WO2013031570A1 - Solar cell concentrator and power generation device using same - Google Patents

Solar cell concentrator and power generation device using same Download PDF

Info

Publication number
WO2013031570A1
WO2013031570A1 PCT/JP2012/071021 JP2012071021W WO2013031570A1 WO 2013031570 A1 WO2013031570 A1 WO 2013031570A1 JP 2012071021 W JP2012071021 W JP 2012071021W WO 2013031570 A1 WO2013031570 A1 WO 2013031570A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical cavity
condensing
cone
light
primary
Prior art date
Application number
PCT/JP2012/071021
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 健太郎
正和 杉山
義昭 中野
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2013031570A1 publication Critical patent/WO2013031570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a light collecting device that can be used for power generation using solar cells.
  • Patent Document 1 describes a concentrating device for a solar cell that includes a primary optical system and a secondary optical system.
  • sunlight condensed by the primary optical system can be scattered by the secondary optical system and irradiated onto the surface of the solar battery cell.
  • improvement in power generation efficiency can be expected.
  • sunlight can be collected by the primary optical system and irradiated to the solar battery cell, so that the necessary area of the solar battery cell (number of solar battery cells) can be reduced, and the apparatus can be reduced. It is thought that it can contribute to cost reduction.
  • a columnar optical member for scattering light is used as the secondary optical system.
  • the homogenizer for example, borosilicate glass can be used.
  • the loss rate is considered to be about 8% as a whole when, for example, borosilicate glass is used.
  • the light is reflected a plurality of times by the side surface of the homogenizer, thereby obtaining a diffusion effect. Since the homogenizer is usually made of glass, the loss of light due to repeated reflection is not negligible.
  • the light is passed through the homogenizer and irradiated on the surface of the solar battery cell, the light reflected there is also lost.
  • an electrode for extracting output power is often formed on the surface of the solar battery cell, and the amount of reflection at this portion cannot be ignored.
  • An object of the present invention is to provide a condensing technique for a solar cell that can obtain a diffusion effect of light collected by a primary condensing unit and can suppress loss due to reflection by a homogenizer or the like. It is said.
  • a primary condenser and a secondary condenser The primary condensing unit is configured to condense light incident on the primary condensing unit toward the secondary condensing unit,
  • the secondary condensing unit includes an opening, a condensing cone, a diaphragm, and an optical cavity.
  • the opening is configured to cause the light collected by the primary condensing unit to enter the inside of the condensing cone through the opening
  • the inner surface of the condensing cone is formed in a substantially cylindrical shape, and is an optical reflecting surface
  • the condensing cone is configured to make the light incident on the optical cavity via the aperture by condensing the light incident on the condensing cone via the opening
  • the diaphragm is disposed between the condensing cone and the optical cavity,
  • the diaphragm portion is configured to reduce the amount of light leakage from the optical cavity by having a cross-sectional area smaller than the maximum cross-sectional area of the optical cavity
  • the inner surface of the optical cavity is an optical reflecting surface
  • the space inside the optical cavity is a closed space except for the diaphragm portion,
  • the space through which the optical path from the primary condensing unit to the optical cavity passes is occupied by a medium having a uniform refractive index or is evacuated.
  • the solar cell concentrator according to any one of items 1 to 3, and a solar battery cell,
  • the solar battery cell is configured to receive light reflected by the inner surface of the optical cavity by being disposed inside the optical cavity.
  • a condensing technique for a solar cell which can obtain a diffusion effect of light collected by a primary condensing unit and can suppress loss due to reflection by a homogenizer or the like. Is possible.
  • the power generation device of the present embodiment includes a solar cell concentrator (hereinafter sometimes simply referred to as a “concentrator”) 1 and solar cells 2 (see FIG. 1).
  • a solar cell concentrator hereinafter sometimes simply referred to as a “concentrator”
  • solar cells 2 see FIG. 1.
  • the light collecting device 1 includes a primary light collecting unit 11 and a secondary light collecting unit 12.
  • the primary condensing unit 11 is configured by a lens that condenses the light incident on the primary condensing unit 11 toward the secondary condensing unit 12. More specifically, in the illustrated example, a Fresnel lens is used as the primary condensing unit 11. In this embodiment, the focal position of the primary condenser 11 is set in the vicinity of an opening 121 (described later) of the secondary condenser 12.
  • the secondary condensing unit 12 includes an opening 121, a condensing cone 122, a diaphragm 123, and an optical cavity 124.
  • the opening 121 is configured such that the light condensed by the primary condensing unit 11 is incident on the inside of the condensing cone 122 through the opening 121. That is, the inside of the opening 121 is a cavity, and light from the primary condensing unit 11 can be introduced into the condensing cone 122 without reflection.
  • the inner surface of the condensing cone 122 is formed in a substantially cylindrical shape whose output side is narrow (see FIG. 2). Further, the condensing cone 122 of this embodiment has a circular cross section. In the present embodiment, a Winston cone shape is used as the inner surface shape of the condensing cone 122.
  • the inner surface of the condensing cone 122 is an optical reflecting surface.
  • the inner surface of the condensing cone 122 can be covered with, for example, silver plating to form a reflecting surface.
