WO2013028835A1 - Storing multiple instances of content - Google Patents

Storing multiple instances of content Download PDF

Info

Publication number
WO2013028835A1
WO2013028835A1 PCT/US2012/052011 US2012052011W WO2013028835A1 WO 2013028835 A1 WO2013028835 A1 WO 2013028835A1 US 2012052011 W US2012052011 W US 2012052011W WO 2013028835 A1 WO2013028835 A1 WO 2013028835A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
instances
sets
descrambler
tuner
Prior art date
Application number
PCT/US2012/052011
Other languages
French (fr)
Inventor
Henry Gregg Martch
David A. Kummer
John T. Kennedy
Original Assignee
Echostar Technologies L.L.C.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Echostar Technologies L.L.C. filed Critical Echostar Technologies L.L.C.
Priority to BR112013032479-1A priority Critical patent/BR112013032479B1/en
Priority to CN201280031150.8A priority patent/CN103621059B/en
Priority to CA2838264A priority patent/CA2838264C/en
Priority to EP12825430.7A priority patent/EP2749022B1/en
Priority to MX2013014907A priority patent/MX2013014907A/en
Publication of WO2013028835A1 publication Critical patent/WO2013028835A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/433Content storage operation, e.g. storage operation in response to a pause request, caching operations
    • H04N21/4334Recording operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
    • H04N21/2347Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving video stream encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/236Assembling of a multiplex stream, e.g. transport stream, by combining a video stream with other content or additional data, e.g. inserting a URL [Uniform Resource Locator] into a video stream, multiplexing software data into a video stream; Remultiplexing of multiplex streams; Insertion of stuffing bits into the multiplex stream, e.g. to obtain a constant bit-rate; Assembling of a packetised elementary stream
    • H04N21/2365Multiplexing of several video streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • H04N21/42607Internal components of the client ; Characteristics thereof for processing the incoming bitstream
    • H04N21/42623Internal components of the client ; Characteristics thereof for processing the incoming bitstream involving specific decryption arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • H04N21/42607Internal components of the client ; Characteristics thereof for processing the incoming bitstream
    • H04N21/4263Internal components of the client ; Characteristics thereof for processing the incoming bitstream involving specific tuning arrangements, e.g. two tuners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4383Accessing a communication channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/4408Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving video stream encryption, e.g. re-encrypting a decrypted video stream for redistribution in a home network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/458Scheduling content for creating a personalised stream, e.g. by combining a locally stored advertisement with an incoming stream; Updating operations, e.g. for OS modules ; time-related management operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/804Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components
    • H04N9/806Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal
    • H04N9/8063Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback involving pulse code modulation of the colour picture signal components with processing of the sound signal using time division multiplex of the PCM audio and PCM video signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/91Television signal processing therefor
    • H04N5/913Television signal processing therefor for scrambling ; for copy protection

Definitions

  • This disclosure relates generally to utilizing content receivers to view multiple instances of content, often recorded simultaneously.
  • the present disclosure discloses systems and methods for storing multiple instances of content utilizing a content receiver.
  • One embodiment takes the form of a method for recording multiple instances of content, comprising: receiving, at a content receiver, an instruction to initiate recording; in response to the instruction, setting a first tuner to a first carrier frequency; further in response to the instruction, setting a second tuner to a second carrier frequency; receiving a first set of content at the first tuner, the first set of content encrypted with a control word; receiving a second set of content at the second tuner, the second set of content encrypted with the control word; and recording the first and second sets of content on a storage medium.
  • Another embodiment may take the form of an apparatus for receiving multiple instances of content, comprising: a first communications unit operative to receive a first set of instances of content transmitted on a first transponder; a second communications unit operative to receive a second set of instances of content transmitted on a second transponder; a processing unit operatively connected to the first and second communications unit, the processing unit operative to control the first and second communications unit; a descrambler operative to descramble the first and second instances of content; and a data storage unit operative to receive and store the first and second instances of content.
  • Still another embodiment may take the form of a method for decrypting content, comprising: receiving a first set of encrypted content modulated with a first carrier frequency; substantially simultaneously, receiving a second set of encrypted content modulated with a second carrier frequency; and decrypting both the first and second sets of encrypted content with a common control word, thereby producing a first and second set of decrypted content.
  • Figure 1 is a block diagram illustrating a system for automatically recording multiple instances of content from one or more programming providers.
  • FIG. 2 is a block diagram illustrating a system for storing multiple instances of content.
  • Content receivers may desire to access different instances of content that are broadcast simultaneously and/or substantially contemporaneously by content providers. For example, many television programming viewers wish to watch different television programs that occupy the same broadcast time slot, such as the different television programs associated with the major television programs that are broadcast between seven PM and ten PM mountain time. Content receivers may attempt to address this issue by utilizing multiple tuners that can each separately present and/or record different, simultaneously broadcast instances of content. However, a separate tuner may still be required for each simultaneous or substantially contemporaneous instance of broadcast or otherwise received content that a content receiver user wishes to view and/or record. Further, in addition to separate tuners required for each instance of content, the content receiver may require sufficient resources to descramble, demodulate and store each of the instances of content desired by the user.
  • Figure 1 is a block diagram illustrating a system 100 for automatically recording multiple instances of content from one or more programming providers.
  • the automatic recording of multiple instances of content provided by the system 100 may enable users of content receivers to access different instances of content that are broadcast simultaneously and/or substantially contemporaneously by content providers.
  • “Multiple instances of content” may be, for example, different programs, movies, program episodes, and so on. Thus, multiple instances of content may be different episodes of a program, or different programs. It should be appreciated that the multiple instances of content may be recorded simultaneously by the embodiments described herein.
  • a first group of multiple instances of content may occupy a first time slot, while a second group of multiple instances of content may occupy a second time slot.
  • Embodiments described herein may record the first group at the first time and the second group at the second time.
  • content providers may broadcast content to a plurality of different content receivers via one or more frequency bands utilizing one or more satellites.
  • Each multiplexed signal contained in the frequency band (sometimes referred to as a transponder) may be configured to include data related to one or more instances of content, such as one or more television programming channels.
  • the data related to each of the instances of content included in each frequency may be scrambled utilizing one or more CWs (control words), which may then be encrypted to generate one or more ECMs (entitlement control messages) which may in turn be included with the data.
  • a content receiver may typically tune to one or more of the frequency bands to receive the multiplexed signal that contains data for a particular programming channel, or group of channels, utilizing one or more tuners.
  • the content receiver may process only a subset of the programming channels by keeping the data associated with the particular programming channel and discarding data received via the tuned frequency band and
  • the content receiver may decrypt the ECM included with the data associated with the particular programming channel to obtain the CW, descramble the data utilizing the CW, and store and/or transmit the data (e.g., decompressed, reconstructed audio and video data) to one or more presentation devices.
  • the content receiver may decrypt the ECM included with the data associated with the particular programming channel to obtain the CW, descramble the data utilizing the CW, and store and/or transmit the data (e.g., decompressed, reconstructed audio and video data) to one or more presentation devices.
  • one or more content providers may select multiple instances of content 101 to be automatically recorded such as by utilizing predefined recording parameters. For example, a content provider may select all of the television events defined as "primetime events” associated with all channels defined as “primetime television channels” for a particular period of time defined as “prime time” to be automatically recorded. In other examples, the content provider may select television events associated with
  • the multiple instances of content may be multiplexed utilizing a multiplexer 102.
  • the multiplexed signal (which includes the multiplexed selected multiple instances of content) may then be scrambled by a scrambler 105 utilizing one or more CWs 103.
  • the CW may be encrypted to generate an ECM, which may be included with the multiplexed signal.
  • the scrambled multiplexed signal may then be included in a broadcast on a frequency band (e.g., cable, satellite), which may then be transmitted to one or more satellites 106 for broadcast.
  • the satellite 106 may receive the frequency band (uplink frequency band) and then broadcast the multiplexed signal to a number of content receivers on a translated frequency band (downlink frequency band), such as a content receiver that includes a tuner 107.
  • the tuner 107 may tune to the frequency band that includes the multiple instances of content (which may be performed in response to one or more recording instructions received by the content receiver that includes the tuner from the content provider).
  • the data received via the tuned frequency may be demultiplexed by a demultiplexer 109 and then descrambled by a descrambler 110 (e.g., decoder) utilizing the CW before being stored in a non-transitory storage medium 111 (which may take the form of, but is not limited to: a magnetic storage medium; optical storage medium; magneto-optical storage medium; random access memory; erasable programmable memory; flash memory; and so on) based on recording parameters, such as predefined recording parameters.
  • the demultiplexer 109 may obtain the included ECM 104, and the ECM may be provided to a smart card 108 that may decrypt the ECM 104 to obtain the CW 103 for the descrambler 110.
  • the multiple instances of content may subsequently all be available to a user of the content receiver (until such time as they are removed from the non- transitory storage medium) without requiring multiple tuners to receive each of the multiple instances of content, without requiring the smart card to decrypt multiple ECMs.
  • the multiple instances of content may be stored in a single file.
  • tuner 107 smart card 108, demultiplexer 109, descrambler 110 and/or storage medium 111 may all be resident in a single enclosure or other housing.
  • One example of a device that may incorporate such elements is the content receiver 202, discussed below with respect to Figure 2.
  • the system 100 is illustrated in Figure 1 and is described above as including a number of specific components configured in a specific arrangement, it is understood that this is for the purposes of example and other arrangements involving fewer and/or additional components are possible without departing from the scope of the present disclosure.
  • the multiple instances of content may be individually scrambled utilizing the code word prior to multiplexing.
  • the data received via the tuned frequency may be demultiplexed before being individually descrambled utilizing the code word.
  • multiple instances of content may be recorded simultaneously from a single transponder and stored in the non-transitory storage medium 111 of the content receiver as a single file of multiple recorded instances of content.
  • the content receiver may read the file incrementally so as to play the one instance of content while filtering out the other file contents (e.g., the other instance of content within the file). For example, five instances of content may be received at a transponder and
  • each of the instances of content may record at an average variable bit rate. More specifically, one instance of content may be received by the transponder and be recorded by the content receiver at an average of 1 Mb/sec (Megabits per second), a second instance of content at an average of 2 Mb/sec, a third at 3 Mb/sec, a fourth instance of content at an average of 4 Mb/sec, and a fifth instance of content at 5 Mb/sec.
  • Mb/sec Megabits per second
  • the transponder receives and the content receiver records the five instances of content at an aggregate bit rate of 15 Mb/sec (e.g., the aggregate of 1 Mb/sec, 2 Mb/sec, 3 Mb/sec, 4 Mb/sec, and 5 Mb/sec).
  • playing one of the five instances of content involves utilizing the content receiver to read the full file at 15 Mb/sec but discarding all but the one instance of content that is desired.
  • each instance of content being simultaneously recorded may be written as a separate file in the storage medium 111.
  • the aggregate recording bit rate may be less than the maximum available recording bit rate.
  • the aggregate bit rate of 15 Mb/sec for a transponder may be less than the maximum available bit rate of, for example, up to 40 Mb/sec. Accordingly, playing an instance of recorded content involves the content receiver determining the aggregate recording bit rate for the file of the simultaneously recorded multiple instances of content and playing the instance of content based on the aggregate recording bit rate.
  • a file of ten simultaneously recorded instances of content may be recorded at a bit rate of 40 Mb/sec (e.g., a maximum aggregate bit rate for the transponder), having a recording bit rate (or an average bit rate) of 4 Mb/sec playing one of the ten instances of content involves utilizing the content receiver to incrementally read the file in increments of 4 Mb/sec of the total 40 Mb/sec recorded.
  • a first show may be associated with the content recorded at the first 4 Mb/sec (e.g., Mb 1-4) of the total 40 Mb/sec
  • a second show may be associated with the content recorded at the second 4 Mb/sec (e.g., Mb 5-8), and so on.
  • the multiple instances of content may be recorded based on statistical multiplexing utilizing communicatively coupled video compressors that determine the bandwidth of data needed for compressing the instance of content to be recorded.
  • This enables the recording (and replay) bit rate of an instance of content to be variable within the recording stream, and accordingly the multiple instances of content may be recorded each at varying bitrates.
  • the variability of the recording data drops. That is, if 100 percent of the stream is being recorded (e.g. at the maximum aggregate bit rate for the transponder), then the variability is zero.
  • the average recording bit rate of many varying streams may be less noisy.
  • the aggregate recording bit rate may be calculated periodically or in real time.
  • FIG 2 is a block diagram illustrating a system 200, potentially including a content provider 204 and a content receiver 202.
  • the system 200 may be at least partly incorporated into the system of Figure 1.
  • the content receiver 202 (such as a set top box) may receive and, in some instances, transmit content (such as television programming and on screen display content) to other receivers to a remote viewer, and the like.
  • the content provider 204 generally is as a satellite or cable programming service provider and transmits content to the receiver across a network, one example of which is the satellite(s) 106 shown in Fig. 1.
  • Alternate networks may include a wired network, such as a cable network, a wireless network, such as a terrestrial broadcast network, the Internet, an Ethernet or other local network, combinations of any of the foregoing, and the like.
  • the content receiver 202 may incorporate various elements of Figure 1, such as the tuner 107, demultiplexer 109, smart card 108, multiplexer 110 and/or storage 111. Such elements may not be shown specifically in Figure 2, insofar as they were discussed with respect to Figure 1. These elements may be controlled, for example, by the processing unit 224 of Figure 2.
  • the data storage unit 226 may be the same as the storage device 111 of Figure 1.
  • the system may also include, or be coupled to, a content display device 206 for receiving and displaying the content (such as a television), and a controller 208 (such as a remote control) for transmitting data such as control signals to the content receiver 202.
  • a content display device 206 for receiving and displaying the content (such as a television)
  • a controller 208 for transmitting data such as control signals to the content receiver 202.
  • the content receiver 202 generally receives content from the content provider 204 and, optionally, from other external sources such as other content receivers and servers accessed across a network.
  • the content receiver 202 may process and/or decode the content, as well as transmit the content to the content display device 206.
  • the content receiver 202 may be, for example, a set top box, a television receiver, a digital video recorder, a computing device, a gaming device, or a television, which is generally located at a user's location (such as a user's residence or business).
  • the content receiver 202 is operable to receive content from the content provider 204 (and/or another external source) by way of the transmission link 210.
  • Such content is received by the communications unit 220 of the content receiver 202; the communications unit 220 may be analogous to or include one or more of the tuner 107, demultiplexer 109,
  • the processing unit 224 may execute instructions for causing the data storage unit 226 (such as the non-transitory storage medium 111) to record multiple instances of content for a plurality of programming channels simultaneously within a single file described above in connection with Figure 1, and/or to play one of the stored instances of content.
  • the transmission unit 228 may be communicatively coupled to the content display device 206 by way of transmission link 211.
  • the content provider 204 (such as a satellite programming company, a cable company, an Internet service provider, e.g., an online video service or Internet video provider, and the like) is generally remotely located from the content receiver 202.
  • the content provider transmits content to the communications unit 220 of the content receiver 202 via the transmission link 210.
  • the content transmitted may include metadata specifying recording instructions for the content receiver 202 to automatically record multiple instances of content simultaneously for multiple programming channels as described elsewhere herein.
  • the content display device 206 is generally communicatively coupled to the content receiver 202 and displays content transmitted by the content receiver 202. While the content display device 206 and the content receiver 202 are depicted as separate components in Figure 2, the content receiver 202 may be incorporated with the content display device 206.
  • the content display device 206 is, for example, a television, a computer screen, a video screen, or any other display device for displaying content.
  • the content display device 206 is communicatively coupled to the content receiver 202 by way of the transmission link 211.
  • the controller 208 is generally provided in an area proximate the content receiver 202 and is communicatively coupled to the content display device 206 by way of the transmission link 212, and to the content receiver 202 by way of the transmission link 213.
  • the controller 208 is, for example, a remote control, such as a universal remote control, a dedicated remote control, or a computing device programmed to send command signals (such as selection signals) to the content receiver 202.
  • the controller 208 may be utilized to provide command signals instructing the content receiver 202 to record and/or reply one or more instances of content.
  • the processing unit 224 may be programmed to manage, initiate or otherwise facilitate recording and/or playback of one (or more) instances of content received from a number of programming channels carried on a single transponder. For example, four programming channels and the corresponding four instances of content may be recorded simultaneously and stored in the data storage unit 226.
  • the processing unit 224 may retrieve data from the data storage unit 226 and format it for display on the content display device 206. It should be appreciated that such formatting and display may involve demodulating, decrypting, and/or other operations executed by one or more hardware, software and/or firmware elements (not necessarily shown) generally controlled by the processing unit 224. Accordingly, actions ascribed to the processing unit may be carried out by other portions of the content receiver 202 at the processing unit's direction.
  • Recording and playing back one or more of the multiple instances of content may involve the processing unit 224 reading metadata associated with an initial frame of the instance of content, such as a packet identifier ("PID") and a presentation timestamp ("PTS"). For example, while playing the instance of content, the processing unit 224 may select only the PID for the instance of content to be played, while ignoring other PIDs within the file of the plurality of PIDs.
  • PID packet identifier
  • PTS presentation timestamp
  • PIDs are generally identifiers associated with data streams, such as content streams and supplemental data streams, which identify a channel for the data stream.
  • Several PIDs may be associated with one transponder controlled by the content provider 204 and simultaneously recorded utilizing the system of Figure 1. By identifying or selecting the correct PID for the instance of content being played back from the file, the content receiver 202 may navigate correctly determine which instance of the simultaneously recorded multiple instances of content is to be displayed.
  • the content receiver 202 may include multiple tuners 107, demultiplexers 109, descramblers 110 and/or other decoders.
  • content may be demodulated from a carrier wave or other signal in order to be reconstructed, recorded, and/or viewed. In many instances, demodulation occurs prior to descrambling. Demultiplexing and descrambling may be considered examples of decoding.
  • a single decoder such as a demultiplexer 109 and/or descrambler 110
  • one decoder of any given type e.g., one demodulator and one descrambler
  • Each tuner may be adjusted to receive a specific frequency band or transponder. Thus, each tuner may receive a different transponder and thus a variety of instances of content on that transponder.
  • each tuner 107 may be encoded with a common control word.
  • each separate tuner may transmit the multiple instances of content received on the corresponding transponder to a single decoder for processing.
  • the descrambler 110 may descramble all such content relatively efficiently. These multiple instances of content may then be recorded, as detailed previously.
  • multiple tuners may be associated with a single descrambler in order to receive and record multiple instances of content from more than one transponder/frequency band. Accordingly, multiple tuners may be used to receive a greater amount of content than may be carried on a single transponder and all such content may be demultiplexed and/or descrambled by elements common to, and shared by, the tuners. Since a common control word is used to encrypt the content carried on different transponders, a single decoder may handle it all. Thus, the multiple instances of content may be thought of as a first content set and a second content set, each commonly scrambled with a control word but carried on different carrier frequencies.
  • multiple transponders may use the same control word (or other decryption key) even if a single descrambler is not used. That is, multiple transponders may be scrambled with a single control word and one tuner 107 or communications unit 220 may receive corresponding data from each such transponder. Each tuner or unit may transmit the received signal to a descrambler dedicated to that tuner for descrambling, at which point each set of multiple instances of content may be recorded to a storage medium (either separately or in one or more aggregated files).
  • transponders may be recorded on the storage medium without descrambling or decryption.
  • Descrambling may occur when the content is played back. That is, the entirety of the multiple instances of content received from the transponders may be stored as a single file (or one file per transponder, in some embodiments) on the storage unit 226 that is still encrypted.
  • the descrambler may decrypt the content only upon playback. In such an embodiment, the scrambled content may be retrieved from the storage medium 226, sent to a single descrambler and descrambled before the operations of identifying and displaying particular content are performed, as described above.
  • the system may check to see if content on multiple transponders is scrambled using the same control word. This may be indicated, for example, in metadata corresponding to one or more of the instances of content, or one or more of the transponders.
  • the metadata may identify all content and/or all transponders scrambled with the same control word.
  • the processing unit 224 may receive this metadata and, in response to it, instruct the communications unit 222 to receive data from each of the transponders.
  • the communications unit 222 may have multiple tuners 107 in such an embodiment. Received content may then be stored and replayed as described elsewhere herein. It should also be appreciated that certain embodiments may employ a user command in addition to metadata to instruct the communications unit 222 to receive data. Likewise, a command to receive and record instances of content may be initiated by the content provider 204.
  • the subset of content may be additional or enhanced content.
  • the subset of content may be a "behind the scenes" presentation associated with some other portion of the multiple instances of content, and may be provided only to those users who have paid an additional fee.
  • the subset of content may be related to one or more instances of the other multiple instances of content or may be wholly separate.
  • the users that may access the subset of content may be those who have paid a fee, live in or are otherwise associated with a certain geographic area, users corresponding to certain demographics, and so on.
  • the subset of content may be scrambled twice- once with the control word common to the multiple instances of content and/or transponders, and once with a specific sub-key.
  • the subset of content may be received and initially descrambled in accordance with other portions of this disclosure, but may remain scrambled by the sub-key although all other instances of content may be fully descrambled.
  • the subset may be recorded along with the rest of the multiple instances of content. It should be appreciated that the descrambling of any or all content may occur either before or after recording the content to the data storage unit 226, as appropriate for the embodiment in question.
  • the subset of content may not be played back by anyone other than an authorized user.
  • the subset of content may be received and stored by all but inaccessible to unauthorized users. Unauthorized users may be prevented from playing the recorded subset of content, but may be able to see it in a list of recorded content. The unauthorized user may be presented with an option to unlock the content, such as purchasing it or performing some other action.
  • the subset of content may be stored with the remainder of the multiple instances of content (either as separate files or in a single file, as appropriate), and be undetectable to unauthorized users. Thus, only authorized users may perceive and/or retrieve the subset of content.
  • the methods disclosed may be implemented as sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
  • the described disclosure may be provided as a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure.
  • a non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer).
  • the non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.
  • a magnetic storage medium e.g., floppy diskette, video cassette, and so on
  • optical storage medium e.g., CD-ROM
  • magneto-optical storage medium e.g., magneto-optical storage medium
  • ROM read only memory
  • RAM random access memory
  • EPROM and EEPROM erasable programmable memory
  • flash memory and so on.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Television Signal Processing For Recording (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

