, the fourth insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the first conductive wire 121, the second conductive wire 221, the first insulating wire 122, the third insulating wire 222, etc. are set to a thickness of about 20 ⁇ m to 30 ⁇ m.
  • FIG. 8 is a schematic enlarged view of a circle A region in FIG.
  • the photoelectric conversion layer 13 is provided on one electrode, that is, the lower electrode portion 120, and the p-layer organic semiconductor 13A serving as a hole transport material, and on the other electrode, that is, the upper electrode portion 220, and is transported by electrons.
  • n-layer organic semiconductor 13B as a material.
  • the organic semiconductor 13B is provided on the organic semiconductor 13A. Therefore, the lower electrode part 120 functions as a p-type electrode, and the upper electrode part 220 functions as an n-type electrode.
  • the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B form a pn junction.
  • the p-layer organic semiconductor 13A is formed of a hole transport material.
  • a hole transport material in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) ⁇ -NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7), TPTE1 represented by chemical formula (8), TCTA represented by chemical formula (9), NTPA represented by chemical formula (10), spiro-TAD represented by chemical formula (11), TFREL represented by chemical formula (12), etc. are used. .
  • the n-layer organic semiconductor 13B is formed of an electron transport material.
  • the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16).
  • triazole derivative represented by the chemical formula (18)
  • silole derivative represented by the chemical formula (20) and the like.
  • a method for manufacturing the photoelectric conversion device 1 shown in FIG. First, the first conductive wire 121, the first insulated wire 122, and the second insulated wire are prepared and plain weave to produce the lower electrode portion 120. Similarly, the upper electrode part 220 is produced. Thereafter, a hole transport material to be the p-layer organic semiconductor 13A is applied to a predetermined portion, for example, one electrode, that is, the lower electrode portion 120 by, for example, an ink jet printer.
  • an electron transport material to be the n-layer organic semiconductor 13B is applied on the p-layer.
  • the same printing technique by an ink jet printer as in the case of the p-layer organic semiconductor 13A may be used.
  • a pn junction is formed by the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B.
  • the n-layer organic semiconductor 13B may be applied, and then the p-layer organic semiconductor 13A may be applied.
  • the lower electrode portion 120 is overlaid on the n layer. Thereby, the photoelectric conversion device 1 is produced. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 6 is manufactured.
  • the photoelectric conversion device 1 configured as described above, for example, when light is incident on the photoelectric conversion layer 13 from the upper electrode portion 220 side, the light L and the second conductive wire 221 constituting the upper electrode portion 220 It passes between the three insulated wires 222 and enters the inner region from the upper surface of the photoelectric conversion layer 13. As shown in FIG. 8, the light L ′ can enter the inner region also from the lower surface of the photoelectric conversion layer 13.
  • the lower electrode portion 120 and the upper electrode portion 220 are made of a material that allows light to pass through a plurality of gaps S for light passage, that is, regions of the gaps S.
  • the electrode provided on the surface of the photoelectric conversion layer 13 on which light is incident is configured to have a plurality of gaps S for passing light, it is not necessary to configure the electrode with a transparent electrode, and the transparent It is not necessary to use a rare metal for the electrode as a material. Therefore, Cu, Al, etc. can be used for the electrode 12 for photoelectric conversion devices. Since the photoelectric conversion device 1 is formed of a flexible net, the electrode 12 can be attached to a curved surface after being formed in a flat shape.
  • the upper electrode portion 220 is formed in a net shape with a wire rod functioning as an electrode, a member such as a bus bar is brought into contact with the wire rod by crimping or welding a member such as a bus bar to the end portion of the net. Therefore, the manufacturing process for extracting electricity is facilitated. Furthermore, since light can be taken in from both surfaces of the photoelectric conversion layer 13, an improvement in conversion efficiency can be expected.
  • the third embodiment described above can be implemented with appropriate modifications within the scope of the present invention.
  • a configuration in which one first insulating wire 122 and one third insulating wire 222 are provided between the first conductive wires 121 and between the second conductive wires 221 has been described.
  • the photoelectric conversion device may be configured by omitting the first insulating wire 122 and the third insulating wire 222 as shown in FIG. 9B.
  • FIG. 10 and 11 are diagrams for explaining a method of manufacturing a photoelectric conversion device according to the fourth embodiment.
  • the photoelectric conversion device 20 is manufactured using the electrode structure 22 as shown in FIG.
  • the photoelectric conversion device 1 to be manufactured includes, for example, a photoelectric conversion layer 13 having a p-type organic semiconductor 13A made of a hole transport material and an n-type organic semiconductor 13B made of an electron transport material, as shown in FIG.
  • a protective layer is laminated and coated on the surface of the photoelectric conversion layer 13.
  • the photoelectric conversion device 1 is disposed along the surface of the insulating substrate 11.
  • At least one of the first conductive wire 121 and the second conductive wire 122 is composed of a plurality of conductive wires 120 arranged side by side in substantially the same direction so as not to contact each other.
  • a horizontal wire 12B made of an insulating wire is arranged in a direction crossing these conductive wires 120.
  • a part of the plurality of conductive wires 120 is the first conductive wire 121 and the other conductive wire 120 is the second conductive wire 122, which are alternately arranged.
  • the plurality of conductive wire rods 120 constituting the first conductive wire rod 121 and the plurality of conductive wire rods 120 constituting the second conductive wire rod 122 are provided in substantially the same number, and bus bars 7 as wiring portions as shown in FIG. Can be connected to various circuits via the bus bar 7.
  • Each conductive wire 120 uses a flexible wire such as a metal wire such as a copper wire or a stainless steel wire, a synthetic fiber such as a resin, or a metal-plated fiber obtained by performing metal plating on the surface of various fibers such as a natural fiber. It is good to do.
  • the core fiber may be composed of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, vinyl resin, or the like.
  • the thickness of the plurality of conductive wires 120 may be different from each other, but it is preferable to use wires having the same thickness. Although not particularly limited, as an example, one having a wire diameter of 20 to 30 ⁇ m may be used.
  • Each horizontal wire 12B is made of an insulating wire, and it is preferable to use a flexible wire such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a wire having the same thickness as that of the conductive wire 120 may be used as the horizontal wire 12B.
  • the photoelectric conversion layer 13 includes a p-type organic semiconductor 13A connected to the first conductive wire 121 and an n-type organic semiconductor 13B connected to the second conductive wire 122.
  • the p-type organic semiconductor 13A and the n-type organic semiconductor 13B are bonded at the contact interface to form a pn junction. It is preferable that the photoelectric conversion layer 13 is rich in flexibility.
  • the p-type organic semiconductor 13A is made of a hole transport material.
  • the hole transport material include aromatic amine, thiophene, phenylene-vinylene, thienylene-vinylene, carbazole, vinylcarbazole, pyrrole, acetylene, phthalocyanine, acene, porphyrin, derivatives, complexes, oligomers, and polymers thereof.
  • known organic compounds having electron acceptability that can be used as organic semiconductors can be used.
  • the n-type organic semiconductor 13B is made of an electron transport material.
  • the electron transport material include silole, fullerene, carbon nanotube, perylene, naphthalene, pyridine, phthalocyanine, quinoline, oxadiazole, triazole, distyrylarylene, derivatives, complexes, oligomers, and polymers thereof. Any known organic compound having an electron donating property that can be used as an organic semiconductor can be used.
  • p-type organic semiconductor 13A and n-type organic semiconductor 13B can be selected by combining those having the highest possible photoelectric conversion efficiency.
  • the thickness of the photoelectric conversion layer 13 is not particularly limited, but may be 1.2 to 2.0 times the wire diameter of the conductive wire 120, for example.
  • the photoelectric conversion device 1 since the first conductive wire 121, the second conductive wire 122, and the photoelectric conversion layer 13 have flexibility, the photoelectric conversion device 1 has sufficient flexibility. Therefore, it can arrange
  • a plurality of electrode portions 230 in which a plurality of conductive wire rods 120 are integrated with the arrangement adjusting wire rod 15 are provided, and the support wire rods 320 are arranged in a state where the plurality of electrode portions 230 are opposed to each other.
  • a supported electrode structure 22 is prepared.
  • the electrode structure 22 can be formed as a double raschel woven fabric.
  • the electrode structure 22 may be prepared in advance.
  • Each electrode section 230 includes a plurality of vertical wires 12A made up of a plurality of conductive wires 120 and arrangement adjusting wires 15, and a plurality of horizontal wires 12B intersecting the vertical wires 12A. It intersects with the conductive wire 120 and the arrangement adjusting wire 15 and is arranged so as to intersect with the conductive wire 120 and the arrangement adjusting wire 15 up and down at predetermined intervals.
  • the conductive wire 120 of one electrode part 230 is the first conductive wire 121 and the conductive wire 120 of the other electrode part 230 is the second conductive wire 122.
  • the conductive wire 120 and the arrangement adjusting wire 15 of the vertical wire 12A are alternately arranged in substantially the same direction.
  • the number of the conductive wires 120 and the number of the arrangement adjusting wires 15 that are alternately arranged may be repeated by arranging one or both of them in plurality, but here, each of them is repeatedly arranged one by one.
  • the number or the like of the arrangement adjusting wires 15 arranged between the conductive wires 120 is preferably set according to the arrangement interval of the first conductive wires 121 and the second conductive wires 122 obtained after manufacture. It is preferable that the interval between the adjacent vertical wire rods 12A and the interval between the conductive wire rods 120 are adjusted to a suitably set range.
  • the conductive wire 120 of the vertical wire 12A is as described above, but the hole transport material contained in the material-containing liquid 130 is attached to a part of the conductive wire 120 that becomes the first conductive wire 121 of the vertical wire 12A.
  • the material may be selected so as to be easy and surface treatment may be performed.
  • a material may be selected or a surface treatment may be performed on the other conductive wire 120 that becomes the second conductive wire 122 so that the electron transport material contained in the material-containing liquid 130 is easily attached. .
  • the surface material of the conductive wire 120 constituting the first conductive wire 121 and the surface material of the conductive wire 120 constituting the second conductive wire 122 in a combination that causes a potential difference such as tin and copper.
  • the p-type organic semiconductor 13A or the n-type organic semiconductor 13B may be controlled to be generated as crystals or molecules on the surface of each conductive wire 120.
  • the arrangement adjusting wire 15 of the vertical wire 12A is made of a material that can be dissolved by the material-containing liquid 130 described later, and can be dissolved by a solvent selected according to the hole transport material and the electron transport material.
  • the arrangement adjusting wire 15 may be an insulating resin wire. Although not particularly limited, for example, a wire such as an acrylic resin or a vinyl resin may be used. If the thickness of the arrangement adjusting wire 15 is excessively large, the solubility decreases or the interval between the conductive wires 120 is widened. On the other hand, if the thickness is excessively thin, it is difficult to secure the interval between the conductive wires 120.
  • the wire diameter of the conductive wire 120 may be 0.5 to 1.0 times.
  • the horizontal wire 12B may be simply arranged in a direction intersecting with the conductive wire 120 and the arrangement adjusting wire 15, but here, the horizontal wire 12B is arranged so as to intersect with the conductive wire 120 and the arrangement adjusting wire 15 up and down at predetermined intervals. ing.
  • the horizontal wire 12B is made of an insulating wire different from the arrangement adjusting wire 15, and is dissolved in a material-containing liquid 130 described later, that is, a solvent used according to the hole transport material and the electron transport material used.
  • the material is made of a material that is lower than the arrangement adjusting wire 15.
  • a wire such as polyester such as PET may be used.
  • the conductive wire 120 can be stably separated and held with the arrangement adjusting wire 15 interposed between the conductive wires 120. They can be stably arranged separated from each other at a predetermined interval.
  • the support wire 320 is arranged in a direction intersecting with the vertical wire 12 ⁇ / b> A of each electrode part 230, and is further arranged so as to cross up and down so as to be bridged between the conductive wires 120 of each electrode part 230.
  • the support wire 320 is made of an insulating wire different from the arrangement adjusting wire 15, and is made of a material having low solubility by the solvent of the material-containing liquid 130.
  • a wire such as polyester such as PET may be used.
  • the electrode structure 22 can be formed as a woven fabric knitted with double raschel by providing a structure in which the plurality of electrode portions 230 are supported by the support wire 320. As a result, the plurality of electrode portions 230 are arranged to face each other at a predetermined distance, and the conductive wire material 120 constituting the first conductive wire material 121 and the conductive wire material 120 constituting the second conductive wire material 122 are substantially in the same direction and close to each other. It arrange
  • the material-containing liquid 130 is prepared by containing at least one of the hole transport material and the electron transport material as described above in the solvent. It is necessary to prepare the material-containing liquid 130 according to the material adhesion process. For example, when the p-type organic semiconductor 13A and the n-type organic semiconductor 13B are formed by bringing the material-containing liquid 130 into contact with the first conductive wire 121 and the second conductive wire 122 separately, a hole transport material is included. The material-containing liquid 130 to be prepared and the material-containing liquid 130 containing the electron transport material are prepared separately. Here, the material-containing liquid 130 is prepared by including both transport materials in a solvent.
  • the hole transport material may be a precursor of an organic compound having an electron acceptability that can be used as an organic semiconductor in addition to the above-described materials, and the electron transport material may be an organic semiconductor other than the above-described materials.
  • the precursor of the organic compound which has the electron-donating property which can be used as these may be sufficient.
  • a desired compound may be generated by appropriately reacting in the subsequent steps.
  • the solvent for producing a photoelectric conversion device used for the material-containing liquid 130 may be a solvent in which a hole transport material or an electron transport material is dispersed. However, a solvent that can be dissolved is suitable, and a solvent having volatility. May be. This solvent needs to be able to dissolve the wire 15 for adjusting the arrangement of the electrode structure 22 and preferably not to dissolve the horizontal wire 12B.
  • a material-containing liquid 130 is prepared by selecting a solvent that can particularly dissolve the arrangement adjusting wire 15 but cannot dissolve the horizontal wire 12B and the support wire 320.
  • a solvent usually used when forming an organic semiconductor using each hole transport material or each electron transport material is used. it can.
  • a solvent usually used when forming an organic semiconductor using each hole transport material or each electron transport material is used.
  • it can.
  • toluene, xylene, acetic acid or the like is used.
  • This material-containing liquid 130 may further contain components such as an additive such as dicarboxylic acid for controlling orientation and a binder such as methacrylic acid for maintaining strength.
  • the material-containing liquid 130 is brought into contact with the electrode structure 22 to dissolve the arrangement adjusting wire 15, and the hole transport material and the electron transport material in the material-containing liquid 130 are removed from the electrode structure 22. It adheres to the conductive wire 120.
  • each is sequentially brought into contact with part or all of the electrode structure 22 to dissolve both the transport materials.
  • the method may be such that the material-containing liquid 130 is brought into contact with the electrode structure 22 to attach the hole transport material or the electron transport material to the conductive wire 120.
  • the material-containing liquid 130 may be applied to the electrode structure 22 and printed by an ink jet printer, or the electrode structure 22 may be immersed in the material-containing liquid 130 and dipped.
  • the material-containing liquid 130 is brought into contact by a method such as dipping, and the material-containing liquid 130 is arranged between the plurality of electrode portions 230.
  • the arrangement adjusting wire 15 arranged between the conductive wires 120 of each electrode portion 230 is dissolved.
  • the dissolved components of the arrangement adjusting wire 15 may be dispersed in the material-containing liquid 130 and may be left behind, or may be replaced by the material-containing liquid 130 and removed.
  • the components of the arrangement adjusting wire 15 are dissolved in the material and arranged in this material.
  • the material-containing liquid 130 is disposed in the portion where the arrangement adjusting wire 15 has been disposed, and the hole transport material and the electron transport material of the material-containing liquid 130 are equivalent to other portions between and in the vicinity of the conductive wire 120. Be placed. Then, the hole transport material and the electron transport material adhere to the conductive wire 120 of the first conductive wire 121 and the conductive wire 120 of the second conductive wire 122, respectively.
  • the p-type organic semiconductor 13A is connected to a part of the conductive wire 120 from the hole transport material attached to the conductive wire 120 constituting the first conductive wire 121 together with the material-containing liquid 130.
  • the n-type organic semiconductor 13 ⁇ / b> B is formed in a state of being connected to the other conductive wire 120 from the electron transport material formed and attached to the conductive wire 120 constituting the second conductive wire 122.
  • the solvent in the material-containing liquid 130 may be volatilized and dried, and after drying, heat treatment, annealing treatment, or the like may be performed. .
  • Such processing can be performed at a relatively low temperature.
  • a precursor is used as a hole transport material or an electron transport material
  • the precursor is converted into a hole transport material or an electron transport material by a treatment after drying, and the organic semiconductor 13A is connected to the conductive wire 120 while being connected to the conductive wire 120.
  • 13B can be formed.
  • the performance of photoelectric conversion of the obtained photoelectric conversion device 1 improves by performing the heat processing and annealing process after drying.
  • a protective layer is laminated on the entire surface of the photoelectric conversion layer 13.
  • a material such as a transparent resin that can transmit light received and emitted by the photoelectric conversion layer 13 can be used. Thereby, manufacture of the photoelectric conversion device 1 is completed.
  • the effect in the manufacturing method of the above-mentioned photoelectric conversion device 1 is demonstrated.
  • the electrode structure 22 integrates the plurality of conductive wires 120 together with the arrangement adjusting wire 15, even the flexible conductive wire 120 can be easily arranged.
  • the arrangement, shape, density, etc. of each conductive wire 120 can be adjusted to easily adjust the arrangement interval of the conductive wire 120, and the state Can be easily and stably maintained during production.
  • the conductive wire rods 120 are accurately separated from each other at a predetermined interval to form the electrode structure 22, so that each conductive wire rod 120 is stabilized at a desired interval. Can be arranged. For this reason, variations in the arrangement interval of the plurality of conductive wires 120 are prevented, and the performance of photoelectric conversion is ensured.
  • the arrangement adjusting wire 15 is dissolved by bringing the material containing liquid 130 into contact with the electrode structure 22, the hole transport material and the electron transport of the material containing liquid 130 are disposed at the portion where the arrangement adjusting wire 15 is arranged. Material can be placed. Therefore, more organic semiconductors 13A and 13B can be disposed uniformly between the conductive wires 120, and the performance of photoelectric conversion can be ensured. Therefore, it is possible to easily manufacture the photoelectric conversion device 1 having flexibility while ensuring the performance of photoelectric conversion.
  • the support wire 320 is in a state where the first conductive wire 121 made of the plurality of conductive wires 120 and the second conductive wire 122 made of the plurality of conductive wires are held by the horizontal wire 12 ⁇ / b> B. Is supported by Therefore, when the photoelectric conversion device 20 is deformed, the force acting between the first conductive wire 121 on one surface side and the second conductive wire 122 on the other surface side can be received by the support wire 320. Therefore, exfoliation etc. can be prevented, damage to the photoelectric conversion layer 13 of the photoelectric conversion device 20 can be prevented, and durability can be improved.
  • an electrode structure comprising a net comprising a plurality of vertical wires 12A made up of a plurality of conductive wires 120 and arrangement adjusting wires 15, and a plurality of horizontal wires 12B arranged crossing the plurality of vertical wires 12A. 22 was prepared, and a material-containing liquid 130 was prepared using a solvent capable of dissolving the arrangement adjusting wire 15 and not dissolving the horizontal wire 12B.
  • the horizontal wire 12B can be left in the photoelectric conversion layer 13 after dissolving the arrangement adjusting wire 15, and even if it is deformed at the time of use, the photoelectric conversion layer 13 is hardly damaged, and the durability of the photoelectric conversion device 1 is improved.
  • the interval between the conductive wires 120 can be maintained.
  • a material-containing liquid 130 containing a hole transport material and an electron transport material is prepared, and the p-type organic semiconductor 13 ⁇ / b> A is connected to a part of the conductive wire 120 using the material-containing liquid 130.
  • the n-type organic semiconductor 13B was formed in a state of being connected to the other conductive wire 120. Thereby, the p-type organic semiconductor 13A and the n-type organic semiconductor 13B can be formed at the same time, and manufacturing is easy.
  • the photoelectric conversion layer 13 having the organic semiconductors 13A and 13B was formed by adhering the material-containing liquid 130 to one side of the electrode structure 22. Therefore, in the obtained photoelectric conversion device 1, the first conductive wire 121 and the second conductive wire 122 are disposed only on one surface side of the photoelectric conversion layer 13 and are not disposed on the other surface side. Therefore, if the other surface side is used as the light receiving surface, the performance of photoelectric conversion can be improved.
  • the fourth embodiment can be appropriately changed within the scope of the present invention.
  • the example in which the arrangement adjusting wire 15 is completely dissolved has been described.
  • the arrangement adjusting wire 15 partially remains after dissolution, the above-described operation and effect can be achieved depending on the amount of dissolution. Therefore, the present invention can be applied.
  • the plurality of electrode portions 230 are not integrated into the electrode structure 22 by the support wire 320, but the plurality of electrode portions 230 are not integrated into the support wire 320 to form an electrode structure, and each electrode portion 230 is made into one photoelectric element.
  • positioned at the one surface side of the photoelectric converting layer 13 is made into a p-type electrode
  • the first conductive wire 121 and the second conductive wire 122 may be disposed on each electrode portion 230. Further, the present invention can be applied even when the plurality of electrode portions 230 are arranged separately facing each other without arranging the support wire 320.
  • positioning adjustment wire 15 can be integrated and arrange
  • the wire 12B may not be used.
  • a plurality of electrode structures 22 may be embedded in the same photoelectric conversion layer 13 without embedding one electrode structure 22 in one photoelectric conversion layer 13, and a plurality of photoelectric conversion layers 13 are stacked. Then, one or a plurality of electrode structures 22 may be embedded in each.
  • the fifth embodiment of the present invention will be described in detail with reference to FIGS.
  • the photoelectric conversion device will be described on the assumption that a solar cell is used to convert light into electric energy.
  • the present invention can be similarly applied to a device that converts electric energy into light energy.
  • FIG. 12 is a cross-sectional view of the photoelectric conversion device 1 according to the fifth embodiment of the present invention
  • FIG. 13 is a perspective view of the photoelectric conversion device 1.
  • the photoelectric conversion device 1 includes an electrode 12 and a photoelectric conversion layer 13. In FIG. 13, the display of the photoelectric conversion layer 13 is omitted.
  • the electrode 12 includes a lower electrode part 120 and an upper electrode part 220 supported by a support part 320 rising from the lower electrode part 120.
  • the lower electrode portion 120 includes a plurality of vertical wires 120A and a plurality of horizontal wires 120B.
  • the vertical wire 120A and the horizontal wire 120B are woven so as to intersect each other. That is, the lower electrode portion 120 is formed in a plain weave net shape.
  • the vertical wire 120A two types of wires, specifically, the first conductive wire 121 and the first insulating wire 122 are used. As shown in FIG. 13, the first conductive wire 121 and the first insulating wire 122 are alternately arranged. The first conductive wire 121 and the first insulating wire 122 are juxtaposed at a predetermined interval so as not to contact each other.
  • first conductive wire 121 for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used.
  • One end 121E of each first conductive wire 121 is connected to the first bus bar 121A as shown in FIG.
  • the first insulating wire 122 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • the second insulating wire is used as the horizontal wire 12B. Similar to the first insulating wire 122, the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the upper electrode section 220 includes a plurality of vertical wires 220A and a plurality of horizontal wires 220B.
  • the vertical wire 220A and the horizontal wire 220B are woven so as to intersect each other. That is, the upper electrode portion 220 is formed in a plain weave net shape.
  • the vertical wire 220A two types of wires, specifically, the second conductive wire 221 and the third insulating wire 222 are used. As shown in FIG. 13, the second conductive wire 221 and the third insulating wire 222 are alternately arranged. The second conductive wire 221 and the third insulating wire 222 are juxtaposed at a predetermined interval so as not to contact each other.
  • the second conductive wire 22 for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used.
  • One end 221E of each second conductive wire 221 is connected to the second bus bar 221A as shown in FIG.
  • the third insulating wire 222 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
  • a fourth insulating wire is used as the horizontal wire 220B. Similar to the third insulating wire 222, the fourth insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
  • the support part 320 supports the upper electrode part 220 with respect to the lower electrode part 120 so that the upper electrode part 220 and the lower electrode part 120 are arranged to face each other at a predetermined distance.
  • This support part 320 is comprised by the 5th insulated wire.
  • the support part 320 supports the upper electrode part 220 so that the upper electrode part 220 is located a predetermined distance D away from the lower electrode part 120. Therefore, the fifth insulating wire constituting the support portion 320 is configured to have higher rigidity than the first insulating wire 122 and the fourth insulating wire constituting the lower electrode portion 120 and the upper electrode portion 220. Is done.
  • the fifth insulating wire is made of a resin material that is thicker than the first insulating wire 122 or the like and harder than the resin material that constitutes the first insulating wire 122 or the like.
  • a wire material having a thickness of about 20 ⁇ m to 30 ⁇ mm is used. Constructed using.
  • the fifth insulating wire constituting the support part 320 is knitted and provided on the lower electrode part 120 and the upper electrode part 220 (see FIG. 14 described later).
  • the lower electrode portion 120, the upper electrode portion 220, and the support portion 320 are configured by double raschel knitting.
  • the distance D between the lower electrode part 120 and the upper electrode part 220 is shown to be wide, but the distance D is not limited to the dimensions in the illustrated example.
  • the first conductive wire 121, the second conductive wire 221, the first insulating wire 122, the third insulating wire 222, etc. are set to a thickness of about 20 ⁇ m to 25 ⁇ mm.
  • FIG. 14 is a schematic enlarged view of a circle A region in FIG.
  • the photoelectric conversion layer 13 is provided on one electrode, that is, the lower electrode portion 120, and the p-layer organic semiconductor 13A serving as a hole transport material, and on the other electrode, that is, the upper electrode portion 220, and the electron transport material.
  • an n-layer organic semiconductor 13B As shown in FIG. 14, the organic semiconductor 13B is provided on the organic semiconductor 13A. Therefore, the lower electrode part 120 functions as a p-type electrode, and the upper electrode part 220 functions as an n-type electrode.
  • the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B form a pn junction.
  • the materials of the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B in the present embodiment can be the same as those in the third embodiment.
  • a method for manufacturing the photoelectric conversion device 1 shown in FIG. First, the first conductive wire 121, the first insulated wire 122, and the second insulated wire are prepared and plain weave to produce the lower electrode portion 120. Similarly, the upper electrode part 220 is produced. Thereafter, a hole transport material to be the p-layer organic semiconductor 13A is applied to a predetermined portion, for example, one electrode, that is, the lower electrode portion 120 by, for example, an ink jet printer.
  • an electron transport material to be the n-layer organic semiconductor 13B is applied on the p-layer by the same ink jet printer as in the case of the p-layer organic semiconductor 13A.
  • a pn junction is formed by the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B.
  • the n-layer organic semiconductor 13B may be applied, and then the p-layer organic semiconductor 13A may be applied.
  • the lower electrode 120 is overlaid on the n layer. Thereby, the photoelectric conversion device 1 is produced. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 12 is manufactured.
  • the photoelectric conversion device 1 configured as described above, for example, when light is incident on the photoelectric conversion layer 13 from the upper electrode portion 220 side, the light L and the second conductive wire 221 constituting the upper electrode portion 220 It passes between the three insulated wires 222 and enters the inner region from the upper surface of the photoelectric conversion layer 13. As shown in FIG. 14, the light L ′ can enter the inner region also from the lower surface of the photoelectric conversion layer 13.
  • the lower electrode portion 120 and the upper electrode portion 220 are made of a material that allows light to pass through a plurality of gaps S for light passage, that is, regions of the gaps S.
  • the electrode provided on the surface of the photoelectric conversion layer 13 on which light is incident is configured to have a plurality of gaps S for passing light, it is not necessary to configure the electrode with a transparent electrode, and the transparent It is not necessary to use a rare metal for the electrode as a material. Therefore, Cu, Al, etc. can be used for the electrode 12 for photoelectric conversion devices. Since the photoelectric conversion device 1 is formed of a flexible net, the electrode 12 can be attached to a curved surface after being formed in a flat shape.
  • the upper electrode portion 220 is supported by a plurality of support portions 320 rising from the lower electrode portion 120, and therefore the distance D between the upper electrode portion 220 and the lower electrode portion 120. Can be maintained. Thereby, the short circuit with the upper side electrode part 220 and the lower side electrode part 120 can be prevented. Since the upper electrode portion 220 is formed in a net shape with a wire rod functioning as an electrode, a member such as a bus bar is brought into contact with the wire rod by crimping or welding a member such as a bus bar to the end portion of the net. Therefore, the manufacturing process for extracting electricity is facilitated. Furthermore, since light can be taken in from both surfaces of the photoelectric conversion layer 13, an improvement in conversion efficiency can be expected.
  • FIG. 1 As mentioned above, although 5th Embodiment of this invention was described, in the range of this invention, it can change suitably and can implement.
  • FIG. 1 As shown in FIG.
  • the photoelectric conversion device may be configured by omitting the first insulating wire 122 and the third insulating wire 222 as shown in FIG.
  • Display device 2 Display unit 3: Control unit 11, 21, 31, 41: Light emitting layer 62, 22, 32, 42: One linear electrode group 62a, 22a, 32a, 42a: Conductive wire material 62b, 62c, 22b, 22c, 32b, 32c, 42b, 42c: arrangement adjusting wire rods 63, 23, 33, 43: other wire electrode groups 63a, 23a, 33a, 43a: conductive wire rods 63b, 63c, 23b, 23c, 33b , 33c, 43b, 43c: arrangement adjusting wires 64, 24, 34, 44: spacing support member 15a: one switching control unit 15b: the other switching control unit 16: voltage supply unit 17: protective film 51 , 52: gap 53: protective film
  • Photoelectric conversion device 12 Electrode 120 for photoelectric conversion device: Lower electrode portion 120A: Vertical wire rod 120B of the lower electrode portion: Horizontal wire rod 121 of the lower electrode portion: First conductive wire rod 122 of the lower electrode portion: Second insulating wire 220 of the lower electrode portion: Upper electrode portion 220A: Vertical wire rod 220B of the upper electrode portion: Horizontal wire rod 221 of the upper electrode portion: Second conductive wire rod 222 of the upper electrode portion: Second insulating wire rod of the upper electrode portion 13: photoelectric conversion layer 13A: p-layer organic semiconductor 13B: n-layer organic semiconductor 19: protective layer
  • Photoelectric conversion device 12 Electrode structure 121: p-type electrode 122: n-type electrode 12A: vertical wire 12B: horizontal wire 120: conductive wire 7: bus bar 15: arrangement adjusting wire 13: photoelectric conversion layer 13A: p-type Organic semiconductor 13B: n-type organic semiconductor 130: material containing liquid 11: base material 20: photoelectric conversion device 22: electrode structure 230: electrode part 320: support wire
  • Photoelectric conversion device 12 Electrode 120 for photoelectric conversion device: Lower electrode portion 120A: Vertical wire rod 120B of the lower electrode portion: Horizontal wire rod 121 of the lower electrode portion: First conductive wire rod 122 of the lower electrode portion: Second insulating wire 220 of the lower electrode portion: Upper electrode portion 220A: Vertical wire rod 220B of the upper electrode portion: Horizontal wire rod 221 of the upper electrode portion: Second conductive wire rod 222 of the upper electrode portion: Second insulating wire rod of the upper electrode portion 320: support part 13: photoelectric conversion layer 13A: organic semiconductor 13B of p layer: organic semiconductor 19 of n layer 19: protective layer

Abstract

A display (2) of a light-emitting device is configured from: a light-emitting layer (61) comprising an organic EL material; one wire electrode group (62), provided on one surface side of the light-emitting layer (61), comprising electroconductive wire materials (62a) which extend laterally and which are arranged along the vertical direction at intervals; and the other wire electrode group (63), provided on the other surface side of the light-emitting layer (61), comprising electroconductive wire materials (63a) which extend vertically and which are arranged along the lateral direction at intervals. In the one wire electrode group (62), layout adjustment wire materials (62b) extending laterally are provided between the electroconductive wire materials (62a), whereby the spacing between the electroconductive wire materials (62a) is maintained. In the other wire electrode group (63), layout adjustment wire materials (63b) extending vertically are provided between the electroconductive wire materials (63a), whereby the spacing between the electroconductive wire materials (63a) is maintained.

Description

表示装置、光電変換デバイス用電極、光電変換デバイス及び光電変換デバイスの製造方法Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device
 本発明は、フレキシブル性を有する表示装置と、光電変換デバイスに用いられる光電変換デバイス用電極及びそれを用いた光電変換デバイス並びに光電変換デバイスの製造方法に関する。 The present invention relates to a flexible display device, an electrode for a photoelectric conversion device used for a photoelectric conversion device, a photoelectric conversion device using the same, and a method for manufacturing the photoelectric conversion device.
 光電変換デバイスは、電気エネルギーを光に変換するデバイス及び光を電気エネルギーに変換するデバイスである。前者の例としては発光素子を用いた表示装置などがあり、後者の例としては太陽電池などがある。 A photoelectric conversion device is a device that converts electrical energy into light and a device that converts light into electrical energy. Examples of the former include a display device using a light emitting element, and examples of the latter include a solar cell.
 従来、表示装置として、有機EL(Electro Luminescence)を用いた単色又はカラーの有機EL表示装置、バックライト照明に白色のEL照明を用いた液晶表示装置などがある。有機EL表示装置には、ガラス基板又は透明プラスチック基板上に、画素毎に発光素子とTFTとを形成した所謂アクティブマトリックスタイプのものがある。このタイプでは、ガラス基板又は透明プラスチック基板上に順に、ITOの陽極、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、金属の陰極を積層することにより、発光素子が形成されている。 Conventionally, as display devices, there are monochromatic or color organic EL display devices using organic EL (Electro Luminescence), liquid crystal display devices using white EL illumination for backlight illumination, and the like. There is a so-called active matrix type organic EL display device in which a light emitting element and a TFT are formed for each pixel on a glass substrate or a transparent plastic substrate. In this type, a light emitting device is formed by laminating an ITO anode, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a metal cathode sequentially on a glass substrate or a transparent plastic substrate. Is formed.
 太陽電池として、有機半導体を用いた有機薄膜太陽電池が知られている。有機薄膜太陽電池は簡易な成膜法により形成できるため、製造が容易で大量生産に適した太陽電池として注目されている。この有機薄膜太陽電池として、所謂バルクヘテロジャンクション構造やナノ相分離構造を有するものが種々提案されている。これらの構造ではp型有機半導体とn型有機半導体との接触界面を広く確保できるため、光電変換効率を向上できる。 An organic thin film solar cell using an organic semiconductor is known as a solar cell. Since organic thin film solar cells can be formed by a simple film formation method, they are attracting attention as solar cells that are easy to manufacture and suitable for mass production. Various organic thin-film solar cells having so-called bulk heterojunction structures and nanophase separation structures have been proposed. In these structures, since a wide contact interface between the p-type organic semiconductor and the n-type organic semiconductor can be secured, the photoelectric conversion efficiency can be improved.
 このような有機薄膜太陽電池は、例えば正孔輸送材料及び電子輸送材料を各種の溶媒に溶解して材料含有液を調製し、電極表面に材料含有液を付着させ、付着させた材料からp型有機半導体やn型有機半導体を備えた光電変換層を形成することで製造されている。 Such an organic thin film solar cell is prepared, for example, by dissolving a hole transport material and an electron transport material in various solvents to prepare a material-containing liquid, and depositing the material-containing liquid on the surface of the electrode. It is manufactured by forming a photoelectric conversion layer including an organic semiconductor or an n-type organic semiconductor.
 例えば下記特許文献1には、基板の一方面上に、陽極、バルクヘテロジャンクション構造を有する光電変換層、陰極が順に積層された有機薄膜太陽電池が提案されている。この特許文献1では、酸化銀と還元剤からなる陰極と、陰極近傍に有機金属をドープした電子輸送層を塗布した積層構造とすることにより、低温で陰極が形成されるだけでなく、有機金属ドープ層と陰極との接合が改良されるとしている。 For example, Patent Document 1 below proposes an organic thin-film solar cell in which an anode, a photoelectric conversion layer having a bulk heterojunction structure, and a cathode are sequentially laminated on one surface of a substrate. In this patent document 1, not only a cathode is formed at a low temperature but also an organic metal by forming a laminated structure in which a cathode made of silver oxide and a reducing agent and an electron transport layer doped with an organic metal are applied in the vicinity of the cathode. It is said that the junction between the doped layer and the cathode is improved.
 一方、製造が容易で大量生産に適した光電変換デバイスの電極として、導電性を有する線材を使用したものが知られている。例えば下記特許文献2には、金属線を織った網状電極体を光起電力体の表面上に接合することで光起電力素子等を製造する方法が提案されている。この特許文献2では、金属線を配線することで、印刷やリソグラフィー等を用いた配線に比べて線の細さと厚みとのアスペクト比を適切に調整できると共に、コストを低減でき、また網状に織ることで配線を高速化できるとされている。 On the other hand, as an electrode of a photoelectric conversion device that is easy to manufacture and suitable for mass production, one using a conductive wire is known. For example, Patent Document 2 below proposes a method of manufacturing a photovoltaic element or the like by joining a mesh electrode body woven with metal wires onto the surface of a photovoltaic body. In Patent Document 2, by wiring a metal wire, the aspect ratio between the thinness and thickness of the wire can be appropriately adjusted as compared with the wiring using printing, lithography, etc., the cost can be reduced, and the mesh can be woven. It is said that wiring can be speeded up.
特開2011-124468号公報JP 2011-124468 A 特開2006-165149号公報JP 2006-165149 A
 しかしながら、従来の表示装置は構造が複雑であり、薄型化が困難である。有機EL表示装置のうち、ガラス基板を用いたタイプではフレキシブル性を有さず、プラスチック板などを用いたタイプではフレキシブルに限界がある。 However, the conventional display device has a complicated structure and it is difficult to reduce the thickness. Among organic EL display devices, a type using a glass substrate does not have flexibility, and a type using a plastic plate has a limit in flexibility.
 バックライト照明としてEL照明を用いた液晶表示装置では、EL発光層を均一な膜として形成する必要があり、さらに、電極とEL発光層との界面の電気抵抗を低くするため、アルカリ金属が塗布されることもある。 In a liquid crystal display device using EL illumination as backlight illumination, it is necessary to form the EL light emitting layer as a uniform film, and in addition, an alkali metal is applied to reduce the electrical resistance at the interface between the electrode and the EL light emitting layer. Sometimes it is done.
 アクティブマトリックスタイプでは、ドット落ちが生じる可能性がある。また、TFTをマトリックス状に配置する必要性から、インジウムなどの高価な金属を用いる必要がある。 ¡In the active matrix type, there is a possibility of dot dropping. In addition, it is necessary to use an expensive metal such as indium because the TFTs need to be arranged in a matrix.
 従来の光電変換デバイスでは、pn接合となる領域を挟んで一対の電極を設ける必要があった。そのため、光照射側の電極は、光透過性がよく、かつ電気抵抗が小さいものが要求され、光照射側の電極は高価なレアメタルを蒸着やメッキにより形成する必要がある。それに伴いプロセス工程も複雑であった。また、従来の太陽電池は屈曲性がなく、曲面形状の部材表面に取り付ける場合には、細分化して取り付ける必要があった。 In the conventional photoelectric conversion device, it was necessary to provide a pair of electrodes across a region to be a pn junction. For this reason, the light irradiation side electrode is required to have good light transmission and low electrical resistance, and the light irradiation side electrode needs to be formed by vapor deposition or plating of an expensive rare metal. Along with that, the process steps were also complicated. Further, the conventional solar cell has no flexibility, and when it is attached to the surface of a curved member, it must be divided and attached.
 正孔輸送材料や電子輸送材料を含有する材料含有液を用いた従来の光電変換デバイスの製造方法では、電極を保持するために基板が使用されるなど電極の柔軟性を確保し難く、十分な柔軟性を有する光電変換デバイスが得られなかった。しかも電極間にp型有機半導体及びn型有機半導体を多数配置することで、接触界面を広くして光電変換の性能を確保するため、電極間に配置される有機半導体が不足したり不均一に配置されたりすると、その分光電変換の性能が低下していた。 In the conventional method for manufacturing a photoelectric conversion device using a material-containing liquid containing a hole transport material or an electron transport material, it is difficult to ensure flexibility of the electrode, such as using a substrate to hold the electrode, and sufficient A flexible photoelectric conversion device could not be obtained. In addition, by arranging a large number of p-type organic semiconductors and n-type organic semiconductors between the electrodes to widen the contact interface and ensure the performance of photoelectric conversion, the organic semiconductors arranged between the electrodes are insufficient or non-uniform. If it is arranged, the performance of photoelectric conversion is lowered accordingly.
 さらに、従来の導電性を有する導電線材を使用した柔軟性のある電極では、複数の線材を配列した際、各線材の位置ずれ、撓み、歪み、変形等の配置の乱れが生じることが多かった。線材の配置の乱れが生じると、電極間の間隔がばらつき、電極間に配置されるp型有機半導体及びn型有機半導体の存在量やキャリアの移動距離が不均一になり、光電変換の性能が低下していた。 Furthermore, in a flexible electrode using a conventional conductive wire having conductivity, when a plurality of wires are arranged, the arrangement of the wires such as misalignment, bending, distortion, and deformation often occurs. . When the arrangement of the wires is disturbed, the distance between the electrodes varies, the abundance of the p-type organic semiconductor and the n-type organic semiconductor arranged between the electrodes and the moving distance of the carriers become uneven, and the performance of photoelectric conversion is improved. It was falling.
 そこで、本発明では、簡単な構造でフレキシブル性の限界が少ない表示装置を提供することを第1の目的とする。 Therefore, a first object of the present invention is to provide a display device having a simple structure and a small flexibility limit.
 本発明の第2の目的は、電極材料として光透過性を要求しない、光電変換デバイス用電極構造とそれを用いた光電変換デバイスを提供することにある。 A second object of the present invention is to provide an electrode structure for a photoelectric conversion device that does not require light transmittance as an electrode material and a photoelectric conversion device using the same.
 本発明の第3の目的は、光電変換の性能の確保しつつ柔軟性を有する光電変換デバイスを容易に製造できる製造方法を提供することである。 A third object of the present invention is to provide a production method capable of easily producing a flexible photoelectric conversion device while ensuring the performance of photoelectric conversion.
 上記第1の目的を達成するために、本発明の表示装置は、有機EL材料からなる発光層と、発光層の一方の面側に設けられかつ横方向に延びて縦方向に間隔をおいて並べられた導電線材からなる一方の線条電極群と、発光層の他方の面側に設けられかつ縦方向に延びて横方向に間隔をおいて並べられた導電線材からなる他方の線条電極群と、を備える。 In order to achieve the first object, a display device according to the present invention includes a light emitting layer made of an organic EL material, a light emitting layer provided on one side of the light emitting layer, extending in the horizontal direction and spaced in the vertical direction. One line electrode group consisting of conductive wires arranged side by side, and the other line electrode consisting of conductive wire materials provided on the other surface side of the light emitting layer and extending in the vertical direction and arranged at intervals in the horizontal direction A group.
 本発明の表示装置は、各色に対応する有機EL材料からなる各発光層と、各発光層内で一方の面側に設けられかつ横方向に延びて縦方向に間隔をおいて並べられた導電線材からなる一方の線条電極群と、各発光層内の他方の面側に設けられかつ縦方向に延びて横方向に間隔をおいて並べられた導電線材からなる他方の線条電極群と、を備える。 The display device of the present invention includes a light emitting layer made of an organic EL material corresponding to each color, and a conductive layer provided on one surface side in each light emitting layer and extending in the horizontal direction and spaced in the vertical direction. One linear electrode group made of a wire, and the other linear electrode group made of a conductive wire provided on the other surface side in each light emitting layer and extending in the vertical direction and arranged at intervals in the horizontal direction; .
 好ましくは、一方の線条電極群において、横方向に延びる配置調整用の線材が導電線材同士の間に設けられ、該配置調整用の線材で導電線材同士の間隔を維持する。他方の線条電極群において、縦方向に延びる配置調整用の線材が導電線材同士の間に設けられ、該配置調整用の線材で該導電線材同士の間隔を維持する。 Preferably, in one linear electrode group, a wire for adjusting the arrangement extending in the lateral direction is provided between the conductive wires, and the interval between the conductive wires is maintained by the wire for adjusting the arrangement. In the other wire electrode group, a wire for adjusting the arrangement extending in the vertical direction is provided between the conductive wires, and the distance between the conductive wires is maintained by the wire for adjusting the arrangement.
 好ましくは、一方の線条電極群及び他方の線条電極群において、導電線材と配置調整用の線材との隙間が、導電線材の等価断面寸法と同じオーダーである。 Preferably, in one line electrode group and the other line electrode group, the gap between the conductive wire and the arrangement adjusting wire is in the same order as the equivalent cross-sectional dimension of the conductive wire.
 好ましくは、一方の線条電極群において、任意の導電線材に電圧を印加する一方の切替制御部と、他方の線条電極群において任意の導電線材に電圧を印加する他方の切替制御部と、を備える。 Preferably, in one linear electrode group, one switching control unit that applies a voltage to an arbitrary conductive wire, and the other switching control unit that applies a voltage to an arbitrary conductive wire in the other linear electrode group, Is provided.
 上記第2の目的を達成する光電変換デバイス用電極は、光と電気エネルギーとを変換する光電変換層の両面に設けられる光電変換デバイス用電極であって、光電変換層の下面側に設けられる下側電極部と、光電変換層の上面側に設けられる上側電極部と、を備え、下側電極部と上側電極部とは、複数の縦線材と複数の横線材とを備え、縦線材は互いに距離を置いて設けられた複数の導電線材からなり、横線材は互いに距離を置いて設けられた複数の絶縁線材からなり、下側電極部及び上側電極部の一方がp型電極として機能し、下側電極部及び上側電極部の他方がn型電極として機能することを特徴としている。 The electrode for a photoelectric conversion device that achieves the second object is an electrode for a photoelectric conversion device provided on both sides of a photoelectric conversion layer that converts light and electric energy, and is provided on a lower surface side of the photoelectric conversion layer. A side electrode part and an upper electrode part provided on the upper surface side of the photoelectric conversion layer, the lower electrode part and the upper electrode part are provided with a plurality of vertical wires and a plurality of horizontal wires, and the vertical wires are mutually It consists of a plurality of conductive wires provided at a distance, a horizontal wire consists of a plurality of insulating wires provided at a distance from each other, and one of the lower electrode portion and the upper electrode portion functions as a p-type electrode, The other of the lower electrode portion and the upper electrode portion functions as an n-type electrode.
 上記第2の目的を達成する他の光電変換デバイス用電極は、光と電気エネルギーとを変換する光電変換層の両面に設けられる電極であって、光電変換層の下面側に設けられる下側電極部と、光電変換層の上面側に設けられる上側電極部と、下側電極部と上側電極部が所定の距離を置いて対向するよう下側電極部に対して上側電極部を支持する支持部と、を備え、下側電極部と上側電極部とは、複数の縦線材と複数の横線材とを備え、縦線材は互いに距離を置いて設けられた複数の導電線材からなり、横線材は互いに距離を置いて設けられた複数の絶縁線材からなり、下側電極部及び上側電極部の一方がp型電極として機能し、下側電極部及び上側電極部の他方がn型電極として機能することを特徴としている。
 前記絶縁線材が上側電極部と下側電極部とを構成する導電線材同士の間に、少なくとも1本設けられてもよい。
Another electrode for a photoelectric conversion device that achieves the second object is an electrode provided on both sides of a photoelectric conversion layer for converting light and electric energy, and is a lower electrode provided on the lower surface side of the photoelectric conversion layer And an upper electrode portion provided on the upper surface side of the photoelectric conversion layer, and a support portion that supports the upper electrode portion with respect to the lower electrode portion so that the lower electrode portion and the upper electrode portion face each other at a predetermined distance The lower electrode portion and the upper electrode portion include a plurality of vertical wires and a plurality of horizontal wires, and the vertical wires are composed of a plurality of conductive wires provided at a distance from each other. It consists of a plurality of insulated wires provided at a distance from each other, and one of the lower electrode portion and the upper electrode portion functions as a p-type electrode, and the other of the lower electrode portion and the upper electrode portion functions as an n-type electrode. It is characterized by that.
At least one of the insulated wires may be provided between the conductive wires constituting the upper electrode portion and the lower electrode portion.
 上記第2の目的を達成する光電変換デバイスは、上記した光電子デバイス用電極に対して、P型電極上には正孔輸送材料でなるp層の有機半導体が設けられ、かつn型電極上には電子輸送材料でなるn層の有機半導体が設けられている。 In the photoelectric conversion device that achieves the second object, a p-layer organic semiconductor made of a hole transport material is provided on the P-type electrode, and the n-type electrode is provided on the P-type electrode. Is provided with an n-layer organic semiconductor made of an electron transport material.
 上記第3の目的を達成するため、本発明法では、正孔輸送材料及び電子輸送材料のうちの少なくとも一方の材料を溶媒中に含有させた材料含有液を電極構造体に付着させ、電極構造体に付着させた材料から有機半導体を電極構造体に接した状態で形成する光電変換デバイスの製造方法において、複数の導電線材が導電線材の配置間隔を調整する配置調整用線材とともに一体化された電極部を複数有し、複数の電極部が対向配置された状態で支持線材により支持された電極構造体を準備し、配置調整用線材を溶解可能で支持線材を溶解不能な溶媒を用いて前記材料含有液を調製し、材料含有液を電極構造体に接触させることで、配置調整用線材を溶解すると共に少なくとも一方の材料を導電線材に付着させて有機半導体を形成することを特徴とする。 In order to achieve the third object, in the method of the present invention, a material-containing liquid containing at least one of a hole transport material and an electron transport material in a solvent is attached to the electrode structure, and the electrode structure In a method for manufacturing a photoelectric conversion device in which an organic semiconductor is formed in a state of being in contact with an electrode structure from a material attached to a body, a plurality of conductive wires are integrated together with a placement adjusting wire that adjusts a spacing between conductive wires. An electrode structure having a plurality of electrode portions and supported by a support wire in a state where the plurality of electrode portions are opposed to each other is prepared using a solvent capable of dissolving the arrangement adjusting wire and not dissolving the support wire. A material-containing liquid is prepared, and the material-containing liquid is brought into contact with the electrode structure to dissolve the arrangement adjusting wire and to attach at least one material to the conductive wire to form an organic semiconductor. To.
 この光電変換デバイスの製造方法では、導電線材間に配置調整用線材を介在させることで、導電線材間を互いに所定間隔で離間させた電極構造体を準備することができる。 In this method of manufacturing a photoelectric conversion device, an electrode structure in which conductive wires are separated from each other at a predetermined interval can be prepared by interposing an arrangement adjusting wire between conductive wires.
 この製造方法では、正孔輸送材料及び電子輸送材料を含有した材料含有液を調製して電極構造体に接触させ、p型有機半導体を一部の導電線材に接続した状態で形成すると共に、n型有機半導体を他部の導電線材に接続した状態で形成するのが好ましい。
 この製造方法では、材料含有液を電極構造体の片面側に付着させてもよい。
In this manufacturing method, a material-containing liquid containing a hole transport material and an electron transport material is prepared and brought into contact with the electrode structure, and the p-type organic semiconductor is formed in a state of being connected to some conductive wires, and n It is preferable to form the type organic semiconductor in a state where it is connected to the other part of the conductive wire.
In this manufacturing method, the material-containing liquid may be attached to one side of the electrode structure.
 上記目的を達成する本発明の光電変換デバイスは、複数の導電線材を配置調整用線材とともに一体化した光電変換デバイス作製用の電極構造体であり、光電変換デバイス作製用の溶媒に対する配置調整用線材の溶解性が導電性材料より大きい構造体である。 The photoelectric conversion device of the present invention that achieves the above object is an electrode structure for producing a photoelectric conversion device in which a plurality of conductive wires are integrated with an arrangement adjusting wire, and an arrangement adjusting wire for a solvent for producing a photoelectric conversion device. Is a structure having a higher solubility than the conductive material.
 本発明の表示装置によれば、発光層の一方の面側に一方の線状電極群を設け、発光層の他方の面側に他方の線状電極群を設けている。各線状電極群それ自体が樹脂成形シート又はフィルムとは異なって外力によって容易に湾曲など変形自在である。構造も極めて簡単であり、画素毎にTFTを設ける必要がない。 According to the display device of the present invention, one linear electrode group is provided on one surface side of the light emitting layer, and the other linear electrode group is provided on the other surface side of the light emitting layer. Each linear electrode group itself is easily deformable, such as curved, by an external force, unlike a resin molded sheet or film. The structure is also very simple, and there is no need to provide a TFT for each pixel.
 本発明の光電変換デバイス用電極によれば、光が入射する光電変換層の面に設ける電極が複数の光通過用の隙間を有することで、電極を透明電極で構成することが不要となり、透明電極のためのレアメタルを使用しなくて済む。そのため、光電変換デバイス用の電極はCuやAlなどの安価に入手可能な材料を使用することができる。また、光電変換デバイスは、電極が可撓性を有するネットで構成されているため、平面状に形成した後に、曲面状の表面に取り付けることができる。さらに、光電変換層の両面から光を取り込むことができるので、変換効率の向上を期待できる。 According to the electrode for a photoelectric conversion device of the present invention, the electrode provided on the surface of the photoelectric conversion layer on which light is incident has a plurality of gaps for passing light, so that it is not necessary to configure the electrode with a transparent electrode, and transparent There is no need to use rare metals for the electrodes. Therefore, an inexpensive electrode material such as Cu or Al can be used for the electrode for the photoelectric conversion device. Further, since the photoelectric conversion device is formed of a flexible net, the photoelectric conversion device can be attached to a curved surface after being formed in a flat shape. Furthermore, since light can be taken in from both surfaces of the photoelectric conversion layer, improvement in conversion efficiency can be expected.
 本発明の光電変換デバイスの製造方法によれば、複数の導電線材を配置調整用線材とともに一体的に連結した電極構造体を用いるので、柔軟性を有する導電線材であっても容易に配置できる。また、配置調整用線材により複数の導電線材の配置間隔を容易に調整できるとともに、その状態を製造時に安定して保持できる。そのため複数の導電線材の配置間隔のばらつきを防止して光電変換の性能を確保することができる。 According to the method for manufacturing a photoelectric conversion device of the present invention, since an electrode structure in which a plurality of conductive wires are integrally connected together with a wire for arrangement adjustment is used, even a flexible conductive wire can be easily arranged. Moreover, while the arrangement | positioning space | interval of a some conductive wire can be easily adjusted with the arrangement | positioning adjustment wire, the state can be stably hold | maintained at the time of manufacture. For this reason, it is possible to prevent variation in the arrangement interval of the plurality of conductive wires and to ensure the performance of photoelectric conversion.
 そして、材料含有液を電極構造体に接触させることで配置調整用線材を溶解するので、得られた光電変換デバイスでは、配置調整用線材が配置されていた部位に材料含有液の正孔輸送材料や電子輸送材料を配置することができる。そのため導電線材間により多くの有機半導体を均一に配置でき、光電変換の性能を確保できる。
 従って、光電変換の性能を確保しつつ柔軟性を有する光電変換デバイスを容易に製造することが可能である。
Then, since the arrangement adjusting wire is dissolved by bringing the material containing liquid into contact with the electrode structure, in the obtained photoelectric conversion device, the hole transport material of the material containing liquid is disposed at the portion where the arrangement adjusting wire is arranged. And an electron transport material can be arranged. Therefore, many organic semiconductors can be uniformly arranged between the conductive wires, and the performance of photoelectric conversion can be ensured.
Therefore, it is possible to easily manufacture a photoelectric conversion device having flexibility while ensuring the performance of photoelectric conversion.
本発明の表示装置の第1実施形態に係る表示装置を模式的に示す図である。It is a figure which shows typically the display apparatus which concerns on 1st Embodiment of the display apparatus of this invention. 図1に示す表示装置の表示部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the display part of the display apparatus shown in FIG. (A)は図2に示す表示部の一方の線条電極群を模式的に示す図であり、(B)は図2に示す表示部の他方の線条電極群を模式的に示す図である。(A) is a figure which shows typically one linear electrode group of the display part shown in FIG. 2, (B) is a figure which shows typically the other linear electrode group of the display part shown in FIG. is there. 本発明の第2実施形態に係る表示装置の表示部の断面を模式的に示す図である。It is a figure which shows typically the cross section of the display part of the display apparatus which concerns on 2nd Embodiment of this invention. 図4に示す表示部における一方及び他方の線条電極群の一部の模式的斜視図である。FIG. 5 is a schematic perspective view of a part of one and the other linear electrode group in the display unit shown in FIG. 4. 本発明の第3実施形態に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on 3rd Embodiment of this invention. 図6に示す光電変換デバイスにおける電極構造の斜視図である。It is a perspective view of the electrode structure in the photoelectric conversion device shown in FIG. 図6に示す符号Aの領域の拡大図である。It is an enlarged view of the area | region of the code | symbol A shown in FIG. 本発明の第3実施形態の変形例に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on the modification of 3rd Embodiment of this invention. 本発明の第4実施形態における光電変換デバイスの製造方法で用いる電極構造体を模式的に示す斜視図である。It is a perspective view which shows typically the electrode structure used with the manufacturing method of the photoelectric conversion device in 4th Embodiment of this invention. (a)及び(b)は本発明の第4実施形態における光電変換デバイスの製造工程の一部を説明するための断面図である。(A) And (b) is sectional drawing for demonstrating a part of manufacturing process of the photoelectric conversion device in 4th Embodiment of this invention. 本発明の第5実施形態に係る光電変換デバイスの断面図である。It is sectional drawing of the photoelectric conversion device which concerns on 5th Embodiment of this invention. 図12に示す光電変換デバイスにおける電極構造の斜視図である。It is a perspective view of the electrode structure in the photoelectric conversion device shown in FIG. 図12において符号Aで示す領域の拡大図である。It is an enlarged view of the area | region shown with the code | symbol A in FIG. 本発明の第5実施形態に係る別の光電変換デバイスの断面図である。It is sectional drawing of another photoelectric conversion device which concerns on 5th Embodiment of this invention.
 以下、図面を参照しながら本発明を幾つかの実施形態により詳細に説明する。 Hereinafter, some embodiments of the present invention will be described in detail with reference to the drawings.
 〔第1実施形態〕
 図1は本発明の第1実施形態に係る表示装置を模式的に示す図である。図2は図1に示す表示装置の表示部の断面を模式的に示す図であり、図3(A)は図2に示す表示部のうち一方の線条電極群を、図3(B)は表示部のうち他方の線条電極群を模式的に示す図である。
[First Embodiment]
FIG. 1 is a diagram schematically showing a display device according to a first embodiment of the present invention. 2 is a diagram schematically showing a cross section of the display unit of the display device shown in FIG. 1, and FIG. 3A shows one of the linear electrode groups in the display unit shown in FIG. FIG. 5 is a diagram schematically showing the other linear electrode group in the display unit.
 本発明の第1実施形態に係る表示装置1は、図1に示すように、表示部2及び制御部3を備えた光電変換デバイスの一例である。表示部2は、図2に示すように、有機EL材料からなる発光層61と、発光層61の一方の面側に設けた一方の線条電極群62と、発光層61内で他方の面上に設けた他方の線条電極群63と、を備える。表示部2においては、図2に示すように、発光層61の上下の各面に保護層を設けてもよい。 The display device 1 according to the first embodiment of the present invention is an example of a photoelectric conversion device including a display unit 2 and a control unit 3 as shown in FIG. As shown in FIG. 2, the display unit 2 includes a light emitting layer 61 made of an organic EL material, one linear electrode group 62 provided on one surface side of the light emitting layer 61, and the other surface in the light emitting layer 61. And the other linear electrode group 63 provided above. In the display unit 2, as shown in FIG. 2, protective layers may be provided on the upper and lower surfaces of the light emitting layer 61.
 発光層61は、各種有機EL材料によって層状に形成されたものである。一方の線条電極群62と他方の線条電極群63とは、異なる面上にあって互いに交わらない位置、すなわちねじれた位置関係に存在する。 The light emitting layer 61 is formed in a layer shape with various organic EL materials. One linear electrode group 62 and the other linear electrode group 63 exist on different surfaces and do not cross each other, that is, in a twisted positional relationship.
 一方の線条電極群62は、発光層61の一方の面側に設けてある。一方の線条電極群62は、横方向に延びた導電線材62aを縦方向に間隔をおいて並べたものである。一方の線条電極群62において、横方向に延びた導電線材62a,62a同士の間に、横方向に延びた配置調整用の線材62bが配置されていてもよく、これら横方向に延びた線材62a,62bが縦方向に延びた配置調整用の線材62cによって編み込まれていてもよい。つまり、横方向に延びた導電線材62aと、同じく横方向に延びた配置調整用の線材62bとが、縦方向に間隔をおいて並べられており、これらが縦方向に延びた配置調整用の線材62bにより格子状に編み込みされることによって、一方の線条電極群62が構成されていてもよい。 One line electrode group 62 is provided on one surface side of the light emitting layer 61. One line electrode group 62 is formed by arranging conductive wires 62a extending in the horizontal direction at intervals in the vertical direction. In one of the linear electrode groups 62, a laterally extending arrangement adjusting wire 62b may be disposed between the conductive wires 62a, 62a extending in the lateral direction, and the wires extending in the lateral direction may be disposed. 62a and 62b may be knitted by the wire 62c for arrangement adjustment extended in the vertical direction. That is, the conductive wire 62a extending in the horizontal direction and the arrangement adjusting wire 62b extending in the horizontal direction are arranged at intervals in the vertical direction, and these are arranged for vertical adjustment. One filament electrode group 62 may be constituted by being knitted in a lattice shape by the wire rod 62b.
 他方の線条電極群63は、発光層61の他方の面側に設けてある。一方の線条電極群63は、縦方向に延びた導電線材63aを横方向に間隔をおいて並べたものである。他方の線条電極群63において、縦方向に延びた導電線材63a,63a同士の間に、縦方向に延びた配置調整用の線材63bが配置されていてもよく、これら縦方向に延びた線材63a,63bが横方向に延びた配置調整用の線材63cによって編み込まれていてもよい。つまり、縦方向に延びた導電線材63aと、同じく縦方向に延びた配置調整用の線材63bとが、横方向に間隔をおいて並べられており、これらが横方向に延びた配置調整用の線材63bにより格子状に編み込みされることによって、他方の線条電極群63が構成されていてもよい。 The other filament electrode group 63 is provided on the other surface side of the light emitting layer 61. One line electrode group 63 is formed by arranging conductive wires 63a extending in the vertical direction at intervals in the horizontal direction. In the other wire electrode group 63, a wire 63b for adjusting the arrangement extending in the vertical direction may be arranged between the conductive wires 63a, 63a extending in the vertical direction, and these wires extending in the vertical direction. 63a and 63b may be knitted by the wire 63c for arrangement adjustment extended in the horizontal direction. That is, the conductive wire 63a extending in the vertical direction and the arrangement adjusting wire 63b extending in the vertical direction are arranged at intervals in the horizontal direction, and these are arranged for horizontal adjustment. The other filament electrode group 63 may be configured by being knitted in a lattice shape by the wire 63b.
 導電線材62a,63aは、断面円形、断面楕円形、断面扁平等の線条部材からなり、モノフィラメントでもマルチフィラメントでもよい。フィラメントは金属などでなる導線でもよい。また、モノフィラメント、マルチフィラメントの外周に対し金属がメッキ処理され、メッキ層がフィラメントの外周に形成されたものでもよい。金属としては抵抗率の低い銅が好ましいが別に他の金属でもよく、ステンレスなどでもよい。 The conductive wire rods 62a and 63a are made of a linear member having a circular cross section, an elliptical cross section, or a flat cross section, and may be a monofilament or a multifilament. The filament may be a conductive wire made of metal or the like. Moreover, the metal may be plated on the outer periphery of the monofilament or multifilament, and the plating layer may be formed on the outer periphery of the filament. As the metal, copper having a low resistivity is preferable, but another metal may be used, and stainless steel may be used.
 配置調整用の線材62b,62c,63b,63cは、断面円形、断面楕円形、断面扁平等の線条部材からなっており、モノフィラメントでもマルチフィラメントでもよい。 The wire rods 62b, 62c, 63b, and 63c for adjusting the arrangement are made of linear members having a circular cross section, an elliptical cross section, and a flat cross section, and may be monofilaments or multifilaments.
 配置調整用の線材62b,62c,63b,63cの素材は絶縁性の繊維がよい。液晶をドット状に点灯させるためである。もっとも、各種有機EL材料が硬化した状態で線材62a,63aが位置ずれしない場合には、配置調整用の線材62b,62c,63b,63cの素材として、有機溶媒等によって溶解する素材を用いてもよい。その場合には必ずしも絶縁性の繊維である必要はない。つまり、配置調整用の線材62b,62c,63b,63cの素材は、一方の線条電極群62、他方の線条電極群63に有機EL材料を塗布して硬化する際、塗布剤に含まれる有機溶媒によって溶解されるものであってもよい。 The material of the wires 62b, 62c, 63b, 63c for adjusting the arrangement is preferably an insulating fiber. This is because the liquid crystal is lit in dots. However, when the wires 62a and 63a are not misaligned in a state where various organic EL materials are cured, a material that dissolves with an organic solvent or the like may be used as the material for the arrangement adjusting wires 62b, 62c, 63b, and 63c. Good. In that case, the insulating fiber is not necessarily required. That is, the materials of the alignment adjusting wire materials 62b, 62c, 63b, and 63c are included in the coating agent when the organic EL material is applied to the one linear electrode group 62 and the other linear electrode group 63 and cured. It may be dissolved by an organic solvent.
 一方の線条電極群62及び他方の線条電極群63において、導電線材62a,63aと配置調整用の線材62b,63bとの隙間は、導電線材62a,63aの等価断面寸法と同じオーダーであってもよい。 In one line electrode group 62 and the other line electrode group 63, the gaps between the conductive wire materials 62a and 63a and the arrangement adjusting wire materials 62b and 63b are in the same order as the equivalent cross-sectional dimensions of the conductive wire materials 62a and 63a. May be.
 例えば、導電線材62a,63aと配置調整用の線材62b,63bは10~25μmの線径を有しており、導電線材62a,63aと配置調整用の線材62b,63bとの間の隙間は10~25μmである。配置調整用の線材62c,63b同士の隙間は10~25μmである。これらの数値は、各線材を編み込む前の値である。各線材を編み込んで有機EL材料を染み込ませた状態では、一方の線条電極群62の厚みは20~30μmであり、他方の線条電極群63の厚みは20~30μmである。一方の線条電極群62と他方の線条電極群63との間の最短距離は10~30μm、特に10~20μmである。発光層61の厚みは、例えば60~90μmとなる。 For example, the conductive wires 62a and 63a and the arrangement adjusting wires 62b and 63b have a wire diameter of 10 to 25 μm, and the gap between the conductive wires 62a and 63a and the arrangement adjusting wires 62b and 63b is 10 mm. ~ 25 μm. The gap between the alignment adjusting wires 62c and 63b is 10 to 25 μm. These numbers are values before weaving each wire. In a state where each wire is knitted and soaked with the organic EL material, the thickness of one linear electrode group 62 is 20 to 30 μm, and the thickness of the other linear electrode group 63 is 20 to 30 μm. The shortest distance between one filament electrode group 62 and the other filament electrode group 63 is 10 to 30 μm, particularly 10 to 20 μm. The thickness of the light emitting layer 61 is, for example, 60 to 90 μm.
 本発明の実施形態では、各線材の紐状の太さが、これら線材で構成される網の目の大きさとほぼ同じ寸法であるか又は同じオーダーの寸法を有する。よって、配置陽性用の線材62b,62c,63b,63cによって各線材同士の隙間が維持される。各線材については線径については均一なものがよいが、平均径に対して所定の範囲例えば80%~120%の範囲であってもよい。これにより、導電線材62a同士、導電線材63a同士の間隔が一定に保たれることになる。 In the embodiment of the present invention, the string-like thickness of each wire is approximately the same as the size of the mesh formed by these wires, or has the same order of dimensions. Therefore, the gaps between the wires are maintained by the arrangement- positive wires 62b, 62c, 63b, and 63c. The wire diameter of each wire is preferably uniform, but may be within a predetermined range, for example, 80% to 120% with respect to the average diameter. Thereby, the space | interval of the conductive wire materials 62a and the conductive wire materials 63a is kept constant.
 配置調整用の線材62b,62c,63b,63cは、有機EL材料が硬化するまで、導電線材62a同士の間隔、導電線材63a同士の間隔を維持するために設けられるものである。それゆえ、一方の線条電極群62、他方の線条電極群63に有機EL材料を塗布などして有機EL材料が硬化して発光層61が形成されれば、発光層61の厚みで一方の線条電極群62及び他方の線条電極群63の各導電線材62a,63aが保持される。なお、配置調整用の線材62b,62c,63b,63cは、有機溶媒によって全てが溶解する必要はなく、部分的に溶解せず残存してもよい。 The alignment adjusting wires 62b, 62c, 63b, and 63c are provided to maintain the interval between the conductive wires 62a and the interval between the conductive wires 63a until the organic EL material is cured. Therefore, when the organic EL material is cured by applying an organic EL material to one of the linear electrode group 62 and the other linear electrode group 63 to form the light emitting layer 61, the thickness of the light emitting layer 61 is increased. The conductive wire members 62a and 63a of the first electrode group 62 and the other electrode group 63 are held. Note that the arrangement adjusting wires 62b, 62c, 63b, and 63c do not have to be completely dissolved by the organic solvent, and may remain partially undissolved.
 配置調整用の線材62b,62c,63b,63cとしては、例えば、アクリル系繊維やビニル系繊維を用いることができ、この場合には、塗布剤にはトルエン、酢酸などの有機溶媒が含まれていればよい。有機溶剤は有機EL材料、硬化剤等に応じて適宜選択することができる。 As the alignment adjusting wires 62b, 62c, 63b, and 63c, for example, acrylic fibers or vinyl fibers can be used. In this case, the coating agent contains an organic solvent such as toluene or acetic acid. Just do it. The organic solvent can be appropriately selected according to the organic EL material, the curing agent, and the like.
 図2において点線で示すように、一方の線条電極群62と他方の線条電極群63との距離を保つために、間隔保持用の支持部材64を設けるようにしてよい。支持部材64は非導電性、つまり絶縁性の線材からなり、例えばポリエチレンテレフタレートなどの有機溶媒によっては難溶融性の繊維からなる。これは、配置調整用の線材62b,62c,63b,63cとは異なり、有機EL材料を含む塗布剤などを一方の線条電極群62及び他方の線条電極群63に塗布したり染み込ませたりしたときに、溶融しないようにするためである。 As shown by a dotted line in FIG. 2, in order to maintain the distance between one of the linear electrode groups 62 and the other of the linear electrode groups 63, a support member 64 for maintaining a distance may be provided. The support member 64 is made of a non-conductive, that is, insulating wire, and is made of a fiber that hardly melts depending on an organic solvent such as polyethylene terephthalate. This is different from the arrangement adjusting wires 62b, 62c, 63b, and 63c, in which an application agent containing an organic EL material is applied to or impregnated into one of the linear electrode groups 62 and the other of the linear electrode groups 63. This is to prevent melting.
 制御部3は一方の切替制御部15a及び他方の切替制御部15bを備えている。一方の切替制御部15a及び他方の切替制御部15bの入力側には電圧供給部16が接続されており、出力側には一方の線条電極群62,他方の線条電極群63の各導電線材62a,63aの末端が接続されている。 The control unit 3 includes one switching control unit 15a and the other switching control unit 15b. The voltage supply unit 16 is connected to the input side of the one switching control unit 15a and the other switching control unit 15b, and the respective conductive properties of the one line electrode group 62 and the other line electrode group 63 are connected to the output side. The ends of the wires 62a and 63a are connected.
 本発明の第1実施形態に係る表示装置1では、発光層61の一方の面側において横に延びた導電線材62aが縦方向に並んで配置されており、発光層61の他方の面側において縦に延びた導電線材63aが横方向に並んで配置されている。 In the display device 1 according to the first embodiment of the present invention, the conductive wire material 62a extending laterally on one surface side of the light emitting layer 61 is arranged in the vertical direction, and on the other surface side of the light emitting layer 61. Conductive wire 63a extending vertically is arranged side by side in the horizontal direction.
 ここで、導電線材62aが発光層61の一方の面側に設けられているとは、例えば図2に示すように発光層61の上面側で発光層61内に埋まるように設けられている場合のみならず、発光層61の上面から部分的にはみ出している場合であってもよい。導電線材63aが発光層61の他方の面側に設けられているとは、例えば図2に示すように発光層61の下面側で発光層61内に埋まるように設けられている場合のみならず、発光層61の下面から部分的にはみ出している場合であってもよい。何れの場合においても、発光層61の上下何れか又は双方には、発光層61による光が出来るだけ透過する透明の保護層19が設けられる。発光層61の上面、下面から部分的にはみ出している場合には発光層61の上下面と共に保護層19によって被膜される。 Here, the conductive wire 62a being provided on one surface side of the light emitting layer 61 means that the conductive wire 62a is provided so as to be embedded in the light emitting layer 61 on the upper surface side of the light emitting layer 61 as shown in FIG. In addition, it may be a case where the light emitting layer 61 partially protrudes from the upper surface. The conductive wire 63a is provided on the other surface side of the light emitting layer 61 as well as the case where the conductive wire 63a is provided so as to be embedded in the light emitting layer 61 on the lower surface side of the light emitting layer 61 as shown in FIG. Further, it may be a case where the light emitting layer 61 partially protrudes from the lower surface. In any case, a transparent protective layer 19 that transmits light from the light emitting layer 61 as much as possible is provided on either or both sides of the light emitting layer 61. When the light emitting layer 61 partially protrudes from the upper and lower surfaces, the light emitting layer 61 is covered with the protective layer 19 together with the upper and lower surfaces of the light emitting layer 61.
 本発明の第1実施形態に係る表示装置1では、一方の線条電極群62は、横に延びた導電線材62aと非導電性の線材62b,62cとが格子状に配置され、他方の線条電極群63は、縦に延びた導電線材63aと非導電性の線材63b,63bとが格子状に配置された構成である。よって、発光層61の中心軸を挟んで、線材62aと線材62bとが平面視においてあたかも交差するように並んで配置されている。なお、各線材の線径が非常に小さい場合に、横に延びた線材を横糸、縦に延びた線材を縦糸と呼んでもよい。 In the display device 1 according to the first embodiment of the present invention, one of the line electrode groups 62 includes a conductive wire material 62a and non-conductive wire materials 62b and 62c arranged in a lattice shape, and the other wire electrode The strip electrode group 63 has a configuration in which vertically extending conductive wire 63a and non-conductive wire 63b, 63b are arranged in a grid pattern. Therefore, the wire 62a and the wire 62b are arranged side by side so as to intersect with each other across the central axis of the light emitting layer 61 in plan view. In addition, when the wire diameter of each wire is very small, the wire extending in the lateral direction may be referred to as weft and the wire extending in the vertical direction may be referred to as warp.
 このような一方の線条電極群62、他方の線条電極群63は平面視で導電線材62a,63aが交差しており、線条電極群62,63は非導電性の線材62b,63bにより互い違いに配置されていることから、交互配列平面電極と呼ぶことができる。なお、非導電性の線材62b,63bの本数は1本に限らず、複数本であってもよい。 In such a linear electrode group 62 and the other linear electrode group 63, the conductive wire materials 62a and 63a intersect each other in plan view, and the linear electrode groups 62 and 63 are formed by non-conductive wire materials 62b and 63b. Since they are arranged alternately, they can be referred to as alternately arranged planar electrodes. Note that the number of non-conductive wires 62b and 63b is not limited to one and may be a plurality.
 本発明の実施形態に係る表示装置1の表示部2は、上述したように交互配列平面電極を有する。従って、一方の切替制御部15aの各スイッチをONすることにより、ONしたスイッチに接続された導電線材62aに第1の電圧が印加される。他方の切替回制御部15bの各スイッチをONすることにより、ONしたスイッチに接続された導電線材63aに第2の電圧が印加される。よって、一方の線条電極群62において指定した導電線材62aと他方の線条電極群63において指定した導電線材63aとの間に一定の電圧を加えることができる。一定の電圧とは、第1の電圧と第2の電圧との差分であり、第1の電圧と第2の電圧の何れか一方が0Vであってもよい。 The display unit 2 of the display device 1 according to the embodiment of the present invention has the alternately arranged planar electrodes as described above. Therefore, by turning on each switch of one switching control unit 15a, the first voltage is applied to the conductive wire material 62a connected to the turned on switch. By turning on each switch of the other switching control unit 15b, the second voltage is applied to the conductive wire 63a connected to the turned-on switch. Therefore, a constant voltage can be applied between the conductive wire 62a specified in one of the linear electrode groups 62 and the conductive wire 63a specified in the other of the linear electrode groups 63. The constant voltage is a difference between the first voltage and the second voltage, and either one of the first voltage and the second voltage may be 0V.
 このように、表示部2には、画素毎にスイッチングのためのTFTを設ける必要がないため、表示部1自体が複雑な積層構造を有さない。また、本発明の実施形態では、縦方向と横方向にそれぞれ延びた各線材62a,62b,62c,63a,63b,63cと発光層61とからなっていることから、従来のように、ガラス基板を用いずまた薄いフィルムやシート上にITO膜を形成していないため、フィルム又はシートからITO膜が剥離することもない。また、フィルム又はシートそれ自体が有する剛性により湾曲が妨げられることもない。よって、本発明の第1実施形態に係る表示装置1の表示部2は湾曲などの変形が自在である。 Thus, since it is not necessary to provide a switching TFT for each pixel in the display unit 2, the display unit 1 itself does not have a complicated laminated structure. In the embodiment of the present invention, each of the wire members 62a, 62b, 62c, 63a, 63b, 63c extending in the vertical direction and the horizontal direction and the light emitting layer 61 are used. In addition, since the ITO film is not formed on the thin film or sheet, the ITO film does not peel from the film or sheet. In addition, the bending of the film or sheet itself is not hindered. Therefore, the display unit 2 of the display device 1 according to the first embodiment of the present invention can be deformed such as curved.
 本発明の第1実施形態では、導電線材62a,63aや配置調整用の線材62b,62c,63b,63cが発光層61の一方の面側と他方の面側とに存在する。これらの線材によってコントラストが向上し、いわゆるスモーク効果を生じる。従って、スモークフィルムと呼ばれる薄いグレーのフィルムを設ける必要がない。 In the first embodiment of the present invention, the conductive wire rods 62a and 63a and the wire rods 62b, 62c, 63b, and 63c for arrangement adjustment exist on one surface side and the other surface side of the light emitting layer 61. These wires improve contrast and produce a so-called smoke effect. Therefore, there is no need to provide a light gray film called a smoke film.
〔第2実施形態〕
 本発明の第2実施形態について説明する。図4は本発明の第2実施形態に係る表示装置の表示部の断面を模式的に示す図あり、図5は図4に示す表示部における一方及び他方の線条電極群の一部を模式的に示す斜視図である。本発明の第2実施形態に係る表示装置の表示部2は次のような構造を有する。すなわち、異なる色を発光する発光層21,31,41が積層されており、各発光層21,31,41の一方の面側には一方の線条電極群22,32,42が設けられ、各発光層21,31,41の他方の面側には他方の線条電極群23,33,43が設けられている。
[Second Embodiment]
A second embodiment of the present invention will be described. FIG. 4 is a diagram schematically showing a cross section of a display unit of a display device according to a second embodiment of the present invention, and FIG. 5 is a schematic diagram showing a part of one and the other linear electrode groups in the display unit shown in FIG. FIG. The display unit 2 of the display device according to the second embodiment of the present invention has the following structure. That is, the light emitting layers 21, 31, 41 emitting different colors are laminated, and one line electrode group 22, 32, 42 is provided on one surface side of each light emitting layer 21, 31, 41, On the other surface side of each light emitting layer 21, 31, 41, the other linear electrode groups 23, 33, 43 are provided.
 一方の線条電極群22,32,42の各構成は図2に示す形態と同様であり、横方向に延びる導電性の線材22a,32a,42aと横方向に延びる配置調整用の線材22b,32b,42bとが縦方向に延びる配置調整用の線材22c,32c,42cによって編み込まれて網状に形成されている。 Each line electrode group 22, 32, 42 has the same configuration as that shown in FIG. 2, and includes conductive wires 22a, 32a, 42a extending in the horizontal direction and arrangement adjusting wires 22b extending in the horizontal direction. 32b and 42b are knitted by arrangement adjusting wire rods 22c, 32c and 42c extending in the vertical direction, and are formed in a net shape.
 他方の線条電極群23,33,43の各構成も図2に示す形態と同様であり、縦方向に延びる導電線材23a,33a,43aと縦方向に延びる配置調整用の線材23b,33b,43bとが横方向に延びる配置調整用の線材23c,33c,43cによって編み込まれて網状に形成されている。 The other configuration of the other line electrode groups 23, 33, 43 is the same as that shown in FIG. 2, and the conductive wire members 23a, 33a, 43a extending in the vertical direction and the wire rods 23b, 33b for adjusting the arrangement extending in the vertical direction are provided. 43b is knitted by a wire 23c, 33c, 43c for adjusting the arrangement extending in the lateral direction, and is formed in a net shape.
 第1実施形態と同様、一方の線条電極群22,32,42のうち導電性の線材22a,32a,42aが一方の切替制御部15aの各スイッチにそれぞれ接続され、他方の線条電極群23,33,43のうち導電性の線材23a,33a,43aが他方の切替制御部15b内の各スイッチにそれぞれ接続される。 As in the first embodiment, the conductive wire rods 22a, 32a, and 42a are connected to the respective switches of the one switching control unit 15a, and the other wire electrode group. Of the wires 23, 33 and 43, the conductive wires 23a, 33a and 43a are connected to the respective switches in the other switching control unit 15b.
 これにより、各発光層21,31,41において、一方の線条電極群22,32,42にある特定の導電線材22a,32a,42aと、他方の線条電極群23,33,43にある特定の導電線材23a,33a,43aとの間に所定の電圧が印加される。 Thereby, in each light emitting layer 21,31,41, it exists in the specific conductive wire material 22a, 32a, 42a in one linear electrode group 22,32,42, and the other linear electrode group 23,33,43. A predetermined voltage is applied between the specific conductive wires 23a, 33a, 43a.
 第1実施形態と同様、各発光層21,31,41において、一方の線条電極群22,32,42と他方の線条電極群23,33,43とが上下に線条の支持部材24,34,44によって編み込まれてもよい。これにより、一方の線条電極群22,32,42と他方の線条電極群23,33,43の間隔を一定にすることができる。その結果、各発光層21,31,41において、一方の線条電極群22,32,42にある特定の導電線材22a,32a,42aと、他方の線条電極群23,33,43にある特定の導電線材23a,33a,43aとの間に一定の範囲の電圧を印加することができ、発光の斑を防ぐことができる。 As in the first embodiment, in each of the light emitting layers 21, 31, 41, one linear electrode group 22, 32, 42 and the other linear electrode group 23, 33, 43 are linearly supported in a vertical direction. , 34, 44. Thereby, the space | interval of one filament electrode group 22,32,42 and the other filament electrode group 23,33,43 can be made constant. As a result, in each of the light emitting layers 21, 31, 41, the specific conductive wire rods 22 a, 32 a, 42 a in the one line electrode group 22, 32, 42 and the other line electrode groups 23, 33, 43 are present. A voltage within a certain range can be applied between the specific conductive wire materials 23a, 33a, and 43a, and unevenness of light emission can be prevented.
 第2実施形態では、発光層21、発光層31、発光層41はそれぞれ別の波長の光を発光する。例えば、R、B、Gの三色光を3つの発光層で生じる。図5に示すように、各発光層21、31、41により導電線材23a,33a,43aが横に並んだ構成によって一つの画素54が形成される。 In the second embodiment, the light emitting layer 21, the light emitting layer 31, and the light emitting layer 41 emit light of different wavelengths. For example, three color lights of R, B, and G are generated in three light emitting layers. As shown in FIG. 5, one pixel 54 is formed by a configuration in which conductive wire materials 23 a, 33 a, and 43 a are horizontally arranged by the light emitting layers 21, 31, and 41.
 平面視において、第1の発光層21に設けられる導電線材22a及び導電線材23aとの交差領域と、第2の発光層31に設けられる導電線材32a及び導電線材33aとの交差領域と、第3の発光層41に設けられる導電線材42a及び導電線材43aとの交差領域とが、互いに重ならないで配置されている。具体的には、第1の発光層21では、導電線材22a同士の間隔、導電線材23a同士の間隔が調整されている。第2の発光層31、第3の発光層41についても同じことがあてはまる。 In plan view, a crossing region of the conductive wire 22a and the conductive wire 23a provided in the first light emitting layer 21, a crossing region of the conductive wire 32a and the conductive wire 33a provided in the second light emitting layer 31, and a third The conductive wire 42a and the intersecting region of the conductive wire 43a provided in the light emitting layer 41 are arranged so as not to overlap each other. Specifically, in the 1st light emitting layer 21, the space | interval of conductive wire 22a and the space | interval of conductive wire 23a are adjusted. The same applies to the second light emitting layer 31 and the third light emitting layer 41.
 発光層21において他方の線条電極群23の導電線材23aの間に2本の配置調整用の線材23bが介在される。発光層31において他方の線条電極群33の導電線材33aの間に2本の配置調整用の線材33bが介在される。発光層41において他方の線条電極群43の導電線材43aの間に2本の配置調整用の線材43bが介在される。配置調整用の線材は二本に限らず、四本、六本でもその他の任意の本数でもよい。 In the light emitting layer 21, two arrangement adjusting wire members 23 b are interposed between the conductive wire members 23 a of the other filament electrode group 23. In the light emitting layer 31, two arrangement adjusting wire members 33 b are interposed between the conductive wire members 33 a of the other filament electrode group 33. In the light emitting layer 41, two arrangement adjusting wire rods 43 b are interposed between the conductive wire rods 43 a of the other filament electrode group 43. The number of wires for adjusting the arrangement is not limited to two, and may be four, six, or any other number.
 第1実施形態の場合と同様、配置調整用の線材については溶媒等によって溶解してもよいが、間隔保持用の支持部材24,34,44は溶解せず、一方の線条電極群22,32,42と他方の線条電極群23,33,43との間の距離を保持するようにする。これにより、表示部2を湾曲などさせたときに一方の線条電極群22,32,41と他方の線条電極群23,33,43の導電線材同士の間隔が保持される。 As in the case of the first embodiment, the wire for adjusting the arrangement may be dissolved by a solvent or the like, but the supporting members 24, 34, 44 for maintaining the distance are not dissolved, and one of the linear electrode groups 22, The distance between 32 and 42 and the other linear electrode group 23, 33, 43 is maintained. Thereby, when the display part 2 is curved etc., the space | interval of the conductive wire materials of one filament electrode group 22,32,41 and the other filament electrode group 23,33,43 is maintained.
 上述したように、一方の線条電極群22,32,42と他方の線条電極群23,33,43における導電線材23a,33a,43との交差する領域が、平面視で横に並んで一つの画素54を形成している。交差領域は、平面視において三角形の頂点に配置されるように並んでいてもよいし、L字の頂点に配置されるように並んでもよいし、それ以外の形状の頂点に配置されるように並んでいてもよい。 As described above, the regions where one of the linear electrode groups 22, 32, 42 and the conductive linear members 23a, 33a, 43 in the other linear electrode groups 23, 33, 43 intersect are arranged side by side in a plan view. One pixel 54 is formed. The intersecting regions may be arranged so as to be arranged at the vertices of the triangle in plan view, arranged so as to be arranged at the vertices of the L shape, or arranged at the vertices of other shapes. You may line up.
 このように、各導電線材22a,32a,42aは平面視において互いに重なっておらず、各導電線材23a,33a,43aは平面視において互いに重なっていない。 Thus, the conductive wire members 22a, 32a, and 42a do not overlap with each other in plan view, and the conductive wire members 23a, 33a, and 43a do not overlap with each other in plan view.
 一方の線条電極群22,32,42の導電線材22a,32a,42aと他方の線条電極群23,33,43の導電線材23a,33a,43aとの交差する三領域により一つの画素が構成される。各発光層21,31,41は上下に積層されているので、各発光層21,31,41中の各交差領域に印加される電圧により発生した光が他の領域に配置されている導電線材によって極力遮断されないようにしている。 One pixel is formed by three regions where the conductive wire members 22a, 32a, 42a of one of the line electrode groups 22, 32, 42 intersect the conductive wire members 23a, 33a, 43a of the other line electrode group 23, 33, 43. Composed. Since each light emitting layer 21, 31 and 41 is laminated | stacked up and down, the conductive wire material by which the light generated by the voltage applied to each crossing area | region in each light emitting layer 21, 31, and 41 is arrange | positioned at another area | region To prevent interruption as much as possible.
 ところで、発光層21と発光層31との間には隙間51が設けられ、発光層31と発光層41との間には隙間52が設けられる。隙間51,52を絶縁層として用い、他の発光層との導電線材間で電圧が生じないようにすることができる。 Incidentally, a gap 51 is provided between the light emitting layer 21 and the light emitting layer 31, and a gap 52 is provided between the light emitting layer 31 and the light emitting layer 41. The gaps 51 and 52 can be used as insulating layers so that no voltage is generated between the conductive wires with other light emitting layers.
 以上説明したように、本発明の第1及び第2実施形態では、交互に配列した平面電極を積層交差させて、平面視において交差領域に所定の電圧を印加することができる。一方の線条電極群、他方の線条電極群の何れも、一方向に延びる導電線材を絶縁性線材で編み込むことで、あたかも微細糸の布によって構成されている。よって、一方の線条電極群と他方の線条電極群とを糸状の支持部材によって反対側に配置させ、一又は複数の有機EL材料を塗布又は漬浸して発光層を形成することができる。その際、硬化剤、溶剤、触媒等を、有機EL材料に適応するように混在させる。本発明の第1及び第2実施形態での発光層の形成については詳細に説明していないが、有機EL材料としては公知の各種のものを使用することができ、後述するものを利用することも可能である。有機EL材料を浸み込ませて硬化させる手法としては、公知の技術、例えばインクジェット法による塗布、浸漬含浸法、ローラーによる浸潤法を用いることができ、後述の方法を用いることもできる。  As described above, in the first and second embodiments of the present invention, alternately arranged plane electrodes can be stacked and crossed, and a predetermined voltage can be applied to the intersecting region in plan view. Each of the one line electrode group and the other line electrode group is configured by a fine yarn cloth by weaving a conductive wire extending in one direction with an insulating wire. Therefore, one line electrode group and the other line electrode group can be arranged on the opposite side by a thread-like support member, and one or a plurality of organic EL materials can be applied or immersed to form a light emitting layer. In that case, a hardening | curing agent, a solvent, a catalyst, etc. are mixed so that it may adapt to organic EL material. Although the formation of the light emitting layer in the first and second embodiments of the present invention is not described in detail, various known organic EL materials can be used, and those described later are used. Is also possible. As a method for immersing and curing the organic EL material, a known technique such as coating by an ink jet method, a dipping impregnation method, or a wetting method using a roller can be used, and a method described later can also be used. *
 また、前述した説明のように、一方の線条電極群、他方の線条電極群は平面視において正方形などの矩形の網目の場合に限らず菱形の網目となっていてもよい。 Further, as described above, one line electrode group and the other line electrode group are not limited to a rectangular mesh such as a square in plan view, but may be a rhombus mesh.
[第3実施形態]
 次に、本発明の第3実施形態を詳細に説明する。特に光電変換デバイスが、光を電気エネルギーに変換するものとして太陽電池を想定して説明するが、表示装置等のように電気エネルギーを光エネルギーに変換するものであっても同様に適用することができる。
[Third Embodiment]
Next, a third embodiment of the present invention will be described in detail. In particular, a photoelectric conversion device will be described assuming a solar cell as a device that converts light into electric energy, but it can be similarly applied to devices that convert electric energy into light energy such as a display device. it can.
 図6は本発明の第3実施形態に係る光電変換デバイス1の断面図であり、図7は光電変換デバイス1の斜視図である。 FIG. 6 is a cross-sectional view of the photoelectric conversion device 1 according to the third embodiment of the present invention, and FIG. 7 is a perspective view of the photoelectric conversion device 1.
 光電変換デバイス1は、電極12と、光電変換層13と、から構成されている。なお、図7では、光電変換層13の表示を省略している。 The photoelectric conversion device 1 is composed of an electrode 12 and a photoelectric conversion layer 13. In FIG. 7, the display of the photoelectric conversion layer 13 is omitted.
 電極12は、図7に示すように、下側電極部120と、所定の距離を置いて下側電極部120と対向するように設けられる上側電極部220と、から構成されている。 As shown in FIG. 7, the electrode 12 includes a lower electrode part 120 and an upper electrode part 220 provided to face the lower electrode part 120 at a predetermined distance.
 下側電極部120は、複数の縦線材120Aと複数の横線材120Bとを備えている。縦線材120Aと横線材120Bとは1本ごとに交差するように織られている。つまり下側電極部120は平織りのネット状に形成されている。 The lower electrode portion 120 includes a plurality of vertical wires 120A and a plurality of horizontal wires 120B. The vertical wire 120A and the horizontal wire 120B are woven so as to intersect each other. That is, the lower electrode portion 120 is formed in a plain weave net shape.
 縦線材120Aとして、2種の線材、具体的には、第1導電線材121と第1絶縁線材122とを利用する。図7に示すように、第1導電線材121と第1絶縁線材122とは交互に並べられている。なお、第1導電線材121と第1絶縁線材122とは接触しないよう、所定の間隔を置いて並設されている。 As the vertical wire 120A, two types of wires, specifically, the first conductive wire 121 and the first insulating wire 122 are used. As shown in FIG. 7, the first conductive wire 121 and the first insulating wire 122 are alternately arranged. The first conductive wire 121 and the first insulating wire 122 are juxtaposed at a predetermined interval so as not to contact each other.
 これらの第1導電線材121として、例えば銅線、ステンレス線等の金属線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第1導電線材121の一端部121Eは、図7に示すように第1のバスバー121Aに接続されている。 As the first conductive wire 121, for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used. One end 121E of each first conductive wire 121 is connected to the first bus bar 121A as shown in FIG.
 第1絶縁線材122は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The first insulating wire 122 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
 横線材12Bとして第2絶縁線材を用いる。第2絶縁線材は、第1絶縁線材122と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The second insulating wire is used as the horizontal wire 12B. Similar to the first insulating wire 122, the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
 上側電極部220は、複数の縦線材220Aと、複数の横線材220Bと、を備えている。縦線材220Aと横線材220Bとは1本ごとに交差するように織られている。つまり上側電極部220は平織りのネット状に形成されている。 The upper electrode section 220 includes a plurality of vertical wires 220A and a plurality of horizontal wires 220B. The vertical wire 220A and the horizontal wire 220B are woven so as to intersect each other. That is, the upper electrode portion 220 is formed in a plain weave net shape.
 縦線材220Aとして、2種の線材、具体的には、第2導電線材221と第3絶縁線材222とを利用する。図7に示すように、第2導電線材221と第3絶縁線材222とは交互に並べられている。なお、第2導電線材221と第3絶縁線材222とは接触しないよう、所定の間隔を置いて並設されている。 As the vertical wire 220A, two types of wires, specifically, the second conductive wire 221 and the third insulating wire 222 are used. As shown in FIG. 7, the second conductive wire 221 and the third insulating wire 222 are alternately arranged. The second conductive wire 221 and the third insulating wire 222 are juxtaposed at a predetermined interval so as not to contact each other.
 第2導電線材221として、例えば銅線、ステンレス線等の金属線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第2導電線材221の一端部221Eは図7に示すように第2のバスバー221Aに接続されている。 As the second conductive wire 221, for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used. One end 221E of each second conductive wire 221 is connected to the second bus bar 221A as shown in FIG.
 第3絶縁線材222は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The third insulating wire 222 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
 横線材220Bとして第4絶縁線材を用いる。第4絶縁線材は、第3絶縁線材222と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 A fourth insulating wire is used as the horizontal wire 220B. Similar to the third insulating wire 222, the fourth insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
 第1導電線材121、第2導電線材221、第1絶縁線材122及び第3絶縁線材222などは、20μm~30μm程度の太さに設定されている。 The first conductive wire 121, the second conductive wire 221, the first insulating wire 122, the third insulating wire 222, etc. are set to a thickness of about 20 μm to 30 μm.
 次に、光電変換層13について説明する。図8は図6の円A領域の模式的拡大図である。光電変換層13は、一方の電極、つまり下側電極部120上に設けられて正孔輸送材料となるp層の有機半導体13Aと、他方の電極、つまり上側電極部220上に設けられ電子輸送材料となるn層の有機半導体13Bと、から構成されている。なお、図8に示すように、有機半導体13A上に有機半導体13Bが設けられている。よって、下側電極部120はp型電極として機能し、上側電極部220はn型電極として機能する。p層の有機半導体13Aとn層の有機半導体13Bとはpn接合を形成している。 Next, the photoelectric conversion layer 13 will be described. FIG. 8 is a schematic enlarged view of a circle A region in FIG. The photoelectric conversion layer 13 is provided on one electrode, that is, the lower electrode portion 120, and the p-layer organic semiconductor 13A serving as a hole transport material, and on the other electrode, that is, the upper electrode portion 220, and is transported by electrons. And n-layer organic semiconductor 13B as a material. In addition, as shown in FIG. 8, the organic semiconductor 13B is provided on the organic semiconductor 13A. Therefore, the lower electrode part 120 functions as a p-type electrode, and the upper electrode part 220 functions as an n-type electrode. The p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B form a pn junction.
 次に、p層の有機半導体13Aとn層の有機半導体13Bの材料について説明する。p層の有機半導体13Aは、正孔輸送材料によって形成される。正孔輸送材料としては、化学式(1)で示されるトリフェニルアミン(TAPC)、化学式(2)で示されるトリフェニルアミンの二量体であるTPDその他の芳香族アミンのほか、化学式(3)で示されるα-NPD、化学式(4)で示される(DTP)DPPD、化学式(5)で示されるm-MTDATA、化学式(6)で示されるHTM1、化学式(7)で示される2-TNATA、化学式(8)で示されるTPTE1、化学式(9)で示されるTCTA、化学式(10)で示されるNTPA、化学式(11)で示されるスピロ-TAD、化学式(12)で示されるTFLELなどが用いられる。 Next, materials of the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B will be described. The p-layer organic semiconductor 13A is formed of a hole transport material. As a hole transport material, in addition to triphenylamine (TAPC) represented by the chemical formula (1), TPD and other aromatic amines which are dimers of triphenylamine represented by the chemical formula (2), the chemical formula (3) Α-NPD represented by formula (4), (DTP) DPPD represented by formula (4), m-MTDATA represented by formula (5), HTM1 represented by formula (6), 2-TNATA represented by formula (7), TPTE1 represented by chemical formula (8), TCTA represented by chemical formula (9), NTPA represented by chemical formula (10), spiro-TAD represented by chemical formula (11), TFREL represented by chemical formula (12), etc. are used. .
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
 
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000002
 
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000004
 
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000008
 
Figure JPOXMLDOC01-appb-C000009
 
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
 
 n層の有機半導体13Bは電子輸送材料によって形成される。電子輸送材料には、化学式(13)で示されるAlq、化学式(14)で示されるBCP、化学式(15)で示されるオキサジアゾール誘導体、化学式(16)で示されるオキサジアゾール二量体、化学式(17)で示されるスターバーストオキサジアゾール、化学式(18)で示されるトリアゾール誘導体、化学式(19)で示されるフェニルキノキサリン誘導体、化学式(20)で示されるシロール誘導体などが挙げられる。 The n-layer organic semiconductor 13B is formed of an electron transport material. Examples of the electron transport material include Alq 3 represented by the chemical formula (13), BCP represented by the chemical formula (14), an oxadiazole derivative represented by the chemical formula (15), and an oxadiazole dimer represented by the chemical formula (16). , Starburst oxadiazole represented by the chemical formula (17), triazole derivative represented by the chemical formula (18), phenylquinoxaline derivative represented by the chemical formula (19), silole derivative represented by the chemical formula (20), and the like.
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
Figure JPOXMLDOC01-appb-C000019
 
Figure JPOXMLDOC01-appb-C000020
 
 図6に示す光電変換デバイス1の製造方法について概略説明する。まず、第1導電線材121、第1絶縁線材122、第2絶縁線材を用意し、平織りして下側電極部120を作製する。同様に、上側電極部220を作製する。その後、p層の有機半導体13Aとなる正孔輸送材料を所定の箇所、例えば一方の電極、つまり下側電極部120上に、例えばインクジェットプリンタにより塗布する。 A method for manufacturing the photoelectric conversion device 1 shown in FIG. First, the first conductive wire 121, the first insulated wire 122, and the second insulated wire are prepared and plain weave to produce the lower electrode portion 120. Similarly, the upper electrode part 220 is produced. Thereafter, a hole transport material to be the p-layer organic semiconductor 13A is applied to a predetermined portion, for example, one electrode, that is, the lower electrode portion 120 by, for example, an ink jet printer.
 次に、n層の有機半導体13Bとなる電子輸送材料をp層の上に塗布する。塗布にはp層の有機半導体13Aの場合と同様のインクジェットプリンタによる印刷技術を用いてもよい。 Next, an electron transport material to be the n-layer organic semiconductor 13B is applied on the p-layer. For the application, the same printing technique by an ink jet printer as in the case of the p-layer organic semiconductor 13A may be used.
 これにより、p層の有機半導体13Aとn層の有機半導体13Bとによってpn接合が形成される。なお、n層の有機半導体13Bから塗布しその後p層の有機半導体13Aを塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B. The n-layer organic semiconductor 13B may be applied, and then the p-layer organic semiconductor 13A may be applied.
 その後、n層の上に下側電極部120を重ね合わせる。これにより、光電変換デバイス1が作製される。なお、図6に示す光電変換デバイス1が作製される手法であれば上述の方法に限定されない。 Thereafter, the lower electrode portion 120 is overlaid on the n layer. Thereby, the photoelectric conversion device 1 is produced. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 6 is manufactured.
 このように構成された光電変換デバイス1では、例えば、上側電極部220側から光電変換層13内へ光が入射される場合、光Lは上側電極部220を構成する第2導電線材221と第3絶縁線材222との間を通って、光電変換層13の上面から内側領域に入り込む。図8に示すように、光L′は、光電変換層13の下面からも内側領域に入り込むができる。下側電極部120と上側電極部220は、複数の光通過用の隙間S、つまり隙間Sの領域を光が透過する材料で構成している。 In the photoelectric conversion device 1 configured as described above, for example, when light is incident on the photoelectric conversion layer 13 from the upper electrode portion 220 side, the light L and the second conductive wire 221 constituting the upper electrode portion 220 It passes between the three insulated wires 222 and enters the inner region from the upper surface of the photoelectric conversion layer 13. As shown in FIG. 8, the light L ′ can enter the inner region also from the lower surface of the photoelectric conversion layer 13. The lower electrode portion 120 and the upper electrode portion 220 are made of a material that allows light to pass through a plurality of gaps S for light passage, that is, regions of the gaps S.
 本発明によれば、光が入射する光電変換層13の面に設ける電極を複数の光通過用の隙間Sを有するように構成したことで、電極を透明電極で構成することが不要となり、透明電極のためのレアメタルを材料として使用しなくて済む。そのため、光電変換デバイス用の電極12はCuやAlなどを使用することができる。光電変換デバイス1は、電極12が可撓性を有するネットで構成されているため、平面状に形成した後に、曲面状の表面に取り付けることができる。上側電極部220は、電極として機能する線材でネット状に構成されているため、ネットの端部にバスバーなどの部材を圧着或いは溶着することで、バスバーなどの部材が線材に接触する。従って、電気を取り出す製造工程が容易になる。さらに、光電変換層13の両面から光を取り込むことができるので、変換効率の向上を期待できる。 According to the present invention, since the electrode provided on the surface of the photoelectric conversion layer 13 on which light is incident is configured to have a plurality of gaps S for passing light, it is not necessary to configure the electrode with a transparent electrode, and the transparent It is not necessary to use a rare metal for the electrode as a material. Therefore, Cu, Al, etc. can be used for the electrode 12 for photoelectric conversion devices. Since the photoelectric conversion device 1 is formed of a flexible net, the electrode 12 can be attached to a curved surface after being formed in a flat shape. Since the upper electrode portion 220 is formed in a net shape with a wire rod functioning as an electrode, a member such as a bus bar is brought into contact with the wire rod by crimping or welding a member such as a bus bar to the end portion of the net. Therefore, the manufacturing process for extracting electricity is facilitated. Furthermore, since light can be taken in from both surfaces of the photoelectric conversion layer 13, an improvement in conversion efficiency can be expected.
 以上の第3実施形態は、本発明の範囲において適宜変更して実施することができる。上記構成では、第1導電線材121同士の間及び第2導電線材221同士の間に、第1絶縁線材122、第3絶縁線材222がそれぞれ1本設けられる構成を説明したが、図9(A)に示すように、複数本設けられてもよい。光電変換デバイスは、図9(B)に示すように第1絶縁線材122、第3絶縁線材222を省略して構成されてもよい。 The third embodiment described above can be implemented with appropriate modifications within the scope of the present invention. In the above configuration, a configuration in which one first insulating wire 122 and one third insulating wire 222 are provided between the first conductive wires 121 and between the second conductive wires 221 has been described. As shown in FIG. The photoelectric conversion device may be configured by omitting the first insulating wire 122 and the third insulating wire 222 as shown in FIG. 9B.
[第4実施形態]
 次に、第4実施形態に係る光電変換デバイスの製造方法について説明する。以下では、光電変換デバイス1として、光を電気エネルギーに変換する太陽電池についての例を説明するが、EL素子や表示装置等のように電気エネルギーを光に変換するものであっても同様に適用できる。
[Fourth Embodiment]
Next, a method for manufacturing a photoelectric conversion device according to the fourth embodiment will be described. Below, the example about the solar cell which converts light into electrical energy is demonstrated as the photoelectric conversion device 1, However, It applies similarly, even if what converts electrical energy into light like an EL element, a display apparatus, etc. it can.
 図10及び図11は第4実施形態における光電変換デバイスの製造方法を説明するための図である。第4実施形態では、図10に示すような電極構造体22を用いて光電変換デバイス20を製造する。 10 and 11 are diagrams for explaining a method of manufacturing a photoelectric conversion device according to the fourth embodiment. In 4th Embodiment, the photoelectric conversion device 20 is manufactured using the electrode structure 22 as shown in FIG.
 製造する光電変換デバイス1は、例えば図11(b)に示すように、正孔輸送材料からなるp型有機半導体13A及び電子輸送材料からなるn型有機半導体13Bを有する光電変換層13と、p型有機半導体13Aに接続したp型電極としての第1導電線材121と、n型有機半導体13Bに接続したn型電極としての第2導電線材122と、を備えている。光電変換層13の表面には保護層が積層されて被覆されている。ここでは光電変換デバイス1は絶縁性の基材11の表面に沿って配置されている。 The photoelectric conversion device 1 to be manufactured includes, for example, a photoelectric conversion layer 13 having a p-type organic semiconductor 13A made of a hole transport material and an n-type organic semiconductor 13B made of an electron transport material, as shown in FIG. A first conductive wire 121 as a p-type electrode connected to the organic semiconductor 13A, and a second conductive wire 122 as an n-type electrode connected to the n-type organic semiconductor 13B. A protective layer is laminated and coated on the surface of the photoelectric conversion layer 13. Here, the photoelectric conversion device 1 is disposed along the surface of the insulating substrate 11.
 第1導電線材121及び第2導電線材122のうちの少なくとも一方、ここでは両方が、互いに接触しないように間隔を空けて略同じ向きで並べて配置された複数の導電線材120からなる。これらの導電線材120と交差する方向に、絶縁性の線材からなる横線材12Bが配置されている。複数の導電線材120の一部が第1導電線材121であり、他部の導電線材120が第2導電線材122であり、これらが交互に配置されている。
 第1導電線材121を構成する複数の導電線材120と第2導電線材122を構成する複数の導電線材120とは略同数設けられており、これらに図10のような配線部としてのバスバー7等が接続され、バスバー7を介して各種の回路に接続可能となっている。
At least one of the first conductive wire 121 and the second conductive wire 122, here both, is composed of a plurality of conductive wires 120 arranged side by side in substantially the same direction so as not to contact each other. A horizontal wire 12B made of an insulating wire is arranged in a direction crossing these conductive wires 120. A part of the plurality of conductive wires 120 is the first conductive wire 121 and the other conductive wire 120 is the second conductive wire 122, which are alternately arranged.
The plurality of conductive wire rods 120 constituting the first conductive wire rod 121 and the plurality of conductive wire rods 120 constituting the second conductive wire rod 122 are provided in substantially the same number, and bus bars 7 as wiring portions as shown in FIG. Can be connected to various circuits via the bus bar 7.
 各導電線材120は、銅線やステンレス線等の金属線、樹脂等の合成繊維や天然繊維等の各種繊維の表面に金属メッキ処理が施された金属メッキ繊維など、柔軟性に富む線材を使用するのがよい。金属メッキ繊維の場合、芯となる繊維としては例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成してもよい。 Each conductive wire 120 uses a flexible wire such as a metal wire such as a copper wire or a stainless steel wire, a synthetic fiber such as a resin, or a metal-plated fiber obtained by performing metal plating on the surface of various fibers such as a natural fiber. It is good to do. In the case of a metal-plated fiber, the core fiber may be composed of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, vinyl resin, or the like.
 これらの複数の導電線材120の太さはそれぞれ異なっていてもよいが、同じ太さの線材を用いるのが好ましい。特に限定されるものではないが一例として、線径が20~30μmのものを使用してもよい。 The thickness of the plurality of conductive wires 120 may be different from each other, but it is preferable to use wires having the same thickness. Although not particularly limited, as an example, one having a wire diameter of 20 to 30 μm may be used.
 各横線材12Bは絶縁性の線材からなり、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む線材を使用するのがよい。この横線材12Bとして導電線材120と同等の太さの線材を使用してもよい。横線材12Bが配置されることで縦方向と横方向とに連続した線材が配置され、光電変換デバイス1の面方向強度が向上する。 Each horizontal wire 12B is made of an insulating wire, and it is preferable to use a flexible wire such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin. A wire having the same thickness as that of the conductive wire 120 may be used as the horizontal wire 12B. By arranging the horizontal wire 12B, a continuous wire in the vertical direction and the horizontal direction is arranged, and the surface strength of the photoelectric conversion device 1 is improved.
 光電変換層13は、第1導電線材121に接続されたp型有機半導体13Aと第2導電線材122に接続されたn型有機半導体13Bとを有する。p型有機半導体13Aとn型有機半導体13Bとは接触界面で接合されてpn接合を形成している。この光電変換層13は柔軟性に富むものが好適である。 The photoelectric conversion layer 13 includes a p-type organic semiconductor 13A connected to the first conductive wire 121 and an n-type organic semiconductor 13B connected to the second conductive wire 122. The p-type organic semiconductor 13A and the n-type organic semiconductor 13B are bonded at the contact interface to form a pn junction. It is preferable that the photoelectric conversion layer 13 is rich in flexibility.
 p型有機半導体13Aは正孔輸送材料からなる。正孔輸送材料としては、例えば芳香族アミン、チオフェン、フェニレン-ビニレン、チエニレン-ビニレン、カルバゾール、ビニルカルバゾール、ピロール、アセチレン、フタロシアニン、アセン、ポルフィリン、これらの誘導体、錯体、オリゴマー又はポリマーなどであり、これらのうち、有機半導体として使用可能な電子受容性を有する公知の有機化合物を使用できる。 The p-type organic semiconductor 13A is made of a hole transport material. Examples of the hole transport material include aromatic amine, thiophene, phenylene-vinylene, thienylene-vinylene, carbazole, vinylcarbazole, pyrrole, acetylene, phthalocyanine, acene, porphyrin, derivatives, complexes, oligomers, and polymers thereof. Among these, known organic compounds having electron acceptability that can be used as organic semiconductors can be used.
 n型有機半導体13Bは電子輸送材料からなる。電子輸送材料としては、例えばシロール、フラーレン、カーボンナノチューブ、ペリレン、ナフタレン、ピリジン、フタロシアニン、キノリン、オキサジアゾール、トリアゾール、ジスチリルアリーレン、これらの誘導体、錯体、オリゴマー又はポリマーなどであり、これらのうち、有機半導体として使用可能な電子供与性を有する公知の有機化合物を使用できる。 The n-type organic semiconductor 13B is made of an electron transport material. Examples of the electron transport material include silole, fullerene, carbon nanotube, perylene, naphthalene, pyridine, phthalocyanine, quinoline, oxadiazole, triazole, distyrylarylene, derivatives, complexes, oligomers, and polymers thereof. Any known organic compound having an electron donating property that can be used as an organic semiconductor can be used.
 これらのp型有機半導体13A及びn型有機半導体13Bは、光電変換効率が出来るだけ高いものを組み合わせて選択することができる。この光電変換層13の厚みは特に限定されるものではないが、例えば導電線材120の線径の1.2~2.0倍としてもよい。 These p-type organic semiconductor 13A and n-type organic semiconductor 13B can be selected by combining those having the highest possible photoelectric conversion efficiency. The thickness of the photoelectric conversion layer 13 is not particularly limited, but may be 1.2 to 2.0 times the wire diameter of the conductive wire 120, for example.
 このような光電変換デバイス1では、第1導電線材121、第2導電線材122、光電変換層13が柔軟性を有するため、光電変換デバイス1は十分な柔軟性を有する。そのため基材11の平面又は曲面からなる表面に沿って自在に配置できる。 In such a photoelectric conversion device 1, since the first conductive wire 121, the second conductive wire 122, and the photoelectric conversion layer 13 have flexibility, the photoelectric conversion device 1 has sufficient flexibility. Therefore, it can arrange | position freely along the surface which consists of a plane of the base material 11 or a curved surface.
 本実施形態において光電変換デバイス1を製造するには、電極構造体22を準備する電極準備工程と、正孔輸送材料や電子輸送材料を含有した材料含有液130を調製する材料含有液130調整工程と、正孔輸送材料や電子輸送材料を電極構造体22に付着させる材料付着工程と、有機半導体を形成する半導体形成工程と、を備えた製造方法により製造する。 In order to manufacture the photoelectric conversion device 1 in the present embodiment, an electrode preparation process for preparing the electrode structure 22 and a material-containing liquid 130 adjustment process for preparing a material-containing liquid 130 containing a hole transport material or an electron transport material. And a material attaching step for attaching a hole transport material or an electron transport material to the electrode structure 22 and a semiconductor forming step for forming an organic semiconductor.
 準備工程では、図10に示すように、複数の導電線材120を配置調整用線材15とともに一体化した電極部230を複数有し、この複数の電極部230を対向配置した状態で支持線材320により支持された電極構造体22を準備する。この電極構造体22はダブルラッセル編みされた織布として形成することができる。この電極構造体22は予め作製されたものを使用してもよい。 In the preparation step, as shown in FIG. 10, a plurality of electrode portions 230 in which a plurality of conductive wire rods 120 are integrated with the arrangement adjusting wire rod 15 are provided, and the support wire rods 320 are arranged in a state where the plurality of electrode portions 230 are opposed to each other. A supported electrode structure 22 is prepared. The electrode structure 22 can be formed as a double raschel woven fabric. The electrode structure 22 may be prepared in advance.
 各電極部230は、複数の導電線材120及び配置調整用線材15からなる複数の縦線材12Aと、縦線材12Aと交差する複数の横線材12Bと、を備えており、横線材12Bが複数の導電線材120及び配置調整用線材15と交差し且つ所定間隔毎に上下に導電線材120及び配置調整用線材15と交差して配置されている。この実施形態では、一方の電極部230の導電線材120が第1導電線材121となり、他方の電極部230の導電線材120が第2導電線材122となっている。 Each electrode section 230 includes a plurality of vertical wires 12A made up of a plurality of conductive wires 120 and arrangement adjusting wires 15, and a plurality of horizontal wires 12B intersecting the vertical wires 12A. It intersects with the conductive wire 120 and the arrangement adjusting wire 15 and is arranged so as to intersect with the conductive wire 120 and the arrangement adjusting wire 15 up and down at predetermined intervals. In this embodiment, the conductive wire 120 of one electrode part 230 is the first conductive wire 121 and the conductive wire 120 of the other electrode part 230 is the second conductive wire 122.
 縦線材12Aの導電線材120と配置調整用線材15とは、略同じ向きで交互に並べて配置されている。交互に配置する導電線材120の本数及び配置調整用線材15の本数は、一方又は双方を複数本づつ配置して繰り返してもよいが、ここではそれぞれ1本づつ繰り返して配置している。各導電線材120間に配置される配置調整用線材15の本数等は、製造後に得られる第1導電線材121及び第2導電線材122の配置間隔に応じて設定するのがよい。隣り合う縦線材12A間の間隔及び導電線材120間の間隔は、適宜設定した範囲に調整されることが好ましい。 The conductive wire 120 and the arrangement adjusting wire 15 of the vertical wire 12A are alternately arranged in substantially the same direction. The number of the conductive wires 120 and the number of the arrangement adjusting wires 15 that are alternately arranged may be repeated by arranging one or both of them in plurality, but here, each of them is repeatedly arranged one by one. The number or the like of the arrangement adjusting wires 15 arranged between the conductive wires 120 is preferably set according to the arrangement interval of the first conductive wires 121 and the second conductive wires 122 obtained after manufacture. It is preferable that the interval between the adjacent vertical wire rods 12A and the interval between the conductive wire rods 120 are adjusted to a suitably set range.
 縦線材12Aの導電線材120は上述の通りであるが、縦線材12Aの第1導電線材121となる一部の導電線材120には、材料含有液130に含有された正孔輸送材料が付着し易くなるように材料が選択され、表面処理が施されていてもよい。また第2導電線材122となる他部の導電線材120には、材料含有液130に含有された電子輸送材料が付着し易くなるように材料が選択され、或いは表面処理が施されていてもよい。 The conductive wire 120 of the vertical wire 12A is as described above, but the hole transport material contained in the material-containing liquid 130 is attached to a part of the conductive wire 120 that becomes the first conductive wire 121 of the vertical wire 12A. The material may be selected so as to be easy and surface treatment may be performed. In addition, a material may be selected or a surface treatment may be performed on the other conductive wire 120 that becomes the second conductive wire 122 so that the electron transport material contained in the material-containing liquid 130 is easily attached. .
 例えば、第1導電線材121を構成する導電線材120の表面材料と第2導電線材122を構成する導電線材120の表面材料とを、錫と銅等のように電位差が生じる組み合わせで選択することで、p型有機半導体13A又はn型有機半導体13Bが各導電線材120の表面に結晶又は分子として生成することを制御してもよい。 For example, by selecting the surface material of the conductive wire 120 constituting the first conductive wire 121 and the surface material of the conductive wire 120 constituting the second conductive wire 122 in a combination that causes a potential difference such as tin and copper. The p-type organic semiconductor 13A or the n-type organic semiconductor 13B may be controlled to be generated as crystals or molecules on the surface of each conductive wire 120.
 縦線材12Aの配置調整用線材15は、後述する材料含有液130により溶解可能な材料からなり、正孔輸送材料及び電子輸送材料に応じて選択される溶媒により溶解可能なものである。配置調整用線材15は絶縁性を有する樹脂製の線材であってもよい。特に限定されるものではないが、例えばアクリル樹脂、ビニル樹脂等の線材を用いてもよい。
 配置調整用線材15の太さは、過剰に太いと溶解性が低下したり導電線材120間の間隔が広くなり、一方、過剰に細いと導電線材120間の間隔を確保し難くなるため、例えば導電線材120の線径に対して0.5~1.0倍のようにしてもよい。
The arrangement adjusting wire 15 of the vertical wire 12A is made of a material that can be dissolved by the material-containing liquid 130 described later, and can be dissolved by a solvent selected according to the hole transport material and the electron transport material. The arrangement adjusting wire 15 may be an insulating resin wire. Although not particularly limited, for example, a wire such as an acrylic resin or a vinyl resin may be used.
If the thickness of the arrangement adjusting wire 15 is excessively large, the solubility decreases or the interval between the conductive wires 120 is widened. On the other hand, if the thickness is excessively thin, it is difficult to secure the interval between the conductive wires 120. The wire diameter of the conductive wire 120 may be 0.5 to 1.0 times.
 横線材12Bは、単に導電線材120及び配置調整用線材15と交差する方向に配置するだけでもよいが、ここでは所定間隔毎に上下に導電線材120及び配置調整用線材15と交差して配置している。
 この横線材12Bは、配置調整用線材15とは異なる絶縁性の線材からなり、後述する材料含有液130、即ち、使用される正孔輸送材料及び電子輸送材料に応じて使用される溶媒に対する溶解性が、配置調整用線材15よりも低い材料からなる。特に限定されるものではないが、例えばPET等のポリエステルなどの線材を用いてもよい。
The horizontal wire 12B may be simply arranged in a direction intersecting with the conductive wire 120 and the arrangement adjusting wire 15, but here, the horizontal wire 12B is arranged so as to intersect with the conductive wire 120 and the arrangement adjusting wire 15 up and down at predetermined intervals. ing.
The horizontal wire 12B is made of an insulating wire different from the arrangement adjusting wire 15, and is dissolved in a material-containing liquid 130 described later, that is, a solvent used according to the hole transport material and the electron transport material used. The material is made of a material that is lower than the arrangement adjusting wire 15. Although not particularly limited, for example, a wire such as polyester such as PET may be used.
 このような横線材12Bとともに縦線材12Aを一体化することで、導電線材120間に配置調整用線材15を介在させた状態で離間させて安定して保持でき、導電線材120間を略全長にわたり互いに所定間隔で離間させて安定して配置できる。 By integrating the vertical wire 12A together with such a horizontal wire 12B, the conductive wire 120 can be stably separated and held with the arrangement adjusting wire 15 interposed between the conductive wires 120. They can be stably arranged separated from each other at a predetermined interval.
 支持線材320は、各電極部230の縦線材12Aと交差する方向に配置し、さらに各電極部230の導電線材120間に架け渡すように上下に交差して配置する。この支持線材320は、配置調整用線材15とは異なる絶縁性の線材からなり、材料含有液130の溶媒により溶解性が低い材料からなる。特に限定されるものではないが、例えばPET等のポリエステルなどの線材を用いてもよい。 The support wire 320 is arranged in a direction intersecting with the vertical wire 12 </ b> A of each electrode part 230, and is further arranged so as to cross up and down so as to be bridged between the conductive wires 120 of each electrode part 230. The support wire 320 is made of an insulating wire different from the arrangement adjusting wire 15, and is made of a material having low solubility by the solvent of the material-containing liquid 130. Although not particularly limited, for example, a wire such as polyester such as PET may be used.
 支持線材320により複数の電極部230を支持した構造にすることで、ダブルラッセル編みされた織布として電極構造体22を形成できる。これにより複数の電極部230が所定の距離を置いて対向配置され、第1導電線材121を構成する導電線材120と第2導電線材122を構成する導電線材120が略同じ向きで互いに近接位置で対向するように配置される。 The electrode structure 22 can be formed as a woven fabric knitted with double raschel by providing a structure in which the plurality of electrode portions 230 are supported by the support wire 320. As a result, the plurality of electrode portions 230 are arranged to face each other at a predetermined distance, and the conductive wire material 120 constituting the first conductive wire material 121 and the conductive wire material 120 constituting the second conductive wire material 122 are substantially in the same direction and close to each other. It arrange | positions so that it may oppose.
 材料含有液130調整工程では、上述のような正孔輸送材料及び電子輸送材料のうちの少なくとも一方を溶媒中に含有させることで、材料含有液130を調製する。材料含有液130は材料付着工程に応じて調製する必要がある。例えば第1導電線材121と第2導電線材122とに、別々に材料含有液130を接触させてp型有機半導体13Aとn型有機半導体13Bとを形成する場合には、正孔輸送材料を含有する材料含有液130と電子輸送材料を含有する材料含有液130とを別々に調製する。ここでは両輸送材料を溶媒中に含有させることで材料含有液130を調製している。 In the material-containing liquid 130 adjustment step, the material-containing liquid 130 is prepared by containing at least one of the hole transport material and the electron transport material as described above in the solvent. It is necessary to prepare the material-containing liquid 130 according to the material adhesion process. For example, when the p-type organic semiconductor 13A and the n-type organic semiconductor 13B are formed by bringing the material-containing liquid 130 into contact with the first conductive wire 121 and the second conductive wire 122 separately, a hole transport material is included. The material-containing liquid 130 to be prepared and the material-containing liquid 130 containing the electron transport material are prepared separately. Here, the material-containing liquid 130 is prepared by including both transport materials in a solvent.
 正孔輸送材料としては、上述した材料の他に有機半導体として使用可能な電子受容性を有する有機化合物の前駆体であってもよく、電子輸送材料はとしては、上述した材料の他に有機半導体として使用可能な電子供与性を有する有機化合物の前駆体であってもよい。前駆体を用いる場合には、その後の工程において適宜反応させて所望の化合物を生成させればよい。 The hole transport material may be a precursor of an organic compound having an electron acceptability that can be used as an organic semiconductor in addition to the above-described materials, and the electron transport material may be an organic semiconductor other than the above-described materials. The precursor of the organic compound which has the electron-donating property which can be used as these may be sufficient. In the case of using a precursor, a desired compound may be generated by appropriately reacting in the subsequent steps.
 材料含有液130に使用する光電変換デバイス作製用の溶媒は正孔輸送材料や電子輸送材料を分散させる溶媒であってもよいが、溶解可能な溶媒が好適であり、揮発性を有する溶媒であってもよい。この溶媒は電極構造体22の配置調整用線材15を溶解可能であることが必要であり、横線材12Bを溶解不能であるのが好ましい。 The solvent for producing a photoelectric conversion device used for the material-containing liquid 130 may be a solvent in which a hole transport material or an electron transport material is dispersed. However, a solvent that can be dissolved is suitable, and a solvent having volatility. May be. This solvent needs to be able to dissolve the wire 15 for adjusting the arrangement of the electrode structure 22 and preferably not to dissolve the horizontal wire 12B.
 この材料含有液130調製工程では、特に配置調整用線材15を溶解可能で横線材12B及び支持線材320を溶解不能な溶媒を選択して、材料含有液130を調製する。 In this material-containing liquid 130 preparation step, a material-containing liquid 130 is prepared by selecting a solvent that can particularly dissolve the arrangement adjusting wire 15 but cannot dissolve the horizontal wire 12B and the support wire 320.
 このような溶媒としては、配置調整用線材15及び横線材12Bに対する溶解性が確保できる限り、各正孔輸送材料や各電子輸送材料を用いて有機半導体を形成する際に通常用いられる溶媒を使用できる。本実施形態では、例えばトルエン、キシレン、酢酸等を使用する。この材料含有液130には、さらに配向制御ためのジカルボン酸のような添加剤、強度保持のためのメタクリル酸のようなバインダ等の成分を含有させていてもよい。 As such a solvent, as long as the solubility in the arrangement adjusting wire 15 and the horizontal wire 12B can be ensured, a solvent usually used when forming an organic semiconductor using each hole transport material or each electron transport material is used. it can. In the present embodiment, for example, toluene, xylene, acetic acid or the like is used. This material-containing liquid 130 may further contain components such as an additive such as dicarboxylic acid for controlling orientation and a binder such as methacrylic acid for maintaining strength.
 材料付着工程では、材料含有液130を電極構造体22に接触させることで、配置調整用線材15を溶解すると共に、材料含有液130中の正孔輸送材料や電子輸送材料を電極構造体22の導電線材120に付着させる。
 正孔輸送材料を溶解した材料含有液130と電子輸送材料を溶解した材料含有液130とを用いる場合には、それぞれを順次電極構造体22の一部又は全部に接触させ、両輸送材料を溶解した材料含有液130を用いる場合には一度に接触させればよい
 材料含有液130を電極構造体22に接触させて正孔輸送材料や電子輸送材料を導電線材120に付着させる方法は特に限定されない。例えば材料含有液130を電極構造体22に塗布し、インクジェットプリンタによる印刷により行ってもよく、電極構造体22を材料含有液130に浸漬してディッピングにより行ってもよい。
In the material adhesion step, the material-containing liquid 130 is brought into contact with the electrode structure 22 to dissolve the arrangement adjusting wire 15, and the hole transport material and the electron transport material in the material-containing liquid 130 are removed from the electrode structure 22. It adheres to the conductive wire 120.
In the case of using the material-containing liquid 130 in which the hole transport material is dissolved and the material-containing liquid 130 in which the electron transport material is dissolved, each is sequentially brought into contact with part or all of the electrode structure 22 to dissolve both the transport materials. In the case of using the material-containing liquid 130, the method may be such that the material-containing liquid 130 is brought into contact with the electrode structure 22 to attach the hole transport material or the electron transport material to the conductive wire 120. . For example, the material-containing liquid 130 may be applied to the electrode structure 22 and printed by an ink jet printer, or the electrode structure 22 may be immersed in the material-containing liquid 130 and dipped.
 この実施形態では、図11(a)に示すように、材料含有液130をディッピング等の方法で接触させ、複数の電極部230間に材料含有液130を配置する。これにより図11(b)のように、各電極部230の導電線材120間に配置した配置調整用線材15を溶解する。 In this embodiment, as shown in FIG. 11A, the material-containing liquid 130 is brought into contact by a method such as dipping, and the material-containing liquid 130 is arranged between the plurality of electrode portions 230. As a result, as shown in FIG. 11B, the arrangement adjusting wire 15 arranged between the conductive wires 120 of each electrode portion 230 is dissolved.
 溶解された配置調整用線材15の成分は材料含有液130に分散して残留させてもよく、材料含有液130により置換して除去してもよい。ここでは配置調整用線材15の成分を材料中に溶解してこの材料中に配置させている。これにより配置調整用線材15が配置されていた部位に材料含有液130が配置され、導電線材120間及びその近傍に材料含有液130の正孔輸送材料や電子輸送材料が他の部位と同等に配置される。そして正孔輸送材料や電子輸送材料が、それぞれ第1導電線材121の導電線材120や第2導電線材122の導電線材120に付着する。 The dissolved components of the arrangement adjusting wire 15 may be dispersed in the material-containing liquid 130 and may be left behind, or may be replaced by the material-containing liquid 130 and removed. Here, the components of the arrangement adjusting wire 15 are dissolved in the material and arranged in this material. As a result, the material-containing liquid 130 is disposed in the portion where the arrangement adjusting wire 15 has been disposed, and the hole transport material and the electron transport material of the material-containing liquid 130 are equivalent to other portions between and in the vicinity of the conductive wire 120. Be placed. Then, the hole transport material and the electron transport material adhere to the conductive wire 120 of the first conductive wire 121 and the conductive wire 120 of the second conductive wire 122, respectively.
 その後、半導体形成工程において、第1導電線材121を構成する導電線材120に材料含有液130と共に付着させた正孔輸送材料から、p型有機半導体13Aを一部の導電線材120に接続した状態で形成し、第2導電線材122を構成する導電線材120に付着させた電子輸送材料からn型有機半導体13Bを他部の導電線材120に接続した状態で形成する。 Thereafter, in the semiconductor formation step, the p-type organic semiconductor 13A is connected to a part of the conductive wire 120 from the hole transport material attached to the conductive wire 120 constituting the first conductive wire 121 together with the material-containing liquid 130. The n-type organic semiconductor 13 </ b> B is formed in a state of being connected to the other conductive wire 120 from the electron transport material formed and attached to the conductive wire 120 constituting the second conductive wire 122.
 材料含有液130から有機半導体13A,13Bを形成するには、材料含有液130中の溶媒を揮発させて乾燥することで行ってもよく、乾燥後に更に加熱処理やアニール処理等を施してもよい。このような処理は比較的低温で行うことができる。
 正孔輸送材料や電子輸送材料として前駆体を用いた場合には、乾燥後の処理により前駆体を正孔輸送材料や電子輸送材料に転化させ、導電線材120に接続された状態で有機半導体13A,13Bを形成することができる。また正孔輸送材料や電子輸送材料自体を用いた場合であっても、乾燥後の加熱処理やアニール処理を施すことで、得られる光電変換デバイス1の光電変換の性能が向上する。
In order to form the organic semiconductors 13A and 13B from the material-containing liquid 130, the solvent in the material-containing liquid 130 may be volatilized and dried, and after drying, heat treatment, annealing treatment, or the like may be performed. . Such processing can be performed at a relatively low temperature.
When a precursor is used as a hole transport material or an electron transport material, the precursor is converted into a hole transport material or an electron transport material by a treatment after drying, and the organic semiconductor 13A is connected to the conductive wire 120 while being connected to the conductive wire 120. , 13B can be formed. Moreover, even if it is a case where hole transport material or electron transport material itself is used, the performance of photoelectric conversion of the obtained photoelectric conversion device 1 improves by performing the heat processing and annealing process after drying.
 最後に、光電変換層13の表面全体に保護層を積層する。この保護層は、光電変換層13で受発光する光が透過可能な透明性を有する樹脂等の材料を用いることができる。これにより光電変換デバイス1の製造が終了する。 Finally, a protective layer is laminated on the entire surface of the photoelectric conversion layer 13. For the protective layer, a material such as a transparent resin that can transmit light received and emitted by the photoelectric conversion layer 13 can be used. Thereby, manufacture of the photoelectric conversion device 1 is completed.
 次に、上記した光電変換デバイス1の製造方法における作用効果について説明する。
 このような製造方法によれば、電極構造体22が複数の導電線材120を配置調整用線材15とともに一体化されているので、柔軟性を有する導電線材120であっても容易に配置できる。また、配置調整用線材15の数、形状、配置等を調整することで、各導電線材120の配置、形状、密度等を調整して導電線材120の配置間隔を容易に調整できるとともに、その状態を製造時に容易に安定して保持できる。特に導電線材120間に配置調整用線材15を介在させることで、導電線材120間を互いに所定間隔で精度よく離間させて電極構造体22を形成したので、各導電線材120を所望の間隔で安定して配置できる。そのため、複数の導電線材120の配置間隔のばらつきを防止して光電変換の性能が確保される。
Next, the effect in the manufacturing method of the above-mentioned photoelectric conversion device 1 is demonstrated.
According to such a manufacturing method, since the electrode structure 22 integrates the plurality of conductive wires 120 together with the arrangement adjusting wire 15, even the flexible conductive wire 120 can be easily arranged. In addition, by adjusting the number, shape, arrangement, etc. of the arrangement adjusting wire 15, the arrangement, shape, density, etc. of each conductive wire 120 can be adjusted to easily adjust the arrangement interval of the conductive wire 120, and the state Can be easily and stably maintained during production. In particular, by arranging the arrangement adjusting wire 15 between the conductive wire rods 120, the conductive wire rods 120 are accurately separated from each other at a predetermined interval to form the electrode structure 22, so that each conductive wire rod 120 is stabilized at a desired interval. Can be arranged. For this reason, variations in the arrangement interval of the plurality of conductive wires 120 are prevented, and the performance of photoelectric conversion is ensured.
 また、材料含有液130を電極構造体22に接触させることで配置調整用線材15を溶解するので、配置調整用線材15が配置されていた部位に材料含有液130の正孔輸送材料や電子輸送材料を配置できる。そのため、導電線材120間にはより多くの有機半導体13A,13Bを均一に配置でき、光電変換の性能を確保することができる。従って、光電変換の性能を確保しつつ柔軟性を有する光電変換デバイス1を容易に製造できる。 In addition, since the arrangement adjusting wire 15 is dissolved by bringing the material containing liquid 130 into contact with the electrode structure 22, the hole transport material and the electron transport of the material containing liquid 130 are disposed at the portion where the arrangement adjusting wire 15 is arranged. Material can be placed. Therefore, more organic semiconductors 13A and 13B can be disposed uniformly between the conductive wires 120, and the performance of photoelectric conversion can be ensured. Therefore, it is possible to easily manufacture the photoelectric conversion device 1 having flexibility while ensuring the performance of photoelectric conversion.
 しかも、得られた光電変換デバイス20において、複数の導電線材120からなる第1導電線材121と複数の導電線材からなる第2導電線材122とが、横線材12Bにより保持された状態で支持線材320により支持される。従って、光電変換デバイス20を変形させた際に一方の面側の第1導電線材121と他方の面側の第2導電線材122との間に作用する力を支持線材320で受けることができる。よって、剥離などを防止でき、光電変換デバイス20の光電変換層13の損傷を防止して耐久性を向上できる。 Moreover, in the obtained photoelectric conversion device 20, the support wire 320 is in a state where the first conductive wire 121 made of the plurality of conductive wires 120 and the second conductive wire 122 made of the plurality of conductive wires are held by the horizontal wire 12 </ b> B. Is supported by Therefore, when the photoelectric conversion device 20 is deformed, the force acting between the first conductive wire 121 on one surface side and the second conductive wire 122 on the other surface side can be received by the support wire 320. Therefore, exfoliation etc. can be prevented, damage to the photoelectric conversion layer 13 of the photoelectric conversion device 20 can be prevented, and durability can be improved.
 本方法では、複数の導電線材120及び配置調整用線材15からなる複数の縦線材12Aと、複数の縦線材12Aと交差して配置した複数の横線材12Bとを備えたネットからなる電極構造体22を準備し、配置調整用線材15を溶解可能で横線材12Bを溶解不能な溶媒を用いて材料含有液130を調製した。これにより、配置調整用線材15を溶解後に横線材12Bを光電変換層13に残留させることができ、使用時に変形させても光電変換層13が破損し難くて光電変換デバイス1の耐久性を向上でき、また各導電線材120間の間隔を保つことができる。 In this method, an electrode structure comprising a net comprising a plurality of vertical wires 12A made up of a plurality of conductive wires 120 and arrangement adjusting wires 15, and a plurality of horizontal wires 12B arranged crossing the plurality of vertical wires 12A. 22 was prepared, and a material-containing liquid 130 was prepared using a solvent capable of dissolving the arrangement adjusting wire 15 and not dissolving the horizontal wire 12B. Thereby, the horizontal wire 12B can be left in the photoelectric conversion layer 13 after dissolving the arrangement adjusting wire 15, and even if it is deformed at the time of use, the photoelectric conversion layer 13 is hardly damaged, and the durability of the photoelectric conversion device 1 is improved. In addition, the interval between the conductive wires 120 can be maintained.
 この実施形態では、正孔輸送材料及び電子輸送材料を含有した材料含有液130を調製し、この材料含有液130を用いてp型有機半導体13Aを一部の導電線材120に接続した状態で形成すると共に、n型有機半導体13Bを他部の導電線材120に接続した状態で形成した。これにより、p型有機半導体13A及びn型有機半導体13Bを同時に形成でき、製造が容易である。 In this embodiment, a material-containing liquid 130 containing a hole transport material and an electron transport material is prepared, and the p-type organic semiconductor 13 </ b> A is connected to a part of the conductive wire 120 using the material-containing liquid 130. At the same time, the n-type organic semiconductor 13B was formed in a state of being connected to the other conductive wire 120. Thereby, the p-type organic semiconductor 13A and the n-type organic semiconductor 13B can be formed at the same time, and manufacturing is easy.
 材料含有液130を電極構造体22の片面側に付着させて有機半導体13A,13Bを有する光電変換層13を形成した。よって、得られた光電変換デバイス1では第1導電線材121及び第2導電線材122が、光電変換層13の一方の面側にだけ配置されて他方の面側に配置されない。そのため、他方の面側を受光面として使用すれば、光電変換の性能を向上できる。 The photoelectric conversion layer 13 having the organic semiconductors 13A and 13B was formed by adhering the material-containing liquid 130 to one side of the electrode structure 22. Therefore, in the obtained photoelectric conversion device 1, the first conductive wire 121 and the second conductive wire 122 are disposed only on one surface side of the photoelectric conversion layer 13 and are not disposed on the other surface side. Therefore, if the other surface side is used as the light receiving surface, the performance of photoelectric conversion can be improved.
 第4実施形態は本発明の範囲内で適宜変更可能である。
 上記第4実施形態では、配置調整用線材15を完全に溶解した例について説明したが、配置調整用線材15が溶解後に一部残留したとしても、溶解量に応じて上述のような作用効果を得ることができるため、本発明を適用できる。
The fourth embodiment can be appropriately changed within the scope of the present invention.
In the fourth embodiment, the example in which the arrangement adjusting wire 15 is completely dissolved has been described. However, even if the arrangement adjusting wire 15 partially remains after dissolution, the above-described operation and effect can be achieved depending on the amount of dissolution. Therefore, the present invention can be applied.
 複数の電極部230を支持線材320により一体化した電極構造体22とすることなく、複数の電極部230を支持線材320により一体化せずに電極構造体とし、各電極部230を一つの光電変換層13内に埋設したり、一つの光電変換層の一方の面側と他方の面側とにそれぞれ配置してもよい。
 上記第4実施形態では、光電変換層13の一方面側に配置された電極部230の導電線材120をp型電極とし、一方面側に配置された電極部230の導電線材120をp型電極とした例について説明した。しかし、各電極部230に第1導電線材121及び第2導電線材122を配置してもよい。さらに支持線材320を配置せずに複数の電極部230を別々に対向させて配置する場合であっても、本発明を適用できる。
The plurality of electrode portions 230 are not integrated into the electrode structure 22 by the support wire 320, but the plurality of electrode portions 230 are not integrated into the support wire 320 to form an electrode structure, and each electrode portion 230 is made into one photoelectric element. You may embed in the conversion layer 13, and may each arrange | position to the one surface side and other surface side of one photoelectric converting layer.
In the said 4th Embodiment, the conductive wire 120 of the electrode part 230 arrange | positioned at the one surface side of the photoelectric converting layer 13 is made into a p-type electrode, and the conductive wire 120 of the electrode part 230 arrange | positioned at the one surface side is made into a p-type electrode. The example was described. However, the first conductive wire 121 and the second conductive wire 122 may be disposed on each electrode portion 230. Further, the present invention can be applied even when the plurality of electrode portions 230 are arranged separately facing each other without arranging the support wire 320.
 第4実施形態では、電極構造体22として横線材12Bを配置した例について説明したが、導電線材120と配置調整用線材15とを一体化して所定位置に配置することが可能であれば、横線材12Bを使用しなくてもよい。また、一つの光電変換層13に一枚の電極構造体22を埋設することなく、同じ光電変換層13に複数枚の電極構造体22を埋設してもよく、複数の光電変換層13を積層してそれぞれに1枚又は複数枚の電極構造体22を埋設してもよい。 In 4th Embodiment, although the example which has arrange | positioned the horizontal wire 12B as the electrode structure 22 was demonstrated, if the conductive wire 120 and the arrangement | positioning adjustment wire 15 can be integrated and arrange | positioned in a predetermined position, it will be horizontal. The wire 12B may not be used. In addition, a plurality of electrode structures 22 may be embedded in the same photoelectric conversion layer 13 without embedding one electrode structure 22 in one photoelectric conversion layer 13, and a plurality of photoelectric conversion layers 13 are stacked. Then, one or a plurality of electrode structures 22 may be embedded in each.
[第5実施形態]
 図12乃至図14を参照しながら、本発明の第5実施形態を詳細に説明する。光電変換デバイスが、光を電気エネルギーに変換するものとして太陽電池を想定して説明するが、電気エネルギーを光エネルギーに変換するものであっても同様に適用することができる。
[Fifth Embodiment]
The fifth embodiment of the present invention will be described in detail with reference to FIGS. The photoelectric conversion device will be described on the assumption that a solar cell is used to convert light into electric energy. However, the present invention can be similarly applied to a device that converts electric energy into light energy.
 図12は本発明の第5実施形態に係る光電変換デバイス1の断面図であり、図13は光電変換デバイス1の斜視図である。 FIG. 12 is a cross-sectional view of the photoelectric conversion device 1 according to the fifth embodiment of the present invention, and FIG. 13 is a perspective view of the photoelectric conversion device 1.
 光電変換デバイス1は、電極12と光電変換層13とから構成されている。なお、図13では、光電変換層13の表示を省略している。 The photoelectric conversion device 1 includes an electrode 12 and a photoelectric conversion layer 13. In FIG. 13, the display of the photoelectric conversion layer 13 is omitted.
 電極12は、図13に示すように、下側電極部120と、下側電極部120から立ち上がった支持部320によって支持される上側電極部220と、から構成されている。 As shown in FIG. 13, the electrode 12 includes a lower electrode part 120 and an upper electrode part 220 supported by a support part 320 rising from the lower electrode part 120.
 下側電極部120は、複数の縦線材120Aと複数の横線材120Bとを備えている。縦線材120Aと横線材120Bとは1本ごとに交差するように織られている。つまり下側電極部120は平織りのネット状に形成されている。 The lower electrode portion 120 includes a plurality of vertical wires 120A and a plurality of horizontal wires 120B. The vertical wire 120A and the horizontal wire 120B are woven so as to intersect each other. That is, the lower electrode portion 120 is formed in a plain weave net shape.
 縦線材120Aとして、2種の線材、具体的には、第1導電線材121と第1絶縁線材122とを利用する。図13に示すように、第1導電線材121と第1絶縁線材122とは交互に並べられている。なお、第1導電線材121と第1絶縁線材122とは接触しないよう、所定の間隔を置いて並設されている。 As the vertical wire 120A, two types of wires, specifically, the first conductive wire 121 and the first insulating wire 122 are used. As shown in FIG. 13, the first conductive wire 121 and the first insulating wire 122 are alternately arranged. The first conductive wire 121 and the first insulating wire 122 are juxtaposed at a predetermined interval so as not to contact each other.
 これらの第1導電線材121として、例えば銅線、ステンレス線等の金属線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第1導電線材121の一端部121Eは図13に示すように第1のバスバー121Aに接続されている。 As the first conductive wire 121, for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used. One end 121E of each first conductive wire 121 is connected to the first bus bar 121A as shown in FIG.
 第1絶縁線材122は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The first insulating wire 122 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
 横線材12Bとして第2絶縁線材を用いる。第2絶縁線材は、第1絶縁線材122と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The second insulating wire is used as the horizontal wire 12B. Similar to the first insulating wire 122, the second insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
 上側電極部220は、複数の縦線材220Aと複数の横線材220Bとを備えている。縦線材220Aと横線材220Bとは1本ごとに交差するように織られている。つまり上側電極部220は平織りのネット状に形成されている。 The upper electrode section 220 includes a plurality of vertical wires 220A and a plurality of horizontal wires 220B. The vertical wire 220A and the horizontal wire 220B are woven so as to intersect each other. That is, the upper electrode portion 220 is formed in a plain weave net shape.
 縦線材220Aとして、2種の線材、具体的には、第2導電線材221と第3絶縁線材222とを利用する。図13に示すように、第2導電線材221と第3絶縁線材222とは交互に並べられている。なお、第2導電線材221と第3絶縁線材222とは接触しないよう、所定の間隔を置いて並設されている。 As the vertical wire 220A, two types of wires, specifically, the second conductive wire 221 and the third insulating wire 222 are used. As shown in FIG. 13, the second conductive wire 221 and the third insulating wire 222 are alternately arranged. The second conductive wire 221 and the third insulating wire 222 are juxtaposed at a predetermined interval so as not to contact each other.
 第2導電線材221として、例えば銅線、ステンレス線等の金属線、化学繊維の表面に金属めっき処理を施した線などを利用することができる。各第2導電線材221の一端部221Eは図13に示すように第2のバスバー221Aに接続されている。 As the second conductive wire 221, for example, a metal wire such as a copper wire or a stainless steel wire, a wire obtained by performing metal plating on the surface of a chemical fiber, or the like can be used. One end 221E of each second conductive wire 221 is connected to the second bus bar 221A as shown in FIG.
 第3絶縁線材222は、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 The third insulating wire 222 is made of a flexible insulating resin such as a nylon resin, a silicone resin, a urethane resin, an epoxy resin, a polycarbonate resin, or a vinyl resin.
 横線材220Bとして第4絶縁線材を用いる。第4絶縁線材は、第3絶縁線材222と同様に、例えばナイロン樹脂、シリコーン樹脂、ウレタン樹脂、エポキシ樹脂、ポリカーボネート樹脂、ビニル樹脂などの柔軟性に富む絶縁樹脂によって構成されている。 A fourth insulating wire is used as the horizontal wire 220B. Similar to the third insulating wire 222, the fourth insulating wire is made of a flexible insulating resin such as nylon resin, silicone resin, urethane resin, epoxy resin, polycarbonate resin, or vinyl resin.
 支持部320は、上側電極部220と下側電極部120が所定の距離で対向配置されるよう下側電極部120に対して上側電極部220を支持する。この支持部320は、第5絶縁線材によって構成されている。支持部320は、図13に示すように、下側電極部120に対して上側電極部220が、所定の距離Dだけ離れて位置するように支持する。このため、支持部320を構成する第5絶縁線材は、下側電極部120及び上側電極部220を構成する第1絶縁線材122,第4絶縁線材等の線材よりも高い剛性を有するように構成される。第5絶縁線材は、第1絶縁線材122などよりも太く、また第1絶縁線材122などを構成する樹脂材料よりも硬い樹脂材料を使用し、例えば、20μmm~30μmm程度の太さの線材料を用いて構成される。 The support part 320 supports the upper electrode part 220 with respect to the lower electrode part 120 so that the upper electrode part 220 and the lower electrode part 120 are arranged to face each other at a predetermined distance. This support part 320 is comprised by the 5th insulated wire. As shown in FIG. 13, the support part 320 supports the upper electrode part 220 so that the upper electrode part 220 is located a predetermined distance D away from the lower electrode part 120. Therefore, the fifth insulating wire constituting the support portion 320 is configured to have higher rigidity than the first insulating wire 122 and the fourth insulating wire constituting the lower electrode portion 120 and the upper electrode portion 220. Is done. The fifth insulating wire is made of a resin material that is thicker than the first insulating wire 122 or the like and harder than the resin material that constitutes the first insulating wire 122 or the like. For example, a wire material having a thickness of about 20 μm to 30 μmm is used. Constructed using.
 このような支持部320を構成する第5絶縁線材は、下側電極部120と上側電極部220とに編みこまれて、設けられる(後述の図14参照)。例えば、電極12において、下側電極部120と上側電極部220と支持部320とはダブルラッセル編みにより構成される。なお、図13では、説明の便宜上、下側電極部120と上側電極部220との間隔Dを広めに表しているが、この間隔Dは、図示例の寸法に限定されるものではない。 The fifth insulating wire constituting the support part 320 is knitted and provided on the lower electrode part 120 and the upper electrode part 220 (see FIG. 14 described later). For example, in the electrode 12, the lower electrode portion 120, the upper electrode portion 220, and the support portion 320 are configured by double raschel knitting. In FIG. 13, for convenience of explanation, the distance D between the lower electrode part 120 and the upper electrode part 220 is shown to be wide, but the distance D is not limited to the dimensions in the illustrated example.
 第1導電線材121、第2導電線材221、第1絶縁線材122及び第3絶縁線材222などは、20μmm~25μmm程度の太さに設定されている。 The first conductive wire 121, the second conductive wire 221, the first insulating wire 122, the third insulating wire 222, etc. are set to a thickness of about 20 μm to 25 μmm.
 次に、光電変換層13について説明する。図14は図12の円A領域の模式的拡大図である。光電変換層13は、一方の電極、つまり下側電極部120上に設けられ正孔輸送材料となるp層の有機半導体13Aと、他方の電極、つまり上側電極部220上に設けられ電子輸送材料となるn層の有機半導体13Bと、から構成されている。図14に示すように、有機半導体13A上に有機半導体13Bが設けられている。よって、下側電極部120はp型電極として機能し、上側電極部220はn型電極として機能する。p層の有機半導体13Aとn層の有機半導体13Bとはpn接合を形成している。 Next, the photoelectric conversion layer 13 will be described. FIG. 14 is a schematic enlarged view of a circle A region in FIG. The photoelectric conversion layer 13 is provided on one electrode, that is, the lower electrode portion 120, and the p-layer organic semiconductor 13A serving as a hole transport material, and on the other electrode, that is, the upper electrode portion 220, and the electron transport material. And an n-layer organic semiconductor 13B. As shown in FIG. 14, the organic semiconductor 13B is provided on the organic semiconductor 13A. Therefore, the lower electrode part 120 functions as a p-type electrode, and the upper electrode part 220 functions as an n-type electrode. The p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B form a pn junction.
 本実施形態におけるp層の有機半導体13Aとn層の有機半導体13Bの材料は、上記第3実施形態と同様のものが使用できる。 The materials of the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B in the present embodiment can be the same as those in the third embodiment.
 図12に示す光電変換デバイス1の製造方法について概略説明する。まず、第1導電線材121、第1絶縁線材122、第2絶縁線材を用意し、平織りして下側電極部120を作製する。同様に、上側電極部220を作製する。その後、p層の有機半導体13Aとなる正孔輸送材料を所定の箇所、例えば一方の電極、つまり下側電極部120上に、例えばインクジェットプリンタにより塗布する。 A method for manufacturing the photoelectric conversion device 1 shown in FIG. First, the first conductive wire 121, the first insulated wire 122, and the second insulated wire are prepared and plain weave to produce the lower electrode portion 120. Similarly, the upper electrode part 220 is produced. Thereafter, a hole transport material to be the p-layer organic semiconductor 13A is applied to a predetermined portion, for example, one electrode, that is, the lower electrode portion 120 by, for example, an ink jet printer.
 次に、n層の有機半導体13Bとなる電子輸送材料をp層の上に、p層の有機半導体13Aの場合と同様のインクジェットプリンタにより塗布する。 Next, an electron transport material to be the n-layer organic semiconductor 13B is applied on the p-layer by the same ink jet printer as in the case of the p-layer organic semiconductor 13A.
 これにより、p層の有機半導体13Aとn層の有機半導体13Bとによってpn接合が形成される。なお、n層の有機半導体13Bから塗布しその後p層の有機半導体13Aを塗布してもよい。 Thereby, a pn junction is formed by the p-layer organic semiconductor 13A and the n-layer organic semiconductor 13B. The n-layer organic semiconductor 13B may be applied, and then the p-layer organic semiconductor 13A may be applied.
 最後に、n層の上に下側電極部120を重ね合わせる。これにより、光電変換デバイス1が作製される。なお、図12に示す光電変換デバイス1が作製される手法であれば上述の方法に限定されない。 Finally, the lower electrode 120 is overlaid on the n layer. Thereby, the photoelectric conversion device 1 is produced. Note that the method is not limited to the above-described method as long as the photoelectric conversion device 1 illustrated in FIG. 12 is manufactured.
 このように構成された光電変換デバイス1では、例えば、上側電極部220側から光電変換層13内へ光が入射される場合、光Lは上側電極部220を構成する第2導電線材221と第3絶縁線材222との間を通って、光電変換層13の上面から内側領域に入り込む。図14に示すように、光L′は、光電変換層13の下面からも内側領域に入り込むことができる。下側電極部120と上側電極部220は、複数の光通過用の隙間S、つまり隙間Sの領域を光が透過する材料で構成している。 In the photoelectric conversion device 1 configured as described above, for example, when light is incident on the photoelectric conversion layer 13 from the upper electrode portion 220 side, the light L and the second conductive wire 221 constituting the upper electrode portion 220 It passes between the three insulated wires 222 and enters the inner region from the upper surface of the photoelectric conversion layer 13. As shown in FIG. 14, the light L ′ can enter the inner region also from the lower surface of the photoelectric conversion layer 13. The lower electrode portion 120 and the upper electrode portion 220 are made of a material that allows light to pass through a plurality of gaps S for light passage, that is, regions of the gaps S.
 本発明によれば、光が入射する光電変換層13の面に設ける電極を複数の光通過用の隙間Sを有するように構成したことで、電極を透明電極で構成することが不要となり、透明電極のためのレアメタルを材料として使用しなくて済む。そのため、光電変換デバイス用の電極12はCuやAlなどを使用することができる。光電変換デバイス1は、電極12が可撓性を有するネットで構成されているため、平面状に形成した後に、曲面状の表面に取り付けることができる。光電変換デバイス1を曲面に取り付けても、上側電極部220が下側電極部120から立ち上がった複数の支持部320によって支持されているため、上側電極部220と下側電極部120との間隔Dを維持することができる。これにより上側電極部220と下側電極部120との短絡を防止することができる。上側電極部220は、電極として機能する線材でネット状に構成されているため、ネットの端部にバスバーなどの部材を圧着或いは溶着することで、バスバーなどの部材が線材に接触する。従って、電気を取り出す製造工程が容易になる。さらに、光電変換層13の両面から光を取り込むことができるので、変換効率の向上を期待できる。 According to the present invention, since the electrode provided on the surface of the photoelectric conversion layer 13 on which light is incident is configured to have a plurality of gaps S for passing light, it is not necessary to configure the electrode with a transparent electrode, and the transparent It is not necessary to use a rare metal for the electrode as a material. Therefore, Cu, Al, etc. can be used for the electrode 12 for photoelectric conversion devices. Since the photoelectric conversion device 1 is formed of a flexible net, the electrode 12 can be attached to a curved surface after being formed in a flat shape. Even when the photoelectric conversion device 1 is attached to a curved surface, the upper electrode portion 220 is supported by a plurality of support portions 320 rising from the lower electrode portion 120, and therefore the distance D between the upper electrode portion 220 and the lower electrode portion 120. Can be maintained. Thereby, the short circuit with the upper side electrode part 220 and the lower side electrode part 120 can be prevented. Since the upper electrode portion 220 is formed in a net shape with a wire rod functioning as an electrode, a member such as a bus bar is brought into contact with the wire rod by crimping or welding a member such as a bus bar to the end portion of the net. Therefore, the manufacturing process for extracting electricity is facilitated. Furthermore, since light can be taken in from both surfaces of the photoelectric conversion layer 13, an improvement in conversion efficiency can be expected.
 以上、本発明の第5実施形態を説明したが、本発明の範囲において適宜変更して実施することができる。上記構成では、第1導電線材121同士の間及び第2導電線材221同士の間に、第1絶縁線材122、第3絶縁線材222がそれぞれ1本設けられる構成を説明したが、図15(A)に示すように、複数本設けられてもよい。光電変換デバイスは、図15(B)に示すように第1絶縁線材122、第3絶縁線材222を省略して構成されてもよい。 As mentioned above, although 5th Embodiment of this invention was described, in the range of this invention, it can change suitably and can implement. In the above configuration, a configuration in which one first insulating wire 122 and one third insulating wire 222 are provided between the first conductive wires 121 and between the second conductive wires 221 has been described. FIG. As shown in FIG. The photoelectric conversion device may be configured by omitting the first insulating wire 122 and the third insulating wire 222 as shown in FIG.
[第1及び第2実施形態]
1:表示装置
2:表示部
3:制御部
11,21,31,41:発光層
62,22,32,42:一方の線条電極群
62a,22a,32a,42a:導電線材
62b,62c,22b,22c,32b,32c,42b,42c:配置調整用の線材
63,23,33,43:他方の線条電極群
63a,23a,33a,43a:導電線材
63b,63c,23b,23c,33b,33c,43b,43c:配置調整用の線材
64,24,34,44:間隔保持用の支持部材
15a:一方の切替制御部
15b:他方の切替制御部
16:電圧供給部
17:保護膜
51,52:隙間
53:保護膜
[First and second embodiments]
1: Display device 2: Display unit 3: Control unit 11, 21, 31, 41: Light emitting layer 62, 22, 32, 42: One linear electrode group 62a, 22a, 32a, 42a: Conductive wire material 62b, 62c, 22b, 22c, 32b, 32c, 42b, 42c: arrangement adjusting wire rods 63, 23, 33, 43: other wire electrode groups 63a, 23a, 33a, 43a: conductive wire rods 63b, 63c, 23b, 23c, 33b , 33c, 43b, 43c: arrangement adjusting wires 64, 24, 34, 44: spacing support member 15a: one switching control unit 15b: the other switching control unit 16: voltage supply unit 17: protective film 51 , 52: gap 53: protective film
[第3実施形態]
 1 :光電変換デバイス
12 :光電変換デバイス用の電極
120 :下側電極部
120A:下側電極部の縦線材
120B:下側電極部の横線材
121 :下側電極部の第1導電線材
122 :下側電極部の第2絶縁線材
220 :上側電極部
220A:上側電極部の縦線材
220B:上側電極部の横線材
221 :上側電極部の第2導電線材
222 :上側電極部の第2絶縁線材
13 :光電変換層
13A :p層の有機半導体
13B :n層の有機半導体
19 :保護層
[Third Embodiment]
1: Photoelectric conversion device 12: Electrode 120 for photoelectric conversion device: Lower electrode portion 120A: Vertical wire rod 120B of the lower electrode portion: Horizontal wire rod 121 of the lower electrode portion: First conductive wire rod 122 of the lower electrode portion: Second insulating wire 220 of the lower electrode portion: Upper electrode portion 220A: Vertical wire rod 220B of the upper electrode portion: Horizontal wire rod 221 of the upper electrode portion: Second conductive wire rod 222 of the upper electrode portion: Second insulating wire rod of the upper electrode portion 13: photoelectric conversion layer 13A: p-layer organic semiconductor 13B: n-layer organic semiconductor 19: protective layer
[第4実施形態]
1 : 光電変換デバイス
12 : 電極構造体
121 : p型電極
122 : n型電極
12A : 縦線材
12B : 横線材
120 : 導電線材
7 : バスバー
15 : 配置調整用線材
13 : 光電変換層
13A : p型有機半導体
13B : n型有機半導体
130 : 材料含有液
11 : 基材
20 : 光電変換デバイス
22 : 電極構造体
230 : 電極部
320 : 支持線材
[Fourth Embodiment]
1: Photoelectric conversion device 12: Electrode structure 121: p-type electrode 122: n-type electrode 12A: vertical wire 12B: horizontal wire 120: conductive wire 7: bus bar 15: arrangement adjusting wire 13: photoelectric conversion layer 13A: p-type Organic semiconductor 13B: n-type organic semiconductor 130: material containing liquid 11: base material 20: photoelectric conversion device 22: electrode structure 230: electrode part 320: support wire
[第5実施形態]
1 :光電変換デバイス
12 :光電変換デバイス用の電極
120 :下側電極部
120A:下側電極部の縦線材
120B:下側電極部の横線材
121 :下側電極部の第1導電線材
122 :下側電極部の第2絶縁線材
220 :上側電極部
220A:上側電極部の縦線材
220B:上側電極部の横線材
221 :上側電極部の第2導電線材
222 :上側電極部の第2絶縁線材
320 :支持部
13 :光電変換層
13A :p層の有機半導体
13B :n層の有機半導体
19 :保護層
[Fifth Embodiment]
1: Photoelectric conversion device 12: Electrode 120 for photoelectric conversion device: Lower electrode portion 120A: Vertical wire rod 120B of the lower electrode portion: Horizontal wire rod 121 of the lower electrode portion: First conductive wire rod 122 of the lower electrode portion: Second insulating wire 220 of the lower electrode portion: Upper electrode portion 220A: Vertical wire rod 220B of the upper electrode portion: Horizontal wire rod 221 of the upper electrode portion: Second conductive wire rod 222 of the upper electrode portion: Second insulating wire rod of the upper electrode portion 320: support part 13: photoelectric conversion layer 13A: organic semiconductor 13B of p layer: organic semiconductor 19 of n layer 19: protective layer

Claims (13)

  1.  有機EL材料からなる発光層と、
     上記発光層の一方の面側に設けられかつ横方向に延びて縦方向に間隔をおいて並べられた導電線材からなる一方の線条電極群と、
     上記発光層の他方の面側に設けられかつ縦方向に延びて横方向に間隔をおいて並べられた導電線材からなる他方の線条電極群と、
     を備える、表示装置。
    A light emitting layer made of an organic EL material;
    One linear electrode group consisting of conductive wire materials provided on one surface side of the light emitting layer and extending in the horizontal direction and arranged in the vertical direction at intervals,
    The other linear electrode group made of a conductive wire provided on the other surface side of the light emitting layer and extending in the vertical direction and arranged at intervals in the horizontal direction;
    A display device comprising:
  2.  各色に対応する有機EL材料からなる各発光層と、
     上記各発光層内で一方の面側に設けられかつ横方向に延びて縦方向に間隔をおいて並べられた導電線材からなる一方の線条電極群と、
     上記各発光層内の他方の面側に設けられかつ縦方向に延びて横方向に間隔をおいて並べられた導電線材からなる他方の線条電極群と、
     を備える、表示装置。
    Each light emitting layer made of an organic EL material corresponding to each color;
    One linear electrode group consisting of conductive wire materials provided on one surface side in each light emitting layer and extending in the horizontal direction and arranged in the vertical direction at intervals,
    The other linear electrode group comprising conductive wires provided on the other surface side in each of the light emitting layers and extending in the vertical direction and arranged at intervals in the horizontal direction;
    A display device comprising:
  3.  前記一方の線条電極群において、横方向に延びる配置調整用の線材が前記導電線材同士の間に設けられ、該配置調整用の線材が該導電線材同士の間隔を維持し、
     前記他方の線条電極群において、縦方向に延びる配置調整用の線材が前記導電線材同士の間に設けられ、該配置調整用の線材が該導電線材同士の間隔を維持する、
     請求項1又は2に記載の表示装置。
    In the one line electrode group, a wire for placement adjustment extending in the lateral direction is provided between the conductive wires, and the wire for placement adjustment maintains a distance between the conductive wires,
    In the other wire electrode group, a wire for placement adjustment extending in the vertical direction is provided between the conductive wires, and the wire for placement adjustment maintains the spacing between the conductive wires.
    The display device according to claim 1.
  4.  前記一方の線条電極群及び前記他方の線条電極群において、前記導電線材と前記配置調整用の線材との隙間が、前記導電線材の等価断面寸法と同じオーダーである、請求項3に記載の表示装置。 The gap between the conductive wire and the arrangement adjusting wire in the one line electrode group and the other line electrode group is in the same order as the equivalent cross-sectional dimension of the conductive wire. Display device.
  5.  前記一方の線条電極群において、任意の導電線材に電圧を印加する一方の切替回路と、 前記他方の線条電極群において任意の導電線材に電圧を印加する他方の切替回路と、を備える、請求項1又は2に記載の表示装置。 One switching circuit that applies a voltage to an arbitrary conductive wire in the one linear electrode group, and the other switching circuit that applies a voltage to an arbitrary conductive wire in the other linear electrode group, The display device according to claim 1.
  6.  光と電気エネルギーとを変換する光電変換層の両面に設けられる光電変換デバイス用電極であって、
     上記光電変換層の下面側に設けられる下側電極部と、上記光電変換層の上面側に設けられる上側電極部と、を備え、
     上記下側電極部と上記上側電極部とは、複数の縦線材と複数の横線材とを備え、
     上記縦線材は互いに距離を置いて設けられた複数の導電線材からなり、上記横線材は互いに距離を置いて設けられた複数の絶縁線材からなり、
     上記下側電極部と上記上側電極部との一方がp型電極として機能し、上記下側電極部と上記上側電極部との他方がn型電極として機能する、光電変換デバイス用電極。
    An electrode for a photoelectric conversion device provided on both sides of a photoelectric conversion layer that converts light and electric energy,
    A lower electrode portion provided on the lower surface side of the photoelectric conversion layer, and an upper electrode portion provided on the upper surface side of the photoelectric conversion layer,
    The lower electrode portion and the upper electrode portion include a plurality of vertical wires and a plurality of horizontal wires,
    The vertical wire consists of a plurality of conductive wires provided at a distance from each other, and the horizontal wire consists of a plurality of insulating wires provided at a distance from each other,
    One of the lower electrode part and the upper electrode part functions as a p-type electrode, and the other of the lower electrode part and the upper electrode part functions as an n-type electrode.
  7.  光と電気エネルギーとを変換する光電変換層の両面に設けられる光電変換デバイス用電極であって、
     上記光電変換層の下面側に設けられる下側電極部と、上記光電変換層の上面側に設けられる上側電極部と、上記下側電極部と上記上側電極部が所定の距離を置いて対向するよう上記下側電極部に対して上記上側電極部を支持する支持部と、を備え、
     上記下側電極部と上記上側電極部とは、複数の縦線材と複数の横線材とを備え、
     上記縦線材は互いに距離を置いて設けられた複数の導電線材からなり、上記横線材は互いに距離を置いて設けられた複数の絶縁線材からなり、
     上記下側電極部と上記上側電極部との一方がp型電極として機能し、上記下側電極部と上記上側電極部との他方がn型電極として機能する、光電変換デバイス用電極。
    An electrode for a photoelectric conversion device provided on both sides of a photoelectric conversion layer that converts light and electric energy,
    The lower electrode portion provided on the lower surface side of the photoelectric conversion layer, the upper electrode portion provided on the upper surface side of the photoelectric conversion layer, and the lower electrode portion and the upper electrode portion face each other with a predetermined distance therebetween. A support portion for supporting the upper electrode portion with respect to the lower electrode portion,
    The lower electrode portion and the upper electrode portion include a plurality of vertical wires and a plurality of horizontal wires,
    The vertical wire consists of a plurality of conductive wires provided at a distance from each other, the horizontal wire consists of a plurality of insulating wires provided at a distance from each other,
    One of the lower electrode part and the upper electrode part functions as a p-type electrode, and the other of the lower electrode part and the upper electrode part functions as an n-type electrode.
  8.  前記絶縁線材が、上記上側電極部と上記下側電極部とを構成する導電線材同士の間に、少なくとも1本設けられている、請求項6又は7に記載の光電変換デバイス用電極。 The electrode for a photoelectric conversion device according to claim 6 or 7, wherein at least one of the insulated wires is provided between the conductive wires constituting the upper electrode portion and the lower electrode portion.
  9.  請求項6又は7に記載の光電子デバイス用電極に対して、前記P型電極上には正孔輸送材料でなるp層の有機半導体が設けられ、かつ前記n型電極上には電子輸送材料でなるn層の有機半導体が設けられている、光電変換デバイス。 8. The optoelectronic device electrode according to claim 6, wherein a p-layer organic semiconductor made of a hole transport material is provided on the P-type electrode, and an electron transport material is provided on the n-type electrode. A photoelectric conversion device provided with an n-layer organic semiconductor.
  10.  正孔輸送材料及び電子輸送材料のうちの少なくとも一方の材料を溶媒中に含有させた材料含有液を電極構造体に付着させ、該電極構造体に付着させた材料から有機半導体を該電極構造体に接した状態で形成する光電変換デバイスの製造方法において、
     複数の導電線材が該導電線材の配置間隔を調整する配置調整用線材とともに一体化された電極部を複数有し、該複数の電極部が対向配置された状態で支持線材により支持された上記電極構造体を準備し、
     上記配置調整用線材を溶解可能で上記支持線材を溶解不能な溶媒を用いて前記材料含有液を調製し、
     該材料含有液を上記電極構造体に接触させることで、上記配置調整用線材を溶解すると共に少なくとも上記一方の材料を上記導電線材に付着させて上記有機半導体を形成する、光電変換デバイスの製造方法。
    A material-containing liquid containing at least one of a hole transport material and an electron transport material in a solvent is attached to the electrode structure, and an organic semiconductor is removed from the material attached to the electrode structure. In the manufacturing method of the photoelectric conversion device formed in a state in contact with
    The electrode having a plurality of electrode portions integrated with a plurality of conductive wire rods and an arrangement adjusting wire rod for adjusting the arrangement interval of the conductive wire rods, and supported by the support wire in a state where the plurality of electrode portions are opposed to each other. Prepare the structure,
    Preparing the material-containing liquid using a solvent capable of dissolving the arrangement adjusting wire and not dissolving the support wire;
    A method for producing a photoelectric conversion device, wherein the material-containing liquid is brought into contact with the electrode structure to dissolve the arrangement adjusting wire and to attach the at least one material to the conductive wire to form the organic semiconductor. .
  11.  前記導電線材間に前記配置調整用線材を介在させることで該導電線材間を互いに所定間隔で離間させた前記電極構造体を準備する、請求項10に記載の光電変換デバイスの製造方法。 The method of manufacturing a photoelectric conversion device according to claim 10, wherein the electrode structure in which the conductive wires are separated from each other by a predetermined interval by interposing the arrangement adjusting wire between the conductive wires.
  12.  前記複数の導電線材及び前記配置調整用線材からなる複数の縦線材と、該複数の縦線材と交差して配置した複数の横線材とを備えた複数の前記電極部を用いて前記電極構造体を準備し、
     上記配置調整用線材を溶解可能で上記横線材を溶解不能な前記溶媒を用いて前記材料含有液を調製する、請求項10又は11に記載の光電変換デバイスの製造方法。
    The electrode structure using a plurality of the electrode portions including a plurality of vertical wires made of the plurality of conductive wires and the arrangement adjusting wire, and a plurality of horizontal wires arranged to intersect the plurality of vertical wires. Prepare
    The method for producing a photoelectric conversion device according to claim 10 or 11, wherein the material-containing liquid is prepared using the solvent capable of dissolving the arrangement adjusting wire and not dissolving the horizontal wire.
  13.  前記正孔輸送材料及び前記電子輸送材料を含有した前記材料含有液を調製して前記電極構造体に接触させ、p型有機半導体を一部の前記導電線材に接続した状態で形成すると共にn型有機半導体を他部の上記導電線材に接続した状態で形成する、請求項10又は11に記載の光電変換デバイスの製造方法。 The material-containing liquid containing the hole transport material and the electron transport material is prepared and brought into contact with the electrode structure, and a p-type organic semiconductor is formed in a state of being connected to some of the conductive wires and n-type The manufacturing method of the photoelectric conversion device of Claim 10 or 11 formed in the state which connected the organic semiconductor to the said electrically conductive wire of another part.
PCT/JP2012/073000 2011-09-14 2012-09-09 Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device WO2013039021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013533650A JP6083675B2 (en) 2011-09-14 2012-09-09 Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
PCT/JP2011/071053 WO2013038539A1 (en) 2011-09-14 2011-09-14 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
PCT/JP2011/071052 WO2013038538A1 (en) 2011-09-14 2011-09-14 Electrode for photoelectric conversion devices, and photoelectric conversion device using same
JPPCT/JP2011/071053 2011-09-14
JPPCT/JP2011/071052 2011-09-14
JP2012097191 2012-04-20
JP2012-097189 2012-04-20
JP2012097189 2012-04-20
JP2012-097191 2012-04-20

Publications (1)

Publication Number Publication Date
WO2013039021A1 true WO2013039021A1 (en) 2013-03-21

Family

ID=47883252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073000 WO2013039021A1 (en) 2011-09-14 2012-09-09 Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP6083675B2 (en)
WO (1) WO2013039021A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121422A1 (en) * 2021-12-24 2023-06-29 (주)에이유플렉스 Lattice structure installed in flexible display panel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020641A1 (en) * 2003-07-10 2005-03-03 Ideal Star Inc. Light-emitting element and device
JP2005533349A (en) * 2002-07-17 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device having a two-dimensional array
JP2007052953A (en) * 2005-08-16 2007-03-01 Sony Corp Display element and method of manufacturing same, and electrode material for display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165149A (en) * 2004-12-06 2006-06-22 Canon Inc Photovolatic element, photovolatic element aggregate, photovolatic element module and manufacturing method of the same
JP5023455B2 (en) * 2005-03-28 2012-09-12 大日本印刷株式会社 Organic thin film solar cell manufacturing method and organic thin film solar cell
JP2008010268A (en) * 2006-06-28 2008-01-17 Toyota Industries Corp Method of manufacturing metal mask and organic electroluminescent display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005533349A (en) * 2002-07-17 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent device having a two-dimensional array
WO2005020641A1 (en) * 2003-07-10 2005-03-03 Ideal Star Inc. Light-emitting element and device
JP2011071130A (en) * 2003-07-10 2011-04-07 Ideal Star Inc Light emitting element, and light emitting device
JP2007052953A (en) * 2005-08-16 2007-03-01 Sony Corp Display element and method of manufacturing same, and electrode material for display element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121422A1 (en) * 2021-12-24 2023-06-29 (주)에이유플렉스 Lattice structure installed in flexible display panel

Also Published As

Publication number Publication date
JPWO2013039021A1 (en) 2015-03-26
JP6083675B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
JP5683589B2 (en) Photoelectric device manufacturing method
TWI602333B (en) Optoelectronic devices and processes for fabricating optoelectronic devices
US20110297996A1 (en) Electronic device and method of manufacturing the same
US20090033856A1 (en) Display module and tiled display manufacturing method
US9680123B2 (en) Light emitting device, electrode structure and manufacturing method thereof
TWI524515B (en) Optoelectronic device array
CN106463645B (en) Organic light emitting device and method for manufacturing the same
JP5854746B2 (en) Top emission type organic electroluminescence light emitting device and manufacturing method thereof
EP2316143B1 (en) Oled and method for producing an oled
Sun et al. Large-area tunable red/green/blue tri-stacked quantum dot light-emitting diode using sandwich-structured transparent silver nanowires electrodes
JP6083675B2 (en) Display device, electrode for photoelectric conversion device, photoelectric conversion device, and method for manufacturing photoelectric conversion device
CN102203956A (en) Current collector systems for use in flexible photoelectrical and display devices and methods of fabrication
JP5957787B2 (en) Method for producing photoelectric conversion device and photoelectric conversion device
WO2012070574A1 (en) Light emitting device and method for producing light emitting device
KR20090121314A (en) Electroluminescent organic semiconductor element and method for repairing an electroluminescent organic semi-conductor element
EP1369923A1 (en) An optoelectronic device and a large-area array of optoelectronic pixels
US10305062B2 (en) Lighting assembly and lighting device
CN101520142B (en) LED lamp bar and LED screen body
WO2012070586A1 (en) Light emitting device and manufacturing method therefor
KR101776917B1 (en) Composite light-emitting element of the sandwich-type fine pattern
CN110416262A (en) OLED display screen, display panel and its manufacturing method
TWI553933B (en) Light emitting device, electrode structure and manufacturing method thereof
CN116973719A (en) Detection device and detection method of photoelectric device
CN116634822A (en) Method for manufacturing perovskite and silver nanowire composite photoelectric device
KR101032026B1 (en) Organic light emitting device for large area organic illumination, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013533650

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12831532

Country of ref document: EP

Kind code of ref document: A1