  • the condensing cone 122 has a configuration in which light is incident on the optical cavity 124 via the aperture portion 123 by collecting the light incident on the condensing cone 122 via the opening 121 while reflecting the light. Yes.
  • the diaphragm 123 is disposed between the condensing cone 122 and the optical cavity 124.
  • the diaphragm 123 is configured to reduce the amount of light leakage from the optical cavity 124 by having a cross-sectional area that is smaller than the maximum cross-sectional area of the optical cavity 124.
  • cross-sectional area means a cross-sectional area in a plane substantially perpendicular to the optical axis.
  • the inner surface of the optical cavity 124 is an optical reflecting surface.
  • the method of forming the optical reflection surface can be the same as that of the condensing cone 122 described above.
  • the space inside the optical cavity 124 is a closed space except for the portion of the diaphragm 123 (that is, the opening). More specifically, the internal space of the optical cavity 124 has a substantially hemispherical shape.
  • the space through which the optical path from the primary light collecting unit 11 to the optical cavity 124 passes is occupied by air that is a medium having a uniform refractive index.
  • the solar battery cell 2 is configured to receive light directly incident on the solar battery cell 2 or reflected from the inner surface of the optical cavity 124 by being arranged inside the optical cavity 124.
  • the solar battery cell 2 of this embodiment includes an output electrode 211 and a ground electrode 212.
  • the output electrode 211 is electrically connected to the output terminal 221
  • the ground electrode 212 is electrically connected to the ground terminal 222.
  • high-voltage and low-current power transmission is often performed by connecting a plurality of cells in series. Therefore, it is preferable that the output terminal 221 and the grounding terminal 222 in the present embodiment are configured so that the cells can be electrically connected in series in a state where the solar cells 2 are arranged in an array.
  • the light reflected by the solar battery cell 2 (including the case of the electrode 21 or the wiring 22), or the light reflected from the inner surface of the optical cavity 124 instead of the solar battery cell 2 is reflected.
  • the light is repeatedly reflected on the inner surface of the optical cavity 124, and a part of the light is irradiated on the surface of the solar battery cell 2.
  • the optical cavity 124 of this embodiment can be expected to have a uniformizing effect similar to that of a conventional homogenizer.
  • the focal position of the primary condensing unit 11 is set in the vicinity of the opening 121 of the secondary condensing unit 12, so that the light that has passed the focal point is reflected by the inner surface of the condensing cone 122. . Then, the homogenization effect by the reflection at the condensing cone 122 can also be expected.
  • the diaphragm portion 123 is formed between the optical cavity 124 and the light collecting cone 122, the amount of light leaking from the optical cavity 124 toward the light collecting cone 122 can be suppressed.
  • the optical cavity 124 is a closed space except for the opening portion by the diaphragm 123, and the inner surface of the optical cavity 124 is a reflecting surface. For this reason, in this embodiment, there exists an advantage that it becomes possible to irradiate to the photovoltaic cell 2, using effectively all the light which did not leak to the condensing cone 122 effectively.
  • the path from the exit surface (the lower surface in FIG. 1) of the primary condensing unit 11 to the surface of the solar battery cell 2 is filled with only the medium having the same refractive index (air in this example). .
  • a medium having a different refractive index for example, a homogenizer in the prior art
  • a loss occurs at the time of incidence and emission.
  • the utilization efficiency of sunlight that is, the power generation efficiency by the solar battery cell 2 can be improved.
  • the inner shape of the condensing cone 122 is a Winston cone shape
  • the tolerance for the angle of incident light is high. That is, the conventional condensing device using the homogenizer has a problem that the tolerance for the angle change of the incident light is small. Then, in photovoltaic power generation, it is necessary to improve tracking accuracy with respect to the movement of the sun. As a result, in the conventional concentrating solar power generation, the cost of the tracking device tends to increase, and as a result, the cost reduction effect due to the reduction in the number of solar cells may be diminished.
  • the tolerance with respect to the angle of incident light can be raised, there exists a practical advantage that the cost of the apparatus which tracks a solar position can be reduced.
  • the inner surface of the optical cavity 124 and the inner surface of the condensing cone 122 are made reflective surfaces with good reflection efficiency, so that loss of light at the time of reflection can be reduced. The improvement of energy efficiency can be expected.
  • the Winston cone shape is used as the inner surface of the condensing cone 122, but the present invention is not limited to this as long as it has a condensing function.
  • a paraboloid shape can be used instead of the Winston cone shape.
  • the tolerance for the incident light angle generally decreases.
  • the condensing cone 122, the diaphragm 123, and the optical cavity 124 are integrated. However, they can be separated.
  • the light collecting device is disposed in the air.
  • the light collecting device may be disposed in a vacuum, and in this case, the above-described advantages can be exhibited.
  • the cross-sectional shape of the light collecting cone 122 is a circular shape, but may be a polygonal shape, for example.
  • the inner surfaces of the condensing cone 122 and the optical cavity 124 do not need to be silver, and an appropriate material with good reflection efficiency can be used.
  • the method of forming the reflecting surface is not limited to plating, and a film can be formed by sputtering or adhesion.
  • the material itself of the member such as the condensing cone can be a highly reflective material.
  • ⁇ PRI the incident angle formed by condensing the primary condensing part
  • ⁇ FOV Winston cone viewing angle