Content receivers may simultaneously record multiple instances of content for multiple programming channels based on content provider instructions. Systems and methods utilize the content receivers to record these multiple instances from at least a single transponder. In some instances, multiple transponders may have a common control word so that content carried on each such transponder may be simultaneously received, decoded and recorded. Further, a single demodulator may be associated with multiple tuners, so that the single demodulator processes all content received from transponders with common control words and/or other encryption mechanisms.

Description

STORING MULTIPLE INSTANCES OF CONTENT
CROSS REFERENCE TO RELATED APPLICATION
The PCT application claims priority to U.S. Application No. 13/302,852 filed November 22, 2011 which claims the benefit under 35 U.S. C. § 119(e) of U.S. Provisional Patent Application No. 61/526,665, which was filed on August 23, 2011, and entitled "Storing Multiple Instances of Content," which is incorporated by reference into the present application in its entirety..
FIELD OF THE INVENTION
This disclosure relates generally to utilizing content receivers to view multiple instances of content, often recorded simultaneously.
SUMMARY
The present disclosure discloses systems and methods for storing multiple instances of content utilizing a content receiver. One embodiment takes the form of a method for recording multiple instances of content, comprising: receiving, at a content receiver, an instruction to initiate recording; in response to the instruction, setting a first tuner to a first carrier frequency; further in response to the instruction, setting a second tuner to a second carrier frequency; receiving a first set of content at the first tuner, the first set of content encrypted with a control word; receiving a second set of content at the second tuner, the second set of content encrypted with the control word; and recording the first and second sets of content on a storage medium.
Another embodiment may take the form of an apparatus for receiving multiple instances of content, comprising: a first communications unit operative to receive a first set of instances of content transmitted on a first transponder; a second communications unit operative to receive a second set of instances of content transmitted on a second transponder; a processing unit operatively connected to the first and second communications unit, the processing unit operative to control the first and second communications unit; a descrambler operative to descramble the first and second instances of content; and a data storage unit operative to receive and store the first and second instances of content.
Still another embodiment may take the form of a method for decrypting content, comprising: receiving a first set of encrypted content modulated with a first carrier frequency; substantially simultaneously, receiving a second set of encrypted content modulated with a second carrier frequency; and decrypting both the first and second sets of encrypted content with a common control word, thereby producing a first and second set of decrypted content.
It is to be understood that both the foregoing general description and the following detailed description are for purposes of example and explanation and do not necessarily limit the present disclosure. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate subject matter of the disclosure. Together, the descriptions and the drawings serve to explain the principles of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram illustrating a system for automatically recording multiple instances of content from one or more programming providers.
Figure 2 is a block diagram illustrating a system for storing multiple instances of content. DETAILED DESCRIPTION OF THE EMBODIMENTS
The description that follows includes sample systems, methods, and computer program products that embody various elements of the present disclosure. However, it should be understood that the described disclosure may be practiced in a variety of forms in addition to those described herein.
Users of content receivers may desire to access different instances of content that are broadcast simultaneously and/or substantially contemporaneously by content providers. For example, many television programming viewers wish to watch different television programs that occupy the same broadcast time slot, such as the different television programs associated with the major television programs that are broadcast between seven PM and ten PM mountain time. Content receivers may attempt to address this issue by utilizing multiple tuners that can each separately present and/or record different, simultaneously broadcast instances of content. However, a separate tuner may still be required for each simultaneous or substantially contemporaneous instance of broadcast or otherwise received content that a content receiver user wishes to view and/or record. Further, in addition to separate tuners required for each instance of content, the content receiver may require sufficient resources to descramble, demodulate and store each of the instances of content desired by the user.
Figure 1 is a block diagram illustrating a system 100 for automatically recording multiple instances of content from one or more programming providers. The automatic recording of multiple instances of content provided by the system 100 may enable users of content receivers to access different instances of content that are broadcast simultaneously and/or substantially contemporaneously by content providers. "Multiple instances of content" may be, for example, different programs, movies, program episodes, and so on. Thus, multiple instances of content may be different episodes of a program, or different programs. It should be appreciated that the multiple instances of content may be recorded simultaneously by the embodiments described herein.
Further, it should be appreciated that a first group of multiple instances of content may occupy a first time slot, while a second group of multiple instances of content may occupy a second time slot. Embodiments described herein may record the first group at the first time and the second group at the second time.
In various broadcast systems, content providers may broadcast content to a plurality of different content receivers via one or more frequency bands utilizing one or more satellites. Each multiplexed signal contained in the frequency band (sometimes referred to as a transponder) may be configured to include data related to one or more instances of content, such as one or more television programming channels. The data related to each of the instances of content included in each frequency may be scrambled utilizing one or more CWs (control words), which may then be encrypted to generate one or more ECMs (entitlement control messages) which may in turn be included with the data. A content receiver may typically tune to one or more of the frequency bands to receive the multiplexed signal that contains data for a particular programming channel, or group of channels, utilizing one or more tuners. The content receiver may process only a subset of the programming channels by keeping the data associated with the particular programming channel and discarding data received via the tuned frequency band and
multiplexed signal associated with other programming channels. The content receiver may decrypt the ECM included with the data associated with the particular programming channel to obtain the CW, descramble the data utilizing the CW, and store and/or transmit the data (e.g., decompressed, reconstructed audio and video data) to one or more presentation devices.
As illustrated in Figure 1 , in this implementation, one or more content providers may select multiple instances of content 101 to be automatically recorded such as by utilizing predefined recording parameters. For example, a content provider may select all of the television events defined as "primetime events" associated with all channels defined as "primetime television channels" for a particular period of time defined as "prime time" to be automatically recorded. In other examples, the content provider may select television events associated with
programming channels for a particular time period (such as a half hour, multiple hours, and/or an entire programming day) in response to user selections. After the content provider selects the multiple instances of content, the multiple instances of content may be multiplexed utilizing a multiplexer 102. The multiplexed signal (which includes the multiplexed selected multiple instances of content) may then be scrambled by a scrambler 105 utilizing one or more CWs 103. The CW may be encrypted to generate an ECM, which may be included with the multiplexed signal. The scrambled multiplexed signal may then be included in a broadcast on a frequency band (e.g., cable, satellite), which may then be transmitted to one or more satellites 106 for broadcast. The satellite 106 may receive the frequency band (uplink frequency band) and then broadcast the multiplexed signal to a number of content receivers on a translated frequency band (downlink frequency band), such as a content receiver that includes a tuner 107.
The tuner 107 may tune to the frequency band that includes the multiple instances of content (which may be performed in response to one or more recording instructions received by the content receiver that includes the tuner from the content provider). The data received via the tuned frequency may be demultiplexed by a demultiplexer 109 and then descrambled by a descrambler 110 (e.g., decoder) utilizing the CW before being stored in a non-transitory storage medium 111 (which may take the form of, but is not limited to: a magnetic storage medium; optical storage medium; magneto-optical storage medium; random access memory; erasable programmable memory; flash memory; and so on) based on recording parameters, such as predefined recording parameters. The demultiplexer 109 may obtain the included ECM 104, and the ECM may be provided to a smart card 108 that may decrypt the ECM 104 to obtain the CW 103 for the descrambler 110. Hence, the multiple instances of content may subsequently all be available to a user of the content receiver (until such time as they are removed from the non- transitory storage medium) without requiring multiple tuners to receive each of the multiple instances of content, without requiring the smart card to decrypt multiple ECMs. In some implementations, the multiple instances of content may be stored in a single file. It should be appreciated that the tuner 107, smart card 108, demultiplexer 109, descrambler 110 and/or storage medium 111 may all be resident in a single enclosure or other housing. One example of a device that may incorporate such elements is the content receiver 202, discussed below with respect to Figure 2.
Although the system 100 is illustrated in Figure 1 and is described above as including a number of specific components configured in a specific arrangement, it is understood that this is for the purposes of example and other arrangements involving fewer and/or additional components are possible without departing from the scope of the present disclosure. For example, in various implementations, the multiple instances of content may be individually scrambled utilizing the code word prior to multiplexing. In another example, in some implementations, the data received via the tuned frequency may be demultiplexed before being individually descrambled utilizing the code word. In some im lementations of the system of Figure 1, multiple instances of content may be recorded simultaneously from a single transponder and stored in the non-transitory storage medium 111 of the content receiver as a single file of multiple recorded instances of content. Upon playing of one instance of content from the single file of the multiple recorded instances of content, the content receiver may read the file incrementally so as to play the one instance of content while filtering out the other file contents (e.g., the other instance of content within the file). For example, five instances of content may be received at a transponder and
simultaneously recorded by the content receiver based on predefined recording parameters, and each of the instances of content may record at an average variable bit rate. More specifically, one instance of content may be received by the transponder and be recorded by the content receiver at an average of 1 Mb/sec (Megabits per second), a second instance of content at an average of 2 Mb/sec, a third at 3 Mb/sec, a fourth instance of content at an average of 4 Mb/sec, and a fifth instance of content at 5 Mb/sec. In this example, the transponder receives and the content receiver records the five instances of content at an aggregate bit rate of 15 Mb/sec (e.g., the aggregate of 1 Mb/sec, 2 Mb/sec, 3 Mb/sec, 4 Mb/sec, and 5 Mb/sec). Thus, playing one of the five instances of content involves utilizing the content receiver to read the full file at 15 Mb/sec but discarding all but the one instance of content that is desired. In alternative
embodiments, each instance of content being simultaneously recorded may be written as a separate file in the storage medium 111.
In some implementations, the aggregate recording bit rate may be less than the maximum available recording bit rate. Thus, the aggregate bit rate of 15 Mb/sec for a transponder may be less than the maximum available bit rate of, for example, up to 40 Mb/sec. Accordingly, playing an instance of recorded content involves the content receiver determining the aggregate recording bit rate for the file of the simultaneously recorded multiple instances of content and playing the instance of content based on the aggregate recording bit rate.
In another example, a file of ten simultaneously recorded instances of content may be recorded at a bit rate of 40 Mb/sec (e.g., a maximum aggregate bit rate for the transponder), having a recording bit rate (or an average bit rate) of 4 Mb/sec playing one of the ten instances of content involves utilizing the content receiver to incrementally read the file in increments of 4 Mb/sec of the total 40 Mb/sec recorded. A first show may be associated with the content recorded at the first 4 Mb/sec (e.g., Mb 1-4) of the total 40 Mb/sec, a second show may be associated with the content recorded at the second 4 Mb/sec (e.g., Mb 5-8), and so on.
In the examples above, it will be appreciated that the multiple instances of content may be recorded based on statistical multiplexing utilizing communicatively coupled video compressors that determine the bandwidth of data needed for compressing the instance of content to be recorded. This enables the recording (and replay) bit rate of an instance of content to be variable within the recording stream, and accordingly the multiple instances of content may be recorded each at varying bitrates. For a given transponder, as the percentage of the transport stream that is being recorded increases, the variability of the recording data drops. That is, if 100 percent of the stream is being recorded (e.g. at the maximum aggregate bit rate for the transponder), then the variability is zero. As a result, the average recording bit rate of many varying streams may be less noisy. In the examples above, it will also be appreciated that the aggregate recording bit rate may be calculated periodically or in real time.
Figure 2 is a block diagram illustrating a system 200, potentially including a content provider 204 and a content receiver 202. The system 200 may be at least partly incorporated into the system of Figure 1. The content receiver 202 (such as a set top box) may receive and, in some instances, transmit content (such as television programming and on screen display content) to other receivers to a remote viewer, and the like. The content provider 204 generally is as a satellite or cable programming service provider and transmits content to the receiver across a network, one example of which is the satellite(s) 106 shown in Fig. 1. Alternate networks may include a wired network, such as a cable network, a wireless network, such as a terrestrial broadcast network, the Internet, an Ethernet or other local network, combinations of any of the foregoing, and the like. It should be appreciated that the content receiver 202 may incorporate various elements of Figure 1, such as the tuner 107, demultiplexer 109, smart card 108, multiplexer 110 and/or storage 111. Such elements may not be shown specifically in Figure 2, insofar as they were discussed with respect to Figure 1. These elements may be controlled, for example, by the processing unit 224 of Figure 2. Likewise, the data storage unit 226 may be the same as the storage device 111 of Figure 1.
The system may also include, or be coupled to, a content display device 206 for receiving and displaying the content (such as a television), and a controller 208 (such as a remote control) for transmitting data such as control signals to the content receiver 202.
The content receiver 202 generally receives content from the content provider 204 and, optionally, from other external sources such as other content receivers and servers accessed across a network. The content receiver 202 may process and/or decode the content, as well as transmit the content to the content display device 206. The content receiver 202 may be, for example, a set top box, a television receiver, a digital video recorder, a computing device, a gaming device, or a television, which is generally located at a user's location (such as a user's residence or business). The content receiver 202 is operable to receive content from the content provider 204 (and/or another external source) by way of the transmission link 210. Such content is received by the communications unit 220 of the content receiver 202; the communications unit 220 may be analogous to or include one or more of the tuner 107, demultiplexer 109,
descrambler 110 and/or smart card 108. The processing unit 224 may execute instructions for causing the data storage unit 226 (such as the non-transitory storage medium 111) to record multiple instances of content for a plurality of programming channels simultaneously within a single file described above in connection with Figure 1, and/or to play one of the stored instances of content. The transmission unit 228 may be communicatively coupled to the content display device 206 by way of transmission link 211.
The content provider 204 (such as a satellite programming company, a cable company, an Internet service provider, e.g., an online video service or Internet video provider, and the like) is generally remotely located from the content receiver 202. The content provider transmits content to the communications unit 220 of the content receiver 202 via the transmission link 210. The content transmitted may include metadata specifying recording instructions for the content receiver 202 to automatically record multiple instances of content simultaneously for multiple programming channels as described elsewhere herein.
The content display device 206 is generally communicatively coupled to the content receiver 202 and displays content transmitted by the content receiver 202. While the content display device 206 and the content receiver 202 are depicted as separate components in Figure 2, the content receiver 202 may be incorporated with the content display device 206. The content display device 206 is, for example, a television, a computer screen, a video screen, or any other display device for displaying content. The content display device 206 is communicatively coupled to the content receiver 202 by way of the transmission link 211.
The controller 208 is generally provided in an area proximate the content receiver 202 and is communicatively coupled to the content display device 206 by way of the transmission link 212, and to the content receiver 202 by way of the transmission link 213. The controller 208 is, for example, a remote control, such as a universal remote control, a dedicated remote control, or a computing device programmed to send command signals (such as selection signals) to the content receiver 202. The controller 208 may be utilized to provide command signals instructing the content receiver 202 to record and/or reply one or more instances of content.
Returning to the content receiver 202, the processing unit 224 may be programmed to manage, initiate or otherwise facilitate recording and/or playback of one (or more) instances of content received from a number of programming channels carried on a single transponder. For example, four programming channels and the corresponding four instances of content may be recorded simultaneously and stored in the data storage unit 226. Upon receipt of the appropriate command or commands, which may be transmitted from the controller 208, the processing unit 224 may retrieve data from the data storage unit 226 and format it for display on the content display device 206. It should be appreciated that such formatting and display may involve demodulating, decrypting, and/or other operations executed by one or more hardware, software and/or firmware elements (not necessarily shown) generally controlled by the processing unit 224. Accordingly, actions ascribed to the processing unit may be carried out by other portions of the content receiver 202 at the processing unit's direction.
Recording and playing back one or more of the multiple instances of content may involve the processing unit 224 reading metadata associated with an initial frame of the instance of content, such as a packet identifier ("PID") and a presentation timestamp ("PTS"). For example, while playing the instance of content, the processing unit 224 may select only the PID for the instance of content to be played, while ignoring other PIDs within the file of the plurality of
simultaneously recorded instances of content. PIDs are generally identifiers associated with data streams, such as content streams and supplemental data streams, which identify a channel for the data stream. Several PIDs may be associated with one transponder controlled by the content provider 204 and simultaneously recorded utilizing the system of Figure 1. By identifying or selecting the correct PID for the instance of content being played back from the file, the content receiver 202 may navigate correctly determine which instance of the simultaneously recorded multiple instances of content is to be displayed.
Generally, the content receiver 202 may include multiple tuners 107, demultiplexers 109, descramblers 110 and/or other decoders. In some cases, content may be demodulated from a carrier wave or other signal in order to be reconstructed, recorded, and/or viewed. In many instances, demodulation occurs prior to descrambling. Demultiplexing and descrambling may be considered examples of decoding.
In some embodiments, a single decoder (such as a demultiplexer 109 and/or descrambler 110), or one decoder of any given type, (e.g., one demodulator and one descrambler) may be associated with multiple tuners 107. Each tuner may be adjusted to receive a specific frequency band or transponder. Thus, each tuner may receive a different transponder and thus a variety of instances of content on that transponder.
In such an embodiment, the transponders to which each tuner 107 is tuned may be encoded with a common control word. In this manner, each separate tuner may transmit the multiple instances of content received on the corresponding transponder to a single decoder for processing.
Because content associated with the various transponders is commonly encoded, the descrambler 110 may descramble all such content relatively efficiently. These multiple instances of content may then be recorded, as detailed previously. In this manner, multiple tuners may be associated with a single descrambler in order to receive and record multiple instances of content from more than one transponder/frequency band. Accordingly, multiple tuners may be used to receive a greater amount of content than may be carried on a single transponder and all such content may be demultiplexed and/or descrambled by elements common to, and shared by, the tuners. Since a common control word is used to encrypt the content carried on different transponders, a single decoder may handle it all. Thus, the multiple instances of content may be thought of as a first content set and a second content set, each commonly scrambled with a control word but carried on different carrier frequencies.
It should be appreciated that multiple transponders may use the same control word (or other decryption key) even if a single descrambler is not used. That is, multiple transponders may be scrambled with a single control word and one tuner 107 or communications unit 220 may receive corresponding data from each such transponder. Each tuner or unit may transmit the received signal to a descrambler dedicated to that tuner for descrambling, at which point each set of multiple instances of content may be recorded to a storage medium (either separately or in one or more aggregated files).
In alternative embodiments, the multiple instances of content received from multiple
transponders may be recorded on the storage medium without descrambling or decryption.
Descrambling may occur when the content is played back. That is, the entirety of the multiple instances of content received from the transponders may be stored as a single file (or one file per transponder, in some embodiments) on the storage unit 226 that is still encrypted. The descrambler may decrypt the content only upon playback. In such an embodiment, the scrambled content may be retrieved from the storage medium 226, sent to a single descrambler and descrambled before the operations of identifying and displaying particular content are performed, as described above.
In some embodiments, the system may check to see if content on multiple transponders is scrambled using the same control word. This may be indicated, for example, in metadata corresponding to one or more of the instances of content, or one or more of the transponders. The metadata may identify all content and/or all transponders scrambled with the same control word. Accordingly, the processing unit 224 may receive this metadata and, in response to it, instruct the communications unit 222 to receive data from each of the transponders. The communications unit 222 may have multiple tuners 107 in such an embodiment. Received content may then be stored and replayed as described elsewhere herein. It should also be appreciated that certain embodiments may employ a user command in addition to metadata to instruct the communications unit 222 to receive data. Likewise, a command to receive and record instances of content may be initiated by the content provider 204.
It may be useful or desirable to secondarily encode some subset of the multiple instances of content in addition to encoding it with the common control word. For example, this may permit a subset of content to be delivered to certain users. This subset of content may be additional or enhanced content. As one example, the subset of content may be a "behind the scenes" presentation associated with some other portion of the multiple instances of content, and may be provided only to those users who have paid an additional fee. The subset of content may be related to one or more instances of the other multiple instances of content or may be wholly separate. The users that may access the subset of content may be those who have paid a fee, live in or are otherwise associated with a certain geographic area, users corresponding to certain demographics, and so on.
The subset of content may be scrambled twice- once with the control word common to the multiple instances of content and/or transponders, and once with a specific sub-key. Thus, the subset of content may be received and initially descrambled in accordance with other portions of this disclosure, but may remain scrambled by the sub-key although all other instances of content may be fully descrambled. The subset may be recorded along with the rest of the multiple instances of content. It should be appreciated that the descrambling of any or all content may occur either before or after recording the content to the data storage unit 226, as appropriate for the embodiment in question.
In one embodiment, the subset of content may not be played back by anyone other than an authorized user. The subset of content may be received and stored by all but inaccessible to unauthorized users. Unauthorized users may be prevented from playing the recorded subset of content, but may be able to see it in a list of recorded content. The unauthorized user may be presented with an option to unlock the content, such as purchasing it or performing some other action.
In alternative embodiments, the subset of content may be stored with the remainder of the multiple instances of content (either as separate files or in a single file, as appropriate), and be undetectable to unauthorized users. Thus, only authorized users may perceive and/or retrieve the subset of content. In the present disclosure, the methods disclosed may be implemented as sets of instructions or software readable by a device. Further, it is understood that the specific order or hierarchy of steps in the methods disclosed are examples of sample approaches. In other embodiments, the specific order or hierarchy of steps in the method can be rearranged while remaining within the disclosed subject matter. The accompanying method claims present elements of the various steps in a sample order, and are not necessarily meant to be limited to the specific order or hierarchy presented.
The described disclosure may be provided as a computer program product, or software, that may include a non-transitory machine-readable medium having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the present disclosure. A non-transitory machine-readable medium includes any mechanism for storing information in a form (e.g., software, processing application) readable by a machine (e.g., a computer). The non-transitory machine-readable medium may take the form of, but is not limited to, a magnetic storage medium (e.g., floppy diskette, video cassette, and so on); optical storage medium (e.g., CD-ROM); magneto-optical storage medium; read only memory (ROM); random access memory (RAM); erasable programmable memory (e.g., EPROM and EEPROM); flash memory; and so on.
It is believed that the present disclosure and many of its attendant advantages will be understood by the foregoing description, and it will be apparent that various changes may be made in the form, construction and arrangement of the components without departing from the disclosed subject matter or without sacrificing all of its material advantages. The form described is merely explanatory, and it is the intention of the following claims to encompass and include such changes.
While the present disclosure has been described with reference to various embodiments, it will be understood that these embodiments are illustrative and that the scope of the disclosure is not limited to them. Many variations, modifications, additions, and improvements are possible. More generally, embodiments in accordance with the present disclosure have been described in the context or particular embodiments. Functionality may be separated or combined in blocks differently in various embodiments of the disclosure or described with different terminology. These and other variations, modifications, additions, and improvements may fall within the scope of the disclosure as defined in the claims that follow.

Claims

CLAIMS I claim:
1. A method for recording multiple instances of content, comprising:
receiving, at a content receiver, an instruction to initiate recording;
in response to the instruction, setting a first tuner to a first carrier frequency;
further in response to the instruction, setting a second tuner to a second carrier frequency; receiving a first set of content at the first tuner, the first set of content encrypted with a control word;
receiving a second set of content at the second tuner, the second set of content encrypted with the control word; and
recording the first and second sets of content on a storage medium.
2. The method of claim 1, wherein the first and second sets of content are received substantially simultaneously.
3. The method of claim 2, wherein the first and second carrier frequencies are the same.
4. The method of claim 1, wherein the first and second sets of content are recorded as a single file on the storage medium.
5. The method of claim 1, further comprising descrambling the first and second sets of content prior to the operation of recording the first and second sets of content on the storage medium.
6. The method of claim 5, wherein the operation of descrambling the first and second sets of content is performed by a single descrambler associated with both the first and second tuner.
7. The method of claim 1, wherein the first set of content comprises a content subset further encrypted with a sub-key.
8. The method of claim 7, wherein the content subset is stored in a single file with the first and second sets of content.
9. The method of claim 7, wherein the content subset is accessible only by an authorized user.
10. The method of claim 9, wherein a presence of the content subset is visible only by an authorized user.
11. An apparatus for receiving multiple instances of content, comprising:
a first communications unit operative to receive a first set of instances of content transmitted on a first transponder;
a second communications unit operative to receive a second set of instances of content transmitted on a second transponder;
a processing unit operatively connected to the first and second communications unit, the processing unit operative to control the first and second communications unit;
a descrambler operative to descramble the first and second instances of content; and a data storage unit operative to receive and store the first and second instances of content.
12. The apparatus of claim 11, wherein the descrambler is operative to use a single control word to descramble the first and second instances of content.
13. The apparatus of claim 12, wherein the descrambler is operative to descramble the first and second instances of content upon retrieval from the data storage unit.
14. The apparatus of claim 12, wherein:
the first communications unit is operatively connected to the descrambler; and
the second communications unit is operatively connected to the descrambler.
15. A method for decrypting content, comprising:
receiving a first set of encrypted content modulated with a first carrier frequency; substantially simultaneously, receiving a second set of encrypted content modulated with a second carrier frequency; and
decrypting both the first and second sets of encrypted content with a common control word, thereby producing a first and second set of decrypted content.
16. The method of claim 15, further comprising storing the first and second sets of decrypted content on a storage medium.
17. The method of claim 16, wherein the first and second sets of decrypted content are stored in a single file.
18. The method of claim 17, wherein the first and second sets of decrypted content are stored in the single file in accordance with a timestamp scheme.
19. The method of claim 16, further comprising transmitting the first content to a display device while storing the first and second sets of decrypted content.
The method of claim 15, wherein the first and second frequencies are identical.
PCT/US2012/052011 2011-08-23 2012-08-23 Storing multiple instances of content WO2013028835A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112013032479-1A BR112013032479B1 (en) 2011-08-23 2012-08-23 Apparatus for receiving multiple instances of content and methods for writing them and for decrypting content
CN201280031150.8A CN103621059B (en) 2011-08-23 2012-08-23 Multiple examples of storage content
CA2838264A CA2838264C (en) 2011-08-23 2012-08-23 Storing multiple instances of content
EP12825430.7A EP2749022B1 (en) 2011-08-23 2012-08-23 Storing multiple instances of content scrambled by a single code word
MX2013014907A MX2013014907A (en) 2011-08-23 2012-08-23 Storing multiple instances of content.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161526665P 2011-08-23 2011-08-23
US61/526,665 2011-08-23
US13/302,852 US9185331B2 (en) 2011-08-23 2011-11-22 Storing multiple instances of content
US13/302,852 2011-11-22

Publications (1)

Publication Number Publication Date
WO2013028835A1 true WO2013028835A1 (en) 2013-02-28

Family

ID=47743757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/052011 WO2013028835A1 (en) 2011-08-23 2012-08-23 Storing multiple instances of content

Country Status (7)

Country Link
US (3) US9185331B2 (en)
EP (1) EP2749022B1 (en)
CN (1) CN103621059B (en)
BR (1) BR112013032479B1 (en)
CA (1) CA2838264C (en)
MX (1) MX2013014907A (en)
WO (1) WO2013028835A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031385B2 (en) 2012-03-15 2015-05-12 Echostar Technologies L.L.C. Television receiver storage management
US9055274B2 (en) 2011-08-23 2015-06-09 Echostar Technologies L.L.C. Altering presentation of received content based on use of closed captioning elements as reference locations
US9088763B2 (en) 2011-08-23 2015-07-21 Echostar Technologies L.L.C. Recording additional channels of a shared multi-channel transmitter
US9113222B2 (en) 2011-05-31 2015-08-18 Echostar Technologies L.L.C. Electronic programming guides combining stored content information and content provider schedule information
US9185331B2 (en) 2011-08-23 2015-11-10 Echostar Technologies L.L.C. Storing multiple instances of content
US9191694B2 (en) 2011-08-23 2015-11-17 Echostar Uk Holdings Limited Automatically recording supplemental content
US9264779B2 (en) 2011-08-23 2016-02-16 Echostar Technologies L.L.C. User interface
US9350937B2 (en) 2011-08-23 2016-05-24 Echostar Technologies L.L.C. System and method for dynamically adjusting recording parameters
US9357159B2 (en) 2011-08-23 2016-05-31 Echostar Technologies L.L.C. Grouping and presenting content
US9521440B2 (en) 2012-03-15 2016-12-13 Echostar Technologies L.L.C. Smartcard encryption cycling
US9621946B2 (en) 2011-08-23 2017-04-11 Echostar Technologies L.L.C. Frequency content sort
US9628838B2 (en) 2013-10-01 2017-04-18 Echostar Technologies L.L.C. Satellite-based content targeting
US9756378B2 (en) 2015-01-07 2017-09-05 Echostar Technologies L.L.C. Single file PVR per service ID
US9918116B2 (en) 2012-11-08 2018-03-13 Echostar Technologies L.L.C. Image domain compliance

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8959566B2 (en) 2011-08-23 2015-02-17 Echostar Technologies L.L.C. Storing and reading multiplexed content
US8606088B2 (en) 2011-08-23 2013-12-10 Echostar Technologies L.L.C. System and method for memory jumping within stored instances of content
US8850476B2 (en) 2011-08-23 2014-09-30 Echostar Technologies L.L.C. Backwards guide
US8959544B2 (en) 2012-03-15 2015-02-17 Echostar Technologies L.L.C. Descrambling of multiple television channels
US8989562B2 (en) 2012-03-15 2015-03-24 Echostar Technologies L.L.C. Facilitating concurrent recording of multiple television channels
US9220013B2 (en) * 2014-02-06 2015-12-22 Verizon Patent And Licensing Inc. Tune control for shared access system
US11076179B2 (en) 2017-06-13 2021-07-27 DISH Technologies L.L.C. Viewership-balanced video multiplexing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6701528B1 (en) * 2000-01-26 2004-03-02 Hughes Electronics Corporation Virtual video on demand using multiple encrypted video segments
US20050271365A1 (en) * 2004-06-08 2005-12-08 Kabushiki Kaisha Toshiba Simultaneous video recording processing method of copy-protected contents and video apparatus therefor
US20090178098A1 (en) * 1999-10-20 2009-07-09 Tivo Inc. System for remotely controlling client recording and storage behavior
US20100158480A1 (en) * 2008-12-22 2010-06-24 Joon Young Jung Multi-stream encryption method and apparatus, and host device for multi-channel recording
WO2011027236A1 (en) * 2009-09-02 2011-03-10 Nds Limited Method and system for simultaneous recording of multiple programs on a dvr

Family Cites Families (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965825A (en) 1981-11-03 1990-10-23 The Personalized Mass Media Corporation Signal processing apparatus and methods
US4723246A (en) 1982-05-11 1988-02-02 Tandem Computers Incorporated Integrated scrambler-encoder using PN sequence generator
EP0151147B1 (en) 1983-07-22 1988-04-20 Independent Broadcasting Authority Security system for television signal encryption
US4706121B1 (en) 1985-07-12 1993-12-14 Insight Telecast, Inc. Tv schedule system and process
US5187589A (en) 1988-07-28 1993-02-16 Pioneer Electronic Corporation Multiprogram video tape recording and reproducing device
JP3586472B2 (en) 1991-06-25 2004-11-10 富士ゼロックス株式会社 Information display method and information display device
US7448063B2 (en) 1991-11-25 2008-11-04 Actv, Inc. Digital interactive system for providing full interactivity with live programming events
US5659350A (en) 1992-12-09 1997-08-19 Discovery Communications, Inc. Operations center for a television program packaging and delivery system
US5600364A (en) 1992-12-09 1997-02-04 Discovery Communications, Inc. Network controller for cable television delivery systems
US5483277A (en) 1992-12-15 1996-01-09 Alcatel Network Systems Simplified set-top converter for broadband switched network
DE69416183T2 (en) 1993-04-15 1999-06-10 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka Arrangement for encrypting a video signal
US5541738A (en) 1994-04-12 1996-07-30 E. Guide, Inc. Electronic program guide
GB9400101D0 (en) 1994-01-05 1994-03-02 Thomson Consumer Electronics Consumer interface for a satellite television system
US6976266B1 (en) 1994-12-23 2005-12-13 Thomson Licensing S.A. Apparatus and method for processing a program guide in a digital video system
US6246767B1 (en) 1995-04-03 2001-06-12 Scientific-Atlanta, Inc. Source authentication of download information in a conditional access system
JP3367268B2 (en) 1995-04-21 2003-01-14 株式会社日立製作所 Video digest creation apparatus and method
US5805763A (en) 1995-05-05 1998-09-08 Microsoft Corporation System and method for automatically recording programs in an interactive viewing system
US5608652A (en) 1995-05-12 1997-03-04 Intel Corporation Reducing blocking effects in block transfer encoders
US5682597A (en) 1995-06-15 1997-10-28 International Business Machines Corporation Hybrid video-on-demand based on a near-video-on-demand system
US5724646A (en) 1995-06-15 1998-03-03 International Business Machines Corporation Fixed video-on-demand
JP3371186B2 (en) 1995-11-27 2003-01-27 ソニー株式会社 Video data distribution system and video data receiving device
US6049333A (en) 1996-09-03 2000-04-11 Time Warner Entertainment Company, L.P. System and method for providing an event database in a telecasting system
ES2208952T3 (en) 1996-09-17 2004-06-16 Starsight Telecast, Inc. TELEVISION PROGRAMMING SYSTEM WITH MENU AND DISPLAYABLE ACTION ICONS.
US20020120925A1 (en) 2000-03-28 2002-08-29 Logan James D. Audio and video program recording, editing and playback systems using metadata
US7490169B1 (en) 1997-03-31 2009-02-10 West Corporation Providing a presentation on a network having a plurality of synchronized media types
US6707982B2 (en) 1997-05-30 2004-03-16 Canon Kabushiki Kaisha Image recording apparatus having computer readable recording medium for recording image data
US6453334B1 (en) 1997-06-16 2002-09-17 Streamtheory, Inc. Method and apparatus to allow remotely located computer programs and/or data to be accessed on a local computer in a secure, time-limited manner, with persistent caching
EP1372339B1 (en) 1997-07-21 2014-06-18 Gemstar Development Corporation Systems and methods for displaying and recording control interfaces
DE69805256T2 (en) 1997-09-17 2002-08-29 Matsushita Electric Industrial Co., Ltd. Video data editing device and computer-readable recording medium for storing an editing program
US6987854B2 (en) * 1997-09-25 2006-01-17 Thomson Licensing S.A. Method and apparatus for recording of encrypted digital data
CN1147145C (en) 1997-12-01 2004-04-21 星视电视广播公司 Electronic program guide system with advertising message in pop-ups
US6351474B1 (en) * 1998-01-14 2002-02-26 Skystream Networks Inc. Network distributed remultiplexer for video program bearing transport streams
EP0946019A1 (en) 1998-03-25 1999-09-29 CANAL+ Société Anonyme Authentification of data in a digital transmission system
US6788882B1 (en) 1998-04-17 2004-09-07 Timesurf, L.L.C. Systems and methods for storing a plurality of video streams on re-writable random-access media and time-and channel- based retrieval thereof
US20050204388A1 (en) 1998-06-11 2005-09-15 Knudson Edward B. Series reminders and series recording from an interactive television program guide
US7146627B1 (en) 1998-06-12 2006-12-05 Metabyte Networks, Inc. Method and apparatus for delivery of targeted video programming
TW456148B (en) 1998-06-16 2001-09-21 United Video Properties Inc Interactive television program guide with simultaneous watch and record capabilities
CN1867068A (en) 1998-07-14 2006-11-22 联合视频制品公司 Client-server based interactive television program guide system with remote server recording
JP4067650B2 (en) 1998-07-17 2008-03-26 株式会社東芝 Data recording apparatus and data recording method
US20020054752A1 (en) 1998-08-07 2002-05-09 Anthony Wood Video data recorder with personal channels
TW465235B (en) 1998-09-17 2001-11-21 United Video Properties Inc Electronic program guide with digital storage
EP1001631A1 (en) 1998-11-09 2000-05-17 CANAL+ Société Anonyme Signalling of bouquet information in a digital transmission system
US6865746B1 (en) 1998-12-03 2005-03-08 United Video Properties, Inc. Electronic program guide with related-program search feature
JP2000244725A (en) 1999-02-22 2000-09-08 Sony Corp Additional information superimposing method, addition information detection method, additional information superimposing device and additional information detector
US6742184B1 (en) 1999-03-29 2004-05-25 Hughes Electronics Corp. Electronic television program guide with calendar tool
US7024676B1 (en) 1999-05-25 2006-04-04 Thomson Licensing System for acquiring and processing broadcast programs, program guide and channel identification data
US6590938B1 (en) 1999-09-30 2003-07-08 Conexant Systems, Inc. DCT domain conversion of a higher definition signal to lower definition signal
US7809849B2 (en) * 1999-10-13 2010-10-05 Starz Entertainment, Llc Pre-storing multiple programs with user control of playback
US7039614B1 (en) * 1999-11-09 2006-05-02 Sony Corporation Method for simulcrypting scrambled data to a plurality of conditional access devices
JP2001145113A (en) 1999-11-17 2001-05-25 Sony Corp Device and method for image information conversion
US6628891B1 (en) 1999-11-19 2003-09-30 Scm Microsystems, Inc. Signal filtering mechanism for a multi-purpose digital television receiver
WO2001047273A1 (en) 1999-12-21 2001-06-28 Tivo, Inc. Intelligent system and methods of recommending media content items based on user preferences
WO2001050743A1 (en) 2000-01-04 2001-07-12 United Video Properties, Inc. Interactive program guide with graphic program listings
US8584182B2 (en) 2000-01-27 2013-11-12 Time Warner Cable Enterprises Llc System and method for providing broadcast programming, a virtual VCR, and a video scrapbook to programming subscribers
DE10009327C2 (en) 2000-02-28 2002-01-24 Harman Becker Automotive Sys Method of identifying identical television or video images
US20020055343A1 (en) 2000-03-13 2002-05-09 Stetzler Trudy D. Apparatus and method for radio program guide capability in a digital radio system
US8312490B2 (en) 2000-03-23 2012-11-13 The Directv Group, Inc. DVR with enhanced functionality
US20020092021A1 (en) 2000-03-23 2002-07-11 Adrian Yap Digital video recorder enhanced features
JP2001285729A (en) 2000-03-29 2001-10-12 Canon Inc Receiver, digital broadcasting receiver, digital broadcasting reception method and method therefor
US6954795B2 (en) 2000-04-05 2005-10-11 Matsushita Electric Industrial Co., Ltd. Transmission/reception system and method for data broadcast, and transmission apparatus for data broadcast
US7395544B2 (en) 2001-03-29 2008-07-01 Microsoft Corporation Regulating the quality of a broadcast based on monitored viewing behavior information
US6621528B1 (en) 2000-05-22 2003-09-16 Sony Corporation Channel control for digital television
US20030206631A1 (en) * 2000-06-22 2003-11-06 Candelore Brant L. Method and apparatus for scrambling program data for furture viewing
US20020003941A1 (en) 2000-06-26 2002-01-10 Eiichi Hatae Remaining recordable time calculation apparatus that converts amount of free area of recording medium into time
US6771703B1 (en) 2000-06-30 2004-08-03 Emc Corporation Efficient scaling of nonscalable MPEG-2 Video
US6453115B1 (en) 2000-08-31 2002-09-17 Keen Personal Media, Inc. Digital video recording system which generates an index data structure for displaying a video stream in trickplay mode
US20020083438A1 (en) * 2000-10-26 2002-06-27 So Nicol Chung Pang System for securely delivering encrypted content on demand with access contrl
EP1346559A4 (en) 2000-11-16 2006-02-01 Mydtv Inc System and methods for determining the desirability of video programming events
WO2002041625A1 (en) 2000-11-17 2002-05-23 Scm Microsystems Gmbh Digital television conditional access methods and apparatus for simultaneously handling multiple television programs
KR100379443B1 (en) 2000-12-29 2003-04-11 엘지전자 주식회사 apparatus and method for EPG bar display
WO2002057917A2 (en) 2001-01-22 2002-07-25 Sun Microsystems, Inc. Peer-to-peer network computing platform
JP3950632B2 (en) 2001-01-23 2007-08-01 日本電気株式会社 Broadcast storage system, apparatus, program, and recording medium
JP2002223400A (en) 2001-01-25 2002-08-09 Funai Electric Co Ltd Broadcast receiver having on-screen display function for channel information
US6798971B2 (en) 2001-02-09 2004-09-28 Microsoft Corporation Systems and methods for providing continuous recording of repeating programming
US20020116705A1 (en) 2001-02-20 2002-08-22 Perlman Stephen G. System and method for processing conditional access data
CN101257609B (en) 2001-02-21 2014-03-19 联合视频制品公司 Systems and method for interactive program guides with personal video recording features
US20020144259A1 (en) 2001-03-29 2002-10-03 Philips Electronics North America Corp. Method and apparatus for controlling a media player based on user activity
US6981274B2 (en) 2001-03-30 2005-12-27 Intel Corporation Store and play of broadcast data from a multiplex data stream
US8566873B2 (en) 2001-04-23 2013-10-22 Starz Entertainment, Llc Program guide enhancements
US7409140B2 (en) 2001-05-11 2008-08-05 Scientific-Atlanta, Inc. Channel buffering and display management system for multi-tuner set-top box
US20020184638A1 (en) 2001-05-29 2002-12-05 Koninklijke Philips Electronics N.V. Video playback device capable of sharing resources and method of operation
US7151831B2 (en) 2001-06-06 2006-12-19 Sony Corporation Partial encryption and PID mapping
US20040268387A1 (en) 2001-06-11 2004-12-30 Bertrand Wendling Field of programme delivery
EP1267572A2 (en) 2001-06-11 2002-12-18 Canal+ Technologies Société Anonyme Improvements in the field of programme delivery
KR20020097454A (en) 2001-06-21 2002-12-31 엘지전자 주식회사 Apparatus and method for recording a multichannel stream and, medium thereof
US7512964B2 (en) 2001-06-29 2009-03-31 Cisco Technology System and method for archiving multiple downloaded recordable media content
EP1286349A1 (en) 2001-08-21 2003-02-26 Canal+ Technologies Société Anonyme File and content management
EP1304871A3 (en) * 2001-08-21 2003-06-18 Canal+ Technologies Société Anonyme Method and apparatus for a receiver/decoder
US20030097659A1 (en) 2001-11-16 2003-05-22 Goldman Phillip Y. Interrupting the output of media content in response to an event
US7283992B2 (en) 2001-11-30 2007-10-16 Microsoft Corporation Media agent to suggest contextually related media content
US6971121B2 (en) 2001-12-06 2005-11-29 Scientific-Atlanta, Inc. Composite buffering
US20030200548A1 (en) 2001-12-27 2003-10-23 Paul Baran Method and apparatus for viewer control of digital TV program start time
JP3737754B2 (en) 2001-12-27 2006-01-25 株式会社東芝 Semiconductor integrated circuit, program recording / reproducing apparatus, program recording / reproducing system, and program recording / reproducing method
EP2343890B1 (en) 2002-01-02 2013-09-18 Sony Electronics Inc. Partial encryption and PID mapping
US6897904B2 (en) 2002-01-04 2005-05-24 Microsoft Corporation Method and apparatus for selecting among multiple tuners
JP2003219364A (en) 2002-01-18 2003-07-31 Pioneer Electronic Corp Information recording medium, information recording apparatus and method, information reproducing apparatus and method, information recording and reproducing apparatus and method, computer program for recording or reproduction control, and data structure including control signal
GB0201594D0 (en) 2002-01-24 2002-03-13 Koninkl Philips Electronics Nv Audio/video stream
JP3955216B2 (en) 2002-02-14 2007-08-08 シャープ株式会社 Time-series data recording apparatus and time-series data recording method
JP2003244565A (en) 2002-02-15 2003-08-29 Fujitsu Ltd Apparatus, program and virtual channel setting method
US8607269B2 (en) 2002-03-12 2013-12-10 Intel Corporation Electronic program guide for obtaining past, current, and future programs
US8312504B2 (en) 2002-05-03 2012-11-13 Time Warner Cable LLC Program storage, retrieval and management based on segmentation messages
US7073189B2 (en) 2002-05-03 2006-07-04 Time Warner Interactive Video Group, Inc. Program guide and reservation system for network based digital information and entertainment storage and delivery system
US7908626B2 (en) 2002-05-03 2011-03-15 Time Warner Interactive Video Group, Inc. Network based digital information and entertainment storage and delivery system
US20050034171A1 (en) 2002-05-03 2005-02-10 Robert Benya Technique for delivering programming content based on a modified network personal video recorder service
US7810121B2 (en) 2002-05-03 2010-10-05 Time Warner Interactive Video Group, Inc. Technique for delivering network personal video recorder service and broadcast programming service over a communications network
AU2003239385A1 (en) 2002-05-10 2003-11-11 Richard R. Reisman Method and apparatus for browsing using multiple coordinated device
EP1361759A1 (en) * 2002-05-10 2003-11-12 Canal+ Technologies Société Anonyme System and method of providing media content
US8006268B2 (en) 2002-05-21 2011-08-23 Microsoft Corporation Interest messaging entertainment system
US6766523B2 (en) 2002-05-31 2004-07-20 Microsoft Corporation System and method for identifying and segmenting repeating media objects embedded in a stream
EP2357563A1 (en) 2002-06-03 2011-08-17 Nokia Siemens Networks GmbH & Co. KG Broadcast scheduling system and method
US20040001087A1 (en) 2002-06-27 2004-01-01 Warmus James L. Methods and apparatus for electronic distribution of customized content via a broadcast signal
US8028092B2 (en) 2002-06-28 2011-09-27 Aol Inc. Inserting advertising content
JP2004056394A (en) 2002-07-18 2004-02-19 Fujitsu Ltd Control apparatus for controlling capturing apparatus and storage apparatus via lan, capturing apparatus for the same, storage apparatus, program, and method
BR0313804A (en) 2002-08-21 2005-07-05 Disney Entpr Inc Home Digital Film Library
US7533402B2 (en) * 2002-09-30 2009-05-12 Broadcom Corporation Satellite set-top box decoder for simultaneously servicing multiple independent programs for display on independent display device
KR100523054B1 (en) 2002-11-19 2005-10-24 한국전자통신연구원 Controlling apparatus for storing and playing digital broadcasting contents
US8086093B2 (en) 2002-12-05 2011-12-27 At&T Ip I, Lp DSL video service with memory manager
AU2003303262A1 (en) 2002-12-20 2004-07-14 Koninklijke Philips Electronics N.V. Method and apparatus for storing a stream of audio-visual data
US7930716B2 (en) 2002-12-31 2011-04-19 Actv Inc. Techniques for reinsertion of local market advertising in digital video from a bypass source
JP4528763B2 (en) 2003-01-06 2010-08-18 ペイス ピーエルシー Real-time recording agent for streaming data from the Internet
US7062048B2 (en) * 2003-01-27 2006-06-13 Wegener Communications, Inc. Apparatus and method for single encryption with multiple authorization of distributed content data
US7493646B2 (en) 2003-01-30 2009-02-17 United Video Properties, Inc. Interactive television systems with digital video recording and adjustable reminders
DE602004024839D1 (en) 2003-02-11 2010-02-11 Thomson Licensing Method for recording encrypted data, storage medium and method for reproducing such data
US7774495B2 (en) 2003-02-13 2010-08-10 Oracle America, Inc, Infrastructure for accessing a peer-to-peer network environment
CA2523343A1 (en) 2003-04-21 2004-11-04 Rgb Networks, Inc. Time-multiplexed multi-program encryption system
US7640564B2 (en) 2003-05-01 2009-12-29 Microsoft Corporation Recording resources indicators
US20040242150A1 (en) 2003-05-28 2004-12-02 Microspace Communications Corporation Systems, methods and transmission formats for providing a common platform for direct broadcast satellite television networks
GB2417807B (en) * 2003-06-17 2007-10-10 Nds Ltd Multimedia storage and access protocol
US7603022B2 (en) 2003-07-02 2009-10-13 Macrovision Corporation Networked personal video recording system
US20050071877A1 (en) * 2003-09-25 2005-03-31 Navarro Efren N. Satellite downstream porting interface API
CN100373941C (en) * 2003-10-22 2008-03-05 深圳市研祥智能科技股份有限公司 Digital television broadcasting system based on MPEG-1
JP2005149126A (en) 2003-11-14 2005-06-09 Sony Corp Information acquiring system and method, and information processing program
US20050105732A1 (en) * 2003-11-17 2005-05-19 Hutchings George T. Systems and methods for delivering pre-encrypted content to a subscriber terminal
US7302169B2 (en) 2003-12-30 2007-11-27 Fujitsu Limited Method and apparatus for playing-back moving image data
US7548624B2 (en) 2004-01-16 2009-06-16 The Directv Group, Inc. Distribution of broadcast content for remote decryption and viewing
KR100564610B1 (en) 2004-02-04 2006-03-28 삼성전자주식회사 Demultiplexer and demultiplexing method of the digital broadcasting receiver capable of demultiplexing several broadcasting channel signals
MXPA06010209A (en) 2004-03-09 2007-04-12 Thomson Licensing Secure data transmission via multichannel entitlement management and control.
EP1575293A1 (en) 2004-03-11 2005-09-14 Canal+ Technologies Dynamic smart card management
WO2005109907A2 (en) 2004-04-30 2005-11-17 Vulcan Inc. Maintaining a graphical user interface state that is based on a selected time
US7996863B2 (en) 2004-05-13 2011-08-09 Ati Technologies Ulc Method and apparatus for display of a digital video signal
US7505081B2 (en) 2004-05-17 2009-03-17 Toshiba America Consumer Products, L.L.C. System and method for preserving external storage device control while in picture-outside-picture (POP) or picture-in-picture (PIP) modes
JPWO2005117432A1 (en) 2004-05-25 2008-04-03 松下電器産業株式会社 Program recording apparatus and program recording method
US7516407B2 (en) 2004-06-01 2009-04-07 General Electric Company Timeline random access for multi-format time-based file recording and playback
US20050281531A1 (en) 2004-06-16 2005-12-22 Unmehopa Musa R Television viewing apparatus
US7487530B2 (en) 2004-07-09 2009-02-03 Victor Company Of Japan, Ltd. Method and apparatus for ranking broadcast programs
GB0416332D0 (en) 2004-07-22 2004-08-25 Trevor Burke Technology Ltd Method and apparatus for programme generation and presentation
US7543317B2 (en) 2004-08-17 2009-06-02 The Directv Group, Inc. Service activation of set-top box functionality using broadcast conditional access system
JP2006086670A (en) 2004-09-15 2006-03-30 Hitachi Ltd Data recording device
US8566879B2 (en) 2004-09-28 2013-10-22 Sony Corporation Method and apparatus for navigating video content
CN100409686C (en) * 2004-09-28 2008-08-06 梁光海 Remote controlled single channel outputting method for concentrating controller in digital analog TV-set
KR100690249B1 (en) 2004-10-11 2007-03-12 가온미디어 주식회사 Method for recording multiple programs in a digital broadcasting receiver
JP2006115078A (en) 2004-10-13 2006-04-27 Matsushita Electric Ind Co Ltd Device and method for signal processing of image data
US20070234395A1 (en) 2004-10-15 2007-10-04 Vincent Dureau Speeding up channel change
WO2006044547A2 (en) 2004-10-15 2006-04-27 Opentv, Inc. Speeding up channel change
EP1662788A1 (en) * 2004-11-24 2006-05-31 Nagravision SA Method and system for access control of audio/video data
CN101640776B (en) * 2004-12-08 2012-02-22 松下电器产业株式会社 Digital broadcast recording apparatus and method
EP1672831A1 (en) * 2004-12-16 2006-06-21 Nagravision S.A. Method for transmission of digital data in a local network
US20060174270A1 (en) 2005-02-02 2006-08-03 United Video Properties, Inc. Systems and methods for providing approximated information in an interactive television program guide
JP4003233B2 (en) 2005-02-22 2007-11-07 ソニー株式会社 Information processing apparatus, information processing method, and program
WO2006092873A1 (en) 2005-03-03 2006-09-08 D & M Holdings, Inc. Data recording/reproducing device
US7860013B2 (en) 2005-03-09 2010-12-28 Comcast Cable Holdings, Llc Methods and systems for using in-stream data within an on demand content delivery path
JP4734992B2 (en) 2005-03-28 2011-07-27 船井電機株式会社 Program recording apparatus and program recording method
JP4131271B2 (en) 2005-03-30 2008-08-13 ソニー株式会社 Information processing apparatus and method, and program
JP4715278B2 (en) 2005-04-11 2011-07-06 ソニー株式会社 Information processing apparatus and information processing method, program storage medium, program, and providing apparatus
CN101167357B (en) 2005-04-26 2011-09-07 皇家飞利浦电子股份有限公司 A device for and a method of processing a data stream having a sequence of packets and timing information related to the packets
US7848618B2 (en) 2005-05-13 2010-12-07 Microsoft Corporation Unified recording and pause buffer format
US7929696B2 (en) 2005-06-07 2011-04-19 Sony Corporation Receiving DBS content on digital TV receivers
JP4792842B2 (en) 2005-07-06 2011-10-12 ソニー株式会社 Information processing apparatus, information processing method, and computer program
US7630999B2 (en) 2005-07-15 2009-12-08 Microsoft Corporation Intelligent container index and search
KR100731379B1 (en) 2005-07-20 2007-06-21 엘지전자 주식회사 Method and apparatus for processing recording information of (an) image display device
US9948882B2 (en) 2005-08-11 2018-04-17 DISH Technologies L.L.C. Method and system for toasted video distribution
KR100864809B1 (en) 2005-09-07 2008-10-23 삼성전자주식회사 Apparatus and method for providing electronic program guide in digital broadcasting
KR100694152B1 (en) 2005-09-14 2007-03-12 삼성전자주식회사 Method and apparatus for managing multimedia contents stored in the digital multimedia device
US7646962B1 (en) 2005-09-30 2010-01-12 Guideworks, Llc System and methods for recording and playing back programs having desirable recording attributes
CA2624915C (en) 2005-10-14 2015-05-19 United Video Properties, Inc. Systems and methods for recording multiple programs simultaneously with a single tuner
JP2007116525A (en) 2005-10-21 2007-05-10 Nippon Telegr & Teleph Corp <Ntt> Topic information providing method, device, and program
US8321466B2 (en) 2005-12-22 2012-11-27 Universal Electronics Inc. System and method for creating and utilizing metadata regarding the structure of program content stored on a DVR
JP4186985B2 (en) 2005-12-28 2008-11-26 船井電機株式会社 Digital broadcast receiver
US8782706B2 (en) 2005-12-29 2014-07-15 United Video Properties Systems and methods for providing channel groups in an interactive media guidance application
US20070154163A1 (en) 2005-12-29 2007-07-05 United Video Properties, Inc. Systems and methods for creating aggregations of episodes of series programming in order
US20070183745A1 (en) 2006-02-08 2007-08-09 Sbc Knowledge Ventures, L.P. Method and system to control recording of a digital program
US8185921B2 (en) 2006-02-28 2012-05-22 Sony Corporation Parental control of displayed content using closed captioning
EP1887729A3 (en) 2006-03-21 2011-07-13 Irdeto Access B.V. Method of providing an encrypted data stream
US20070250856A1 (en) 2006-04-02 2007-10-25 Jennifer Leavens Distinguishing National and Local Broadcast Advertising and Other Content
KR100793752B1 (en) 2006-05-02 2008-01-10 엘지전자 주식회사 The display device for having the function of editing the recorded data partially and method for controlling the same
US8024762B2 (en) 2006-06-13 2011-09-20 Time Warner Cable Inc. Methods and apparatus for providing virtual content over a network
US8019162B2 (en) 2006-06-20 2011-09-13 The Nielsen Company (Us), Llc Methods and apparatus for detecting on-screen media sources
US8751672B2 (en) 2006-06-21 2014-06-10 Verizon Data Services Llc Personal video channels
US7873982B2 (en) 2006-06-22 2011-01-18 Tivo Inc. Method and apparatus for creating and viewing customized multimedia segments
US20080022347A1 (en) 2006-07-05 2008-01-24 Noam Cohen TV-on-demand
US7715552B2 (en) 2006-07-05 2010-05-11 Scientific-Atlanta, Llc Data authentication with a secure environment
WO2008010118A1 (en) 2006-07-12 2008-01-24 Koninklijke Philips Electronics N.V. A device and a method for playing audio-video content
WO2008010689A1 (en) 2006-07-20 2008-01-24 Electronics And Telecommunications Research Institute Method for generating the counter block value
US7962937B2 (en) 2006-08-01 2011-06-14 Microsoft Corporation Media content catalog service
GB2441163B (en) 2006-08-25 2009-11-11 Sony Uk Ltd Television device and method of identifying consecutive programmes
JP2008079128A (en) 2006-09-22 2008-04-03 Toshiba Corp Video display system, and main unit and subunit constituting video display system
US20080092164A1 (en) 2006-09-27 2008-04-17 Anjana Agarwal Providing a supplemental content service for communication networks
KR20080038630A (en) 2006-10-30 2008-05-07 삼성전자주식회사 Image device having a bookmark function for searching program and method of forming bookmark
JP2008113172A (en) 2006-10-30 2008-05-15 Hitachi Ltd Content transmitter, content receiver and content ciphering method
GB0621775D0 (en) 2006-11-01 2006-12-13 Sony Uk Ltd Recording apparatus
KR101550490B1 (en) 2006-11-10 2015-09-04 유나이티드 비디오 프로퍼티즈, 인크. Method for using an interactive media guidance application
GB0622823D0 (en) 2006-11-15 2006-12-27 British Broadcasting Corp Accessing content
US20080137850A1 (en) 2006-12-07 2008-06-12 Rajesh Mamidwar Method and system for a generic key packet for mpeg-2 transport scrambling
EP1936991A3 (en) 2006-12-12 2009-01-14 Samsung Electronics Co., Ltd. System for providing broadcasting content information and method for providing broadcasting service in the system
KR101380048B1 (en) 2006-12-12 2014-04-02 삼성전자주식회사 SYSTEM For PROVIDING A BROADCASTING CONTENTS INFORMATION AND METHOD FOR PROVIDING BROADCASTING SERVICE THEREIN
JP4912856B2 (en) 2006-12-15 2012-04-11 株式会社東芝 Filtering device and digital broadcast receiving device
US8014446B2 (en) 2006-12-22 2011-09-06 Ibiquity Digital Corporation Method and apparatus for store and replay functions in a digital radio broadcasting receiver
DE102007002513B3 (en) 2007-01-17 2008-03-13 Institut für Rundfunktechnik GmbH Set-top box controlling method, involves signalizing user of set-top box in case of necessary update of cache memory such that narrow band-transponder channel is switched, and changed multimedia home platform application is received
US8910222B2 (en) 2007-03-03 2014-12-09 Time Warner Cable Enterprises Llc Methods and apparatus for implementing guides and using recording information in determining program to communications channel mappings
US8732734B2 (en) 2007-03-03 2014-05-20 Time Warner Cable Enterprises Llc Methods and apparatus supporting the recording of multiple simultaneously broadcast programs communicated using the same communications channel
WO2008109172A1 (en) 2007-03-07 2008-09-12 Wiklof Christopher A Recorder with retrospective capture
KR20080092502A (en) 2007-04-12 2008-10-16 엘지전자 주식회사 A controlling method and a receiving apparatus for mobile service data
US20100031162A1 (en) 2007-04-13 2010-02-04 Wiser Philip R Viewer interface for a content delivery system
US8798433B2 (en) 2007-05-04 2014-08-05 United Video Properties, Inc. Systems and methods for recording overlapping media content during scheduling conflicts
EP2156330B1 (en) 2007-05-15 2015-03-18 TiVo Inc. Multimedia content search and recording scheduling system
US8649385B2 (en) 2007-05-29 2014-02-11 Time Warner Cable Enterprises Llc Methods and apparatus for using tuners efficiently for delivering one or more programs
JP5019209B2 (en) 2007-05-31 2012-09-05 株式会社東芝 Stored program control apparatus and stored program control method
WO2009001307A1 (en) 2007-06-26 2008-12-31 Nds Limited Presenting content
EP2018059A1 (en) 2007-07-19 2009-01-21 Panasonic Corporation Digital video broadcast receiver and method for decrypting of digital data streams
US20090025027A1 (en) 2007-07-20 2009-01-22 Michael Craner Systems & methods for allocating bandwidth in switched digital video systems based on interest
ATE536044T1 (en) 2007-09-06 2011-12-15 Nokia Siemens Networks Oy CHARGE CONTROL FOR A TELEVISION DISTRIBUTION SYSTEM
US20100162285A1 (en) 2007-09-11 2010-06-24 Yossef Gerard Cohen Presence Detector and Method for Estimating an Audience
JP2009077227A (en) 2007-09-21 2009-04-09 Toshiba Corp Imaging apparatus and its control method
US9032433B2 (en) 2007-10-05 2015-05-12 Alcatel Lucent Personalized ad insertion during start over service
US20090100466A1 (en) 2007-10-16 2009-04-16 Microsoft Corporation Electronic program guide (EPG) referencing past television content
JP4882960B2 (en) 2007-10-29 2012-02-22 船井電機株式会社 Information recording / reproducing device
US20090129749A1 (en) 2007-11-06 2009-05-21 Masayuki Oyamatsu Video recorder and video reproduction method
JP5142673B2 (en) 2007-11-09 2013-02-13 株式会社東芝 Recording apparatus and recording reservation processing method
US8675872B2 (en) * 2007-11-28 2014-03-18 Echostar Technologies L.L.C. Secure content distribution apparatus, systems, and methods
US9621855B2 (en) 2007-12-10 2017-04-11 Time Warner Cable Enterprises Llc Apparatus and method for video-on-demand playlist
US8091109B2 (en) 2007-12-18 2012-01-03 At&T Intellectual Property I, Lp Set-top box-based TV streaming and redirecting
KR100948260B1 (en) 2007-12-18 2010-03-18 한국전자통신연구원 Apparatus and method for transmitting/receiving multiband broadcasting using hierarchical coding
US20090165057A1 (en) 2007-12-20 2009-06-25 Kerry Philip Miller Concurrent program content processing apparatus, systems, and methods
US9743142B2 (en) * 2008-02-19 2017-08-22 Time Warner Cable Enterprises Llc Multi-stream premises apparatus and methods for use in a content delivery network
US20090235298A1 (en) 2008-03-13 2009-09-17 United Video Properties, Inc. Systems and methods for synchronizing time-shifted media content and related communications
US20110023079A1 (en) 2008-03-20 2011-01-27 Mark Alan Schultz System and method for processing priority transport stream data in real time in a multi-channel broadcast multimedia system
US8225354B2 (en) 2008-04-11 2012-07-17 Microsoft Corporation Merging electronic program guide information
GB2459705B (en) 2008-05-01 2010-05-12 Sony Computer Entertainment Inc Media reproducing device, audio visual entertainment system and method
US8312493B2 (en) 2008-06-18 2012-11-13 Cisco Technology, Inc. Providing program restart functionality in a digital video network
JP2010041492A (en) 2008-08-06 2010-02-18 Renesas Technology Corp Digital broadcast receiving apparatus, and semiconductor integrated circuit used therefor
RU2533193C2 (en) 2008-08-22 2014-11-20 ТП Вижн Холдинг Б.В. Dynamic switching between digital television services
US8793749B2 (en) 2008-08-25 2014-07-29 Broadcom Corporation Source frame adaptation and matching optimally to suit a recipient video device
US20100086277A1 (en) 2008-10-03 2010-04-08 Guideworks, Llc Systems and methods for deleting viewed portions of recorded programs
US8332885B2 (en) 2008-10-14 2012-12-11 Time Warner Cable Inc. System and method for content delivery with multiple embedded messages
WO2010049440A1 (en) 2008-10-29 2010-05-06 Edgeware Ab A method and an apparatus for data recording and streaming
CN101404780A (en) 2008-11-07 2009-04-08 深圳创维数字技术股份有限公司 Digital television receiver, intelligent TV program ranking method and apparatus
US9152300B2 (en) 2008-12-31 2015-10-06 Tivo Inc. Methods and techniques for adaptive search
JP5318587B2 (en) 2009-01-13 2013-10-16 株式会社セルシス Gradation creating method, program and apparatus
KR20100089228A (en) 2009-02-03 2010-08-12 삼성전자주식회사 Method and apparatus for encrypting transport stream of multimedia content, method and apparatus for descrypting transport stream of multimedia content
US8364671B1 (en) 2009-02-23 2013-01-29 Mefeedia, Inc. Method and device for ranking video embeds
US20100217613A1 (en) 2009-02-26 2010-08-26 Brian Kelly Methods and apparatus for providing charitable content and related functions
US20100218208A1 (en) 2009-02-26 2010-08-26 Comcast Cable Communications, Llc Method and Apparatus for Generating Alternative Commercials
US20100232604A1 (en) 2009-03-11 2010-09-16 Sony Corporation Controlling access to content using multiple encryptions
WO2010105246A2 (en) 2009-03-12 2010-09-16 Exbiblio B.V. Accessing resources based on capturing information from a rendered document
JP2010213208A (en) 2009-03-12 2010-09-24 Funai Electric Co Ltd Display device
US9277266B2 (en) 2009-03-18 2016-03-01 Time Warner Cable Enterprises Llc Apparatus and methods for network video recording
US9154721B2 (en) 2009-03-26 2015-10-06 Dish Network L.L.C. Apparatus and methods for recording adjacent time slots of television programming on the same channel
US11076189B2 (en) 2009-03-30 2021-07-27 Time Warner Cable Enterprises Llc Personal media channel apparatus and methods
JP4642939B2 (en) 2009-03-30 2011-03-02 パナソニック株式会社 Recording medium, reproducing apparatus, and integrated circuit
US9215423B2 (en) 2009-03-30 2015-12-15 Time Warner Cable Enterprises Llc Recommendation engine apparatus and methods
US8094661B2 (en) 2009-03-31 2012-01-10 Comcast Cable Communications, Llc Subscriber access network architecture
US8428063B2 (en) 2009-03-31 2013-04-23 Comcast Cable Communications, Llc Access network architecture having dissimilar access sub-networks
JP2010252104A (en) 2009-04-16 2010-11-04 Sony Corp Information processing apparatus and television tuner
EP2242259A1 (en) 2009-04-16 2010-10-20 Panasonic Corporation Content recommendation
US9955107B2 (en) 2009-04-23 2018-04-24 Arris Enterprises Llc Digital video recorder recording and rendering programs formed from spliced segments
US20100284537A1 (en) 2009-05-07 2010-11-11 Horizon Semiconductors Ltd. Method for efficiently decoding a number of data channels
EP2257062A1 (en) * 2009-05-25 2010-12-01 Nagravision S.A. Method for providing access control to media services
US8782267B2 (en) 2009-05-29 2014-07-15 Comcast Cable Communications, Llc Methods, systems, devices, and computer-readable media for delivering additional content using a multicast streaming
KR101574345B1 (en) 2009-06-08 2015-12-03 엘지전자 주식회사 The method for updating broadcasting program information in terminal and mobile terminal using the same
WO2010147276A1 (en) 2009-06-16 2010-12-23 Lg Electronics Inc. Method of controlling devices and tuner device
JP2011015084A (en) 2009-06-30 2011-01-20 Toshiba Corp Apparatus and method for recording program
CN101945261B (en) 2009-07-07 2014-03-12 中兴通讯股份有限公司 Hierarchical delivery and receiving method and device in mobile multimedia broadcasting system
US8584173B2 (en) 2009-07-10 2013-11-12 EchoStar Technologies, L.L.C. Automatic selection of video programming channel based on scheduling information
US20110078750A1 (en) 2009-09-29 2011-03-31 2Wire Trickplay in media file
US8629938B2 (en) 2009-10-05 2014-01-14 Sony Corporation Multi-point television motion sensor system and method
EP2317767A1 (en) 2009-10-27 2011-05-04 Nagravision S.A. Method for accessing services by a user unit
EP2323381B1 (en) 2009-11-16 2020-09-02 DISH Technologies L.L.C. A method and system for media content playback and storage
KR101272878B1 (en) 2009-11-30 2013-06-11 한국전자통신연구원 Apparatus and method for dynamic update of software-based IPTV conditional access system
JP5025716B2 (en) 2009-12-09 2012-09-12 三菱電機株式会社 Digital broadcast receiving apparatus, digital broadcast receiving method, and computer program
US20110145854A1 (en) 2009-12-14 2011-06-16 Cisco Technology, Inc. Systems and methods for digital program insertion within scrambled content
US9043827B1 (en) * 2009-12-16 2015-05-26 Prime Research Alliance E, Inc. Method and system for providing conditional access to encrypted content
JP5047261B2 (en) 2009-12-18 2012-10-10 株式会社東芝 Recording / reproducing apparatus, recording / reproducing method, and program
US8977107B2 (en) 2009-12-31 2015-03-10 Sandisk Technologies Inc. Storage device and method for resuming playback of content
GB2479343A (en) 2010-03-26 2011-10-12 British Broadcasting Corp EPG showing a list of additional episodes in the same TV series when a TV programme is selected
US9167196B2 (en) 2010-05-19 2015-10-20 Rovi Guides, Inc. Systems and methods for trimming recorded content using a media guidance application
FR2962290A1 (en) 2010-06-30 2012-01-06 Alcatel Lucent METHOD FOR DISPLAYING ADAPTED AUDIOVISUAL CONTENTS AND CORRESPONDING SERVER
CN102316377B (en) 2010-07-06 2013-11-13 中兴通讯股份有限公司南京分公司 Method and device for processing entitlement control message (ECM) packs
CN101969538B (en) 2010-11-05 2012-02-15 福建捷联电子有限公司 Different browsing methods of digital television channels
US8607295B2 (en) 2011-07-06 2013-12-10 Symphony Advanced Media Media content synchronized advertising platform methods
US20120183276A1 (en) 2011-01-19 2012-07-19 Rovi Technologies Corporation Method and Apparatus for Transmission of Data or Flags Indicative of Actual Program Recording Times or Durations
US8842842B2 (en) 2011-02-01 2014-09-23 Apple Inc. Detection of audio channel configuration
US8621355B2 (en) 2011-02-02 2013-12-31 Apple Inc. Automatic synchronization of media clips
US20120278837A1 (en) 2011-04-29 2012-11-01 Sling Media Inc. Presenting related content during a placeshifting session
US20120296745A1 (en) 2011-05-20 2012-11-22 Echostar Technologies Llc Using a media content receiver to provide promotional information to a mobile device
US8584167B2 (en) 2011-05-31 2013-11-12 Echostar Technologies L.L.C. Electronic programming guides combining stored content information and content provider schedule information
US8612936B2 (en) 2011-06-02 2013-12-17 Sonatype, Inc. System and method for recommending software artifacts
KR101268133B1 (en) 2011-06-23 2013-05-27 엘지전자 주식회사 Method for displaying program information and display apparatus thereof
CA2839481A1 (en) 2011-06-24 2012-12-27 The Directv Group, Inc. Method and system for obtaining viewing data and providing content recommendations at a set top box
KR20140053989A (en) 2011-07-27 2014-05-08 톰슨 라이센싱 Variable real time buffer and apparatus
US9621946B2 (en) 2011-08-23 2017-04-11 Echostar Technologies L.L.C. Frequency content sort
US20130055311A1 (en) 2011-08-23 2013-02-28 Echostar Technologies L.L.C. On Screen Display Content with Information on Stored Content Service Features
US8447170B2 (en) 2011-08-23 2013-05-21 Echostar Technologies L.L.C. Automatically recording supplemental content
US8437622B2 (en) 2011-08-23 2013-05-07 Echostar Technologies L.L.C. Altering presentation of received content based on use of closed captioning elements as reference locations
US8850476B2 (en) 2011-08-23 2014-09-30 Echostar Technologies L.L.C. Backwards guide
US8763027B2 (en) 2011-08-23 2014-06-24 Echostar Technologies L.L.C. Recording additional channels of a shared multi-channel transmitter
US9185331B2 (en) 2011-08-23 2015-11-10 Echostar Technologies L.L.C. Storing multiple instances of content
US9357159B2 (en) 2011-08-23 2016-05-31 Echostar Technologies L.L.C. Grouping and presenting content
CA2838750C (en) 2011-08-23 2021-05-04 Echostar Technologies Llc A system and method for storing and managing audiovisual content of television channels
US8959566B2 (en) 2011-08-23 2015-02-17 Echostar Technologies L.L.C. Storing and reading multiplexed content
US8660412B2 (en) 2011-08-23 2014-02-25 Echostar Technologies L.L.C. System and method for dynamically adjusting recording parameters
US8606088B2 (en) 2011-08-23 2013-12-10 Echostar Technologies L.L.C. System and method for memory jumping within stored instances of content
US8627349B2 (en) 2011-08-23 2014-01-07 Echostar Technologies L.L.C. User interface
US8813165B2 (en) 2011-09-25 2014-08-19 Kevin Mark Klughart Audio/video storage/retrieval system and method
US8989562B2 (en) 2012-03-15 2015-03-24 Echostar Technologies L.L.C. Facilitating concurrent recording of multiple television channels
US8819722B2 (en) 2012-03-15 2014-08-26 Echostar Technologies L.L.C. Smartcard encryption cycling
US9489981B2 (en) 2012-03-15 2016-11-08 Echostar Technologies L.L.C. Successive initialization of television channel recording
US8959544B2 (en) 2012-03-15 2015-02-17 Echostar Technologies L.L.C. Descrambling of multiple television channels
EP2833626A4 (en) 2012-03-30 2016-05-04 Sony Corp Control device, control method, program, and control system
US8856847B2 (en) 2012-06-20 2014-10-07 United Video Properties, Inc. Systems and methods for providing a customized program lineup
US8793724B2 (en) 2012-11-08 2014-07-29 Eldon Technology Limited Image domain compliance
US8955002B2 (en) 2013-01-16 2015-02-10 Comcast Cable Communications, Llc Tracking and responding to distracting events
US9240217B2 (en) 2013-06-20 2016-01-19 Tivo Inc. Storing same channel overlapping recordings
US9628838B2 (en) 2013-10-01 2017-04-18 Echostar Technologies L.L.C. Satellite-based content targeting
JP2015080079A (en) 2013-10-16 2015-04-23 株式会社東芝 Equipment and control method therefor
US10667007B2 (en) 2014-01-22 2020-05-26 Lenovo (Singapore) Pte. Ltd. Automated video content display control using eye detection
US9852774B2 (en) 2014-04-30 2017-12-26 Rovi Guides, Inc. Methods and systems for performing playback operations based on the length of time a user is outside a viewing area
US20160127765A1 (en) 2014-10-31 2016-05-05 Echostar Uk Holdings Limited Pausing playback of media content based on user presence
US9756378B2 (en) 2015-01-07 2017-09-05 Echostar Technologies L.L.C. Single file PVR per service ID

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090178098A1 (en) * 1999-10-20 2009-07-09 Tivo Inc. System for remotely controlling client recording and storage behavior
US6701528B1 (en) * 2000-01-26 2004-03-02 Hughes Electronics Corporation Virtual video on demand using multiple encrypted video segments
US20050271365A1 (en) * 2004-06-08 2005-12-08 Kabushiki Kaisha Toshiba Simultaneous video recording processing method of copy-protected contents and video apparatus therefor
US20100158480A1 (en) * 2008-12-22 2010-06-24 Joon Young Jung Multi-stream encryption method and apparatus, and host device for multi-channel recording
WO2011027236A1 (en) * 2009-09-02 2011-03-10 Nds Limited Method and system for simultaneous recording of multiple programs on a dvr

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG ET AL.: "Design and Implementation of a Multi-stream CableCARD with a High-Speed DVB- Common Descrambler", PROCEEDINGS OF THE 14TH ANNUAL ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'06), 23 October 2006 (2006-10-23), pages 165 - 168, XP055140006, Retrieved from the Internet <URL:http://kusu.comp.nus.edu.sg/proceedings/mm06/mm/p165.pdf> [retrieved on 20121015] *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9113222B2 (en) 2011-05-31 2015-08-18 Echostar Technologies L.L.C. Electronic programming guides combining stored content information and content provider schedule information
US10231009B2 (en) 2011-08-23 2019-03-12 DISH Technologies L.L.C. Grouping and presenting content
US9264779B2 (en) 2011-08-23 2016-02-16 Echostar Technologies L.L.C. User interface
US9055274B2 (en) 2011-08-23 2015-06-09 Echostar Technologies L.L.C. Altering presentation of received content based on use of closed captioning elements as reference locations
US11146849B2 (en) 2011-08-23 2021-10-12 DISH Technologies L.L.C. Grouping and presenting content
US10659837B2 (en) 2011-08-23 2020-05-19 DISH Technologies L.L.C. Storing multiple instances of content
US9185331B2 (en) 2011-08-23 2015-11-10 Echostar Technologies L.L.C. Storing multiple instances of content
US9088763B2 (en) 2011-08-23 2015-07-21 Echostar Technologies L.L.C. Recording additional channels of a shared multi-channel transmitter
US9621946B2 (en) 2011-08-23 2017-04-11 Echostar Technologies L.L.C. Frequency content sort
US9191694B2 (en) 2011-08-23 2015-11-17 Echostar Uk Holdings Limited Automatically recording supplemental content
US10104420B2 (en) 2011-08-23 2018-10-16 DISH Technologies, L.L.C. Automatically recording supplemental content
US9350937B2 (en) 2011-08-23 2016-05-24 Echostar Technologies L.L.C. System and method for dynamically adjusting recording parameters
US10021444B2 (en) 2011-08-23 2018-07-10 DISH Technologies L.L.C. Using closed captioning elements as reference locations
US9357159B2 (en) 2011-08-23 2016-05-31 Echostar Technologies L.L.C. Grouping and presenting content
US9894406B2 (en) 2011-08-23 2018-02-13 Echostar Technologies L.L.C. Storing multiple instances of content
US9635436B2 (en) 2011-08-23 2017-04-25 Echostar Technologies L.L.C. Altering presentation of received content based on use of closed captioning elements as reference locations
US9489981B2 (en) 2012-03-15 2016-11-08 Echostar Technologies L.L.C. Successive initialization of television channel recording
US9269397B2 (en) 2012-03-15 2016-02-23 Echostar Technologies L.L.C. Television receiver storage management
US9521440B2 (en) 2012-03-15 2016-12-13 Echostar Technologies L.L.C. Smartcard encryption cycling
US9549213B2 (en) 2012-03-15 2017-01-17 Echostar Technologies L.L.C. Dynamic tuner allocation
US9031385B2 (en) 2012-03-15 2015-05-12 Echostar Technologies L.L.C. Television receiver storage management
US9177606B2 (en) 2012-03-15 2015-11-03 Echostar Technologies L.L.C. Multi-program playback status display
US9412413B2 (en) 2012-03-15 2016-08-09 Echostar Technologies L.L.C. Electronic programming guide
US9177605B2 (en) 2012-03-15 2015-11-03 Echostar Technologies L.L.C. Recording of multiple television channels
US9781464B2 (en) 2012-03-15 2017-10-03 Echostar Technologies L.L.C. EPG realignment
US9854291B2 (en) 2012-03-15 2017-12-26 Echostar Technologies L.L.C. Recording of multiple television channels
US9361940B2 (en) 2012-03-15 2016-06-07 Echostar Technologies L.L.C. Recording of multiple television channels
US10582251B2 (en) 2012-03-15 2020-03-03 DISH Technologies L.L.C. Recording of multiple television channels
US9349412B2 (en) 2012-03-15 2016-05-24 Echostar Technologies L.L.C. EPG realignment
US9489982B2 (en) 2012-03-15 2016-11-08 Echostar Technologies L.L.C. Television receiver storage management
US10171861B2 (en) 2012-03-15 2019-01-01 DISH Technologies L.L.C. Recording of multiple television channels
US9202524B2 (en) 2012-03-15 2015-12-01 Echostar Technologies L.L.C. Electronic programming guide
US9918116B2 (en) 2012-11-08 2018-03-13 Echostar Technologies L.L.C. Image domain compliance
US9628838B2 (en) 2013-10-01 2017-04-18 Echostar Technologies L.L.C. Satellite-based content targeting
US9756378B2 (en) 2015-01-07 2017-09-05 Echostar Technologies L.L.C. Single file PVR per service ID

Also Published As

Publication number Publication date
US20130051555A1 (en) 2013-02-28
US10659837B2 (en) 2020-05-19
MX2013014907A (en) 2014-03-21
CA2838264A1 (en) 2013-02-28
CA2838264C (en) 2020-01-07
US20180139494A1 (en) 2018-05-17
US20160105711A1 (en) 2016-04-14
US9894406B2 (en) 2018-02-13
EP2749022A4 (en) 2015-03-04
EP2749022A1 (en) 2014-07-02
EP2749022B1 (en) 2020-04-22
US9185331B2 (en) 2015-11-10
CN103621059B (en) 2018-07-13
CN103621059A (en) 2014-03-05
BR112013032479B1 (en) 2022-05-03
BR112013032479A2 (en) 2020-08-11

Similar Documents

Publication Publication Date Title
US10659837B2 (en) Storing multiple instances of content
JP6858359B2 (en) Reception method
JP2010011208A (en) Multi-channel processing apparatus, television signal processing method and television signal receiving device
JP6703176B2 (en) Receiver
JP6734984B2 (en) Receiving method
JP6734981B2 (en) Transmission/reception system
JP7242786B2 (en) receiver
JP7242785B2 (en) receiver
JP6686219B2 (en) Receiving method
JP6968954B2 (en) Reception method
JP6686220B2 (en) Transmission / reception method
JP6968952B2 (en) Send / receive method
JP7275215B2 (en) receiver
JP7267362B2 (en) receiver
JP7275214B2 (en) receiver
JP6841963B2 (en) Reception method
JP6812589B2 (en) Send / receive method
JP6732992B2 (en) Transceiver
JP6510089B2 (en) Receiver
JP2020129846A (en) Receiving method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825430

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2838264

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/014907

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013032479

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013032479

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131217