WO2013029527A1 - 射频安全通信方法、终端及射频安全通信系统 - Google Patents

射频安全通信方法、终端及射频安全通信系统 Download PDF

Info

Publication number
WO2013029527A1
WO2013029527A1 PCT/CN2012/080660 CN2012080660W WO2013029527A1 WO 2013029527 A1 WO2013029527 A1 WO 2013029527A1 CN 2012080660 W CN2012080660 W CN 2012080660W WO 2013029527 A1 WO2013029527 A1 WO 2013029527A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio frequency
data
magnetic
magnetic channel
module
Prior art date
Application number
PCT/CN2012/080660
Other languages
English (en)
French (fr)
Inventor
李美祥
Original Assignee
国民技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国民技术股份有限公司 filed Critical 国民技术股份有限公司
Priority to EP12827379.4A priority Critical patent/EP2725736B1/en
Priority to ES12827379.4T priority patent/ES2550377T3/es
Priority to US14/235,046 priority patent/US9521546B2/en
Publication of WO2013029527A1 publication Critical patent/WO2013029527A1/zh
Priority to ZA2014/01198A priority patent/ZA201401198B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/003Secret communication by varying carrier frequency at or within predetermined or random intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/18Network architectures or network communication protocols for network security using different networks or channels, e.g. using out of band channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0827Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving distinctive intermediate devices or communication paths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3215Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using a plurality of channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/40Security arrangements using identity modules
    • H04W12/47Security arrangements using identity modules using near field communication [NFC] or radio frequency identification [RFID] modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/69Identity-dependent
    • H04W12/79Radio fingerprint

