WO2013037168A1 - 一种智能变电站二次虚回路检测装置及检测方法 - Google Patents

一种智能变电站二次虚回路检测装置及检测方法 Download PDF

Info

Publication number
WO2013037168A1
WO2013037168A1 PCT/CN2011/082521 CN2011082521W WO2013037168A1 WO 2013037168 A1 WO2013037168 A1 WO 2013037168A1 CN 2011082521 W CN2011082521 W CN 2011082521W WO 2013037168 A1 WO2013037168 A1 WO 2013037168A1
Authority
WO
WIPO (PCT)
Prior art keywords
substation
module
loop
message
smart
Prior art date
Application number
PCT/CN2011/082521
Other languages
English (en)
French (fr)
Inventor
王晋
夏勇军
陶骞
陈宏�
苏昊
叶庞琪
Original Assignee
湖北省电力公司电力试验研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖北省电力公司电力试验研究院 filed Critical 湖北省电力公司电力试验研究院
Publication of WO2013037168A1 publication Critical patent/WO2013037168A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/18Network protocols supporting networked applications, e.g. including control of end-device applications over a network

Definitions

  • the invention relates to the field of detection of a smart substation, in particular to a secondary virtual circuit detection device and a detection method for an intelligent substation.
  • the electrical equipment of the power system is divided into primary equipment and secondary equipment.
  • Primary equipment is the main body of the power system. It is a device that directly produces, transports, and distributes electrical energy, including generators, power transformers, circuit breakers, disconnectors, power buses, power cables, and power lines.
  • a secondary device is a device that controls, regulates, protects, and monitors a primary device. It includes measuring instruments, relays, operating switches, buttons, automatic control devices, computers, signaling devices, control cables, and some power supply devices that provide energy for these devices. (such as batteries, silicon rectifiers, etc.).
  • the secondary device is electrically connected to the primary device via a voltage transformer and a current transformer.
  • An electrical circuit that is connected to each other to form a power generation, transmission, distribution, or other production called a primary circuit or a primary connection.
  • Electrical circuits that are connected to each other by secondary equipment to form a monitoring, control, regulation, and protection of primary equipment are called secondary circuits.
  • the secondary circuit includes control, regulation, relay protection and automation of the primary equipment of the power plant and substation, measurement and signal circuits, and operating power systems.
  • Relay protection is one of the important components in the power system. It is responsible for controlling the smooth operation of the power system and ensuring the safety of the power system.
  • the secondary circuit is the core component of relay protection, commonly known as the "neural system" of the power system. It forms a complete protection network with the relay protection device.
  • the secondary circuit of the intelligent substation is no longer as tangible as the traditional substation, but is transformed into a way of requesting and replying. All information transmission becomes a substation intelligent electronic device.
  • IED Intelligent Electronic Device
  • the existing intelligent substation configuration is generated by each integrator's application back-end database based on the IEC61850 protocol.
  • the invention provides a secondary virtual circuit detecting device and a detecting method for an intelligent substation, which can comprehensively detect the technical performance of the secondary virtual circuit of the substation, thereby ensuring the accuracy of the four remotes of the substation.
  • a secondary sub-loop detection device for intelligent substation comprising a configuration file reading module, a configuration file parsing module, a digital signal generator, an intelligent substation background, a standard design loop data file reading module, and a virtual loop detection module,
  • the input end of the configuration file reading module is connected to the output end of the intelligent substation background, and is used for reading the SCD file exported by the intelligent substation in the background;
  • the input end of the configuration file parsing module is connected to the output end of the configuration file reading module, and is used for parsing the SCD file read by the configuration file reading module, and the SCD file is After the configuration data is parsed, a secondary circuit secondary circuit configuration table of the substation is generated;
  • the output end of the configuration file parsing module and the output end of the standard design loop data file reading module are respectively connected to the virtual loop detecting module, and the standard design loop data file reading module is used to read the standard design loop data file provided by the design institute.
  • the virtual loop detection module compares the input and output virtual loops of each IED with the standard design loop data file provided by the design institute parsing module and the standard design loop data file provided by the design institute, respectively, to obtain a static detection. Report
  • the digital signal generator is configured to load a telemetry signal on the smart device capture card and load a GOOSE message on the smart operation box, and the smart substation is used to send a GOOSE trip command to check the IED device, and the smart device capture card
  • the loaded telemetry signal is processed by A/D conversion and intelligent substation merging unit and then output IEC61850 9-2 3 ⁇ 4 text, and then sent to the virtual loop detection module after the industrial switch and photoelectric converter, GOOSE message and GOOSE trip command pass through the industrial switch,
  • the photoelectric converter is sent to the virtual loop detection module, and the virtual loop detection module compares the received IEC61850 9-2 message, the GOOSE message and the GOOSE trip command with the substation full-station secondary circuit configuration table parsed by the configuration file parsing module. Yes, output dynamic detection report.
  • a smart substation secondary virtual loop detection method comprises the following steps: a configuration file reading module reads an SCD file exported by a smart substation in the background; a configuration file parsing module parses an SCD file read by the configuration file reading module, and the SCD file is After the configuration data is parsed, the substation full-station secondary loop configuration table is generated; the static detection step: the standard design loop data file reading module reads the standard design loop data file given by the design institute, and the input and output virtual loops for each IED are respectively Correct According to the configuration file parsing module, the substation full-circuit secondary loop configuration table and the standard design loop data file given by the design institute are - correspondingly, a static detection report is obtained; dynamic detection step: the digital signal generator is collected in the smart device The telemetry signal is loaded on the card and the GOOSE message is loaded on the intelligent operation box.
  • the intelligent substation sends a GOOSE trip command to check the IED device in the background, and the telemetry signal loaded on the smart device acquisition card is subjected to A/D conversion and intelligent substation merging unit.
  • the IEC61850 9-2 message is output, and then sent to the virtual loop detection module after passing through the industrial switch photoelectric converter.
  • the GOOSE message and the GOOSE trip command are sent to the virtual loop detection module after the industrial switch and the photoelectric converter, and the virtual loop detection is performed.
  • the module compares the received IEC61850 9-2 message, the GOOSE message and the GOOSE trip command with the substation full-station secondary circuit configuration table parsed by the configuration file parsing module, and outputs a dynamic detection report.
  • the intelligent virtual substation secondary virtual loop detecting device and method provided by the embodiment of the invention can test the accuracy and information correctness of the designated secondary virtual loop, and can comprehensively detect the secondary loop connection performance of the entire substation, thereby ensuring the substation 2
  • the accuracy of the secondary equipment operation can provide technical basis for the acceptance, modification and improvement of the substation automation system and secondary equipment, which is conducive to the safe production and stable operation of the power grid.
  • FIG. 1 is a schematic structural view of a secondary virtual loop detecting device of a smart substation according to the present invention
  • FIG. 2 is a schematic flow chart of a secondary virtual loop detecting method of the intelligent substation of the present invention
  • FIG. 3 is a standard design loop data file provided by the design institute of the present invention.
  • GOOSE virtual circuit diagram of intelligent substation
  • Figure 4 is an intelligent change in the standard design loop data file provided by the design institute in the present invention.
  • 10 configuration file reading module 10 configuration file reading module
  • 11 configuration file analysis module 12—digital signal generator
  • 13 smart substation background
  • 14-smart substation merge unit 15 _industrial switch
  • 16 photoelectric converter 16 photoelectric converter
  • 17-virtual circuit Detection module 18—test report output module
  • 19 standard design loop data file reading module 20—smart device acquisition card, 30 smart operation box.
  • FIG. 1 is a schematic structural view of a secondary virtual loop detecting device of a smart substation according to the present invention, wherein the intelligent virtual substation secondary virtual loop detecting device includes a configuration file reading module 10, a configuration file parsing module 11, a digital signal generator 12, and an intelligent device.
  • the input end of the configuration file reading module 10 is connected to the output end of the smart substation background 13 for reading the Substation Configuration Description (SCD) file exported by the intelligent substation background 13 to the substation configuration description language.
  • SCD Substation Configuration Description
  • the Language, SCL) language SCD file describes the model of a particular substation, the Intelligent Electronic Device (IED) function for the logical node, and the communication connection.
  • the SCD file includes (1) switch station naming and topology description, (2) IED configuration description (function for logical nodes), (3) relationship between switch station and IED function, and (4) communication network description.
  • IEC 61850-6 specifies substation configuration description language (SCL), substation configuration
  • SCL substation configuration description language
  • the input end of the configuration file parsing module 11 is connected to the output end of the configuration file reading module 10, and is used for parsing the SCD file read by the configuration file reading module 10, and parsing the configuration data in the SCD file to generate a substation full station twice. Loop configuration table.
