WO2013029436A1 - 一种静电除尘装置的结构 - Google Patents

一种静电除尘装置的结构 Download PDF

Info

Publication number
WO2013029436A1
WO2013029436A1 PCT/CN2012/078731 CN2012078731W WO2013029436A1 WO 2013029436 A1 WO2013029436 A1 WO 2013029436A1 CN 2012078731 W CN2012078731 W CN 2012078731W WO 2013029436 A1 WO2013029436 A1 WO 2013029436A1
Authority
WO
WIPO (PCT)
Prior art keywords
dust collecting
dust
plate
electrostatic precipitator
fan
Prior art date
Application number
PCT/CN2012/078731
Other languages
English (en)
French (fr)
Inventor
翁同生
Original Assignee
漳州万利达生活电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漳州万利达生活电器有限公司 filed Critical 漳州万利达生活电器有限公司
Publication of WO2013029436A1 publication Critical patent/WO2013029436A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/368Controlling flow of gases or vapour by other than static mechanical means, e.g. internal ventilator or recycler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/08Ionising electrode being a rod
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides

Definitions

  • the invention relates to the structure of an electrostatic precipitator.
  • the commonly used electrostatic precipitator purifier has a working principle of setting a one-way circulating air passage for collecting air to be purified, the air discharge electrode of the air duct, and the dust in the air by corona action.
  • the particles are charged; a dust collecting device with an electric field is placed behind the air duct to collect particles suspended in the air in the air passage.
  • the dust collecting device is in the form of a conductive dust collecting plate spaced apart from each other, such as a metal plate arranged in parallel; an electric field is interposed between the metal plates, so that the charged dust particles flowing between the plates are deflected by the Coulomb force in the electric field. Finally, it is trapped on the plate of the dust collecting device, so that the dust particles in the air flowing out from the air channel are finally filtered out.
  • the present invention provides a structure of an electrostatic precipitator, and the technical solution thereof is as follows:
  • a structure of an electrostatic precipitator comprising:
  • a dust collecting device having a dust collecting plate distributed in an array with each other; the dust collecting plate adjacent to each other has a unidirectional electric field and a dust removing air passage crossing the electric field; the dust collecting plate includes a The insulating substrate and the conductive electrode plate formed by closely matching the surface thereof;
  • a fan device that causes the air to be dusted to form a unidirectionally controllable airflow that passes through the dust removal duct;
  • a corona device having a high pressure emitter that can charge dust particles in a gas stream controlled by the fan unit.
  • the dust collecting plate is a printed circuit board
  • the insulating substrate is a substrate of a printed circuit board
  • the conductive electrode plate is a copper surface of a surface of the printed circuit board
  • the outer surface of the electrode plate has an oxidation preventing layer.
  • the dust collecting plates are all in the form of a flat plate arranged in parallel with each other.
  • the corona device, the fan device and the dust collecting device are arranged in the wind direction in order.
  • the corona device, the dust collecting device and the fan device are arranged in the wind direction in order.
  • the conductive plates are connected to each other at a distance, and two sets of conductors are obtained, and the two sets of conductors are respectively connected to a DC high voltage and a ground line.
  • the charge of the high voltage emitter of the corona device is opposite to the polarity of the charge of the DC high voltage on the conductive plate.
  • the charge of the high voltage emitter of the corona device is the same as the charge of the DC high voltage on the conductive plate.
  • the surface of the conductive plate of the dust collecting plate further has an insulating layer.
  • the dust collecting plate has a thickness ranging from 0.43 to 6.7 mm, and the distance between the dust collecting plates is 0.5-20 mm; the dust removing air passage length ranges from 5 to 80 mm; The distance between the device and the dust collecting device is in the range of 4 times the length of the dust removing duct.
  • the dust collecting plate comprises an insulating substrate and a conductive electrode plate formed in close cooperation with the surface thereof, so that the aerodynamic design and the electric field design of the dust collecting device can be separated to avoid mutual influence, and the resistance between the conductive electrode plates is improved, and the arc striking is avoided. fire. Ultimately achieve optimized dust removal performance and suitability for different occasions.
  • the dust collecting board is a printed circuit board, which greatly utilizes the advantages of the mature PCB process, such as shape processing and copper etching, so that the dust collecting device with excellent performance can be achieved at a small cost; and the excellent insulation of the printed circuit board at the same time
  • the performance can make the dust collecting device small in size, so that the power of the fan device becomes small, and the power is small when the same air purifying effect is obtained.
  • the surface of the conductive plate of the dust collecting plate also has an insulating layer.
  • the dust collecting device is exposed to no conductive material, which improves the breakdown resistance between each other and is very easy to clean and maintain.
  • the dust collecting plate is a flexible printed circuit board.
  • the dust collecting device is variable in volume, and is more suitable for various occasions where the volume is limited.
  • Figure 1 is a side elevational view of an embodiment of the present invention
  • FIG. 2 is a schematic view showing the working principle of the first embodiment, with details of the dust collecting plate;
  • FIG. 3 is a schematic view showing the structure of the dust collecting plate of the embodiment of Figure 1;
  • FIG. 4 is a schematic structural view of a dust collecting plate according to Embodiment 2 of the present invention.
  • Figure 5 is a side view showing the third embodiment
  • Figure 6 is a side view showing the fourth embodiment
  • Figure 7 is a side view showing the fifth embodiment
  • Figure 8 is an enlarged view of a portion E of Figure 7.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the electrostatic dust removing device of the present invention has a structure in which the dust collecting device 100 has a dust collecting plate which is arranged in an array spaced apart from each other; Portions of the dust plate 110 and the second dust collecting plate 120 will be described.
  • the adjacent first dust collecting plate 110 and the second dust collecting plate 120 have a unidirectional electric field between each other, and a first dust removing air passage 130 crossing the electric field;
  • a fan device 200 is disposed on the front airflow path of the dust collecting device 100, and the fan device forms a unidirectional controllable airflow, the airflow can pass through the first dust removal duct 130; and the corona device 300,
  • the corona device 300 has a front end air flow path for the fan unit 200, which functions to transfer electric charge to the surrounding air to cause the dust particles 400 to be charged, which is achieved by the high pressure transmitting head 301 on the corona device 300.
  • the dust-removing air from the left end has dust particles 400 therein, and under the control of the fan unit 200, the air fluid flows in the direction indicated by the arrow, and passes through the positive DC voltage of the corona device 300.
  • the high pressure emitting head 301 so that the dust particles 400 are positively charged, and after flowing through the dust collecting device 100, the clean air 500 can be obtained, which is a complete cleaning process.
  • the adjacent first dust collecting plate 110 and the second dust collecting plate 120 are respectively connected to different points: the first dust collecting plate 110 is connected to the B end, which is a +3.5KVDC potential, and the second dust collecting plate 120 is Connected to the A terminal, this is a potential of 0, that is, grounding; the dust collecting plates spaced apart from each other on the dust collecting device 100 are respectively connected to the same potential, so in this example, the +3.5KVDC and the 0 potential are spaced apart.
  • the details of the dust collecting device 100 and its working principle can be seen in conjunction with FIG.
  • the positively-charged dust particles 400 driven by the fan unit 200 of FIG. 1 enter the first dust-removing air channel 130.
  • the first dust-removing air channel 130 is mainly configured as a gap between the first dust collecting plate 110 and the second dust collecting plate 120.
  • the first dust collecting plate 110 is a two-layered bonding form of a first insulating substrate 111 and a first conductive electrode plate 112, and the thickness of the conductive electrode plate 112 is much smaller than the thickness of the insulating substrate 111.
  • the second set The dust plate 120 also structurally includes a second insulating substrate 121 and a second conductive plate 122 that are closely fitted.
  • the first dust collecting plate 110 is connected to the B potential through its first conductive plate 112, that is, +3.5KVDC; the second dust collecting plate 120 is connected to the A potential through the second conductive substrate 122, that is, the ground potential is 0. -
  • the dust particles 400 enter the air of the first dust removal duct together, and are finally output from the end of the first dust removal duct 130 in the form of the clean air 500.
  • the shape of the first dust removal duct 130 is basically restricted by the first insulating substrate 111 and the second insulating substrate 121.
  • the length, shape and spacing of the two dust collecting ducts 130 constitute the parameters of the first dust removing duct 130.
  • the first dust removal duct 130 has a height of 1 mm and a downwind length of 25 mm; at the same time, an electric field between the first dust collecting plate 110 and the second dust collecting plate 120 itself is received by the first conductive plate 112.
  • the dust collecting plate 110 of the present invention is a two-layered bonding form of the insulating substrate 111 and the conductive electrode plate 112.
  • the conductive electrode plate 112 is further covered with an oxidation preventing layer;
  • the insulating substrate 111 may be a paper substrate, a glass cloth substrate, or a composite material. Substrate, special type substrate, etc.
  • the first conductive electrode plate 112 has a hollow portion X on the first insulating substrate 111, and the blank portion X is 3 mm (the actual range) It may be 1-30 mm), which is intended to make the edge of the first conductive plate 112 away from the edge of the first insulating substrate 111, so that the conductive portion and the half of the insulating plate are prevented from forming a 90-degree angle and occur with other conductive plates.
  • High-voltage arc-ignition phenomenon affects the parameters of the electric field.
  • the protrusions 113 at both ends of the first insulating substrate 110 are used for mounting and fixing with other insulating substrates.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the 4 is a bottom view of the dust collecting plate of the second embodiment; the overall structure of the second embodiment is similar to that of the first embodiment, except that the dust collecting plate is firstly used, and the first dust collecting of the second embodiment is also taken out for comparison.
  • the board 110 is compared. Compared with the first dust collecting plate 110 of the first embodiment shown in FIG. 3, the first dust collecting plate of the second embodiment has a larger blank X and a smaller opposing area of the first conductive plate 112, and
  • the first dust collecting plate 110 in this embodiment is a printed circuit board made of CEM1 material.
  • the first dust collecting plate 110 of the structure is very easy to process, whether it is the processing of the outer shape or the etching of the first conductive electrode plate 112 in the form of a copper surface, which can be realized by a very mature process at a relatively low cost;
  • the insulating substrate of the CEM1 makes the conduction resistance between the dust collecting plates large, and the dust collecting plate can be adjacent with a small gap without being broken by the high voltage, thus reducing the volume of the device as a whole.
  • a FR series such as FRR4 board is used to make a higher performance dust collecting device.
  • the cost factor can be met with CEM1.
  • the polarity of the high voltage emitter 301 is opposite to the polarity of the B potential and is a negative DC potential.
  • the hexahedral dust collecting device 100 has a volume of 120*120*25 mm, and the spacing of the dust collecting plate, that is, the height of the dust removing duct is 1.5 mm; while the blanking section is 3 mm, and the B potential end is introduced.
  • the CEM1 printed circuit board is used to make the dust collecting device. The small size, the fan power is small, only 6W, which achieves a great energy saving effect.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • FIG 5 is a side view of the third embodiment; in this embodiment, the dust collecting device 100, the fan device 200 and the high-pressure transmitting head 301 are the same as the first embodiment; the difference is that the fan device 200 is first in the dust collecting device 100. The negative pressure is generated on the right side, so that the dust to be removed together with the charged particles 400 is first sucked into the dust collecting device 100, and then output as clean air 500 through the fan device 200.
  • This solution is suitable for occasions with a lot of dust, and can better protect the life of the fan device 200.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • FIG. 6 is a side view of the fourth embodiment; the embodiment is similar to the structure of the first embodiment, and the dust collecting plate is made of a CEM1 printed circuit board.
  • the high-voltage transmitting head 301 is brought to a DC negative high voltage, so that the charged particles 300 are also negatively charged by corona; meanwhile, the B potential in the dust collecting device 100 is connected to a negative high voltage, and the A potential end is grounded. .
  • the dust-removing air together with the charged particles 400 are first sucked into the fan device 200, and then converted into the clean air 500 through the dust collecting device 100.
  • the dust collecting plate on the dust collecting device 100 has the same insulating substrate, but the conductive plate has no The equal shape, as seen from the figure, from top to bottom, the conductive plate first becomes larger, has the largest area in the middle, and gradually decreases to the bottom to the minimum.
  • the insulating substrate restricts the aerodynamic performance of the entire dust collecting device 100 from being uniform up and down, and the electric field distribution of the dust collecting device 100 is first widened from the top to the bottom, and then narrowed.
  • the fan device 200 of the special performance can be adapted to achieve sufficient dust removal effect while maintaining the mechanical structure and the aerodynamic performance of the dust collecting device 100. Because the wind power of the wind turbine device 200 and its edge winds tend to be unequal.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Figure 7 is a side elevational view of the fifth embodiment
  • Figure 8 is an enlarged view of a portion E of Figure 7.
  • the high-voltage transmitting head 301 also causes the charged particles 400 to carry a positive charge, and also passes through the fan device 200 before entering the dust collecting device 100.
  • the insulating substrate portion of the dust collecting plate has an area feature that becomes larger and smaller from the top to the bottom, and at the same time, the guiding electrode plates of all the dust collecting plates are the same, which makes the entire dust collecting device 100 have a whole body. a uniform electric field, and its aerodynamic characteristics can be realized by different areas of the insulating substrate; secondly, as shown in FIG.
  • this portion shows the cross-sectional detail of the first dust collecting plate 100: the first dust collecting plate 100 is made of FR1 printed circuit board The first conductive electrode plate 112 is made of a copper-clad surface, and is closely adhered to the first insulating substrate 111 of the glass fiber by the original PCB process. Meanwhile, the copper-clad surface of the first conductive substrate 112 further has a protective paint 117. As such, there is no exposed copper-clad metal portion in all of the dust collecting devices 100, which improves the breakdown resistance between each other while being very easy to clean and maintain.
  • the invention may be composed of a group of fan devices 200, a dust collecting device 100 and a high-pressure transmitting head 301 according to the use environment; or a plurality of groups of fan devices 200, a dust collecting device 100 and a high-pressure transmitting head 301 may be mounted on a fixed frame. On top, they are electrically connected to each other.
  • the structure of an electrostatic precipitator of the present invention is an innovative selection of a printed circuit board as a dust collecting plate, comprising an insulating substrate and a conductive electrode plate formed tightly with the surface thereof, so that the aerodynamic design and the electric field design of the dust collecting device can be separated and avoided. Influence each other, while increasing the resistance between the conductive plates, avoiding arcing and sparking. Ultimately achieve optimized dust removal performance and suitability for different occasions.

Landscapes

  • Electrostatic Separation (AREA)

Abstract

一种静电除尘装置的结构,包括一集尘装置(100)、一风机装置(200)和一电晕装置(300)。集尘装置(100)具有彼此间隔阵列分布的集尘板(110,120);集尘板(110,120)相邻者彼此之间具有单向电场和横穿电场的除尘风道(130);集尘板(110,120)包括一绝缘基板(111)和与其表面紧密配合成形的导电极板(112);风机装置(200)使待除尘空气形成单向可控的气流,该气流穿过除尘风道(130);电晕装置(300)具有可使所述风机装置(200)控制的气流中粉尘微粒(400)带电的高压发射头(301)。具有该结构的除尘装置,集尘板(110,120)包括一绝缘基板(111)和与其表面紧密配合成形的导电极板(112),使集尘装置的气动设计和电场设计可以分离而避免彼此影响,同时提高了导电极板间的电阻,避免了拉弧打火,最终实现优化的除尘性能以及不同场合的适用性。

Description

一种静电除尘装置的结构 技术领域
本发明涉及一种静电除尘装置的结构。
背景技术
目前一般市售的静电除尘净化器,其工作原理是设定一个单向流通的风道,用于收集待净化的空气,该风道前置金属放电电极,利用电晕作用使空气中的粉尘微粒带电;风道后置一带电场的集尘装置以收集风道内空气中悬浮的微粒。通常,集尘装置形态是彼此间隔的导电集尘板,比如平行设置的金属极板;金属极板间带有电场,使流经极板间的带电粉尘微粒在电场内受库仑力而发生偏转,最终捕集在集尘装置的板上,从而,最终从风道流出的空气其内粉尘微粒得以滤除。
如此的方式已经得到广泛应用,这类方式具有以下的问题:其一,是导电集尘板同时需要兼顾风阻设计和电场设计的需求,其形状需要兼顾两个领域的要求,并且实际上往往难以兼得;其二,为避免集尘板间空气被击穿产生高压拉弧,集尘板间的间距受到很大限制,难以适用于受限制的体积方案。
综上我们发现,这类静电除尘装置,具有一个明显的设计需求,就是一方面要保证静电电场效果的同时,具有良好的空气流体特性,使之得到最优的除尘效果;另一方面,集尘板间距受限制较小,可以适用于小体积方案。
发明内容
针对以上静电除尘装置的设计需求,本发明提出一种静电除尘装置的结构,其技术方案如下:
一种静电除尘装置的结构,它包括:
一集尘装置,该集尘装置具有彼此间隔阵列分布的集尘板;所述集尘板相邻者彼此之间具有单向电场和横穿电场的除尘风道;所述集尘板包括一绝缘基板和与其表面紧密配合成形的导电极板;
一风机装置,该风机装置使待除尘空气形成单向可控的气流,该气流穿过所述除尘风道;以及
一电晕装置,具有可使所述风机装置控制的气流中粉尘微粒带电的高压发射头。
作为本技术方案的优选实施例,可以在如下方面有所改进:
上一个方案基础上的一较佳实施例中,所述集尘板为印刷电路板,所述绝缘基板为印刷电路板的基板;所述导电极板为印刷电路板表面的覆铜面,且导电极板外具有防氧化层。
上一个方案基础上的一较佳实施例中,所述集尘板皆为平板形态,彼此平行阵列排布。
上一个方案基础上的一较佳实施例中,所述电晕装置、风机装置和集尘装置按次序顺风向排列。
一较佳实施例中,所述电晕装置、集尘装置和风机装置按次序顺风向排列。
在基本技术方案的基础上,一较佳实施例中,所述导电极板相间隔一片者彼此连通,得到两组导体,该两组导体分别接入直流高压和地线。
上一个方案基础上的一较佳实施例中,所述电晕装置的高压发射头所带电荷与所述导电极板上所述直流高压的电荷极性相反。
一较佳实施例中,所述电晕装置的高压发射头所带电荷与所述导电极板上所述直流高压的电荷极性一致。
以上所有技术方案基础上的较佳实施例中,所述集尘板的导电极板表面还具有一绝缘层。
在基本技术方案的基础上,较佳实施例中,所述集尘板厚度范围为0.43-6.7mm,彼此间距范围为0.5-20mm;所述除尘风道长度范围为5-80mm;所述风机装置与集尘装置的距离范围为4倍所述除尘风道长度范围内。
本发明带来的有益效果是:
1.集尘板包括一绝缘基板和与其表面紧密配合成形的导电极板,使集尘装置的气动设计和电场设计可以分离而避免彼此影响,同时提高了导电极板间的电阻,避免了拉弧打火。最终实现优化的除尘性能以及不同场合的适用性。
2.集尘板为印刷电路板,制作,极大地利用了成熟PCB工艺的优势,比如形状加工、敷铜蚀刻,以至于可以在小成本下达成性能优异的集尘装置;同时印刷电路板优良的绝缘性能可以使集尘装置体积小,使得风机装置的功率变小,在同样的空气净化效果时具有较小的功率。
3.集尘板的导电极板表面还具有一绝缘层。使集尘装置无导电材料裸露,提高了彼此之间的击穿电阻,同时非常容易清洗和维护。
4.集尘板为柔性印刷电路板。使集尘装置体积多变,更适用于各种体积受限制的场合。
附图说明
以下结合附图实施例对本发明作进一步说明:
图1是本发明实施例一侧视示意图;
图2是实施例一工作原理示意图,带有集尘板的细节;
图3是图1实施例集尘板结构示意图;
图4是本发明实施例二的集尘板结构示意图;
图5是实施例三侧视示意图;
图6是实施例四侧视示意图;
图7是实施例五侧视示意图;
图8是图7中E部分放大图。
具体实施方式
实施例一:
如图1、图2、图3所示,本发明一种静电除尘装置的结构,其集尘装置100具有彼此间隔阵列分布的集尘板;为便于说明,取其顶部顺序往下第一集尘板110和第二集尘板120的部分予以说明。相邻的第一集尘板110和第二集尘板120彼此之间具有单向电场,以及横穿电场的第一除尘风道130;
在集尘装置100的前端气流通路上具有风机装置200,该风机装置使待除尘空气形成单向可控的气流,该气流可穿过第一除尘风道130;另有电晕装置300,此电晕装置300至于风机装置200的前端气流通路,其作用是向周围空气传递电荷,使粉尘微粒400因其带电,该电晕作用是靠电晕装置300上的高压发射头301实现。从图1中可看出,来自左端的带除尘空气,其内具有粉尘微粒400,在风机装置200的控制下,空气流体按箭头所示方向流动,经过电晕装置300的带正直流高压的高压发射头301,从而粉尘微粒400带上正电荷,流经集尘装置100后,可以得到洁净空气500,此为一完整的洁净过程。相邻的第一集尘板110和第二集尘板120上各自接入不同的点位:第一集尘板110接B端,此为一+3.5KVDC电位,而第二集尘板120接A端,此为0电位,即接地;集尘装置100上相间隔一块板的集尘板各接入相同的电位,所以,本例中+3.5KVDC和0电位相间隔设置。
结合图2可知集尘装置100及其工作原理的细节。如图2,受到图1风机装置200驱动的带正电粉尘微粒400进入第一除尘风道130,第一除尘风道130主要构成为第一集尘板110和第二集尘板120的间隙。第一集尘板110为一第一绝缘基板111和一第一导电极板112配合的双层贴合的形态,并且导电极板112的厚度远小于绝缘基板111厚度,同理,第二集尘板120也同样结构地包含了紧密配合的第二绝缘基板121和第二导电极板122。第一集尘板110是通过其第一导电极板112与B电位连接,即+3.5KVDC;第二集尘板120是通过其第二导电基板122与A电位连接,即地端0电位——如此,图2中并列朝下的虚线箭头阵列极为第一导电极板112和第二导电极板122之间形成的电场,此电场被第一除尘风道130横穿而过,所以,带有正电荷的粉尘微粒400会沿横向的虚线箭头所示路径,穿入除尘风道130后,受库仑力作用,最终被第二除尘板120其第二绝缘基板121的上表面捕获,而伴随粉尘微粒400一同进入第一除尘风道的空气,最终以洁净空气500的形态,从第一除尘风道130末端输出。
可见,第一除尘风道130的形状,基本上受到第一绝缘基板111和第二绝缘基板121的制约,此二者的长度、形状、间距就构成了第一除尘风道130的参数,本例中,此第一除尘风道130高度为1mm,顺风向长度为25mm;与此同时,第一集尘板110和第二集尘板120本身之间的电场,受到第一导电极板112和第二导电基板122相对形状、投影面积的影响,可以看出,在这第一集尘板110和第二集尘板120构成的除尘单元中,其气动性能的设计与电场的设计可以明显分离而相互干涉极小。
本发明集尘板110为绝缘基板111和导电极板112配合的双层贴合的形态,导电极板112上还覆盖有防氧化层;绝缘基板111可以是纸基板、玻璃布基板、复合材料基板、特殊型基板等。
如图3,为实施例一中第一集尘板110的仰视图,可见,第一导电极板112在第一绝缘基板111上具有留空段X,此留空段X为3mm(实际范围可以是1-30mm),其用意是使第一导电极板112的边缘远离第一绝缘基板111的边缘,以至于避免导电部分与绝缘板半边构成90度的锋角而与其他导电极板发生高压拉弧打火现象,影响电场的参数。这一点很容易做到,因为平铺配合于第一绝缘基板111的第一导电极板112,其边缘可以渐变地贴合于第一绝缘基板111表面,而不用考虑任何边缘强度的问题。如此,集尘板高压拉弧打火的隐患,在本例中可以有效避免。第一绝缘基板110两端的凸起113用于与其他绝缘基板安装固定之用。
实施例二:
如图4是实施例二的集尘板仰视图;实施例二的整体结构与实施例一类似,不同之处在于首先是集尘板,为便于比较,同样取出实施例二的第一集尘板110予以比较。可以与图3所示实施例一的第一集尘板110比较,实施例二的第一集尘板,其留空段X较大,而第一导电极板112的相对面积较小,并且,本实施例中的第一集尘板110为一CEM1材质的印刷电路板。此结构的第一集尘板110加工非常容易,不论是外形的加工,还是敷铜面形态的第一导电极板112的蚀刻,都可以用非常成熟的工艺,在比较低的成本下实现;同时,CEM1的绝缘基板使形成集尘板的彼此之间导通电阻很大,集尘板可以以很小的间隙相邻而不会被高压击穿,如此从整体上缩小了装置的体积。考虑到其他原因比如绝缘性能,机械强度,选用FR系列比如FRR4的板制作更高性能的集尘装置,本例综合成本的因素,用CEM1即可达到要求。其次是高压发射头301电位极性与B电位极性相反,为负直流电位。
本例中,六面体状的集尘装置100体积大小为120*120*25mm,其集尘板的间距,也即除尘风道的高度为1.5mm;同时留空段为3mm,而B电位端引入+3.5KVDC,高压发射头301接入-5KVDC;风机装置用6W功率的风扇,转速2300RPM,实际测试CADR(洁净空气量)=47CFM,根据ENERGY STAR的标准,除尘装置功率与CADR的关系为:POWER≤CADR/2.2;所以,通常要达到47CFM的效果,功率一般需要21.36W,本例由于采用了CEM1的印刷电路板制作集尘装置,其体积小,风扇功率就小,仅需6W,这实现了很大的节能效果。
实施例三:
如图5,是实施例三侧视示意图;本实施例中集尘装置100、风机装置200和高压发射头301都与实施例一相同;不同的是,风机装置200先在集尘装置100的右侧造成负压,使待除尘空气连同带电微粒400先被吸入集尘装置100,再经过风机装置200输出为洁净空气500。此方案适合于粉尘较多的场合,可以更好地保护风机装置200的寿命。
实施例四:
如图6是实施例四侧视示意图;本实施例与实施例一的结构类似,集尘板采用CEM1印刷电路板制作。不同的是:首先,高压发射头301所带为直流负高压,从而带电微粒300也被电晕作用带有负电荷;同时,集尘装置100中的B电位端接负高压,A电位端接地。带除尘空气连同带电微粒400先被吸入风机装置200,才经由集尘装置100转变为洁净空气500;其次,集尘装置100上的集尘板,其绝缘基板相等,但其导电极板具有不相等的形态,从图中看出,自上往下,导电极板先变大,在中部具有最大面积,而到底部逐渐减小至最小。如此,绝缘基板制约了整个集尘装置100的气动性能上下均匀,而集尘装置100的电场分布,从上到下先变宽,后变窄。如此形态,可以在保持集尘装置100的机械结构、气动性能均匀的前提下,适应特殊性能的风机装置200以实现足够的除尘效果。因为风机装置200的中心风力与其边缘风力往往不等。
实施例五:
图7是实施例五侧视示意图,图8是图7中E部分放大图。与实施例一相比,高压发射头301同样使带电微粒400带上正电荷,同样穿过风机装置200后才进入集尘装置100。不同的是,首先,集尘板的绝缘基板部分具有从上到下先变大再变小的面积特点,同时,所有集尘板的导电极板均相同,这使得整个集尘装置100具有通体均匀的电场,而其气动特性可以由不同面积的绝缘基板实现;其次,如图8所示,此部分显示第一集尘板100的剖面细节:该第一集尘板100由FR1印刷电路板制成,第一导电极板112为敷铜面,由本来PCB工艺紧密贴合于玻璃纤维的第一绝缘基板111,同时,第一导电基板112的覆铜面表面还具有一层防护漆117,如此,所有集尘装置100中没有裸露在外的敷铜金属部分,提高了彼此之间的击穿电阻,同时非常容易清洗和维护。
本发明根据使用环境,可以是由一组风机装置200、集尘装置100及高压发射头301组成;也可以是由多组风机装置200、集尘装置100及高压发射头301安装在一固定架上,彼此电连接组成。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明一种静电除尘装置的结构,创造性的选择印刷电路板作为集尘板,包括一绝缘基板和与其表面紧密配合成形的导电极板,使集尘装置的气动设计和电场设计可以分离而避免彼此影响,同时提高了导电极板间的电阻,避免了拉弧打火。最终实现优化的除尘性能以及不同场合的适用性。

Claims (12)

  1. 一种静电除尘装置的结构,其特征在于:它包括:
    一集尘装置,该集尘装置具有彼此间隔阵列分布的集尘板;所述集尘板相邻者彼此之间具有单向电场和横穿电场的除尘风道;所述集尘板包括一绝缘基板和与其表面紧密配合成形的导电极板;
    一风机装置,该风机装置使待除尘空气形成单向可控的气流,该气流穿过所述除尘风道;以及
    一电晕装置,具有可使所述风机装置控制的气流中粉尘微粒带电的高压发射头。
  2. 根据权利要求1所述一种静电除尘装置的结构,其特征在于:所述集尘板为印刷电路板,所述绝缘基板为印刷电路板的基板;所述导电极板为印刷电路板表面的覆铜面;且导电极板外具有防氧化层。
  3. 根据权利要求2所述一种静电除尘装置的结构,其特征在于:所述集尘板皆为平板形态,彼此平行阵列排布。
  4. 根据权利要求3所述一种静电除尘装置的结构,其特征在于:所述电晕装置、风机装置和集尘装置按次序顺风向排列。
  5. 根据权利要求3所述一种静电除尘装置的结构,其特征在于:所述电晕装置、集尘装置和风机装置按次序顺风向排列。
  6. 根据权利要求1所述一种静电除尘装置的结构,其特征在于:所述导电极板相间隔一片者彼此连通,得到两组导体,该两组导体分别接入直流高压和地线。
  7. 根据权利要求6所述一种静电除尘装置的结构,其特征在于:所述电晕装置的高压发射头所带电荷与所述导电极板上所述直流高压的电荷极性相反。
  8. 根据权利要求6所述一种静电除尘装置的结构,其特征在于:所述电晕装置的高压发射头所带电荷与所述导电极板上所述直流高压的电荷极性一致。
  9. 根据权利要求1至8中任一项所述一种静电除尘装置的结构,其特征在于:所述集尘板的导电极板表面还具有一绝缘层。
  10. 根据权利要求1所述一种静电除尘装置的结构,其特征在于:所述集尘板厚度范围为0.43-6.7mm,彼此间距范围为0.5-20mm;所述除尘风道长度范围为5-80mm;所述风机装置与集尘装置的距离范围为4倍所述除尘风道长度范围内。
  11. 根据权利要求6所述一种静电除尘装置的结构,其特征在于:是由一组风机装置、集尘装置及电晕装置组成。
  12. 根据权利要求6所述一种静电除尘装置的结构,其特征在于:是由多组风机装置、集尘装置及电晕装置安装在一固定架上,彼此电连接组成。
PCT/CN2012/078731 2011-08-29 2012-07-17 一种静电除尘装置的结构 WO2013029436A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110249962 2011-08-29
CN201110249962.7 2011-08-29
CN201110407915.0A CN102671762B (zh) 2011-08-29 2011-12-08 一种静电除尘装置的结构
CN201110407915.0 2011-12-08

Publications (1)

Publication Number Publication Date
WO2013029436A1 true WO2013029436A1 (zh) 2013-03-07

Family

ID=46590513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078731 WO2013029436A1 (zh) 2011-08-29 2012-07-17 一种静电除尘装置的结构

Country Status (2)

Country Link
CN (2) CN102671762B (zh)
WO (1) WO2013029436A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626448A (zh) * 2017-10-30 2018-01-26 天津远达滤清器股份有限公司 一种悬挂式净化空气装置
EP3781323A4 (en) * 2018-04-18 2022-01-05 Eurus Airtech AB ELECTRODE ELEMENTS WITH HIGH RESISTANCE FOR TWO-STAGE ELECTROFILTERS

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671762B (zh) * 2011-08-29 2015-02-04 漳州万利达生活电器有限公司 一种静电除尘装置的结构
CN103752411A (zh) * 2013-12-04 2014-04-30 汉王科技股份有限公司 集尘模块与静电空气净化装置
CN104258995A (zh) * 2014-09-30 2015-01-07 宁波巨凰暖通设备有限公司 一种电子静电除尘回风口
CN104858060B (zh) * 2015-06-04 2017-01-18 苏州市恩威特环境技术有限公司 一种新型静电型空气净化设备
CN104918444A (zh) * 2015-06-25 2015-09-16 国新电梯科技有限公司 一种防尘控制柜
CN105413862A (zh) * 2015-11-20 2016-03-23 成都迅德科技有限公司 静电集尘装置
CN105396695B (zh) * 2015-12-02 2017-05-31 宁波远志立方能源科技有限公司 静电空气净化装置
CN105413864B (zh) * 2015-12-02 2017-08-25 邹栋 智能空气净化器
CN105396693B (zh) * 2015-12-02 2017-05-24 上海净梧新材料科技有限公司 高效静电空气净化机
CN107537840A (zh) * 2017-09-18 2018-01-05 安徽省嘉丰肥业有限公司 一种肥料搅拌用吸尘装置
CN109967452B (zh) * 2017-12-28 2022-02-08 重庆国太科技有限公司 一种自清洁矩阵电极及控制方法
CN109604062B (zh) * 2018-12-24 2020-12-04 倪圣洁 静电除尘反应器设计方法及室内除尘设备
CN111085289A (zh) * 2020-01-19 2020-05-01 广州利何机械科技有限公司 一种矿石多重粉碎设备
CN111437996B (zh) * 2020-03-26 2022-06-17 爱优特空气技术(上海)有限公司 一种不打火效率可维持的静电过滤装置
CN112657678A (zh) * 2020-12-03 2021-04-16 爱优特空气技术(上海)有限公司 一种微静电除尘装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2077752U (zh) * 1990-11-22 1991-05-29 石家庄铁路分局石家庄电力机务段 静电烟尘净化装置
DE4421951A1 (de) * 1993-06-25 1995-01-05 Aleks Torgovo Promy Fa Elektroabscheider
CN2198026Y (zh) * 1994-09-01 1995-05-24 沈阳北方环境保护净化技术开发公司 净化烟尘装置
WO2005016542A1 (en) * 2003-08-15 2005-02-24 Paul Harrison Apparatus for particle removal from small-scale exhausts
CN1745902A (zh) * 2005-10-26 2006-03-15 武汉科技大学 一种偶极电晕静电除尘装置
CN1861266A (zh) * 2006-06-19 2006-11-15 清华大学 隧道空气清洁车
CN101082444A (zh) * 2006-05-31 2007-12-05 海尔集团公司 一种微尘处理器
CN101081376A (zh) * 2006-06-04 2007-12-05 张寅啸 等离子层变频滤尘器
JP2008036534A (ja) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd 電気集塵機
CN201304363Y (zh) * 2008-10-16 2009-09-09 上海纳米技术及应用国家工程研究中心有限公司 管极式双区窄间距静电场装置
CN202366788U (zh) * 2011-08-29 2012-08-08 漳州万利达生活电器有限公司 静电除尘装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6758884B2 (en) * 2002-08-07 2004-07-06 3M Innovative Properties Company Air filtration system using point ionization sources
WO2009059451A1 (fr) * 2007-11-05 2009-05-14 Su, Jiting Précipitateur électrostatique
JP5056475B2 (ja) * 2008-02-27 2012-10-24 ダイキン工業株式会社 空気処理装置
WO2010021128A1 (ja) * 2008-08-21 2010-02-25 パナソニック株式会社 電気集じん機
CN102164678B (zh) * 2008-09-24 2013-10-30 凯尔公司 空气净化装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2077752U (zh) * 1990-11-22 1991-05-29 石家庄铁路分局石家庄电力机务段 静电烟尘净化装置
DE4421951A1 (de) * 1993-06-25 1995-01-05 Aleks Torgovo Promy Fa Elektroabscheider
CN2198026Y (zh) * 1994-09-01 1995-05-24 沈阳北方环境保护净化技术开发公司 净化烟尘装置
WO2005016542A1 (en) * 2003-08-15 2005-02-24 Paul Harrison Apparatus for particle removal from small-scale exhausts
CN1745902A (zh) * 2005-10-26 2006-03-15 武汉科技大学 一种偶极电晕静电除尘装置
CN101082444A (zh) * 2006-05-31 2007-12-05 海尔集团公司 一种微尘处理器
CN101081376A (zh) * 2006-06-04 2007-12-05 张寅啸 等离子层变频滤尘器
CN1861266A (zh) * 2006-06-19 2006-11-15 清华大学 隧道空气清洁车
JP2008036534A (ja) * 2006-08-07 2008-02-21 Matsushita Electric Ind Co Ltd 電気集塵機
CN201304363Y (zh) * 2008-10-16 2009-09-09 上海纳米技术及应用国家工程研究中心有限公司 管极式双区窄间距静电场装置
CN202366788U (zh) * 2011-08-29 2012-08-08 漳州万利达生活电器有限公司 静电除尘装置
CN102671762A (zh) * 2011-08-29 2012-09-19 漳州万利达生活电器有限公司 一种静电除尘装置的结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626448A (zh) * 2017-10-30 2018-01-26 天津远达滤清器股份有限公司 一种悬挂式净化空气装置
EP3781323A4 (en) * 2018-04-18 2022-01-05 Eurus Airtech AB ELECTRODE ELEMENTS WITH HIGH RESISTANCE FOR TWO-STAGE ELECTROFILTERS

Also Published As

Publication number Publication date
CN202366788U (zh) 2012-08-08
CN102671762A (zh) 2012-09-19
CN102671762B (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
WO2013029436A1 (zh) 一种静电除尘装置的结构
WO2013065906A1 (en) Induction electrostatic precipitator using multi-cross pin ionizer
KR101860489B1 (ko) 전기집진장치 및 이를 포함하는 공기청정기
KR101655452B1 (ko) 전기집진장치 및 그 전극판
US7485174B2 (en) Electrostatic Dust Collector
CN101357351A (zh) 一种无臭氧可清洗静电集尘器
CN201350420Y (zh) 一种无臭氧可清洗静电集尘器
WO2013065908A1 (en) Induction voltage electrical precipitator having honeycomb electric charge part
CN102728581A (zh) 用于清洁表面的装置和方法
CN102188871B (zh) 板式静电过滤器
CN101474595A (zh) 用于空气净化的静电集尘装置
WO2009059451A1 (fr) Précipitateur électrostatique
JPH05245411A (ja) 電気集塵機
JP4929934B2 (ja) 集塵装置および空調装置
US4381927A (en) Corona electrode apparatus
JP2023107942A (ja) ガス流から材料を分離するための空気清浄デバイス、構成、および方法
JPS62102844A (ja) 電気集塵機
CN218531327U (zh) 一种可灭活细菌病毒的静电除尘器
CN206838313U (zh) 一种静电净化装置
CN210632283U (zh) 一种风管式驻电极空气净化装置
CN213040606U (zh) 具有双电离电场的净化机构和吸油烟机
CN206838314U (zh) 一种静电集尘结构
JP2013094688A (ja) 電気集塵装置
JPH09248489A (ja) 空気清浄装置
CN2820327Y (zh) 空气净化用二区式电子集尘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827890

Country of ref document: EP

Kind code of ref document: A1