Definitions

  • the present invention relates to the field of communications, and in particular, to a radio frequency secure communication method, a terminal, and a radio frequency secure communication system.
  • the entire receiving processing system is integrated on a SIM card or SD card, and does not require any modification of the mobile phone terminal, so it has excellent application promotion value.
  • it since there is no corresponding protection measure, when data transactions are performed, it may be analyzed by the attacker to obtain the current RF channel parameters, thereby establishing a connection with the activated RF card, thereby posing a security risk.
  • the main technical problem to be solved by the present invention is to provide a radio frequency secure communication method, a terminal and a radio frequency secure communication system, which enhance the security of the RF link data transaction process.
  • a radio frequency secure communication method includes:
  • the encrypted second radio frequency data is used to decrypt the encrypted second radio frequency data by using the magnetic channel data.
  • the process of establishing a radio frequency link with the peer device that feeds back the response information of the magnetic channel data is specifically:
  • the radio frequency channel parameters include a radio frequency frequency point and a radio frequency address.
  • the first radio frequency data is application data; and the second radio frequency data is response data of the application data.
  • the magnetic channel data is randomly generated.
  • a radio frequency secure communication method includes:
  • the encrypted fourth radio frequency data is used to decrypt the encrypted fourth radio frequency data by using the magnetic channel data.
  • the process of establishing a radio frequency link with the peer device that sends the magnetic channel data is specifically:
  • the method before calculating the radio frequency channel parameter according to the received magnetic channel data, the method further includes:
  • the radio frequency channel parameters are calculated according to the received magnetic channel data.
  • the radio frequency channel parameters include a radio frequency frequency point and a radio frequency address.
  • the fourth radio frequency data is application data; and the third radio frequency data is response data of application data.
  • a terminal includes: a magnetic signal generating module, configured to generate magnetic channel data, and send the magnetic channel data outward through a magnetic channel; and a radio frequency transceiver module configured to be opposite to a response information for feeding back the magnetic channel data
  • the device establishes a radio frequency link, and is configured to transmit the encrypted first radio frequency data to the peer device by using the radio frequency link, and configured to receive, by using the radio frequency link, the encrypted second radio frequency data that is transmitted by the peer device; a control module, configured to generate first radio frequency data, perform encryption processing on the first radio frequency data by using the magnetic channel data, and transmit the first radio frequency data to the radio frequency transceiver module; using the magnetic channel data to the encrypted radio Two radio frequency data is decrypted.
  • the magnetic signal generating module includes a magnetic channel data generating submodule and a magnetic signal generating submodule; the magnetic channel data generating submodule is configured to generate magnetic channel data; and the magnetic signal generating submodule For transmitting the magnetic channel data outward through a magnetic channel.
  • control module includes a transform sub-module for calculating radio frequency channel parameters according to the magnetic channel data.
  • the radio frequency transceiver module is configured to receive response information of the magnetic channel data fed back by the peer device on the corresponding radio frequency channel according to the radio frequency channel parameter.
  • control module includes an application module and an encryption and decryption module
  • the application module is configured to generate first radio frequency data, and transmit the first radio frequency data to the encryption and decryption module; and perform corresponding application processing on the second radio frequency data decrypted by the encryption and decryption module;
  • the encryption and decryption module is configured to perform encryption processing on the first radio frequency data by using the magnetic channel data, and then transmit the same to the radio frequency transceiver module; and use the magnetic channel data to transmit the encrypted information to the peer device.
  • the second radio frequency data is decrypted, decrypted and transmitted to the application module.
  • a terminal includes: a magnetic induction module configured to receive externally transmitted magnetic channel data through a magnetic channel; and a radio frequency transceiver module configured to establish a radio frequency link with a peer device that transmits the magnetic channel data;
  • the third radio frequency data is transmitted to the peer device through the radio frequency link, and is configured to receive, by using the radio frequency link, the encrypted fourth radio frequency data that is transmitted by the peer device, and the control module is configured to generate the third radio frequency data, and the The magnetic channel data is encrypted by the third radio frequency data, and then transmitted to the radio frequency transceiver module; and the encrypted fourth radio frequency data is decrypted by using the magnetic channel data.
  • control module includes a transform submodule configured to calculate radio frequency channel parameters according to the magnetic channel data received by the magnetic induction module.
  • the radio frequency transceiver module is configured to send, according to the radio frequency channel parameter, response information of the magnetic channel data to a peer device on a corresponding radio frequency channel.
  • control module further includes a detecting submodule and a determining submodule; the detecting submodule is configured to detect a magnetic signal strength of the magnetic channel data received by the magnetic sensing module; and the determining submodule is configured to determine the detecting Whether the magnetic signal strength exceeds a preset value; and when the determining result of the determining sub-module is that the magnetic signal strength exceeds a preset value, the conversion sub-module calculates the magnetic channel data according to the magnetic sensing module RF channel parameters.
  • control module includes an application module and an encryption and decryption module
  • the application module is configured to generate third radio frequency data, and transmit the third radio frequency data to the encryption and decryption module; and perform corresponding application processing on the fourth radio frequency data decrypted by the encryption and decryption module;
  • the encryption and decryption module is configured to perform encryption processing on the third radio frequency data by using the magnetic channel data, and then transmit the data to the radio frequency transceiver module; and use the magnetic channel data to transmit the encrypted information to the peer device.
  • the fourth radio frequency data is decrypted, decrypted, and transmitted to the application module.
  • a radio frequency secure communication system comprising: the first terminal according to any one of the preceding claims, and the at least one second terminal according to any one of the preceding claims; wherein the first terminal and the second terminal transmit magnetic channel data through a magnetic channel, The magnetic channel data is used to encrypt and decrypt the radio frequency data transmitted on the radio frequency link between the first terminal and the second terminal.
  • the first terminal is a card reading device
  • the second terminal is a terminal with a built-in radio frequency card
  • the radio frequency card is one of a radio frequency SIM card or a radio frequency SD card.
  • the invention has the beneficial effects that the magnetic channel data transmitted by the magnetic channel is used to encrypt the radio frequency data transmitted on the radio frequency link, that is, the magnetic channel is used to transmit the security control information to encrypt the data transmitted on the radio frequency link. Since the magnetic channel has a short transmission distance and is not easy to be intercepted, the attacker can establish a connection with the activated terminal from a distance, even if it uses a public protocol specification to impersonate a peer device, but cannot steal the magnetic data as the encryption key. The channel data makes it impossible to complete the encryption and decryption process of the radio frequency data, avoiding the risk that the preset key is intercepted or cracked, thereby preventing substantial transaction attacks and enhancing the security of the RF link data transaction process. At the same time, the magnetic channel data is used to directly encrypt the radio frequency data transmitted on the radio frequency link, and there is no need for a special key issuance management system, thereby reducing the difficulty and cost of security maintenance.
  • the two ends of the device calculate the radio frequency channel parameters according to the magnetic channel data, and establish a corresponding radio frequency link, which further simplifies the process of establishing the radio frequency link.
  • FIG. 1 is a schematic structural diagram of a first terminal according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a first terminal according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a radio frequency card reader according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a second terminal according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a second terminal according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a radio frequency SIM card according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a radio frequency secure communication system according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of a radio frequency secure communication method of the radio frequency secure communication system shown in FIG.
  • the main idea of the present invention is to transmit magnetic channel data through a magnetic channel between the first terminal and the second terminal, and then use the magnetic channel data to transmit the radio frequency transmitted on the radio frequency link between the first terminal and the second terminal.
  • the data is encrypted and decrypted to enhance the security of the RF link data transaction process.
  • the first terminal includes, but is not limited to, a card reading device such as a card reader.
  • the second terminal includes but is not limited to a terminal with a built-in radio frequency card, such as a mobile terminal, and the radio frequency card includes but is not limited to a radio frequency SIM card and a radio frequency SD card.
  • the radio frequency data transmitted on the radio frequency link includes but is not limited to the response data of the application data and the application data.
  • FIG. 1 is a schematic structural diagram of a first terminal according to an embodiment of the present invention.
  • the first terminal includes a magnetic signal generating module 11, a radio frequency transceiver module 12, and a control module 13, wherein the magnetic signal generating module 11 is configured to generate magnetic channel data, and send the magnetic channel data outward through the magnetic channel; the radio frequency transceiver module a second terminal for establishing a radio frequency link with the response information of the magnetic channel data; for transmitting the encrypted first radio frequency data to the peer device by using the radio frequency link;
  • the RF link receives the encrypted second radio frequency data transmitted by the peer device;
  • the control module 13 is configured to generate the first radio frequency data, and encrypt the first radio frequency data by using the magnetic channel data, and then transmit the information to the
  • the radio frequency transceiver module is configured to decrypt the encrypted second radio frequency data by using the magnetic channel data.