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

[Problem] To provide a solar cell concentration technique capable of minimizing loss caused by reflection in a homogenizer and such, while also achieving the effect of diffusing light collected by a primary concentrator. [Solution] A primary concentrator (11) concentrates light incident on the primary concentrator (11) toward a secondary concentrator (12). A concentration cone (122) projects light into an optical cavity (124) through a contracting section (123), by concentrating light incident on the concentration cone (122) through an opening (121). The amount of light leaking from the optical cavity (124) is reduced by the contracting section (123) having a smaller cross-sectional area than the maximum cross-sectional area of the optical cavity (124). The inner surface of the optical cavity (124) is an optically reflective surface. With the exception of the contracting section (123), the interior space of the optical cavity (124) is an enclosed space. The space through which an optical path passes from the primary concentrator (11) to the optical cavity (124) comprises a medium having a uniform refractive index, or is a vacuum.

Description

太陽電池用集光装置及びこれを用いた発電装置Concentrator for solar cell and power generator using the same
 本発明は、太陽電池セルを用いた発電に利用可能な集光装置に関するものである。 The present invention relates to a light collecting device that can be used for power generation using solar cells.
 下記特許文献1には、一次光学系と二次光学系とを備えた、太陽電池用の集光装置が記載されている。この技術では、一次光学系により集光された太陽光を、二次光学系により散乱させて、太陽電池セルの表面に照射することができる。これにより、太陽電池セルに照射される光強度のムラを抑制できるので、発電効率の向上が期待できる。 Patent Document 1 below describes a concentrating device for a solar cell that includes a primary optical system and a secondary optical system. In this technique, sunlight condensed by the primary optical system can be scattered by the secondary optical system and irradiated onto the surface of the solar battery cell. Thereby, since the nonuniformity of the light intensity irradiated to a photovoltaic cell can be suppressed, improvement in power generation efficiency can be expected.
 また、前記した技術では、一次光学系により太陽光を集光して、太陽電池セルに照射できるので、必要な太陽電池セルの面積(太陽電池セルの個数)を減らすことができ、装置の低コスト化に寄与できると考えられる。 Further, in the above-described technology, sunlight can be collected by the primary optical system and irradiated to the solar battery cell, so that the necessary area of the solar battery cell (number of solar battery cells) can be reduced, and the apparatus can be reduced. It is thought that it can contribute to cost reduction.
 ところで、前記した技術では、二次光学系として、光を散乱させるための柱状光学部材(いわゆる「ホモジナイザ」)を用いている。ホモジナイザとしては、例えば、ホウケイ酸ガラスを用いることができる。 By the way, in the above-described technique, a columnar optical member (so-called “homogenizer”) for scattering light is used as the secondary optical system. As the homogenizer, for example, borosilicate glass can be used.
 このようなホモジナイザを用いると、ホモジナイザへの光の入射面と、ホモジナイザからの光の出射面との両方において反射が起き、光の損失となる。損失率は、例えばホウケイ酸ガラスを使用した場合、全体として、8%程度であると考えられる。 When such a homogenizer is used, reflection occurs on both the light incident surface to the homogenizer and the light exit surface from the homogenizer, resulting in light loss. The loss rate is considered to be about 8% as a whole when, for example, borosilicate glass is used.
 また、ホモジナイザの内部では、ホモジナイザの側面によって光が複数回反射することによって、拡散効果を得ている。ホモジナイザは、通常はガラス製であるために、このような反射が繰り返されることによる光の損失も無視できないものとなる。 Also, inside the homogenizer, the light is reflected a plurality of times by the side surface of the homogenizer, thereby obtaining a diffusion effect. Since the homogenizer is usually made of glass, the loss of light due to repeated reflection is not negligible.
 さらに、ホモジナイザを通過して太陽電池セルの表面に照射されたものの、そこで反射した光も、損失となってしまう。特に、太陽電池セルの表面には、出力電力を取り出すための電極が形成されていることが多く、この部分での反射量も無視できないものとなっている。 Furthermore, although the light is passed through the homogenizer and irradiated on the surface of the solar battery cell, the light reflected there is also lost. In particular, an electrode for extracting output power is often formed on the surface of the solar battery cell, and the amount of reflection at this portion cannot be ignored.
特開2006-313810号公報JP 2006-313810 A 特開2003-149586号公報JP 2003-149586 A 特表2010-525582号公報Special table 2010-525582
 本発明は、前記の状況に鑑みてなされたものである。本発明は、一次集光部で集光された光の拡散効果を得つつ、しかも、ホモジナイザ等での反射による損失を低く抑えることができる、太陽電池用の集光技術を提供することを目的としている。 The present invention has been made in view of the above situation. An object of the present invention is to provide a condensing technique for a solar cell that can obtain a diffusion effect of light collected by a primary condensing unit and can suppress loss due to reflection by a homogenizer or the like. It is said.
