WO2013021526A1 - Relay station, base station, mobile communication system, backhaul link control method, and computer-readable medium - Google Patents

Relay station, base station, mobile communication system, backhaul link control method, and computer-readable medium Download PDF

Info

Publication number
WO2013021526A1
WO2013021526A1 PCT/JP2012/003037 JP2012003037W WO2013021526A1 WO 2013021526 A1 WO2013021526 A1 WO 2013021526A1 JP 2012003037 W JP2012003037 W JP 2012003037W WO 2013021526 A1 WO2013021526 A1 WO 2013021526A1
Authority
WO
WIPO (PCT)
Prior art keywords
backhaul link
frequency
band frequency
relay station
switching
Prior art date
Application number
PCT/JP2012/003037
Other languages
French (fr)
Japanese (ja)
Inventor
洋明 網中
義一 鹿倉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2013527843A priority Critical patent/JP6065835B2/en
Publication of WO2013021526A1 publication Critical patent/WO2013021526A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/047Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present invention relates to a mobile communication system including a base station and a relay station belonging to the base station, and more particularly to control of a frequency used for a backhaul link connecting the base station and the relay station.
  • RN Relay node
  • UE User Equipment
  • eNB Evolved Node B
  • FIG. 1 is a diagram illustrating an example of a network configuration when using RN, which is being studied in 3GPP.
  • a base station (eNB) 91 belongs to a core network (hereinafter referred to as CN) 4 of a mobile communication carrier.
  • the base station (eNB) 91 generates an eNB cell 10 and relays traffic between the mobile station (UE) 3-1 and the core network (CN) 4.
  • the relay station (RN) 92 belongs to the base station (eNB) 91 via the backhaul link (BL1 in the figure), and belongs to the core network (CN) 4 via the backhaul link (BL1).
  • the relay station (RN) 2 can be connected to the management device 5 via the core network (CN) 4.
  • the management device 5 is an OAM (Operation Administration and Maintenance) system and manages information set by a mobile communication carrier.
  • the relay station (RN) 2 can acquire information from the management device 5.
  • the mobile stations (UE) 3-1 and 3-2 belong to the base station (eNB) 91 or the relay station (RN) 92 through an access link (AL1 or AL2 in the figure).
  • the relay station (RN) 92 generates the RN cell 20 and relays traffic between the mobile station (UE) 3-2 and the core network (CN) 4. The backhaul link and access link will be described later.
  • Fig. 2 is a sequence diagram showing an outline of the RN startup procedure described in Section 4.7.6 of Non-Patent Document 3.
  • the RN startup procedure includes Phase 1 and Phase 2 described below.
  • the relay station (RN) 92 is connected to the network (E-UTRAN / EPC) as a mobile station (UE) in the same procedure as a normal mobile station (UE) (steps S9002 and S9003).
  • the relay station (RN) 92 acquires initial setting parameters from the management device 5 (i.e. OAM system) (step S9004).
  • the management device 5 i.e. OAM system
  • the initial setting parameters include a list of eNB cells (donor cell list) that can be assigned as an RN using the backhaul link (BL1).
  • the relay station (RN) 92 ends phase 1 by releasing the network connection as the UE (step S9005). Note that the base station (eNB) 91-1 to which the relay station (RN) 92 belongs in phase 1 may not have a function of receiving the attribution of the relay station (RN).
  • the relay station (RN) 92 selects one cell from at least one eNB cell (donor cell candidate) included in the donor cell list acquired from the management apparatus 5, and manages the selected cell. It belongs to the station (eNB) 91-2 as the relay station (RN) 2 (steps S9006 and S9007). Then, the relay station (RN) 92 acquires the setting information of the backhaul link (BL1) from the base station (eNB) 91 to which it belongs, and sets the backhaul link (BL) (step S9008). After completion of the phase 2 procedure, the relay station (RN) 92 starts operation of the relay station cell (RN cell) 20 (step S9009).
  • Non-Patent Document 4 there are three types of RNs that are being studied by 3GPP: Type 1, Type 1a, and Type 1b.
  • the RN may support only one of these three types, may change the operation mode among a plurality of types, or may use a different operation mode between UEs.
  • the type 1 RN uses the same frequency for the backhaul link and the access link, and time-divides the radio resource for the backhaul link and the radio resource for the access link. This is mainly intended to avoid interference from transmission of the access link at the RN to reception of the backhaul link.
  • the RN operation mode using the same frequency for the bankhole link and the access link is called in-band (or inband) operation.
  • Type 1a RNs use different frequencies for the backhaul link and access link. Therefore, type 1a RNs do not require time sharing of radio resources like type 1 RNs, and perform independent communication between the backhaul link and the access link.
  • the operation mode of RN that uses different frequencies for the backhaul link and the access link is called out-band (or outband, out-of-band) operation.
  • Type 1b RN like Type 1 RN, performs in-band operation using the same frequency on the backhaul link and access link. However, type 1b RNs do not perform time division of radio resources. When this type is used, it is assumed that the interference to the reception of the backhaul link due to the transmission of the access link can be separated and suppressed.
  • RN transmits RN identification information including RN type to eNB in phase 2 of the startup procedure described above. And eNB determines the control method of a backhaul link based on RN type information contained in RN identification information. More specifically, the eNB determines whether to perform in-band operation or out-band operation and whether to time-divide radio resources of the backhaul link based on the RN type information.
  • Donor eNB an eNB that accepts RN attribution is referred to as “Donor eNB (hereinafter DeNB)”.
  • a mobile station (UE) directly belonging to a relay station (RN) is referred to as “RN-UE”.
  • a mobile station (UE) directly belonging to a donor base station (DeNB) is referred to as “eNB-UE”.
  • Multi-hop RN is a technology that enables cascade connection of relay stations (RN) to relay stations (RN) belonging to the eNB.
  • the relay station (RN) belonging to the lower layer of the eNB with the radio interface is called ⁇ upper RN '', and the relay station belonging to the lower layer of the upper RN with the radio interface ( RN) is referred to as “lower RN” for distinction.
  • a radio interface between the eNB and the RN and between the upper RN and the lower RN is referred to as a “backhaul link”.
  • a radio interface between the eNB and the eNB-UE, and between the RN and the RN-UE is referred to as an “access link”.
  • 3GPP TR 36.912 V9.2.0 (2010-03), "Feasibility study for Further Advancements for E-UTRA (LTE-Advanced)", 3GPP (3rdGeneration Partnership Project), 2010 3GPP TR 36.806 V9.0.0 (2010-03), "Relay architectures for E-UTRA (LTE-Advanced)", 3GPP, March 2010 3GPP TS 36.300 V10.1.0 (2010-09), “Overall description; Stage 2 (Release 10)", 3GPP, October 2010 3GPP TR 36.814 V9.0.0 (2010-03), "Further advancements for E-UTRA physical layer aspects", 3GPP, March 2010
  • the inventors of the present application conducted a detailed study on the method of switching the frequency used for the RN backhaul link. Whether or not to use the same frequency as the access link for the backhaul link, in other words, whether to use in-band operation or out-band operation, generally depends on the load on the RN cell (eg RN cell traffic volume). It is thought that it is decided based on. Furthermore, as described with reference to the sequence diagram of FIG. 2, whether to perform in-band operation or out-band operation is determined at the initial setup of the RN. Therefore, for example, it is considered that the backhaul link is set so as to be able to cope with the maximum value of the assumed load of the RN cell at the time of initial setup of the RN.
  • the frequency utilization efficiency may decrease.
  • the DeNB operates the access link (AL1) with the eNB-UE at the first frequency and operates the backhaul link (BL1) with the RN for out-band operation at the second frequency.
  • AL1 access link
  • BL1 backhaul link
  • the time zone when the number of UEs connected to the DeNB and the RN is small and the traffic volume to be handled by the DeNB and the RN is small, it is assumed that the utilization rates of the first and second frequencies are low.
  • the frequency utilization efficiency decreases. It is not preferable to always use the first and second frequencies corresponding to the maximum load from the viewpoint of generating wasteful power consumption.
  • One of the objects of the present invention is a relay station, a base station, a mobile communication system, a backhaul link control method, and a program capable of contributing to efficient use of frequency resources in a mobile communication system including the relay station Is to provide.
  • the first aspect includes a relay station.
  • the relay station includes a radio communication unit and a backhaul link control unit.
  • the wireless communication unit relays data between the base station and the mobile station using a backhaul link connected to the base station and an access link connected to the mobile station.
  • the backhaul link control unit switches a use frequency of the backhaul link during operation of a relay station cell using the access link.
  • the use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to the out-band frequency different from the use frequency of the access link, and from the out-band frequency. Including at least one of switching to the in-band frequency.
  • the second aspect includes a base station.
  • the base station includes a radio communication unit and a backhaul link control unit.
  • the wireless communication unit is configured to be able to perform data transfer with a mobile station connected to the relay station via an access link via a backhaul link connected to the relay station.
  • the backhaul link control unit switches the use frequency of the backhaul link during operation of the relay station cell using the access link by the relay station.
  • the use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to the out-band frequency different from the use frequency of the access link, and from the out-band frequency. Including at least one of switching to the in-band frequency.
  • the third aspect includes a mobile communication system including a base station and a mobile station.
  • the relay station relays data between the base station and the mobile station using a backhaul link connected to the base station and an access link connected to the mobile station.
  • the mobile communication system according to this aspect is configured to be able to switch the use frequency of the backhaul link during operation of the relay station cell using the access link by the relay station.
  • the use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to the out-band frequency different from the use frequency of the access link, and from the out-band frequency. Including at least one of switching to the in-band frequency.
  • the fourth aspect includes a backhaul link control method for connecting a base station and a mobile station.
  • the relay station is configured to perform data relay between the base station and the mobile station using the backhaul link and an access link connected to the mobile station.
  • the method according to the present aspect includes switching a use frequency of the backhaul link during operation of a relay station cell using an access link connecting the relay station and a mobile station.
  • switching the use frequency of the backhaul link includes switching from the same in-band frequency as the use frequency of the access link to an out-band frequency different from the use frequency of the access link, and the out-band frequency. To at least one of switching to the in-band frequency.
  • the fifth aspect includes a program for causing a computer to perform the method according to the fourth aspect described above.
  • a relay station capable of contributing to efficient use of frequency resources in a mobile communication system including a relay station are provided. Can be provided.
  • FIG. 2 is a block diagram showing a configuration example of a mobile communication system according to the first embodiment.
  • 3 is a block diagram showing a configuration example of a base station in the first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a relay station in Embodiment 1.
  • FIG. 3 is a block diagram showing a configuration example of a mobile station in Embodiment 1.
  • FIG. 4 is a sequence diagram showing an example of a backhaul link control procedure in the first embodiment.
  • 3 is a flowchart showing an operation example of a relay station in the first embodiment.
  • FIG. 10 is a sequence diagram showing an example of a backhaul link control procedure in the second embodiment.
  • 6 is a flowchart illustrating an operation example of a relay station in the second embodiment.
  • 6 is a flowchart showing an operation example of a base station in the second embodiment.
  • FIG. 11 is a sequence diagram showing an example of a backhaul link control procedure in the third embodiment.
  • 12 is a flowchart illustrating an operation example of a relay station in the third embodiment.
  • 10 is a flowchart showing an operation example of a base station in the third embodiment.
  • FIG. 10 is a block diagram illustrating a configuration example of a management device according to a fourth embodiment.
  • FIG. 10 is a sequence diagram showing an example of a backhaul link control procedure in the fourth embodiment.
  • 10 is a flowchart illustrating an operation example of the management device according to the fourth embodiment.
  • FIG. 3 is a block diagram showing a configuration example of the mobile communication system according to the present embodiment.
  • the radio communication system according to the present embodiment will be described as an FDD (Frequency division Duplex) -OFDMA, more specifically, an LTE-Advanced radio communication system based on the LTE scheme.
  • the base station (eNB) 1 belongs to the mobile carrier's core network (CN) 4, and is between the mobile station (eNB-UE) 3-1 and the core network (CN) 4.
  • the base station 1 is a base station that can accept the attribution of the relay station 2 (that is, a base station that can operate as a DeNB), and can also accept the attribution of the mobile station 3-1.
  • Relay station (RN) 2 connects base station 1 and the backhaul link (BL1 in FIG. 3). Further, the relay station (RN) 2 operates the relay station cell 20 using the access link (AL2 in FIG. 3), and connects to the mobile station (RN-UE) 3-2 through the access link (AL2). Data relay is performed between the base station 1 and the mobile station 3-2.
  • the relay station 2 can be connected to the management apparatus 5 via the core network (CN) 4.
  • the management device 5 is an OAM system and manages information set by a mobile communication carrier.
  • the relay station 2 can acquire information (i.e. donor cell list) from the management device 5, and performs initial setting of the backhaul link and the access link according to the RN startup procedure described in Non-Patent Document 3.
  • the procedure for performing the initial setting of the relay station 2 using the information (i.e. donor cell list) distributed from the management device 5 is merely a request based on the LTE standard. That is, the relay station 2 can perform initial setting without performing communication with the management device 5.
  • information relating to the initial setting of the relay station 2 may be stored in advance in a storage device in the relay station 2. Further, information regarding the initial setting of the relay station 2 may be transmitted from the base station 1 to the relay station 2.
  • relay station 2 and base station 1 connect a backhaul link (BL1), and relay station 2 operates relay station cell 20 using an access link (AL2).
  • the operating frequency of the backhaul link (BL1) (hereinafter referred to as the backhaul link frequency) can be switched.
  • switching of the backhaul link frequency is the same frequency (hereinafter referred to as in-band frequency) as the frequency used for the access link (AL2) to a frequency different from the frequency used for the access link (AL2) (hereinafter referred to as out-band frequency). And at least one of switching from an out-band frequency to an in-band frequency.
  • the operation state of the backhaul link (BL1) is in- It is possible to switch from band operation to out-band operation, or from out-band operation to in-band operation.
  • the determination of switching of the backhaul link frequency may be performed by the relay station 2 or the base station 1. Further, the switching of the backhaul link frequency may be determined by another device (higher level device) in the mobile communication system, or may be performed by an OAM system that monitors the mobile communication system. That is, the determination subject of the switching condition of the backhaul link frequency may be appropriately determined according to the switching condition to be used.
  • the relay station 2 or the base station 1 or both have information necessary for the determination (eg, the traffic information of the relay station cell 20, the base station The traffic information of the cell 10, the power consumption information of the base station 1, etc.) may be reported to the host device or the OAM system.
  • the host device or the OAM system may determine switching of the backhaul link frequency with reference to information received from the relay station 2 or the base station 1 or both.
  • the mobile communication system is provided with a backhaul link on condition that the traffic volume processed by relay station 2 decreases during out-band operation.
  • the frequency may be switched from the out-band frequency to the in-band frequency.
  • the mobile communication system may switch the backhaul link frequency from the out-band frequency to the in-band frequency when it is determined that the traffic volume processed by the relay station 2 falls below a predetermined threshold.
  • the amount of traffic processed by the relay station 2 is, for example, the amount of data packets transferred to the access link (AL2), the amount of data packets transferred through the backhaul link (BL1), or the mobile station 3 connected to the relay station cell 20 It may be calculated using the total number of -2, or a combination of at least two of these.
  • the traffic amount processed by the relay station 2 may be calculated by the relay station 2, the base station 1, other devices in the mobile communication system, or the OAM server.
  • In-band operation generally has more frequency resource restrictions than out-band operation, so the amount of traffic that can be processed by base station 1 and relay station 2 is limited. However, when the amount of traffic processed by the relay station 2 is small, the amount of traffic to be processed by the base station 1 and the relay station 2 is also small. For this reason, it is preferable to switch from out-band operation to in-band operation according to the phenomenon of traffic volume processed by the relay station 2.
  • In-band operation uses the same frequency (for example, RF1) for the backhaul link (BL1) and the access link (AL1 and AL2). For this reason, the mobile communication system can efficiently use frequency resources. Further, by switching from the out-band operation to the in-band operation, the base station 1 can stop radio transmission at an unused frequency (for example, RF2). Therefore, it is possible to contribute to reduction of power consumption of the base station 1.
  • the mobile communication system is provided with a backhaul link on condition that the traffic volume processed by relay station 2 has increased during in-band operation.
  • the frequency may be switched from the in-band frequency to the out-band frequency.
  • the mobile communication system may switch the backhaul link frequency from the in-band frequency to the out-band frequency when it is determined that the traffic volume processed by the relay station 2 exceeds a predetermined threshold.
  • the radio communication system can efficiently use frequency resources by in-band operation when traffic is low, and can cope with traffic increase by switching to out-band operation.
  • (B) Traffic volume processed by base station 1 The mobile communication system according to the present embodiment changes the backhaul link frequency from the out-band frequency to the in-band frequency on the condition that the traffic volume processed by the base station 1 has decreased. You may switch to the band frequency. Also, the mobile communication system according to the present embodiment may switch the backhaul link frequency from the in-band frequency to the out-band frequency on condition that the traffic volume processed by the base station 1 has increased.
  • the mobile communication system may switch between out-band operation and in-band operation on condition that the total amount of traffic processed by relay station 2 and base station 1 has fluctuated.
  • the backhaul link frequency may be switched from the out-band frequency to the in-band frequency on the condition that the total traffic volume has decreased.
  • the backhaul link frequency may be switched from the in-band frequency to the out-band frequency on condition that the total traffic volume has increased.
  • the mobile communication system according to the present embodiment may switch between out-band operation and in-band operation according to the time zone. That is, the mobile communication system according to the present embodiment uses an out-band frequency for the backhaul link (BL1) in a predetermined first time zone, and backhauls in a predetermined second time zone. An in-band frequency may be used for the link (BL1).
  • the second time zone may be a time zone in which the amount of traffic to be processed by the relay station 2 or the base station 1 is assumed to be smaller than that of the first time zone.
  • the second time zone may be nighttime and the first time zone may be daytime.
  • the operator of the mobile communication system may set the second time zone as a time zone in which the power consumption of the base station 1 is desired to be suppressed.
  • wireless communications system can perform in-band operation in the 2nd time slot
  • the mobile communication system includes a base station 1, a plurality of base stations including base station 1, relay station 2, or relay station 2 and base station 1
  • the backhaul link frequency may be switched from the out-band frequency to the in-band frequency on condition that power consumption of at least a part of the mobile communication system has increased.
  • the wireless communication system can suppress power consumption of the mobile communication system by switching from out-band operation to in-band operation.
  • FIG. 4 is a block diagram showing a configuration example of the base station 1.
  • the radio communication unit 11 receives an uplink signal transmitted from the mobile station 3-1 or the relay station 2 via an antenna.
  • the reception data processing unit 13 restores the received uplink signal.
  • the obtained received data is transferred to the core network 4 via the communication unit 14.