  • the first radio frequency data may be application data that is sent by the first terminal to the second terminal
  • the second radio frequency data is response data of the application data that is sent by the second terminal to the first terminal.
  • FIG. 2 is a schematic structural diagram of a first terminal according to another embodiment of the present invention.
  • the first terminal includes a magnetic signal generating module 11 , a radio frequency transceiver module 12 , and a control module 13 .
  • the magnetic signal generation module 11 includes a magnetic channel data generation sub-module 111 and a magnetic signal generation sub-module 112.
  • the control module 13 includes a transform submodule 131, an application module 132, and an encryption and decryption module 133.
  • the transform sub-module 131 is respectively connected to the magnetic channel data generating sub-module 111 and the radio frequency transceiver module 12, and the encryption and decryption module 133 is respectively connected to the application module 132, the magnetic channel data generating sub-module 111, and the radio frequency transceiver module 12, and the magnetic channel data generating sub-module 111 is also coupled to the magnetic signal generation sub-module 112.
  • the magnetic channel data generating sub-module 111 can be used to randomly generate magnetic channel data; the magnetic signal generating sub-module 112 is configured to send the magnetic channel data outward through the magnetic channel; and the transform sub-module 131 generates the sub-module 111 according to the magnetic channel data generating sub-module 111.
  • the magnetic channel data calculates radio frequency channel parameters.
  • the radio frequency transceiver module 12 receives the response information of the magnetic channel data fed back by the second terminal on the corresponding radio frequency channel according to the radio frequency channel parameter obtained by the transform submodule 131 to establish a radio frequency link with the second terminal.
  • the application module 132 generates first radio frequency data and transmits the first radio frequency data to the encryption and decryption module 133.
  • the cryptographic module 133 encrypts the first radio frequency data by using the magnetic channel data generated by the magnetic channel data generating sub-module 111, and then transmits the first radio frequency data to the radio frequency transceiver module 12, and the radio frequency transceiver module 12 encrypts the first radio frequency data.
  • the second terminal is transmitted through the radio frequency link.
  • the RF transceiver module 12 is further configured to receive the encrypted second radio frequency data transmitted by the second terminal by using the radio frequency link, and transmit the encrypted second radio frequency data to the encryption and decryption module 133.
  • the encryption and decryption module 133 is further configured to decrypt the encrypted second radio frequency data transmitted by the second device by using the magnetic channel data generated by the magnetic channel data generating sub-module 111, and decrypt the data to be transmitted to the application module 132.
  • the application module 132 is further configured to perform corresponding application processing on the second radio frequency data decrypted by the encryption and decryption module 133.
  • the method for calculating the radio frequency channel parameters by the transforming sub-module 131 according to the magnetic channel data generated by the magnetic channel data generating sub-module 111 may be that the magnetic channel data generated by the magnetic channel data generating sub-module 111 is irreversibly transformed, and according to The result of the transformation generates corresponding radio frequency channel parameters, and the radio frequency transceiver module 12 performs radio frequency information transmission and reception on the corresponding radio frequency channel according to the radio frequency channel parameter.
  • the encryption/decryption module 133 in this embodiment may also be integrated in the magnetic signal generation module 11, that is, the magnetic signal generation module 11 performs encryption and decryption of radio frequency data.
  • the radio frequency channel parameters in this embodiment include radio frequency frequencies and addresses, and corresponding radio frequency channels are obtained according to the radio frequency frequencies and addresses.
  • the first radio frequency data may be application data to be sent by the first terminal to the second terminal; the second radio frequency data is response data of the application data that the second terminal feeds back to the first terminal.
  • the first terminal of the embodiment randomly generates the magnetic channel data by using the magnetic signal generating module, and the transform submodule calculates the radio frequency channel parameter according to the magnetic channel data, and then the radio frequency transceiver module establishes the second terminal according to the radio frequency channel parameter.
  • the radio frequency link is further encrypted by the encryption and decryption module by using the magnetic channel data to transmit the first radio frequency data to be transmitted to the second terminal, and the radio frequency transceiver module transmits the first radio frequency data encrypted by the encryption and decryption module through the radio frequency link.
  • the currently generated magnetic channel data is random, it can only be valid at the time, avoiding the risk that the magnetic channel data is intercepted or cracked, and at the same time undergoing irreversible transformation, generating radio frequency channel parameters according to the irreversible result, thereby Even if the attacker obtains the current RF channel parameters through analysis, it cannot obtain the currently generated magnetic channel data, thereby enhancing the security of the magnetic channel data as a key for data encryption. That is to say, the first terminal of the present embodiment is used, so that the attacker can establish a connection from a remote terminal that has been activated by the first terminal, even if it uses a public protocol specification to impersonate a magnetic communication radio base station.
  • the first terminal activates the magnetic channel data generated when the second terminal is activated, so the encryption or decryption process of the radio frequency data cannot be completed, thereby making it impossible to conduct a substantial transaction attack, thereby enhancing the security of the RF link data transaction process; and the implementation
  • the method does not require a special key issuance management system, which reduces the difficulty and cost of security maintenance.
  • FIG. 3 is a schematic structural diagram of a radio frequency card reader according to an embodiment of the present invention.
  • the radio frequency card reader of the embodiment includes at least one microcontroller 301, at least one radio frequency transceiver module 302, and the radio frequency transceiver module 302 carries a radio frequency antenna and at least one set of magnetic signal generating modules 303.
  • the radio frequency antenna 303 is configured to detect and radiate radio frequency signals; the radio frequency transceiver module 302 is coupled to at least one microcontroller 301 for transmitting/receiving radio frequency data between the radio frequency card reader and the radio frequency card; the magnetic signal generating module 303 and the micro control
  • the device 301 is connected.
  • the magnetic signal generating module 303 is configured to randomly generate magnetic channel data, and send the magnetic channel data outward through the magnetic channel; the microcontroller 301 calculates the radio frequency channel parameter according to the magnetic channel data generated by the magnetic signal generating module 303, and generates the first
  • the radio frequency data is encrypted by the magnetic channel data generated by the magnetic signal generating module 303, and then transmitted to the radio frequency transceiver module 302.
  • the radio frequency transceiver module 302 according to the radio frequency channel parameters obtained by the microcontroller 301 is corresponding.
  • the RF channel receives the response information of the magnetic channel data fed back by the RF card to establish a radio frequency link with the RF card, and transmits the first RF data encrypted by the microcontroller 301 to the RF card through the RF link.
  • the RF transceiver module 302 is further configured to receive the encrypted second RF data transmitted by the RF card through the RF link, and transmit the encrypted second RF data to the microcontroller 301, where the microcontroller 301 is further configured to utilize the magnetic
  • the magnetic channel data generated by the signal generating module 303 decrypts the encrypted second radio frequency data, and performs corresponding application processing on the decrypted data.
  • the first radio frequency data may be application data to be sent by the radio frequency card reader to the radio frequency card;
  • the second radio frequency data is response data of the application data fed back by the radio frequency card to the radio frequency card reader.
  • FIG. 4 is a schematic structural diagram of a second terminal according to an embodiment of the present invention.
  • the second terminal includes a magnetic induction module 41, a radio frequency transceiver module 42 and a control module 43, wherein the magnetic induction module 41 is configured to receive externally transmitted magnetic channel data through a magnetic channel; and the radio frequency transceiver module 42 is configured to transmit the magnetic channel data pair
  • the end device establishes a radio frequency link, and is configured to transmit the encrypted third radio frequency data to the peer device by using the radio frequency link, and configured to receive, by using the radio frequency link, the encrypted fourth radio frequency data transmitted by the peer device.
  • the control module 43 is configured to generate third radio frequency data, encrypt the third radio frequency data by using the magnetic channel data, and then transmit the third radio frequency data to the radio frequency transceiver module; use the magnetic channel data to encrypt the encrypted
  • the fourth radio frequency data is decrypted.
  • the fourth radio frequency data may be application data that is sent by the first terminal to the second terminal, and the third radio frequency data is response data of the application data that the second terminal is to feed back to the first terminal.
  • FIG. 5 is a schematic structural diagram of a second terminal according to another embodiment of the present invention.
  • the second terminal includes a magnetic induction module 41 , a radio frequency transceiver module 42 , and a control module 43 .
  • the control module 43 includes a transform submodule 431, a detection submodule 432, a judging submodule 433, an application module 434, and an encryption and decryption module 435.
  • the magnetic sensing module 41 is configured to receive externally transmitted magnetic channel data through a magnetic channel; the detecting submodule 432 is configured to detect a magnetic signal strength of the magnetic channel data received by the magnetic sensing module 41; and the determining submodule 433 is configured to determine the detected magnetic signal strength If the determination result of the sub-module 433 is that the magnetic signal strength exceeds the preset value, the RF channel parameter is calculated according to the magnetic channel data received by the magnetic induction module 41; the RF transceiver module 42 And transmitting, by the radio frequency channel parameter, the response information of the magnetic channel data to the first terminal on the corresponding radio frequency channel, to establish a radio frequency link with the first terminal, and the application module 434 is configured to generate the third radio frequency data, and The third radio frequency data is transmitted to the encryption and decryption module 435; the encryption and decryption module 435 is configured to perform encryption processing on the third radio frequency data by using the magnetic channel data received by the magnetic induction module 41, and then transmit the same to the radio frequency transce