 前記した課題を解決する手段は、以下の項目のように記載できる。 The means for solving the above-described problems can be described as the following items.
 (項目1)
 一次集光部と、二次集光部とを備えており、
 前記一次集光部は、この一次集光部に入射した光を前記二次集光部に向けて集光する構成となっており、
 前記二次集光部は、開口部と、集光錐と、絞り部と、光学キャビティとを備えており、
 前記開口部は、前記一次集光部で集光された光を、この開口部を介して前記集光錐の内側に入射させる構成となっており、
 前記集光錐の内面は、略筒状に形成され、かつ、光学的な反射面とされており、
 かつ、前記集光錐は、前記開口部を介して前記集光錐に入射した光を集光することによって、前記絞り部を介して前記光を前記光学キャビティに入射する構成となっており、
 前記絞り部は、前記集光錐と前記光学キャビティとの間に配置されており、
 かつ、前記絞り部は、前記光学キャビティの最大横断面積よりも小さい横断面積を有することによって、前記光学キャビティからの光の漏れ量を低減させる構成とされており、
 前記光学キャビティの内面は、光学的な反射面とされており、
 かつ、前記光学キャビティの内部の空間は、前記絞り部を除いて、閉鎖空間とされており、
 前記一次集光部から前記光学キャビティまでの光路が通る空間は、均一な屈折率を持つ媒質によって占められるか、あるいは、真空とされている
 太陽電池用集光装置。
(Item 1)
A primary condenser and a secondary condenser,
The primary condensing unit is configured to condense light incident on the primary condensing unit toward the secondary condensing unit,
The secondary condensing unit includes an opening, a condensing cone, a diaphragm, and an optical cavity.
The opening is configured to cause the light collected by the primary condensing unit to enter the inside of the condensing cone through the opening,
The inner surface of the condensing cone is formed in a substantially cylindrical shape, and is an optical reflecting surface,
And the condensing cone is configured to make the light incident on the optical cavity via the aperture by condensing the light incident on the condensing cone via the opening,
The diaphragm is disposed between the condensing cone and the optical cavity,
In addition, the diaphragm portion is configured to reduce the amount of light leakage from the optical cavity by having a cross-sectional area smaller than the maximum cross-sectional area of the optical cavity,
The inner surface of the optical cavity is an optical reflecting surface,
And the space inside the optical cavity is a closed space except for the diaphragm portion,
The space through which the optical path from the primary condensing unit to the optical cavity passes is occupied by a medium having a uniform refractive index or is evacuated.
 (項目2)
 前記集光錐の内面形状は、ウインストンコーン形状となっている
 項目1に記載の太陽電池用集光装置。
(Item 2)
Item 2. The solar cell concentrator according to item 1, wherein an inner surface shape of the condensing cone is a Winston cone shape.
 (項目3)
 前記媒質は空気である
 項目1又は2に記載の太陽電池用集光装置。
(Item 3)
Item 3. The solar cell concentrator according to item 1 or 2, wherein the medium is air.
 (項目4)
 項目1~3のいずれか1項に記載の太陽電池用集光装置と、太陽電池セルとを備えており、
 前記太陽電池セルは、前記光学キャビティの内部に配置されることによって、前記光学キャビティの内面で反射した光を受光できる構成となっている
 発電装置。
(Item 4)
The solar cell concentrator according to any one of items 1 to 3, and a solar battery cell,
The solar battery cell is configured to receive light reflected by the inner surface of the optical cavity by being disposed inside the optical cavity.
 本発明によれば、一次集光部で集光された光の拡散効果を得つつ、しかも、ホモジナイザ等での反射による損失を低く抑えることができる、太陽電池用の集光技術を提供することが可能となる。 According to the present invention, it is possible to provide a condensing technique for a solar cell, which can obtain a diffusion effect of light collected by a primary condensing unit and can suppress loss due to reflection by a homogenizer or the like. Is possible.
本発明の一実施形態における太陽電池用集光装置を用いた発電装置の概略的な構成を示す説明図である。It is explanatory drawing which shows schematic structure of the electric power generating apparatus using the concentrating device for solar cells in one Embodiment of this invention. 集光錐の平面形状を示す説明図である。It is explanatory drawing which shows the planar shape of a condensing cone. ウインストンコーンの作用を説明するための説明図である。It is explanatory drawing for demonstrating the effect | action of a Winston cone.
 (本実施形態の構成)
 以下、添付図面を参照しながら、本発明の実施形態に係る太陽電池用集光装置を用いた発電装置について説明する。
(Configuration of this embodiment)
Hereinafter, a power generator using a solar cell concentrator according to an embodiment of the present invention will be described with reference to the accompanying drawings.
 本実施形態の発電装置は、太陽電池用集光装置(以下単に「集光装置」と称することがある)1と、太陽電池セル2とを備えている(図1参照)。 The power generation device of the present embodiment includes a solar cell concentrator (hereinafter sometimes simply referred to as a “concentrator”) 1 and solar cells 2 (see FIG. 1).
 集光装置1は、一次集光部11と、二次集光部12とを備えている。 The light collecting device 1 includes a primary light collecting unit 11 and a secondary light collecting unit 12.
 一次集光部11は、この一次集光部11に入射した光を二次集光部12に向けて集光するレンズによって構成されている。より具体的には、図示例では、一次集光部11としてフレネルレンズが用いられている。一次集光部11の焦点位置は、この実施形態では、二次集光部12の開口部121(後述)の近傍とされている。 The primary condensing unit 11 is configured by a lens that condenses the light incident on the primary condensing unit 11 toward the secondary condensing unit 12. More specifically, in the illustrated example, a Fresnel lens is used as the primary condensing unit 11. In this embodiment, the focal position of the primary condenser 11 is set in the vicinity of an opening 121 (described later) of the secondary condenser 12.