  • the output of the configuration file parsing module 11 and the output of the standard design loop data file reading module 19 are connected to the virtual loop detecting module 17, respectively.
  • the standard design loop data file reading module 19 is configured to read the standard design loop data file provided by the design institute, and the virtual loop detection module 17 respectively analyzes the substation parsed by the configuration file parsing module 11 for each input and output virtual loop of the IED. Whether the whole station secondary loop configuration table (ie, the integrator's design) and the standard design loop data file (ie, the standard design given by the design institute) given by the design institute correspond one-to-one, giving a static test report, thus completing the static virtual Loop check work.
  • Figure 3 and Figure 4 show the virtual circuit diagram of the telemetry signal and the GOOSE virtual circuit diagram of the intelligent substation in the standard design loop data file given by the design institute.
  • the standard design loop data file can be provided in the form of EXCEL file, which is pre-stored in the database.
  • the standard design loop data file reading module 19 can be directly read from the database.
  • the digital signal generator 12 is respectively connected to the smart device acquisition card 20 and the intelligent operation box 30, and the output end of the smart device acquisition card 20 is sequentially connected with the intelligent substation merging unit 14 and the industrial switch 15, and the output end of the intelligent operation box 30 is
  • the industrial switch 15 is connected, the output of the industrial switch 15 is connected to the input of the photoelectric converter 16, and the output of the photoelectric converter 16 is connected to the input of the virtual loop detecting module 17.
  • the digital signal generator 12 is configured to load a telemetry signal on the smart device capture card 20 and load a remote signal on the smart operation box 30 to upload a Generic Object Oriented Substation Event (GOOSE) message.
  • GOOSE Generic Object Oriented Substation Event
  • the following cylinder is called GOOSE message
  • the smart substation background 13 is used to issue a GOOSE trip command to check the IED device
  • the telemetry signal loaded on the smart device acquisition card 20 is processed by A/D conversion, intelligent substation merging unit 14 and output.
  • the IEC61850 9-2 message is then sent to the virtual loop detection module 17 via the industrial switch 15, the photoelectric converter 16, and the GOOSE message and the GOOSE trip command are sent to the virtual loop detection module 17 after passing through the industrial switch 15 and the photoelectric converter 16.
  • the virtual loop detection module 17 compares the received IEC 61850 9-2 message, the GOOSE message, and the GOOSE trip command with the substation secondary station configuration table parsed by the configuration file parsing module 11 to output a dynamic detection report.
  • the digital signal generator 12 is configured to load a telemetry signal on the smart device capture card 20, and the smart device capture card 20 forms an FT3 after the A/D conversion of the loaded telemetry signal (all-fiber current transformer data communication protocol)
  • the format message is transmitted to the intelligent substation merging unit 14 through the optical fiber, and the intelligent substation merging unit 14 transmits the FT3 format message to the IEC3650 9-24 text through the data processing, and the IEC61850 9-24 ⁇ 15 transmits the photoelectric conversion
  • the optical converter 16 converts the IEC 61850 9-2 message into a virtual circuit detection module 17 (for example, a computer) through an Ethernet port, and the virtual circuit detection module 17 reads each channel in the IEC 61850 9-2 message.
  • the data and configuration file parsing module 11 parses the IED device channel from the SCD file, compares the correctness of the MAC address, the APPID, and the loading semaphore, and completes the secondary virtual loop IED. Virtual loop detection.
  • the digital signal generator 12 is further configured to load a remote signal on the smart operation box 30 to upload a Generic Object Oriented Substation Event (GOOSE) message (hereinafter referred to as a GOOSE message), a GOOSE message.
  • GOOSE Generic Object Oriented Substation Event
  • the industrial circuit switch 15 and the photoelectric converter 16 are input to the virtual circuit detecting module 17 (for example, a computer), and the virtual circuit detecting module 17 reads the channel data in the GOOSE message and the IED device parsed by the configuration file parsing module 11 from the SCD file. Channel, compare the MAC address of the IED device, the correctness of the APPID loading semaphore, and complete the comparison detection of the remote signal virtual loop.
  • the smart substation background 13 is used to issue a GOOSE trip command to check the IED device.
  • the GOOSE trip command is input to the virtual loop detection module 17 (for example, a computer) through the industrial switch 15, the photoelectric converter 16, and the virtual loop detection module 17 reads GOOSE.
  • the channel data in the trip command and the configuration file parsing module 11 parse the IED device channel from the SCD file, and compare the GOOSE trip command to complete the GOOSE virtual loop detection.
  • the smart substation secondary virtual loop detecting device may further include a detection report output module 18, and the detection report output module 18 is shortly connected with the output of the virtual loop detecting module 17 for detecting the detection result according to the virtual loop detecting module 17.
  • Generate a test report for example, generate a test report in the form of an EXCEL file) and output it.
  • the embodiment of the invention further provides a method for detecting a secondary virtual circuit of a smart substation.
  • the detection method includes two parts: static detection and dynamic detection, including the following steps:
  • Step A The configuration file reading module reads the substation distribution of the smart substation background export Set the description file (the cartridge is called the SCD file).
  • the configuration file reading module can also check the legality of the read SCD file. If the determination is yes, proceed to the next step. If it is determined otherwise, return to step A to continue reading the SCD file.
  • Step B The configuration file parsing module parses the SCD file read by the configuration file reading module, and parses the configuration data in the SCD file to generate a secondary station secondary loop configuration table of the substation.
  • Step C The standard design loop data file reading module reads the standard design loop data file given by the design institute, and the substation full station secondary loop configuration table parsed by the configuration file parsing module for each IED input and output virtual loop respectively Whether the design of the integrator is one-to-one, a static test report is obtained.
  • the standard design loop data file is pre-stored in a database, and the standard design loop data file reading module reads the standard design loop data file from the database.
  • the loaded telemetry signal is processed by A/D conversion and intelligent substation merging unit and then output IEC61850 9-2 message, and then sent to the virtual loop detection module after the industrial switch photoelectric converter, GOOSE message and GOOSE trip command pass through the industrial switch, After the photoelectric converter is sent to the virtual loop detection module, the virtual circuit check 'J module according to the received
  • the IEC61850 9-2 message, GOOSE message and GOOSE trip command are compared with the substation full-station secondary circuit configuration table parsed by the configuration file parsing module, and the dynamic detection report is output.
  • the dynamic detection is specifically performed in three steps. It should be noted that there is no prioritization between each step, and may be performed sequentially or simultaneously, as follows:
  • Step D The digital signal generator is used to load the telemetry signal on the smart device acquisition card, and the smart device acquisition card forms an FT3 (all-fiber current transformer data communication protocol) format message through the A/D conversion of the loaded telemetry signal.
  • the optical fiber is transmitted to the intelligent substation merging unit, and the intelligent substation merging unit transmits the FT3 format message to the IEC61850 9-24 text, and the IEC61850 9-24 ⁇ text is transmitted to the photoelectric converter by the industrial switch, and the photoelectric converter will be IEC61850 9- 2
  • the message is input to the virtual loop detection module (such as a computer) through the Ethernet port, and the virtual loop detection module reads the data of each channel in the IEC61850 9-2 message and the parsing module of the configuration file is parsed from the SCD file.
  • the IED device channel comparing the correctness of the MAC address, APPID, and loading semaphore, completes the secondary virtual loop IED virtual loop detection.
  • Step E Use the digital signal generator to load the remote signal on the intelligent operation box to upload the GOOSE message.
  • the GOOSE message is input to the virtual loop detection module (such as a computer) through the industrial switch and the photoelectric converter, and the virtual loop detection module reads GOOSE.
  • the channel data in the message and the IED device channel parsed by the configuration file parsing module from the SCD file compares the correctness of the MAC address of the IED device and the load amount of the APPID load, and completes the comparison detection of the remote signal virtual loop.
  • Step F The intelligent substation sends out a GOOSE trip to check the IED device in the background. Therefore, the GOOSE trip command is input to the virtual loop detection module (such as a computer) through the industrial switch and the photoelectric converter, and the virtual loop detection module reads the channel data in the GOOSE trip command and the IED parsed from the SCD file by the configuration file parsing module. Device channel, compare GOOSE trip command, complete GOOSE virtual loop detection.
  • the virtual loop detection module such as a computer
  • the static detection report and the dynamic detection report can be output in the form of an EXCEL file, and the data in the parsed secondary station secondary circuit configuration table of the substation can be stored for subsequent use.
  • the intelligent virtual substation secondary virtual loop detecting device and method provided by the embodiment of the invention can test the accuracy and information correctness of the designated secondary virtual loop, and can comprehensively detect the secondary loop connection performance of the entire substation, thereby ensuring the substation 2
  • the accuracy of the secondary equipment operation can provide technical basis for the acceptance, modification and improvement of the substation automation system and secondary equipment, which is conducive to the safe production and stable operation of the power grid.