  • the fourth radio frequency data is transmitted to the encryption and decryption module 435; the encryption and decryption module 435 decrypts the encrypted fourth radio frequency data by using the magnetic channel data received by the magnetic induction module 41, decrypts and transmits the data to the application module 434; the application module 434
  • the fourth radio frequency data decrypted by the encryption and decryption module 435 is subjected to corresponding application processing.
  • the method for calculating the radio frequency channel parameter by the transform sub-module 431 according to the magnetic channel data received by the magnetic sensor module 41 may specifically perform irreversible transformation on the magnetic channel data received by the magnetic induction module 41, and generate a corresponding radio frequency according to the transformation result.
  • the channel parameter, the radio frequency transceiver module 42 performs radio frequency information transmission and reception on the corresponding radio frequency channel according to the radio frequency channel parameter.
  • the radio frequency channel parameters in this embodiment include radio frequency frequencies and addresses, and corresponding radio frequency channels are obtained according to the radio frequency frequencies and addresses.
  • the fourth radio frequency data may be application data that is sent by the first terminal to the second terminal; the third radio frequency data is response data of the application data that the second terminal is to feed back to the first terminal.
  • the encryption and decryption module 435 can also be integrated in the magnetic induction module 41 or the application module 434, that is, the radio frequency data can be encrypted and decrypted by the magnetic induction module 41 or the application module 434.
  • the second terminal of the embodiment receives the randomly generated magnetic channel data sent by the first terminal by using the magnetic sensing module, and performs irreversible transformation on the currently generated magnetic channel data by using the transform submodule, and generates the radio frequency according to the transformation result.
  • the risk that the key is intercepted or cracked; and the attacker obtains the current RF channel parameters through analysis, but cannot obtain the original information of the magnetic channel, thereby enhancing the security of the magnetic channel data as a key for data encryption.
  • the attacker uses a public protocol to spoof a magnetic communication radio base station, and establishes a connection with the second terminal that has been activated by the first terminal from a remote location, the second terminal is activated when the first terminal is activated.
  • the random magnetic channel data so the RF data encryption or decryption process cannot be completed, so that substantial transaction attacks cannot be performed, and the security of the RF link data transaction is further enhanced; and there is no need for a special key issuance management system. Reduce the difficulty and cost of safe maintenance.
  • the second terminal in this embodiment may be a terminal with a built-in radio frequency SIM card or an SD card.
  • a radio frequency SIM card or an SD card.
  • other radio frequency devices are also understood according to the principles and functions of the present embodiment.
  • FIG. 6 is a schematic structural diagram of a radio frequency SIM card according to an embodiment of the present invention.
  • the radio frequency SIM card includes at least one radio frequency transceiver module 601, a microcontroller 602, a magnetic induction module 603, and a SIM card application module 604.
  • the radio frequency transceiver module 601 carries a radio frequency antenna, and the radio frequency antenna is used for detecting and radiating radio frequency signals.
  • the magnetic induction module 603 is configured to sense the transmitted magnetic signal strength of the radio frequency card reading device and receive the magnetic channel data.
  • the radio transceiver module 601 is connected to the micro control 602 for transmitting and receiving radio frequency signals through the radio frequency antenna.
  • the microcontroller 602 is configured to process the radio frequency information and the magnetic channel information received and received, including the card reading received by the magnetic induction module 603.
  • the magnetic signal strength of the magnetic channel data currently generated by the device is detected to determine whether the detected magnetic signal strength exceeds a preset value.
  • the radio frequency channel parameter is calculated according to the magnetic channel data. Specifically, the magnetic channel data can be irreversibly transformed to obtain a corresponding radio frequency frequency and address.
  • the radio frequency transceiver module 601 feeds back the response information of the magnetic channel data to the card reading device to establish a radio frequency link with the card reading device.
  • the SIM card application module 604 is configured to process the corresponding SIM card application, including generating third radio frequency data, and the microcontroller 602 encrypts the third radio frequency data by using the magnetic channel data, and then transmits the third radio frequency data to the radio frequency transceiver module 601, and the radio frequency transceiver module.
  • the 601 transmits the encrypted third radio frequency data to the card reading device through the radio frequency link.
  • the radio frequency transceiver module 601 is further configured to receive, by using a radio frequency link, the encrypted fourth radio frequency data transmitted by the card reading device; the microcontroller 602 is further configured to decrypt the received encrypted fourth radio frequency data by using the magnetic channel data;
  • the card application module 604 is further configured to perform corresponding application processing on the decrypted fourth radio frequency data.
  • the fourth radio frequency data may be application data sent by the card reading device to the radio frequency SIM card; the third radio frequency data is response data of the application data fed back by the radio frequency SIM card to the card reading device.
  • the embodiment also provides a radio frequency secure communication system.
  • FIG. 7 is a radio frequency secure communication system provided by this embodiment.
  • the radio frequency secure communication system of the present embodiment includes at least one first terminal 701 and at least one second terminal 702, wherein the first terminal 701 is configured to randomly generate magnetic communication data, and utilize the currently generated magnetic communication data and the second terminal Establishing a radio frequency link between the 702, and encrypting the radio frequency data by using the currently generated magnetic channel data, and transmitting the encrypted radio frequency data to the second terminal 702 through the established radio frequency link, and using the currently generated
  • the magnetic channel data information is used to decrypt the radio frequency response data fed back by the second terminal 702.
  • the radio frequency security communication method of the present embodiment is further described in detail with reference to the specific embodiments and the accompanying drawings. Please refer to Figure 8.
  • the radio frequency secure communication method of this embodiment includes:
  • the first terminal randomly generates magnetic channel data, and sends the currently generated magnetic channel data to the outside through a magnetic channel.
  • the second terminal detects the magnetic signal strength of the magnetic channel data, determines whether the detected magnetic signal strength exceeds a preset value, and if so, proceeds to step S803, otherwise, performs magnetic signal strength for continuing to detect the magnetic channel data.
  • the second terminal performs irreversible transformation on the received current magnetic channel data, and generates radio frequency channel parameters according to the transformation result.
  • the second terminal sends the response information of the magnetic channel data on the corresponding radio frequency channel according to the radio frequency channel parameter.
  • the first terminal performs irreversible transformation on the magnetic channel data, and generates a radio frequency channel parameter according to the transformation result, and the first terminal receives the magnetic wave sent by the second terminal of the magnetic communication on the corresponding radio frequency channel according to the radio frequency channel parameter.
  • the response information of the channel data thereby completing the establishment of the radio frequency link.
  • the radio frequency channel parameters in this embodiment include radio frequency frequency points and addresses, so that corresponding radio frequency channels can be obtained through the radio frequency frequency points and addresses.
  • the irreversible transformation performed by the second terminal is the same as the irreversible transformation performed by the first terminal, and the same transformation result is obtained, and the same radio frequency frequency and address are generated according to the transformation result and the same algorithm (for example, an encryption algorithm).
  • the first terminal uses the magnetic channel data information to encrypt the application data, and sends the encrypted application data to the second terminal by using the established radio frequency link.
  • the second terminal receives the encrypted application data sent by the first terminal by using the established radio frequency link.
  • the second terminal decrypts the encrypted application data by using the received magnetic channel data.
  • the second terminal performs a corresponding application instruction in the decrypted application data, and obtains an execution result, and encrypts the execution result by using the received magnetic channel data, and passes the encrypted execution result through the established radio frequency link. Send to the first terminal.
  • the first terminal receives, by using the established radio frequency link, the encrypted execution result returned by the second terminal receiving end.
  • the first terminal decrypts the execution result of the received encryption by using the magnetic channel data, performs corresponding application processing on the decrypted data, and then continues to encrypt the processing result by using the magnetic channel data, and returns to the second terminal.
  • the result of the encryption process is the result of the encryption process.
  • the magnetic channel data transmitted by the magnetic channel is used to encrypt the radio frequency data transmitted on the radio frequency link, that is, the magnetic channel is used to transmit the security control information to encrypt the data transmitted on the radio frequency link. Since the magnetic channel has a short transmission distance, it is not easy to be intercepted, so that the attacker can establish a connection from the remotely activated second terminal even if it uses a public protocol specification to impersonate a first terminal, but it cannot steal as an encryption key.
  • the magnetic channel data makes it impossible to complete the encryption and decryption process of the radio frequency data, avoiding the risk that the preset key is intercepted or cracked, thereby preventing substantial transaction attacks and enhancing the security of the RF link data transaction process. .
  • the magnetic channel data is used to directly encrypt the radio frequency data transmitted on the radio frequency link, and there is no need for a special key issuance management system, thereby reducing the difficulty and cost of security maintenance; the first terminal and the second terminal are based on the magnetic channel.
  • the data calculates the RF channel parameters and establishes the corresponding RF link, which further simplifies the process of establishing the RF link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种射频安全通信方法、终端及射频安全通信系统,本发明的射频安全通信方法包括生成磁信道数据,并通过磁信道向外发送所述磁信道数据;与反馈所述磁信道数据的响应信息的对端设备建立射频链路;生成第一射频数据,利用所述磁信道数据对所述第一射频数据进行加密处理后,通过所述射频链路传输给对端设备;和/或通过所述射频链路接收对端设备传输的加密后的第二射频数据,利用所述磁信道数据对所述加密后的第二射频数据进行解密。本发明通过以上技术方案,避免预置密钥被截获或被破解的风险,增强了射频链路数据交易过程的安全性。