 二次集光部12は、開口部121と、集光錐122と、絞り部123と、光学キャビティ124とを備えている。 The secondary condensing unit 12 includes an opening 121, a condensing cone 122, a diaphragm 123, and an optical cavity 124.
 開口部121は、一次集光部11で集光された光を、この開口部121を介して集光錐122の内側に入射させる構成となっている。つまり、開口部121の内側は、空洞となっており、一次集光部11からの光を、無反射で集光錐122に導入できるようになっている。 The opening 121 is configured such that the light condensed by the primary condensing unit 11 is incident on the inside of the condensing cone 122 through the opening 121. That is, the inside of the opening 121 is a cavity, and light from the primary condensing unit 11 can be introduced into the condensing cone 122 without reflection.
 集光錐122の内面は、出射側が狭くなった略筒状に形成されている(図2参照)。また、本実施形態の集光錐122は、断面円形状とされている。本実施形態では、集光錐122の内面形状として、ウインストンコーン形状が用いられている。 The inner surface of the condensing cone 122 is formed in a substantially cylindrical shape whose output side is narrow (see FIG. 2). Further, the condensing cone 122 of this embodiment has a circular cross section. In the present embodiment, a Winston cone shape is used as the inner surface shape of the condensing cone 122.
 また、集光錐122の内面は、光学的な反射面とされている。具体的には、集光錐122の内面を、たとえば銀メッキにより被覆して、反射面とすることができる。 Further, the inner surface of the condensing cone 122 is an optical reflecting surface. Specifically, the inner surface of the condensing cone 122 can be covered with, for example, silver plating to form a reflecting surface.
 さらに、集光錐122は、開口部121を介して集光錐122に入射した光を反射しつつ集光することによって、絞り部123を介して光を光学キャビティ124に入射する構成となっている。 Further, the condensing cone 122 has a configuration in which light is incident on the optical cavity 124 via the aperture portion 123 by collecting the light incident on the condensing cone 122 via the opening 121 while reflecting the light. Yes.
 絞り部123は、集光錐122と光学キャビティ124との間に配置されている。絞り部123は、光学キャビティ124の最大横断面積よりも小さい横断面積を有することによって、光学キャビティ124からの光の漏れ量を低減させる構成とされている。なお、この明細書において、「横断面積」とは、光軸にほぼ直交する面内での断面積をいうものとする。 The diaphragm 123 is disposed between the condensing cone 122 and the optical cavity 124. The diaphragm 123 is configured to reduce the amount of light leakage from the optical cavity 124 by having a cross-sectional area that is smaller than the maximum cross-sectional area of the optical cavity 124. In this specification, “cross-sectional area” means a cross-sectional area in a plane substantially perpendicular to the optical axis.
 光学キャビティ124の内面は、光学的な反射面とされている。光学的な反射面の形成方法は、前記した集光錐122の場合と同様とすることができる。光学キャビティ124の内部の空間は、絞り部123の部分(つまり開口部分)を除いて、閉鎖空間とされている。より具体的には、光学キャビティ124の内部空間は、ほぼ半球の形状となっている。 The inner surface of the optical cavity 124 is an optical reflecting surface. The method of forming the optical reflection surface can be the same as that of the condensing cone 122 described above. The space inside the optical cavity 124 is a closed space except for the portion of the diaphragm 123 (that is, the opening). More specifically, the internal space of the optical cavity 124 has a substantially hemispherical shape.
 本実施形態の集光装置1では、一次集光部11から光学キャビティ124までの光路が通る空間は、均一な屈折率を持つ媒質である空気によって占められている。 In the light collecting apparatus 1 of the present embodiment, the space through which the optical path from the primary light collecting unit 11 to the optical cavity 124 passes is occupied by air that is a medium having a uniform refractive index.
 太陽電池セル2は、光学キャビティ124の内部に配置されることによって、太陽電池セル2に直接入射した光、あるいは、光学キャビティ124の内面で反射した光を受光できる構成となっている。本実施形態の太陽電池セル2は、出力用電極211と接地用電極212とを備えている。本例では、出力用電極211は、出力用端子221に電気的に接続されており、接地用電極212は、接地用端子222に電気的に接続されている。なお、一般的な太陽電池発電においては、複数のセルを直列に接続することで、高電圧低電流の送電を行うことが多い。したがって、本実施形態における出力用端子221と接地用端子222とは、太陽電池セル2をアレイ状に配置した状態において、セルどうしを電気的に直列に接続できるように構成されることが好ましい。 The solar battery cell 2 is configured to receive light directly incident on the solar battery cell 2 or reflected from the inner surface of the optical cavity 124 by being arranged inside the optical cavity 124. The solar battery cell 2 of this embodiment includes an output electrode 211 and a ground electrode 212. In this example, the output electrode 211 is electrically connected to the output terminal 221, and the ground electrode 212 is electrically connected to the ground terminal 222. In general solar battery power generation, high-voltage and low-current power transmission is often performed by connecting a plurality of cells in series. Therefore, it is preferable that the output terminal 221 and the grounding terminal 222 in the present embodiment are configured so that the cells can be electrically connected in series in a state where the solar cells 2 are arranged in an array.
 (本実施形態の動作)