Abstract

公开了一种智能变电站二次虚回路检测装置和检测方法。该检测装置包括:配置文件读取模块(10)的输入端与智能变电站后台(13)的输出端连接;配置文件解析模块(11)的输入端与配置文件读取模块(10)的输出端连接;数字信号发生器(12)分别与智能设备采集卡(20)和智能操作箱(30)连接;智能设备采集卡(20)的输出端依次与智能变电站合并单元(14)、工业交换机(15)连接;智能操作箱(30)的输出端与工业交换机(15)连接;工业交换机(15)的输出端与光电转换器(16)的输入端连接;光电转换器(16)的输出端与虚回路检测模块(17)的输入端连接。该技术方案可全面检测整个变电站的二次回路连接性能,保障变电站二次设备动作的准确性,为变电站自动化系统和二次设备的验收、改造、改进等提供技术依据,有利于电网安全生产和稳定运行。

Description

一种智能变电站二次虚回路检测装置及检测方法 技术领域
本发明涉及智能变电站的检测领域,具体是一种智能变电站二次 虚回路检测装置及检测方法。
背景技术
电力系统的电气设备分为一次设备和二次设备。一次设备是构成 电力系统的主体, 它是直接生产、 输送和分配电能的设备, 包括发电 机、 电力变压器、 断路器、 隔离开关、 电力母线、 电力电缆和输电线 路等。 二次设备是对一次设备进行控制、 调节、 保护和监测的设备, 它包括测量仪表、继电器、操作开关、按鈕、 自动控制设备、计算机、 信号设备、 控制电缆以及提供这些设备能源的一些供电装置 (如蓄电 池、 硅整流器等)。 二次设备通过电压互感器和电流互感器与一次设 备取得电气上的联系。 由一次设备相互连接构成发电、 输电、 配电 或进行其他生产的电气回路, 称为一次回路或一次接线。 由二次设备 互相连接, 构成对一次设备进行监测、 控制、 调节和保护的电气回路 称为二次回路。二次回路包括发电厂和变电所一次设备的控制、调节、 继电保护和自动装置、 测量和信号回路以及操作电源系统等。
继电保护是电力系统中的重要组成部分之一,担负着控制电力系 统平稳运行、保障电力系统安全的重任; 而二次回路是继电保护的核 心组成部分, 俗称电力系统的"神经系统", 它和继电保护装置一起构 成了完整的保护网络。 随着智能变电站技术的不断推广,以光纤替代现有的二次回路作 为信息传递的方式对现有的调试手段带来了新的挑战。智能变电站的 二次回路不再像以前传统变电站那样看得见摸得着,而是转变成为请 求和回复的方式, 所有的信息传递变成了变电站智能电子设备
( Intelligent Electronic Device, IED ) 间的逻辑连线。 对于变电站二 次虚回路的正确性直接关系到电网子站内 (本地)、 调度(异地)运 行操作的正确性, 以及对事故及时的准确分析和判断处理。
现有智能变电站配置由每个集成商基于 IEC61850协议的应用后 台数据库生成,然而现阶段针对集成商所配置的变电站二次虚回路没 有通用的检测方法, 无法保证变电站二次虚回路的正确性,对智能变 电站的安全运行带来隐患。
发明内容
本发明提供一种智能变电站二次虚回路检测装置及检测方法,可 以全面地检测变电站二次虚回路的技术性能,从而保障变电站四遥准 确性。
一种智能变电站二次虚回路检测装置, 包括配置文件读取模块、 配置文件解析模块、 数字信号发生器、 智能变电站后台、 标准设计回 路数据文件读取模块、 虚回路检测模块,
配置文件读取模块的输入端与智能变电站后台的输出端连接, 用于读取智能变电站后台导出的 SCD文件;
配置文件解析模块的输入端与配置文件读取模块的输出端连 接, 用于解析配置文件读取模块读取的 SCD文件, 将 SCD文件中的 配置数据解析后生成变电站全站二次回路配置表;
配置文件解析模块的输出端和标准设计回路数据文件读取模 块的输出端分别与虚回路检测模块连接,所述标准设计回路数据文件 读取模块用于读取设计院提供的标准设计回路数据文件,虚回路检测 模块针对每个 IED 的输入输出虚回路分别对照配置文件解析模块解 析出的变电站全站二次回路配置表和设计院提供的标准设计回路数 据文件是否一一对应, 得出静态检测报告;
所述数字信号发生器用于在智能设备采集卡上加载遥测信号以 及在智能操作箱上加载 GOOSE 4艮文, 所述智能变电站后台用于发出 需检查 IED设备的 GOOSE跳闸命令,智能设备采集卡上加载遥测信 号经过 A/D转换、 智能变电站合并单元处理后输出 IEC61850 9-2 ¾ 文, 然后经过工业交换机、 光电转换器后发送至虚回路检测模块, GOOSE报文和 GOOSE跳闸命令经过工业交换机、 光电转换器后发 送至虚回路检测模块, 虚回路检测模块根据接收的 IEC61850 9-2报 文、 GOOSE报文和 GOOSE跳闸命令与配置文件解析模块解析出的 变电站全站二次回路配置表进行比对, 输出动态检测报告。
一种智能变电站二次虚回路检测方法, 包括如下步骤: 配置文件读取模块读取智能变电站后台导出的 SCD文件; 配置文件解析模块解析配置文件读取模块读取的 SCD文件, 将 SCD文件中的配置数据解析后生成变电站全站二次回路配置表; 静态检测步骤:标准设计回路数据文件读取模块读取设计院给出 的标准设计回路数据文件, 针对每个 IED 的输入输出虚回路分别对 照配置文件解析模块解析出的变电站全站二次回路配置表和设计院 给出的标准设计回路数据文件是否——对应, 得出静态检测报告; 动态检测步骤:数字信号发生器在智能设备采集卡上加载遥测信 号以及在智能操作箱上加载 GOOSE报文, 所述智能变电站后台发出 需检查 IED设备的 GOOSE跳闸命令,智能设备采集卡上加载的遥测 信号经过 A/D转换、 智能变电站合并单元处理后输出 IEC61850 9-2 报文, 然后经过工业交换机光电转换器后发送至虚回路检测模块, GOOSE报文和 GOOSE跳闸命令经过工业交换机、 光电转换器后发 送至虚回路检测模块, 虚回路检测模块根据接收的 IEC61850 9-2报 文、 GOOSE报文和 GOOSE跳闸命令与配置文件解析模块解析出的 变电站全站二次回路配置表进行比对, 输出动态检测报告
本发明实施例提供的智能变电站二次虚回路检测装置和方法,能 够测试指定的二次虚回路的准确性和信息正确性,可以全面的检测整 个变电站的二次回路连接性能,从而保障变电站二次设备动作的准确 性, 可以为变电站自动化系统和二次设备的验收、 改造、 改进等提供 技术依据, 有利于电网安全生产和稳定运行。