Description

射频安全通信方法、终端及射频安全通信系统 技术领域
本发明涉及通信领域,尤其涉及射频安全通信方法、终端及射频安全通信系统。
背景技术
随着移动终端的普及,利用移动终端进行电子支付的需求变得非常迫切。目前有多种实现方案,其中一种方案是通过在手机SIM卡或SD卡中集成2.4G射频通信模块,磁耦合线圈以及磁感应处理模块来实现的。这种方案通过装在手机中的SIM卡或SD卡检测磁耦合信号强度及接收的磁信道信息,来激活SIM卡或SD卡上的2.4G射频通信模块进行数据交易通信。由于磁耦合信号的能量在空间随距离3次方衰减,并且具有非常好的手机一致性,所以这种方案在实现了射频高速数据交换的同时,能很好的控制各种手机终端上SIM卡或SD卡射频数据通信的距离,从而成为一种可靠的移动终端电子支付解决方案。另外,整个接收处理系统被集成在一张SIM卡或SD卡上,不需要对手机终端进行任何改造,因此具有极好的应用推广价值。但由于没有相应的保护措施,因此在进行数据交易时,其可能被攻击者分析获取到当前的射频信道参数,从而与已被激活的射频卡建立连接,从而出现安全隐患。
技术问题
本发明要解决的主要技术问题是,提供一种射频安全通信方法、终端及射频安全通信系统,增强了射频链路数据交易过程的安全性。
技术解决方案
为解决上述技术问题,本发明采用的技术方案如下:
一种射频安全通信方法,包括:
生成磁信道数据,并通过磁信道向外发送所述磁信道数据;
与反馈所述磁信道数据的响应信息的对端设备建立射频链路;
生成第一射频数据,利用所述磁信道数据对所述第一射频数据进行加密处理后,通过所述射频链路传输给对端设备;和/或通过所述射频链路接收对端设备传输的加密后的第二射频数据,利用所述磁信道数据对所述加密后的第二射频数据进行解密。
在本发明一实施例中,与反馈所述磁信道数据的响应信息的对端设备建立射频链路的过程具体为:
根据所述磁信道数据计算射频信道参数;
根据所述射频信道参数在对应的射频信道上接收对端设备反馈的所述磁信道数据的响应信息。
在本发明一实施例中,所述射频信道参数包括射频频点和射频地址。
在本发明一实施例中,所述第一射频数据为应用数据;所述第二射频数据为所述应用数据的响应数据。
在本发明一实施例中,所述磁信道数据为随机产生。
一种射频安全通信方法,包括:
通过磁信道接收外部发送的磁信道数据;
与发送所述磁信道数据的对端设备建立射频链路;
生成第三射频数据,利用所述磁信道数据对所述第三射频数据进行加密处理后,通过所述射频链路传输给对端设备;和/或通过所述射频链路接收对端设备传输的加密后的第四射频数据,利用所述磁信道数据对所述加密后的第四射频数据进行解密。
在本发明一实施例中,与发送所述磁信道数据的对端设备建立射频链路的过程具体为:
根据接收到的所述磁信道数据计算射频信道参数;
根据所述射频信道参数在对应的射频信道上向对端设备发送所述磁信道数据的响应信息。
在本发明一实施例中,根据接收到的所述磁信道数据计算射频信道参数之前,还包括:
检测所述磁信道数据的磁信号强度;
判断检测出的磁信号强度是否超过预设值;
若是,则根据接收到的所述磁信道数据计算射频信道参数。
在本发明一实施例中,所述射频信道参数包括射频频点和射频地址。
在本发明一实施例中,所述第四射频数据为应用数据;所述第三射频数据为应用数据的响应数据。
一种终端,包括:磁信号发生模块,用于生成磁信道数据,并通过磁信道向外发送所述磁信道数据;射频收发模块,用于与反馈所述磁信道数据的响应信息的对端设备建立射频链路;用于将加密后的第一射频数据通过所述射频链路传输给对端设备;用于通过所述射频链路接收对端设备传输的加密后的第二射频数据;控制模块,用于生成第一射频数据,利用所述磁信道数据对所述第一射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对所述加密后的第二射频数据进行解密。
在本发明一实施例中,所述磁信号发生模块包括磁信道数据生成子模块和磁信号发生子模块;所述磁信道数据生成子模块用于生成磁信道数据;所述磁信号发生子模块用于通过磁信道向外发送所述磁信道数据。
在本发明一实施例中,所述控制模块包括变换子模块,用于根据所述磁信道数据计算射频信道参数。
在本发明一实施例中,所述射频收发模块用于根据所述射频信道参数在对应的射频信道上接收对端设备反馈的所述磁信道数据的响应信息。
在本发明一实施例中,所述控制模块包括应用模块和加解密模块;其中,
所述应用模块用于生成第一射频数据,并将所述第一射频数据传输至所述加解密模块;用于对所述加解密模块解密后的第二射频数据进行相应应用处理;
所述加解密模块用于利用所述磁信道数据对所述第一射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对对端设备传输的所述加密后的第二射频数据进行解密,解密后传输至所述应用模块。
一种终端,包括:磁感应模块,用于通过磁信道接收外部发送的磁信道数据;射频收发模块,用于与发送所述磁信道数据的对端设备建立射频链路;用于将加密后的第三射频数据通过所述射频链路传输给对端设备;用于通过所述射频链路接收对端设备传输的加密后的第四射频数据;控制模块,用于生成第三射频数据,利用所述磁信道数据对所述第三射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对所述加密后的第四射频数据进行解密。
在本发明一实施例中,控制模块包括变换子模块,用于根据所述磁感应模块接收到的所述磁信道数据计算射频信道参数。
在本发明一实施例中,所述射频收发模块用于根据所述射频信道参数在对应的射频信道上向对端设备发送所述磁信道数据的响应信息。
在本发明一实施例中,控制模块还包括检测子模块和判断子模块;检测子模块用于检测所述磁感应模块接收到的磁信道数据的磁信号强度;所述判断子模块用于判断检测出的磁信号强度是否超过预设值;所述变换子模块用于所述判断子模块的判断结果为磁信号强度超过预设值时,根据所述磁感应模块接收到的所述磁信道数据计算射频信道参数。
在本发明一实施例中,所述控制模块包括应用模块和加解密模块;其中,
所述应用模块用于生成第三射频数据,并将所述第三射频数据传输至所述加解密模块;用于对所述加解密模块解密后的第四射频数据进行相应应用处理;
所述加解密模块用于利用所述磁信道数据对所述第三射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对对端设备传输的所述加密后的第四射频数据进行解密,解密后传输至所述应用模块。
一种射频安全通信系统,包括上述任一项所述的第一终端,以及至少一个上述任一项所述的第二终端;所述第一终端与第二终端通过磁信道传送磁信道数据,再利用该磁信道数据对第一终端与第二终端之间射频链路上传输的射频数据进行加解密。
在本发明一实施例中,所述第一终端为读卡设备,所述第二终端为内置射频卡的终端。
在本发明一实施例中,所述射频卡为射频SIM卡或射频SD卡中的一种。
有益效果
本发明的有益效果是:利用磁信道传输的磁信道数据对射频链路上传输的射频数据进行加密,即利用磁信道传送安全控制信息来对射频链路上传输的数据进行加密。由于磁信道传输距离近,不易被侦听,使得攻击者即使利用公开的协议规范假冒一个对端设备,从远处与已被激活的终端建立连接,但由于其无法窃取作为加密密钥的磁信道数据,使得其无法完成射频数据的加解密过程,避免了预置密钥被截获或被破解的风险,从而无法进行实质性的交易攻击,增强了射频链路数据交易过程的安全性。同时,采用磁信道数据直接对射频链路上传输的射频数据进行加密,不需要有专门的密钥发行管理体系,进而降低了安全维护的难度和成本。
进一步,两端设备根据磁信道数据计算射频信道参数,建立相应的射频链路,进一步简化了射频链路建立的流程。
附图说明
图1为本发明一实施例提供的第一终端的结构示意图;
图2为本发明另一实施例提供的第一终端的结构示意图;
图3为本发明一实施例提供的射频读卡器的结构示意图;
图4为本发明一实施例提供的第二终端的结构示意图;
图5为本发明另一实施例提供的第二终端的结构示意图;
图6为本发明一实施例提供的的射频SIM卡的结构示意图;
图7为本发明一实施例提供的射频安全通信系统的示意图;
图8为图7所示射频安全通信系统的射频安全通信方法的流程图。
本发明的最佳实施方式
本发明的实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
本发明的主要构思是,在第一终端与第二终端之间,先通过磁信道传送磁信道数据,再利用该磁信道数据对第一终端与第二终端之间射频链路上传输的射频数据进行加解密,从而增强射频链路数据交易过程的安全性。第一终端包括但不局限于读卡设备,如读卡器。第二终端包括但不局限于内置射频卡的终端,如移动终端,射频卡包括但不局限与射频SIM卡、射频SD卡。射频链路上传输的射频数据包括但不局限于应用数据和应用数据的响应数据。
请参考图1,为本发明一实施例提供的第一终端的结构示意图。第一终端包括磁信号发生模块11、射频收发模块12和控制模块13,其中,磁信号发生模块11,用于生成磁信道数据,并通过磁信道向外发送所述磁信道数据;射频收发模块12,用于与反馈所述磁信道数据的响应信息的第二终端建立射频链路;用于将加密后的第一射频数据通过所述射频链路传输给对端设备;用于通过所述射频链路接收对端设备传输的加密后的第二射频数据;控制模块13,用于生成第一射频数据,利用所述磁信道数据对所述第一射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对所述加密后的第二射频数据进行解密。
具体的,第一射频数据可以为第一终端待向第二终端发送的应用数据;第二射频数据为第二终端向第一终端反馈的所述应用数据的响应数据。
请参考图2,为本发明另一实施例提供的第一终端的结构示意图,第一终端包括磁信号发生模块11、射频收发模块12和控制模块13。磁信号发生模块11包括磁信道数据生成子模块111和磁信号发生子模块112。控制模块13包括变换子模块131、应用模块132和加解密模块133。变换子模块131分别与磁信道数据生成子模块111、射频收发模块12连接,加解密模块133分别与应用模块132、磁信道数据生成子模块111、射频收发模块12连接,磁信道数据生成子模块111还与磁信号发生子模块112连接。
磁信道数据生成子模块111可以用于随机的生成磁信道数据;磁信号发生子模块112用于通过磁信道向外发送所述磁信道数据;变换子模块131根据磁信道数据生成子模块111生成的磁信道数据计算射频信道参数。射频收发模块12根据变换子模块131得到的该射频信道参数在对应的射频信道上接收第二终端反馈的所述磁信道数据的响应信息,以建立与第二终端之间的射频链路。应用模块132生成第一射频数据,并将第一射频数据传输至加解密模块133。加解密模块133利用磁信道数据生成子模块111生成的所述磁信道数据对所述第一射频数据进行加密处理后,传输给射频收发模块12,射频收发模块12将加密后的第一射频数据通过射频链路传输给第二终端。射频收发模块12还用于通过射频链路接收第二终端传输的加密后的第二射频数据,将加密后的第二射频数据传输至加解密模块133。加解密模块133还用于利用磁信道数据生成子模块111生成的磁信道数据对第二设备传输的所述加密后的第二射频数据进行解密,解密后传输至应用模块132。应用模块132还用于对加解密模块133解密后的第二射频数据进行相应应用处理。
本实施方式中,变换子模块131根据磁信道数据生成子模块111生成的磁信道数据计算射频信道参数的方法具体可以是将磁信道数据生成子模块111生成的磁信道数据进行不可逆变换,并根据变换结果生成相应的射频信道参数,射频收发模块12则根据该射频信道参数在对应的射频信道上进行射频信息的收发。本实施方式中的加解密模块133也可以集成在磁信号发生模块11中,即由磁信号发生模块11来进行射频数据的加解密。本实施方式中的射频信道参数包括射频频点和地址,根据该射频频点和地址可得到相应的射频信道。第一射频数据可以为第一终端待向第二终端发送的应用数据;第二射频数据为第二终端向第一终端反馈的所述应用数据的响应数据。
本实施方式的第一终端通过磁信号发生模块来随机地产生磁信道数据,并由变换子模块根据该磁信道数据计算射频信道参数,再由射频收发模块根据该射频信道参数建立与第二终端的射频链路;再由加解密模块利用该磁信道数据对待传输给第二终端的第一射频数据继续拧加密,射频收发模块将经过加解密模块加密后的第一射频数据通过射频链路发送给第二终端。由于该当前生成的磁信道数据为随机的,只能当次有效,避免了该磁信道数据被截获或者破解的风险,同时将其经过不可逆变换,根据该不可逆结果来生成射频信道参数,从而使得攻击者即使通过分析获取了当前的射频信道参数,但却不能够获取当前产生的磁信道数据,进而增强了磁信道数据作为密钥进行数据加密的安全性。也就是说,使用本实施方式的第一终端,使得攻击者即使利用公开的协议规范假冒一个磁通信射频基站,从远处与已被第一终端激活的第二终端建立连接,但由于无法获取第一终端激活第二终端时产生的磁信道数据,所以无法完成射频数据的加密或者解密过程,从而无法进行实质性的交易攻击,进而增强了射频链路数据交易过程的安全性;并且本实施方式不需要专门的密钥发行管理体系,进而降低了安全维护的难度和成本。
请参考图3,为本发明一实施例提供的射频读卡器的结构示意图。本实施例的射频读卡器包括至少一个微控制器301,至少一个射频收发模块302,射频收发模块302携带射频天线,至少一组磁信号发生模块303。射频天线303用于检测和辐射射频信号;射频收发模块302至少与一个微控制器301,用于在该射频读卡器和射频卡之间发射/接收射频数据;磁信号发生模块303与微控制器301连接。磁信号发生模块303用于随机地生成磁信道数据,并通过磁信道向外发送所述磁信道数据;微控制器301根据磁信号发生模块303生成的磁信道数据计算射频信道参数,生成第一射频数据,利用磁信号发生模块303生成的磁信道数据对所述第一射频数据进行加密处理后,传输给射频收发模块302;射频收发模块302根据微控制器301得到的射频信道参数在对应的射频信道上接收射频卡反馈的所述磁信道数据的响应信息,以建立与射频卡之间的射频链路,将微控制器301加密后的第一射频数据通过该射频链路传输给射频卡。射频收发模块302还用于通过该射频链路接收射频卡传输的加密后的第二射频数据,将该加密后的第二射频数据传输至微控制器301,微控制器301还用于利用磁信号发生模块303生成的磁信道数据对该加密后的第二射频数据进行解密,对解密后的进行相应应用处理。
具体的,第一射频数据可以为射频读卡器待向射频卡发送的应用数据;第二射频数据为射频卡向射频读卡器反馈的所述应用数据的响应数据。
请参考图4,为本发明一实施例提供的第二终端的结构示意图。第二终端包括磁感应模块41、射频收发模块42和控制模块43,其中,磁感应模块41用于通过磁信道接收外部发送的磁信道数据;射频收发模块42用于与发送所述磁信道数据的对端设备建立射频链路;用于将加密后的第三射频数据通过所述射频链路传输给对端设备;用于通过所述射频链路接收对端设备传输的加密后的第四射频数据;控制模块43用于生成第三射频数据,利用所述磁信道数据对所述第三射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对所述加密后的第四射频数据进行解密。
具体的,第四射频数据可以为第一终端向第二终端发送的应用数据;第三射频数据为第二终端待向第一终端反馈的所述应用数据的响应数据。
请参考图5,为本发明另一实施例提供的第二终端的结构示意图,第二终端包括磁感应模块41、射频收发模块42和控制模块43。其中,控制模块43包括变换子模块431、检测子模块432、判断子模块433、应用模块434和加解密模块435。磁感应模块41用于通过磁信道接收外部发送的磁信道数据;检测子模块432用于检测磁感应模块41接收到的磁信道数据的磁信号强度;判断子模块433用于判断检测出的磁信号强度是否超过预设值;变换子模块431用于判断子模块433的判断结果为磁信号强度超过预设值时,根据磁感应模块41接收到的所述磁信道数据计算射频信道参数;射频收发模块42用于根据该射频信道参数在对应的射频信道上向第一终端发送所述磁信道数据的响应信息,以建立与第一终端的射频链路;应用模块434用于生成第三射频数据,并将所述第三射频数据传输至加解密模块435;加解密模块435用于利用磁感应模块41接收的所述磁信道数据对第三射频数据进行加密处理后,传输给射频收发模块42;射频收发模块42将加密后的第三射频数据通第一终端传输的加密后的第四射频数据,将该加密后的第四射频数据传输至加解密模块435;加解密模块435利用磁感应模块41接收的所述磁信道数据对该加密后的第四射频数据进行解密,解密后传输至应用模块434;应用模块434对加解密模块435解密后的第四射频数据进行相应应用处理。
本实施方式中,变换子模块431根据磁感应模块41接收到的磁信道数据计算射频信道参数的方法具体可以是将磁感应模块41接收到的磁信道数据进行不可逆变换,并根据变换结果生成相应的射频信道参数,射频收发模块42则根据该射频信道参数在对应的射频信道上进行射频信息的收发。本实施方式中的射频信道参数包括射频频点和地址,根据该射频频点和地址可得到相应的射频信道。第四射频数据可以为第一终端向第二终端发送的应用数据;第三射频数据为第二终端待向第一终端反馈的所述应用数据的响应数据。加解密模块435也可以集成在磁感应模块41或者应用模块434中,也就是说可以由磁感应模块41或者应用模块434来进行射频数据的加解密。
本实施方式的第二终端,通过磁感应模块接收第一终端发送来的随机的生成的磁信道数据,并通过变换子模块对该当前生成的磁信道数据进行不可逆变换,再根据变换结果来生成射频信道参数,并向第一终端反馈磁信道数据的响应信息,从而建立射频链路,再由射频收发模块在该射频链路上接收由第一终端发送的加密的射频数据,避免了预置密钥被截获或被破解的风险;并且攻击者即便通过分析获取了当前的射频信道参数,但却不能获取磁信道原始数据信息,从而增强了磁信道数据作为密钥进行数据加密的安全性。即是说即使攻击者利用公开的协议规范假冒一个磁通信射频基站,从远处与已被第一终端激活的第二终端建立连接,但由于无法获取当次第一终端激活第二终端时产生的随机磁信道数据,所以无法完成射频数据的加密或者解密过程,从而无法进行实质性的交易攻击,进一步地增强了射频链路数据交易的安全性;同时不需要有专门的密钥发行管理体系,降低了安全维护的难度和成本。
本实施方式中的第二终端可以为内置射频SIM卡或者SD卡的终端,当然根据本实施方式的原理和作用,采用其他的射频装置也是可以理解的。
请参考图6为本本发明一实施例提供的射频SIM卡的结构示意图。射频SIM卡包括至少一个射频收发模块601、一个微控制器602、一个磁感应模块603和一个SIM卡应用模块604。射频收发模块601携带射频天线,射频天线用于检测和辐射射频信号。磁感应模块603用于感应射频读卡设备的发送的磁信号强度,并接收该磁信道数据。射频收发模块601与微控制602连接,用于通过射频天线发射和接收射频信号;微控制器602用于对收发的射频信息,磁信道信息进行处理,包括对磁感应模块603接收到的由读卡设备当前生成的磁信道数据的磁信号强度进行检测,判断检测出的磁信号强度是否超过预设值,在判断结果为磁信号强度超过预设值时,根据该磁信道数据计算射频信道参数,具体的,可以对该磁信道数据进行不可逆变换,得到相应的射频频点和地址。在计算出的射频频点和地址上,通过射频收发模块601向读卡设备反馈该磁信道数据的响应信息,以建立与读卡设备的射频链路。SIM卡应用模块604用于处理相应的SIM卡应用,包括生成第三射频数据,微控制器602利用该磁信道数据对第三射频数据进行加密处理后,传输给射频收发模块601,射频收发模块601通过射频链路将加密后的第三射频数据传输至读卡设备。射频收发模块601还用于通过射频链路接收读卡设备传输的加密后的第四射频数据;微控制器602还用于利用该磁信道数据对接收的加密的第四射频数据进行解密;SIM卡应用模块604还用于对解密后的第四射频数据进行相应应用处理。
具体的,第四射频数据可以为读卡设备向射频SIM卡发送的应用数据;第三射频数据为射频SIM卡待向读卡设备反馈的所述应用数据的响应数据。
本实施方式还提供了一种射频安全通信系统。请参考图7,为本实施方式提供的一种射频安全通信系统。本实施方式的射频安全通信系统包括至少一个第一终端701和至少一个第二终端702,其中,第一终端701用于随机地产生磁通信数据,并利用当前生成的磁通信数据与第二终端702之间建立射频链路,并利用该当前生成的磁信道数据对射频数据进行加密,再通过已建立的射频链路将加密后的射频数据发送给第二终端702,并利用该当前生成的磁信道数据信息来对第二终端702反馈的射频响应数据进行解密。
基于上述的射频安全通信系统,本实施方式还提供一种射频安全通信方法,下面将结合具体实施例和附图对本实施方式的射频安全通信方法进行详细的说明。请参考图8。本实施方式的射频安全通信方法包括:
S801, 第一终端随机地产生磁信道数据,并通过磁信道将当前生成的磁信道数据向外发送。
S802, 第二终端检测磁信道数据的磁信号强度,判断检测出的磁信号强度是否超过预设值,若是,则执行步骤S803,否则,执行继续检测磁信道数据的磁信号强度。
S803,第二终端对接收到的当前磁信道数据进行不可逆变换,并根据该变换结果,生成射频信道参数。
S804,第二终端根据该射频信道参数,在对应的射频信道上发送磁信道数据的响应信息。
S805,第一终端将对该磁信道数据进行不可逆变换,并根据该变换结果,生成射频信道参数,第一终端根据该射频信道参数,在对应的射频信道上接收磁通信第二终端发送的磁信道数据的响应信息,从而完成射频链路的建立。
本实施方式中的射频信道参数包括射频频点和地址,从而通过该射频频点和地址即可得到对应的射频信道。第二终端进行的不可逆变换与第一终端进行的不可逆变换相同,得到相同的变换结果,并根据该变换结果以及相同的算法(例如加密算法),生成相同的射频频点和地址。
S806,第一终端利用该磁信道数据信息,对应用数据进行加密,并通过已建立的射频链路将加密的应用数据发送给第二终端。
S807,第二终端通过该已建立的射频链路接收第一终端发送来的已加密的应用数据。
S808,第二终端利用已接收到的该磁信道数据对该加密的应用数据进行解密。
S809,第二终端执行解密后的应用数据中相应的应用指令,并获取执行结果,利用已接收到的该磁信道数据对执行结果进行加密,将加密的执行结果通过该已建立的射频链路发送给第一终端。
S810,第一终端通过已建立的该射频链路接收第二终接收端返回的经过加密的执行结果;
S811,第一终端利用该磁信道数据对接收到加密的执行结果进行解密,对解密后的数据进行相应应用处理,然后可以继续利用该磁信道数据对处理结果进行加密,并向第二终端返回加密后的处理结果。
本实施方式利用磁信道传输的磁信道数据对射频链路上传输的射频数据进行加密,即利用磁信道传送安全控制信息来对射频链路上传输的数据进行加密。由于磁信道传输距离近,不易被侦听,使得攻击者即使利用公开的协议规范假冒一个第一终端,从远处与已被激活的第二终端建立连接,但由于其无法窃取作为加密密钥的磁信道数据,使得其无法完成射频数据的加解密过程,避免了预置密钥被截获或被破解的风险,从而无法进行实质性的交易攻击,增强了射频链路数据交易过程的安全性。同时,采用磁信道数据直接对射频链路上传输的射频数据进行加密,不需要有专门的密钥发行管理体系,进而降低了安全维护的难度和成本;第一终端与第二终端根据磁信道数据计算射频信道参数,建立相应的射频链路,进一步简化了射频链路建立的流程。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。
工业实用性
序列表自由内容

Claims (23)

  1. 一种射频安全通信方法, 其特征在于,包括:
    生成磁信道数据,并通过磁信道向外发送所述磁信道数据;
    与反馈所述磁信道数据的响应信息的对端设备建立射频链路;
    生成第一射频数据,利用所述磁信道数据对所述第一射频数据进行加密处理后,通过所述射频链路传输给对端设备;和/或通过所述射频链路接收对端设备传输的加密后的第二射频数据,利用所述磁信道数据对所述加密后的第二射频数据进行解密。
  2. 如权利要求1所述的射频安全通信方法,其特征在于,与反馈所述磁信道数据的响应信息的对端设备建立射频链路的过程具体为:
    根据所述磁信道数据计算射频信道参数;
    根据所述射频信道参数在对应的射频信道上接收对端设备反馈的所述磁信道数据的响应信息。
  3. 如权利要求2所述的射频安全通信方法,其特征在于,所述射频信道参数包括射频频点和射频地址。
  4. 如权利要求1所述的射频安全通信方法,其特征在于,所述第一射频数据为应用数据;所述第二射频数据为所述应用数据的响应数据。
  5. 如权利要求1至4任一项所述的射频安全通信方法,其特征在于,所述磁信道数据为随机产生。
  6. 一种射频安全通信方法,其特征在于,包括:
    通过磁信道接收外部发送的磁信道数据;
    与发送所述磁信道数据的对端设备建立射频链路;
    生成第三射频数据,利用所述磁信道数据对所述第三射频数据进行加密处理后,通过所述射频链路传输给对端设备;和/或通过所述射频链路接收对端设备传输的加密后的第四射频数据,利用所述磁信道数据对所述加密后的第四射频数据进行解密。
  7. 如权利要求6所述的射频安全通信方法,其特征在于,与发送所述磁信道数据的对端设备建立射频链路的过程具体为:
    根据接收到的所述磁信道数据计算射频信道参数;
    根据所述射频信道参数在对应的射频信道上向对端设备发送所述磁信道数据的响应信息。
  8. 如权利要求7所述的射频安全通信方法,其特征在于,根据接收到的所述磁信道数据计算射频信道参数之前,还包括:
    检测所述磁信道数据的磁信号强度;
    判断检测出的磁信号强度是否超过预设值;
    若是,则根据接收到的所述磁信道数据计算射频信道参数。
  9. 如权利要求7所述的射频安全通信方法,其特征在于,所述射频信道参数包括射频频点和射频地址。
  10. 如权利要求6至9任一项所述的射频安全通信方法,其特征在于,所述第四射频数据为应用数据;所述第三射频数据为应用数据的响应数据。
  11. 一种终端,其特征在于,包括:
    磁信号发生模块,用于生成磁信道数据,并通过磁信道向外发送所述磁信道数据;
    射频收发模块,用于与反馈所述磁信道数据的响应信息的对端设备建立射频链路;用于将加密后的第一射频数据通过所述射频链路传输给对端设备;用于通过所述射频链路接收对端设备传输的加密后的第二射频数据;
    控制模块,用于生成第一射频数据,利用所述磁信道数据对所述第一射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对所述加密后的第二射频数据进行解密。
  12. 如权利要求11所述的终端,其特征在于,所述磁信号发生模块包括磁信道数据生成子模块和磁信号发生子模块;所述磁信道数据生成子模块用于生成磁信道数据;所述磁信号发生子模块用于通过磁信道向外发送所述磁信道数据。
  13. 如权利要求11所述的终端,其特征在于,所述控制模块包括变换子模块,用于根据所述磁信道数据计算射频信道参数。
  14. 如权利要求13所述的终端,其特征在于,所述射频收发模块用于根据所述射频信道参数在对应的射频信道上接收对端设备反馈的所述磁信道数据的响应信息。
  15. 如权利要求11至14任一项所述的终端,其特征在于,所述控制模块包括应用模块和加解密模块;其中,
    所述应用模块用于生成第一射频数据,并将所述第一射频数据传输至所述加解密模块;用于对所述加解密模块解密后的第二射频数据进行相应应用处理;
    所述加解密模块用于利用所述磁信道数据对所述第一射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对对端设备传输的所述加密后的第二射频数据进行解密,解密后传输至所述应用模块。
  16. 一种终端,其特征在于,包括:
    磁感应模块,用于通过磁信道接收外部发送的磁信道数据;
    射频收发模块,用于与发送所述磁信道数据的对端设备建立射频链路;用于将加密后的第三射频数据通过所述射频链路传输给对端设备;用于通过所述射频链路接收对端设备传输的加密后的第四射频数据;
    控制模块,用于生成第三射频数据,利用所述磁信道数据对所述第三射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对所述加密后的第四射频数据进行解密。
  17. 如权利要求16所述的终端,其特征在于,控制模块包括变换子模块,用于根据所述磁感应模块接收到的所述磁信道数据计算射频信道参数。
  18. 如权利要求17所述的终端,其特征在于,所述射频收发模块用于根据所述射频信道参数在对应的射频信道上向对端设备发送所述磁信道数据的响应信息。
  19. 如权利要求16所述的终端,其特征在于,控制模块还包括检测子模块和判断子模块;检测子模块用于检测所述磁感应模块接收到的磁信道数据的磁信号强度;所述判断子模块用于判断检测出的磁信号强度是否超过预设值;所述变换子模块用于所述判断子模块的判断结果为磁信号强度超过预设值时,根据所述磁感应模块接收到的所述磁信道数据计算射频信道参数。
  20. 如权利要求16至19任一项所述的终端,其特征在于,所述控制模块包括应用模块和加解密模块;其中,
    所述应用模块用于生成第三射频数据,并将所述第三射频数据传输至所述加解密模块;用于对所述加解密模块解密后的第四射频数据进行相应应用处理;
    所述加解密模块用于利用所述磁信道数据对所述第三射频数据进行加密处理后,传输给所述射频收发模块;利用所述磁信道数据对对端设备传输的所述加密后的第四射频数据进行解密,解密后传输至所述应用模块。
  21. 一种射频安全通信系统,其特征在于,包括至少一个如权利要求11至15任一项所述的第一终端,以及至少一个如权利要求16至20任一项所述的第二终端;所述第一终端与第二终端通过磁信道传送磁信道数据,再利用该磁信道数据对第一终端与第二终端之间射频链路上传输的射频数据进行加解密。
  22. 如权利要求21所述的射频安全通信系统,其特征在于,所述第一终端为读卡设备,所述第二终端为内置射频卡的终端。
  23. 如权利要求22所述的射频安全通信系统,其特征在于,所述射频卡为射频SIM卡或射频SD卡中的一种。
PCT/CN2012/080660 2011-08-29 2012-08-28 射频安全通信方法、终端及射频安全通信系统 WO2013029527A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12827379.4A EP2725736B1 (en) 2011-08-29 2012-08-28 Methods and terminals for secure radio frequency communication
ES12827379.4T ES2550377T3 (es) 2011-08-29 2012-08-28 Métodos y terminales para comunicación segura por radio frecuencia
US14/235,046 US9521546B2 (en) 2011-08-29 2012-08-28 Secure RF communication method, terminal and system
ZA2014/01198A ZA201401198B (en) 2011-08-29 2014-02-18 Method, terminal and system for radio frequency secure communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110250429.2 2011-08-29
CN201110250429.2A CN102957529B (zh) 2011-08-29 2011-08-29 射频安全通信方法及系统、磁通信射频接收/发送终端