  • the transmission data processing unit 12 stores the data acquired from the communication unit 14 for the mobile stations 3-1, 3-2 or the relay station 2 in a buffer set for each mobile station and for each bearer, error correction coding,
  • a transport channel is generated by performing rate matching, interleaving, and the like. Further, the transmission data processing unit 12 adds a control information to the data sequence of the transport channel to generate a radio frame.
  • the wireless communication unit 11 performs a process such as orthogonal modulation, frequency conversion, and signal amplification of the transmission symbol sequence to generate a downlink signal, and transmits this to the mobile station 3-1 or the relay station 2.
  • the backhaul link control unit 15 controls transmission timing related to communication with the relay station 2 via the backhaul link, radio resource allocation, and a frequency used in the backhaul link.
  • FIG. 5 is a block diagram showing a configuration example of the relay station 2.
  • the relay station 2 has a function equivalent to that of the base station 1 unless otherwise specified.
  • the lower radio link communication unit 21 receives an uplink signal transmitted from the mobile station 3-2 via an antenna.
  • the reception data processing unit 23 has both functions of a reception data processing unit 13 of the base station 1 and a transmission data processing unit 34 of the mobile station 3 described later.
  • the reception data obtained by the reception data processing unit 23 is transmitted to the base station 1 via the upper radio link communication unit 24.
  • the transmission data processing unit 22 has both functions of a transmission data processing unit 12 of the base station 1 and a reception data processing unit 32 of the mobile station 3 described later.
  • the transmission data processing unit 22 generates a transmission symbol sequence from the transmission data transmitted toward the mobile station 3-2 acquired from the upper radio link communication unit 24.
  • the lower radio link communication unit 21 generates a downlink signal from the symbol string and transmits it to the mobile station 3-2.
  • the backhaul link control unit 25 performs communication control with the base station via the backhaul link such as selection of a frequency used for the backhaul link.
  • FIG. 6 is a block diagram illustrating a configuration example of the mobile station 3.
  • the wireless communication unit 31 receives a downlink signal via an antenna.
  • the received data processing unit 32 restores the received data from the received downlink signal and sends it to the buffer unit 35.
  • the received data stored in the buffer unit 35 is read out and used according to its purpose.
  • the transmission data control unit 33, the transmission data processing unit 34, and the wireless communication unit 31 generate an uplink signal using the transmission data stored in the buffer unit 35, and transmit it to the base station 1 or the relay station 2 To do.
  • FIG. 7 is a sequence diagram showing an example of a backhaul link control procedure in the first embodiment.
  • FIG. 7 shows the interaction between the base station 1, the relay station 2, and the mobile stations 3-1 and 3-2, where “eNB” is the base station 1, “RN” is the relay station 2, and “RN” -UE “corresponds to mobile station 3-2 belonging to RN, and” eNB-UE "corresponds to mobile station 3-1 belonging to eNB including DeNB.
  • Steps S101 to S103 show data communication between eNB 1, RN 2, UE 3-1 and 3-2 in out-band operation.
  • the eNB 1 and the RN 2 perform data communication using the frequency RF2 as the backhaul link frequency (step S101).
  • the RN 2 and RN-UE 3-2 perform data communication using the frequency RF1 as the frequency of the access link (AL2) (step S102).
  • the eNB 1 and eNB-UE 3-1 perform data communication using the frequency RF1 as the frequency of the access link (AL1) (step S103).
  • step S104 RN 2 decides switching of the backhaul link frequency, here switching from the out-band frequency RF2 to the in-band frequency RF1.
  • the determination may be performed using any of the above-described switching conditions of the backhaul link frequency.
  • the RN 2 monitors the traffic of the RN cell 20. Then, the RN 2 may determine switching to the in-band frequency when the traffic volume of the RN cell 20 falls below a preset threshold value.
  • step S105 RN 2 transmits a request for changing the frequency used in the backhaul link to eNB 1.
  • the eNB 1 instructs the RN 2 to change the backhaul link setting (frequency, presence / absence of resource division, etc.) in response to receiving the backhaul link frequency change request.
  • the eNB-1 may stop radio transmission at the frequency RF2.
  • Step S107 RN 2 changes the setting of the backhaul link including frequency switching based on the backhaul link change instruction from eNB 1 (step S107).
  • Steps S108 to S110 show data communication between eNB 1, RN 2, UE 3-1 and 3-2 after switching the backhaul link frequency, that is, after switching from out-band operation to in-band operation. ing.
  • the eNB 1 and the RN ⁇ ⁇ ⁇ 2 perform data communication using the frequency RF1 as the backhaul link frequency (step S108).
  • the RN 2 and the RN-UE 3-2 perform data communication using the frequency RF1 as the frequency of the access link (AL2) (step S109).
  • the eNB 1 and eNB-UE 3-1 perform data communication using the frequency RF1 as the frequency of the access link (AL1) (step S110).
  • FIG. 8 is a flowchart showing an operation example of the relay station 2 regarding switching of the backhaul link frequency.
  • the relay station 2 determines switching of the backhaul link frequency.
  • the relay station 2 returns to Step S201 for determining switching of the backhaul link frequency.
  • the relay station 2 transmits a backhaul link change request to the base station 1 (Step S202).
  • step S203 the relay station 2 determines whether a backhaul link change request has been received from the base station 1.
  • the relay station 2 changes the setting of the backhaul link including switching of the backhaul link frequency (Step S204).
  • the relay station 2 returns to Step S203 for determining whether or not the backhaul link change request has been received.
  • FIG. 9 is a flowchart showing an operation example of the base station 1 regarding switching of the backhaul link frequency.
  • the base station 1 determines whether or not a backhaul link change request has been received.
  • the base station 1 transmits the backhaul link change request to the relay station 2 (Step S302).
  • the base station 1 returns to Step S301 for determining reception of the backhaul link change request.
  • the base station 1 stops radio transmission at this frequency when an unused frequency is generated due to switching of the backhaul link frequency, particularly switching from the out-band frequency to the in-band frequency. To do.
  • the frequency used for the backhaul link (BL1) ( Hereinafter, the backhaul link frequency) can be switched. For this reason, the mobile communication system can efficiently use frequency resources. Further, by switching from the out-band operation to the in-band operation, the base station 1 can stop radio transmission at an unused frequency (for example, RF2). Therefore, it is possible to contribute to reduction of power consumption of the base station 1.
  • the mobile communication system After switching the backhaul link frequency, the mobile communication system according to the present embodiment returns the backhaul link frequency before switching in accordance with the deterioration of radio parameters of relay station cell 20.
  • the radio parameter of the relay station cell 20 can be rephrased as the communication quality of the relay station cell 20.
  • a specific example of the radio parameter of the relay station cell 20 is the downlink throughput (data amount that can be transmitted per unit time) of the RN cell 20, or the number of mobile stations that can be connected to the RN cell 20.
  • the mobile communication system may switch back the backhaul link frequency when the difference (decrease width) in throughput before and after switching the backhaul link frequency exceeds a predetermined threshold. Further, the mobile communication system may switch back the backhaul link frequency when the throughput after switching the backhaul link frequency falls below a predetermined threshold.
  • the decision of switching backhaul link frequency may be made by the relay station 2 or the base station 1.
  • the determination of backhaul link frequency switching may be performed by another device (higher-order device) in the mobile communication system, or by an OAM system that monitors the mobile communication system.
  • the determination subject of the backhaul link frequency switch-back may be appropriately determined according to the frequency switch-back condition.
  • the switching of the backhaul link frequency causes the communication quality (eg, throughput) of the relay station cell 20 to deteriorate, the switching operation for returning the backhaul link frequency to the original state I do. Therefore, it is possible to contribute to efficient use of frequency resources and reduction of power consumption of the base station 1 while suppressing deterioration of communication quality of the RN cell 20.
  • the communication quality eg, throughput
  • FIG. 10 is a sequence diagram showing an example of a backhaul link control procedure in the second embodiment. Processes and operations from step S101 to step S110 in FIG. 10 are the same as the step group having the same reference numerals in FIG. 7 described in the first embodiment. Therefore, only the difference from FIG. 7 will be described here.
  • step S401 after changing the setting of the backhaul link, the RN 2 measures whether or not the radio parameter (in other words, communication quality) of the RN cell 20 has deteriorated.
  • the RN 2 transmits a backhaul link recovery request to the eNB 1 in order to return the backhaul link setting including the backhaul link frequency before switching (step S402).
  • the eNB ⁇ 1 instructs the RN 2 to change the backhaul link setting (frequency, presence / absence of resource division, etc.) in response to receiving the recovery request.
  • the eNB 1 restarts the radio transmission at the frequency before the switching.
  • step S404 RN2 restores the backhaul link setting in response to receiving the backhaul link change instruction.
  • the data communication before the change is restored (from step S101 to step S103).
  • Steps S405 to S407 perform data communication between eNB 1, RN 2, UE 3-1 and 3-2 after switching backhaul link frequency, that is, after switching from in-band operation to out-band operation. Show. Accordingly, steps S405 to S407 are the same as steps S101 to S103.
  • FIG. 11 is a flowchart showing an operation example of the relay station 2 regarding switching and switching backhaul link frequencies. Processes and operations from step S201 to step S204 in FIG. 11 are the same as those in the step group having the same reference numerals in FIG. 8 described in the first embodiment. Therefore, only the difference from FIG. 8 will be described here.
  • step S501 after switching the backhaul link frequency, the relay station 2 determines whether or not the radio parameters of the relay station cell 20 have deteriorated. If the radio parameter has not deteriorated (No in step S501), the relay station 2 ends the procedure of FIG. On the other hand, when the radio parameter is degraded (Yes in step S501), the relay station 2 transmits a backhaul link recovery request to the DeNB for switching back the backhaul link frequency (step S502). In step S503, the relay station 2 determines whether a backhaul link change request has been received from the base station 1. When the backhaul link change request is received (Yes in Step S503), the relay station 2 changes the setting of the backhaul link including switching back of the backhaul link frequency (Step S504). When the backhaul link change request has not been received (No in Step S503), the relay station 2 returns to Step S503 for determining whether or not the backhaul link change request has been received.
  • FIG. 12 is a flowchart showing an operation example of the base station 1 regarding backhaul link frequency switching back.
  • the base station 1 determines whether or not a backhaul link recovery request has been received from the relay station 2.
  • the base station 1 instructs the RN to change the setting of the backhaul link including the backhaul link frequency switch back (step S602). If the backhaul link recovery request has not been received (No in step S601), the base station 1 returns to step S601 to determine whether or not a backhaul link recovery request has been received.
  • the radio parameter of the relay station cell 20 is changed according to the deterioration of the deterioration being smaller than the reference. Stop operation.
  • the mobile communication system may stop the operation of the relay station cell 20 when the throughput difference (decrease width) before and after the switching of the backhaul link frequency falls below a predetermined threshold.
  • the mobile communication system may stop the operation of the relay station cell 20 when the throughput after switching the backhaul link frequency exceeds a predetermined threshold.
  • the decision to stop operation of the relay station cell 20 may be made by the relay station 2 or the base station 1.
  • the operation stop determination of the relay station cell 20 may be performed by another device (higher-order device) in the mobile communication system, or may be performed by an OAM system that monitors the mobile communication system. That is, the determination subject of the operation stop of the relay station cell 20 may be appropriately determined according to the operation stop condition of the relay station cell 20.
  • the mobile communication system stops the operation of the relay station cell 20 when the deterioration of the communication quality of the relay station cell 20 after switching of the backhaul link frequency is small. Therefore, in addition to the efficient use of frequency resources and the reduction of power consumption of the base station 1, it can also contribute to the reduction of power consumption of the relay station 2.
  • FIG. 13 is a sequence diagram showing an example of a backhaul link control procedure in the third embodiment. Processes and operations from step S101 to step S110 in FIG. 13 are the same as those in the step group having the same reference numerals in FIG. 7 described in the first embodiment. Therefore, only the difference from FIG. 7 will be described here.
  • Step S701 after changing the setting of the backhaul link, the RN 2 measures whether or not the radio parameter (in other words, communication quality) of the RN cell 20 has deteriorated. If the degradation of the line parameter is below the reference, the RN 2 transmits an RN cell suspension notification to the eNB 1 in order to suspend the RN cell 20 (step S702). In step S703, the eNB 1 stops data transmission addressed to the RN 2 in response to receiving the RN cell suspension notification (step S703). The RN 2 suspends the operation of the RN cell 20 after transmitting the RN cell suspension notification (step S704). Steps S705 and S706 indicate data communication after the RN cell 20 is suspended. That is, the RN-UE 3-2 connected to the RN cell 20 before suspending the RN cell directly belongs to the eNB cell 10 through the access link (AL1) and performs data communication.
  • the radio parameter in other words, communication quality
  • FIG. 14 is a flowchart showing an operation example of the relay station 2 regarding switching of the backhaul link frequency and suspension of operation of the relay station cell 20. Processes and operations from step S201 to step S204 in FIG. 14 are the same as those in the step group having the same reference numerals in FIG. 8 described in the first embodiment. Therefore, only the difference from FIG. 8 will be described here.
  • step S801 after switching the backhaul link frequency, the relay station 2 determines whether or not the radio parameters of the relay station cell 20 have deteriorated. If the degradation of the radio parameters exceeds the standard (No in step S801), the relay station 2 ends the procedure of FIG. On the other hand, when the degradation of the radio parameter is below the reference (Yes in step S801), the relay station 2 transmits a relay station cell suspension notification to the base station 1 (step S802). In step S803, the relay station 2 stops the operation of the relay station cell 20.
  • FIG. 15 is a flowchart showing an operation example of the base station 1 regarding the suspension of operation of the relay station cell 20.
  • the base station 1 determines whether or not a relay station cell suspension notification is received from the relay station 2.
  • the base station 1 stops data transmission to the relay station 2 (step S902).
  • the base station 1 returns to step S901 for determining reception of the relay station cell suspension notification.
  • Embodiment 4 a specific example of a backhaul link frequency switching procedure taking into account the power consumption of the mobile communication system described in Embodiment 1 will be described.
  • the mobile communication system monitors the total power consumption of the plurality of base stations 1 or the plurality of relay stations 2 or both in the management apparatus 5, and responds to the increase in the total power consumption. Switch backhaul link frequency from out-band frequency to in-band frequency. Node groups (base stations and relay stations) to be monitored may be determined according to their geographical arrangement.
  • the mobile communication system can switch the backhaul link frequency in consideration of the total power consumption of a plurality of nodes included in the mobile communication system. Therefore, the suppression of the power consumption of the base station 1 can contribute to the suppression of the total power consumption of a plurality of nodes.
  • the configuration examples of the base station 1, the relay station 2, and the mobile station 3 may be the same as those shown in FIGS.
  • FIG. 16 is a block diagram showing a configuration example of the management apparatus 5 in the present embodiment.
  • the communication unit 51 transmits and receives data packets between the base station 1 and the relay station 2 via the core network 4.
  • the reception data processing unit 53 restores information included in the received uplink data packet. When the restored information is information regarding power consumption, the reception data processing unit 53 sends this to the backhaul link management unit 54.
  • the backhaul link management unit 54 manages the frequency used for the backhaul link, the power consumption of the plurality of base stations 1, and the like. Further, the backhaul link management unit 54 instructs the change of the backhaul link frequency according to the total power consumption of the plurality of base stations 1 to be managed.
  • the transmission data processing unit 52 receives control information related to the backhaul link frequency from the backhaul link management unit 54, the transmission data processing unit 52 transmits the control information to the corresponding base station 1 and relay station 2.
  • FIG. 17 is a sequence diagram showing an example of a backhaul link control procedure in the fourth embodiment.
  • the sequence in FIG. 17 is different from the sequence in FIG. 7 in that the determination subject of the backhaul frequency is not the RN 2 but the management device 5. Accordingly, the processes and operations in steps S101 to S103 and steps S106 to S110 in FIG. 17 are the same as those in the step group having the same reference numerals shown in FIG. Therefore, only the difference from FIG. 7 will be described here.
  • eNB 1 notifies the management device 5 (i.e. OAM server) of information (e.g. power consumption or power usage rate) regarding the power consumption of eNB 1. This notification may be performed periodically at a predetermined cycle, or may be performed when power consumption exceeds a reference.
  • the management device 5 aggregates the power consumption information received from the plurality of eNBs 1 and controls the power consumption. Specifically, when the total power consumption of the plurality of eNB 1 exceeds a predetermined reference level, the management device 5 identifies the eNB 1 having an out-band operation backhaul link, and the eNB 1 A backhaul link change request is transmitted to (step S1103).
  • This backhaul link change request includes an instruction to switch the backhaul frequency to the in-band frequency. Note that when the eNBe1 is specified, the management device 5 changes the backhaul link to in-band operation to generate a frequency that does not require data transmission, and can stop transmission at this frequency. You may choose eNB 1.
  • FIG. 18 is a flowchart showing an operation example of the management apparatus 5 related to switching of the backhaul link frequency in the fourth embodiment.
  • the management device 5 receives power consumption information from the plurality of base stations 1.
  • the management device 5 determines whether or not the total power consumption of the plurality of base stations 1 exceeds the reference level. When the total power consumption exceeds the reference level (Yes in step S1202), the management apparatus 5 identifies the base station 1 and the relay station 2 that should change the backhaul link for out-band operation, and changes the backhaul link. Send a request. This frequency is changed from the out-band frequency to the in-band frequency.
  • the management apparatus 5 collects power consumption information of a plurality of base stations 1 and selects the base station 1 whose configuration of the backhaul link should be changed. For this reason, it is possible to suppress power consumption in consideration of the plurality of base stations 1 or the entire mobile communication system.
  • the backhaul link may be controlled based on a ratio (usage rate) to the maximum power consumption.
  • the management device 5 monitors power consumption information of electronic devices such as server computers as well as a plurality of base stations 1, and changes the backhaul link configuration when the total power consumption exceeds a reference level Good. Further, when the ratio (usage rate) to the maximum power consumption is used as the power consumption information, the base station 1 may notify the management device 5 of its own power usage rate. The management device 5 may change the configuration of the backhaul link when the number of base stations whose power usage rate is higher than the threshold is equal to or greater than a predetermined number.
  • Embodiments 1 to 4 described above mobile communication systems that support LTE relay stations have been described.
  • the application destination of these embodiments is not limited to a mobile communication system that supports LTE relay stations. That is, these embodiments are widely applicable to mobile communication systems including relay stations.
  • ASIC Application Specific Specific Integrated Circuit
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • Embodiments 1 to 4 can be appropriately combined. Furthermore, the above-described embodiment is merely an example relating to application of the technical idea obtained by the present inventors. That is, the technical idea is not limited to the above-described embodiment, and various changes can be made.

Abstract

A relay station (2) carries out a data relay between a base station (1) and a mobile station (3-2), using a backhaul link (BL1) which is connected to the base station (1) and an access link (AL2) which is connected to the mobile station (3-2). A mobile communication system is configured such that, while operating a relay station cell (20) using the access link (AL2) via the relay station (2), it is possible to switch the frequency which the backhaul ink (BL1) uses. The switch of the frequency which the backhaul link (BL1) uses includes at least one of a switch from an in-band frequency which is the same as the frequency which the access link (AL2) uses to an out-band frequency which differs from the frequency which the access link (AL2) uses, and a switch from the out-band frequency to the in-band frequency.

Description

中継局、基地局、移動通信システム、バックホールリンクの制御方法、及びコンピュータ可読媒体Relay station, base station, mobile communication system, backhaul link control method, and computer-readable medium
 本発明は、基地局と該基地局に帰属する中継局を含む移動通信システムに関し、特に、基地局と中継局を接続するバックホールリンクに使用される周波数の制御に関する。 The present invention relates to a mobile communication system including a base station and a relay station belonging to the base station, and more particularly to control of a frequency used for a backhaul link connecting the base station and the relay station.
 3GPP(3rd Generation Partnership Project)のLTE-Advanced (Long Term Evolution Advanced)では、中継局(以下RN:Relay node)の導入が検討されている(非特許文献1及び2を参照)。RNは、セル端にいる移動局(以下UE:User Equipment)の通信速度の高速化や、基地局(以下eNB:Evolved Node B)のセル範囲拡大等を目的とした技術の1つである。3GPPで検討されているRNのアーキテクチャーの詳細は非特許文献2に記載されている。 In 3GPP (3rd Generation Partnership Project) LTE-Advanced (Long Term Evolution Advanced), introduction of a relay station (hereinafter referred to as RN: Relay node) is being studied (see Non-Patent Documents 1 and 2). RN is one of the technologies aimed at increasing the communication speed of a mobile station (hereinafter referred to as UE: User Equipment) at the cell edge and expanding the cell range of a base station (hereinafter referred to as eNB: Evolved Node B). The details of the RN architecture studied by 3GPP are described in Non-Patent Document 2.
 以下では、非特許文献2に記載されているRNのアーキテクチャーに基づく移動通信システムの概要について説明する。図1は、3GPPで検討されているRN使用時のネットワーク構成例を示す図である。基地局(eNB)91は、移動体通信事業者のコアネットワーク(以下CN)4に帰属している。基地局(eNB)91は、eNBセル10を生成し、移動局(UE)3-1とコアネットワーク(CN)4との間でトラフィックを中継する。また、中継局(RN)92は、バックホールリンク(図中のBL1)によって基地局(eNB)91に帰属し、バックホールリンク(BL1)を介してコアネットワーク(CN)4に帰属する。中継局(RN)2は、コアネットワーク(CN)4を経由して管理装置5に接続可能である。管理装置5は、OAM(Operation Administration and Maintenance)システムであり、移動体通信事業者によって設定される情報を管理する。中継局(RN)2は、管理装置5から情報を取得することができる。移動局(UE)3-1及び3-2は、アクセスリンク(図中のAL1又はAL2)によって基地局(eNB)91または中継局(RN)92に帰属する。中継局(RN)92は、RNセル20を生成し、移動局(UE)3-2とコアネットワーク(CN)4との間でトラフィックを中継する。バックホールリンクおよびアクセスリンクに関しては後述する。 In the following, an outline of a mobile communication system based on the RN architecture described in Non-Patent Document 2 will be described. FIG. 1 is a diagram illustrating an example of a network configuration when using RN, which is being studied in 3GPP. A base station (eNB) 91 belongs to a core network (hereinafter referred to as CN) 4 of a mobile communication carrier. The base station (eNB) 91 generates an eNB cell 10 and relays traffic between the mobile station (UE) 3-1 and the core network (CN) 4. Further, the relay station (RN) 92 belongs to the base station (eNB) 91 via the backhaul link (BL1 in the figure), and belongs to the core network (CN) 4 via the backhaul link (BL1). The relay station (RN) 2 can be connected to the management device 5 via the core network (CN) 4. The management device 5 is an OAM (Operation Administration and Maintenance) system and manages information set by a mobile communication carrier. The relay station (RN) 2 can acquire information from the management device 5. The mobile stations (UE) 3-1 and 3-2 belong to the base station (eNB) 91 or the relay station (RN) 92 through an access link (AL1 or AL2 in the figure). The relay station (RN) 92 generates the RN cell 20 and relays traffic between the mobile station (UE) 3-2 and the core network (CN) 4. The backhaul link and access link will be described later.
 図2は、非特許文献3のセクション4.7.6に記載されているRNのスタートアップ手順の概要を示すシーケンス図である。なお、3GPPで検討されているRNは、通常の移動局(UE)と同様の手順でネットワークに接続する機能を有している。RNのスタートアップ手順は、以下に述べるフェーズ1及びフェーズ2を含む。フェーズ1では、中継局(RN)92は、通常の移動局(UE)と同様の手順で、つまり移動局(UE)としてネットワーク(E-UTRAN/EPC)に接続する(ステップS9002及びS9003)。そして、中継局(RN)92は、管理装置5(i.e. OAMシステム)から初期設定パラメータを取得する(ステップS9004)。初期設定パラメータは、バックホールリンク(BL1)を用いてRNとして帰属することが可能なeNBセルのリスト(ドナーセルリスト)を含む。初期設定パラメータの取得後、中継局(RN)92は、UEとしてのネットワーク接続を解放することでフェーズ1を終了する(ステップS9005)。なお、フェーズ1において中継局(RN)92が帰属する基地局(eNB)91-1は、中継局(RN)の帰属を受け付ける機能を有していなくてもよい。 Fig. 2 is a sequence diagram showing an outline of the RN startup procedure described in Section 4.7.6 of Non-Patent Document 3. Note that the RN studied in 3GPP has a function of connecting to a network in the same procedure as a normal mobile station (UE). The RN startup procedure includes Phase 1 and Phase 2 described below. In phase 1, the relay station (RN) 92 is connected to the network (E-UTRAN / EPC) as a mobile station (UE) in the same procedure as a normal mobile station (UE) (steps S9002 and S9003). Then, the relay station (RN) 92 acquires initial setting parameters from the management device 5 (i.e. OAM system) (step S9004). The initial setting parameters include a list of eNB cells (donor cell list) that can be assigned as an RN using the backhaul link (BL1). After acquiring the initial setting parameters, the relay station (RN) 92 ends phase 1 by releasing the network connection as the UE (step S9005). Note that the base station (eNB) 91-1 to which the relay station (RN) 92 belongs in phase 1 may not have a function of receiving the attribution of the relay station (RN).
 フェーズ2では、中継局(RN)92は、管理装置5から取得したドナーセルリストに含まれる少なくとも1つのeNBセル(ドナーセル候補)の中から1つのセルを選択し、選択したセルを管理する基地局(eNB)91-2に中継局(RN)2として帰属する(ステップS9006及びS9007)。そして、中継局(RN)92は、帰属先の基地局(eNB)91からバックホールリンク(BL1)の設定情報を取得し、バックホールリンク(BL)の設定を行う(ステップS9008)。フェーズ2の手順の終了後、中継局(RN)92は、中継局セル(RNセル)20の運用を開始する(ステップS9009)。 In phase 2, the relay station (RN) 92 selects one cell from at least one eNB cell (donor cell candidate) included in the donor cell list acquired from the management apparatus 5, and manages the selected cell. It belongs to the station (eNB) 91-2 as the relay station (RN) 2 (steps S9006 and S9007). Then, the relay station (RN) 92 acquires the setting information of the backhaul link (BL1) from the base station (eNB) 91 to which it belongs, and sets the backhaul link (BL) (step S9008). After completion of the phase 2 procedure, the relay station (RN) 92 starts operation of the relay station cell (RN cell) 20 (step S9009).
 また、非特許文献4に記載されているように、3GPPで検討されているRNには、タイプ1、タイプ1a、及びタイプ1bの3つのタイプが存在する。RNは、これら3つのタイプうち1つののみをサポートする場合もあるし、複数のタイプの間で動作モードを変更できる場合もあし、UE間で異なる動作モードを用いる場合もある。タイプ1のRNは、バックホールリンクとアクセスリンクに同一周波数を使用し、バックホールリンク用の無線リソースとアクセスリンク用の無線リソースを時分割する。これは、RNにおけるアクセスリンクの送信からバックホールリンクの受信への干渉を避けることが主な目的である。バンクホールリンクとアクセスリンクに同一周波数を用いるRNの運用形態は、in-band(又はinband)運用と呼ばれる。 Also, as described in Non-Patent Document 4, there are three types of RNs that are being studied by 3GPP: Type 1, Type 1a, and Type 1b. The RN may support only one of these three types, may change the operation mode among a plurality of types, or may use a different operation mode between UEs. The type 1 RN uses the same frequency for the backhaul link and the access link, and time-divides the radio resource for the backhaul link and the radio resource for the access link. This is mainly intended to avoid interference from transmission of the access link at the RN to reception of the backhaul link. The RN operation mode using the same frequency for the bankhole link and the access link is called in-band (or inband) operation.
 タイプ1aのRNは、バックホールリンクとアクセスリンクに異なる周波数を使用する。よって、タイプ1aのRNは、タイプ1のRNのような無線リソースの時分割を必要とせず、バックホールリンクとアクセスリンクとで互いに独立した通信を行う。バックホールリンクとアクセスリンクに異なる周波数を使用するRNの運用形態は、out-band(又はoutband、out-of-band)運用と呼ばれる。 ¡Type 1a RNs use different frequencies for the backhaul link and access link. Therefore, type 1a RNs do not require time sharing of radio resources like type 1 RNs, and perform independent communication between the backhaul link and the access link. The operation mode of RN that uses different frequencies for the backhaul link and the access link is called out-band (or outband, out-of-band) operation.
 タイプ1bのRNは、タイプ1のRNと同様に、バックホールリンクとアクセスリンクで同一周波数を用いてインバンド運用を行う。しかしながらタイプ1bのRNは、無線リソースの時分割は行わない。このタイプを用いる場合、アクセスリンクの送信によるバックホールリンクの受信への干渉が分離・抑制できていることが前提となっている。 タ イ プ Type 1b RN, like Type 1 RN, performs in-band operation using the same frequency on the backhaul link and access link. However, type 1b RNs do not perform time division of radio resources. When this type is used, it is assumed that the interference to the reception of the backhaul link due to the transmission of the access link can be separated and suppressed.
 RNは、上述したスタートアップ手順のフェーズ2において、RNタイプを含むRN識別情報をeNBに送信する。そして、eNBは、RN識別情報に含まれるRNタイプ情報に基づいて、バックホールリンクの制御方法を決定する。より具体的には、eNBは、RNタイプ情報に基づいて、in-band運用及びout-band運用のいずれを行うか、及びバックホールリンクの無線リソースを時分割するか否かを決定する。 RN transmits RN identification information including RN type to eNB in phase 2 of the startup procedure described above. And eNB determines the control method of a backhaul link based on RN type information contained in RN identification information. More specifically, the eNB determines whether to perform in-band operation or out-band operation and whether to time-divide radio resources of the backhaul link based on the RN type information.
 本明細書では、eNBのうち、RNの帰属を受け付けるeNBを「Donor eNB(以下DeNB)」と呼ぶ。また、中継局(RN)に直接帰属される移動局(UE)を「RN-UE」と呼ぶ。また、ドナー基地局(DeNB)に直接帰属される移動局(UE)を「eNB-UE」と呼ぶ。また、3GPPに関する議論では、将来的にマルチホップRNをサポートする要求が出ている。マルチホップRNとは、eNBに帰属する中継局(RN)に更に中継局(RN)をカスケード接続できる技術のことである。本明細書では、マルチホップに関して述べる場合、eNBの下位層に無線インターフェースで帰属される中継局(RN)を「上位RN」と呼び、上位RNの下位層に無線インターフェースで帰属される中継局(RN)を「下位RN」呼んで区別することとする。また、本明細書では、eNBとRN間および上位RNと下位RN間の無線インターフェースを「バックホールリンク」と呼ぶ。一方、eNBとeNB-UE間、RNとRN-UE間の無線インターフェースを「アクセスリンク」と呼ぶ。 In this specification, among eNBs, an eNB that accepts RN attribution is referred to as “Donor eNB (hereinafter DeNB)”. A mobile station (UE) directly belonging to a relay station (RN) is referred to as “RN-UE”. A mobile station (UE) directly belonging to a donor base station (DeNB) is referred to as “eNB-UE”. In the discussion on 3GPP, there is a demand to support multi-hop RN in the future. Multi-hop RN is a technology that enables cascade connection of relay stations (RN) to relay stations (RN) belonging to the eNB. In this specification, when describing multi-hop, the relay station (RN) belonging to the lower layer of the eNB with the radio interface is called `` upper RN '', and the relay station belonging to the lower layer of the upper RN with the radio interface ( RN) is referred to as “lower RN” for distinction. In this specification, a radio interface between the eNB and the RN and between the upper RN and the lower RN is referred to as a “backhaul link”. On the other hand, a radio interface between the eNB and the eNB-UE, and between the RN and the RN-UE is referred to as an “access link”.
 本願の発明者等は、RNのバックホールリンクに使用する周波数の切り替え方法について詳細検討を行った。バックホールリンクにアクセスリンクと同一周波数を用いるか否か、言い換えるとin-band運用とout-band運用のどちらを行うかは、一般的に、RNセルの負荷(e.g. RNセルのトラヒック量)に基づいて決定されると考えられる。さらに、図2のシーケンス図を用いて説明したように、in-band運用とout-band運用のどちらを行うかは、RNの初期セットアップ時に決定される。従って、例えば、バックホールリンクは、RNの初期セットアップ時に、予め想定されるRNセルの負荷の最大値に対応できるように設定されると考えられる。 The inventors of the present application conducted a detailed study on the method of switching the frequency used for the RN backhaul link. Whether or not to use the same frequency as the access link for the backhaul link, in other words, whether to use in-band operation or out-band operation, generally depends on the load on the RN cell (eg RN cell traffic volume). It is thought that it is decided based on. Furthermore, as described with reference to the sequence diagram of FIG. 2, whether to perform in-band operation or out-band operation is determined at the initial setup of the RN. Therefore, for example, it is considered that the backhaul link is set so as to be able to cope with the maximum value of the assumed load of the RN cell at the time of initial setup of the RN.
 しかしながら、RNセルの負荷は、時間帯などの条件に応じて変化するため、RNセルの負荷の最大値に基づいてバックホールリンクを固定的に設定したままでは、周波数の利用効率が低下するおそれがある。例えば、DeNBが、eNB-UEとのアクセスリンク(AL1)を第1の周波数で運用し、out-band運用のRNとのバックホールリンク(BL1)を第2の周波数で運用している場合を考える。DeNB及びRNに接続するUE数が少なく、DeNB及びRNが扱うべきトラヒック量が少ない時間帯では、第1及び第2の周波数の利用率は低いと想定される。したがって、このようにトラヒック量が少ない時間帯に、最大負荷に対応した第1及び2の周波数を常時用いると周波数の利用効率が低下する。最大負荷に対応した第1及び2の周波数を常時用いることは、無駄な消費電力が発生する点においても好ましくない。 However, since the load on the RN cell changes depending on conditions such as the time zone, if the backhaul link is fixedly set based on the maximum value of the load on the RN cell, the frequency utilization efficiency may decrease. There is. For example, when the DeNB operates the access link (AL1) with the eNB-UE at the first frequency and operates the backhaul link (BL1) with the RN for out-band operation at the second frequency. Think. In the time zone when the number of UEs connected to the DeNB and the RN is small and the traffic volume to be handled by the DeNB and the RN is small, it is assumed that the utilization rates of the first and second frequencies are low. Therefore, if the first and second frequencies corresponding to the maximum load are always used in such a time zone in which the traffic volume is small, the frequency utilization efficiency decreases. It is not preferable to always use the first and second frequencies corresponding to the maximum load from the viewpoint of generating wasteful power consumption.
 本発明の目的の1つは、中継局を含む移動通信システムにおける周波数リソースの効率的な利用に寄与することが可能な中継局、基地局、移動通信システム、バックホールリンクの制御方法、及びプログラムを提供することである。 One of the objects of the present invention is a relay station, a base station, a mobile communication system, a backhaul link control method, and a program capable of contributing to efficient use of frequency resources in a mobile communication system including the relay station Is to provide.
 第1の態様は、中継局を含む。当該中継局は、無線通信部及びバックホールリンク制御部を有する。前記無線通信部は、基地局と接続されるバックホールリンク、及び移動局と接続されるアクセスリンクを用いて、前記基地局と前記移動局との間でデータ中継を行う。前記バックホールリンク制御部は、前記アクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数の切り替えを行う。ここで、前記バックホールリンクの使用周波数の切り替えは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む。 The first aspect includes a relay station. The relay station includes a radio communication unit and a backhaul link control unit. The wireless communication unit relays data between the base station and the mobile station using a backhaul link connected to the base station and an access link connected to the mobile station. The backhaul link control unit switches a use frequency of the backhaul link during operation of a relay station cell using the access link. Here, the use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to the out-band frequency different from the use frequency of the access link, and from the out-band frequency. Including at least one of switching to the in-band frequency.
 第2の態様は、基地局を含む。当該基地局は、無線通信部及びバックホールリンク制御部を有する。前記無線通信部は、中継局と接続されるバックホールリンクを経由して、前記中継局にアクセスリンクによって接続された移動局との間でデータ転送を行うことが可能に構成されている。前記バックホールリンク制御部は、前記中継局による前記アクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数の切り替えを行う。ここで、前記バックホールリンクの使用周波数の切り替えは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む。 The second aspect includes a base station. The base station includes a radio communication unit and a backhaul link control unit. The wireless communication unit is configured to be able to perform data transfer with a mobile station connected to the relay station via an access link via a backhaul link connected to the relay station. The backhaul link control unit switches the use frequency of the backhaul link during operation of the relay station cell using the access link by the relay station. Here, the use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to the out-band frequency different from the use frequency of the access link, and from the out-band frequency. Including at least one of switching to the in-band frequency.
 第3の態様は、基地局及び移動局を含む移動通信システムを含む。前記中継局は、前記基地局と接続されるバックホールリンク、及び移動局と接続されるアクセスリンクを用いて、前記基地局と前記移動局との間でデータ中継を行う。さらに、本態様に係る移動通信システムは、前記中継局による前記アクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数を切り替えることができるよう構成されている。ここで、前記バックホールリンクの使用周波数の切り替えは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む。 The third aspect includes a mobile communication system including a base station and a mobile station. The relay station relays data between the base station and the mobile station using a backhaul link connected to the base station and an access link connected to the mobile station. Furthermore, the mobile communication system according to this aspect is configured to be able to switch the use frequency of the backhaul link during operation of the relay station cell using the access link by the relay station. Here, the use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to the out-band frequency different from the use frequency of the access link, and from the out-band frequency. Including at least one of switching to the in-band frequency.
 第4の態様は、基地局と移動局を接続するバックホールリンクの制御方法を含む。ここで、前記中継局は、前記バックホールリンク、及び移動局と接続されるアクセスリンクを用いて、前記基地局と前記移動局との間でデータ中継を行うよう構成されたものである。本態様に係る方法は、前記中継局と移動局を接続するアクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数を切り替えることを含む。ここで、前記バックホールリンクの使用周波数を切り替えることは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む。 The fourth aspect includes a backhaul link control method for connecting a base station and a mobile station. Here, the relay station is configured to perform data relay between the base station and the mobile station using the backhaul link and an access link connected to the mobile station. The method according to the present aspect includes switching a use frequency of the backhaul link during operation of a relay station cell using an access link connecting the relay station and a mobile station. Here, switching the use frequency of the backhaul link includes switching from the same in-band frequency as the use frequency of the access link to an out-band frequency different from the use frequency of the access link, and the out-band frequency. To at least one of switching to the in-band frequency.
 第5の態様は、上述した第4の態様に係る方法をコンピュータに行わせるためのプログラムを含む。 The fifth aspect includes a program for causing a computer to perform the method according to the fourth aspect described above.
 上述した各態様によれば、中継局を含む移動通信システムにおける周波数リソースの効率的な利用に寄与することが可能な中継局、基地局、移動通信システム、バックホールリンクの制御方法、及びプログラムを提供できる。 According to each aspect described above, a relay station, a base station, a mobile communication system, a backhaul link control method, and a program capable of contributing to efficient use of frequency resources in a mobile communication system including a relay station are provided. Can be provided.
背景技術に係る移動通信システムの構成例を示すブロック図である。It is a block diagram which shows the structural example of the mobile communication system which concerns on background art. 背景技術に係る中継局のスタートアップ手順を示すシーケンス図である。It is a sequence diagram which shows the startup procedure of the relay station which concerns on background art. 実施の形態1における移動通信システムの構成例の構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a mobile communication system according to the first embodiment. 実施の形態1における基地局の構成例を示すブロック図である。3 is a block diagram showing a configuration example of a base station in the first embodiment. FIG. 実施の形態1における中継局の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a relay station in Embodiment 1. FIG. 実施の形態1における移動局の構成例を示すブロック図である。3 is a block diagram showing a configuration example of a mobile station in Embodiment 1. FIG. 実施の形態1におけるバックホールリンク制御手順の一例を示すシーケンス図である。FIG. 4 is a sequence diagram showing an example of a backhaul link control procedure in the first embodiment. 実施の形態1における中継局の動作例を示すフローチャートである。3 is a flowchart showing an operation example of a relay station in the first embodiment. 実施の形態1における基地局の動作例を示すフローチャートである。3 is a flowchart showing an operation example of a base station in the first embodiment. 実施の形態2におけるバックホールリンク制御手順の一例を示すシーケンス図である。FIG. 10 is a sequence diagram showing an example of a backhaul link control procedure in the second embodiment. 実施の形態2における中継局の動作例を示すフローチャートである。6 is a flowchart illustrating an operation example of a relay station in the second embodiment. 実施の形態2における基地局の動作例を示すフローチャートである。6 is a flowchart showing an operation example of a base station in the second embodiment. 実施の形態3におけるバックホールリンク制御手順の一例を示すシーケンス図である。FIG. 11 is a sequence diagram showing an example of a backhaul link control procedure in the third embodiment. 実施の形態3における中継局の動作例を示すフローチャートである。12 is a flowchart illustrating an operation example of a relay station in the third embodiment. 実施の形態3における基地局の動作例を示すフローチャートである。10 is a flowchart showing an operation example of a base station in the third embodiment. 実施の形態4における管理装置の構成例を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration example of a management device according to a fourth embodiment. 実施の形態4におけるバックホールリンク制御手順の一例を示すシーケンス図である。FIG. 10 is a sequence diagram showing an example of a backhaul link control procedure in the fourth embodiment. 実施の形態4における管理装置の動作例を示すフローチャートである。10 is a flowchart illustrating an operation example of the management device according to the fourth embodiment.
 以下では、具体的な実施の形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。 Hereinafter, specific embodiments will be described in detail with reference to the drawings. In each drawing, the same or corresponding elements are denoted by the same reference numerals, and redundant description is omitted as necessary for clarification of the description.
<実施の形態1>
 図3は、本実施の形態に係る移動通信システムの構成例を示すブロック図である。本実施の形態にかかる無線通信システムは、FDD(Frequency division Duplex)-OFDMA、より具体的にはLTE方式を基にしたLTE-Advanced方式の無線通信システムであるとして説明を行う。図3において、基地局(eNB)1は、移動体通信事業者のコアネットワーク(CN)4に帰属しており、移動局(eNB-UE)3-1とコアネットワーク(CN)4との間でトラフィックを中継する。基地局1は、中継局2の帰属を受け付けることが可能な基地局(つまりDeNBとして動作可能な基地局)であり、同時に移動局3-1の帰属を受け付けることも可能である。
<Embodiment 1>
FIG. 3 is a block diagram showing a configuration example of the mobile communication system according to the present embodiment. The radio communication system according to the present embodiment will be described as an FDD (Frequency division Duplex) -OFDMA, more specifically, an LTE-Advanced radio communication system based on the LTE scheme. In FIG. 3, the base station (eNB) 1 belongs to the mobile carrier's core network (CN) 4, and is between the mobile station (eNB-UE) 3-1 and the core network (CN) 4. To relay traffic. The base station 1 is a base station that can accept the attribution of the relay station 2 (that is, a base station that can operate as a DeNB), and can also accept the attribution of the mobile station 3-1.
 中継局(RN)2は、基地局1とバックホールリンク(図3中のBL1)を接続する。さらに、中継局(RN)2は、アクセスリンク(図3中のAL2)を用いて中継局セル20を運用し、アクセスリンク(AL2)によって移動局(RN-UE)3-2と接続し、基地局1と移動局3-2との間でデータ中継を行う。本実施の形態では、中継局2は、コアネットワーク(CN)4を経由して管理装置5に接続可能である。管理装置5は、OAMシステムであり、移動体通信事業者によって設定される情報を管理する。中継局2は、管理装置5から情報(i.e. ドナーセルリスト)を取得することができ、非特許文献3に記載されているRNのスタートアップ手順にしたがってバックホールリンク及びアクセスリンクの初期設定を行う。なお、管理装置5から配信される情報(i.e. ドナーセルリスト)を用いて中継局2の初期設定を行う手順は、LTEの規格に基づく要請に過ぎない。つまり、中継局2は、管理装置5と通信を行うことなく、初期設定を行うことも可能である。この場合、中継局2の初期設定に関する情報を予め中継局2内の記憶デバイスに格納しておけばよい。また、中継局2の初期設定に関する情報を基地局1から中継局2に送信してもよい。 Relay station (RN) 2 connects base station 1 and the backhaul link (BL1 in FIG. 3). Further, the relay station (RN) 2 operates the relay station cell 20 using the access link (AL2 in FIG. 3), and connects to the mobile station (RN-UE) 3-2 through the access link (AL2). Data relay is performed between the base station 1 and the mobile station 3-2. In the present embodiment, the relay station 2 can be connected to the management apparatus 5 via the core network (CN) 4. The management device 5 is an OAM system and manages information set by a mobile communication carrier. The relay station 2 can acquire information (i.e. donor cell list) from the management device 5, and performs initial setting of the backhaul link and the access link according to the RN startup procedure described in Non-Patent Document 3. Note that the procedure for performing the initial setting of the relay station 2 using the information (i.e. donor cell list) distributed from the management device 5 is merely a request based on the LTE standard. That is, the relay station 2 can perform initial setting without performing communication with the management device 5. In this case, information relating to the initial setting of the relay station 2 may be stored in advance in a storage device in the relay station 2. Further, information regarding the initial setting of the relay station 2 may be transmitted from the base station 1 to the relay station 2.
 本実施の形態に係る移動通信システムは、中継局2と基地局1がバックホールリンク(BL1)を接続し、中継局2がアクセスリンク(AL2)を用いて中継局セル20を運用している状態において、バックホールリンク(BL1)の使用周波数(以下、バックホールリンク周波数)の切り替えることができるよう構成されている。ここで、バックホールリンク周波数の切り替えは、アクセスリンク(AL2)の使用周波数と同じ周波数(以下、in-band周波数)からアクセスリンク(AL2)の使用周波数と異なる周波数(以下、out-band周波数)に切り替えること、及びout-band周波数からin-band周波数に切り替えることのうち少なくとも一方を含む。 In the mobile communication system according to the present embodiment, relay station 2 and base station 1 connect a backhaul link (BL1), and relay station 2 operates relay station cell 20 using an access link (AL2). In the state, the operating frequency of the backhaul link (BL1) (hereinafter referred to as the backhaul link frequency) can be switched. Here, switching of the backhaul link frequency is the same frequency (hereinafter referred to as in-band frequency) as the frequency used for the access link (AL2) to a frequency different from the frequency used for the access link (AL2) (hereinafter referred to as out-band frequency). And at least one of switching from an out-band frequency to an in-band frequency.
 言い換えると、本実施の形態に係る移動通信システムは、中継局2がアクセスリンク(AL2)を用いて中継局セル20を運用している状態において、バックホールリンク(BL1)の運用状態をin-band運用からout-band運用に、又はout-band運用からin-band運用に切り替えることができる。 In other words, in the mobile communication system according to the present embodiment, in the state where the relay station 2 is operating the relay station cell 20 using the access link (AL2), the operation state of the backhaul link (BL1) is in- It is possible to switch from band operation to out-band operation, or from out-band operation to in-band operation.
 バックホールリンク周波数の切り替えの決定、つまりバックホールリンク周波数の切り替え条件の判定は、中継局2が行ってもよいし、基地局1が行ってもよい。また、バックホールリンク周波数の切り替えの決定は、移動通信システム内の他の装置(上位装置)が行ってもよいし、移動通信システムを監視するOAMシステムが行ってもよい。つまり、バックホールリンク周波数の切り替え条件の判定主体は、使用する切り替え条件に応じて適宜決定すればよい。バックホールリンク周波数の切り替え条件の判定が上位装置又はOAMシステムにて行われる場合、中継局2若しくは基地局1又はこれら両方は、判定に必要な情報(e.g. 中継局セル20のトラヒック情報、基地局セル10のトラヒック情報、基地局1の消費電力情報など)を上位装置又はOAMシステムに報告すればよい。上位装置又はOAMシステムは、中継局2若しくは基地局1又はこれら両方から受け取った情報を参照して、バックホールリンク周波数の切り替えを判定すればよい。 The determination of switching of the backhaul link frequency, that is, the determination of the switching condition of the backhaul link frequency may be performed by the relay station 2 or the base station 1. Further, the switching of the backhaul link frequency may be determined by another device (higher level device) in the mobile communication system, or may be performed by an OAM system that monitors the mobile communication system. That is, the determination subject of the switching condition of the backhaul link frequency may be appropriately determined according to the switching condition to be used. When the determination of the switching condition of the backhaul link frequency is performed by the host device or the OAM system, the relay station 2 or the base station 1 or both have information necessary for the determination (eg, the traffic information of the relay station cell 20, the base station The traffic information of the cell 10, the power consumption information of the base station 1, etc.) may be reported to the host device or the OAM system. The host device or the OAM system may determine switching of the backhaul link frequency with reference to information received from the relay station 2 or the base station 1 or both.
 バックホールリンク周波数の切り替え条件には、様々なバリエーションが存在する。バックホールリンク周波数の切り替え条件の具体例は、(a)中継局2が処理するトラフィック量、(b)ドナー基地局1が処理するトラフィック量、(c)時間帯、並びに(d)中継局2及び基地局1を含む移動通信システムの少なくとも一部の消費電力、を含む。以下、これらの具体例について順に説明する。 There are various variations in the switching conditions of the backhaul link frequency. Specific examples of conditions for switching the backhaul link frequency include (a) traffic volume processed by relay station 2, (b) traffic volume processed by donor base station 1, (c) time zone, and (d) relay station 2 And power consumption of at least a part of the mobile communication system including the base station 1. Hereinafter, these specific examples will be described in order.
(a-1)中継局2が処理するトラフィック量
 本実施の形態に係る移動通信システムは、out-band運用中に、中継局2が処理するトラフィック量が減少したことを条件として、バックホールリンク周波数をout-band周波数からin-band周波数へ切り替えてもよい。例えば、移動通信システムは、中継局2が処理するトラフィック量が予め定められた閾値を下回ると判定した場合に、バックホールリンク周波数をout-band周波数からin-band周波数へ切り替えるとよい。
(A-1) Traffic volume processed by relay station 2 The mobile communication system according to the present embodiment is provided with a backhaul link on condition that the traffic volume processed by relay station 2 decreases during out-band operation. The frequency may be switched from the out-band frequency to the in-band frequency. For example, the mobile communication system may switch the backhaul link frequency from the out-band frequency to the in-band frequency when it is determined that the traffic volume processed by the relay station 2 falls below a predetermined threshold.
 中継局2が処理するトラフィック量は、例えば、アクセスリンク(AL2)に転送されるデータパケット量、バックホールリンク(BL1)を転送されるデータパケット量、若しくは中継局セル20に接続する移動局3-2の総数、又はこれらのうち少なくとも2つの組み合わせ、を用いて計算すればよい。中継局2が処理するトラフィック量の計算は、中継局2、基地局1、移動通信システム内のその他の装置、又はOAMサーバが行えばよい。 The amount of traffic processed by the relay station 2 is, for example, the amount of data packets transferred to the access link (AL2), the amount of data packets transferred through the backhaul link (BL1), or the mobile station 3 connected to the relay station cell 20 It may be calculated using the total number of -2, or a combination of at least two of these. The traffic amount processed by the relay station 2 may be calculated by the relay station 2, the base station 1, other devices in the mobile communication system, or the OAM server.
 in-band運用は、一般的に、out-band運用に比べて周波数リソースの制約があるため、基地局1及び中継局2が処理できるトラフィック量が制限される。しかしながら、中継局2が処理するトラフィック量が少ない場合には、基地局1及び中継局2が処理すべきトラフィック量も少ない。このため、中継局2が処理するトラフィック量の現象に応じて、out-band運用からin-band運用に切り替えるとよい。in-band運用は、バックホールリンク(BL1)とアクセスリンク(AL1及びAL2)に同一周波数(例えばRF1)を使用する。このため、移動通信システムは、周波数リソースを効率的に利用できる。また、out-band運用からin-band運用に切り替えることによって、基地局1は未使用の周波数(例えばRF2)における無線送信を停止することが可能となる。したがって、基地局1の消費電力の削減にも寄与することができる。 In-band operation generally has more frequency resource restrictions than out-band operation, so the amount of traffic that can be processed by base station 1 and relay station 2 is limited. However, when the amount of traffic processed by the relay station 2 is small, the amount of traffic to be processed by the base station 1 and the relay station 2 is also small. For this reason, it is preferable to switch from out-band operation to in-band operation according to the phenomenon of traffic volume processed by the relay station 2. In-band operation uses the same frequency (for example, RF1) for the backhaul link (BL1) and the access link (AL1 and AL2). For this reason, the mobile communication system can efficiently use frequency resources. Further, by switching from the out-band operation to the in-band operation, the base station 1 can stop radio transmission at an unused frequency (for example, RF2). Therefore, it is possible to contribute to reduction of power consumption of the base station 1.
(a-2)中継局2が処理するトラフィック量
 本実施の形態に係る移動通信システムは、in-band運用中に、中継局2が処理するトラフィック量が増加したことを条件として、バックホールリンク周波数をin-band周波数からout-band周波数へ切り替えてもよい。例えば、移動通信システムは、中継局2が処理するトラフィック量が予め定められた閾値を超えると判定した場合に、バックホールリンク周波数をin-band周波数からout-band周波数へ切り替えるとよい。これにより、無線通信システムは、トラフィックが少ない場合にはin-band運用によって周波数リソースを効率的に利用できるともに、out-band運用への切り替えによってトラフィックの増大に対処できる。
(A-2) Traffic volume processed by relay station 2 The mobile communication system according to the present embodiment is provided with a backhaul link on condition that the traffic volume processed by relay station 2 has increased during in-band operation. The frequency may be switched from the in-band frequency to the out-band frequency. For example, the mobile communication system may switch the backhaul link frequency from the in-band frequency to the out-band frequency when it is determined that the traffic volume processed by the relay station 2 exceeds a predetermined threshold. Thus, the radio communication system can efficiently use frequency resources by in-band operation when traffic is low, and can cope with traffic increase by switching to out-band operation.
(b)基地局1が処理するトラフィック量
 本実施の形態に係る移動通信システムは、基地局1が処理するトラフィック量が減少したことを条件として、バックホールリンク周波数をout-band周波数からin-band周波数へ切り替えてもよい。また、本実施の形態に係る移動通信システムは、基地局1が処理するトラフィック量が増加したことを条件として、バックホールリンク周波数をin-band周波数からout-band周波数へ切り替えてもよい。
(B) Traffic volume processed by base station 1 The mobile communication system according to the present embodiment changes the backhaul link frequency from the out-band frequency to the in-band frequency on the condition that the traffic volume processed by the base station 1 has decreased. You may switch to the band frequency. Also, the mobile communication system according to the present embodiment may switch the backhaul link frequency from the in-band frequency to the out-band frequency on condition that the traffic volume processed by the base station 1 has increased.
 また、本実施の形態に係る移動通信システムは、中継局2及び基地局1が処理するトラフィック量の合計が変動したことを条件として、out-band運用とin-band運用の切り替えを行ってもよい。つまり、トラフィック量の合計が減少したことを条件として、バックホールリンク周波数をout-band周波数からin-band周波数へ切り替えてもよい。また、トラフィック量の合計が増加したことを条件として、バックホールリンク周波数をin-band周波数からout-band周波数へ切り替えてもよい。 Further, the mobile communication system according to the present embodiment may switch between out-band operation and in-band operation on condition that the total amount of traffic processed by relay station 2 and base station 1 has fluctuated. Good. That is, the backhaul link frequency may be switched from the out-band frequency to the in-band frequency on the condition that the total traffic volume has decreased. Also, the backhaul link frequency may be switched from the in-band frequency to the out-band frequency on condition that the total traffic volume has increased.
(c)時間帯
 本実施の形態に係る移動通信システムは、時間帯に応じて、out-band運用とin-band運用の切り替えを行ってもよい。つまり、本実施の形態に係る移動通信システムは、予め定められた第1の時間帯においてバックホールリンク(BL1)にout-band周波数を使用し、予め定められた第2の時間帯においてバックホールリンク(BL1)にin-band周波数を使用してもよい。
(C) Time zone The mobile communication system according to the present embodiment may switch between out-band operation and in-band operation according to the time zone. That is, the mobile communication system according to the present embodiment uses an out-band frequency for the backhaul link (BL1) in a predetermined first time zone, and backhauls in a predetermined second time zone. An in-band frequency may be used for the link (BL1).
 ここで、第2の時間帯は、中継局2又は基地局1が処理すべきトラフィック量が第1の時間帯に比べて少ないことが想定される時間帯とすればよい。具体的には、第2の時間帯を夜間、第1の時間帯を昼間とすればよい。これにより、無線通信システムは、トラフィックが少ない場合にはin-band運用を行うことができるため、周波数リソースを効率的に利用できる。 Here, the second time zone may be a time zone in which the amount of traffic to be processed by the relay station 2 or the base station 1 is assumed to be smaller than that of the first time zone. Specifically, the second time zone may be nighttime and the first time zone may be daytime. As a result, the wireless communication system can perform in-band operation when the traffic is low, and thus can efficiently use frequency resources.
 また、移動通信システムのオペレータは、基地局1の消費電力を抑制したい時間帯を第2の時間帯に設定してもよい。これにより、無線通信システムは、基地局1の消費電力を抑制すべき第2の時間帯においてin-band運用を行うことができ、消費電力の低減に寄与できる。 Also, the operator of the mobile communication system may set the second time zone as a time zone in which the power consumption of the base station 1 is desired to be suppressed. Thereby, the radio | wireless communications system can perform in-band operation in the 2nd time slot | zone which should suppress the power consumption of the base station 1, and can contribute to reduction of power consumption.
(d)移動通信システムの少なくとも一部の消費電力
 本実施の形態に係る移動通信システムは、基地局1、基地局1を含む複数の基地局、中継局2、又は中継局2及び基地局1など、移動通信システムの少なくとも一部の消費電力が増大したことを条件として、バックホールリンク周波数をout-band周波数からin-band周波数に切り替えてもよい。無線通信システムは、out-band運用からin-band運用に切り替えることによって、移動通信システムの消費電力を抑制できる。
(D) Power consumption of at least part of mobile communication system The mobile communication system according to the present embodiment includes a base station 1, a plurality of base stations including base station 1, relay station 2, or relay station 2 and base station 1 For example, the backhaul link frequency may be switched from the out-band frequency to the in-band frequency on condition that power consumption of at least a part of the mobile communication system has increased. The wireless communication system can suppress power consumption of the mobile communication system by switching from out-band operation to in-band operation.
 以下では、本実施の形態に係る移動通信システムの構成及びバックホールリンク周波数の切り替え動作の具体例について詳細に説明する。図4は、基地局1の構成例を示すブロック図である。図4において、無線通信部11は、移動局3-1または中継局2から送信されたアップリンク信号をアンテナを介して受信する。受信データ処理部13は、受信されたアップリンク信号を復元する。得られた受信データは、通信部14を経由してコアネットワーク4に転送される。送信データ処理部12は、通信部14から取得した移動局3-1、3-2または中継局2に向けデータを移動局ごとかつベアラごとに設定されたバッファに保存し、誤り訂正符号化、レートマッチング、インタリービング等を行なってトランスポートチャネルを生成する。さらに、送信データ処理部12は、トランスポートチャネルのデータ系列に制御情報を付加して無線フレームを生成する。 Hereinafter, a specific example of the configuration of the mobile communication system and the backhaul link frequency switching operation according to the present embodiment will be described in detail. FIG. 4 is a block diagram showing a configuration example of the base station 1. As shown in FIG. In FIG. 4, the radio communication unit 11 receives an uplink signal transmitted from the mobile station 3-1 or the relay station 2 via an antenna. The reception data processing unit 13 restores the received uplink signal. The obtained received data is transferred to the core network 4 via the communication unit 14. The transmission data processing unit 12 stores the data acquired from the communication unit 14 for the mobile stations 3-1, 3-2 or the relay station 2 in a buffer set for each mobile station and for each bearer, error correction coding, A transport channel is generated by performing rate matching, interleaving, and the like. Further, the transmission data processing unit 12 adds a control information to the data sequence of the transport channel to generate a radio frame.
 無線通信部11は、送信シンボル列の直交変調、周波数変換、信号増幅等の各処理を行ってダウンリンク信号を生成し、これを移動局3-1または中継局2に送信する。バックホールリンク制御部15は、バックホールリンクを介した中継局2との通信に関する送信タイミング、無線リソース割当、及びバックホールリンクで使用する周波数を制御する。 The wireless communication unit 11 performs a process such as orthogonal modulation, frequency conversion, and signal amplification of the transmission symbol sequence to generate a downlink signal, and transmits this to the mobile station 3-1 or the relay station 2. The backhaul link control unit 15 controls transmission timing related to communication with the relay station 2 via the backhaul link, radio resource allocation, and a frequency used in the backhaul link.
 図5は、中継局2の構成例を示すブロック図である。中継局2は、特別な記述がない限り基地局1と同等の機能を持つ。図5において、下位無線リンク通信部21は、移動局3-2から送信されたアップリンク信号をアンテナを介して受信する。受信データ処理部23は、基地局1の受信データ処理部13および後述する移動局3の送信データ処理部34の両方の機能を持つ。受信データ処理部23によって得られた受信データは、上位無線リンク通信部24を経由して基地局1に送信される。 FIG. 5 is a block diagram showing a configuration example of the relay station 2. The relay station 2 has a function equivalent to that of the base station 1 unless otherwise specified. In FIG. 5, the lower radio link communication unit 21 receives an uplink signal transmitted from the mobile station 3-2 via an antenna. The reception data processing unit 23 has both functions of a reception data processing unit 13 of the base station 1 and a transmission data processing unit 34 of the mobile station 3 described later. The reception data obtained by the reception data processing unit 23 is transmitted to the base station 1 via the upper radio link communication unit 24.
 送信データ処理部22は、基地局1の送信データ処理部12と後述する移動局3の受信データ処理部32の両方の機能を持つ。送信データ処理部22は、上位無線リンク通信部24から取得した移動局3-2に向けて送信される送信データから送信シンボル列を生成する。下位無線リンク通信部21は、シンボル列からダウンリンク信号を生成し、これを移動局3-2に送信する。 The transmission data processing unit 22 has both functions of a transmission data processing unit 12 of the base station 1 and a reception data processing unit 32 of the mobile station 3 described later. The transmission data processing unit 22 generates a transmission symbol sequence from the transmission data transmitted toward the mobile station 3-2 acquired from the upper radio link communication unit 24. The lower radio link communication unit 21 generates a downlink signal from the symbol string and transmits it to the mobile station 3-2.
 バックホールリンク制御部25は、バックホールリンクに使用する周波数の選択など、バックホールリンクを介した基地局との通信制御を行う。 The backhaul link control unit 25 performs communication control with the base station via the backhaul link such as selection of a frequency used for the backhaul link.
 図6は、移動局3の構成例を示すブロック図である。無線通信部31は、アンテナを介してダウンリンク信号を受信する。受信データ処理部32は受信されたダウンリンク信号から受信データを復元してバッファ部35に送る。バッファ部35に格納された受信データは読み出され、その目的に応じて利用される。また、送信データ制御部33、送信データ処理部34及び無線通信部31は、バッファ部35に格納された送信データを用いてアップリンク信号を生成し、基地局1または中継局2に向けて送信する。 FIG. 6 is a block diagram illustrating a configuration example of the mobile station 3. The wireless communication unit 31 receives a downlink signal via an antenna. The received data processing unit 32 restores the received data from the received downlink signal and sends it to the buffer unit 35. The received data stored in the buffer unit 35 is read out and used according to its purpose. Further, the transmission data control unit 33, the transmission data processing unit 34, and the wireless communication unit 31 generate an uplink signal using the transmission data stored in the buffer unit 35, and transmit it to the base station 1 or the relay station 2 To do.
 続いて以下では、本実施の形態におけるバックホールリンク周波数の切り替え手順の具体例について図7~9を参照して説明する。なお、図7~9を用いて説明する具体例は、中継局2がバックホールリンク周波数の切り替え条件の判定を行う例に関する。図7は、実施の形態1におけるバックホールリンク制御手順の一例を示すシーケンス図である。図7は、基地局1、中継局2並びに移動局3-1及び3-2の相互作用を示しており、図中の「eNB」は基地局1、「RN」は中継局2、「RN-UE」はRNに帰属する移動局3-2、「eNB-UE」はDeNBを含むeNBに帰属する移動局3-1に対応する。 Subsequently, a specific example of the procedure for switching the backhaul link frequency in this embodiment will be described below with reference to FIGS. Note that the specific example described with reference to FIGS. 7 to 9 relates to an example in which the relay station 2 determines the switching condition of the backhaul link frequency. FIG. 7 is a sequence diagram showing an example of a backhaul link control procedure in the first embodiment. FIG. 7 shows the interaction between the base station 1, the relay station 2, and the mobile stations 3-1 and 3-2, where “eNB” is the base station 1, “RN” is the relay station 2, and “RN” -UE "corresponds to mobile station 3-2 belonging to RN, and" eNB-UE "corresponds to mobile station 3-1 belonging to eNB including DeNB.
 ステップS101からステップS103は、out-band運用でのeNB 1、RN 2、UE 3-1及び3-2間のデータ通信を示している。具体的には、eNB 1及びRN 2は、バックホールリンク周波数として周波数RF2を用いてデータ通信を行う(ステップS101)。RN 2及びRN-UE 3-2は、アクセスリンク(AL2)の周波数として周波数RF1を用いてデータ通信を行う(ステップS102)。eNB 1及びeNB-UE 3-1は、アクセスリンク(AL1)の周波数として周波数RF1を用いてデータ通信を行う(ステップS103)。 Steps S101 to S103 show data communication between eNB 1, RN 2, UE 3-1 and 3-2 in out-band operation. Specifically, the eNB 1 and the RN 2 perform data communication using the frequency RF2 as the backhaul link frequency (step S101). The RN 2 and RN-UE 3-2 perform data communication using the frequency RF1 as the frequency of the access link (AL2) (step S102). The eNB 1 and eNB-UE 3-1 perform data communication using the frequency RF1 as the frequency of the access link (AL1) (step S103).
 ステップS104において、RN 2は、バックホールリンク周波数の切り替え、ここではout-band周波数RF2からin-band周波数RF1への切り替えを決定する。当該決定は、上述したバックホールリンク周波数の切り替え条件のいずれかを用いて行えばよい。例えば、RN 2は、RNセル20のトラヒックをモニターする。そして、RN 2は、RNセル20のトラヒック量が予め設定された閾値を下回る場合に、in-band周波数への切り替えを決定すればよい。 In step S104, RN 2 decides switching of the backhaul link frequency, here switching from the out-band frequency RF2 to the in-band frequency RF1. The determination may be performed using any of the above-described switching conditions of the backhaul link frequency. For example, the RN 2 monitors the traffic of the RN cell 20. Then, the RN 2 may determine switching to the in-band frequency when the traffic volume of the RN cell 20 falls below a preset threshold value.
 ステップS105では、RN 2は、eNB 1に対してバックホールリンクで用いる周波数の変更要求を送信する。ステップS106では、eNB 1は、バックホールリンク周波数の変更要求を受信したことに応じて、RN 2に対してバックホールリンク設定(周波数、リソース分割の有無など)の変更を指示する。ここで、eNB 1は、in-band運用への切り替えによって周波数RF2が未使用となる場合、周波数RF2における無線送信を停止してもよい。 In step S105, RN 2 transmits a request for changing the frequency used in the backhaul link to eNB 1. In Step S106, the eNB 1 instructs the RN 2 to change the backhaul link setting (frequency, presence / absence of resource division, etc.) in response to receiving the backhaul link frequency change request. Here, when the frequency RF2 becomes unused due to switching to in-band operation, the eNB-1 may stop radio transmission at the frequency RF2.
 ステップS107では、RN 2は、eNB 1からのバックホールリンク変更指示に基づいて、周波数切り替えを含むバックホールリンクの設定変更を行う(ステップS107)。ステップS108からステップS110は、バックホールリンク周波数の切り替え後、つまりout-band運用からin-band運用への切り替え後のeNB 1、RN 2、UE 3-1及び3-2間のデータ通信を示している。eNB 1及びRN 2は、バックホールリンク周波数として周波数RF1を用いてデータ通信を行う(ステップS108)。RN 2及びRN-UE 3-2は、アクセスリンク(AL2)の周波数として周波数RF1を用いてデータ通信を行う(ステップS109)。eNB 1及びeNB-UE 3-1は、アクセスリンク(AL1)の周波数として周波数RF1を用いてデータ通信を行う(ステップS110)。 In step S107, RN 2 changes the setting of the backhaul link including frequency switching based on the backhaul link change instruction from eNB 1 (step S107). Steps S108 to S110 show data communication between eNB 1, RN 2, UE 3-1 and 3-2 after switching the backhaul link frequency, that is, after switching from out-band operation to in-band operation. ing. The eNB 1 and the RN デ ー タ 2 perform data communication using the frequency RF1 as the backhaul link frequency (step S108). The RN 2 and the RN-UE 3-2 perform data communication using the frequency RF1 as the frequency of the access link (AL2) (step S109). The eNB 1 and eNB-UE 3-1 perform data communication using the frequency RF1 as the frequency of the access link (AL1) (step S110).
 図8は、バックホールリンク周波数の切り替えに関する中継局2の動作例を示すフローチャートである。ステップS201では、中継局2は、バックホールリンク周波数の切り替えを判定する。バックホールリンク周波数の切り替えを行わない場合(ステップS201でNo)、中継局2は、バックホールリンク周波数の切り替えを判定するステップS201に戻る。バックホールリンク周波数の切り替えを決定した場合(ステップS201でYes)、中継局2は、バックホールリンク変更要求を基地局1に送信する(ステップS202)。 FIG. 8 is a flowchart showing an operation example of the relay station 2 regarding switching of the backhaul link frequency. In step S201, the relay station 2 determines switching of the backhaul link frequency. When switching of the backhaul link frequency is not performed (No in Step S201), the relay station 2 returns to Step S201 for determining switching of the backhaul link frequency. When switching of the backhaul link frequency is determined (Yes in Step S201), the relay station 2 transmits a backhaul link change request to the base station 1 (Step S202).
 ステップS203では、中継局2は、バックホールリンク変更要求を基地局1から受信したかを判定する。バックホールリンク変更要求を受信した場合(ステップS203でYes)、中継局2は、バックホールリンク周波数の切り替えを含むバックホールリンクの設定変更を行う(ステップS204)。バックホールリンク変更要求を受信していない場合(ステップS203でNo)、中継局2は、バックホールリンク変更要求を受信したか否かを判断するステップS203に戻る。 In step S203, the relay station 2 determines whether a backhaul link change request has been received from the base station 1. When the backhaul link change request is received (Yes in Step S203), the relay station 2 changes the setting of the backhaul link including switching of the backhaul link frequency (Step S204). When the backhaul link change request has not been received (No in Step S203), the relay station 2 returns to Step S203 for determining whether or not the backhaul link change request has been received.
 図9は、バックホールリンク周波数の切り替えに関する基地局1の動作例を示すフローチャートである。基地局1は、ステップS301において、バックホールリンク変更要求を受信したか否かを判定する。バックホールリンク変更要求を受信している場合(ステップS301でYes)、基地局1は、バックホールリンク変更要求を中継局2に送信する(ステップS302)。バックホールリンク変更要求を受信していない場合(ステップS301でNo)、基地局1は、バックホールリンク変更要求の受信を判定するステップS301に戻る。ステップS303では、基地局1は、バックホールリンク周波数の切り替え、特にout-band周波数からin-band周波数への切り替え、に伴って未使用の周波数が生じた場合に、この周波数における無線送信を停止する。 FIG. 9 is a flowchart showing an operation example of the base station 1 regarding switching of the backhaul link frequency. In step S301, the base station 1 determines whether or not a backhaul link change request has been received. When the backhaul link change request is received (Yes in Step S301), the base station 1 transmits the backhaul link change request to the relay station 2 (Step S302). When the backhaul link change request has not been received (No in Step S301), the base station 1 returns to Step S301 for determining reception of the backhaul link change request. In step S303, the base station 1 stops radio transmission at this frequency when an unused frequency is generated due to switching of the backhaul link frequency, particularly switching from the out-band frequency to the in-band frequency. To do.
 上述したように、本実施の形態に係る移動通信システムは、中継局2がアクセスリンク(AL2)を用いて中継局セル20を運用している状態において、バックホールリンク(BL1)の使用周波数(以下、バックホールリンク周波数)の切り替えることができる。このため、移動通信システムは、周波数リソースを効率的に利用できる。また、out-band運用からin-band運用に切り替えることによって、基地局1は未使用の周波数(例えばRF2)における無線送信を停止することが可能となる。したがって、基地局1の消費電力の削減にも寄与することができる。 As described above, in the mobile communication system according to the present embodiment, in the state where the relay station 2 is operating the relay station cell 20 using the access link (AL2), the frequency used for the backhaul link (BL1) ( Hereinafter, the backhaul link frequency) can be switched. For this reason, the mobile communication system can efficiently use frequency resources. Further, by switching from the out-band operation to the in-band operation, the base station 1 can stop radio transmission at an unused frequency (for example, RF2). Therefore, it is possible to contribute to reduction of power consumption of the base station 1.
<実施の形態2>
 本実施の形態では、実施の形態1で述べたバックホールリンク周波数の切り替えを含むバックホールリンク制御の変形例について説明する。具体的には、本実施の形態に係る移動通信システムは、バックホールリンク周波数を切り替えた後に、中継局セル20の無線パラメータが劣化したことに応じて、バックホールリンク周波数を切り替え前に戻す。中継局セル20の無線パラメータは、中継局セル20の通信品質と言い換えることもできる。中継局セル20の無線パラメータの具体例は、RNセル20の下りスループット(単位時間あたりに送信可能なデータ量)、又はRNセル20に接続可能な移動局の数である。例えば、移動通信システムは、バックホールリンク周波数の切り替え前後におけるスループットの差分(減少幅)が所定の閾値を超える場合に、バックホールリンク周波数の切り戻しを行うとよい。また、移動通信システムは、バックホールリンク周波数の切り替え後のスループットが所定の閾値を下回る場合に、バックホールリンク周波数の切り戻しを行ってもよい。
<Embodiment 2>
In this embodiment, a modification of backhaul link control including switching of the backhaul link frequency described in Embodiment 1 will be described. Specifically, after switching the backhaul link frequency, the mobile communication system according to the present embodiment returns the backhaul link frequency before switching in accordance with the deterioration of radio parameters of relay station cell 20. The radio parameter of the relay station cell 20 can be rephrased as the communication quality of the relay station cell 20. A specific example of the radio parameter of the relay station cell 20 is the downlink throughput (data amount that can be transmitted per unit time) of the RN cell 20, or the number of mobile stations that can be connected to the RN cell 20. For example, the mobile communication system may switch back the backhaul link frequency when the difference (decrease width) in throughput before and after switching the backhaul link frequency exceeds a predetermined threshold. Further, the mobile communication system may switch back the backhaul link frequency when the throughput after switching the backhaul link frequency falls below a predetermined threshold.
 バックホールリンク周波数の切り戻しの決定は、中継局2が行ってもよいし、基地局1が行ってもよい。また、バックホールリンク周波数の切り戻しの決定は、移動通信システム内の他の装置(上位装置)が行ってもよいし、移動通信システムを監視するOAMシステムが行ってもよい。つまり、バックホールリンク周波数の切り戻しの決定主体は、周波数の切り戻し条件に応じて適宜決定すればよい。 The decision of switching backhaul link frequency may be made by the relay station 2 or the base station 1. In addition, the determination of backhaul link frequency switching may be performed by another device (higher-order device) in the mobile communication system, or by an OAM system that monitors the mobile communication system. In other words, the determination subject of the backhaul link frequency switch-back may be appropriately determined according to the frequency switch-back condition.
 つまり、本実施の形態に係る移動通信システムは、バックホールリンク周波数の切り替えが中継局セル20の通信品質(e.g. スループット)の劣化をもたらす場合に、バックホールリンク周波数をもとに戻す切り戻し動作を行う。このため、RNセル20の通信品質の劣化を抑止しながら、周波数リソースの効率的な利用、及び基地局1の消費電力の削減に寄与することができる。 That is, in the mobile communication system according to the present embodiment, when the switching of the backhaul link frequency causes the communication quality (eg, throughput) of the relay station cell 20 to deteriorate, the switching operation for returning the backhaul link frequency to the original state I do. Therefore, it is possible to contribute to efficient use of frequency resources and reduction of power consumption of the base station 1 while suppressing deterioration of communication quality of the RN cell 20.
 以下では、本実施の形態におけるバックホールリンク周波数の切り替え及び切り戻し手順の具体例について図10~12を参照して説明する。なお、図10~12を用いて説明する具体例は、中継局2がバックホールリンク周波数の切り戻しを決定する例に関する。図10は、実施の形態2におけるバックホールリンク制御手順の一例を示すシーケンス図である。図10のステップS101からステップS110までの処理・動作は、実施の形態1にて説明した図7の同一符号のステップ群と同様である。従って、ここでは図7との差分についてのみ説明する。 Hereinafter, a specific example of the backhaul link frequency switching and switching back procedure according to the present embodiment will be described with reference to FIGS. The specific example described with reference to FIGS. 10 to 12 relates to an example in which the relay station 2 determines the backhaul link frequency switchback. FIG. 10 is a sequence diagram showing an example of a backhaul link control procedure in the second embodiment. Processes and operations from step S101 to step S110 in FIG. 10 are the same as the step group having the same reference numerals in FIG. 7 described in the first embodiment. Therefore, only the difference from FIG. 7 will be described here.
 バックホールリンクの設定変更後のステップS401において、RN 2は、RNセル20の無線パラメータ(言い換えると通信品質)の劣化が生じているか否かを計測する。無線パラメータの劣化を検出した場合、RN 2は、バックホールリンク周波数を含むバックホールリンク設定を切り替え前に戻すために、バックホールリンク復旧要求をeNB 1に送信する(ステップS402)。ステップS403では、eNB 1は、復旧要求を受信したことに応じて、RN 2に対してバックホールリンク設定(周波数、リソース分割の有無など)の変更を指示する。なお、eNB 1は、切り替え前の周波数における無線送信を停止していた場合には、切り替え前の周波数における無線送信を再開する。 In step S401 after changing the setting of the backhaul link, the RN 2 measures whether or not the radio parameter (in other words, communication quality) of the RN cell 20 has deteriorated. When detecting the deterioration of the radio parameter, the RN 2 transmits a backhaul link recovery request to the eNB 1 in order to return the backhaul link setting including the backhaul link frequency before switching (step S402). In step S403, the eNB を 1 instructs the RN 2 to change the backhaul link setting (frequency, presence / absence of resource division, etc.) in response to receiving the recovery request. In addition, when the radio transmission at the frequency before the switching is stopped, the eNB 1 restarts the radio transmission at the frequency before the switching.
 ステップS404では、RN2は、バックホールリンク変更指示を受信したことに応じて、バックホールリンクの設定を元に戻す。変更前のデータ通信に戻す(ステップS101からステップS103)。ステップS405からステップS407は、バックホールリンク周波数の切り戻し後、つまりin-band運用からout-band運用への切り替え後のeNB 1、RN 2、UE 3-1及び3-2間のデータ通信を示している。したがって、ステップS405からステップS407は、ステップS101~S103と同様である。 In step S404, RN2 restores the backhaul link setting in response to receiving the backhaul link change instruction. The data communication before the change is restored (from step S101 to step S103). Steps S405 to S407 perform data communication between eNB 1, RN 2, UE 3-1 and 3-2 after switching backhaul link frequency, that is, after switching from in-band operation to out-band operation. Show. Accordingly, steps S405 to S407 are the same as steps S101 to S103.
 図11は、バックホールリンク周波数の切り替え及び切り戻しに関する中継局2の動作例を示すフローチャートである。図11のステップS201からステップS204における処理・動作は、実施の形態1にて説明した図8の同一符号のステップ群と同様である。従って、ここでは図8との差分についてのみ説明する。 FIG. 11 is a flowchart showing an operation example of the relay station 2 regarding switching and switching backhaul link frequencies. Processes and operations from step S201 to step S204 in FIG. 11 are the same as those in the step group having the same reference numerals in FIG. 8 described in the first embodiment. Therefore, only the difference from FIG. 8 will be described here.
 バックホールリンク周波数切り替え後のステップS501では、中継局2は、中継局セル20の無線パラメータの劣化が生じているか否かを判定する。無線パラメータが劣化していない場合(ステップS501でNo)、中継局2は図11の手順を終了する。一方、無線パラメータが劣化している場合(ステップS501でYes)、中継局2は、バックホールリンク周波数の切り戻しのためにバックホールリンク復旧要求をDeNBに送信する(ステップS502)。ステップS503では、中継局2は、バックホールリンク変更要求を基地局1から受信したかを判定する。バックホールリンク変更要求を受信した場合(ステップS503でYes)、中継局2は、バックホールリンク周波数の切り戻しを含むバックホールリンクの設定変更を行う(ステップS504)。バックホールリンク変更要求を受信していない場合(ステップS503でNo)、中継局2は、バックホールリンク変更要求を受信したか否かを判断するステップS503に戻る。 In step S501 after switching the backhaul link frequency, the relay station 2 determines whether or not the radio parameters of the relay station cell 20 have deteriorated. If the radio parameter has not deteriorated (No in step S501), the relay station 2 ends the procedure of FIG. On the other hand, when the radio parameter is degraded (Yes in step S501), the relay station 2 transmits a backhaul link recovery request to the DeNB for switching back the backhaul link frequency (step S502). In step S503, the relay station 2 determines whether a backhaul link change request has been received from the base station 1. When the backhaul link change request is received (Yes in Step S503), the relay station 2 changes the setting of the backhaul link including switching back of the backhaul link frequency (Step S504). When the backhaul link change request has not been received (No in Step S503), the relay station 2 returns to Step S503 for determining whether or not the backhaul link change request has been received.
 図12は、バックホールリンク周波数の切り戻しに関する基地局1の動作例を示すフローチャートである。ステップS601では、基地局1は、中継局2からバックホールリンク復旧要求を受信したか否かを判断する。バックホールリンク復旧要求を受信している場合(ステップS601でYes)、基地局1は、バックホールリンク周波数の切り戻しを含むバックホールリンクの設定変更をRNに指示する(ステップS602)。バックホールリンク復旧要求を受信していない場合(ステップS601でNo)、基地局1は、バックホールリンク復旧要求を受信したか否かを判断するステップS601に戻る。 FIG. 12 is a flowchart showing an operation example of the base station 1 regarding backhaul link frequency switching back. In step S601, the base station 1 determines whether or not a backhaul link recovery request has been received from the relay station 2. When the backhaul link recovery request is received (Yes in step S601), the base station 1 instructs the RN to change the setting of the backhaul link including the backhaul link frequency switch back (step S602). If the backhaul link recovery request has not been received (No in step S601), the base station 1 returns to step S601 to determine whether or not a backhaul link recovery request has been received.
<実施の形態3>
 本実施の形態では、実施の形態1で述べたバックホールリンク周波数の切り替えを含むバックホールリンク制御の変形例について説明する。具体的には、本実施の形態に係る移動通信システムは、バックホールリンク周波数を切り替えた後に、中継局セル20の無線パラメータが劣化の劣化が基準より小さいことに応じて、中継局セル20の運用を停止する。例えば、移動通信システムは、バックホールリンク周波数の切り替え前後におけるスループットの差分(減少幅)が所定の閾値を下回る場合に、中継局セル20の運用を停止するとよい。また、移動通信システムは、バックホールリンク周波数の切り替え後のスループットが所定の閾値を上回る場合に、中継局セル20の運用を停止してもよい。
<Embodiment 3>
In this embodiment, a modification of backhaul link control including switching of the backhaul link frequency described in Embodiment 1 will be described. Specifically, in the mobile communication system according to the present embodiment, after switching the backhaul link frequency, the radio parameter of the relay station cell 20 is changed according to the deterioration of the deterioration being smaller than the reference. Stop operation. For example, the mobile communication system may stop the operation of the relay station cell 20 when the throughput difference (decrease width) before and after the switching of the backhaul link frequency falls below a predetermined threshold. Also, the mobile communication system may stop the operation of the relay station cell 20 when the throughput after switching the backhaul link frequency exceeds a predetermined threshold.
 中継局セル20の運用停止の決定は、中継局2が行ってもよいし、基地局1が行ってもよい。また、中継局セル20の運用停止の決定は、移動通信システム内の他の装置(上位装置)が行ってもよいし、移動通信システムを監視するOAMシステムが行ってもよい。つまり、中継局セル20の運用停止の決定主体は、中継局セル20の運用停止条件に応じて適宜決定すればよい。 The decision to stop operation of the relay station cell 20 may be made by the relay station 2 or the base station 1. In addition, the operation stop determination of the relay station cell 20 may be performed by another device (higher-order device) in the mobile communication system, or may be performed by an OAM system that monitors the mobile communication system. That is, the determination subject of the operation stop of the relay station cell 20 may be appropriately determined according to the operation stop condition of the relay station cell 20.
 つまり、本実施の形態に係る移動通信システムは、バックホールリンク周波数の切り替え後の中継局セル20の通信品質の劣化が小さい場合に、中継局セル20の運用を停止する。したがって、周波数リソースの効率的な利用、及び基地局1の消費電力の削減に寄与できることに加えて、中継局2の消費電力の削減にも寄与することができる。 That is, the mobile communication system according to the present embodiment stops the operation of the relay station cell 20 when the deterioration of the communication quality of the relay station cell 20 after switching of the backhaul link frequency is small. Therefore, in addition to the efficient use of frequency resources and the reduction of power consumption of the base station 1, it can also contribute to the reduction of power consumption of the relay station 2.
 以下では、本実施の形態におけるバックホールリンク周波数の切り替え及び中継局セル20の運用停止手順の具体例について図13~15を参照して説明する。なお、図13~15を用いて説明する具体例は、中継局2が中継局セル20の運用停止を決定する例に関する。図13は、実施の形態3におけるバックホールリンク制御手順の一例を示すシーケンス図である。図13のステップS101からステップS110までの処理・動作は、実施の形態1にて説明した図7の同一符号のステップ群と同様である。従って、ここでは図7との差分についてのみ説明する。 Hereinafter, a specific example of the backhaul link frequency switching and the operation stop procedure of the relay station cell 20 in the present embodiment will be described with reference to FIGS. Note that the specific example described with reference to FIGS. 13 to 15 relates to an example in which the relay station 2 determines to stop the operation of the relay station cell 20. FIG. 13 is a sequence diagram showing an example of a backhaul link control procedure in the third embodiment. Processes and operations from step S101 to step S110 in FIG. 13 are the same as those in the step group having the same reference numerals in FIG. 7 described in the first embodiment. Therefore, only the difference from FIG. 7 will be described here.
 バックホールリンクの設定変更後のステップS701において、RN 2は、RNセル20の無線パラメータ(言い換えると通信品質)の劣化が生じているか否かを計測する。線パラメータの劣化が基準以下である場合、RN 2は、RNセル20を休止するために、RNセル休止通知をeNB 1に送信する(ステップS702)。ステップS703では、eNB 1は、RNセル休止通知を受信したことに応じて、RN 2宛てのデータ送信を停止する(ステップS703)。RN 2は、RNセル休止通知の送信後、RNセル20の運用を休止する(ステップS704)。ステップS705及びS706は、RNセル20の休止後のデータ通信を示す。つまり、RNセル休止前にRNセル20に接続していたRN-UE3-2は、アクセスリンク(AL1)によってeNBセル10に直接帰属してデータ通信を行う。 In Step S701 after changing the setting of the backhaul link, the RN 2 measures whether or not the radio parameter (in other words, communication quality) of the RN cell 20 has deteriorated. If the degradation of the line parameter is below the reference, the RN 2 transmits an RN cell suspension notification to the eNB 1 in order to suspend the RN cell 20 (step S702). In step S703, the eNB 1 stops data transmission addressed to the RN 2 in response to receiving the RN cell suspension notification (step S703). The RN 2 suspends the operation of the RN cell 20 after transmitting the RN cell suspension notification (step S704). Steps S705 and S706 indicate data communication after the RN cell 20 is suspended. That is, the RN-UE 3-2 connected to the RN cell 20 before suspending the RN cell directly belongs to the eNB cell 10 through the access link (AL1) and performs data communication.
 図14は、バックホールリンク周波数の切り替え及び中継局セル20の運用停止に関する中継局2の動作例を示すフローチャートである。図14のステップS201からステップS204における処理・動作は、実施の形態1にて説明した図8の同一符号のステップ群と同様である。従って、ここでは図8との差分についてのみ説明する。 FIG. 14 is a flowchart showing an operation example of the relay station 2 regarding switching of the backhaul link frequency and suspension of operation of the relay station cell 20. Processes and operations from step S201 to step S204 in FIG. 14 are the same as those in the step group having the same reference numerals in FIG. 8 described in the first embodiment. Therefore, only the difference from FIG. 8 will be described here.
 バックホールリンク周波数切り替え後のステップS801では、中継局2は、中継局セル20の無線パラメータの劣化が生じているか否かを判定する。無線パラメータの劣化が基準を上回る場合(ステップS801でNo)、中継局2は図14の手順を終了する。一方、無線パラメータの劣化が基準以下である場合(ステップS801でYes)、中継局2は、中継局セル休止通知を基地局1に送信する(ステップS802)。ステップS803では、中継局2は、中継局セル20の運用を休止する。 In step S801 after switching the backhaul link frequency, the relay station 2 determines whether or not the radio parameters of the relay station cell 20 have deteriorated. If the degradation of the radio parameters exceeds the standard (No in step S801), the relay station 2 ends the procedure of FIG. On the other hand, when the degradation of the radio parameter is below the reference (Yes in step S801), the relay station 2 transmits a relay station cell suspension notification to the base station 1 (step S802). In step S803, the relay station 2 stops the operation of the relay station cell 20.
 図15は、中継局セル20の運用停止に関する基地局1の動作例を示すフローチャートである。ステップS901において、基地局1は、中継局2から中継局セル休止通知を受信したか否かを判定する。中継局セル休止通知を受信した場合(ステップS901でYes)、基地局1は、中継局2宛てのデータ送信を停止する(ステップS902)。中継局セル休止通知を受信しない場合(ステップS901でNo)、基地局1は、中継局セル休止通知の受信を判断するステップS901へ戻る。 FIG. 15 is a flowchart showing an operation example of the base station 1 regarding the suspension of operation of the relay station cell 20. In step S901, the base station 1 determines whether or not a relay station cell suspension notification is received from the relay station 2. When the relay station cell suspension notification is received (Yes in step S901), the base station 1 stops data transmission to the relay station 2 (step S902). When the relay station cell suspension notification is not received (No in step S901), the base station 1 returns to step S901 for determining reception of the relay station cell suspension notification.
<実施の形態4>
 本実施の形態では、実施の形態1で述べた移動通信システムの消費電力を考慮したバックホールリンク周波数の切り替え手順の具体例について説明する。具体的には、本実施の形態に係る移動通信システムは、管理装置5において複数の基地局1若しくは複数の中継局2又はこれら両方の合計消費電力を監視し、合計消費電力の増大に応じてバックホールリンク周波数をout-band周波数からin-band周波数に切り替える。監視対象とするノード群(基地局及び中継局)は、これらの地理的な配置に応じて決定してもよい。
<Embodiment 4>
In this embodiment, a specific example of a backhaul link frequency switching procedure taking into account the power consumption of the mobile communication system described in Embodiment 1 will be described. Specifically, the mobile communication system according to the present embodiment monitors the total power consumption of the plurality of base stations 1 or the plurality of relay stations 2 or both in the management apparatus 5, and responds to the increase in the total power consumption. Switch backhaul link frequency from out-band frequency to in-band frequency. Node groups (base stations and relay stations) to be monitored may be determined according to their geographical arrangement.
 本実施の形態に係る移動通信システムは、移動通信システムに含まれる複数ノードの合計消費電力を考慮してバックホールリンク周波数の切り替えを行うことができる。したがって、基地局1の消費電力の抑制によって、複数ノードの合計消費電力の抑制に寄与することができる。 The mobile communication system according to the present embodiment can switch the backhaul link frequency in consideration of the total power consumption of a plurality of nodes included in the mobile communication system. Therefore, the suppression of the power consumption of the base station 1 can contribute to the suppression of the total power consumption of a plurality of nodes.
 以下では、本実施の形態に係る移動通信システムの構成及びバックホールリンク周波数の切り替え動作の具体例について詳細に説明する。基地局1、中継局2、及び移動局3の構成例は、図4~6と同様とすればよい。 Hereinafter, a specific example of the configuration of the mobile communication system and the backhaul link frequency switching operation according to the present embodiment will be described in detail. The configuration examples of the base station 1, the relay station 2, and the mobile station 3 may be the same as those shown in FIGS.
 図16は、本実施の形態における管理装置5の構成例を示すブロック図である。通信部51は、基地局1とコアネットワーク4を経由して中継局2との間でデータパケットの送受信を行う。受信データ処理部53は、受信された上りデータパケットに含まれる情報を復元する。受信データ処理部53は、復元した情報が消費電力に関する情報である場合、これをバックホールリンク管理部54に送る。バックホールリンク管理部54は、バックホールリンクに使用されている周波数、複数の基地局1の消費電力等を管理する。また、バックホールリンク管理部54は、管理する複数の基地局1の合計消費電力に応じて、バックホールリンク周波数の変更を指示する。送信データ処理部52は、バックホールリンク管理部54からバックホールリンク周波数に関する制御情報を受信した場合、これを該当の基地局1及び中継局2に対して送信する。 FIG. 16 is a block diagram showing a configuration example of the management apparatus 5 in the present embodiment. The communication unit 51 transmits and receives data packets between the base station 1 and the relay station 2 via the core network 4. The reception data processing unit 53 restores information included in the received uplink data packet. When the restored information is information regarding power consumption, the reception data processing unit 53 sends this to the backhaul link management unit 54. The backhaul link management unit 54 manages the frequency used for the backhaul link, the power consumption of the plurality of base stations 1, and the like. Further, the backhaul link management unit 54 instructs the change of the backhaul link frequency according to the total power consumption of the plurality of base stations 1 to be managed. When the transmission data processing unit 52 receives control information related to the backhaul link frequency from the backhaul link management unit 54, the transmission data processing unit 52 transmits the control information to the corresponding base station 1 and relay station 2.
 続いて以下では、本実施の形態におけるバックホールリンク周波数の切り替え手順の具体例について図17及び18を参照して説明する。図17は、実施の形態4におけるバックホールリンク制御手順の一例を示すシーケンス図である。図17のシーケンスは、バックホール周波数の判定主体がRN 2ではなく管理装置5である点において図7のシーケンスと相違する。従って、図17のステップS101からS103、及びステップS106からS110における処理・動作は、図7に示した同一符号のステップ群と同様である。従って、ここでは図7との差分についてのみ説明する。 Subsequently, a specific example of the procedure for switching the backhaul link frequency in the present embodiment will be described below with reference to FIGS. FIG. 17 is a sequence diagram showing an example of a backhaul link control procedure in the fourth embodiment. The sequence in FIG. 17 is different from the sequence in FIG. 7 in that the determination subject of the backhaul frequency is not the RN 2 but the management device 5. Accordingly, the processes and operations in steps S101 to S103 and steps S106 to S110 in FIG. 17 are the same as those in the step group having the same reference numerals shown in FIG. Therefore, only the difference from FIG. 7 will be described here.
 ステップS1101では、eNB 1は、eNB 1の消費電力に関する情報(e.g. 消費電力量、又は電力使用率)を管理装置5(i.e. OAM server)に通知する。この通知は、予め定められた周期で定期的に行われてもよいし、消費電力が基準を超えたことを契機として行われてもよい。ステップS1102では、管理装置5は、複数のeNB 1から受信した消費電力情報を集計し、消費電力の制御を行う。具体的には、管理装置5は、複数のeNB 1の合計消費電力が所定の基準レベルを超える場合に、out-band運用のバックホールリンクを有しているeNB 1を特定し、当該eNB 1に対してバックホールリンク変更要求を送信する(ステップS1103)。このバックホールリンク変更要求は、バックホール周波数をin-band周波数に切り替える指示を含む。なお、管理装置5は、eNB 1を特定する際に、バックホールリンクをin-band運用に変更することによってデータ送信を行わなくてもよい周波数が生じ、この周波数における送信を停止することができるeNB 1を選んでもよい。 In step S1101, eNB 1 notifies the management device 5 (i.e. OAM server) of information (e.g. power consumption or power usage rate) regarding the power consumption of eNB 1. This notification may be performed periodically at a predetermined cycle, or may be performed when power consumption exceeds a reference. In step S1102, the management device 5 aggregates the power consumption information received from the plurality of eNBs 1 and controls the power consumption. Specifically, when the total power consumption of the plurality of eNB 1 exceeds a predetermined reference level, the management device 5 identifies the eNB 1 having an out-band operation backhaul link, and the eNB 1 A backhaul link change request is transmitted to (step S1103). This backhaul link change request includes an instruction to switch the backhaul frequency to the in-band frequency. Note that when the eNBe1 is specified, the management device 5 changes the backhaul link to in-band operation to generate a frequency that does not require data transmission, and can stop transmission at this frequency. You may choose eNB 1.
 図18は、実施の形態4におけるバックホールリンク周波数の切り替えに関する管理装置5の動作例を示すフローチャートである。ステップS1201において、管理装置5は、複数の基地局1から消費電力情報を受信する。ステップS1202では、管理装置5は、複数の基地局1の合計消費電力が基準レベルを超えているか否かを判定する。合計消費電力が基準レベルを超えている場合(ステップS1202でYes)、管理装置5は、バックホールリンクをout-band運用の変更するべき基地局1及び中継局2を特定し、バックホールリンク変更要求を送信する。この、周波数をout-band周波数からin-band周波数に変更する。 FIG. 18 is a flowchart showing an operation example of the management apparatus 5 related to switching of the backhaul link frequency in the fourth embodiment. In step S1201, the management device 5 receives power consumption information from the plurality of base stations 1. In step S1202, the management device 5 determines whether or not the total power consumption of the plurality of base stations 1 exceeds the reference level. When the total power consumption exceeds the reference level (Yes in step S1202), the management apparatus 5 identifies the base station 1 and the relay station 2 that should change the backhaul link for out-band operation, and changes the backhaul link. Send a request. This frequency is changed from the out-band frequency to the in-band frequency.
 上述したように、本実施の形態に係る移動通信システムは、管理装置5が複数の基地局1の消費電力情報を収集し、バックホールリンクの構成を変更するべき基地局1を選択する。このため、複数の基地局1、又は移動通信システムの全体を考慮した消費電力の抑制が可能となる。 As described above, in the mobile communication system according to the present embodiment, the management apparatus 5 collects power consumption information of a plurality of base stations 1 and selects the base station 1 whose configuration of the backhaul link should be changed. For this reason, it is possible to suppress power consumption in consideration of the plurality of base stations 1 or the entire mobile communication system.
 なお、本実施の形態では、複数の基地局1の合計消費電力に基づいてバックホールリンクを制御する例を示したが、基地局1以外の電気を使用する機器を含めた消費電力の総量や、最大消費電力に対する割合(使用率)に基づいてバックホールリンクを制御してもよい。例えば、管理装置5は、複数の基地局1だけでなくサーバコンピュータ等の電子機器の消費電力情報も監視し、合計消費電力が基準レベルを超えた場合にバックホールリンクの構成を変更してもよい。また、最大消費電力に対する割合(使用率)を消費電力情報として用いる場合、基地局1は、自身の電力使用率を管理装置5に通知すればよい。管理装置5は、電力使用率が閾値よりも高い基地局が所定数以上であった場合にバックホールリンクの構成を変更してもよい。 In the present embodiment, an example of controlling the backhaul link based on the total power consumption of a plurality of base stations 1 has been shown, but the total amount of power consumption including equipment that uses electricity other than the base station 1 The backhaul link may be controlled based on a ratio (usage rate) to the maximum power consumption. For example, the management device 5 monitors power consumption information of electronic devices such as server computers as well as a plurality of base stations 1, and changes the backhaul link configuration when the total power consumption exceeds a reference level Good. Further, when the ratio (usage rate) to the maximum power consumption is used as the power consumption information, the base station 1 may notify the management device 5 of its own power usage rate. The management device 5 may change the configuration of the backhaul link when the number of base stations whose power usage rate is higher than the threshold is equal to or greater than a predetermined number.
<その他の実施の形態>
 上述した実施の形態1~4では、LTE方式の中継局をサポートする移動通信システムについて説明した。しかしながら、これらの実施の形態の適用先は、LTE方式の中継局をサポートする移動通信システムに限定されるものではない。つまり、これらの実施の形態は、中継局を含む移動通信システムに対して広く適用可能である。
<Other embodiments>
In Embodiments 1 to 4 described above, mobile communication systems that support LTE relay stations have been described. However, the application destination of these embodiments is not limited to a mobile communication system that supports LTE relay stations. That is, these embodiments are widely applicable to mobile communication systems including relay stations.
 上述した実施の形態1~4で述べた、バックホールリンク周波数の変更手順に関して基地局1、中継局2、移動通信システムに含まれるその他の装置、又は管理装置5によって行われる処理・動作は、いずれもASIC(Application Specific Integrated Circuit)を含む半導体処理装置を用いて実現してもよい。また、これらの処理は、マイクロプロセッサ、DSP(Digital Signal Processor)等のコンピュータにプログラムを実行させることによって実現してもよい。具体的には、図7~15、並びに図17~18を用いて説明した各ノードに関するアルゴリズムのうち少なくとも1つをコンピュータに行わせるための命令群を含むプログラムを作成し、当該プログラムをコンピュータに供給すればよい。 Regarding the procedure for changing the backhaul link frequency described in Embodiments 1 to 4, the base station 1, the relay station 2, other devices included in the mobile communication system, or the processing / operations performed by the management device 5, Any of them may be realized by using a semiconductor processing apparatus including ASIC (Application Specific Specific Integrated Circuit). Further, these processes may be realized by causing a computer such as a microprocessor or DSP (Digital Signal Processor) to execute a program. Specifically, a program including an instruction group for causing a computer to execute at least one of the algorithms related to each node described with reference to FIGS. 7 to 15 and FIGS. 17 to 18 is created, and the program is stored in the computer. What is necessary is just to supply.
 このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 This program can be stored using various types of non-transitory computer readable media and supplied to a computer. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included. The program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 また、実施の形態1~4は、適宜組み合わせることも可能である。さらに、上述した実施の形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施の形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。 Further, Embodiments 1 to 4 can be appropriately combined. Furthermore, the above-described embodiment is merely an example relating to application of the technical idea obtained by the present inventors. That is, the technical idea is not limited to the above-described embodiment, and various changes can be made.
 この出願は、2011年8月11日に出願された日本出願特願2011-175925を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2011-175925 filed on Aug. 11, 2011, the entire disclosure of which is incorporated herein.
1  基地局
2  中継局
3  移動局
4  コアネットワーク
5  基地局制御装置
11 無線通信部
12 送信データ処理部
13 受信データ処理部
14 通信部
15 バックホールリンク制御部
21 下位無線リンク無線通信部
22 送信データ処理部
23 受信データ処理部
24 上位無線リンク通信部
25 バックホールリンク制御部
31 無線通信部
32 受信データ処理部
33 送信データ制御部
34 送信データ処理部
35 バッファ部
51 通信部
52 送信データ処理部
53 受信データ処理部
54 バックホールリンク管理部
DESCRIPTION OF SYMBOLS 1 Base station 2 Relay station 3 Mobile station 4 Core network 5 Base station control apparatus 11 Wireless communication part 12 Transmission data processing part 13 Reception data processing part 14 Communication part 15 Backhaul link control part 21 Lower radio | wireless link wireless communication part 22 Transmission data Processing unit 23 Reception data processing unit 24 Upper wireless link communication unit 25 Backhaul link control unit 31 Wireless communication unit 32 Reception data processing unit 33 Transmission data control unit 34 Transmission data processing unit 35 Buffer unit 51 Communication unit 52 Transmission data processing unit 53 Received data processing unit 54 Backhaul link management unit

Claims (45)

  1.  基地局と接続されるバックホールリンク、及び移動局と接続されるアクセスリンクを用いて、前記基地局と前記移動局との間でデータ中継を行う無線通信手段と、
     前記アクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数の切り替えを行うバックホールリンク制御手段と、
    を備え、
     前記バックホールリンクの使用周波数の切り替えは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む、中継局。
    Wireless communication means for relaying data between the base station and the mobile station using a backhaul link connected to the base station and an access link connected to the mobile station;
    Backhaul link control means for switching the use frequency of the backhaul link during operation of the relay station cell using the access link;
    With
    The use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to an out-band frequency different from the use frequency of the access link, and from the out-band frequency to the in-band frequency. A relay station that includes at least one of switching to a band frequency.
  2.  前記バックホールリンク制御手段は、(a)前記中継局が処理する第1のトラフィック量、(b)前記基地局が処理する第2のトラフィック量、(c)時間帯、並びに(d)前記中継局及び前記基地局を含む移動通信システムの少なくとも一部の消費電力、のうち少なくとも1つに関する所定の条件に基づいて、前記バックホールリンクの使用周波数を切り替える、請求項1に記載の中継局。 The backhaul link control means includes (a) a first traffic volume processed by the relay station, (b) a second traffic volume processed by the base station, (c) a time zone, and (d) the relay The relay station according to claim 1, wherein the use frequency of the backhaul link is switched based on a predetermined condition regarding at least one of power consumption of at least a part of a mobile communication system including a station and the base station.
  3.  前記バックホールリンク制御手段は、前記第1のトラフィック量、前記第2のトラフィック量、又は前記第1及び第2のトラフィック量の合計が減少したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行う、請求項2に記載の中継局。 The backhaul link control means determines the in-band frequency from the out-band frequency in response to a decrease in the first traffic volume, the second traffic volume, or a sum of the first and second traffic volumes. The relay station according to claim 2, wherein the relay station switches to a -band frequency.
  4.  前記バックホールリンク制御手段は、前記第1のトラフィック量、前記第2のトラフィック量、又は前記第1及び第2のトラフィック量の合計が増加したことに応じて、前記in-band周波数から前記out-band周波数への切り替えを行う、請求項2又は3に記載の中継局。 The backhaul link control means is configured to output the out-band frequency from the in-band frequency in response to an increase in the first traffic volume, the second traffic volume, or a sum of the first and second traffic volumes. The relay station according to claim 2 or 3, wherein switching to a -band frequency is performed.
  5.  前記バックホールリンク制御手段は、第1の時間帯において前記バックホールリンクに前記out-band周波数を使用し、第2の時間帯において前記バックホールリンクに前記in-band周波数を使用する、請求項2に記載の中継局。 The backhaul link control means uses the out-band frequency for the backhaul link in a first time zone and uses the in-band frequency for the backhaul link in a second time zone. 2. The relay station according to 2.
  6.  前記バックホールリンク制御手段は、前記移動通信システムの少なくとも一部の消費電力が増大したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行う、請求項2に記載の中継局。 The backhaul link control means performs switching from the out-band frequency to the in-band frequency in response to an increase in power consumption of at least a part of the mobile communication system. Relay station.
  7.  前記バックホールリンク制御手段は、前記所定の条件の成立を判定した、前記基地局、前記移動通信システムに配置された装置、又はOAM(Operation Administration and Maintenance)システムからの指示メッセージを受信したことに応じて、前記バックホールリンクの使用周波数の切り替えを行う、請求項2~6のいずれか1項に記載の中継局。 The backhaul link control means has received an instruction message from the base station, a device arranged in the mobile communication system, or an OAM (Operation Administration and Maintenance) system that has determined that the predetermined condition has been established. The relay station according to any one of claims 2 to 6, wherein the use frequency of the backhaul link is switched accordingly.
  8.  前記バックホールリンク制御手段は、前記バックホールリンクの周波数切り替え要求を前記基地局に送信する、請求項1~7のいずれか1項に記載の中継局。 The relay station according to any one of claims 1 to 7, wherein the backhaul link control means transmits a frequency switching request for the backhaul link to the base station.
  9.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を前記in-band周波数から前記out-band周波数に、又は前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータが劣化したことに応じて、前記バックホールリンクの使用周波数を切り替え前に戻す処理を行う、請求項1~8のいずれか1項に記載の中継局。 The backhaul link control means switches the use frequency of the backhaul link from the in-band frequency to the out-band frequency, or after switching from the out-band frequency to the in-band frequency. The relay station according to any one of claims 1 to 8, wherein a process of returning the use frequency of the backhaul link before switching is performed in accordance with deterioration of the radio parameter of
  10.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を切り替え前に戻すための要求を前記基地局に送信する、請求項9に記載の中継局。 The relay station according to claim 9, wherein the backhaul link control means transmits a request for returning the use frequency of the backhaul link before switching to the base station.
  11.  前記バックホールリンク制御手段は、前記基地局からの要求を受信したことに応じて、前記バックホールリンクの使用周波数を切り替え前に戻す処理を行う、請求項9に記載の中継局。 The relay station according to claim 9, wherein the backhaul link control means performs a process of returning the use frequency of the backhaul link before switching in response to receiving a request from the base station.
  12.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータの劣化が基準より小さいことに応じて、前記中継局セルの運用を停止する処理を行う、請求項1~11のいずれか1項に記載の中継局。 The backhaul link control means, after switching the use frequency of the backhaul link from the out-band frequency to the in-band frequency, in accordance with the deterioration of the radio parameters of the relay station cell is smaller than the reference, The relay station according to any one of claims 1 to 11, wherein a process of stopping the operation of the relay station cell is performed.
  13.  前記バックホールリンク制御手段は、前記中継局セルの運用停止に関する情報を前記基地局に送信する、請求項12に記載の中継局。 The relay station according to claim 12, wherein the backhaul link control means transmits information on the suspension of operation of the relay station cell to the base station.
  14.  前記バックホールリンク制御手段は、前記基地局からの要求を受信したことに応じて、前記中継局セルの運用を停止する処理を行う、請求項12に記載の中継局。 The relay station according to claim 12, wherein the backhaul link control means performs a process of stopping the operation of the relay station cell in response to receiving a request from the base station.
  15.  中継局と接続されるバックホールリンクを経由して、前記中継局にアクセスリンクによって接続された移動局との間でデータ転送を行うことが可能な無線通信手段と、
     前記中継局による前記アクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数の切り替えを行うバックホールリンク制御手段と、
    を備え、
     前記バックホールリンクの使用周波数の切り替えは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む、基地局。
    Via a backhaul link connected to the relay station, wireless communication means capable of performing data transfer with a mobile station connected to the relay station by an access link;
    Backhaul link control means for switching the use frequency of the backhaul link during operation of the relay station cell using the access link by the relay station;
    With
    The use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to an out-band frequency different from the use frequency of the access link, and from the out-band frequency to the in-band frequency. A base station including at least one of switching to a band frequency.
  16.  前記バックホールリンク制御手段は、(a)前記中継局が処理する第1のトラフィック量、(b)前記基地局が処理する第2のトラフィック量、(c)時間帯、並びに(d)前記中継局及び前記基地局を含む移動通信システムの少なくとも一部の消費電力、のうち少なくとも1つに関する所定の条件に基づいて、前記バックホールリンクの使用周波数を切り替える、請求項15に記載の基地局。 The backhaul link control means includes (a) a first traffic volume processed by the relay station, (b) a second traffic volume processed by the base station, (c) a time zone, and (d) the relay The base station according to claim 15, wherein the use frequency of the backhaul link is switched based on a predetermined condition regarding at least one of power consumption of at least a part of a mobile communication system including the station and the base station.
  17.  前記バックホールリンク制御手段は、前記第1のトラフィック量、前記第2のトラフィック量、又は前記第1及び第2のトラフィック量の合計が減少したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行う、請求項16に記載の基地局。 The backhaul link control means determines the in-band frequency from the out-band frequency in response to a decrease in the first traffic volume, the second traffic volume, or a sum of the first and second traffic volumes. The base station according to claim 16, which performs switching to a -band frequency.
  18.  前記バックホールリンク制御手段は、前記第1のトラフィック量、前記第2のトラフィック量、又は前記第1及び第2のトラフィック量の合計が増加したことに応じて、前記in-band周波数から前記out-band周波数への切り替えを行う、請求項16又は17に記載の基地局。 The backhaul link control means is configured to output the out-band frequency from the in-band frequency in response to an increase in the first traffic volume, the second traffic volume, or a sum of the first and second traffic volumes. The base station according to claim 16 or 17, which performs switching to a -band frequency.
  19.  前記バックホールリンク制御手段は、第1の時間帯において前記バックホールリンクに前記out-band周波数を使用し、第2の時間帯において前記バックホールリンクに前記in-band周波数を使用する、請求項16に記載の基地局。 The backhaul link control means uses the out-band frequency for the backhaul link in a first time zone and uses the in-band frequency for the backhaul link in a second time zone. 16. A base station according to 16.
  20.  前記バックホールリンク制御手段は、前記移動通信システムの少なくとも一部の消費電力が増大したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行う、請求項16に記載の基地局。 The backhaul link control means performs switching from the out-band frequency to the in-band frequency in response to an increase in power consumption of at least a part of the mobile communication system. base station.
  21.  前記バックホールリンク制御手段は、前記所定の条件の成立を判定した、前記移動局、前記移動通信システムに配置された装置、又はOAM(Operation Administration and Maintenance)システムからの指示メッセージを受信したことに応じて、前記バックホールリンクの使用周波数の切り替えを行う、請求項16~20のいずれか1項に記載の基地局。 The backhaul link control means has received an instruction message from the mobile station, a device arranged in the mobile communication system, or an OAM (Operation Administration and Maintenance) system that has determined the establishment of the predetermined condition. The base station according to any one of claims 16 to 20, wherein the use frequency of the backhaul link is switched accordingly.
  22.  前記バックホールリンク制御手段は、前記バックホールリンクの周波数切り替え要求を前記基地局に送信する、請求項15~21のいずれか1項に記載の基地局。 The base station according to any one of claims 15 to 21, wherein the backhaul link control means transmits a frequency switching request for the backhaul link to the base station.
  23.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を前記in-band周波数から前記out-band周波数に、又は前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータが劣化したことに応じて、前記バックホールリンクの使用周波数を切り替え前に戻す処理を行う、請求項15~22のいずれか1項に記載の基地局。 The backhaul link control means switches the use frequency of the backhaul link from the in-band frequency to the out-band frequency, or after switching from the out-band frequency to the in-band frequency. The base station according to any one of claims 15 to 22, wherein the base station performs processing for returning the use frequency of the backhaul link before switching in accordance with deterioration of the radio parameter.
  24.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を切り替え前に戻すための要求を前記中継局に送信する、請求項23に記載の基地局。 The base station according to claim 23, wherein the backhaul link control means transmits a request for returning the use frequency of the backhaul link before switching to the relay station.
  25.  前記バックホールリンク制御手段は、前記中継局からの要求を受信したことに応じて、前記バックホールリンクの使用周波数を切り替え前に戻す処理を行う、請求項23に記載の基地局。 The base station according to claim 23, wherein the backhaul link control means performs a process of returning the use frequency of the backhaul link before switching in response to receiving a request from the relay station.
  26.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータの劣化が基準より小さいことに応じて、前記中継局セルの運用を停止する処理を行う、請求項15~25のいずれか1項に記載の基地局。 The backhaul link control means, after switching the use frequency of the backhaul link from the out-band frequency to the in-band frequency, in accordance with the deterioration of the radio parameters of the relay station cell is smaller than the reference, The base station according to any one of claims 15 to 25, wherein processing for stopping the operation of the relay station cell is performed.
  27.  前記バックホールリンク制御手段は、前記中継局セルの運用停止に関する情報を前記中継局に送信する、請求項26に記載の基地局。 27. The base station according to claim 26, wherein the backhaul link control means transmits information related to suspension of operation of the relay station cell to the relay station.
  28.  前記バックホールリンク制御手段は、前記中継局からの要求を受信したことに応じて、前記中継局セルの運用を停止する処理を行う、請求項26に記載の基地局。 The base station according to claim 26, wherein the backhaul link control means performs a process of stopping the operation of the relay station cell in response to receiving a request from the relay station.
  29.  基地局と、
     前記基地局と接続されるバックホールリンク、及び移動局と接続されるアクセスリンクを用いて、前記基地局と前記移動局との間でデータ中継を行う中継局と、
     前記中継局による前記アクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数の切り替えを行うバックホールリンク制御手段と、
    を備え、
     前記バックホールリンクの使用周波数の切り替えは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む、移動通信システム。
    A base station,
    A relay station that relays data between the base station and the mobile station using a backhaul link connected to the base station and an access link connected to the mobile station;
    Backhaul link control means for switching the use frequency of the backhaul link during operation of the relay station cell using the access link by the relay station;
    With
    The use frequency of the backhaul link is switched from the same in-band frequency as the use frequency of the access link to an out-band frequency different from the use frequency of the access link, and from the out-band frequency to the in-band frequency. A mobile communication system including at least one of switching to a band frequency.
  30.  前記バックホールリンク制御手段は、(a)前記中継局が処理する第1のトラフィック量、(b)前記基地局が処理する第2のトラフィック量、(c)時間帯、並びに(d)前記中継局及び前記基地局を含む移動通信システムの少なくとも一部の消費電力、のうち少なくとも1つに関する所定の条件に基づいて、前記バックホールリンクの使用周波数を切り替える、請求項29に記載の移動通信システム。 The backhaul link control means includes (a) a first traffic volume processed by the relay station, (b) a second traffic volume processed by the base station, (c) a time zone, and (d) the relay 30. The mobile communication system according to claim 29, wherein a use frequency of the backhaul link is switched based on a predetermined condition regarding at least one of power consumption of at least a part of a mobile communication system including a station and the base station. .
  31.  前記バックホールリンク制御手段は、前記第1のトラフィック量、前記第2のトラフィック量、又は前記第1及び第2のトラフィック量の合計が減少したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行う、請求項30に記載の移動通信システム。 The backhaul link control means determines the in-band frequency from the out-band frequency in response to a decrease in the first traffic volume, the second traffic volume, or a sum of the first and second traffic volumes. The mobile communication system according to claim 30, wherein switching to a -band frequency is performed.
  32.  前記バックホールリンク制御手段は、前記第1のトラフィック量、前記第2のトラフィック量、又は前記第1及び第2のトラフィック量の合計が増加したことに応じて、前記in-band周波数から前記out-band周波数への切り替えを行う、請求項30又は31に記載の移動通信システム。 The backhaul link control means is configured to output the out-band frequency from the in-band frequency in response to an increase in the first traffic volume, the second traffic volume, or a sum of the first and second traffic volumes. The mobile communication system according to claim 30 or 31, wherein switching to a -band frequency is performed.
  33.  前記バックホールリンク制御手段は、第1の時間帯において前記バックホールリンクに前記out-band周波数を使用し、第2の時間帯において前記バックホールリンクに前記in-band周波数を使用する、請求項30に記載の移動通信システム。 The backhaul link control means uses the out-band frequency for the backhaul link in a first time zone and uses the in-band frequency for the backhaul link in a second time zone. 30. The mobile communication system according to 30.
  34.  前記バックホールリンク制御手段は、前記移動通信システムの少なくとも一部の消費電力が増大したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行う、請求項30に記載の移動通信システム。 The backhaul link control means performs switching from the out-band frequency to the in-band frequency in response to an increase in power consumption of at least a part of the mobile communication system. Mobile communication system.
  35.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を前記in-band周波数から前記out-band周波数に、又は前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータが劣化したことに応じて、前記バックホールリンクの使用周波数を切り替え前に戻す処理を行う、請求項29~34のいずれか1項に記載の移動通信システム。 The backhaul link control means switches the use frequency of the backhaul link from the in-band frequency to the out-band frequency, or after switching from the out-band frequency to the in-band frequency. The mobile communication system according to any one of claims 29 to 34, wherein a process of returning the use frequency of the backhaul link before switching is performed in accordance with deterioration of the radio parameter of
  36.  前記バックホールリンク制御手段は、前記バックホールリンクの使用周波数を前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータの劣化が基準より小さいことに応じて、前記中継局セルの運用を停止する処理を行う、請求項29~35のいずれか1項に記載の移動通信システム。 The backhaul link control means, after switching the use frequency of the backhaul link from the out-band frequency to the in-band frequency, in accordance with the deterioration of the radio parameters of the relay station cell is smaller than the reference, The mobile communication system according to any one of claims 29 to 35, wherein a process of stopping the operation of the relay station cell is performed.
  37.  前記バックホールリンク制御手段は、前記基地局に配置された制御部、前記移動局に配置された制御部、及びOAM(Operation Administration and Maintenance)システムのうち少なくとも1つを含む、請求項29~36のいずれか1項に記載の移動通信システム。 The backhaul link control means includes at least one of a control unit arranged in the base station, a control unit arranged in the mobile station, and an OAM (Operation Administration and Maintenance) system. The mobile communication system according to any one of the above.
  38.  基地局と移動局を接続するバックホールリンクの制御方法であって、
     前記中継局は、前記バックホールリンク、及び移動局と接続されるアクセスリンクを用いて、前記基地局と前記移動局との間でデータ中継を行うよう構成され、
     前記方法は、前記中継局と移動局を接続するアクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数を切り替えることを備え、
     前記バックホールリンクの使用周波数を切り替えることは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む、
    バックホールリンクの制御方法。
    A backhaul link control method for connecting a base station and a mobile station,
    The relay station is configured to relay data between the base station and the mobile station using the backhaul link and an access link connected to the mobile station,
    The method comprises switching the use frequency of the backhaul link during operation of a relay station cell using an access link connecting the relay station and a mobile station,
    Switching the use frequency of the backhaul link includes switching from the same in-band frequency as the use frequency of the access link to an out-band frequency different from the use frequency of the access link, and from the out-band frequency to the in-band frequency. including at least one of switching to -band frequency,
    Control method of backhaul link.
  39.  前記バックホールリンクの使用周波数を切り替えることは、(a)前記中継局が処理する第1のトラフィック量、(b)前記基地局が処理する第2のトラフィック量、(c)時間帯、並びに(d)前記中継局及び前記基地局を含む移動通信システムの少なくとも一部の消費電力、のうち少なくとも1つに関する所定の条件に基づいて、前記バックホールリンクの使用周波数を切り替えることを含む、請求項38に記載の方法。 Switching the use frequency of the backhaul link includes (a) a first traffic volume processed by the relay station, (b) a second traffic volume processed by the base station, (c) a time zone, and ( d) switching the use frequency of the backhaul link based on a predetermined condition regarding at least one of power consumption of at least a part of a mobile communication system including the relay station and the base station. 38. The method according to 38.
  40.  前記バックホールリンクの使用周波数を切り替えることは、前記第1のトラフィック量、前記第2のトラフィック量、又は前記第1及び第2のトラフィック量の合計が減少したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行うことを含む、請求項39に記載の方法。 Switching the use frequency of the backhaul link is based on the fact that the first traffic volume, the second traffic volume, or the sum of the first and second traffic volumes has decreased. 40. The method of claim 39, comprising switching from frequency to the in-band frequency.
  41.  前記バックホールリンクの使用周波数を切り替えることは、第1の時間帯において前記バックホールリンクに前記out-band周波数を使用し、第2の時間帯において前記バックホールリンクに前記in-band周波数を使用することを含む、請求項39に記載の方法。 Switching the use frequency of the backhaul link uses the out-band frequency for the backhaul link in a first time zone and uses the in-band frequency for the backhaul link in a second time zone. 40. The method of claim 39, comprising:
  42.  前記バックホールリンクの使用周波数を切り替えることは、前記移動通信システムの少なくとも一部の消費電力が増大したことに応じて、前記out-band周波数から前記in-band周波数への切り替えを行うことを含む、請求項39に記載の方法。 Switching the use frequency of the backhaul link includes switching from the out-band frequency to the in-band frequency in response to an increase in power consumption of at least a part of the mobile communication system. 40. The method of claim 39.
  43.  前記バックホールリンクの使用周波数を前記in-band周波数から前記out-band周波数に、又は前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータが劣化したことに応じて、前記バックホールリンクの使用周波数を切り替え前に戻すことをさらに備える、請求項38~42のいずれか1項に記載の方法。 The radio parameter of the relay station cell has deteriorated after switching the use frequency of the backhaul link from the in-band frequency to the out-band frequency or from the out-band frequency to the in-band frequency. In response, the method of any one of claims 38 to 42, further comprising returning the used frequency of the backhaul link before switching.
  44.  前記バックホールリンクの使用周波数を前記out-band周波数から前記in-band周波数に切り替えた後に、前記中継局セルの無線パラメータの劣化が基準より小さいことに応じて、前記中継局セルの運用を停止することをさらに備える、請求項38~43のいずれか1項に記載の方法。 After switching the use frequency of the backhaul link from the out-band frequency to the in-band frequency, the operation of the relay station cell is stopped in response to a deterioration in radio parameters of the relay station cell being smaller than a reference The method according to any one of claims 38 to 43, further comprising:
  45.  基地局と移動局を接続するバックホールリンクの制御方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記中継局は、前記バックホールリンク、及び移動局と接続されるアクセスリンクを用いて、前記基地局と前記移動局との間でデータ中継を行うよう構成され、
     前記方法は、前記中継局と移動局を接続するアクセスリンクを用いた中継局セルの運用中に、前記バックホールリンクの使用周波数を切り替えることを含み、
     前記バックホールリンクの使用周波数を切り替えることは、前記アクセスリンクの使用周波数と同じin-band周波数から前記アクセスリンクの使用周波数と異なるout-band周波数に切り替えること、及び前記out-band周波数から前記in-band周波数に切り替えることのうち少なくとも一方を含む、
    非一時的なコンピュータ可読媒体。
    A non-transitory computer-readable medium storing a program for causing a computer to perform a control method of a backhaul link connecting a base station and a mobile station,
    The relay station is configured to relay data between the base station and the mobile station using the backhaul link and an access link connected to the mobile station,
    The method includes switching a use frequency of the backhaul link during operation of a relay station cell using an access link connecting the relay station and a mobile station,
    Switching the use frequency of the backhaul link includes switching from the same in-band frequency as the use frequency of the access link to an out-band frequency different from the use frequency of the access link, and from the out-band frequency to the in-band frequency. including at least one of switching to -band frequency,
    A non-transitory computer readable medium.
PCT/JP2012/003037 2011-08-11 2012-05-09 Relay station, base station, mobile communication system, backhaul link control method, and computer-readable medium WO2013021526A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013527843A JP6065835B2 (en) 2011-08-11 2012-05-09 Relay station, base station, mobile communication system, backhaul link control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-175925 2011-08-11
JP2011175925 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013021526A1 true WO2013021526A1 (en) 2013-02-14

Family

ID=47668069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003037 WO2013021526A1 (en) 2011-08-11 2012-05-09 Relay station, base station, mobile communication system, backhaul link control method, and computer-readable medium

Country Status (2)

Country Link
JP (1) JP6065835B2 (en)
WO (1) WO2013021526A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015098228A1 (en) * 2013-12-24 2017-03-23 ソニー株式会社 Wireless communication apparatus, communication control apparatus, wireless communication method, and communication control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025892B2 (en) * 2015-03-13 2016-11-16 ソフトバンク株式会社 Mobile communication system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520169A (en) * 2004-11-10 2008-06-12 インターデイジタル テクノロジー コーポレーション Method and apparatus for managing radio resources of a radio communication network

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520169A (en) * 2004-11-10 2008-06-12 インターデイジタル テクノロジー コーポレーション Method and apparatus for managing radio resources of a radio communication network

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ITRI: "Asymmetric carrier configuration for Relay operation", 3GPP TSG-RAN WG1 #61 R1-103278, 14 May 2010 (2010-05-14) *
NEC CORPORATION: "Need of dedicated SI provisioning for Type 1a/1b", 3GPP TSG RAN2 MEETING #71 R2-104545, 27 August 2010 (2010-08-27) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015098228A1 (en) * 2013-12-24 2017-03-23 ソニー株式会社 Wireless communication apparatus, communication control apparatus, wireless communication method, and communication control method

Also Published As

Publication number Publication date
JPWO2013021526A1 (en) 2015-03-05
JP6065835B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP5987838B2 (en) Mobile communication system, relay station, base station, and control method thereof
TWI578818B (en) Network-initiated discovery and path selection procedures for multi-hop underlay networks
US9451510B2 (en) Relay node configuration in preparation for handover
EP3005799B1 (en) Systems and methods for data offload in wireless networks
CN107431946B (en) Congestion avoidance in a network with base stations and relay nodes
KR101760381B1 (en) Wireless communication system, base station, mobile station, communication control method, and computer-readable medium
US8767614B2 (en) Reporting buffering information
CN104349387B (en) The method and apparatus that downlink transmission is used in the system for supporting double/multi-connection
US20210211928A1 (en) Apparatus and method for congestion handling in radio access network
EP2340659A1 (en) Apparatus and method for dynamically deploying a network node
KR20130005290A (en) Method, base station and relay node for uplink transmission
US20130143580A1 (en) Power Consumption Reduction within a Telecommunication Network Operating with Different Radio Access Technologies
US10349459B2 (en) Relay node RN, donor eNodeB DeNB and communication method
CN105432115A (en) Method and apparatus for dual connectivity
KR20130012953A (en) Wireless communication system, high-power base station, low-power base station, and communication control method
CN107534900A (en) Communication means and equipment
JP6065835B2 (en) Relay station, base station, mobile communication system, backhaul link control method, and program
EP2335444B1 (en) Support for user equipment multiplexing in relay enhanced networks
US10149194B2 (en) Method, apparatus, and system for establishing bearer
Krilddis et al. Feedback based relaying in long term evolution systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12821670

Country of ref document: EP

Kind code of ref document: A1