附图说明
图 1是本发明智能变电站二次虚回路检测装置的结构示意图; 图 2是本发明智能变电站二次虚回路检测方法的流程示意图; 图 3 是本发明中设计院提供的标准设计回路数据文件中智能变 电站的 GOOSE虚回路图;
图 4 是本发明中设计院提供的标准设计回路数据文件中智能变 电站的遥测信号虚回路图。
图中: 10 配置文件读取模块, 11 配置文件解析模块, 12— 数字信号发生器, 13—智能变电站后台, 14一智能变电站合并单元, 15_工业交换机, 16 光电转换器, 17—虚回路检测模块, 18—检测 报告输出模块, 19 标准设计回路数据文件读取模块, 20—智能设备 采集卡, 30 智能操作箱。
具体实施方式
下面将结合本发明中的附图, 对本发明中的技术方案进行清楚、 完整地描述。
图 1 所示为本发明智能变电站二次虚回路检测装置的结构示意 图, 所述智能变电站二次虚回路检测装置包括配置文件读取模块 10、 配置文件解析模块 11、 数字信号发生器 12、 智能变电站后台 13、 标 准设计回路数据文件读取模块 19、 虚回路检测模块 17。
配置文件读取模块 10的输入端与智能变电站后台 13的输出端连 接, 用于读取智能变电站后台 13导出的变电站配置描述(Substation Configuration Description , SCD ) 文件, 以变电站配置描述语言 ( Substation Configuration description Language , SCL )语言的 SCD 文件描述了特定变电站的模型、就逻辑节点而言的变电站智能电子设 备(Intelligent Electronic Device, IED ) 功能、 以及通信连接。
SCD文件包括 (1)开关站命名和拓朴描述、 (2)IED配置描述 (就逻 辑节点而言的功能)、 (3)开关站与 IED功能之间的关系、 (4)通信网络 描述。 IEC61850-6规定了变电站配置描述语言 (SCL ), 变电站配置 描述语言的主要作用就是使得通信系统配置数据可在不同制造商提 供的智能电子设备和系统配置工具之间相互交换。
配置文件解析模块 11的输入端与配置文件读取模块 10的输出端 连接, 用于解析配置文件读取模块 10读取的 SCD文件, 将 SCD文 件中的配置数据解析后生成变电站全站二次回路配置表。配置文件解 析模块 11的输出端和标准设计回路数据文件读取模块 19的输出端分 别与虚回路检测模块 17连接。
所述标准设计回路数据文件读取模块 19用于读取设计院提供的 标准设计回路数据文件, 虚回路检测模块 17针对每个 IED的输入输 出虚回路分别对照配置文件解析模块 11解析出的变电站全站二次回 路配置表(即集成商的设计 )和设计院给出的标准设计回路数据文件 (即设计院给出的标准设计)是否一一对应, 给出静态检测报告, 从 而完成静态虚回路检查工作。图 3和图 4所示分别为设计院给出的标 准设计回路数据文件中智能变电站的遥测信号虚回路图和 GOOSE虚 回路图, 标准设计回路数据文件可以 EXCEL文件的形式提供, 预先 保存在数据库中, 所述标准设计回路数据文件读取模块 19从数据库 中直接读取即可。
所述数字信号发生器 12分别与智能设备采集卡 20和智能操作箱 30连接,智能设备采集卡 20的输出端依次与智能变电站合并单元 14、 工业交换机 15连接,智能操作箱 30的输出端与工业交换机 15连接, 工业交换机 15的输出端与光电转换器 16的输入端连接,光电转换器 16的输出端与虚回路检测模块 17的输入端连接。 其中,所述数字信号发生器 12用于在智能设备采集卡 20上加载 遥测信号以及在智能操作箱 30上加载遥信信号上传面向通用对象的 变电站事件 ( Generic Object Oriented Substation Event, GOOSE )报 文(以下筒称 GOOSE报文), 所述智能变电站后台 13用于发出需检 查 IED设备的 GOOSE跳闸命令, 智能设备采集卡 20上加载遥测信 号经过 A/D转换、 智能变电站合并单元 14处理后输出 IEC61850 9-2 报文, 然后经过工业交换机 15、 光电转换器 16后发送至虚回路检测 模块 17, GOOSE报文和 GOOSE跳闸命令经过工业交换机 15、 光电 转换器 16后发送至虚回路检测模块 17 , 虚回路检测模块 17根据接 收的 IEC61850 9-2报文、 GOOSE报文和 GOOSE跳闸命令与配置文 件解析模块 11解析出的变电站全站二次回路配置表进行比对, 输出 动态检测报告。
具体的,所述数字信号发生器 12用于在智能设备采集卡 20上加 载遥测信号, 智能设备采集卡 20对加载的遥测信号通过 A/D转换后 形成 FT3 (全光纤电流互感器数据通信协议)格式报文, 通过光纤传 送至智能变电站合并单元 14,智能变电站合并单元 14对 FT3格式报 文经过数据处理输出 IEC61850 9-24艮文, IEC61850 9-24艮文经工业交 换机 15传送到光电转换器 16, 光电转换器 16将 IEC61850 9-2报文 经过光电转换后通过以太网口输入到虚回路检测模块 17 (例如计算 机), 虚回路检测模块 17读取 IEC61850 9-2报文中各个通道数据和 配置文件解析模块 11从 SCD文件中解析出的 IED设备通道, 比对 MAC地址、 APPID以及加载信号量的正确性, 完成二次虚回路 IED 虚回路检测。
所述数字信号发生器 12还用于在智能操作箱 30上加载遥信信号 上传面向通用对象的变电站事件 ( Generic Object Oriented Substation Event, GOOSE )报文(以下筒称 GOOSE报文), GOOSE报文通过 工业交换机 15、 光电转换器 16输入到虚回路检测模块 17 (例如计算 机 ),虚回路检测模块 17读取 GOOSE报文中的通道数据和配置文件 解析模块 11从 SCD文件中解析出的 IED设备通道, 比对 IED设备 的 MAC地址、 APPID加载信号量的正确性, 完成遥信虚回路的比对 检测。
所述智能变电站后台 13用于发出需检查 IED设备的 GOOSE跳 闸命令, GOOSE跳闸命令通过工业交换机 15、 光电转换器 16输入 到虚回路检测模块 17(例如计算机),虚回路检测模块 17读取 GOOSE 跳闸命令中的通道数据和配置文件解析模块 11从 SCD文件中解析出 的 IED设备通道,比对 GOOSE跳闸命令,完成 GOOSE虚回路检测。
所述智能变电站二次虚回路检测装置还可包括检测报告输出模 块 18, 所述检测报告输出模块 18与所述虚回路检测模块 17的输出 短连接, 用于根据虚回路检测模块 17的检测结果生成检测报告(例 如以 EXCEL文件的形式生成检测 4艮告 )后输出。
本发明实施例还提供一种智能变电站二次虚回路检测方法,如图 2所示, 所述检测方法包括静态检测和动态检测两个部分, 包括如下 步骤:
步骤 A:配置文件读取模块读取智能变电站后台导出的变电站配 置描述文件(筒称 SCD文件 )。
配置文件读取模块还可对读取的 SCD文件进行合法性检查, 若 判断为是则进行下一步骤,若判断为否则返回步骤 A,继续进行 SCD 文件的读取。
步骤 B: 配置文件解析模块解析配置文件读取模块读取的 SCD 文件, 将 SCD文件中的配置数据解析后生成变电站全站二次回路配 置表。
下面为静态检测步骤:
步骤 C:标准设计回路数据文件读取模块读取设计院给出的标准 设计回路数据文件, 针对每个 IED 的输入输出虚回路分别对照配置 文件解析模块解析出的变电站全站二次回路配置表(即集成商的设 计)是否一一对应, 得出静态检测报告。 具体的, 所述标准设计回路 数据文件预先保存在数据库中,所述标准设计回路数据文件读取模块 从所述数据库中读取所述标准设计回路数据文件。
下面为动态检测步骤:数字信号发生器在智能设备采集卡上加载 遥测信号以及在智能操作箱上加载 GOOSE报文, 所述智能变电站后 台发出需检查 IED设备的 GOOSE跳闸命令,智能设备采集卡上加载 的遥测信号经过 A/D 转换、 智能变电站合并单元处理后输出 IEC61850 9-2报文,然后经过工业交换机光电转换器后发送至虚回路 检测模块, GOOSE报文和 GOOSE跳闸命令经过工业交换机、 光电 转换器后发送至虚回路检测模块, 虚回路检 'J模块根据接收的 IEC61850 9-2报文、 GOOSE报文和 GOOSE跳闸命令与配置文件解 析模块解析出的变电站全站二次回路配置表进行比对,输出动态检测 报告。
所述动态检测具体为三个步骤, 需要说明的是,每个步骤之间无 先后次序, 可先后进行, 也可同时进行, 具体介绍如下:
步骤 D: 使用数字信号发生器在智能设备采集卡上加载遥测信 号,智能设备采集卡对加载的遥测信号通过 A/D转换后形成 FT3 (全 光纤电流互感器数据通信协议 )格式报文, 通过光纤传送至智能变电 站合并单元, 智能变电站合并单元对 FT3 格式报文经过数据处理输 出 IEC61850 9-24艮文, IEC61850 9-24艮文经工业交换机传送到光电转 换器, 光电转换器将 IEC61850 9-2报文经过光电转换后通过以太网 口输入到虚回路检测模块 (例如计算机), 虚回路检测模块读取 IEC61850 9-2报文中各个通道数据和配置文件解析模块从 SCD文件 中解析出的 IED设备通道, 比对 MAC地址、 APPID以及加载信号量 的正确性, 完成二次虚回路 IED虚回路检测。
步骤 E: 使用数字信号发生器在智能操作箱上加载遥信信号上传 GOOSE报文, GOOSE报文通过工业交换机、 光电转换器输入到虚 回路检测模块(例如计算机), 虚回路检测模块读取 GOOSE报文中 的通道数据和配置文件解析模块从 SCD文件中解析出的 IED设备通 道, 比对 IED设备的 MAC地址、 APPID加载信号量的正确性, 完成 遥信虚回路的比对检测。
步骤 F: 智能变电站后台发出需检查 IED设备的 GOOSE跳闸命 令, GOOSE跳闸命令通过工业交换机、 光电转换器输入到虚回路检 测模块(例如计算机), 虚回路检测模块读取 GOOSE跳闸命令中的 通道数据和和配置文件解析模块从 SCD文件中解析出的 IED设备通 道, 比对 GOOSE跳闸命令, 完成 GOOSE虚回路检测。
上述步 D、 E、 F经过虚回路检测后生成动态检测报告。
可将静态检测报告和动态检测报告以 EXCEL文件的形式输出, 同时将解析出的变电站全站二次回路配置表中的数据进行存储,便于 后续使用。
本发明实施例提供的智能变电站二次虚回路检测装置和方法,能 够测试指定的二次虚回路的准确性和信息正确性,可以全面的检测整 个变电站的二次回路连接性能,从而保障变电站二次设备动作的准确 性, 可以为变电站自动化系统和二次设备的验收、 改造、 改进等提供 技术依据, 有利于电网安全生产和稳定运行。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并 不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范 围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
因此, 本发明的保护范围应该以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种智能变电站二次虚回路检测装置, 其特征在于: 包括配 置文件读取模块( 10 )、配置文件解析模块( 11 )、数字信号发生器( 12 )、 智能变电站后台 (13 )、 标准设计回路数据文件读取模块( 19 )、 虚回 路检测模块( 17 ),
配置文件读取模块( 10 )的输入端与智能变电站后台 ( 13 )的 输出端连接, 用于读取智能变电站后台 (13 )导出的 SCD文件; 配置文件解析模块( 11 ) 的输入端与配置文件读取模块 ( 10 ) 的输出端连接, 用于解析配置文件读取模块 ( 10 )读取的 SCD文件, 将 SCD文件中的配置数据解析后生成变电站全站二次回路配置表; 配置文件解析模块( 11 )的输出端和标准设计回路数据文件读 取模块 ( 19 )的输出端分别与虚回路检测模块 ( 17 )连接, 所述标准 设计回路数据文件读取模块( 19 )用于读取设计院提供的标准设计回 路数据文件, 虚回路检测模块(17 )针对每个 IED 的输入输出虚回 路分别对照配置文件解析模块 ( 11 )解析出的变电站全站二次回路配 置表和设计院提供的标准设计回路数据文件是否一一对应,得出静态 检测报告;
所述数字信号发生器( 12 )用于在智能设备采集卡( 20 )上加 载遥测信号以及在智能操作箱 (30 )上加载 GOOSE报文, 所述智能 变电站后台( 13 )用于发出需检查 IED设备的 GOOSE跳闸命令, 智 能设备采集卡(20 )上加载遥测信号经过 A/D转换、 智能变电站合 并单元(14 )处理后输出 IEC61850 9-2 4艮文, 然后经过工业交换机 ( 15 )、 光电转换器 ( 16 )后发送至虚回路检测模块( 17 ), GOOSE 报文和 GOOSE跳闸命令经过工业交换机( 15 )、 光电转换器( 16 ) 后发送至虚回路检测模块(17 ), 虚回路检测模块(17 )根据接收的 IEC61850 9-2报文、 GOOSE报文和 GOOSE跳闸命令与配置文件解 析模块 ( 11 )解析出的变电站全站二次回路配置表进行比对, 输出动 态检测报告。
2、 如权利要求 1所述的智能变电站二次虚回路检测装置, 其特 征在于: 所述标准设计回路数据文件预先保存在数据库中, 所述标准 设计回路数据文件读取模块 ( 19 )从所述数据库中读取所述标准设计 回路数据文件。
3、 如权利要求 1所述的智能变电站二次虚回路检测装置, 其特 征在于: 智能设备采集卡(20 )对加载的遥测信号通过 A/D转换后 形成 FT3格式报文, 通过光纤传送至智能变电站合并单元(14 ), 智 能变电站合并单元( 14 )对 FT3格式报文经过数据处理输出 IEC61850 9-2报文, IEC61850 9-2报文经工业交换机( 15 )传送到光电转换器
( 16 ), 光电转换器( 16 )将 IEC61850 9-2报文经过光电转换后通过 以太网口输入到虚回路检测模块(17 ), 虚回路检测模块(17 )读取 IEC61850 9-2报文中各个通道数据和配置文件解析模块( 11 )从 SCD 文件中解析出的 IED设备通道, 比对 MAC地址、 APPID以及加载信 号量的正确性, 完成二次虚回路 IED虚回路检测。
4、 如权利要求 1所述的智能变电站二次虚回路检测装置, 其特 征在于: GOOSE报文通过工业交换机( 15 )、 光电转换器( 16 )输 入到虚回路检测模块 ( 17 ), 虚回路检测模块 ( 17 )读取 GOOSE报 文中的通道数据和配置文件解析模块( 11 )从 SCD文件中解析出的 IED设备通道, 比对 IED设备的 MAC地址、 APPID加载信号量的正 确性, 完成遥信虚回路的比对检测。
5、 如权利要求 1所述的智能变电站二次虚回路检测装置, 其特 征在于: 所述智能变电站后台发出的 GOOSE跳闸命令通过工业交换 机( 15 )、 光电转换器( 16 )输入到虚回路检测模块( 17 ), 虚回路检 测模块 ( 17 )读取 GOOSE跳闸命令中的通道数据和配置文件解析模 块( 11 )从 SCD文件中解析出的 IED设备通道, 比对 GOOSE跳闸 命令, 完成 GOOSE虚回路检测。
6、 一种智能变电站二次虚回路检测方法, 其特征在于包括如下 步骤:
配置文件读取模块读取智能变电站后台导出的 SCD文件; 配置文件解析模块解析配置文件读取模块读取的 SCD文件, 将 SCD文件中的配置数据解析后生成变电站全站二次回路配置表; 静态检测步骤: 标准设计回路数据文件读取模块读取设计院 给出的标准设计回路数据文件, 针对每个 IED 的输入输出虚回路分 别对照配置文件解析模块解析出的变电站全站二次回路配置表和设 计院给出的标准设计回路数据文件是否——对应, 得出静态检测报 告.
动态检测步骤: 数字信号发生器在智能设备采集卡上加载遥 测信号以及在智能操作箱上加载 GOOSE ^艮文, 所述智能变电站后台 发出需检查 IED设备的 GOOSE跳闸命令,智能设备采集卡上加载的 遥测信号经过 A/D转换、 智能变电站合并单元处理后输出 IEC61850 9-2报文,然后经过工业交换机光电转换器后发送至虚回路检测模块, GOOSE报文和 GOOSE跳闸命令经过工业交换机、 光电转换器后发 送至虚回路检测模块, 虚回路检测模块根据接收的 IEC61850 9-2报 文、 GOOSE报文和 GOOSE跳闸命令与配置文件解析模块解析出的 变电站全站二次回路配置表进行比对, 输出动态检测报告。
7、 如权利要求 6所述的智能变电站二次虚回路检测方法, 其特 征在于: 所述标准设计回路数据文件预先保存在数据库中, 所述标准 设计回路数据文件读取模块从所述数据库中读取所述标准设计回路 数据文件。
8、 如权利要求 6所述的智能变电站二次虚回路检测方法, 其特 征在于: 智能设备采集卡对加载的遥测信号通过 A/D转换后形成 FT 式报文, 通过光纤传送至智能变电站合并单元, 智能变电站合并单元 对 FT3格式报文经过数据处理输出 IEC61850 9-2报文, IEC61850 9-2 报文经工业交换机传送到光电转换器, 光电转换器将 IEC61850 9-2 报文经过光电转换后通过以太网口输入到虚回路检测模块,虚回路检 测模块读取 IEC61850 9-2报文中各个通道数据和配置文件解析模块 从 SCD文件中解析出的 IED设备通道, 比对 MAC地址、 APPID以 及加载信号量的正确性, 完成二次虚回路 IED虚回路检测。
9、 如权利要求 6所述的智能变电站二次虚回路检测方法, 其特 征在于: 虚回路检测模块读取 GOOSE报文中的通道数据和配置文件 解析模块从 SCD文件中解析出的 IED设备通道, 比对 IED设备的 MAC地址、 APPID加载信号量的正确性, 完成遥信虚回路的比对检 测。
10、 如权利要求 6所述的智能变电站二次虚回路检测方法, 其 特征在于: 虚回路检测模块读取 GOOSE跳闸命令中的通道数据和和 配置文件解析模块从 SCD 文件中解析出的 IED 设备通道, 比对 GOOSE跳闸命令, 完成 GOOSE虚回路检测。
PCT/CN2011/082521 2011-09-15 2011-11-21 一种智能变电站二次虚回路检测装置及检测方法 WO2013037168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110273173.7 2011-09-15
CN201110273173.7A CN102879662B (zh) 2011-09-15 2011-09-15 一种智能变电站二次虚回路检测装置及检测方法

Publications (1)

Publication Number Publication Date
WO2013037168A1 true WO2013037168A1 (zh) 2013-03-21

Family

ID=47481058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082521 WO2013037168A1 (zh) 2011-09-15 2011-11-21 一种智能变电站二次虚回路检测装置及检测方法

Country Status (2)

Country Link
CN (1) CN102879662B (zh)
WO (1) WO2013037168A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967213A (zh) * 2015-02-11 2015-10-07 广东电网有限责任公司电力科学研究院 数字化变电站中遥信信号的二次回路定位方法及系统
CN105429027A (zh) * 2015-11-12 2016-03-23 国网宁夏电力公司 智能变电站运维检修中二次安全措施支持系统及构建方法
CN108205090A (zh) * 2017-12-28 2018-06-26 山东鲁能智能技术有限公司 一种可配置模块变电站负载支路检测方法和装置
CN112508404A (zh) * 2020-12-07 2021-03-16 云南电网有限责任公司普洱供电局 配电网设备运行的自动验收方法、装置、设备及存储介质
CN113395317A (zh) * 2021-03-11 2021-09-14 贵州电网有限责任公司 一种变电站物理链路与虚端子信息自动关联的方法
CN115047281A (zh) * 2022-08-11 2022-09-13 广东电网有限责任公司佛山供电局 一种电网二次设备的智能检测系统

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166323B (zh) * 2013-04-11 2014-11-26 上海毅昊自动化有限公司 基于保护装置二次回路模型实时在线监测系统
CN103346497B (zh) * 2013-07-09 2016-09-14 广东电网公司珠海供电局 智能变电站电气虚回路隔离方法与系统
CN103632307A (zh) * 2013-09-27 2014-03-12 国家电网公司 智能变电站scd与虚回路表一致性校验方法
CN103761681B (zh) * 2014-01-17 2017-06-23 国网四川省电力公司电力科学研究院 智能变电站SCD与Excel虚端子表的比对方法
CN103779966B (zh) * 2014-02-10 2016-01-20 上海毅昊自动化有限公司 基于输入虚端子映射机制的智能终端监测系统及方法
CN104007345B (zh) * 2014-05-26 2016-10-05 华南理工大学 一种电站智能设备的入网测试方法及其测试装置
CN104135069B (zh) * 2014-07-08 2017-02-15 广东电网公司电力科学研究院 智能变电站二次设备运行参数配置方法
CN104090194B (zh) * 2014-07-31 2016-08-24 上海毅昊信息科技股份有限公司 智能变电站继电保护非侵入式测试系统及方法
CN104537572B (zh) * 2014-12-08 2019-03-01 广东电网有限责任公司电力科学研究院 变电站二次设备参数配置方法和系统
CN104579748B (zh) * 2014-12-10 2018-05-22 国家电网公司 Scd在线校核的网络分析方法及系统
CN104767280B (zh) * 2014-12-30 2017-06-13 国家电网公司 一种实现智能变电站内二次虚回路可视化的方法
CN104715035B (zh) * 2015-03-17 2017-02-15 广东电网有限责任公司电力调度控制中心 智能变电站虚端子关联配置正确性的校核方法及装置
CN104967217A (zh) * 2015-06-28 2015-10-07 许继集团有限公司 智能变电站二次虚回路监控方法
CN105242164B (zh) * 2015-08-21 2018-02-13 国电南瑞科技股份有限公司 一种智能变电站二次虚回路的自动检测系统及其方法
CN105119374A (zh) * 2015-09-01 2015-12-02 南京国电南自电网自动化有限公司 一种用于智能变电站的继电保护装置的免维护自诊断方法
CN105184675B (zh) * 2015-09-08 2019-01-08 江苏省电力公司扬州供电公司 智能变电站中基于信息逻辑的光缆调整方法
CN105404269B (zh) * 2015-10-23 2017-09-19 江苏省电力公司南京供电公司 一种智能变电站三遥信号验收系统
CN105426454B (zh) * 2015-11-12 2018-11-20 国网宁夏电力公司 智能电子设备与scd文件回路信息一致性检测方法
CN105785794A (zh) * 2016-03-04 2016-07-20 云南电网有限责任公司电力科学研究院 一种智能变电站二次设备测试闭环管理方法及系统
CN105790443A (zh) * 2016-05-06 2016-07-20 南京国电南自电网自动化有限公司 智能变电站scd虚端子连接自动测试系统及方法
CN106093637B (zh) * 2016-06-07 2019-04-23 国网四川省电力公司电力科学研究院 智能变电站一次设备和二次设备间死区缺陷的消除方法
CN106841842A (zh) * 2016-12-12 2017-06-13 国网北京市电力公司 二次设备的虚回路的测试方法和装置
CN107391812A (zh) * 2017-06-30 2017-11-24 中国电力科学研究院 一种智能变电站scd回路校验方法及装置
CN107300651A (zh) * 2017-07-24 2017-10-27 中国电力科学研究院 一种数字量输入式标准合并单元
CN109857601A (zh) * 2018-12-29 2019-06-07 贵州康禾科技有限公司 智能站scd文件二次虚回路正确性自动检查方法
CN109444651B (zh) * 2018-12-29 2021-02-02 云南电网有限责任公司电力科学研究院 一种用于二次回路的监测方法及系统
CN109800481B (zh) * 2018-12-29 2023-04-07 贵州电网有限责任公司 一种智能变电站110kV备自投SCD文件二次虚回路正确性检查的方法
CN109800970B (zh) * 2018-12-29 2022-07-01 贵州电网有限责任公司 一种智能变电站110kV母线间隔SCD文件二次虚回路正确性检查的方法
CN109933450A (zh) * 2019-01-22 2019-06-25 许昌许继软件技术有限公司 一种智能变电站二次虚回路配置文件的校验方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546922A (zh) * 2009-04-22 2009-09-30 西北电网有限公司 基于一体化设计的变电站智能程控防误闭锁系统
CN101741139A (zh) * 2009-12-28 2010-06-16 广东电网公司电力科学研究院 一种数字化变电站的通信状态检测方法及其装置
CN101969229A (zh) * 2010-09-16 2011-02-09 广东电网公司茂名供电局 二次回路在线监视的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101694952B (zh) * 2009-09-28 2012-04-25 国电南京自动化股份有限公司 由iec61850 scd文件生成嵌入式远动系统装置定义的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101546922A (zh) * 2009-04-22 2009-09-30 西北电网有限公司 基于一体化设计的变电站智能程控防误闭锁系统
CN101741139A (zh) * 2009-12-28 2010-06-16 广东电网公司电力科学研究院 一种数字化变电站的通信状态检测方法及其装置
CN101969229A (zh) * 2010-09-16 2011-02-09 广东电网公司茂名供电局 二次回路在线监视的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104967213A (zh) * 2015-02-11 2015-10-07 广东电网有限责任公司电力科学研究院 数字化变电站中遥信信号的二次回路定位方法及系统
CN104967213B (zh) * 2015-02-11 2017-03-08 广东电网有限责任公司电力科学研究院 数字化变电站中遥信信号的二次回路定位方法及系统
CN105429027A (zh) * 2015-11-12 2016-03-23 国网宁夏电力公司 智能变电站运维检修中二次安全措施支持系统及构建方法
CN108205090A (zh) * 2017-12-28 2018-06-26 山东鲁能智能技术有限公司 一种可配置模块变电站负载支路检测方法和装置
CN108205090B (zh) * 2017-12-28 2020-07-03 国网智能科技股份有限公司 一种可配置模块变电站负载支路检测方法和装置
CN112508404A (zh) * 2020-12-07 2021-03-16 云南电网有限责任公司普洱供电局 配电网设备运行的自动验收方法、装置、设备及存储介质
CN113395317A (zh) * 2021-03-11 2021-09-14 贵州电网有限责任公司 一种变电站物理链路与虚端子信息自动关联的方法
CN113395317B (zh) * 2021-03-11 2022-10-21 贵州电网有限责任公司 一种变电站物理链路与虚端子信息自动关联的方法
CN115047281A (zh) * 2022-08-11 2022-09-13 广东电网有限责任公司佛山供电局 一种电网二次设备的智能检测系统
CN115047281B (zh) * 2022-08-11 2023-01-20 广东电网有限责任公司佛山供电局 一种电网二次设备的智能检测系统

Also Published As

Publication number Publication date
CN102879662B (zh) 2014-11-19
CN102879662A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
WO2013037168A1 (zh) 一种智能变电站二次虚回路检测装置及检测方法
CN103105550B (zh) 一种智能化继电保护装置检测方法及系统
CN102073029B (zh) 电子式互感器测试系统的测试方法
CN103326469B (zh) 智能变电站goose通信状态监测方法及监测设备
CN105576831A (zh) 一种主子站安全控制的自动校核方法
CN103488835A (zh) 一种调度自动化系统的仿真平台及其仿真方法
CN103472433B (zh) 智能变电站电能计量二次系统虚负荷误差检测装置及方法
CN202735834U (zh) 一种电力系统智能变电站双测控装置的测试系统
CN209624731U (zh) 一二次融合配电开关一体化传动功能检测系统
CN107491569B (zh) 基于iec61850标准goose、sv技术的变电站系统故障在线仿真方法
CN111736068A (zh) 一种中压配电盘智能检测方法及系统
CN103424692A (zh) 一种直流断路器通断特性测试方法
Dong et al. Smart power substation development in China
CN107067081A (zh) 基于多对象模型的变电站二次检修安全措施生成方法
CN104701979A (zh) 一种保护测控集成装置和保护测控方法
CN201955465U (zh) 电子式互感器测试系统
CN107871176A (zh) 应用于iec61850信息建模的二次设备安全优化方法及系统
CN109586406B (zh) 第三代智能变电站模拟量就地模块测试系统及其应用方法
CN203025257U (zh) 基于iec61850标准的继电保护自动测试系统
CN103499807B (zh) 一种消除数字电能表截断误差的校验方法
CN203433105U (zh) 智能变电站电能计量二次系统虚负荷误差检测装置
CN108304947A (zh) 基于scd文件对象模型的二次设备安全优化方法及系统
Jin-Lun et al. Smart grid oriented smart substation characteristics analysis
CN216411535U (zh) 分布式部署的便携式电流互感器极性检测设备
CN203178469U (zh) 便携式变送器检验仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10201300002027

Country of ref document: CH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872309

Country of ref document: EP

Kind code of ref document: A1