Publications (1)

Publication Number Publication Date
WO2013029527A1 true WO2013029527A1 (zh) 2013-03-07

Family

ID=47755330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080660 WO2013029527A1 (zh) 2011-08-29 2012-08-28 射频安全通信方法、终端及射频安全通信系统

Country Status (6)

Country Link
US (1) US9521546B2 (zh)
EP (1) EP2725736B1 (zh)
CN (1) CN102957529B (zh)
ES (1) ES2550377T3 (zh)
WO (1) WO2013029527A1 (zh)
ZA (1) ZA201401198B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449375A (zh) * 2017-05-27 2022-05-06 夏德华 一种用于光伏组件监控的通信方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497717B2 (en) * 2014-05-23 2016-11-15 Ruckus Wireless, Inc. Out-of-band acknowledgement of wireless communication
US10432614B2 (en) * 2017-05-16 2019-10-01 Apple Inc. Techniques for verifying user intent and securely configuring computing devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478402A (zh) * 2009-01-21 2009-07-08 陕西海基业高科技实业有限公司 基于移动终端和近距离射频通信的安全服务系统及方法
CN101567037A (zh) * 2009-06-03 2009-10-28 普天信息技术研究院有限公司 一种射频识别装置和方法
CN102096836A (zh) * 2009-12-09 2011-06-15 国民技术股份有限公司 一种射频装置和射频读卡器以及相关通信系统和通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542610B2 (en) * 1997-01-30 2003-04-01 Intel Corporation Content protection for digital transmission systems
EP1024626A1 (en) * 1999-01-27 2000-08-02 International Business Machines Corporation Method, apparatus, and communication system for exchange of information in pervasive environments
US6993542B1 (en) * 2001-03-12 2006-01-31 Cisco Technology, Inc. Efficient random number generation for communication systems
US20030093663A1 (en) * 2001-11-09 2003-05-15 Walker Jesse R. Technique to bootstrap cryptographic keys between devices
US20040159700A1 (en) * 2001-12-26 2004-08-19 Vivotech, Inc. Method and apparatus for secure import of information into data aggregation program hosted by personal trusted device
US7644275B2 (en) * 2003-04-15 2010-01-05 Microsoft Corporation Pass-thru for client authentication
US7831519B2 (en) * 2003-12-17 2010-11-09 First Data Corporation Methods and systems for electromagnetic initiation of secure transactions
US8347354B2 (en) * 2007-03-16 2013-01-01 Research In Motion Limited Restricting access to hardware for which a driver is installed on a computer
US8174362B2 (en) * 2008-03-06 2012-05-08 Round Rock Research, Llc Methods and apparatuses to secure data transmission in RFID systems
US20110106954A1 (en) * 2008-09-26 2011-05-05 Manjirnath Chatterjee System and method for inductively pairing devices to share data or resources
US8848904B2 (en) * 2008-10-24 2014-09-30 University Of Maryland, College Park Method and implementation for information exchange using Markov models
US8630584B2 (en) * 2008-11-26 2014-01-14 Nationz Technologies Inc. RF SIM card, card reader, and communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101478402A (zh) * 2009-01-21 2009-07-08 陕西海基业高科技实业有限公司 基于移动终端和近距离射频通信的安全服务系统及方法
CN101567037A (zh) * 2009-06-03 2009-10-28 普天信息技术研究院有限公司 一种射频识别装置和方法
CN102096836A (zh) * 2009-12-09 2011-06-15 国民技术股份有限公司 一种射频装置和射频读卡器以及相关通信系统和通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449375A (zh) * 2017-05-27 2022-05-06 夏德华 一种用于光伏组件监控的通信方法及系统

Also Published As

Publication number Publication date
CN102957529B (zh) 2018-02-09
EP2725736B1 (en) 2015-07-22
EP2725736A4 (en) 2014-10-22
CN102957529A (zh) 2013-03-06
US9521546B2 (en) 2016-12-13
EP2725736A1 (en) 2014-04-30
US20140349608A1 (en) 2014-11-27
ES2550377T3 (es) 2015-11-06
ZA201401198B (en) 2014-12-23

Similar Documents

Publication Publication Date Title
US8745392B2 (en) Two-way authentication between two communication endpoints using a one-way out-of band (OOB) channel
US8270610B2 (en) Wireless communication system, wireless communication apparatus, and method of exchanging cryptography key between wireless communication apparatuses
WO2015147547A1 (en) Method and apparatus for supporting login through user terminal
WO2014082387A1 (zh) 基于nfc的指纹认证系统及指纹认证方法
WO2016068655A1 (en) Method of performing device to device communication between user equipments
WO2014063455A1 (zh) 即时通信方法和系统
WO2019221419A1 (ko) 하드웨어 보안 모듈
KR101377570B1 (ko) 전기자동차의 충전 통신 보안 장치 및 그 방법
WO2013029527A1 (zh) 射频安全通信方法、终端及射频安全通信系统
WO2010011023A1 (en) Method and apparatus for registering a device in access point
CN112565302A (zh) 基于安全网关的通信方法、系统及设备
CN113259096B (zh) 一种适于物联网通信环境的密钥在线协商方法及系统
WO2017128585A1 (zh) 一种高级安全的输出内容保护方法与条件接收模块
WO2014063575A1 (zh) 一种密码钥匙、安全认证系统及安全认证方法
CN107733590A (zh) 一种高速总线的数据传输装置及方法
CN101159540A (zh) 收发数据流的方法及处理设备
JP3625461B2 (ja) ネットワーク中継装置、通信装置、及びネットワーク中継方法
CN111641646A (zh) 一种安全增强型通信定位终端
AU2019100407A4 (en) Secure communication device
KR20010004137A (ko) 불법 복제 방지를 위한 디지털 인터페이스 방법
WO2013034011A1 (zh) 冲突检测方法、磁射频装置及通信系统
CN113612731A (zh) 宽带wapi多通道数据传输与随机数据加密通信设备
WO2013026366A1 (zh) 一种防止通信冲突的方法、装置及系统
CN211880515U (zh) 加密的输电线路监控系统
CN112699393B (zh) 一种并行总线数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012827379

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14235046

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE