WO2013038503A1 - Film and method for manufacturing same - Google Patents

Film and method for manufacturing same Download PDF

Info

Publication number
WO2013038503A1
WO2013038503A1 PCT/JP2011/070859 JP2011070859W WO2013038503A1 WO 2013038503 A1 WO2013038503 A1 WO 2013038503A1 JP 2011070859 W JP2011070859 W JP 2011070859W WO 2013038503 A1 WO2013038503 A1 WO 2013038503A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
initial
carbon
mold
sulfur
Prior art date
Application number
PCT/JP2011/070859
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 古川
修司 外崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/239,902 priority Critical patent/US20140212689A1/en
Priority to PCT/JP2011/070859 priority patent/WO2013038503A1/en
Priority to JP2013533383A priority patent/JP5660221B2/en
Priority to DE112011105613.3T priority patent/DE112011105613T5/en
Priority to CN201180073232.4A priority patent/CN103764313B/en
Publication of WO2013038503A1 publication Critical patent/WO2013038503A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • B22C9/061Materials which make up the mould
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment

Definitions

  • the present invention relates to a film formed on the surface of an iron-based material and a manufacturing method thereof.
  • Patent Document 1 discloses a technique for forming a film on a molding surface of a mold by applying fullerene to a carbon film containing nanocarbons such as carbon nanotubes. According to the technique described in Patent Document 1, the release resistance is reduced by filling the gaps in the carbon film with fullerene and relaxing the unevenness on the surface of the carbon film.
  • An object of the present invention is to provide a high-strength film that hardly causes deterioration, and a method for manufacturing the same.
  • the method for producing a film of the present invention is a method for producing a film formed on the surface of an iron-based material, comprising a carbon film containing nanocarbons and coated with fullerene, the carbon film, and the iron-based material.
  • an intermittent heating step of intermittently heating below is a method for producing a film formed on the surface of an iron-based material, comprising a carbon film containing nanocarbons and coated with fullerene, the carbon film, and the iron-based material.
  • the iron-based material is a mold used for casting, and in the initial film forming process, the initial film is formed on a molding surface of the mold, and the intermittent heating process.
  • casting is performed a plurality of times using the mold in a state where an oil-based release agent is applied to the molding surface of the mold on which the initial film is formed.
  • the film of the present invention has a carbon film containing nanocarbons and is formed on the surface of an iron-based material, and includes hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe. 3 O 4 is included, and the sulfur diffusivity in the carbon film exceeds 50%.
  • those identified by the X-ray diffraction method are hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4 , and the sulfur diffusivity is measured by EPMA.
  • it is determined by mapping analysis.
  • membrane by EPMA (a) is a figure which shows carbon in an initial stage film
  • It is a figure which shows the mapping analysis result of the comparison goods by EPMA (a) is a figure which shows the carbon in a comparison goods, (b) is a figure which shows the sulfur in a comparison goods.
  • the film 1 is a film formed on the molding surface of a mold used for die casting or the like.
  • Manufacturing process S1 is a process of forming the film 1 on the molding surface of the mold.
  • die in this embodiment is an iron-type material which consists of alloy tool steel materials (JIS G4404), such as SKD61.
  • the manufacturing process S1 includes an initial film forming process S11 and an intermittent heating process S12.
  • the initial film forming step S11 is a process for forming the initial film 100 on the molding surface of the mold.
  • the initial film formation step S11 is a known technique, and specifically, is a process disclosed in Japanese Patent Application Laid-Open No. 2010-36194. Therefore, detailed description of the initial film forming step S11 is omitted.
  • FIG. 2 shows the initial film 100 produced in the initial film formation step S11.
  • the initial film 100 is a film produced by a known technique, and includes a diffusion layer 110, a nitride compound layer 120, a sulfurization layer 130, and a carbon film 140.
  • the diffusion layer 110 is a layer in which nitrogen is diffused in the mold, and is formed in the vicinity of the molding surface of the mold.
  • the nitride compound layer 120 is a layer containing a nitride compound such as Fe 2 N or Fe 3 N and Fe 3 C, and is formed on the diffusion layer 110.
  • the sulfurized layer 130 is a layer containing a sulfide compound such as FeS, and is formed on the nitride compound layer 120.
  • the carbon film 140 is a layer containing nanocarbons, and is located on the outermost surface of the initial film 100 (the uppermost part in FIG. 2).
  • the carbon film 140 includes hard amorphous carbon 141, nanocarbon 142, and fullerene 143.
  • Hard amorphous carbon 141 is an amorphous substance mainly composed of carbon.
  • the hard amorphous carbon 141 is generally scattered at positions where the diffusion layer 110 and the nitride compound layer 120 are formed.
  • Nanocarbon 142 is nanocarbons such as carbon nanofibers, carbon nanotubes, carbon nanocoils, and carbon nanofilaments.
  • a number of nanocarbons 142 are formed so as to extend from the hard amorphous carbon 141 toward the surface side of the initial film 100 (upper side in FIG. 2).
  • the nanocarbon 142 is formed so as to reach the position that is the outermost surface of the initial film 100.
  • Fullerene 143 is represented by C 60, a carbon cluster of a large number of carbon atoms, including fullerene derivative predetermined chemical modification has been carried out. Many fullerenes 143 exist between the nanocarbons 142.
  • the initial film 100 includes the carbon film 140 including the nanocarbon 142 and the fullerene 143 applied thereto, the nitride compound layer 120 and the sulfurated layer 130 positioned between the carbon film 140 and the mold,
  • the initial film in the present invention includes at least nanocarbons, and it is sufficient that a nitride compound layer and a sulfurized layer are formed between a carbon film coated with fullerene and the mold. The method is not limited.
  • the intermittent heating step S12 is a step of intermittently heating the initial coating 100 produced in the initial coating forming step S11 in a non-oxidizing atmosphere.
  • the initial film 100 is intermittently heated by actually performing die casting multiple times using a mold on which the initial film 100 is formed. Specifically, first, an oily mold release agent such as mineral oil, synthetic oil, or vegetable oil is applied to the molding surface of the mold on which the initial film 100 is formed. At this time, the oil release agent is applied so that the molding surface of the mold is completely covered with the oil release agent. Thereby, the initial stage film
  • an oily mold release agent such as mineral oil, synthetic oil, or vegetable oil
  • a molten metal such as an aluminum alloy at a high temperature for example, 600 ° C.
  • a predetermined time for example, 5 seconds
  • the hot molten metal is rapidly cooled to a predetermined temperature (for example, 300 ° C.) by coming into contact with the molding surface of the mold. That is, the initial film 100 is heated at a high temperature by the molten metal immediately after being filled in the mold, and then cooled at the temperature of the molten metal rapidly cooled by the mold.
  • the solidified molten metal (casting) is taken out from the mold.
  • the initial film 100 becomes the film 1 by performing the above process a predetermined number of times (for example, a total of 1000 times). That is, the film 1 is formed on the molding surface of the mold.
  • the die casting on which the initial film 100 is formed is repeated a plurality of times in a non-oxidizing atmosphere.
  • a predetermined temperature change heatating and cooling
  • the initial film 100 is intermittently heated, and the initial film 100 is changed to the film 1.
  • the coating 1 is formed on the molding surface of the mold, but it is considered that the present invention can be applied not only to the molding surface of the mold but also to the surface of any iron-based material. .
  • the oil-based mold release agent was apply
  • the initial coating 100 is intermittently heated by actually performing die casting a plurality of times.
  • the initial coating 100 may be intermittently heated using a laser or ultrasonic waves. It is considered possible.
  • FIG. 3 shows the film 1 produced through the manufacturing process S1.
  • the film 1 is a film produced by a known technique, and includes a diffusion layer 10, a nitride compound layer 20, a sulfurization layer 30, and a carbon film 40.
  • the diffusion layer 10 is a diffusion layer 110 that has undergone the intermittent heating step S12, and is formed in the vicinity of the molding surface of the mold.
  • the nitride compound layer 20 is a nitride compound layer 120 that has undergone the intermittent heating step S ⁇ b> 12 and is formed on the diffusion layer 10.
  • the nitride compound layer 20 is a layer containing a nitride compound such as Fe 4 N and Fe 3 C. That is, the nitride compound layer 20 is different from the nitride compound layer 120 of the initial film 100 in that it contains Fe 4 N.
  • Fe 2 N or Fe 3 N contained in the nitride compound layer 120 of the initial film 100 is changed to Fe 4 N.
  • Fe 4 N has a dense structure as compared with Fe 2 N or Fe 3 N.
  • the film 1 having the nitride compound layer 20 containing Fe 4 N has a peel strength (about 1.5 times that of the initial film 100 having the nitride compound layer 120 containing Fe 2 N or Fe 3 N ( Pressure when peeling from the mold). Therefore, according to the present invention, the coating 1 can be made high in strength.
  • the sulfurized layer 30 is a sulfurized layer 130 that has undergone the intermittent heating step S ⁇ b> 12 and is formed on the nitride compound layer 20.
  • the sulfurized layer 30 is formed so as to reach a position that is the outermost surface of the initial film 100.
  • the carbon film 40 is the carbon film 140 that has undergone the intermittent heating step S12.
  • the sulfurized layer 30 is formed as a whole. That is, the carbon film 40 is in a state where sulfur is diffused as a whole.
  • sulfur is concentrated at the base of the carbon film 140 (lower part in FIG. 2), whereas in the film 1, sulfur diffuses entirely in the carbon film 40. ing. Therefore, the film 1 has a smaller coefficient of friction than the initial film 100. Therefore, according to the present invention, the mold release resistance of the film 1 can be reduced.
  • the carbon film 40 includes hard amorphous carbon 41, nanocarbon 42, and fullerene 43.
  • the hard amorphous carbon 41 is the hard amorphous carbon 141 that has undergone the intermittent heating step S12.
  • the hard amorphous carbon 41 is formed by densifying the hard amorphous carbon 141 by a part of the fullerene 143 that has been made amorphous through the intermittent heating step S12.
  • the hard amorphous carbon 41 has a dense structure as compared with the hard amorphous carbon 141 of the initial film 100.
  • Nanocarbon 42 is nanocarbon 142 that has undergone the intermittent heating step S12. A large number of nanocarbons 42 are formed so as to extend from the hard amorphous carbon 41 toward the surface side of the coating 1 (upper side in FIG. 3). The nanocarbon 42 is formed so as to reach a position that becomes the outermost surface of the initial film 100.
  • the fullerene 43 is the fullerene 143 that has undergone the intermittent heating step S ⁇ b> 12.
  • the fullerene 43 is bonded to the nanocarbon 42 to make the carbon film 40 a dense structure. Therefore, the fullerene 43 is not removed by the alkaline solvent. Therefore, according to the present invention, deterioration of the film 1 can be prevented.
  • the fullerene 43 has diffused to the nitride compound layer 20 and the diffusion layer 10.
  • sulfur is diffused as a whole in the carbon film 40, which is presumed to be caused by the fullerene 43 penetrating into the diffusion layer 10.
  • the intermittent heating step S ⁇ b> 12 interdiffusion between the fullerene 143 that is relatively present on the surface side of the carbon film 140 and the sulfur that is relatively present at the base of the carbon film 140 is caused.
  • sulfur diffuses throughout the carbon film 40.
  • fullerene since fullerene generally tends to diffuse at 240 ° C.
  • the temperature at which the initial coating 100 is cooled in the intermittent heating step S12 (the molten metal that has been quenched by contacting the molding surface of the mold) Is preferably 240 ° C.
  • the upper limit of the temperature (the initial temperature of the molten metal) when the initial film 100 is heated in the intermittent heating step S12. Is preferably 600 ° C.
  • mapping analysis was performed on the initial film 100 using an EPMA (Electron Probe MicroAnalyzer).
  • EPMA Electro Probe MicroAnalyzer
  • the cross section for performing the mapping analysis is a surface cut along the direction from the surface of the initial film 100 toward the inside.
  • FIG. 4 shows the mapping analysis result of the initial film 100 by EPMA.
  • FIG. 4A is a diagram showing a mapping analysis result of carbon in the initial film 100 by EPMA
  • FIG. 4B is a diagram showing a mapping analysis result of sulfur in the initial film 100 by EPMA.
  • the sulfur diffusivity in the carbon film of the coating is obtained from the mapping analysis result.
  • the sulfur diffusivity in the carbon film is a ratio of sulfur to the carbon film in a cross section where mapping analysis is performed by EPMA. For example, when sulfur diffuses throughout the carbon film, it is determined that the sulfur diffusivity is 100%. As shown in FIG. 4A and FIG.
  • the initial film 100 may contain hard amorphous carbon, Fe 2 N, Fe 3 C, martensite, and Fe 3 O 4. It became clear.
  • the oil release agent was applied to the molding surface of the mold on which the initial film 100 was formed, so that the initial film 100 was in a non-oxidizing atmosphere.
  • a molten aluminum alloy at 600 ° C. is filled in the mold, and at a heat transfer interface (molding surface of the mold) having a heat transfer coefficient of 6000 W / m 2 K (600 ° C., 50 MPa) at 4000 kcal / m 2 .
  • Heat was applied to the initial coating 100 for 5 seconds.
  • the solidified molten metal (casting) was taken out from the mold. The above treatment was performed 1000 times in total to produce a coating 1.
  • FIG. 5 is a diagram showing a mapping analysis result of carbon in the coating 1 by EPMA
  • FIG. 5B is a diagram showing a mapping analysis result of sulfur in the coating 1 by EPMA.
  • sulfur is distributed as a whole, and sulfur is also present in the vicinity of the surface of the film 1 (upper part in FIG. 5 (b)). Can be confirmed to exist almost evenly. At this time, it can be determined that the sulfur diffusivity in the carbon film 40 in the coating 1 is 100%.
  • the film 1 has a higher sulfur diffusivity in the carbon film than the initial film 100. Therefore, as described above, the film 1 has a smaller coefficient of friction than the initial film 100, and the release resistance is smaller than that of the initial film 100.
  • the sulfur diffusivity in the carbon film 40 in the film 1 is 100%, it is sufficient that at least the friction coefficient of the film according to the present invention is smaller than the friction coefficient of the initial film. That is, the sulfur diffusivity in the carbon film in the coating according to the present invention only needs to exceed 50%.
  • the film 1 contained hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4. became. As described above, since the film 1 contains Fe 4 N having a denser structure than Fe 2 N, the film 1 has higher strength than the initial film 100.
  • Comparative example A film (hereinafter referred to as “comparative product”) was prepared in the same manner as in the above example except that a water-soluble release agent was used instead of the oil-based release agent.
  • the water-soluble release agent cannot prevent the initial film 100 from coming into contact with water and air. That is, the comparative product is manufactured by intermittently heating the initial film 100 in an oxidizing atmosphere.
  • FIG. 6 shows the mapping analysis result of the comparative product by EPMA.
  • FIG. 6A is a diagram showing a mapping analysis result of carbon in a comparative product by EPMA
  • FIG. 6B is a diagram showing a mapping analysis result of sulfur in the comparative product by EPMA.
  • FIGS. 6A and 6B it can be confirmed that sulfur is distributed only in a part of the carbon film in the comparative product.
  • the sulfur diffusion rate in the carbon film of the comparative product is 5%.
  • the comparative product has a lower sulfur diffusion rate in the carbon film than the initial film 100 and has a larger coefficient of friction than the initial film 100. That is, the comparative product has a higher release resistance than the initial film 100.
  • the coating according to the present invention is produced by intermittently heating the initial coating in a non-oxidizing atmosphere. Further, the coating according to the present invention contains hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4 , and it is clear that the sulfur diffusivity in the carbon film exceeds 50%. It became.
  • membrane although the mapping analysis by EPMA was performed, the method will not be ask
  • the X-ray-diffraction method was used, However, The method will not be ask
  • the present invention can be used for a film formed on the surface of an iron-based material and a manufacturing method thereof.

Abstract

Provided are a high-strength film that does not easily deteriorate, and a method for manufacturing the film. In a manufacture step (S1), a film (1) is formed on a forming surface of a molding die. The manufacture step is provided with: an initial film-forming step (S11) wherein an initial film (100) is formed on the forming surface of the molding die, said initial film having a carbon film (140), which contains nanocarbon (142), and is coated with fullerene (143), and a nitride compound layer (120) and a sulfurized layer (130), which are positioned between the carbon film (140) and the molding die; and an intermittent heating step (S12) wherein the initial film (100) formed in the initial film-forming step (S11) is intermittently heated under a non-oxidizing atmosphere.

Description

皮膜、及びその製造方法Film and manufacturing method thereof
 本発明は、鉄系材料の表面に形成される皮膜、及びその製造方法に関する。 The present invention relates to a film formed on the surface of an iron-based material and a manufacturing method thereof.
 従来、ダイカスト鋳造等において、離型抵抗の低減等を実現するために、金型の成形面(鉄系材料の表面)に所定の皮膜を形成する技術が公知となっている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, in die casting and the like, a technique for forming a predetermined film on a molding surface (a surface of an iron-based material) is known in order to realize a reduction in mold release resistance (for example, patent document). 1).
 特許文献1には、カーボンナノチューブ等のナノカーボン類を含む炭素膜にフラーレンを塗布することによって、金型の成形面に皮膜を形成する技術が開示されている。
 特許文献1に記載の技術によれば、フラーレンによって炭素膜の隙間を埋め、炭素膜の表面の凹凸を緩和することで、離型抵抗を低減している。
Patent Document 1 discloses a technique for forming a film on a molding surface of a mold by applying fullerene to a carbon film containing nanocarbons such as carbon nanotubes.
According to the technique described in Patent Document 1, the release resistance is reduced by filling the gaps in the carbon film with fullerene and relaxing the unevenness on the surface of the carbon film.
 しかしながら、特許文献1に記載の技術では、炭素膜とフラーレンとの結合が不完全な場合に、アルカリ溶剤によりフラーレンが除去され、皮膜が劣化する。また、皮膜の強度が充分ではなく、皮膜が剥離し易い。
 そのため、特許文献1に記載の技術には改善の余地があった。
However, in the technique described in Patent Document 1, when the bond between the carbon film and the fullerene is incomplete, the fullerene is removed by the alkali solvent, and the film is deteriorated. Moreover, the strength of the film is not sufficient, and the film is easily peeled off.
Therefore, the technique described in Patent Document 1 has room for improvement.
特開2010-36194号公報JP 2010-36194 A
 本発明は、劣化が生じ難い高強度の皮膜、及びその製造方法を提供することを課題とする。 An object of the present invention is to provide a high-strength film that hardly causes deterioration, and a method for manufacturing the same.
 本発明の皮膜の製造方法は、鉄系材料の表面に形成される皮膜の製造方法であって、ナノカーボン類を含み、フラーレンが塗布される炭素膜と、前記炭素膜と前記鉄系材料との間に位置する窒化化合物層及び浸硫層と、を有する初期皮膜を前記鉄系材料の表面に形成する初期皮膜形成工程と、前記初期皮膜形成工程にて形成された初期皮膜を非酸化雰囲気下で間欠的に加熱する間欠加熱工程と、を具備する。 The method for producing a film of the present invention is a method for producing a film formed on the surface of an iron-based material, comprising a carbon film containing nanocarbons and coated with fullerene, the carbon film, and the iron-based material. An initial film forming step of forming an initial film having a nitride compound layer and a sulfurized layer located between the surfaces of the iron-based material, and an initial film formed in the initial film forming step in a non-oxidizing atmosphere And an intermittent heating step of intermittently heating below.
 本発明の皮膜の製造方法において、前記鉄系材料は、鋳造に用いられる金型であり、前記初期皮膜形成工程においては、前記金型の成形面に前記初期皮膜が形成され、前記間欠加熱工程においては、前記初期皮膜が形成された金型の成形面に油性離型剤が塗布された状態で、当該金型を用いて複数回の鋳造が行われることが好ましい。 In the method for producing a film of the present invention, the iron-based material is a mold used for casting, and in the initial film forming process, the initial film is formed on a molding surface of the mold, and the intermittent heating process. In this case, it is preferable that casting is performed a plurality of times using the mold in a state where an oil-based release agent is applied to the molding surface of the mold on which the initial film is formed.
 本発明の皮膜は、ナノカーボン類を含む炭素膜を有し、鉄系材料の表面に形成される皮膜であって、硬質非晶質炭素、FeN、FeC、マルテンサイト、及びFeを含み、前記炭素膜中の硫黄拡散率が50%を超える。 The film of the present invention has a carbon film containing nanocarbons and is formed on the surface of an iron-based material, and includes hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe. 3 O 4 is included, and the sulfur diffusivity in the carbon film exceeds 50%.
 本発明の皮膜において、X線回折法により同定されるものが、硬質非晶質炭素、FeN、FeC、マルテンサイト、及びFeであり、前記硫黄拡散率は、EPMAによるマッピング分析によって求められることが好ましい。 In the film of the present invention, those identified by the X-ray diffraction method are hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4 , and the sulfur diffusivity is measured by EPMA. Preferably, it is determined by mapping analysis.
 本発明によれば、皮膜の劣化及び剥離を抑制することができる。 According to the present invention, deterioration and peeling of the film can be suppressed.
本発明に係る皮膜の製造工程を示す図。The figure which shows the manufacturing process of the membrane | film | coat which concerns on this invention. 初期皮膜を示す図。The figure which shows an initial stage film | membrane. 本発明に係る皮膜を示す図。The figure which shows the film | membrane which concerns on this invention. EPMAによる初期皮膜のマッピング分析結果を示す図であり、(a)は、初期皮膜中の炭素を示す図、(b)は、初期皮膜中の硫黄を示す図。It is a figure which shows the mapping analysis result of the initial stage film | membrane by EPMA, (a) is a figure which shows carbon in an initial stage film | membrane, (b) is a figure which shows sulfur in an initial stage film | membrane. EPMAによる本発明に係る皮膜のマッピング分析結果を示す図であり、(a)は、本発明に係る皮膜中の炭素を示す図、(b)は、本発明に係る皮膜中の硫黄を示す図。It is a figure which shows the mapping analysis result of the film | membrane which concerns on this invention by EPMA, (a) is a figure which shows carbon in the film | membrane which concerns on this invention, (b) is a figure which shows sulfur in the film | membrane concerning this invention. . EPMAによる比較品のマッピング分析結果を示す図であり、(a)は、比較品中の炭素を示す図、(b)は、比較品中の硫黄を示す図。It is a figure which shows the mapping analysis result of the comparison goods by EPMA, (a) is a figure which shows the carbon in a comparison goods, (b) is a figure which shows the sulfur in a comparison goods.
 以下では、図1~図3を参照して、本発明に係る皮膜の製造方法の一実施形態である、皮膜1の製造工程S1について説明する。
 皮膜1は、ダイカスト鋳造等に用いられる金型の成形面に形成される皮膜である。
 製造工程S1は、前記金型の成形面に皮膜1を形成する工程である。
 なお、本実施形態における金型は、SKD61等の合金工具鋼鋼材(JIS G4404)からなる鉄系材料である。
Hereinafter, with reference to FIG. 1 to FIG. 3, a manufacturing process S1 of the coating 1 which is an embodiment of the manufacturing method of the coating according to the present invention will be described.
The film 1 is a film formed on the molding surface of a mold used for die casting or the like.
Manufacturing process S1 is a process of forming the film 1 on the molding surface of the mold.
In addition, the metal mold | die in this embodiment is an iron-type material which consists of alloy tool steel materials (JIS G4404), such as SKD61.
 図1に示すように、製造工程S1は、初期皮膜形成工程S11と、間欠加熱工程S12とを具備する。 As shown in FIG. 1, the manufacturing process S1 includes an initial film forming process S11 and an intermittent heating process S12.
 初期皮膜形成工程S11は、前記金型の成形面に初期皮膜100を形成する工程である。
 初期皮膜形成工程S11は、公知技術であり、具体的には、特開2010-36194号公報に開示された工程である。そのため、初期皮膜形成工程S11の詳細な説明は、省略する。
The initial film forming step S11 is a process for forming the initial film 100 on the molding surface of the mold.
The initial film formation step S11 is a known technique, and specifically, is a process disclosed in Japanese Patent Application Laid-Open No. 2010-36194. Therefore, detailed description of the initial film forming step S11 is omitted.
 図2に、初期皮膜形成工程S11にて作製された初期皮膜100を示す。
 図2に示すように、初期皮膜100は、公知技術によって作製された皮膜であり、拡散層110と、窒化化合物層120と、浸硫層130と、炭素膜140とを具備する。
FIG. 2 shows the initial film 100 produced in the initial film formation step S11.
As shown in FIG. 2, the initial film 100 is a film produced by a known technique, and includes a diffusion layer 110, a nitride compound layer 120, a sulfurization layer 130, and a carbon film 140.
 拡散層110は、前記金型に窒素が拡散した層であり、前記金型の成形面近傍に形成されている。 The diffusion layer 110 is a layer in which nitrogen is diffused in the mold, and is formed in the vicinity of the molding surface of the mold.
 窒化化合物層120は、FeN又はFeN等の窒化化合物、及びFeCを含む層であり、拡散層110上に形成されている。 The nitride compound layer 120 is a layer containing a nitride compound such as Fe 2 N or Fe 3 N and Fe 3 C, and is formed on the diffusion layer 110.
 浸硫層130は、FeS等の硫化化合物を含む層であり、窒化化合物層120上に形成されている。 The sulfurized layer 130 is a layer containing a sulfide compound such as FeS, and is formed on the nitride compound layer 120.
 炭素膜140は、ナノカーボン類を含む層であり、初期皮膜100の最表面(図2における最上部)に位置する。
 炭素膜140は、硬質非晶質炭素141、ナノカーボン142、及びフラーレン143を含む。
The carbon film 140 is a layer containing nanocarbons, and is located on the outermost surface of the initial film 100 (the uppermost part in FIG. 2).
The carbon film 140 includes hard amorphous carbon 141, nanocarbon 142, and fullerene 143.
 硬質非晶質炭素141は、炭素を主成分とするアモルファス状の物質である。硬質非晶質炭素141は、概ね、拡散層110及び窒化化合物層120が形成された位置に点在している。 Hard amorphous carbon 141 is an amorphous substance mainly composed of carbon. The hard amorphous carbon 141 is generally scattered at positions where the diffusion layer 110 and the nitride compound layer 120 are formed.
 ナノカーボン142は、カーボンナノファイバー、カーボンナノチューブ、カーボンナノコイル、及びカーボンナノフィラメント等のナノカーボン類である。ナノカーボン142は、硬質非晶質炭素141から初期皮膜100の表面側(図2における上側)に向けて延出するように多数形成されている。ナノカーボン142は、初期皮膜100の最表面となる位置まで到達するように形成されている。 Nanocarbon 142 is nanocarbons such as carbon nanofibers, carbon nanotubes, carbon nanocoils, and carbon nanofilaments. A number of nanocarbons 142 are formed so as to extend from the hard amorphous carbon 141 toward the surface side of the initial film 100 (upper side in FIG. 2). The nanocarbon 142 is formed so as to reach the position that is the outermost surface of the initial film 100.
 フラーレン143は、C60に代表される、多数の炭素原子からなる炭素クラスタであり、所定の化学修飾が施されたフラーレン誘導体を含む。フラーレン143は、ナノカーボン142間に多数存在している。 Fullerene 143 is represented by C 60, a carbon cluster of a large number of carbon atoms, including fullerene derivative predetermined chemical modification has been carried out. Many fullerenes 143 exist between the nanocarbons 142.
 このように、初期皮膜100は、ナノカーボン142を含み、フラーレン143が塗布された炭素膜140と、炭素膜140と前記金型との間に位置する窒化化合物層120及び浸硫層130と、を有する。
 なお、本発明における初期皮膜は、少なくとも、ナノカーボン類を含み、フラーレンが塗布された炭素膜と前記金型との間に、窒化化合物層及び浸硫層が形成されていればよく、その製造方法は限定しない。
As described above, the initial film 100 includes the carbon film 140 including the nanocarbon 142 and the fullerene 143 applied thereto, the nitride compound layer 120 and the sulfurated layer 130 positioned between the carbon film 140 and the mold, Have
The initial film in the present invention includes at least nanocarbons, and it is sufficient that a nitride compound layer and a sulfurized layer are formed between a carbon film coated with fullerene and the mold. The method is not limited.
 図1に示すように、間欠加熱工程S12は、初期皮膜形成工程S11にて作製された初期皮膜100を非酸化雰囲気下で間欠的に加熱する工程である。
 間欠加熱工程S12においては、初期皮膜100が形成された金型を用いて、実際にダイカスト鋳造を複数回行うことによって、初期皮膜100を間欠的に加熱する。
 詳細には、まず、初期皮膜100が形成された金型の成形面に、鉱物油、合成油、及び植物油等の油性離型剤を塗布する。この時、前記金型の成形面が完全に前記油性離型剤で覆われるように、当該油性離型剤を塗布する。これにより、初期皮膜100を水及び空気に触れない状態、つまり非酸化雰囲気下にある状態とすることができる。
 次に、高温(例えば、600℃)のアルミニウム合金等の溶湯を前記金型に充填し、所定の時間(例えば、5秒間)放置する。この時、高温の溶湯は、前記金型の成形面と接触することによって、所定の温度(例えば、300℃)まで急冷される。つまり、初期皮膜100は、前記金型に充填された直後の溶湯によって高温で加熱された後、前記金型により急冷された溶湯の温度で冷却されることとなる。
 最後に、凝固した溶湯(鋳物)を前記金型から取り出す。
 上記の処理を所定の回数(例えば、合計1000回)行うことで、初期皮膜100が皮膜1となる。つまり、前記金型の成形面に皮膜1が形成される。
As shown in FIG. 1, the intermittent heating step S12 is a step of intermittently heating the initial coating 100 produced in the initial coating forming step S11 in a non-oxidizing atmosphere.
In the intermittent heating step S12, the initial film 100 is intermittently heated by actually performing die casting multiple times using a mold on which the initial film 100 is formed.
Specifically, first, an oily mold release agent such as mineral oil, synthetic oil, or vegetable oil is applied to the molding surface of the mold on which the initial film 100 is formed. At this time, the oil release agent is applied so that the molding surface of the mold is completely covered with the oil release agent. Thereby, the initial stage film | membrane 100 can be made into the state which does not touch water and air, ie, the state which exists in a non-oxidizing atmosphere.
Next, a molten metal such as an aluminum alloy at a high temperature (for example, 600 ° C.) is filled in the mold and left for a predetermined time (for example, 5 seconds). At this time, the hot molten metal is rapidly cooled to a predetermined temperature (for example, 300 ° C.) by coming into contact with the molding surface of the mold. That is, the initial film 100 is heated at a high temperature by the molten metal immediately after being filled in the mold, and then cooled at the temperature of the molten metal rapidly cooled by the mold.
Finally, the solidified molten metal (casting) is taken out from the mold.
The initial film 100 becomes the film 1 by performing the above process a predetermined number of times (for example, a total of 1000 times). That is, the film 1 is formed on the molding surface of the mold.
 このように、間欠加熱工程S12においては、初期皮膜100が形成された金型を用いて、非酸化雰囲気下にて複数回のダイカスト鋳造を繰り返す。これにより、初期皮膜100に対して、所定の温度変化(加熱及び冷却)が複数回付与される。つまり、初期皮膜100が間欠的に加熱されることとなり、初期皮膜100を皮膜1へと変化させるのである。 As described above, in the intermittent heating step S12, the die casting on which the initial film 100 is formed is repeated a plurality of times in a non-oxidizing atmosphere. Thereby, a predetermined temperature change (heating and cooling) is applied to the initial film 100 a plurality of times. That is, the initial film 100 is intermittently heated, and the initial film 100 is changed to the film 1.
 なお、本実施形態においては、金型の成形面に皮膜1を形成したが、金型の成形面に限らず、あらゆる鉄系材料の表面に対して、本発明を適用可能であると考えられる。
 また、本実施形態においては、一回の鋳造ごとに油性離型剤を塗布したが、初期皮膜100が非酸化雰囲気下にある状態を維持することができれば、油性離型剤を塗布するタイミングは限定しない。
 また、本実施形態においては、油性離型剤を前記金型の成形面に塗布することによって、初期皮膜100が非酸化雰囲気下にある状態を実現したが、これ以外の手法によっても、初期皮膜が非酸化雰囲気下にある状態を実現できれば、本発明に係る皮膜を製造可能であると考えられる。
 また、本実施形態においては、実際にダイカスト鋳造を複数回行うことによって、初期皮膜100を間欠的に加熱したが、レーザ又は超音波等を用いて、初期皮膜100を間欠的に加熱することも可能であると考えられる。
In the present embodiment, the coating 1 is formed on the molding surface of the mold, but it is considered that the present invention can be applied not only to the molding surface of the mold but also to the surface of any iron-based material. .
Moreover, in this embodiment, although the oil-based mold release agent was apply | coated for every casting, if the state which the initial stage film | membrane 100 exists in a non-oxidizing atmosphere can be maintained, the timing which apply | coats an oil-based mold release agent will be Not limited.
Further, in this embodiment, the state in which the initial film 100 is in a non-oxidizing atmosphere is realized by applying an oil-based mold release agent to the molding surface of the mold, but the initial film is also obtained by other methods. If it can implement | achieve the state which exists in a non-oxidizing atmosphere, it is thought that the membrane | film | coat which concerns on this invention can be manufactured.
In the present embodiment, the initial coating 100 is intermittently heated by actually performing die casting a plurality of times. However, the initial coating 100 may be intermittently heated using a laser or ultrasonic waves. It is considered possible.
 図3に、製造工程S1を経て作製された皮膜1を示す。
 図3に示すように、皮膜1は、公知技術によって作製された皮膜であり、拡散層10と、窒化化合物層20と、浸硫層30と、炭素膜40とを具備する。
FIG. 3 shows the film 1 produced through the manufacturing process S1.
As shown in FIG. 3, the film 1 is a film produced by a known technique, and includes a diffusion layer 10, a nitride compound layer 20, a sulfurization layer 30, and a carbon film 40.
 拡散層10は、間欠加熱工程S12を経た拡散層110であり、前記金型の成形面近傍に形成されている。 The diffusion layer 10 is a diffusion layer 110 that has undergone the intermittent heating step S12, and is formed in the vicinity of the molding surface of the mold.
 窒化化合物層20は、間欠加熱工程S12を経た窒化化合物層120であり、拡散層10上に形成されている。
 窒化化合物層20は、FeN等の窒化化合物、及びFeCを含む層である。つまり、窒化化合物層20は、FeNを含む点で、初期皮膜100の窒化化合物層120と異なる。間欠加熱工程S12を経ることにより、初期皮膜100の窒化化合物層120に含まれていたFeN又はFeNがFeNへと変化している。
 ここで、FeNは、FeN又はFeNと比較して、緻密な構造を有している。
 そのため、FeNが含まれた窒化化合物層20を有する皮膜1は、FeN又はFeNが含まれた窒化化合物層120を有する初期皮膜100よりも1.5倍程度の剥離強度(前記金型から剥離する際の圧力)を有することとなる。
 したがって、本発明によれば、皮膜1を高強度とすることができる。
The nitride compound layer 20 is a nitride compound layer 120 that has undergone the intermittent heating step S <b> 12 and is formed on the diffusion layer 10.
The nitride compound layer 20 is a layer containing a nitride compound such as Fe 4 N and Fe 3 C. That is, the nitride compound layer 20 is different from the nitride compound layer 120 of the initial film 100 in that it contains Fe 4 N. Through the intermittent heating step S12, Fe 2 N or Fe 3 N contained in the nitride compound layer 120 of the initial film 100 is changed to Fe 4 N.
Here, Fe 4 N has a dense structure as compared with Fe 2 N or Fe 3 N.
Therefore, the film 1 having the nitride compound layer 20 containing Fe 4 N has a peel strength (about 1.5 times that of the initial film 100 having the nitride compound layer 120 containing Fe 2 N or Fe 3 N ( Pressure when peeling from the mold).
Therefore, according to the present invention, the coating 1 can be made high in strength.
 浸硫層30は、間欠加熱工程S12を経た浸硫層130であり、窒化化合物層20上に形成されている。浸硫層30は、初期皮膜100の最表面となる位置まで到達するように形成されている。 The sulfurized layer 30 is a sulfurized layer 130 that has undergone the intermittent heating step S <b> 12 and is formed on the nitride compound layer 20. The sulfurized layer 30 is formed so as to reach a position that is the outermost surface of the initial film 100.
 炭素膜40は、間欠加熱工程S12を経た炭素膜140である。
 炭素膜40中には、浸硫層30が全体的に形成されている。つまり、炭素膜40には、硫黄が全体的に拡散した状態となっている。
 このように、初期皮膜100においては、炭素膜140の根元(図2における下部)に硫黄が濃縮しているのに対して、皮膜1においては、炭素膜40中に硫黄が全体的に拡散している。
 そのため、皮膜1は、初期皮膜100よりも小さい摩擦係数を有することとなる。
 したがって、本発明によれば、皮膜1の離型抵抗を低減することができる。
The carbon film 40 is the carbon film 140 that has undergone the intermittent heating step S12.
In the carbon film 40, the sulfurized layer 30 is formed as a whole. That is, the carbon film 40 is in a state where sulfur is diffused as a whole.
Thus, in the initial film 100, sulfur is concentrated at the base of the carbon film 140 (lower part in FIG. 2), whereas in the film 1, sulfur diffuses entirely in the carbon film 40. ing.
Therefore, the film 1 has a smaller coefficient of friction than the initial film 100.
Therefore, according to the present invention, the mold release resistance of the film 1 can be reduced.
 炭素膜40は、硬質非晶質炭素41、ナノカーボン42、及びフラーレン43を含む。 The carbon film 40 includes hard amorphous carbon 41, nanocarbon 42, and fullerene 43.
 硬質非晶質炭素41は、間欠加熱工程S12を経た硬質非晶質炭素141である。
 硬質非晶質炭素41は、間欠加熱工程S12を経て非晶質化した一部のフラーレン143が硬質非晶質炭素141を緻密化させることによって形成されている。このように、硬質非晶質炭素41は、初期皮膜100の硬質非晶質炭素141と比較して、緻密な構造を有する。
The hard amorphous carbon 41 is the hard amorphous carbon 141 that has undergone the intermittent heating step S12.
The hard amorphous carbon 41 is formed by densifying the hard amorphous carbon 141 by a part of the fullerene 143 that has been made amorphous through the intermittent heating step S12. Thus, the hard amorphous carbon 41 has a dense structure as compared with the hard amorphous carbon 141 of the initial film 100.
 ナノカーボン42は、間欠加熱工程S12を経たナノカーボン142である。ナノカーボン42は、硬質非晶質炭素41から皮膜1の表面側(図3における上側)に向けて延出するように多数形成されている。ナノカーボン42は、初期皮膜100の最表面となる位置まで到達するように形成されている。 Nanocarbon 42 is nanocarbon 142 that has undergone the intermittent heating step S12. A large number of nanocarbons 42 are formed so as to extend from the hard amorphous carbon 41 toward the surface side of the coating 1 (upper side in FIG. 3). The nanocarbon 42 is formed so as to reach a position that becomes the outermost surface of the initial film 100.
 フラーレン43は、間欠加熱工程S12を経たフラーレン143である。
 フラーレン43は、ナノカーボン42と結合しており、炭素膜40を緻密な構造にしている。
 そのため、アルカリ溶剤によってフラーレン43が除去されることがない。
 したがって、本発明によれば、皮膜1の劣化を防止することができる。
The fullerene 43 is the fullerene 143 that has undergone the intermittent heating step S <b> 12.
The fullerene 43 is bonded to the nanocarbon 42 to make the carbon film 40 a dense structure.
Therefore, the fullerene 43 is not removed by the alkaline solvent.
Therefore, according to the present invention, deterioration of the film 1 can be prevented.
 また、フラーレン43は、窒化化合物層20及び拡散層10にまで拡散している。
 前述のように、皮膜1においては、炭素膜40中に硫黄が全体的に拡散しているが、これは、フラーレン43が拡散層10にまで浸透することに起因していると推測される。
 詳細には、間欠加熱工程S12を経ることによって、炭素膜140の表面側に比較的多く存在していたフラーレン143と、炭素膜140の根元に比較的多く存在していた硫黄との相互拡散が生じ、これに伴って、炭素膜40中に硫黄が全体的に拡散すると推測される。
 なお、フラーレンは、一般的に240℃以上で拡散し易くなるため、間欠加熱工程S12にて初期皮膜100が冷却される際の温度(前記金型の成形面に接触することによって急冷された溶湯の温度)の下限は、240℃であることが好ましい。
 加えて、初期皮膜100の炭素膜140は、600℃を超えると、酸化劣化するおそれがあるため、間欠加熱工程S12にて初期皮膜100が加熱される際の温度(溶湯の初期温度)の上限は、600℃であることが好ましい。
Further, the fullerene 43 has diffused to the nitride compound layer 20 and the diffusion layer 10.
As described above, in the coating 1, sulfur is diffused as a whole in the carbon film 40, which is presumed to be caused by the fullerene 43 penetrating into the diffusion layer 10.
Specifically, through the intermittent heating step S <b> 12, interdiffusion between the fullerene 143 that is relatively present on the surface side of the carbon film 140 and the sulfur that is relatively present at the base of the carbon film 140 is caused. As a result, it is assumed that sulfur diffuses throughout the carbon film 40.
In addition, since fullerene generally tends to diffuse at 240 ° C. or higher, the temperature at which the initial coating 100 is cooled in the intermittent heating step S12 (the molten metal that has been quenched by contacting the molding surface of the mold) Is preferably 240 ° C.
In addition, since the carbon film 140 of the initial film 100 may be oxidized and deteriorated when the temperature exceeds 600 ° C., the upper limit of the temperature (the initial temperature of the molten metal) when the initial film 100 is heated in the intermittent heating step S12. Is preferably 600 ° C.
 以下では、実施例及び比較例に基づき、図4~図6を参照して、本発明に係る皮膜の特性を説明する。 Hereinafter, the characteristics of the coating according to the present invention will be described based on Examples and Comparative Examples with reference to FIGS.
 まず、実施例及び比較例における作業を行う前に、初期皮膜100に対して、EPMA(Electron Probe MicroAnalyser:電子線マイクロアナライザ)によるマッピング分析を行った。マッピング分析を行う断面は、初期皮膜100の表面から内部に向けた方向に沿って切断された面である。 First, before performing the operations in Examples and Comparative Examples, mapping analysis was performed on the initial film 100 using an EPMA (Electron Probe MicroAnalyzer). The cross section for performing the mapping analysis is a surface cut along the direction from the surface of the initial film 100 toward the inside.
 図4に、EPMAによる初期皮膜100のマッピング分析結果を示す。図4(a)は、EPMAによる初期皮膜100中の炭素のマッピング分析結果を示す図であり、図4(b)は、EPMAによる初期皮膜100中の硫黄のマッピング分析結果を示す図である。
 当該マッピング分析結果によって、皮膜の炭素膜中の硫黄拡散率が求められる。
 ここで、炭素膜中の硫黄拡散率とは、EPMAよるマッピング分析を行う断面における、炭素膜に対する硫黄の比率である。例えば、炭素膜の全域に硫黄が拡散している場合には、硫黄拡散率が100%であると判断される。
 図4(a)及び図4(b)に示すように、初期皮膜100における炭素膜140においては、全体的に硫黄が分布せず、根元(図4(b)における下部)に硫黄が比較的多く存在することが確認できる。この時、初期皮膜100における炭素膜140中の硫黄拡散率は、50%であると判断できる。
FIG. 4 shows the mapping analysis result of the initial film 100 by EPMA. FIG. 4A is a diagram showing a mapping analysis result of carbon in the initial film 100 by EPMA, and FIG. 4B is a diagram showing a mapping analysis result of sulfur in the initial film 100 by EPMA.
The sulfur diffusivity in the carbon film of the coating is obtained from the mapping analysis result.
Here, the sulfur diffusivity in the carbon film is a ratio of sulfur to the carbon film in a cross section where mapping analysis is performed by EPMA. For example, when sulfur diffuses throughout the carbon film, it is determined that the sulfur diffusivity is 100%.
As shown in FIG. 4A and FIG. 4B, in the carbon film 140 in the initial film 100, sulfur is not distributed as a whole, and sulfur is relatively located at the root (lower part in FIG. 4B). It can be confirmed that there are many. At this time, it can be determined that the sulfur diffusivity in the carbon film 140 in the initial film 100 is 50%.
 また、初期皮膜100に対して、X線回折を行ったところ、初期皮膜100には、硬質非晶質炭素、FeN、FeC、マルテンサイト、及びFeが含まれることが明らかとなった。 Further, when X-ray diffraction was performed on the initial film 100, the initial film 100 may contain hard amorphous carbon, Fe 2 N, Fe 3 C, martensite, and Fe 3 O 4. It became clear.
 [実施例]
 まず、初期皮膜100が形成された金型の成形面に、前記油性離型剤を塗布し、初期皮膜100を非酸化雰囲気下にある状態とした。
 次に、600℃のアルミニウム合金の溶湯を前記金型に充填し、熱伝達係数6000W/mK(600℃ 50MPa)の伝熱界面(前記金型の成形面)において、4000kcal/mで5秒間、初期皮膜100に対して入熱を行った。
 最後に、凝固した溶湯(鋳物)を前記金型から取り出した。
 上記の処理を合計1000回行い、皮膜1を作製した。
[Example]
First, the oil release agent was applied to the molding surface of the mold on which the initial film 100 was formed, so that the initial film 100 was in a non-oxidizing atmosphere.
Next, a molten aluminum alloy at 600 ° C. is filled in the mold, and at a heat transfer interface (molding surface of the mold) having a heat transfer coefficient of 6000 W / m 2 K (600 ° C., 50 MPa) at 4000 kcal / m 2 . Heat was applied to the initial coating 100 for 5 seconds.
Finally, the solidified molten metal (casting) was taken out from the mold.
The above treatment was performed 1000 times in total to produce a coating 1.
 皮膜1に対して、初期皮膜100と同様に、EPMAによるマッピング分析を行った。
 図5に、EPMAによる皮膜1のマッピング分析結果を示す。図5(a)は、EPMAによる皮膜1中の炭素のマッピング分析結果を示す図であり、図5(b)は、EPMAによる皮膜1中の硫黄のマッピング分析結果を示す図である。
 図5(a)及び図5(b)に示すように、皮膜1における炭素膜40においては、全体的に硫黄が分布し、皮膜1の表面近傍(図5(b)における上部)においても硫黄が概ね均等に存在することが確認できる。この時、皮膜1における炭素膜40中の硫黄拡散率は、100%であると判断できる。
As with the initial film 100, mapping analysis by EPMA was performed on the film 1.
In FIG. 5, the mapping analysis result of the membrane | film | coat 1 by EPMA is shown. FIG. 5A is a diagram showing a mapping analysis result of carbon in the coating 1 by EPMA, and FIG. 5B is a diagram showing a mapping analysis result of sulfur in the coating 1 by EPMA.
As shown in FIGS. 5 (a) and 5 (b), in the carbon film 40 in the film 1, sulfur is distributed as a whole, and sulfur is also present in the vicinity of the surface of the film 1 (upper part in FIG. 5 (b)). Can be confirmed to exist almost evenly. At this time, it can be determined that the sulfur diffusivity in the carbon film 40 in the coating 1 is 100%.
 このように、皮膜1は、初期皮膜100よりも炭素膜中の硫黄拡散率が大きい。そのため、前述のように、皮膜1は、初期皮膜100よりも小さい摩擦係数を有することとなり、初期皮膜100よりも離型抵抗が小さくなる。
 なお、皮膜1における炭素膜40中の硫黄拡散率は、100%であるが、少なくとも、本発明に係る皮膜の摩擦係数が初期皮膜の摩擦係数よりも小さくなっていればよい。つまり、本発明に係る皮膜における炭素膜中の硫黄拡散率は、50%を超えていればよい。
Thus, the film 1 has a higher sulfur diffusivity in the carbon film than the initial film 100. Therefore, as described above, the film 1 has a smaller coefficient of friction than the initial film 100, and the release resistance is smaller than that of the initial film 100.
In addition, although the sulfur diffusivity in the carbon film 40 in the film 1 is 100%, it is sufficient that at least the friction coefficient of the film according to the present invention is smaller than the friction coefficient of the initial film. That is, the sulfur diffusivity in the carbon film in the coating according to the present invention only needs to exceed 50%.
 また、皮膜1に対して、X線回折を行ったところ、皮膜1には、硬質非晶質炭素、FeN、FeC、マルテンサイト、及びFeが含まれることが明らかとなった。
 前述のように、皮膜1には、FeNよりも緻密な構造を有するFeNが含まれているため、皮膜1は、初期皮膜100よりも高強度となっている。
Further, when X-ray diffraction was performed on the film 1, it was clear that the film 1 contained hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4. became.
As described above, since the film 1 contains Fe 4 N having a denser structure than Fe 2 N, the film 1 has higher strength than the initial film 100.
 [比較例]
 前記油性離型剤の代わりに水溶性離型剤を使用する以外は上記の実施例と同様の作業を行い、皮膜(以下、「比較品」と記す)を作製した。
 ここで、水溶性離型剤は、油性離型剤と異なり、初期皮膜100が水及び空気に触れることを防止することができない。
 つまり、比較品は、初期皮膜100を酸化雰囲気下で間欠的に加熱することによって作製されている。
[Comparative example]
A film (hereinafter referred to as “comparative product”) was prepared in the same manner as in the above example except that a water-soluble release agent was used instead of the oil-based release agent.
Here, unlike the oil-based release agent, the water-soluble release agent cannot prevent the initial film 100 from coming into contact with water and air.
That is, the comparative product is manufactured by intermittently heating the initial film 100 in an oxidizing atmosphere.
 比較品に対して、皮膜1と同様に、EPMAによるマッピング分析を行った。
 図6に、EPMAによる比較品のマッピング分析結果を示す。図6(a)は、EPMAによる比較品中の炭素のマッピング分析結果を示す図であり、図6(b)は、EPMAによる比較品中の硫黄のマッピング分析結果を示す図である。
 図6(a)及び図6(b)に示すように、比較品における炭素膜においては、ごく一部にしか硫黄が分布していないことが確認できる。この時、比較品における炭素膜中の硫黄拡散率は、5%であると判断できる。
 このように、比較品は、初期皮膜100よりも炭素膜中の硫黄拡散率が小さくなっており、初期皮膜100よりも大きい摩擦係数を有している。つまり、比較品は、初期皮膜100よりも離型抵抗が高くなっている。
The comparative product was subjected to mapping analysis by EPMA in the same manner as the coating 1.
FIG. 6 shows the mapping analysis result of the comparative product by EPMA. FIG. 6A is a diagram showing a mapping analysis result of carbon in a comparative product by EPMA, and FIG. 6B is a diagram showing a mapping analysis result of sulfur in the comparative product by EPMA.
As shown in FIGS. 6A and 6B, it can be confirmed that sulfur is distributed only in a part of the carbon film in the comparative product. At this time, it can be determined that the sulfur diffusion rate in the carbon film of the comparative product is 5%.
Thus, the comparative product has a lower sulfur diffusion rate in the carbon film than the initial film 100 and has a larger coefficient of friction than the initial film 100. That is, the comparative product has a higher release resistance than the initial film 100.
 以上のように、本発明に係る皮膜は、初期皮膜を非酸化雰囲気下で間欠的に加熱することによって作製されることが明らかとなった。
 更に、本発明に係る皮膜は、硬質非晶質炭素、FeN、FeC、マルテンサイト、及びFeを含み、前記炭素膜中の硫黄拡散率が50%を超えることが明らかとなった。
 なお、皮膜の炭素膜中の硫黄拡散率を求める際には、EPMAによるマッピング分析を行ったが、皮膜の炭素膜中の硫黄拡散率を求めることができれば、その方法は問わない。
 また、皮膜に含まれる物質を同定する際には、X線回折法を用いたが、皮膜に含まれる物質を同定することができれば、その方法は問わない。
As described above, it has been clarified that the coating according to the present invention is produced by intermittently heating the initial coating in a non-oxidizing atmosphere.
Further, the coating according to the present invention contains hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4 , and it is clear that the sulfur diffusivity in the carbon film exceeds 50%. It became.
In addition, when calculating | requiring the sulfur diffusivity in the carbon film of a film | membrane, although the mapping analysis by EPMA was performed, the method will not be ask | required if the sulfur diffusivity in the carbon film of a film | membrane can be calculated | required.
Moreover, when identifying the substance contained in a film | membrane, the X-ray-diffraction method was used, However, The method will not be ask | required if the substance contained in a film | membrane can be identified.
 本発明は、鉄系材料の表面に形成される皮膜、及びその製造方法に利用できる。 The present invention can be used for a film formed on the surface of an iron-based material and a manufacturing method thereof.
 1   皮膜
 10  拡散層
 20  窒化化合物層
 30  浸硫層
 40  炭素膜
 41  硬質非晶質炭素
 42  ナノカーボン
 43  フラーレン
 100 初期皮膜
 110 拡散層
 120 窒化化合物層
 130 浸硫層
 140 炭素膜
 141 硬質非晶質炭素
 142 ナノカーボン
 143 フラーレン
DESCRIPTION OF SYMBOLS 1 Coating 10 Diffusion layer 20 Nitride compound layer 30 Sulfurized layer 40 Carbon film 41 Hard amorphous carbon 42 Nanocarbon 43 Fullerene 100 Initial coating 110 Diffusion layer 120 Nitride compound layer 130 Sulfurized layer 140 Carbon film 141 Hard amorphous carbon 142 Nanocarbon 143 Fullerene

Claims (4)

  1.  鉄系材料の表面に形成される皮膜の製造方法であって、
     ナノカーボン類を含み、フラーレンが塗布される炭素膜と、前記炭素膜と前記鉄系材料との間に位置する窒化化合物層及び浸硫層と、を有する初期皮膜を前記鉄系材料の表面に形成する初期皮膜形成工程と、
     前記初期皮膜形成工程にて形成された初期皮膜を非酸化雰囲気下で間欠的に加熱する間欠加熱工程と、を具備する、
     ことを特徴とする、皮膜の製造方法。
    A method for producing a film formed on the surface of an iron-based material,
    An initial film containing nanocarbons and having a carbon film to which fullerene is applied, and a nitride compound layer and a sulfurized layer positioned between the carbon film and the iron-based material are formed on the surface of the iron-based material. An initial film forming step to be formed;
    An intermittent heating step of intermittently heating the initial coating formed in the initial coating formation step in a non-oxidizing atmosphere,
    A method for producing a coating, characterized in that
  2.  前記鉄系材料は、鋳造に用いられる金型であり、
     前記初期皮膜形成工程においては、前記金型の成形面に前記初期皮膜が形成され、
     前記間欠加熱工程においては、前記初期皮膜が形成された金型の成形面に油性離型剤が塗布された状態で、当該金型を用いて複数回の鋳造が行われる、
     ことを特徴とする、請求項1に記載の皮膜の製造方法。
    The iron-based material is a mold used for casting,
    In the initial film forming step, the initial film is formed on the molding surface of the mold,
    In the intermittent heating step, a plurality of castings are performed using the mold in a state where an oil-based release agent is applied to the molding surface of the mold on which the initial film is formed.
    The manufacturing method of the membrane | film | coat of Claim 1 characterized by the above-mentioned.
  3.  ナノカーボン類を含む炭素膜を有し、鉄系材料の表面に形成される皮膜であって、
     硬質非晶質炭素、FeN、FeC、マルテンサイト、及びFeを含み、
     前記炭素膜中の硫黄拡散率が50%を超える、
     ことを特徴とする皮膜。
    A film having a carbon film containing nanocarbons and formed on the surface of an iron-based material,
    Hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4 ,
    The sulfur diffusivity in the carbon film exceeds 50%,
    A film characterized by that.
  4.  X線回折法により同定されるものが、硬質非晶質炭素、FeN、FeC、マルテンサイト、及びFeであり、
     前記硫黄拡散率は、EPMAによるマッピング分析によって求められる、
     ことを特徴とする請求項3に記載の皮膜。
    Those identified by X-ray diffraction are hard amorphous carbon, Fe 4 N, Fe 3 C, martensite, and Fe 3 O 4 ,
    The sulfur diffusivity is determined by mapping analysis with EPMA.
    The film according to claim 3.
PCT/JP2011/070859 2011-09-13 2011-09-13 Film and method for manufacturing same WO2013038503A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/239,902 US20140212689A1 (en) 2011-09-13 2011-09-13 Film and method for manufacturing same
PCT/JP2011/070859 WO2013038503A1 (en) 2011-09-13 2011-09-13 Film and method for manufacturing same
JP2013533383A JP5660221B2 (en) 2011-09-13 2011-09-13 Film and manufacturing method thereof
DE112011105613.3T DE112011105613T5 (en) 2011-09-13 2011-09-13 Film and method for its production
CN201180073232.4A CN103764313B (en) 2011-09-13 2011-09-13 Tunicle and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070859 WO2013038503A1 (en) 2011-09-13 2011-09-13 Film and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2013038503A1 true WO2013038503A1 (en) 2013-03-21

Family

ID=47882766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070859 WO2013038503A1 (en) 2011-09-13 2011-09-13 Film and method for manufacturing same

Country Status (5)

Country Link
US (1) US20140212689A1 (en)
JP (1) JP5660221B2 (en)
CN (1) CN103764313B (en)
DE (1) DE112011105613T5 (en)
WO (1) WO2013038503A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036194A (en) * 2008-07-31 2010-02-18 Toyota Motor Corp Method for surface treatment of casting mold and casting mold using the same
JP2010137246A (en) * 2008-12-10 2010-06-24 Toyota Motor Corp Die casting apparatus
JP2011098368A (en) * 2009-11-05 2011-05-19 Toyota Motor Corp Surface treatment method for die

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025368A1 (en) * 2004-08-31 2006-03-09 Aoki Science Institute Co., Ltd. Mold-releasing agent for oil die casting, method for setting solvent mixing ratio, casting method and spray device
JP4554704B2 (en) * 2008-12-10 2010-09-29 トヨタ自動車株式会社 Surface treatment method
DE102009032668A1 (en) * 2009-07-09 2011-01-13 Hüttenes-Albertus Chemische Werke GmbH Sizing for the production of mold coatings
JP4868052B2 (en) * 2009-10-29 2012-02-01 トヨタ自動車株式会社 Mold surface treatment method
JP5016016B2 (en) * 2009-11-27 2012-09-05 トヨタ自動車株式会社 Surface-treated mold and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036194A (en) * 2008-07-31 2010-02-18 Toyota Motor Corp Method for surface treatment of casting mold and casting mold using the same
JP2010137246A (en) * 2008-12-10 2010-06-24 Toyota Motor Corp Die casting apparatus
JP2011098368A (en) * 2009-11-05 2011-05-19 Toyota Motor Corp Surface treatment method for die

Also Published As

Publication number Publication date
CN103764313A (en) 2014-04-30
DE112011105613T5 (en) 2014-08-14
JPWO2013038503A1 (en) 2015-03-23
US20140212689A1 (en) 2014-07-31
CN103764313B (en) 2015-11-25
JP5660221B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5008944B2 (en) Mold
CA2730893C (en) Casting mold surface treatment method and casting mold using said method
US8895102B2 (en) Method of treating surface of mold
JP5016016B2 (en) Surface-treated mold and manufacturing method thereof
JP2016539249A5 (en)
CN106660106A (en) Method for producing ni-based super heat-resistant alloy
JP2011036913A (en) Metallic mold for high-temperature molding and method for manufacturing the same
JP2005036311A (en) Titanium material, its production method and exhaust pipe
JP2016522319A (en) Method for producing amorphous alloy film and method for producing nitrogen-containing nanostructured film
JP5660221B2 (en) Film and manufacturing method thereof
JP2009061464A (en) Die for warm and hot forging, and its manufacturing method
JP5776790B2 (en) Casting member and manufacturing method thereof
JPH081268A (en) Forging tool having graded function and its production
JP5620649B2 (en) Method for forming high-hardness wear-resistant film
JP2019038018A (en) Component for aluminum die-casting die
JP4121428B2 (en) Sliding contact member and manufacturing method thereof
JP2011117037A (en) Hot-pressed member and method for manufacturing the same
JP4593684B1 (en) Drawing die, method for producing the same and drawing method
JP4593686B1 (en) Die for forging process, manufacturing method thereof, and forging method
JP3109428B2 (en) Dice having nitrided layer excellent in high temperature oxidation resistance and method for manufacturing the same
JP2013091856A (en) Method for manufacturing hardened aluminum material using cross coupling reaction
JP2005042182A (en) Member having slide contact surface and its production method
JP2008261040A (en) Method for forming hard sprayed coating onto surface of steel stock, hard sprayed coating-coated steel stock, and cutter using hard sprayed coating-coated steel stock
JPS5923867A (en) Gearshift fork made of cast iron
JP5931516B2 (en) Method for manufacturing molten aluminum contact member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14239902

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013533383

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011105613

Country of ref document: DE

Ref document number: 1120111056133

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872255

Country of ref document: EP

Kind code of ref document: A1