 本実施形態の集光装置においては、太陽からの光は、一次集光部11により集光されて、二次集光部12の開口部121に達する。さらに、集光された光は、集光錐122の内面を反射することによって、絞り部123に向けて再度集光される。そして、絞り部123を通過した光の一部は、太陽電池セル2の表面に照射され、起電力を生じる。
(Operation of this embodiment)
In the light collecting device of the present embodiment, light from the sun is collected by the primary light collecting unit 11 and reaches the opening 121 of the secondary light collecting unit 12. Further, the condensed light is condensed again toward the aperture portion 123 by reflecting the inner surface of the condensing cone 122. A part of the light that has passed through the diaphragm 123 is irradiated on the surface of the solar battery cell 2 to generate an electromotive force.
 さらに、本実施形態では、太陽電池セル2(電極21又は配線22である場合を含む)で反射した光、あるいは、太陽電池セル2ではなくて光学キャビティ124の内面に照射されて反射した光は、光学キャビティ124の内面で繰り返し反射され、その一部が太陽電池セル2の表面に照射される。 Furthermore, in this embodiment, the light reflected by the solar battery cell 2 (including the case of the electrode 21 or the wiring 22), or the light reflected from the inner surface of the optical cavity 124 instead of the solar battery cell 2 is reflected. The light is repeatedly reflected on the inner surface of the optical cavity 124, and a part of the light is irradiated on the surface of the solar battery cell 2.
 本実施形態では、実質的な閉鎖空間である光学キャビティ124の内面で光を繰り返して反射させることができるので、太陽電池セル2への光の照射量を均一化することができるという利点がある。つまり、本実施形態の光学キャビティ124により、従来のホモジナイザと同様な均一化作用を期待することができる。 In the present embodiment, since light can be repeatedly reflected on the inner surface of the optical cavity 124 which is a substantially closed space, there is an advantage that the amount of light irradiation to the solar cells 2 can be made uniform. . In other words, the optical cavity 124 of this embodiment can be expected to have a uniformizing effect similar to that of a conventional homogenizer.
 また、本実施形態では、一次集光部11による焦点位置を、二次集光部12の開口部121の近傍に設定することにより、焦点を過ぎた光が集光錐122の内面で反射する。すると、集光錐122での反射によるホモジナイズ効果も期待できる。 In the present embodiment, the focal position of the primary condensing unit 11 is set in the vicinity of the opening 121 of the secondary condensing unit 12, so that the light that has passed the focal point is reflected by the inner surface of the condensing cone 122. . Then, the homogenization effect by the reflection at the condensing cone 122 can also be expected.
 さらに、本実施形態では、光学キャビティ124と集光錐122との間に絞り部123を形成したので、光学キャビティ124から集光錐122の方向に漏れる光量を抑制することができる。しかも本実施形態では、光学キャビティ124を、絞り部123による開口部分を除いて閉鎖空間とし、さらに、光学キャビティ124の内面を反射面としている。このため、本実施形態では、集光錐122へ漏れ出さなかった光のうちのほぼ全てを有効に利用して、太陽電池セル2へ照射することが可能になるという利点がある。 Furthermore, in the present embodiment, since the diaphragm portion 123 is formed between the optical cavity 124 and the light collecting cone 122, the amount of light leaking from the optical cavity 124 toward the light collecting cone 122 can be suppressed. Moreover, in this embodiment, the optical cavity 124 is a closed space except for the opening portion by the diaphragm 123, and the inner surface of the optical cavity 124 is a reflecting surface. For this reason, in this embodiment, there exists an advantage that it becomes possible to irradiate to the photovoltaic cell 2, using effectively all the light which did not leak to the condensing cone 122 effectively.
 さらに、本実施形態では、一次集光部11の出射面(図1において下面)から太陽電池セル2の表面までの経路は、同じ屈折率の媒質(この例では空気)のみで満たされている。異なる屈折率の媒質(例えば従来技術におけるホモジナイザ)を通過する場合には、入射及び出射の際に損失が発生する。これに対して、本実施形態では、このような損失を原理的に生じないので、太陽光の利用効率、すなわち太陽電池セル2による発電効率を向上させることができる。 Furthermore, in the present embodiment, the path from the exit surface (the lower surface in FIG. 1) of the primary condensing unit 11 to the surface of the solar battery cell 2 is filled with only the medium having the same refractive index (air in this example). . When passing through a medium having a different refractive index (for example, a homogenizer in the prior art), a loss occurs at the time of incidence and emission. On the other hand, in this embodiment, since such a loss does not occur in principle, the utilization efficiency of sunlight, that is, the power generation efficiency by the solar battery cell 2 can be improved.
 さらに、本実施形態では、集光錐122の内面形状を、ウインストンコーン形状としたので、入射光の角度に対する許容度が高いという利点がある。すなわち、従来のホモジナイザを使った集光装置では、入射光の角度変化に対する許容度が小さいという問題があった。すると、太陽光発電においては、太陽の移動に対する追尾精度を高める必要がある。その結果、従来の集光型の太陽光発電では、追尾装置のコストが大きくなる傾向があり、その結果、太陽電池セルの個数削減によるコストダウン効果が減殺されてしまうことがあった。これに対して、本実施形態では、入射光の角度に対する許容度を高めることができるので、太陽位置を追尾する装置のコストを低減することができるという、実際的な利点がある。 Furthermore, in this embodiment, since the inner shape of the condensing cone 122 is a Winston cone shape, there is an advantage that the tolerance for the angle of incident light is high. That is, the conventional condensing device using the homogenizer has a problem that the tolerance for the angle change of the incident light is small. Then, in photovoltaic power generation, it is necessary to improve tracking accuracy with respect to the movement of the sun. As a result, in the conventional concentrating solar power generation, the cost of the tracking device tends to increase, and as a result, the cost reduction effect due to the reduction in the number of solar cells may be diminished. On the other hand, in this embodiment, since the tolerance with respect to the angle of incident light can be raised, there exists a practical advantage that the cost of the apparatus which tracks a solar position can be reduced.
 また、本実施形態では、光学キャビティ124の内面と集光錐122の内面とを、反射効率の良い反射面としたので、反射時の光の損失を低減することができ、この点からも、エネルギー効率の向上を期待できる。 In the present embodiment, the inner surface of the optical cavity 124 and the inner surface of the condensing cone 122 are made reflective surfaces with good reflection efficiency, so that loss of light at the time of reflection can be reduced. The improvement of energy efficiency can be expected.
 なお、本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更を加え得るものである。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.
 例えば、前記した実施形態では、集光錐122の内面としてウインストンコーン形状を用いたが、集光機能があれば、これに限らない。例えば、ウインストンコーン形状に代えて放物面形状を用いることもできる。ただし、放物面形状を用いた場合には、入射光角度に対する許容度は、一般には低下する。 For example, in the above-described embodiment, the Winston cone shape is used as the inner surface of the condensing cone 122, but the present invention is not limited to this as long as it has a condensing function. For example, a paraboloid shape can be used instead of the Winston cone shape. However, when a paraboloid shape is used, the tolerance for the incident light angle generally decreases.
 また、前記した実施形態では、集光錐122と絞り部123と光学キャビティ124とを一体としたが、別体とすることは可能である。 In the above-described embodiment, the condensing cone 122, the diaphragm 123, and the optical cavity 124 are integrated. However, they can be separated.
 また、前記した実施形態では、集光装置を空気中に配置するものとしたが、真空中に配置することも可能であり、この場合も、前記した利点を発揮できる。 In the above-described embodiment, the light collecting device is disposed in the air. However, the light collecting device may be disposed in a vacuum, and in this case, the above-described advantages can be exhibited.
 さらに、前記した実施形態では、集光錐122の断面形状を、円形状としたが、例えば多角形状とすることは可能である。 Furthermore, in the above-described embodiment, the cross-sectional shape of the light collecting cone 122 is a circular shape, but may be a polygonal shape, for example.
 また、集光錐122及び光学キャビティ124の内面は、銀である必要はなく、反射効率の良い適宜な材質を用いることができる。さらに、反射面の形成方法としても、メッキに限らず、スパッタや接着による膜形成が可能であり、さらには、集光錐等の部材の材質自体を高反射性材質とすることもできる。 Also, the inner surfaces of the condensing cone 122 and the optical cavity 124 do not need to be silver, and an appropriate material with good reflection efficiency can be used. Further, the method of forming the reflecting surface is not limited to plating, and a film can be formed by sputtering or adhesion. Furthermore, the material itself of the member such as the condensing cone can be a highly reflective material.
 (実施例)
 以下、ウインストンコーン形状を用いた集光錐122の作用について、図3を参照しながらさらに詳しく説明する。
(Example)
Hereinafter, the operation of the light collecting cone 122 using the Winston cone shape will be described in more detail with reference to FIG.
 図3における記号の意味は以下の通りである。 The meanings of the symbols in Fig. 3 are as follows.
 ΦPRI:一次集光部の集光により形成される入射角、
 θFOV:ウインストンコーンの視野角。
Φ PRI : the incident angle formed by condensing the primary condensing part,
θ FOV : Winston cone viewing angle.
 理想的なウインストンコーンを用いた場合、ΦPRIで入射した太陽光は、ΦPRIFOVであれば入射光のすべてが射出口から取り出される。一次集光部のF値を、既存の集光システムと同様に、1.5であると仮定する。この場合、一次集光部の集光によって形成される角度は、ΦPRI=18.4°ある。そして、ウインストンコーンのFを1.2とすると、視野角θFOV =22.6°となる。両角度を比較すると、4.2°の余裕を生じることができる。この場合、指向性の許容誤差は±4.2°となる。この値は、従来の集光装置用の追尾機構に要求される精度の約1/10程度である。このような要求精度の低下は、追尾機構のコスト低減に大きく寄与するものと考えられる。 When using the ideal Winston cone, sunlight incident at [Phi PRI, all of the incident light is taken out from the injection port if Φ PRIFOV. Assume that the F value of the primary condensing unit is 1.5, similar to the existing condensing system. In this case, the angle formed by the light collection by the primary light collection unit is Φ PRI = 18.4 °. When F of the Winston cone is 1.2, the viewing angle θ FOV = 22.6 °. When both angles are compared, a margin of 4.2 ° can be generated. In this case, the directivity tolerance is ± 4.2 °. This value is about 1/10 of the accuracy required for a conventional tracking mechanism for a condensing device. Such a decrease in required accuracy is considered to greatly contribute to the cost reduction of the tracking mechanism.
 1 太陽電池用集光装置
 11 一次集光部
 12 二次集光部
 121 開口部
 122 集光錐
 123 絞り部
 124 光学キャビティ
 2 太陽電池セル
 21 電極
 22 配線
 
DESCRIPTION OF SYMBOLS 1 Condensing apparatus for solar cells 11 Primary condensing part 12 Secondary condensing part 121 Opening part 122 Condensing cone 123 Diaphragm part 124 Optical cavity 2 Solar cell 21 Electrode 22 Wiring

Claims (4)

  1.  一次集光部と、二次集光部とを備えており、
     前記一次集光部は、この一次集光部に入射した光を前記二次集光部に向けて集光する構成となっており、
     前記二次集光部は、開口部と、集光錐と、絞り部と、光学キャビティとを備えており、
     前記開口部は、前記一次集光部で集光された光を、この開口部を介して前記集光錐の内側に入射させる構成となっており、
     前記集光錐の内面は、略筒状に形成され、かつ、光学的な反射面とされており、
     かつ、前記集光錐は、前記開口部を介して前記集光錐に入射した光を集光することによって、前記絞り部を介して前記光を前記光学キャビティに入射する構成となっており、
     前記絞り部は、前記集光錐と前記光学キャビティとの間に配置されており、
     かつ、前記絞り部は、前記光学キャビティの最大横断面積よりも小さい横断面積を有することによって、前記光学キャビティからの光の漏れ量を低減させる構成とされており、
     前記光学キャビティの内面は、光学的な反射面とされており、
     かつ、前記光学キャビティの内部の空間は、前記絞り部を除いて、閉鎖空間とされており、
     前記一次集光部から前記光学キャビティまでの光路が通る空間は、均一な屈折率を持つ媒質によって占められるか、あるいは、真空とされている
     太陽電池用集光装置。
    A primary condenser and a secondary condenser,
    The primary condensing unit is configured to condense light incident on the primary condensing unit toward the secondary condensing unit,
    The secondary condensing unit includes an opening, a condensing cone, a diaphragm, and an optical cavity.
    The opening is configured to cause the light collected by the primary condensing unit to enter the inside of the condensing cone through the opening,
    The inner surface of the condensing cone is formed in a substantially cylindrical shape, and is an optical reflecting surface,
    And the condensing cone is configured to make the light incident on the optical cavity via the aperture by condensing the light incident on the condensing cone via the opening,
    The diaphragm is disposed between the condensing cone and the optical cavity,
    And, the diaphragm portion is configured to reduce the amount of light leakage from the optical cavity by having a cross-sectional area smaller than the maximum cross-sectional area of the optical cavity,
    The inner surface of the optical cavity is an optical reflecting surface,
    And the space inside the optical cavity is a closed space except for the diaphragm portion,
    The space through which the optical path from the primary condensing unit to the optical cavity passes is occupied by a medium having a uniform refractive index or is evacuated.
  2.  前記集光錐の内面形状は、ウインストンコーン形状となっている
     請求項1に記載の太陽電池用集光装置。
    The concentrator for solar cells according to claim 1, wherein an inner surface shape of the condensing cone is a Winston cone shape.
  3.  前記媒質は空気である
     請求項1又は2に記載の太陽電池用集光装置。
    The solar cell concentrator according to claim 1, wherein the medium is air.
  4.  請求項1~3のいずれか1項に記載の太陽電池用集光装置と、太陽電池セルとを備えており、
     前記太陽電池セルは、前記光学キャビティの内部に配置されることによって、前記光学キャビティの内面で反射した光を受光できる構成となっている
     発電装置。
     
    A solar cell concentrator according to any one of claims 1 to 3, and a solar battery cell,
    The solar battery cell is configured to receive light reflected by the inner surface of the optical cavity by being disposed inside the optical cavity.
PCT/JP2012/071021 2011-08-30 2012-08-21 Solar cell concentrator and power generation device using same WO2013031570A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161528919P 2011-08-30 2011-08-30
US61/528,919 2011-08-30

Publications (1)

Publication Number Publication Date
WO2013031570A1 true WO2013031570A1 (en) 2013-03-07

Family

ID=47756064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071021 WO2013031570A1 (en) 2011-08-30 2012-08-21 Solar cell concentrator and power generation device using same

Country Status (1)

Country Link
WO (1) WO2013031570A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068904A (en) * 1996-08-28 1998-03-10 Matsushita Electric Works Ltd Sunlight condensing device
JPH1131836A (en) * 1997-07-11 1999-02-02 Hitachi Ltd Condenser type solar power generator and module
JP2001148501A (en) * 1999-11-24 2001-05-29 Honda Motor Co Ltd Photovoltaic power generating device
US20110089459A1 (en) * 2008-06-30 2011-04-21 Osram Opto Semiconductors Gmbh Optoelectronic apparatus
US20110139242A1 (en) * 2009-12-11 2011-06-16 Yun-Ning Shih Light condensing lens, module, and photoelectric transducing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068904A (en) * 1996-08-28 1998-03-10 Matsushita Electric Works Ltd Sunlight condensing device
JPH1131836A (en) * 1997-07-11 1999-02-02 Hitachi Ltd Condenser type solar power generator and module
JP2001148501A (en) * 1999-11-24 2001-05-29 Honda Motor Co Ltd Photovoltaic power generating device
US20110089459A1 (en) * 2008-06-30 2011-04-21 Osram Opto Semiconductors Gmbh Optoelectronic apparatus
US20110139242A1 (en) * 2009-12-11 2011-06-16 Yun-Ning Shih Light condensing lens, module, and photoelectric transducing apparatus

Similar Documents

Publication Publication Date Title
CN101719738B (en) High-efficiency solar concentration photovoltaic system
US20080251113A1 (en) Single mirror solar concentrator with efficient electrical and thermal management
JP2008533752A (en) Multijunction solar cell with an aberration-free imaging system and a combined non-imaging light concentrator
JP2006313810A (en) Light condensing solar power generator
EP2136409A1 (en) Concentration photovoltaic cell system with light guide
EP2359072A2 (en) Köhler concentrator
JP2003258291A (en) Light condensing photovoltaic power generator
US20080128016A1 (en) Parallel Aperture Prismatic Light Concentrator
US20120073626A1 (en) Light concentrator assembly and solar cell apparatus having same
KR100933213B1 (en) Concentration lens for solar power generation
US20100147375A1 (en) Micro-concentrators for solar cells
CN201773855U (en) Secondary light condensing device of light condensing type solar battery module
US20130048052A1 (en) Light concentration and energy conversion system
JP2002280595A (en) Solar light condenser
JP2007073774A (en) Solar battery
US20090320901A1 (en) Concentration photovoltaic cell system with light guide
WO2013031570A1 (en) Solar cell concentrator and power generation device using same
JP7306359B2 (en) Photoelectric conversion device for photovoltaic power generation
KR101642506B1 (en) Light Converging Photovoltaic Module Utilizing the Reflected Light of Slope
CN104297826B (en) Non-imaging secondary reflector for light condensing system
CN202178724U (en) Slot-type reflector rotation-type condensing power generation device
WO2011124036A1 (en) Method for improving solar energy condensation efficiency in solar energy condensation electric power facility
JP2018060978A (en) Light-condensing solar power generator
US20160284912A1 (en) Photovoltaic cell
CN104539235A (en) Space solar power station light path transmission structure with evenly-distributed energy flux density

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP