WO2013022038A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2013022038A1
WO2013022038A1 PCT/JP2012/070251 JP2012070251W WO2013022038A1 WO 2013022038 A1 WO2013022038 A1 WO 2013022038A1 JP 2012070251 W JP2012070251 W JP 2012070251W WO 2013022038 A1 WO2013022038 A1 WO 2013022038A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
mode
clutch
control mode
electrical machine
Prior art date
Application number
PCT/JP2012/070251
Other languages
English (en)
French (fr)
Inventor
小林靖彦
森雄麻
白村陽明
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112012001939.3T priority Critical patent/DE112012001939T5/de
Priority to US14/119,792 priority patent/US9199636B2/en
Priority to CN201280028049.7A priority patent/CN103596826B/zh
Publication of WO2013022038A1 publication Critical patent/WO2013022038A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/1843Overheating of driveline components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0291Clutch temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • B60Y2300/429Control of secondary clutches in drivelines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors

Definitions

  • the present invention controls a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the internal combustion engine side in a power transmission path that connects the internal combustion engine and wheels. It relates to a control device.
  • Patent Document 1 As a conventional technique of the control device as described above, for example, there is a technique described in Patent Document 1 below. In the description of the background art section, the member names in Patent Document 1 are quoted in [].
  • the control device generates power in the rotating electrical machine [motor generator MG] in the direct engagement state of the first engagement device [first clutch CL1] and in the slip engagement state of the second engagement device [second clutch CL2].
  • the WSC positive power generation mode can be realized.
  • the rotating electric machine In the WSC positive power generation mode, the rotating electric machine can be caused to generate electric power using the driving force while driving the vehicle using the driving force of the internal combustion engine [engine E].
  • a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are sequentially provided from a side of the internal combustion engine on a power transmission path that connects the internal combustion engine and wheels.
  • the characteristic configuration of the control device to be controlled includes a first control mode in which the rotating electrical machine generates power in the slip engagement state of both the first engagement device and the second engagement device, and the first engagement mode.
  • a second control mode for causing the rotating electrical machine to generate power in a direct engagement state of both the combined device and the second engagement device, a direct engagement state of the first engagement device, and a second engagement device.
  • a third control mode for causing the rotating electrical machine to generate power in a slip engagement state, and a power generation for the rotating electrical machine in a slip engagement state of the first engagement device and a direct engagement state of the second engagement device A fourth control mode, a mode control unit for switching, and the second control mode
  • a target amount acquisition unit that acquires at least one of a temperature and a calorific value of the combined device as a selection target amount, and the mode control unit from the second control mode and the second control mode from the first control mode
  • the mode shift is executed via the third control mode, and the selection target amount is If it is greater than or equal to the selection reference value, the mode transition is executed through the fourth control mode.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator functioning as both a motor and a generator as necessary.
  • the “directly engaged state” represents a state in which the two engaging members engaged by the target engaging device are engaged with each other, and the “slip engaged state” A state in which the two engaging members are engaged so as to be able to transmit a driving force in a state having a rotational speed difference is shown.
  • the first control mode in which the rotating electrical machine can generate power in the slip engagement state of both the first engagement device and the second engagement device can be realized.
  • the difference in rotational speed between the combined members can be reduced for both the first engagement device and the second engagement device, and the amount of heat generated is suppressed for both the first engagement device and the second engagement device. be able to. Therefore, the first control mode for causing the rotating electrical machine to generate power can be realized under a relatively large number of situations, and it becomes easy to secure a desired power generation amount.
  • in the mode transition of the at least any one direction side between the 1st control mode and the 2nd control mode it is based on the magnitude relationship between the selection object amount and the selection reference value.
  • the passing mode from the third control mode and the fourth control mode it is possible to appropriately select the passing mode from the third control mode and the fourth control mode. That is, when the temperature increase of the second engagement device is allowed, the third control mode in which the torque of the internal combustion engine can be directly transmitted to the rotating electrical machine is selected to improve the energy efficiency.
  • the fourth control mode can be selected to suppress the amount of heat generated by the second engagement device. Accordingly, the transition to the first control mode or the transition from the first control mode to the other mode that facilitates securing a desired power generation amount while protecting the second engagement device is appropriately executed. Can do.
  • the target amount acquisition unit acquires at least one of the temperature and the heat generation amount of the first engagement device as a first determination target amount, and at least one of the temperature and the heat generation amount of the second engagement device.
  • the first determination target amount is less than a predetermined first determination reference value
  • the second determination target amount is a predetermined second If it is less than the determination reference value, control is performed according to the required driving force so that the required driving force required to drive the wheel is transmitted to the wheel, and in the first control mode,
  • the driving force transmitted to the wheel is the request.
  • the control for reducing the output torque of the internal combustion engine it is preferable to perform the control for reducing the output torque of the internal combustion engine.
  • the output torque of the internal combustion engine is reduced to reduce the first determination target value.
  • the transmission torque can be reduced for both the engagement device and the second engagement device. Therefore, the amount of heat generated by both engagement devices can be reduced and temperature rise can be suppressed.
  • the target amount acquisition unit acquires at least one of a temperature and a heat generation amount of the first engagement device as a first determination target amount, and the first determination target amount is predetermined in the first control mode.
  • the power generation amount by the rotating electrical machine is reduced by reducing the output torque of the rotating electrical machine, and the internal combustion engine is reduced according to the decrease in the output torque of the rotating electrical machine. It is preferable to execute control for reducing the output torque of the engine.
  • the transmission torque of the first engagement device can be decreased according to the decrease in the output torque of the internal combustion engine.
  • the amount of heat generated by the first engagement device can be reduced to suppress the temperature rise.
  • a control device 40 is a vehicle whose control target is a drive device 1 for driving a vehicle 6 (hybrid vehicle) including both an internal combustion engine 11 and a rotating electrical machine 12. It is a control device for a motor drive device.
  • the drive device 1 and the control device 40 according to the present embodiment will be described in order.
  • drive connection means a state in which two rotating elements are connected so as to be able to transmit a driving force, and a state in which the two rotating elements are connected so as to rotate integrally
  • the two rotating elements are used as a concept including a state in which a driving force can be transmitted via one or more transmission members.
  • a transmission member includes various members (for example, a shaft, a gear mechanism, a belt, a chain, etc.) that transmit rotation at the same speed or with a variable speed.
  • driving force is used synonymously with “torque”.
  • engagement pressure for each engagement device represents a pressure that presses the two engagement members engaged by the engagement device, for example, by a hydraulic servo mechanism or the like.
  • release pressure represents a pressure at which the engagement device is constantly released (a state in which rotation and driving force are not transmitted between the two engagement members engaged by the engagement device).
  • Release boundary pressure represents a pressure (release side slip boundary pressure) at which the engagement device enters a slip boundary state at the boundary between the released state and the slip engagement state.
  • engagement boundary pressure represents a pressure (engagement side slip boundary pressure) at which the engagement device enters a slip boundary state between the slip engagement state and the direct engagement state.
  • Complete engagement pressure represents a pressure at which the engagement device is steadily in a direct engagement state.
  • the drive device 1 to be controlled by the control device 40 is configured as a drive device for a so-called 1-motor parallel type hybrid vehicle.
  • the drive device 1 has a first clutch C1, a rotating electrical machine 12, and a second clutch C2 (in order from the side of the internal combustion engine 11 to a power transmission path connecting the internal combustion engine 11 and the wheels 15 in order.
  • a transmission mechanism 13 is provided. That is, the rotary electric machine 12 is provided in the power transmission path connecting the internal combustion engine 11 and the wheel 15, and the first clutch C ⁇ b> 1 is provided between the internal combustion engine 11 and the rotary electric machine 12. Is provided with a second clutch C2 (transmission mechanism 13).
  • the internal combustion engine 11 is a prime mover that is driven by combustion of fuel inside the engine to extract power, and for example, a gasoline engine or a diesel engine can be used.
  • the internal combustion engine 11 is drivingly connected to the input shaft I.
  • the output shaft of the internal combustion engine such as a crankshaft of the internal combustion engine 11 and the input shaft I rotate integrally.
  • the first clutch C1 is provided so as to be able to release the drive connection (transmission of drive force) between the internal combustion engine 11 and the rotating electrical machine 12.
  • the first clutch C1 is a friction engagement device that selectively connects the input shaft I, the intermediate shaft M, and the output shaft O (in other words, selectively connects the internal combustion engine 11, the rotating electrical machine 12, and the wheels 15). And functions as an internal combustion engine disconnecting clutch that disconnects the internal combustion engine 11 from the wheel 15.
  • a wet multi-plate clutch, a dry single-plate clutch, or the like can be used.
  • the first clutch C1 corresponds to the “first engagement device” in the present invention.
  • the rotating electrical machine 12 includes a rotor and a stator (not shown), and the rotor of the rotating electrical machine 12 is drivingly connected to the intermediate shaft M.
  • the intermediate shaft M functions as a rotor shaft of the rotating electrical machine 12, and the rotor and the intermediate shaft M rotate integrally.
  • the rotating electrical machine 12 is electrically connected to a power storage device 28 such as a battery or a capacitor via an inverter device 27.
  • the rotating electrical machine 12 receives power from the power storage device 28 and powers, or supplies power generated by the output torque of the internal combustion engine 11 (internal combustion engine torque Te) or the inertial force of the vehicle 6 to the power storage device 28. Accumulate electricity.
  • the intermediate shaft M as the rotor shaft is an input shaft (transmission input shaft) of the transmission mechanism 13.
  • the transmission mechanism 13 is an automatic stepped transmission mechanism that can switch a plurality of shift stages having different transmission ratios.
  • the speed change mechanism 13 forms a plurality of shift speeds so that a gear mechanism such as a planetary gear mechanism and a plurality of engagement devices such as clutches and brakes for engaging or releasing the rotation elements of the gear mechanism (this example) The friction engagement device).
  • a wet multi-plate clutch or the like can be used as the plurality of engaging devices.
  • the plurality of engagement devices include the second clutch C2, and other clutches, brakes, and the like are included.
  • the second clutch C2 corresponds to the “second engagement device” in the present invention.
  • the speed change mechanism 13 changes the rotational speed of the intermediate shaft M (the speed change input shaft) based on the speed ratio set for each speed step formed according to the engagement state of the plurality of speed change engagement devices.
  • the torque is converted and transmitted to the output shaft O as the output shaft (shift output shaft) of the transmission mechanism 13.
  • the “transmission ratio” is the ratio of the rotational speed of the intermediate shaft M (transmission input shaft) to the rotational speed of the output shaft O (transmission output shaft).
  • Torque transmitted from the speed change mechanism 13 to the output shaft O is distributed and transmitted to the left and right wheels 15 via the output differential gear unit 14.
  • the drive device 1 can cause the vehicle 6 to travel by transmitting the torque of one or both of the internal combustion engine 11 and the rotating electrical machine 12 to the wheels 15.
  • the driving device 1 includes an oil pump (not shown) that is drivingly connected to the intermediate shaft M.
  • the oil pump is driven by the driving force of one or both of the rotating electrical machine 12 and the internal combustion engine 11 to generate hydraulic pressure.
  • the oil from the oil pump is adjusted to a predetermined oil pressure by the oil pressure control device 25 and then supplied to the first clutch C1, the second clutch C2, and the like.
  • an oil pump having a dedicated drive motor may be provided.
  • the vehicle 6 includes an input shaft rotational speed sensor Se1, an intermediate shaft rotational speed sensor Se2, and an output shaft rotational speed sensor Se3.
  • the input shaft rotational speed sensor Se1 is a sensor that detects the rotational speed of the input shaft I.
  • the rotational speed of the input shaft I detected by the input shaft rotational speed sensor Se1 is equal to the rotational speed of the internal combustion engine 11.
  • the intermediate shaft rotation speed sensor Se2 is a sensor that detects the rotation speed of the intermediate shaft M.
  • the rotational speed of the intermediate shaft M is equal to the rotational speed of the rotor of the rotating electrical machine 12, and is also equal to the rotational speed of the transmission input shaft. Therefore, for example, a rotation sensor (resolver or the like) provided in the rotating electrical machine 12 or a speed change input sensor (pulse type detector or the like) provided in the transmission mechanism 13 can be used as the intermediate shaft rotation speed sensor Se2.
  • the output shaft rotation speed sensor Se3 is a sensor that detects the rotation speed of the output shaft O. Since the rotational speed of the output shaft O is equal to the rotational speed of the transmission output shaft, the output shaft rotational speed sensor Se3 can use, for example, a transmission output sensor (pulse type detector or the like) provided in the transmission mechanism 13.
  • the control device 40 derives the vehicle speed that is the traveling speed of the vehicle 6 based on the rotational speed of the output shaft O detected by the output shaft rotational speed sensor Se3.
  • a control device 40 includes a travel mode determination unit 41, a required driving force determination unit 42, a rotating electrical machine control unit 43, a first clutch operation control unit 44, and a speed change mechanism.
  • An operation control unit 45, a target amount acquisition unit 51, a mode control unit 52, a target amount determination unit 53, and a torque correction control unit 54 are provided. Each of these functional units is configured to exchange information with each other.
  • the control device 40 includes an arithmetic processing device such as a CPU as a core, and includes a storage device such as a RAM and a ROM. Each functional unit of the control device 40 is configured by software (program) stored in a ROM or the like, hardware such as a separately provided arithmetic circuit, or both. In addition, about the function part comprised by a program, the arithmetic processing apparatus with which the control apparatus 40 is provided operate
  • the vehicle 6 includes an internal combustion engine control device 30 that controls the operation of the internal combustion engine 11.
  • the internal combustion engine control device 30 and the control device 40 are configured to be able to exchange information with each other.
  • the internal combustion engine control device 30 controls the operating point (internal combustion engine torque Te and rotational speed) of the internal combustion engine 11 based on a command from the control device 40.
  • the control device 40 is configured to be able to acquire information on detection results by the above-described input shaft rotation speed sensor Se1, intermediate shaft rotation speed sensor Se2, and output shaft rotation speed sensor Se3, and an accelerator pedal (not shown).
  • the sensor that detects the amount of operation (or accelerator opening), the sensor that detects the amount of operation of the brake pedal (not shown), the sensor that detects the state of the power storage device 28 (the amount of storage, temperature, etc.), etc. Information can also be acquired.
  • the travel mode determination unit 41 is a functional unit that determines the travel mode of the vehicle 6.
  • the travel mode determination unit 41 determines a travel mode to be realized by the drive device 1 by referring to a predetermined map (mode selection map) based on, for example, the vehicle speed, the accelerator opening, the power storage amount of the power storage device 28, and the like. To do.
  • the driving modes that can be selected by the driving mode determination unit 41 include an electric driving mode and a parallel driving mode.
  • the rotating electrical machine 12 basically runs with the output torque (rotating electrical machine torque Tm) only when the first clutch C1 is disengaged and the second clutch C2 is directly engaged.
  • Tm rotating electrical machine torque
  • the parallel travel mode both the first clutch C1 and the second clutch C2 are directly engaged, the first clutch C1 and the second clutch C2 are both in the slip engagement state and the other is in the direct engagement state, or the first clutch.
  • the vehicle 6 is basically caused to travel by at least the internal combustion engine torque Te.
  • the rotating electrical machine 12 In the parallel traveling mode, in addition to the traveling mode in which the rotating electrical machine 12 outputs a torque in the positive direction (powering direction) to assist the driving force by the internal combustion engine torque Te, the rotating electrical machine 12 has a torque in the negative direction (power generation direction).
  • a travel mode in which (regenerative torque) is output and electric power is generated by a part of the internal combustion engine torque Te is included.
  • the parallel control mode (power generation mode) in which the vehicle 6 travels while generating electric power in the rotating electrical machine 12 using the internal combustion engine torque Te includes a first control mode, a second control mode, a third control mode, And a fourth control mode.
  • the rotating electrical machine 12 In the first control mode, the rotating electrical machine 12 generates power in the slip engagement state of both the first clutch C1 and the second clutch C2.
  • the rotating electrical machine 12 In the second control mode, the rotating electrical machine 12 generates power in a state where both the first clutch C1 and the second clutch C2 are directly connected.
  • the rotating electrical machine 12 generates power in the direct engagement state of the first clutch C1 and the slip engagement state of the second clutch C2.
  • the fourth control mode the rotating electrical machine 12 generates power in the slip engagement state of the first clutch C1 and the direct engagement state of the second clutch C2.
  • the required driving force determination unit 42 is a functional unit that determines the required driving force Td that is required to drive the wheels 15 to drive the vehicle 6.
  • the required driving force determining unit 42 determines the required driving force Td by referring to a predetermined map (requested driving force determination map) based on the vehicle speed and the accelerator opening.
  • the required driving force Td determined in this way is basically equal to the driving force necessary for realizing the behavior according to the driver's artificial operation (for example, accelerator operation).
  • the shared driving force that each of the internal combustion engine 11 and the rotating electrical machine 12 takes is determined so that the sum of the respective divided driving forces becomes equal to the required driving force Td.
  • control of the internal combustion engine 11 by the internal combustion engine control device 30 and control of the rotating electrical machine 12 by the rotating electrical machine control unit 43 are executed so that the determined shared driving force is transmitted to the wheels 15.
  • the driving force having the same magnitude as the required driving force Td is transmitted to the wheel 15.
  • the rotating electrical machine torque Tm is a negative torque (hereinafter referred to as “required regenerative torque”) required to generate the required power generation amount. Is set.
  • the shared driving force for the rotating electrical machine 12 since the shared driving force for the rotating electrical machine 12 has a negative value, the shared driving force for the internal combustion engine 11 has a value larger than the required driving force Td.
  • the rotating electric machine control unit 43 is a functional unit that controls the operation of the rotating electric machine 12.
  • the rotating electrical machine control unit 43 controls the operating point (the rotating electrical machine torque Tm and the rotational speed) of the rotating electrical machine 12 by controlling the inverter device 27.
  • the rotating electrical machine control unit 43 can switch between torque control and rotational speed control of the rotating electrical machine 12 according to the traveling state of the vehicle 6.
  • the torque control is a control in which a target torque is set as a control target and the rotating electrical machine torque Tm is made to follow (approach) the target torque.
  • the rotational speed control is a control in which a target rotational speed is set as a control target, and the rotating electrical machine torque Tm is controlled so that the rotational speed of the rotating electrical machine 12 follows the target rotational speed.
  • the first clutch operation control unit 44 is a functional unit that controls the operation of the first clutch C1.
  • the first clutch operation control unit 44 controls the hydraulic pressure supplied to the first clutch C1 via the hydraulic pressure control device 25, and controls the engagement pressure of the first clutch C1, whereby the first clutch C1 operation control is performed.
  • the engagement pressure is set to be equal to or higher than the engagement boundary pressure (for example, complete engagement pressure).
  • the first clutch C1 is brought into a direct engagement state.
  • the first clutch C1 is brought into the slip engagement state by setting the engagement pressure to the slip engagement pressure not less than the release boundary pressure and less than the engagement boundary pressure.
  • the driving force is transmitted from the rotating shaft with the higher rotational speed toward the rotating shaft with the lower rotational speed while the input shaft I and the intermediate shaft M rotate relative to each other.
  • the maximum value of torque that can be transmitted in the direct engagement state or slip engagement state of the first clutch C1 is determined according to the engagement pressure of the first clutch C1 at that time.
  • the magnitude of the torque (transmission torque) transmitted by the first clutch C1 is equal to the transmission torque capacity in the slip engagement state.
  • the engagement pressure and the transmission torque are controlled by continuously controlling the amount of oil supplied to the first clutch C1 and the magnitude of the supply oil pressure with a proportional solenoid or the like in accordance with the oil pressure command for the first clutch C1. Increase / decrease in capacity can be controlled continuously.
  • the first clutch operation control unit 44 can switch between torque control and rotation speed control of the first clutch C1 in accordance with the traveling state of the vehicle 6.
  • the torque control is a control in which a target transmission torque capacity is set as a control target and the transmission torque capacity of the first clutch C1 follows the target transmission torque capacity.
  • the rotational speed control sets a target differential rotational speed, a rotational speed of the input side rotational member (input side engaging member), or a rotational speed of the output side rotational member (output side engaging member) as a control target,
  • the engagement pressure (hydraulic pressure) and transmission torque capacity of the first clutch C1 By controlling the engagement pressure (hydraulic pressure) and transmission torque capacity of the first clutch C1, the rotational speed difference between the two engagement members engaged by the first clutch C1 (in this example, the input shaft I and the intermediate shaft) M), the rotation speed of the input side rotation member (in this example, the input shaft I), or the rotation speed of the output side rotation member (in this example, the intermediate shaft M) is made to follow the control target. Control.
  • the transmission mechanism operation control unit 45 is a functional unit that controls the operation of the transmission mechanism 13.
  • the transmission mechanism operation control unit 45 determines a target gear position by referring to a predetermined map (shift map) based on the accelerator opening and the vehicle speed. Then, the transmission mechanism operation control unit 45 controls the hydraulic pressure supplied to predetermined clutches and brakes provided in the transmission mechanism 13 based on the determined target shift stage to form the target shift stage.
  • the second clutch C2 provided in the speed change mechanism 13 cooperates with a brake also provided in the speed change mechanism 13 to form the first speed stage that is the speed ratio of the maximum speed ratio.
  • the function unit that controls the operation of the second clutch C2 is specifically referred to as a second clutch operation control unit 45a here.
  • the second clutch operation control unit 45a controls the hydraulic pressure supplied to the second clutch C2 via the hydraulic control device 25, and controls the engagement pressure of the second clutch C2, thereby operating the second clutch C2. Take control.
  • the basic control and the operation control of the first clutch C1 by the first clutch operation control unit 44 are basically different except that the control target and the matters accompanying it are partially different. Is the same.
  • the target quantity acquisition unit 51 is a functional unit that acquires a target quantity B, which is a physical quantity related to the heat generation state of the engagement device. Specifically, the target amount acquisition unit 51 acquires at least one of the temperature and the heat generation amount of the second clutch C2 as the selection target amount B0. In the present embodiment, the target amount acquisition unit 51 further includes the first clutch C1. Is acquired as the first determination target amount B1, and at least one of the temperature and the heat generation amount of the second clutch C2 is acquired as the second determination target amount B2.
  • the selection target amount B0 and the second determination target amount B2 may be the same physical amount or different physical amounts.
  • the temperature of the first clutch C1 and the second clutch C2 can be obtained based on the detection result of a temperature sensor (not shown). Further, the amount of heat generated in the slip engagement state of the first clutch C1 and the second clutch C2 depends on the rotational speed difference between the two engagement members engaged by the clutch and the transmission torque capacity of the clutch. Based on (for example, based on the product of the rotational speed difference and the transmission torque capacity), it can be configured to be acquired. Note that the clutch temperature may be acquired based on the heat generation amount of the clutch (for example, based on the integrated value of the heat generation amount).
  • the target amount determination unit 53 compares the target amount B acquired by the target amount acquisition unit 51 with a reference value D (determination reference value) for the target amount B, and determines a magnitude relationship. Part. In the present embodiment, the target amount acquisition unit 51 acquires three of the selection target amount B0, the first determination target amount B1, and the second determination target amount B2 as the target amount B. Therefore, the target amount determination unit 53 For each of the three target amounts B, the magnitude relation with the corresponding reference value D is determined.
  • D determination reference value
  • the target amount determination unit 53 determines the magnitude relationship between the selection target amount B0 and a selection reference value D0 that is a reference value D for the selection target amount B0 that is determined in advance. In addition, the target amount determination unit 53 determines the magnitude relationship between the first determination target amount B1 and a first determination reference value D1 that is a reference value D for the first determination target amount B1 that is determined in advance. At the same time, the second determination target amount B2 is subjected to determination of a magnitude relationship with a second determination reference value D2 that is a reference value D for the second determination target amount B2. In the present embodiment, the target amount determination unit 53 further includes a first determination target amount B1 between a predetermined third determination reference value D3 that is a reference value D for the first determination target amount B1. Determine the magnitude relationship.
  • the selection reference value D0 and the second determination reference value D2 are set according to, for example, the heat resistance of the second clutch C2, and can be the same value.
  • the first determination reference value D1 and the third determination reference value D3 are set according to, for example, the heat resistance of the first clutch C1, and can be set to the same value.
  • all target amounts B B0, B1, B2
  • all reference values D D0, D1, D2, D3 are set to different values. .
  • the second determination reference value D2 is set to a value larger than the selection reference value D0
  • the third determination reference value D3 is set to a value larger than the first determination reference value D1, and the smaller side
  • the selection reference value D0, the first determination reference value D1, the second determination reference value D2, and the third determination reference value D3 are in the order (D0 ⁇ D1 ⁇ D2 ⁇ D3).
  • the reference value D for the target amount B is set for each of the temperature and the heat generation amount.
  • both the temperature and the calorific value are equal to or higher than the corresponding reference value D
  • a configuration in which the target amount B is determined to be greater than or equal to the reference value D when it is greater than or equal to the reference value D may be employed.
  • the mode control unit 52 controls each of the travel modes determined by the travel mode determination unit 41 by cooperatively controlling other functional units such as the first clutch operation control unit 44 and the second clutch operation control unit 45a. Is a functional unit that realizes each mode.
  • the travel modes that can be selected by the travel mode determination unit 41 include the first control mode, the second control mode, the third control mode, and the fourth control mode. The first control mode, the second control mode, the third control mode, and the fourth control mode can be switched.
  • the control executed by the mode control unit 52 includes a control for executing a first mode transition (refer to specific examples of FIGS. 6 to 8 described later) that is a mode transition from the first control mode to the second control mode. (First mode transition control) and control for executing the second mode transition (refer to specific examples of FIGS. 9 and 10 described later) which is a mode transition from the second control mode to the first control mode (first Two-mode transition control).
  • the mode control unit 52 performs the third control mode when the selection target amount B0 is less than the selection reference value D0 during the mode transition of at least one of the first mode transition and the second mode transition (both in this example). Then, the mode transition is executed, and when the selection target amount B0 is equal to or larger than the selection reference value D0, the mode transition is executed through the fourth control mode. In this embodiment, based on the selection target amount B0 at the start of execution of the first mode transition control and the second mode transition control, the mode transition is executed via any control mode of the third control mode and the fourth control mode. Decide what to do.
  • step # 01: Yes the target amount determination unit 53 determines the magnitude relationship between the selection target amount B0 and the selection reference value D0 (Ste # 02).
  • Step # 02 the target amount determination unit 53 determines that the selection target amount B0 is less than the selection reference value D0 (step 02: Yes)
  • control for shifting the first clutch C1 to the direct engagement state is started. (Step # 03).
  • step # 04: No Until the first clutch C1 is in the direct engagement state (step # 04: No), this transition control is continuously executed (step # 03), and when the first clutch C1 is in the direct engagement state (step # 03). Step # 04: Yes), the transition from the first control mode to the third control mode is completed.
  • step # 05 After the transition to the third control mode is completed, control for shifting the second clutch C2 to the direct engagement state is started (step # 05). Until the second clutch C2 is in the direct engagement state (step # 06: No), this transition control is continued (step # 05), and when the second clutch C2 is in the direct engagement state (step # 05). Step # 06: Yes), the transition from the third control mode to the second control mode is completed, and the first mode transition control ends.
  • step 02: No when the target amount determination unit 53 determines that the selection target amount B0 is greater than or equal to the selection reference value D0 (step 02: No), as shown in FIG. 2, the above-described steps # 03 to # 06 are performed.
  • the process (step # 07 to step # 10) in which the first clutch C1 and the second clutch C2 are switched is sequentially executed, and the first control mode via the fourth control mode is changed to the second control mode. Transition takes place.
  • the transition of the first clutch C1 from the slip engagement state to the direct engagement state and the transition of the second clutch C2 from the slip engagement state to the direct engagement state are executed.
  • the selection target amount B0 is less than the selection reference value D0
  • the transition to the direct engagement state is executed in the order of the first clutch C1 and the second clutch C2
  • the selection target amount B0 is selected as the selection reference.
  • the transition to the direct engagement state is executed in the order of the second clutch C2 and the first clutch C1.
  • the time during which the first clutch C1 is in the slip engagement state (hereinafter referred to as “slip time”) when the first mode transition control is executed is when the selection target amount B0 is less than the selection reference value D0. It becomes shorter than the slip time of the second clutch C2, and becomes longer than the slip time of the second clutch C2 when the selection target amount B0 is equal to or larger than the selection reference value D0.
  • step # 11 From the second control mode in which both the first clutch C1 and the second clutch C2 are in the direct engagement state, to the first control mode in which both the first clutch C1 and the second clutch C2 are in the slip engagement state
  • step # 12 the target amount determination unit 53 determines the magnitude relationship between the selection target amount B0 and the selection reference value D0 ( Step # 12).
  • step # 12 the control for shifting the second clutch C2 to the slip engagement state is performed. Start (step # 13).
  • step # 14: No Until the second clutch C2 is in the slip engagement state (step # 14: No), this transition control is continuously executed (step # 13), and when the second clutch C2 is in the slip engagement state (step # 13). Step # 14: Yes), the transition from the second control mode to the third control mode is completed.
  • step # 15 After the transition to the third control mode is completed, control for shifting the first clutch C1 to the slip engagement state is started (step # 15). Until the first clutch C1 is in the slip engagement state (step # 16: No), this transition control is continuously executed (step # 15), and when the first clutch C1 is in the slip engagement state (step # 15). Step # 16: Yes), the transition from the third control mode to the first control mode is completed, and the second mode transition control ends.
  • step 12 determines that the selection target amount B0 is greater than or equal to the selection reference value D0 (step 12: No)
  • the above-described steps # 13 to # 16 are performed.
  • the process (step # 17 to step # 20) in which the first clutch C1 and the second clutch C2 are switched is sequentially executed, and the second control mode via the fourth control mode is changed to the first control mode. Transition takes place.
  • the transition from the direct engagement state of the first clutch C1 to the slip engagement state and the transition of the second clutch C2 from the direct engagement state to the slip engagement state are executed.
  • the selection target amount B0 is less than the selection reference value D0
  • the transition to the slip engagement state is executed in the order of the second clutch C2 and the first clutch C1
  • the selection target amount B0 is the selection reference amount.
  • the transition to the slip engagement state is executed in the order of the first clutch C1 and the second clutch C2.
  • the slip time of the first clutch C1 is the second when the selection target amount B0 is less than the selection reference value D0, as in the first mode transition control.
  • the slip time of the second clutch C2 is longer than the slip time of the clutch C2.
  • the torque correction control unit 54 is a functional unit that executes torque correction control. In this torque correction control, torque reduction control for reducing the internal combustion engine torque Te when a predetermined condition is satisfied is executed. In the present embodiment, the torque correction control unit 54 executes two torque correction controls of the first torque correction control and the second torque correction control in parallel.
  • the first torque correction control will be described with reference to the flowchart of FIG.
  • the first determination target amount B1 is not less than the first determination reference value D1 (step # 23: Yes), and the second determination target amount.
  • wheel transmission driving force reduction control is executed as torque reduction control (step # 25).
  • the first torque correction control is executed during the execution of the first mode transition or the second mode transition (step # 21: Yes).
  • the wheel transmission driving force reduction control is executed at most once during the period in which the first control mode is continuously realized.
  • the first determination target amount B1 and the second determination target amount B2 are repeatedly acquired by the target amount acquisition unit 51 while the first control mode is realized.
  • the driving force transmitted to the wheels 15 (hereinafter referred to as “wheel transmission driving force”) is made smaller than the required driving force Td determined by the required driving force determination unit 42. Further, the control is to reduce the internal combustion engine torque Te. In the specific example of FIG. 8 to be described later, the wheel transmission driving force reduction control is executed at time T23, and the wheel transmission driving force is reduced from the required driving force Td in accordance with the reduction amount of the internal combustion engine torque Te.
  • the internal combustion engine torque Te and the rotating electrical machine torque Tm are basically controlled so that the wheel transmission driving force becomes equal to the required driving force Td.
  • the required driving force Td determined by the required driving force determination unit 42 is transmitted to the wheels 15.
  • step # 34 the second torque correction control is executed during the execution of the first mode transition or the second mode transition (step # 31: Yes).
  • step # 31: Yes the power generation amount reduction control is executed at most once during the period in which the first control mode is continuously realized.
  • the first determination target amount B1 is repeatedly acquired by the target amount acquisition unit 51 while the first control mode is realized.
  • the power generation amount reduction control reduces the amount of power generated by the rotating electrical machine 12 by reducing the rotating electrical machine torque Tm (more precisely, the absolute value of the rotating electrical machine torque Tm) and reduces the amount of decrease in the rotating electrical machine torque Tm.
  • the internal combustion engine torque Te is reduced.
  • the power generation amount reduction control is executed at time T24, and the internal combustion engine torque Te is reduced according to the reduction amount (reduction amount of the absolute value) of the rotating electrical machine torque Tm from the required regeneration torque. is doing.
  • the rotating electrical machine torque Tm is set to zero by the power generation amount reduction control, the amount of decrease in the rotating electrical machine torque Tm from the required regenerative torque is equal to the required regenerative torque.
  • the traveling mode is classified as if the rotating electrical machine 12 is generating power. That is, in the example shown in FIG. 8, the requested regenerative torque is continuously set even after the power generation amount reduction control is executed at time T24, and the traveling mode is the power generation mode even after time T24.
  • the vehicle 6 In the initial state (before time T01), the vehicle 6 is stopped, and the rotating electrical machine 12 is generating electric power by the internal combustion engine torque Te in the directly engaged state of the first clutch C1 and the released state of the second clutch C2.
  • the vehicle start condition for starting the vehicle 6 is satisfied at time T01, control is performed so that both the engagement pressure of the first clutch C1 and the engagement pressure of the second clutch C2 are slip engagement pressures ( Time T01-T02).
  • the vehicle start condition can be established when, for example, an accelerator pedal depression operation, a brake pedal release operation, or the like by the driver is detected.
  • the travel mode shifts to the first control mode time T02
  • the first mode shift control is started.
  • the selection target amount B0 is less than the selection reference value D0, and the first mode transition via the third control mode is performed. Is done. Also, although not shown in the figure, in this example, during the realization of the first control mode, the execution conditions (steps # 23 and # 24 in FIG. 4) of the wheel transmission driving force reduction control described above and the power generation amount reduction control are described. Is assumed that the execution condition (step # 33 in FIG. 5) is not satisfied.
  • the second clutch C2 in the slip engagement state is controlled by torque control based on the target transmission torque capacity.
  • the target transmission torque capacity is set according to the position of the second clutch C2 in the power transmission path so that the required driving force Td is transmitted to the wheels 15.
  • the first clutch C1 in the slip engagement state is controlled (rotational speed control) by rotational speed feedback control so that the rotational speed of the internal combustion engine 11 follows the target rotational speed.
  • the target rotation speed is set to a value equal to or higher than the lower limit rotation speed at which the internal combustion engine 11 can continue the independent operation (for example, an idle rotation speed or a value higher than the idle rotation speed).
  • the target rotational speed is set to the rotational speed of the internal combustion engine 11 at the start of the first control mode (time T02), and is maintained at the rotational speed during the realization of the first control mode.
  • the rotating electrical machine 12 is controlled by rotational speed control based on the target rotational speed.
  • the target rotational speed is set to a value that is higher than the converted rotational speed and lower than the rotational speed of the internal combustion engine 11 and that can secure the required power generation amount even when the rotational speed is the lowest.
  • the target rotational speed is set so that the difference from the converted rotational speed is constant. Therefore, as shown in FIG. 6, the rotational speed difference between the internal combustion engine 11 and the rotating electrical machine 12 decreases as the vehicle speed (converted rotational speed) increases.
  • the rotating electrical machine torque Tm is set based on a value (required regenerative torque) obtained by dividing the required power generation amount by the target rotational speed.
  • the slip-engaged second clutch C2 is controlled by torque control as in the first control mode.
  • the rotating electrical machine 12 is also controlled by the rotational speed control in the same way as when the first control mode is realized, and the target rotational speed at this time is set so that the difference from the converted rotational speed gradually decreases.
  • the difference between the rotation speed of the rotating electrical machine 12 and the converted rotation speed becomes equal to or less than a predetermined synchronization determination reference value at time T05
  • the engagement pressure of the second clutch C2 is increased toward the complete engagement pressure.
  • the second clutch C2 shifts to the direct engagement state, so that the travel mode shifts from the third control mode to the second control mode.
  • Each control executed from time T04 to time T06 corresponds to the control for shifting the second clutch C2 to the direct engagement state, which is executed in step # 05 of FIG. 2 described above.
  • the transition to the direct engagement state (time T03 to T04) of the first clutch C1 is performed in the slip engagement state of the second clutch C2. Is transmitted to the wheel 15. Further, in this example, since the period in which the rotating electrical machine 12 generates power in the slip engagement state of the first clutch C1 is only when the first control mode is realized, it results from torque transmission via the first clutch C1. It is also possible to increase energy generation efficiency by reducing energy loss.
  • this specific example is different from the first specific example (FIG. 6), and is a specific example of the first mode transition via the fourth control mode. It is.
  • the present specific example will be described focusing on differences from the first specific example. Points that are not particularly described are the same as those in the first specific example.
  • the traveling mode becomes the first control mode, and the first mode transition control is started.
  • the selection target amount B0 is not less than the selection reference value D0, and the first mode transition via the fourth control mode is performed. Is done.
  • the target rotational speed of the rotating electrical machine 12 is set to a constant value. Therefore, as the vehicle speed (converted rotation speed) increases, the difference between the rotation speed of the rotating electrical machine 12 and the converted rotation speed decreases.
  • the difference between the rotation speed of the rotating electrical machine 12 and the converted rotation speed becomes equal to or less than a predetermined synchronization determination reference value at time T13, the engagement pressure of the second clutch C2 is increased toward the complete engagement pressure. Then, at time T14, the second clutch C2 shifts to the direct engagement state, so that the travel mode shifts from the first control mode to the fourth control mode.
  • Each control executed from time T12 to time T14 corresponds to control for shifting the second clutch C2 to the direct engagement state, which is executed in step # 07 of FIG. 2 described above.
  • the first clutch C1 in the slip engagement state is controlled by rotational speed control in the same manner as when the first control mode is realized.
  • the target rotational speed of the rotating electrical machine 12 is set so that the difference from the rotational speed of the internal combustion engine 11 gradually decreases.
  • the engagement pressure of the first clutch C1 is increased toward the complete engagement pressure.
  • the travel mode shifts from the fourth control mode to the second control mode.
  • this specific example is different from the second specific example (FIG. 7) in that it is a specific example of the first mode transition via the fourth control mode. Although coincident, the wheel driving force reduction control and the power generation amount reduction control are executed during the realization of the first control mode, which is different from the second specific example.
  • the present specific example will be described focusing on differences from the second specific example. Points that are not particularly described are the same as those in the first and second specific examples.
  • all target amounts B are temperatures. Since the selection target amount B0 is equal to or greater than the selection reference value D0 when the first mode transition is executed (time T22), the first mode transition via the fourth control mode is performed. While the first control mode is being realized, each control is executed in the same manner as in the second specific example.
  • the first determination target amount B1 is equal to or greater than the first determination reference value D1
  • the second determination reference value D2 is more than 2nd determination reference value D2.
  • wheel transmission driving force reduction control is executed, and the internal combustion engine torque Te is reduced so that the wheel transmission driving force becomes smaller than the required driving force Td. At this time, since the rotating electrical machine torque Tm is kept constant, the wheel transmission driving force is reduced from the required driving force Td in accordance with the reduction in the internal combustion engine torque Te.
  • the first determination target amount B1 is equal to or greater than the third determination reference value D3.
  • the power generation amount reduction control is executed, and the rotating electrical machine torque Tm (more precisely, the absolute value of the rotating electrical machine torque Tm) is reduced from the required regenerative torque, and the internal combustion engine torque Te is reduced according to the reduction amount. .
  • the wheel transmission driving force does not change before and after the execution of the power generation amount reduction control.
  • the rotating electrical machine 12 may be configured to continue power generation by the rotating electrical machine torque Tm reduced by the execution of the power generation amount reduction control, but in this example, the rotating electrical machine torque Tm is set to zero by the power generation amount reduction control.
  • the power generation by the rotating electrical machine 12 is stopped. Thereafter, the same control as in the second specific example is performed.
  • Each of times T25, T26, T27, and T28 in this example corresponds to times T13, T14, T15, and T16 in the second specific example (FIG. 7).
  • the first determination target amount B1 is equal to or greater than the third determination reference value D3 during the realization of the first control mode. If not, only wheel transmission driving force reduction control is executed. Further, in the configuration in which the first determination reference value D1 is set to a value larger than the third determination reference value D3, not both the wheel transmission driving force decrease control and the power generation amount decrease control during the realization of the first control mode. In some cases, only the power generation amount reduction control is executed.
  • Second Mode Transition This specific example is a specific example of the second mode transition executed when the vehicle 6 is stopped from the state of traveling in the second control mode, as shown in FIG. It is. Note that the same control can be performed when the vehicle 6 continues to travel in the first control mode after the execution of the second mode transition (the same applies to FIG. 10).
  • the vehicle 6 In an initial state (before time T31), the vehicle 6 is traveling in the second control mode, and the rotating electrical machine 12 generates electric power with the internal combustion engine torque Te in a state where both the first clutch C1 and the second clutch C2 are directly connected. ing. And if the vehicle stop condition for stopping the vehicle 6 is satisfied at time T31, the second mode transition control is started.
  • the vehicle stop condition may be established when, for example, an accelerator pedal release operation or a brake pedal depression operation by the driver is detected.
  • the selection target amount B0 is less than the selection reference value D0 at the start of execution of the second mode transition control (time T31), and the second mode transition via the third control mode is performed. Is done. Therefore, in this example, the engagement pressure of the second clutch C2 is reduced to the slip engagement pressure at time T31. Thereby, the second clutch C2 shifts to the slip engagement state, and the travel mode shifts from the second control mode to the third control mode.
  • the control for lowering the engagement pressure of the second clutch C2 executed at time T31 is executed in step # 13 of FIG. 3 described above for shifting the second clutch C2 to the slip engagement state. It corresponds to.
  • the second clutch C2 in the slip engagement state is controlled by torque control based on the target transmission torque capacity.
  • the target transmission torque capacity is set according to the position of the second clutch C2 in the power transmission path so that the required driving force Td is transmitted to the wheels 15.
  • the rotating electrical machine 12 is controlled by rotational speed control based on the target rotational speed.
  • the target rotational speed is a value that is higher than the converted rotational speed and equal to or higher than the lower limit rotational speed at which the internal combustion engine 11 can continue the independent operation (for example, a value higher than the idle rotational speed or the idle rotational speed). It is set to a value that can secure the amount of power generation.
  • the target rotation speed is set to the rotation speed of the rotating electrical machine 12 at the start of the third control mode (time T31), and is maintained at the rotation speed while the third control mode is realized. Therefore, as the vehicle speed (converted rotational speed) decreases, the difference between the rotational speed of the rotating electrical machine 12 and the converted rotational speed increases.
  • the slip-engaged second clutch C2 is controlled by torque control as in the third control mode.
  • the first clutch C1 in the slip engagement state is controlled (rotational speed control) by rotational speed feedback control so that the rotational speed of the internal combustion engine 11 follows the target rotational speed.
  • the target rotation speed is set to a value equal to or higher than the lower limit rotation speed at which the internal combustion engine 11 can continue the independent operation (for example, an idle rotation speed or a value higher than the idle rotation speed).
  • the target rotational speed is set to the rotational speed of the internal combustion engine 11 at the start of the first control mode (time T32), and is maintained at the rotational speed during the realization of the first control mode.
  • the rotating electrical machine 12 is controlled by the rotational speed control in the same way as when the third control mode is realized.
  • the target rotational speed at this time is higher than the converted rotational speed and the rotational speed of the internal combustion engine 11.
  • the lower value is set to a value that can secure the required power generation amount.
  • the target rotational speed is set so that the difference from the converted rotational speed is constant. Therefore, as shown in FIG. 9, the target rotational speed of the rotating electrical machine 12 decreases as the vehicle speed (converted rotational speed) decreases, and the target rotational speed is maintained at a constant value after time T33 when the vehicle 6 stops. Is done.
  • step # 23 and # 24 in FIG. 4 After the transition to the first control mode (after time T32), the above-described wheel transmission driving force reduction control execution conditions (steps # 23 and # 24 in FIG. 4) and the power generation amount reduction control are executed. It is assumed that the condition (step # 33 in FIG. 5) is not satisfied.
  • this specific example is different from the first specific example (FIG. 9), and is a specific example of the second mode transition via the fourth control mode. It is.
  • the present specific example will be described focusing on differences from the first specific example. Points that are not particularly described are the same as those in the first specific example.
  • the selection target amount B0 is greater than or equal to the selection reference value D0, and the second mode transition via the fourth control mode is performed. Is done. Therefore, in this example, at time T41, the engagement pressure of the first clutch C1 is reduced to the slip engagement pressure. Thereby, the first clutch C1 shifts to the slip engagement state, and the travel mode shifts from the second control mode to the fourth control mode.
  • the control for lowering the engagement pressure of the first clutch C1 executed at the time T41 is executed in step # 17 of FIG. 3 described above for controlling the first clutch C1 to the slip engagement state. It corresponds to.
  • the first clutch C1 in the slip engagement state is controlled (rotational speed) by rotational speed feedback control so that the rotational speed of the internal combustion engine 11 follows the target rotational speed.
  • Speed control the target rotation speed is set to a value equal to or higher than the lower limit rotation speed at which the internal combustion engine 11 can continue the independent operation (for example, an idle rotation speed or a value higher than the idle rotation speed).
  • the target rotational speed is set to the rotational speed of the internal combustion engine 11 at the start of the fourth control mode (time T41), and during the realization of the fourth control mode and the subsequent realization of the first control mode, The rotation speed is maintained. Therefore, as shown in FIG. 10, the rotational speed difference between the internal combustion engine 11 and the rotating electrical machine 12 increases as the vehicle speed (converted rotational speed) decreases.
  • the first clutch C1 in the slip engagement state is controlled by the rotational speed control as in the case of realizing the fourth control mode.
  • the slip-engaged second clutch C2 is controlled by torque control based on the target transmission torque capacity.
  • the target transmission torque capacity is set according to the position of the second clutch C2 in the power transmission path so that the required driving force Td is transmitted to the wheels 15.
  • the rotating electrical machine 12 is controlled by rotational speed control based on the target rotational speed.
  • the target rotational speed is set to a value that is higher than the converted rotational speed and lower than the rotational speed of the internal combustion engine 11 and that can secure the required power generation amount.
  • this target rotational speed is set to a constant value. Therefore, as shown in FIG. 10, as the vehicle speed (converted rotational speed) decreases, the difference between the rotational speed of the rotating electrical machine 12 and the converted rotational speed increases, and after time T43 when the vehicle 6 stops, the rotating electrical machine 12 The difference between the rotation speed and the converted rotation speed is constant.
  • the configuration in which the torque correction control unit 54 executes the two torque correction controls of the first torque correction control and the second torque correction control in parallel has been described as an example.
  • the embodiment of the present invention is not limited to this, and any one of a configuration that executes only one of the first torque correction control and the second torque correction control, or any of the first torque correction control and the second torque correction control. It is also possible to adopt a configuration in which neither is executed.
  • the mode transition is executed through the third control mode.
  • the configuration is described in which the mode transition is performed through the fourth control mode when the selection target amount B0 is equal to or greater than the selection reference value D0.
  • the embodiment of the present invention is not limited to this.
  • the case where the selection target amount B0 is less than the selection reference value D0 is the third. It is also possible to adopt a configuration in which the mode transition is executed through the control mode and the mode transition is executed through the fourth control mode when the selection target amount B0 is equal to or larger than the selection reference value D0.
  • the other mode transition can be configured such that the travel mode through which the mode passes is fixed.
  • the travel mode that passes through may be a travel mode that is different from the third control mode or the fourth control mode.
  • the determination as to which mode transition is to be executed via the third control mode or the fourth control mode is the execution of the first mode transition control or the second mode transition control.
  • the configuration executed at the start has been described as an example.
  • the embodiment of the present invention is not limited to this, and the determination of the magnitude relationship between the selection target amount B0 and the selection reference value D0 is also executed during the mode transition control, and the magnitude relationship is reversed. In such a case, it is possible to adopt a configuration in which the traveling mode through which the route passes is switched.
  • the configuration in which one of the gear shifting engagement devices (second clutch C2) in the speed change mechanism 13 is the “second engagement device” has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, in the power transmission path connecting the internal combustion engine 11 and the wheel 15, if the engagement device is provided on the wheel 15 side of the rotating electrical machine 12, the other engagement device in the speed change mechanism 13 is “second engagement”. It may be a combined device.
  • a fluid coupling such as a torque converter
  • a lock-up clutch included in the fluid coupling may be used as the “second engagement device”.
  • a dedicated transmission clutch may be provided between the rotating electrical machine 12 and the wheel 15 and the transmission clutch may be a “second engagement device”.
  • an automatic continuously variable transmission mechanism, a manual stepped transmission mechanism, a fixed transmission mechanism, or the like can be used as the transmission mechanism 13. Further, the position of the transmission mechanism 13 can also be set arbitrarily.
  • the configuration in which the first clutch C1 and the second clutch C2 are hydraulically driven engagement devices in which the engagement pressure is controlled according to the supply hydraulic pressure has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, it is only necessary that the transmission torque capacity can be adjusted according to the increase or decrease of the engagement pressure.
  • one or both of them can be controlled by electromagnetic engagement in which the engagement pressure is controlled according to the electromagnetic force. It is good also as an apparatus.
  • the configuration in which the internal combustion engine control device 30 is provided separately from the control device 40 has been described as an example.
  • the embodiment of the present invention is not limited to this, and the internal combustion engine control device 30 may be integrated with the control device 40.
  • the assignment of the function units in the control device 40 described in the above embodiment is merely an example, and a plurality of function units can be combined or one function unit can be further divided.
  • the present invention controls a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the internal combustion engine side in a power transmission path that connects the internal combustion engine and wheels. It can utilize suitably for the control apparatus.
  • driving device 11 internal combustion engine 12: rotating electrical machine 15: wheel 40: control device 51: target amount acquisition unit 52: mode control unit B0: selection target amount B1: first determination target amount B2: second determination target amount D0 : Selection reference value D1: First determination reference value D2: Second determination reference value D3: Third determination reference value C1: First clutch (first engagement device) C2: Second clutch (second engagement device) Td: Required driving force

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

 所望の発電量を確保することが容易な制御装置を実現する。第一制御モードと、第二制御モードと、第一係合装置C1の直結係合状態且つ第二係合装置C2のスリップ係合状態で回転電機(12)に発電を行わせる第三制御モードと、第一係合装置C1のスリップ係合状態且つ第二係合装置C2の直結係合状態で回転電機(12)に発電を行わせる第四制御モードと、を切り替えるモード制御部(52)と、第二係合装置C2の温度及び発熱量の少なくとも一方を選択対象量として取得する対象量取得部(51)と、を備え、モード制御部(52)は、第一制御モードから第二制御モード及び第二制御モードから第一制御モードの少なくとも一方のモード移行に際し、選択対象量が予め定められた選択基準値未満である場合は第三制御モードを経てモード移行を実行し、選択対象量が選択基準値以上である場合には第四制御モードを経てモード移行を実行する。

Description

制御装置
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置、が設けられた車両用駆動装置を制御対象とする制御装置に関する。
 上記のような制御装置の従来技術として、例えば下記の特許文献1に記載された技術がある。この背景技術の欄の説明では、〔〕内に特許文献1における部材名を引用する。この制御装置は、第一係合装置〔第1クラッチCL1〕の直結係合状態且つ第二係合装置〔第2クラッチCL2〕のスリップ係合状態で回転電機〔モータジェネレータMG〕に発電を行わせるWSC積極的発電モードを実現可能に構成されている。このWSC積極的発電モードでは、内燃機関〔エンジンE〕の駆動力を用いて車両を走行させつつ、当該駆動力を用いて回転電機に発電を行わせることができる。
 しかしながら、WSC積極的発電モードでは第二係合装置のみがスリップ係合状態とされるため、第二係合装置によって係合される2つの係合部材の間の回転速度差が比較的大きくなりやすい。そのため、特許文献1の構成では、第二係合装置の温度によってはWSC積極的発電モードの使用が制限され、所望の発電量(電力量)を確保することができないおそれがある。
特開2008-7094号公報(段落0056~0058、図6等)
 そこで、所望の発電量を確保することが容易な制御装置の実現が望まれる。
 本発明に係る、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置、が設けられた車両用駆動装置を制御対象とする制御装置の特徴構成は、前記第一係合装置及び前記第二係合装置の双方のスリップ係合状態で前記回転電機に発電を行わせる第一制御モードと、前記第一係合装置及び前記第二係合装置の双方の直結係合状態で前記回転電機に発電を行わせる第二制御モードと、前記第一係合装置の直結係合状態且つ前記第二係合装置のスリップ係合状態で前記回転電機に発電を行わせる第三制御モードと、前記第一係合装置のスリップ係合状態且つ前記第二係合装置の直結係合状態で前記回転電機に発電を行わせる第四制御モードと、を切り替えるモード制御部と、前記第二係合装置の温度及び発熱量の少なくとも一方を選択対象量として取得する対象量取得部と、を備え、前記モード制御部は、前記第一制御モードから前記第二制御モード及び前記第二制御モードから前記第一制御モードの少なくとも一方のモード移行に際し、前記選択対象量が予め定められた選択基準値未満である場合は前記第三制御モードを経て前記モード移行を実行し、前記選択対象量が前記選択基準値以上である場合には前記第四制御モードを経て前記モード移行を実行する点にある。
 なお、「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 また、「直結係合状態」は、対象となる係合装置によって係合される2つの係合部材が一体回転する状態で係合されている状態を表し、「スリップ係合状態」は、当該2つの係合部材が回転速度差を有する状態で駆動力を伝達可能に係合されている状態を表す。
 上記の特徴構成によれば、第一係合装置及び第二係合装置の双方のスリップ係合状態で回転電機に発電を行わせる第一制御モードを実現できるため、係合対象の2つの係合部材の間の回転速度差を、第一係合装置及び第二係合装置の双方について小さく抑えることができ、第一係合装置及び第二係合装置の何れについても発熱量を抑制することができる。よって、回転電機に発電を行わせる第一制御モードを比較的多くの状況下で実現でき、所望の発電量を確保するのが容易となる。
 そして、上記の特徴構成によれば、第一制御モードと第二制御モードとの間の少なくとも何れか一方向側のモード移行に際し、選択対象量と選択基準値との間の大小関係に基づき第二係合装置の発熱状態を推定して、経由するモードを第三制御モード及び第四制御モードの中から適切に選択することができる。すなわち、第二係合装置の温度上昇が許容される場合には、内燃機関のトルクを直接回転電機に伝達できる第三制御モードを選択してエネルギ効率の向上を図り、そうでない場合には、第四制御モードを選択して第二係合装置の発熱量を抑制することができる。これにより、第二係合装置を保護しつつ、所望の発電量を確保することを容易とする第一制御モードへの移行又は当該第一制御モードから他モードへの移行を適切に実行することができる。
 ここで、前記対象量取得部は、前記第一係合装置の温度及び発熱量の少なくとも一方を第一判定対象量として取得するとともに、前記第二係合装置の温度及び発熱量の少なくとも一方を第二判定対象量として取得し、前記第一制御モードにおいて、前記第一判定対象量が予め定められた第一判定基準値未満であり、且つ前記第二判定対象量が予め定められた第二判定基準値未満である場合には、前記車輪を駆動するために要求される要求駆動力が当該車輪に伝達されるように前記要求駆動力に応じた制御を実行し、前記第一制御モードにおいて、前記第一判定対象量が前記第一判定基準値以上であり、且つ前記第二判定対象量が前記第二判定基準値以上である場合には、前記車輪に伝達される駆動力が前記要求駆動力より小さくなるように、前記内燃機関の出力トルクを低下させる制御を実行すると好適である。
 この構成によれば、第一判定対象量が第一判定基準値以上であるとともに第二判定対象量が第二判定基準値以上である場合に、内燃機関の出力トルクを低下させることで第一係合装置及び第二係合装置の双方について伝達トルクを低下させることができる。従って、双方の係合装置の発熱量を低減して温度上昇を抑制することができる。
 また、前記対象量取得部は、前記第一係合装置の温度及び発熱量の少なくとも一方を第一判定対象量として取得し、前記第一制御モードにおいて、前記第一判定対象量が予め定められた第三判定基準値以上となった場合には、前記回転電機の出力トルクを低下させることで当該回転電機による発電量を低下させるとともに、前記回転電機の出力トルクの低下分に応じて前記内燃機関の出力トルクを低下させる制御を実行すると好適である。
 この構成によれば、第一判定対象量が第三判定基準値以上となった場合に、内燃機関の出力トルクの低下分に応じて第一係合装置の伝達トルクを低下させることができるため、第一係合装置の発熱量を低減して温度上昇を抑制することができる。この際、回転電機の出力トルクの低下分に応じて内燃機関の出力トルクが低下されるため、車輪に伝達される駆動力を維持することが可能である。
本発明の実施形態に係る制御装置及びその制御対象である車両用駆動装置の概略構成を示す模式図である。 本発明の実施形態に係る第一モード移行制御の処理手順を示すフローチャートである。 本発明の実施形態に係る第二モード移行制御の処理手順を示すフローチャートである。 本発明の実施形態に係る第一トルク補正制御の処理手順を示すフローチャートである。 本発明の実施形態に係る第二トルク補正制御の処理手順を示すフローチャートである。 本発明の実施形態に係る第一モード移行の第一の具体例を示すタイムチャートである。 本発明の実施形態に係る第一モード移行の第二の具体例を示すタイムチャートである。 本発明の実施形態に係る第一モード移行の第三の具体例を示すタイムチャートである。 本発明の実施形態に係る第二モード移行の第一の具体例を示すタイムチャートである。 本発明の実施形態に係る第二モード移行の第二の具体例を示すタイムチャートである。
 本発明に係る制御装置の実施形態について、図面を参照して説明する。図1に示すように、本実施形態に係る制御装置40は、内燃機関11及び回転電機12の双方を備えた車両6(ハイブリッド車両)を駆動するための駆動装置1を制御対象とする、車両用駆動装置用の制御装置である。以下、本実施形態に係る駆動装置1及び制御装置40について、順に説明する。
 なお、以下の説明では、「駆動連結」は、2つの回転要素が駆動力を伝達可能に連結された状態を意味し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材には、回転を同速で又は変速して伝達する各種の部材(例えば、軸、歯車機構、ベルト、チェーン等)が含まれる。ここで、「駆動力」は「トルク」と同義で用いている。
 また、各係合装置についての「係合圧」は、例えば油圧サーボ機構等により当該係合装置によって係合される2つの係合部材を相互に押し付け合う圧力を表す。また、「解放圧」は、当該係合装置が定常的に解放状態(係合装置によって係合される2つの係合部材の間で回転及び駆動力が伝達されない状態)となる圧を表す。「解放境界圧」は、当該係合装置が解放状態とスリップ係合状態との境界のスリップ境界状態となる圧(解放側スリップ境界圧)を表す。「係合境界圧」は、当該係合装置がスリップ係合状態と直結係合状態との境界のスリップ境界状態となる圧(係合側スリップ境界圧)を表す。「完全係合圧」は、当該係合装置が定常的に直結係合状態となる圧を表す。
1.駆動装置の構成
 本実施形態に係る制御装置40による制御対象となる駆動装置1は、いわゆる1モータパラレル方式のハイブリッド車両用の駆動装置として構成されている。図1に示すように、この駆動装置1は、内燃機関11と車輪15とを結ぶ動力伝達経路に、内燃機関11の側から順に、第一クラッチC1、回転電機12、及び第二クラッチC2(変速機構13)を備えている。すなわち、内燃機関11と車輪15とを結ぶ動力伝達経路に回転電機12が設けられていると共に、内燃機関11と回転電機12との間に第一クラッチC1が設けられ、回転電機12と車輪15との間に第二クラッチC2(変速機構13)が設けられている。
 内燃機関11は、機関内部における燃料の燃焼により駆動されて動力を取り出す原動機であり、例えばガソリンエンジンやディーゼルエンジン等を用いることができる。内燃機関11は、入力軸Iに駆動連結されている。本例では、内燃機関11のクランクシャフト等の内燃機関出力軸と入力軸Iとが一体回転する。
 第一クラッチC1は、内燃機関11と回転電機12との間の駆動連結(駆動力の伝達)を解除可能に設けられている。第一クラッチC1は、入力軸Iと中間軸M及び出力軸Oとを選択的に駆動連結(言い換えれば内燃機関11と回転電機12及び車輪15とを選択的に駆動連結)する摩擦係合装置であり、車輪15から内燃機関11を切り離す内燃機関切離用クラッチとして機能する。第一クラッチC1としては、湿式多板クラッチや乾式単板クラッチ等を用いることができる。本実施形態では、第一クラッチC1が本発明における「第一係合装置」に相当する。
 回転電機12は、ロータとステータとを有して構成され(図示せず)、回転電機12のロータが中間軸Mに駆動連結されている。本例では、中間軸Mが回転電機12のロータ軸として機能し、ロータと中間軸Mとが一体回転する。回転電機12は、インバータ装置27を介してバッテリやキャパシタ等の蓄電装置28に電気的に接続されている。回転電機12は、蓄電装置28から電力の供給を受けて力行し、或いは、内燃機関11の出力トルク(内燃機関トルクTe)や車両6の慣性力により発電した電力を蓄電装置28に供給して蓄電する。ロータ軸としての中間軸Mは、変速機構13の入力軸(変速入力軸)となっている。
 変速機構13は、変速比の異なる複数の変速段を切替可能に有する自動有段変速機構である。変速機構13は、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と、この歯車機構の回転要素の係合又は解放を行うクラッチやブレーキ等の複数の係合装置(本例では摩擦係合装置)とを備えている。これら複数の係合装置としては、湿式多板クラッチ等を用いることができる。また本実施形態では、これら複数の係合装置には第二クラッチC2が含まれ、これ以外にも他のクラッチ、ブレーキ等が含まれている。本実施形態では、第二クラッチC2が本発明における「第二係合装置」に相当する。
 変速機構13は、変速用の複数の係合装置の係合状態に応じて形成される各変速段についてそれぞれ設定された変速比に基づいて、中間軸M(変速入力軸)の回転速度を変速すると共にトルクを変換して、変速機構13の出力軸(変速出力軸)としての出力軸Oに伝達する。なお、「変速比」は、出力軸O(変速出力軸)の回転速度に対する中間軸M(変速入力軸)の回転速度の比である。変速機構13から出力軸Oに伝達されたトルクは、出力用差動歯車装置14を介して左右2つの車輪15に分配されて伝達される。これにより、駆動装置1は、内燃機関11及び回転電機12の一方又は双方のトルクを車輪15に伝達して車両6を走行させることができる。
 本実施形態では、駆動装置1は、中間軸Mに駆動連結されたオイルポンプ(図示せず)を備えている。オイルポンプは、回転電機12及び内燃機関11の一方又は双方の駆動力により駆動されて作動し、油圧を発生させる。オイルポンプからの油は、油圧制御装置25により所定油圧に調整されてから、第一クラッチC1や第二クラッチC2等に供給される。このオイルポンプとは別に、専用の駆動モータを有するオイルポンプを備えた構成としても良い。
 図1に示すように、車両6には、入力軸回転速度センサSe1、中間軸回転速度センサSe2、及び出力軸回転速度センサSe3が備えられている。入力軸回転速度センサSe1は、入力軸Iの回転速度を検出するセンサである。入力軸回転速度センサSe1により検出される入力軸Iの回転速度は、内燃機関11の回転速度に等しい。
 中間軸回転速度センサSe2は、中間軸Mの回転速度を検出するセンサである。中間軸Mの回転速度は、回転電機12のロータの回転速度に等しく、また、変速入力軸の回転速度にも等しい。そのため、中間軸回転速度センサSe2は、例えば、回転電機12に備えられる回転センサ(レゾルバ等)や、変速機構13に備えられる変速入力センサ(パルス型検出器等)を用いることができる。
 出力軸回転速度センサSe3は、出力軸Oの回転速度を検出するセンサである。出力軸Oの回転速度は、変速出力軸の回転速度に等しいため、出力軸回転速度センサSe3は、例えば、変速機構13に備えられる変速出力センサ(パルス型検出器等)を用いることができる。制御装置40は、出力軸回転速度センサSe3により検出される出力軸Oの回転速度に基づいて、車両6の走行速度である車速を導出する。
2.制御装置の構成
 図1に示すように、本実施形態に係る制御装置40は、走行モード決定部41、要求駆動力決定部42、回転電機制御部43、第一クラッチ動作制御部44、変速機構動作制御部45、対象量取得部51、モード制御部52、対象量判定部53、及びトルク補正制御部54を備えている。これらの各機能部は、互いに情報の受け渡しを行うことができるように構成されている。
 制御装置40は、CPU等の演算処理装置を中核として備えると共に、RAMやROM等の記憶装置等を有して構成される。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置40の各機能部が構成されている。なお、プログラムにより構成される機能部については、制御装置40が備える演算処理装置が、当該プログラムを実行するコンピュータとして動作する。
 図1に示すように、車両6には、内燃機関11の動作制御を行う内燃機関制御装置30が備えられている。内燃機関制御装置30と制御装置40とは、互いに情報の受け渡しを行うことができるように構成されている。そして、内燃機関制御装置30は、制御装置40からの指令に基づき、内燃機関11の動作点(内燃機関トルクTe及び回転速度)を制御する。また、制御装置40は、上述した入力軸回転速度センサSe1、中間軸回転速度センサSe2、及び出力軸回転速度センサSe3による検出結果の情報を取得可能に構成されているとともに、アクセルペダル(図示せず)の操作量(又はアクセル開度)を検出するセンサ、ブレーキペダル(図示せず)の操作量を検出するセンサ、蓄電装置28の状態(蓄電量や温度等)を検出するセンサ等からの情報も取得可能に構成されている。
2-1.走行モード決定部の構成
 走行モード決定部41は、車両6の走行モードを決定する機能部である。走行モード決定部41は、例えば車速やアクセル開度、蓄電装置28の蓄電量等に基づいて、所定のマップ(モード選択マップ)を参照する等して駆動装置1が実現すべき走行モードを決定する。
 本実施形態では、走行モード決定部41が選択可能な走行モードには、電動走行モード及びパラレル走行モードが含まれる。電動走行モードでは、第一クラッチC1の解放状態且つ第二クラッチC2の直結係合状態で、基本的に、回転電機12が力行してその出力トルク(回転電機トルクTm)のみにより車両6を走行させる。パラレル走行モードでは、第一クラッチC1及び第二クラッチC2の双方の直結係合状態、第一クラッチC1及び第二クラッチC2の一方のスリップ係合状態且つ他方の直結係合状態、又は第一クラッチC1及び第二クラッチC2の双方のスリップ係合状態で、基本的に、少なくとも内燃機関トルクTeにより車両6を走行させる。
 パラレル走行モードには、回転電機12が正方向(力行方向)のトルクを出力して内燃機関トルクTeによる駆動力を補助する走行モードに加えて、回転電機12が負方向(発電方向)のトルク(回生トルク)を出力して内燃機関トルクTeの一部により発電する走行モードが含まれる。
 具体的には、内燃機関トルクTeを利用して回転電機12に発電させつつ車両6を走行させるパラレル走行モード(発電モード)には、第一制御モード、第二制御モード、第三制御モード、及び第四制御モードが含まれる。第一制御モードでは、第一クラッチC1及び第二クラッチC2の双方のスリップ係合状態で回転電機12が発電する。第二制御モードでは、第一クラッチC1及び第二クラッチC2の双方の直結係合状態で回転電機12が発電する。第三制御モードでは、第一クラッチC1の直結係合状態且つ第二クラッチC2のスリップ係合状態で回転電機12が発電する。第四制御モードでは、第一クラッチC1のスリップ係合状態且つ第二クラッチC2の直結係合状態で回転電機12が発電する。
2-2.要求駆動力決定部の構成
 要求駆動力決定部42は、車両6を走行させるべく車輪15を駆動するために要求される要求駆動力Tdを決定する機能部である。要求駆動力決定部42は、車速とアクセル開度とに基づいて、所定のマップ(要求駆動力決定マップ)を参照する等して要求駆動力Tdを決定する。このようにして決定される要求駆動力Tdは、基本的に、運転者の人為的な操作(例えばアクセル操作等)に応じた挙動を実現するために必要な駆動力と等しくなる。決定された要求駆動力Tdに基づき、内燃機関11及び回転電機12のそれぞれが受け持つ分担駆動力が、各分担駆動力の和が要求駆動力Tdに等しくなるように決定される。そして、決定された分担駆動力が車輪15に伝達されるように、内燃機関制御装置30による内燃機関11の制御、及び回転電機制御部43による回転電機12の制御が実行される。これにより、車輪15には基本的に、要求駆動力Tdと同じ大きさの駆動力が伝達される。
 なお、回転電機12に発電を行わせる必要がある場合には、回転電機トルクTmは、要求される発電量を発電するために必要となる負トルク(以下、「要求回生トルク」という。)に設定される。この場合、回転電機12についての分担駆動力が負の値となるため、内燃機関11についての分担駆動力は、要求駆動力Tdよりも大きな値となる。
2-3.回転電機制御部の構成
 回転電機制御部43は、回転電機12の動作制御を行う機能部である。回転電機制御部43は、インバータ装置27を制御することで回転電機12の動作点(回転電機トルクTm及び回転速度)を制御する。本実施形態では、回転電機制御部43は、車両6の走行状態に応じて回転電機12のトルク制御と回転速度制御とを切り替えことが可能である。ここで、トルク制御は、制御目標として目標トルクを設定し、回転電機トルクTmをその目標トルクに追従させる(近づける)制御である。また、回転速度制御は、制御目標として目標回転速度を設定し、回転電機トルクTmを制御して回転電機12の回転速度をその目標回転速度に追従させる制御である。
2-4.第一クラッチ動作制御部の構成
 第一クラッチ動作制御部44は、第一クラッチC1の動作制御を行う機能部である。ここで、第一クラッチ動作制御部44は、油圧制御装置25を介して第一クラッチC1に供給される油圧を制御し、第一クラッチC1の係合圧を制御することにより、当該第一クラッチC1の動作制御を行う。具体的には、係合圧を解放境界圧未満(例えば解放圧)とすることにより第一クラッチC1を解放状態とし、係合圧を係合境界圧以上(例えば完全係合圧)とすることにより第一クラッチC1を直結係合状態とする。また、係合圧を解放境界圧以上係合境界圧未満のスリップ係合圧とすることにより、第一クラッチC1をスリップ係合状態とする。
 第一クラッチC1のスリップ係合状態では、入力軸Iと中間軸Mとが相対回転する状態で、回転速度が高い方の回転軸から低い方の回転軸に向かって駆動力が伝達される。なお、第一クラッチC1の直結係合状態又はスリップ係合状態で伝達可能なトルクの最大値(伝達トルク容量)は、第一クラッチC1のその時点での係合圧に応じて決まる。そして、第一クラッチC1が伝達するトルク(伝達トルク)の大きさは、スリップ係合状態では伝達トルク容量に等しくなる。本実施形態では、第一クラッチC1に対する油圧指令に応じて、比例ソレノイド等で第一クラッチC1への供給油量及び供給油圧の大きさを連続的に制御することにより、係合圧及び伝達トルク容量の増減が連続的に制御可能である。
 本実施形態では、第一クラッチ動作制御部44は、車両6の走行状態に応じて第一クラッチC1のトルク制御と回転速度制御とを切り替えることが可能である。ここで、トルク制御は、制御目標として目標伝達トルク容量を設定し、第一クラッチC1の伝達トルク容量をその目標伝達トルク容量に追従させる制御である。また、回転速度制御は、制御目標として、目標差回転速度、入力側回転部材(入力側係合部材)の回転速度、或いは出力側回転部材(出力側係合部材)の回転速度を設定し、第一クラッチC1の係合圧(油圧)や伝達トルク容量を制御して、第一クラッチC1によって係合される2つの係合部材の間の回転速度差(本例では入力軸Iと中間軸Mとの間の回転速度差)、入力側回転部材(本例では入力軸I)の回転速度、或いは出力側回転部材(本例では中間軸M)の回転速度を、その制御目標に追従させる制御である。
2-5.変速機構動作制御部の構成
 変速機構動作制御部45は、変速機構13の動作制御を行う機能部である。変速機構動作制御部45は、アクセル開度及び車速に基づいて、所定のマップ(変速マップ)を参照する等して目標変速段を決定する。そして、変速機構動作制御部45は、決定された目標変速段に基づいて、変速機構13内に備えられる所定のクラッチ及びブレーキ等への供給油圧を制御して目標変速段を形成する。
 変速機構13に備えられる第二クラッチC2は、本例では、同じく変速機構13に備えられるブレーキと協働して、最大変速比の変速段である第1速段を形成する。変速機構動作制御部45のうち、第二クラッチC2の動作制御を行う機能部を、ここでは特に第二クラッチ動作制御部45aとする。第二クラッチ動作制御部45aは、油圧制御装置25を介して第二クラッチC2に供給される油圧を制御し、第二クラッチC2の係合圧を制御することにより、当該第二クラッチC2の動作制御を行う。第二クラッチ動作制御部45aによる第二クラッチC2の動作制御に関しては、制御対象及びそれに付随する事項が一部異なるだけで、第一クラッチ動作制御部44による第一クラッチC1の動作制御と基本的には同様である。
2-6.対象量取得部の構成
 対象量取得部51は、係合装置の発熱状態に関する物理量である対象量Bを取得する機能部である。具体的には、対象量取得部51は、第二クラッチC2の温度及び発熱量の少なくとも一方を選択対象量B0として取得し、本実施形態では更に、対象量取得部51は、第一クラッチC1の温度及び発熱量の少なくとも一方を第一判定対象量B1として取得するとともに、第二クラッチC2の温度及び発熱量の少なくとも一方を第二判定対象量B2として取得する。なお、選択対象量B0と第二判定対象量B2とは、互いに同一の物理量としても互い異なる物理量としても良い。
 第一クラッチC1や第二クラッチC2の温度は、温度センサ(図示せず)の検出結果に基づき取得される構成とすることができる。また、第一クラッチC1や第二クラッチC2のスリップ係合状態での発熱量は、当該クラッチによって係合される2つの係合部材の間の回転速度差と、当該クラッチの伝達トルク容量とに基づき(例えば回転速度差と伝達トルク容量との積に基づき)取得される構成とすることができる。なお、クラッチの温度が、当該クラッチの発熱量に基づき(例えば発熱量の積算値に基づき)取得される構成とすることもできる。
2-7.対象量判定部の構成
 対象量判定部53は、対象量取得部51が取得した対象量Bを、当該対象量Bについての基準値D(判定基準値)と比較して大小関係を判定する機能部である。本実施形態では、対象量取得部51は、対象量Bとして選択対象量B0、第一判定対象量B1、及び第二判定対象量B2の3つを取得するため、対象量判定部53はこれら3つの対象量Bのそれぞれについて、対応する基準値Dとの間で大小関係の判定を行う。
 具体的には、対象量判定部53は、選択対象量B0について、予め定められた当該選択対象量B0についての基準値Dである選択基準値D0との間で大小関係の判定を実行する。また、対象量判定部53は、第一判定対象量B1について、予め定められた当該第一判定対象量B1についての基準値Dである第一判定基準値D1との間で大小関係の判定を実行するとともに、第二判定対象量B2について、予め定められた当該第二判定対象量B2についての基準値Dである第二判定基準値D2との間で大小関係の判定を実行する。本実施形態では、更に、対象量判定部53は、第一判定対象量B1について、予め定められた当該第一判定対象量B1についての基準値Dである第三判定基準値D3との間でも大小関係の判定を実行する。
 選択基準値D0及び第二判定基準値D2は、例えば第二クラッチC2の耐熱性等に応じて設定され、互いに同一の値とすることも可能である。同様に、第一判定基準値D1及び第三判定基準値D3は、例えば第一クラッチC1の耐熱性等に応じて設定され、互いに同一の値とすることも可能である。後に説明する図8の具体例では、全ての対象量B(B0,B1,B2)が温度とされるとともに全ての基準値D(D0,D1,D2,D3)が互いに異なる値とされている。具体的には、第二判定基準値D2が選択基準値D0より大きい値に設定されているとともに、第三判定基準値D3が第一判定基準値D1より大きい値に設定されており、小さい側から、選択基準値D0、第一判定基準値D1、第二判定基準値D2、第三判定基準値D3の順(D0<D1<D2<D3)となっている。
 なお、対象量Bが温度及び発熱量の双方とされる場合には、当該対象量Bについての基準値Dは、温度及び発熱量のそれぞれに対して設定される。この場合、温度及び発熱量の双方が対応する基準値D以上である場合に対象量Bが基準値D以上であると判定される構成とすることも、温度及び発熱量の少なくとも一方が対応する基準値D以上である場合に対象量Bが基準値D以上であると判定される構成とすることもできる。
2-8.モード制御部の構成
 モード制御部52は、第一クラッチ動作制御部44や第二クラッチ動作制御部45a等の他の機能部を協調制御することで、走行モード決定部41が決定する各走行モードを切り替えて当該各モードを実現する機能部である。上記のように、走行モード決定部41が選択可能な走行モードには、第一制御モード、第二制御モード、第三制御モード、及び第四制御モードが含まれるため、モード制御部52は、第一制御モードと、第二制御モードと、第三制御モードと、第四制御モードと、を切り替えることができる。
 モード制御部52が実行する制御には、第一制御モードから第二制御モードへのモード移行である第一モード移行(後に説明する図6~図8の具体例参照)を実行するための制御(第一モード移行制御)と、第二制御モードから第一制御モードへのモード移行である第二モード移行(後に説明する図9、図10の具体例参照)を実行するための制御(第二モード移行制御)とが含まれる。
 そして、モード制御部52は、第一モード移行及び第二モード移行の少なくとも一方(本例では双方)のモード移行に際し、選択対象量B0が選択基準値D0未満である場合は第三制御モードを経てモード移行を実行し、選択対象量B0が選択基準値D0以上である場合には第四制御モードを経てモード移行を実行する。本実施形態では、第一モード移行制御及び第二モード移行制御の実行開始時の選択対象量B0に基づき、第三制御モード及び第四制御モードの何れの制御モードを経由してモード移行を実行するかを決定する。
2-8-1.第一モード移行制御の処理手順
 モード制御部52を中核として実行される第一モード移行制御の処理手順について、図2のフローチャートを参照して説明する。なお、第一モード移行制御の実行開始時には第一制御モードが実現されているため、第一クラッチC1及び第二クラッチC2の双方はスリップ係合状態にある。
 第一クラッチC1及び第二クラッチC2の双方がスリップ係合状態とされる第一制御モードから、第一クラッチC1及び第二クラッチC2の双方が直結係合状態とされる第二制御モードへの移行(第一モード移行)の実行が決定されると(ステップ#01:Yes)、対象量判定部53により選択対象量B0と選択基準値D0との間の大小関係の判定が実行される(ステップ#02)。そして、対象量判定部53により選択対象量B0が選択基準値D0未満であると判定されると(ステップ02:Yes)、第一クラッチC1を直結係合状態へと移行させるための制御が開始される(ステップ#03)。第一クラッチC1が直結係合状態となるまでの間は(ステップ#04:No)、この移行制御が継続して実行され(ステップ#03)、第一クラッチC1が直結係合状態となると(ステップ#04:Yes)、第一制御モードから第三制御モードへの移行が完了する。
 第三制御モードへの移行が完了した後、第二クラッチC2を直結係合状態へと移行させるための制御が開始される(ステップ#05)。第二クラッチC2が直結係合状態となるまでの間は(ステップ#06:No)、この移行制御が継続して実行され(ステップ#05)、第二クラッチC2が直結係合状態となると(ステップ#06:Yes)、第三制御モードから第二制御モードへの移行が完了し、第一モード移行制御は終了する。
 一方、対象量判定部53により選択対象量B0が選択基準値D0以上であると判定された場合には(ステップ02:No)、図2に示すように、上述したステップ#03~ステップ#06の各処理において第一クラッチC1と第二クラッチC2とを入れ替えた処理(ステップ#07~ステップ#10)が順次実行され、第四制御モードを経由する第一制御モードから第二制御モードへの移行が行われる。
 このように、第一モード移行制御では、第一クラッチC1のスリップ係合状態から直結係合状態への移行と、第二クラッチC2のスリップ係合状態から直結係合状態への移行とが実行されるが、選択対象量B0が選択基準値D0未満である場合には、第一クラッチC1、第二クラッチC2の順に、直結係合状態への移行が実行され、選択対象量B0が選択基準値D0以上である場合には、第二クラッチC2、第一クラッチC1の順に、直結係合状態への移行が実行される。よって、第一モード移行制御の実行時における第一クラッチC1がスリップ係合状態とされる時間(以下「スリップ時間」という。)は、選択対象量B0が選択基準値D0未満である場合には第二クラッチC2のスリップ時間より短くなり、選択対象量B0が選択基準値D0以上である場合には第二クラッチC2のスリップ時間より長くなる。
2-8-2.第二モード移行制御の処理手順
 次に、モード制御部52を中核として実行される第二モード移行制御の処理手順について、図3のフローチャートを参照して説明する。なお、第二モード移行制御の実行開始時には第二制御モードが実現されているため、第一クラッチC1及び第二クラッチC2の双方は直結係合状態にある。
 第一クラッチC1及び第二クラッチC2の双方が直結係合状態とされる第二制御モードから、第一クラッチC1及び第二クラッチC2の双方がスリップ係合状態とされる第一制御モードへの移行(第二モード移行)の実行が決定されると(ステップ#11:Yes)、対象量判定部53により選択対象量B0と選択基準値D0との間の大小関係の判定が実行される(ステップ#12)。そして、対象量判定部53により選択対象量B0が選択基準値D0未満であると判定されると(ステップ#12:Yes)、第二クラッチC2をスリップ係合状態へと移行させるための制御が開始される(ステップ#13)。第二クラッチC2がスリップ係合状態となるまでの間は(ステップ#14:No)、この移行制御が継続して実行され(ステップ#13)、第二クラッチC2がスリップ係合状態となると(ステップ#14:Yes)、第二制御モードから第三制御モードへの移行が完了する。
 第三制御モードへの移行が完了した後、第一クラッチC1をスリップ係合状態へと移行させるための制御が開始される(ステップ#15)。第一クラッチC1がスリップ係合状態となるまでの間は(ステップ#16:No)、この移行制御が継続して実行され(ステップ#15)、第一クラッチC1がスリップ係合状態となると(ステップ#16:Yes)、第三制御モードから第一制御モードへの移行が完了し、第二モード移行制御は終了する。
 一方、対象量判定部53により選択対象量B0が選択基準値D0以上であると判定された場合には(ステップ12:No)、図3に示すように、上述したステップ#13~ステップ#16の各処理において第一クラッチC1と第二クラッチC2とを入れ替えた処理(ステップ#17~ステップ#20)が順次実行され、第四制御モードを経由する第二制御モードから第一制御モードへの移行が行われる。
 このように、第二モード移行制御では、第一クラッチC1の直結係合状態からスリップ係合状態への移行と、第二クラッチC2の直結係合状態からスリップ係合状態への移行とが実行されるが、選択対象量B0が選択基準値D0未満である場合には、第二クラッチC2、第一クラッチC1の順に、スリップ係合状態への移行が実行され、選択対象量B0が選択基準値D0以上である場合には、第一クラッチC1、第二クラッチC2の順に、スリップ係合状態への移行が実行される。よって、第二モード移行制御の実行時においても、第一モード移行制御の実行時と同様、第一クラッチC1のスリップ時間は、選択対象量B0が選択基準値D0未満である場合には第二クラッチC2のスリップ時間より短くなり、選択対象量B0が選択基準値D0以上である場合には第二クラッチC2のスリップ時間より長くなる。
2-9.トルク補正制御部の構成
 トルク補正制御部54は、トルク補正制御を実行する機能部である。このトルク補正制御では、所定の条件が成立した際に内燃機関トルクTeを低下させるトルク低下制御を実行する。本実施形態では、トルク補正制御部54は、第一トルク補正制御及び第二トルク補正制御の2つのトルク補正制御を並行して実行する。
 第一トルク補正制御について図4のフローチャートを参照して説明する。第一トルク補正制御では、第一制御モードにおいて(ステップ#22:Yes)、第一判定対象量B1が第一判定基準値D1以上であり(ステップ#23:Yes)、且つ第二判定対象量B2が第二判定基準値D2以上である(ステップ#24:Yes)場合に、トルク低下制御として車輪伝達駆動力低下制御を実行する(ステップ#25)。なお、ステップ#21及びステップ#26の処理から明らかなように、本例では、第一トルク補正制御は、第一モード移行や第二モード移行の実行中(ステップ#21:Yes)に実行されるとともに、車輪伝達駆動力低下制御は、第一制御モードが継続して実現される期間中に最大で一度実行される。また、本例では、第一制御モードの実現中には、第一判定対象量B1及び第二判定対象量B2が対象量取得部51により繰り返し取得される。
 ここで、車輪伝達駆動力低下制御は、車輪15に伝達される駆動力(以下、「車輪伝達駆動力」という。)が要求駆動力決定部42により決定された要求駆動力Tdより小さくなるように、内燃機関トルクTeを低下させる制御である。後に説明する図8の具体例では、時刻T23において車輪伝達駆動力低下制御が実行され、内燃機関トルクTeの低下分に応じて車輪伝達駆動力が要求駆動力Tdから低下している。
 なお、車輪伝達駆動力低下制御の実行前の状態では、基本的に、車輪伝達駆動力が要求駆動力Tdと等しくなるように内燃機関トルクTe及び回転電機トルクTmが制御される。すなわち、第一判定対象量B1が第一判定基準値D1未満であり、且つ第二判定対象量B2が第二判定基準値D2未満である場合を含む、車輪伝達駆動力低下制御の実行前の状態では、要求駆動力決定部42が決定した要求駆動力Tdが車輪15に伝達される。
 次に、第二トルク補正制御について図5のフローチャートを参照して説明する。第二トルク補正制御では、第一制御モードにおいて(ステップ#32:Yes)、第一判定対象量B1が第三判定基準値D3以上である(ステップ#33:Yes)場合に、トルク低下制御として発電量低下制御を実行する(ステップ#34)。なお、ステップ#31及びステップ#35の処理から明らかなように、本例では、第二トルク補正制御は、第一モード移行や第二モード移行の実行中(ステップ#31:Yes)に実行されるとともに、発電量低下制御は、第一制御モードが継続して実現される期間中に最大で一度実行される。また、本例では、第一制御モードの実現中には、第一判定対象量B1が対象量取得部51により繰り返し取得される。
 ここで、発電量低下制御は、回転電機トルクTm(より正確には回転電機トルクTmの絶対値)を低下させることで当該回転電機12による発電量を低下させるとともに、回転電機トルクTmの低下分に応じて内燃機関トルクTeを低下させる制御である。後に説明する図8の具体例では、時刻T24において発電量低下制御が実行され、回転電機トルクTmの要求回生トルクからの低下分(絶対値の低下分)に応じて、内燃機関トルクTeが低下している。図8の例では、発電量低下制御により回転電機トルクTmが零とされるため、回転電機トルクTmの要求回生トルクからの低下分は、要求回生トルクの大きさに等しくなっている。
 なお、図8に示す具体例のように発電量低下制御の実行により回転電機トルクTmが零とされた状態においても、例えば蓄電装置28の蓄電量の低下等により回転電機12に発電が要求され続けている場合(すなわち、要求回生トルクが発電停止後も設定されている場合)には、回転電機12が発電を行っているとして走行モードを分類するものとする。すなわち、図8に示す例では、時刻T24において発電量低下制御が実行された後も要求回生トルクが継続して設定されており、時刻T24以降も走行モードは発電モードとなっている。
3.第一モード移行の具体的内容
 上記のような構成を備える制御装置40において実行される第一モード移行の具体例について、図6から図8のタイムチャートを参照して順に説明する。なお、各タイムチャートにおいて、「同期線(換算回転速度)」は、変速機構13において変速段(本例では第1速段)が形成されていると仮定した場合の、出力軸Oの回転速度を中間軸Mの回転速度に換算して得られる回転速度を表し、「要求駆動力」は、要求駆動力Tdを当該変速段に対応する変速比で除算した値で示している。
3-1.第一モード移行の第一の具体例
 本具体例は、図6に示すように、車両6が停止(換算回転速度が零)しているとともに回転電機12に発電を行わせている状態から車両6を発進させる際に実行される第一モード移行の具体例である。なお、第一モード移行制御の実行開始時に車両6が走行中である場合にも同様の制御を行うことが可能である(図7、図8についても同様)。
 初期状態(時刻T01以前)では、車両6が停止しているとともに、第一クラッチC1の直結係合状態且つ第二クラッチC2の解放状態で内燃機関トルクTeにより回転電機12が発電している。そして、時刻T01において車両6を発進させるための車両発進条件が成立すると、第一クラッチC1の係合圧及び第二クラッチC2の係合圧の双方をスリップ係合圧とする制御を実行する(時刻T01~T02)。なお、車両発進条件は、例えば、運転者によるアクセルペダルの踏み込み操作やブレーキペダルの解除操作等が検知された場合に成立する構成とすることができる。そして、走行モードが第一制御モードに移行すると(時刻T02)、第一モード移行制御が開始される。
 図示は省略するが、本例では、第一モード移行制御の実行開始時(時刻T02)において選択対象量B0は選択基準値D0未満であり、第三制御モードを経由する第一モード移行が実行される。また、同じく図示は省略するが、本例では、第一制御モードの実現中に、上述した車輪伝達駆動力低下制御の実行条件(図4のステップ#23,#24)や、発電量低下制御の実行条件(図5のステップ#33)が成立しない場合を想定している。
 時刻T02~時刻T04において実現される第一制御モードでは、スリップ係合状態の第二クラッチC2は、目標伝達トルク容量に基づくトルク制御により制御される。この際、目標伝達トルク容量は、要求駆動力Tdが車輪15に伝達されるように、第二クラッチC2の動力伝達経路における位置に応じて設定される。また、第一制御モードでは、スリップ係合状態の第一クラッチC1は、内燃機関11の回転速度を目標回転速度に追従させるように、回転速度フィードバック制御により制御(回転速度制御)される。この際、目標回転速度は、内燃機関11が自立運転を継続可能な下限回転速度以上の値(例えばアイドル回転速度やアイドル回転速度より高い値)に設定される。本例では、目標回転速度は、第一制御モードの開始時(時刻T02)の内燃機関11の回転速度に設定され、第一制御モードの実現中、当該回転速度に維持される。
 また、第一制御モードでは、回転電機12は目標回転速度に基づく回転速度制御により制御される。この際、目標回転速度は、換算回転速度より高く内燃機関11の回転速度より低い値であって、回転速度が最も低下しても要求される発電量を確保できる値に設定される。本例では、この目標回転速度は、換算回転速度との差が一定になるように設定される。そのため、図6に示すように、車速(換算回転速度)の上昇に伴い、内燃機関11と回転電機12との間の回転速度差が減少する。なお、回転電機トルクTmは、要求される発電量を目標回転速度で除算した値(要求回生トルク)に基づき設定される。
 時刻T03において内燃機関11と回転電機12との間の回転速度差が所定の同期判定基準値以下となると、第一クラッチC1の係合圧を完全係合圧に向けて上昇させる。そして、時刻T04において第一クラッチC1が直結係合状態に移行することで、走行モードが第一制御モードから第三制御モードへと移行する。時刻T02~時刻T04において実行される各制御が、先に説明した図2のステップ#03において実行される、第一クラッチC1を直結係合状態へと移行させるための制御に相当する。
 時刻T04~時刻T06において実現される第三制御モードでは、スリップ係合状態の第二クラッチC2は第一制御モードの実現時と同様にトルク制御により制御される。また、回転電機12も第一制御モードの実現時と同様に回転速度制御により制御されるが、この際の目標回転速度は、換算回転速度との差が徐々に減少するように設定される。時刻T05において回転電機12の回転速度と換算回転速度との差が所定の同期判定基準値以下となると、第二クラッチC2の係合圧を完全係合圧に向けて上昇させる。そして、時刻T06において第二クラッチC2が直結係合状態に移行することで、走行モードが第三制御モードから第二制御モードへと移行する。時刻T04~時刻T06において実行される各制御が、先に説明した図2のステップ#05において実行される、第二クラッチC2を直結係合状態へと移行させるための制御に相当する。
 上記のように、本例では、第一クラッチC1の直結係合状態への移行(時刻T03~T04)が、第二クラッチC2のスリップ係合状態で行われるため、当該移行に伴う係合ショックが車輪15に伝達されることを抑制することが可能となっている。また、本例では、第一クラッチC1のスリップ係合状態で回転電機12に発電を行わせる期間が第一制御モードの実現時のみとなるため、第一クラッチC1を介したトルク伝達に起因するエネルギ損失を低減して、発電効率を高めることも可能となっている。
3-2.第一モード移行の第二の具体例
 本具体例は、図7に示すように、上記第一の具体例(図6)とは異なり、第四制御モードを経由する第一モード移行の具体例である。以下、本具体例について、上記第一の具体例との相違点を中心に説明する。特に説明しない点については、上記第一の具体例と同様とする。
 時刻T12において走行モードが第一制御モードとなり、第一モード移行制御が開始される。本例では、図示は省略するが、第一モード移行制御の実行開始時(時刻T12)において選択対象量B0は選択基準値D0以上であり、第四制御モードを経由する第一モード移行が実行される。
 時刻T12~時刻T14において実現される第一制御モードでは、回転電機12の目標回転速度が一定値に設定される。そのため、車速(換算回転速度)の上昇に伴い、回転電機12の回転速度と換算回転速度との差が減少する。時刻T13において回転電機12の回転速度と換算回転速度との差が所定の同期判定基準値以下となると、第二クラッチC2の係合圧を完全係合圧に向けて上昇させる。そして、時刻T14において第二クラッチC2が直結係合状態に移行することで、走行モードが第一制御モードから第四制御モードへと移行する。時刻T12~時刻T14において実行される各制御が、先に説明した図2のステップ#07において実行される、第二クラッチC2を直結係合状態へと移行させるための制御に相当する。
 時刻T14~時刻T16において実現される第四制御モードでは、スリップ係合状態の第一クラッチC1は第一制御モードの実現時と同様に回転速度制御により制御される。また、回転電機12の目標回転速度は、内燃機関11の回転速度との差が徐々に減少するように設定される。時刻T15において内燃機関11と回転電機12との間の回転速度差が所定の同期判定基準値以下となると、第一クラッチC1の係合圧を完全係合圧に向けて上昇させる。そして、時刻T16において第一クラッチC1が直結係合状態に移行することで、走行モードが第四制御モードから第二制御モードへと移行する。時刻T14~時刻T16において実行される各制御が、先に説明した図2のステップ#09において実行される、第一クラッチC1を直結係合状態へと移行させるための制御に相当する。
 上記のように、本例では、第二クラッチC2のスリップ係合状態で回転電機12に発電を行わせる期間が第一制御モードの実現時のみとなるため、第二クラッチC2の温度が高くなりすぎることを抑制することが可能である。
3-3.第一モード移行の第三の具体例
 本具体例は、図8に示すように、第四制御モードを経由する第一モード移行の具体例という点では上記第二の具体例(図7)と一致するが、第一制御モードの実現中に車輪駆動力低下制御と発電量低下制御とが実行されるという点で、上記第二の具体例とは異なる。以下、本具体例について、上記第二の具体例との相違点を中心に説明する。特に説明しない点については、上記第一及び第二の具体例と同様とする。
 本例では、全ての対象量B(B0,B1,B2)が温度とされている。そして、第一モード移行の実行時(時刻T22)において選択対象量B0が選択基準値D0以上であるため、第四制御モードを経由する第一モード移行が実行される。第一制御モードの実現中においては上記第二の具体例と同様に各制御が実行されるが、本例では時刻T23において、第一判定対象量B1が第一判定基準値D1以上であり、且つ第二判定対象量B2が第二判定基準値D2以上である状態となる。これにより、車輪伝達駆動力低下制御が実行され、車輪伝達駆動力が要求駆動力Tdより小さくなるように、内燃機関トルクTeが低下される。この際、回転電機トルクTmは一定に維持されるため、内燃機関トルクTeの低下分に応じて車輪伝達駆動力が要求駆動力Tdから低下する。
 本例では、更に、時刻T24において、第一判定対象量B1が第三判定基準値D3以上となる。これにより、発電量低下制御が実行され、回転電機トルクTm(より正確には回転電機トルクTmの絶対値)を要求回生トルクから低下させるとともに、当該低下分に応じて内燃機関トルクTeを低下させる。この際、発電量低下制御の実行前後で車輪伝達駆動力は変化しない。発電量低下制御の実行により低下した回転電機トルクTmにより、回転電機12が発電を継続する構成とすることもできるが、本例では、発電量低下制御により回転電機トルクTmを零とすることで、回転電機12による発電を停止している。その後は、上記第二の具体例と同様の制御を行う。なお、本例における時刻T25,T26,T27,T28のそれぞれが、上記第二の具体例(図7)における時刻T13,T14,T15,T16に対応する。
 ここでは、車輪伝達駆動力低下制御及び発電量低下制御の双方が実行される場合を例として説明したが、第一制御モードの実現中に第一判定対象量B1が第三判定基準値D3以上とならなかった場合には、車輪伝達駆動力低下制御のみが実行される。また、第一判定基準値D1が第三判定基準値D3よりも大きな値に設定される構成では、第一制御モードの実現中に、車輪伝達駆動力低下制御及び発電量低下制御の双方ではなく、発電量低下制御のみが実行される場合もあり得る。
4.第二モード移行の具体的内容
 次に、制御装置40において実行される第二モード移行の具体例について、図9、図10のタイムチャートを参照して順に説明する。
4-1.第二モード移行の第一の具体例
 本具体例は、図9に示すように、第二制御モードで走行している状態から車両6を停車させる際に実行される第二モード移行の具体例である。なお、第二モード移行の実行後に車両6が第一制御モードで走行を継続する場合にも同様の制御を行うことが可能である(図10についても同様)。
 初期状態(時刻T31以前)では、車両6が第二制御モードで走行しており、第一クラッチC1及び第二クラッチC2の双方の直結係合状態で内燃機関トルクTeにより回転電機12が発電している。そして、時刻T31において車両6を停止させるための車両停止条件が成立すると、第二モード移行制御が開始される。車両停止条件は、例えば、運転者によるアクセルペダルの解除操作やブレーキペダルの踏み込み操作等が検知された場合に成立する構成とすることができる。
 図示は省略するが、本例では、第二モード移行制御の実行開始時(時刻T31)において選択対象量B0は選択基準値D0未満であり、第三制御モードを経由する第二モード移行が実行される。そのため、本例では、時刻T31において第二クラッチC2の係合圧をスリップ係合圧まで低下させる。これにより、第二クラッチC2がスリップ係合状態に移行し、走行モードが第二制御モードから第三制御モードへと移行する。時刻T31において実行される第二クラッチC2の係合圧の低下制御が、先に説明した図3のステップ#13において実行される、第二クラッチC2をスリップ係合状態へと移行させるための制御に相当する。
 時刻T31~時刻T32において実現される第三制御モードでは、スリップ係合状態の第二クラッチC2は、目標伝達トルク容量に基づくトルク制御により制御される。この際、目標伝達トルク容量は、要求駆動力Tdが車輪15に伝達されるように、第二クラッチC2の動力伝達経路における位置に応じて設定される。
 また、第三制御モードでは、回転電機12は目標回転速度に基づく回転速度制御により制御される。この際、目標回転速度は、換算回転速度より高く、且つ内燃機関11が自立運転を継続可能な下限回転速度以上の値(例えばアイドル回転速度やアイドル回転速度より高い値)であって、要求される発電量を確保できる値に設定される。本例では、この目標回転速度は、第三制御モードの開始時(時刻T31)の回転電機12の回転速度に設定され、第三制御モードの実現中は当該回転速度に維持される。そのため、車速(換算回転速度)の低下に伴い、回転電機12の回転速度と換算回転速度との差が増加する。
 時刻T32において回転電機12の回転速度と換算回転速度との差が所定の移行判定基準値以上となると、第一クラッチC1の係合圧をスリップ係合圧まで低下させる。これにより、第一クラッチC1がスリップ係合状態に移行し、走行モードが第三制御モードから第一制御モードへと移行する。時刻T31~時刻T32において実行される各制御が、先に説明した図3のステップ#15において実行される、第一クラッチC1をスリップ係合状態へと移行させるための制御に相当する。
 時刻T32以降において実現される第一制御モードでは、スリップ係合状態の第二クラッチC2は第三制御モードの実現時と同様にトルク制御により制御される。また、スリップ係合状態の第一クラッチC1は、内燃機関11の回転速度を目標回転速度に追従させるように、回転速度フィードバック制御により制御(回転速度制御)される。この際、目標回転速度は、内燃機関11が自立運転を継続可能な下限回転速度以上の値(例えばアイドル回転速度やアイドル回転速度より高い値)に設定される。本例では、目標回転速度は、第一制御モードの開始時(時刻T32)の内燃機関11の回転速度に設定され、第一制御モードの実現中、当該回転速度に維持される。
 また、第一制御モードでは、回転電機12は第三制御モードの実現時と同様に回転速度制御により制御されるが、この際の目標回転速度は、換算回転速度より高く内燃機関11の回転速度より低い値であって、要求される発電量を確保できる値に設定される。本例では、この目標回転速度は、換算回転速度との差が一定になるように設定される。そのため、図9に示すように、車速(換算回転速度)の低下に伴い、回転電機12の目標回転速度も低下し、車両6が停止した時刻T33以降は、当該目標回転速度は一定値に維持される。なお、本例では、第一制御モードへの移行後に(時刻T32以降)、上述した車輪伝達駆動力低下制御の実行条件(図4のステップ#23,#24)や、発電量低下制御の実行条件(図5のステップ#33)が成立しない場合を想定している。
 上記のように、本例では、第一クラッチC1のスリップ係合状態への移行(時刻T32)が、第二クラッチC2のスリップ係合状態で行われるため、当該移行に伴うトルク変化によるショックが車輪15に伝達されることを抑制することが可能となっている。また、本例では、第一クラッチC1のスリップ係合状態で回転電機12に発電を行わせる期間が第一制御モードの実現時のみとなるため、第一クラッチC1を介したトルク伝達に起因するエネルギ損失を低減して、発電効率を高めることも可能となっている。
4-2.第二モード移行の第二の具体例
 本具体例は、図10に示すように、上記第一の具体例(図9)とは異なり、第四制御モードを経由する第二モード移行の具体例である。以下、本具体例について、上記第一の具体例との相違点を中心に説明する。特に説明しない点については、上記第一の具体例と同様とする。
 本例では、図示は省略するが、第二モード移行制御の実行開始時(時刻T41)において選択対象量B0は選択基準値D0以上であり、第四制御モードを経由する第二モード移行が実行される。そのため、本例では、時刻T41において第一クラッチC1の係合圧をスリップ係合圧まで低下させる。これにより、第一クラッチC1がスリップ係合状態に移行し、走行モードが第二制御モードから第四制御モードへと移行する。時刻T41において実行される第一クラッチC1の係合圧の低下制御が、先に説明した図3のステップ#17において実行される、第一クラッチC1をスリップ係合状態へと移行させるための制御に相当する。
 時刻T41~時刻T42において実現される第四制御モードでは、スリップ係合状態の第一クラッチC1は、内燃機関11の回転速度を目標回転速度に追従させるように、回転速度フィードバック制御により制御(回転速度制御)される。この際、目標回転速度は、内燃機関11が自立運転を継続可能な下限回転速度以上の値(例えばアイドル回転速度やアイドル回転速度より高い値)に設定される。本例では、目標回転速度は、第四制御モードの開始時(時刻T41)の内燃機関11の回転速度に設定され、第四制御モードの実現中、並びにその後の第一制御モードの実現中、当該回転速度に維持される。そのため、図10に示すように、車速(換算回転速度)の低下に伴い、内燃機関11と回転電機12との間の回転速度差が増加する。
 時刻T42において内燃機関11と回転電機12との間の回転速度差が所定の移行判定基準値以上となると、第二クラッチC2の係合圧をスリップ係合圧まで低下させる。これにより、第二クラッチC2がスリップ係合状態に移行し、走行モードが第四制御モードから第一制御モードへと移行する。時刻T41~時刻T42において実行される各制御が、先に説明した図3のステップ#19において実行される、第二クラッチC2をスリップ係合状態へと移行させるための制御に相当する。
 時刻T42以降において実現される第一制御モードでは、スリップ係合状態の第一クラッチC1は第四制御モードの実現時と同様に回転速度制御により制御される。また、スリップ係合状態の第二クラッチC2は、目標伝達トルク容量に基づくトルク制御により制御される。この際、目標伝達トルク容量は、要求駆動力Tdが車輪15に伝達されるように、第二クラッチC2の動力伝達経路における位置に応じて設定される。
 また、第一制御モードでは、回転電機12は目標回転速度に基づく回転速度制御により制御される。この際、目標回転速度は、換算回転速度より高く内燃機関11の回転速度より低い値であって、要求される発電量を確保できる値に設定される。本例では、この目標回転速度は一定値に設定される。そのため、図10に示すように、車速(換算回転速度)の低下に伴い、回転電機12の回転速度と換算回転速度との差が増大し、車両6が停止した時刻T43以降は、回転電機12の回転速度と換算回転速度との差は一定となる。
 上記のように、本例では、第二クラッチC2のスリップ係合状態で回転電機12に発電を行わせる期間が第一制御モードの実現時のみとなるため、第二クラッチC2の温度が高くなりすぎることを抑制することが可能である。
5.その他の実施形態
 最後に、本発明に係る制御装置の、その他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
(1)上記の実施形態では、トルク補正制御部54が、第一トルク補正制御及び第二トルク補正制御の2つのトルク補正制御を並行して実行する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一トルク補正制御及び第二トルク補正制御の一方のみを実行する構成や、第一トルク補正制御及び第二トルク補正制御の何れも実行しない構成とすることも可能である。
(2)上記の実施形態では、第一モード移行及び第二モード移行の双方のモード移行に際し、選択対象量B0が選択基準値D0未満である場合は第三制御モードを経てモード移行を実行し、選択対象量B0が選択基準値D0以上である場合には第四制御モードを経てモード移行を実行する構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、第一モード移行及び第二モード移行の一方のモード移行についてのみ、選択対象量B0が選択基準値D0未満である場合は第三制御モードを経てモード移行を実行し、選択対象量B0が選択基準値D0以上である場合には第四制御モードを経てモード移行を実行する構成とすることも可能である。この場合、他方のモード移行については、経由する走行モードが固定された構成とすることができる。この場合において、経由する走行モードは、第三制御モードや第四制御モードとは異なる走行モードとすることも可能である。また、他方のモード移行については、間に他の走行モードを介することなく直接モード移行が行われる構成、すなわち、第一クラッチC1及び第二クラッチC2のそれぞれの係合状態の移行が同時に行われる構成とすることも可能である。
(3)上記の実施形態では、第三制御モード及び第四制御モードの何れの制御モードを経由してモード移行を実行するかの決定が、第一モード移行制御や第二モード移行制御の実行開始時に実行される構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、選択対象量B0と選択基準値D0との間の大小関係の判定をモード移行制御中にも実行し、当該大小関係が逆転した場合には、経由する走行モードを切り替える構成とすることも可能である。
(4)上記の実施形態では、変速機構13内の変速用の係合装置の1つ(第二クラッチC2)が「第二係合装置」とされた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、内燃機関11と車輪15とを結ぶ動力伝達経路において、回転電機12よりも車輪15側に設けられた係合装置であれば、変速機構13内の他の係合装置を「第二係合装置」としても良い。
 また、例えば回転電機12と車輪15との間にトルクコンバータ等の流体継手を備える場合において、当該流体継手が有するロックアップクラッチを「第二係合装置」としても良い。或いは、例えば回転電機12と車輪15との間に専用の伝達クラッチを設け、当該伝達クラッチを「第二係合装置」としても良い。これらの場合には、変速機構13として、自動無段変速機構、手動有段変速機構、及び固定変速機構等を用いることもできる。また、変速機構13の位置も任意に設定することができる。
(5)上記の実施形態では、第一クラッチC1や第二クラッチC2が、供給油圧に応じて係合圧が制御される油圧駆動式の係合装置とされた構成を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、これらは係合圧の増減に応じて伝達トルク容量を調整可能であれば良く、例えばこれらのうちの一方又は双方を、電磁力に応じて係合圧が制御される電磁式の係合装置としても良い。
(6)上記の実施形態では、制御装置40とは別に内燃機関制御装置30が備えられた構成を例として説明した。しかし、本発明の実施形態はこれに限定されるものではなく、内燃機関制御装置30が制御装置40に一体化された構成とすることも可能である。また、上記の実施形態で説明した制御装置40における機能部の割り当ては単なる一例であり、複数の機能部を組み合わせたり、1つの機能部をさらに区分けしたりすることも可能である。
(7)上記の実施形態では、内燃機関11のクランクシャフト等の内燃機関出力軸と入力軸Iとが一体回転する構成を例として説明したが、ダンパやフライホイール等の部材を介して内燃機関出力軸と入力軸Iとが駆動連結された構成とすることもできる。
(8)その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本発明の実施形態はこれに限定されない。すなわち、本願の特許請求の範囲に記載されていない構成に関しては、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置、が設けられた車両用駆動装置を制御対象とする制御装置に好適に利用することができる。
1:駆動装置
11:内燃機関
12:回転電機
15:車輪
40:制御装置
51:対象量取得部
52:モード制御部
B0:選択対象量
B1:第一判定対象量
B2:第二判定対象量
D0:選択基準値
D1:第一判定基準値
D2:第二判定基準値
D3:第三判定基準値
C1:第一クラッチ(第一係合装置)
C2:第二クラッチ(第二係合装置)
Td:要求駆動力

Claims (3)

  1.  内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置、が設けられた車両用駆動装置を制御対象とする制御装置であって、
     前記第一係合装置及び前記第二係合装置の双方のスリップ係合状態で前記回転電機に発電を行わせる第一制御モードと、前記第一係合装置及び前記第二係合装置の双方の直結係合状態で前記回転電機に発電を行わせる第二制御モードと、前記第一係合装置の直結係合状態且つ前記第二係合装置のスリップ係合状態で前記回転電機に発電を行わせる第三制御モードと、前記第一係合装置のスリップ係合状態且つ前記第二係合装置の直結係合状態で前記回転電機に発電を行わせる第四制御モードと、を切り替えるモード制御部と、
     前記第二係合装置の温度及び発熱量の少なくとも一方を選択対象量として取得する対象量取得部と、を備え、
     前記モード制御部は、前記第一制御モードから前記第二制御モード及び前記第二制御モードから前記第一制御モードの少なくとも一方のモード移行に際し、前記選択対象量が予め定められた選択基準値未満である場合は前記第三制御モードを経て前記モード移行を実行し、前記選択対象量が前記選択基準値以上である場合には前記第四制御モードを経て前記モード移行を実行する制御装置。
  2.  前記対象量取得部は、前記第一係合装置の温度及び発熱量の少なくとも一方を第一判定対象量として取得するとともに、前記第二係合装置の温度及び発熱量の少なくとも一方を第二判定対象量として取得し、
     前記第一制御モードにおいて、前記第一判定対象量が予め定められた第一判定基準値未満であり、且つ前記第二判定対象量が予め定められた第二判定基準値未満である場合には、前記車輪を駆動するために要求される要求駆動力が当該車輪に伝達されるように前記要求駆動力に応じた制御を実行し、
     前記第一制御モードにおいて、前記第一判定対象量が前記第一判定基準値以上であり、且つ前記第二判定対象量が前記第二判定基準値以上である場合には、前記車輪に伝達される駆動力が前記要求駆動力より小さくなるように、前記内燃機関の出力トルクを低下させる制御を実行する請求項1に記載の制御装置。
  3.  前記対象量取得部は、前記第一係合装置の温度及び発熱量の少なくとも一方を第一判定対象量として取得し、
     前記第一制御モードにおいて、前記第一判定対象量が予め定められた第三判定基準値以上となった場合には、前記回転電機の出力トルクを低下させることで当該回転電機による発電量を低下させるとともに、前記回転電機の出力トルクの低下分に応じて前記内燃機関の出力トルクを低下させる制御を実行する請求項1又は2に記載の制御装置。
PCT/JP2012/070251 2011-08-08 2012-08-08 制御装置 WO2013022038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012001939.3T DE112012001939T5 (de) 2011-08-08 2012-08-08 Steuervorrichtung
US14/119,792 US9199636B2 (en) 2011-08-08 2012-08-08 Control device
CN201280028049.7A CN103596826B (zh) 2011-08-08 2012-08-08 控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011173216A JP5505734B2 (ja) 2011-08-08 2011-08-08 制御装置
JP2011-173216 2011-08-08

Publications (1)

Publication Number Publication Date
WO2013022038A1 true WO2013022038A1 (ja) 2013-02-14

Family

ID=47668544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070251 WO2013022038A1 (ja) 2011-08-08 2012-08-08 制御装置

Country Status (5)

Country Link
US (1) US9199636B2 (ja)
JP (1) JP5505734B2 (ja)
CN (1) CN103596826B (ja)
DE (1) DE112012001939T5 (ja)
WO (1) WO2013022038A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035416A (ja) * 2011-08-08 2013-02-21 Aisin Aw Co Ltd 制御装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201241A1 (de) * 2012-01-30 2013-08-01 Robert Bosch Gmbh Vorrichtung zur Regelung eines Motors
JP5896858B2 (ja) * 2012-08-02 2016-03-30 アイシン精機株式会社 ハイブリッド駆動装置
JP6068300B2 (ja) * 2013-09-04 2017-01-25 本田技研工業株式会社 動力出力装置の制御装置
JP5943127B1 (ja) * 2015-07-10 2016-06-29 トヨタ自動車株式会社 車両用駆動装置
KR101684168B1 (ko) * 2015-09-10 2016-12-07 현대자동차주식회사 하이브리드 차량의 주행모드 변환 제어 시스템 및 방법
CN110040127B (zh) * 2019-04-24 2020-06-19 浙江吉利控股集团有限公司 车辆的动力性能优化方法和具有动力性优化功能的系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007094A (ja) * 2006-05-29 2008-01-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2008074254A (ja) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd ハイブリッド車両の降坂路走行制御装置
JP2009214640A (ja) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010149649A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置。
JP2010188807A (ja) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd 電動車両の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261498A (ja) 2006-03-29 2007-10-11 Nissan Motor Co Ltd ハイブリッド車両の伝動状態切り替え制御装置
JP4396661B2 (ja) 2006-05-26 2010-01-13 日産自動車株式会社 ハイブリッド車両のクラッチ締結制御装置
JP4492585B2 (ja) * 2006-05-29 2010-06-30 日産自動車株式会社 ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP5496454B2 (ja) * 2007-11-29 2014-05-21 日産自動車株式会社 ハイブリッド車両の制御装置
JP5167786B2 (ja) * 2007-11-29 2013-03-21 日産自動車株式会社 ハイブリッド車両の制御装置
JP5200983B2 (ja) 2009-02-16 2013-06-05 日産自動車株式会社 車両の駆動力制御装置及び駆動力制御方法
JP5080525B2 (ja) * 2009-03-30 2012-11-21 ジヤトコ株式会社 ハイブリッド車両の制御装置
JP5039098B2 (ja) * 2009-07-24 2012-10-03 日産自動車株式会社 ハイブリッド車両の制御装置
JP2011031659A (ja) 2009-07-30 2011-02-17 Nissan Motor Co Ltd ハイブリッド車両
JP5168600B2 (ja) 2010-03-31 2013-03-21 アイシン・エィ・ダブリュ株式会社 制御装置
CN102725163B (zh) 2010-03-31 2015-02-11 爱信艾达株式会社 控制装置
JP5807560B2 (ja) 2011-07-06 2015-11-10 アイシン・エィ・ダブリュ株式会社 制御装置
JP5505734B2 (ja) * 2011-08-08 2014-05-28 アイシン・エィ・ダブリュ株式会社 制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007094A (ja) * 2006-05-29 2008-01-17 Nissan Motor Co Ltd ハイブリッド車両の制御装置及びハイブリッド車両の制御方法。
JP2008074254A (ja) * 2006-09-21 2008-04-03 Nissan Motor Co Ltd ハイブリッド車両の降坂路走行制御装置
JP2009214640A (ja) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd ハイブリッド車両の制御装置
JP2010149649A (ja) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両の制御装置。
JP2010188807A (ja) * 2009-02-17 2010-09-02 Nissan Motor Co Ltd 電動車両の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035416A (ja) * 2011-08-08 2013-02-21 Aisin Aw Co Ltd 制御装置

Also Published As

Publication number Publication date
JP5505734B2 (ja) 2014-05-28
US9199636B2 (en) 2015-12-01
CN103596826B (zh) 2016-06-15
CN103596826A (zh) 2014-02-19
JP2013035416A (ja) 2013-02-21
DE112012001939T5 (de) 2014-02-13
US20140094342A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5807560B2 (ja) 制御装置
JP5817908B2 (ja) 制御装置
JP5505734B2 (ja) 制御装置
WO2012033047A1 (ja) 制御装置
WO2013005844A1 (ja) 制御装置
JP5565637B2 (ja) 制御装置
JP5472227B2 (ja) 制御装置
WO2013111900A1 (ja) 車両用駆動装置の制御装置
WO2013111901A1 (ja) 車両用駆動装置の制御装置
WO2014170749A1 (en) Control device for vehicle
JP5825422B2 (ja) 制御装置
WO2016159241A1 (ja) 制御装置
JP6465204B2 (ja) 車両用駆動装置の制御装置
JP5578362B2 (ja) 制御装置
JP5565636B2 (ja) 制御装置
JP5445867B2 (ja) 車両用駆動装置の制御装置
JP6350676B2 (ja) 車両用駆動装置の制御装置
JP7355060B2 (ja) 車両用駆動装置
JP5447995B2 (ja) 制御装置
JP2013035415A (ja) 制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14119792

Country of ref document: US

Ref document number: 112012001939

Country of ref document: DE

Ref document number: 1120120019393

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822582

Country of ref document: EP

Kind code of ref document: A1