WO2013018900A1 - 多孔質膜の製造方法および製造装置 - Google Patents

多孔質膜の製造方法および製造装置 Download PDF

Info

Publication number
WO2013018900A1
WO2013018900A1 PCT/JP2012/069878 JP2012069878W WO2013018900A1 WO 2013018900 A1 WO2013018900 A1 WO 2013018900A1 JP 2012069878 W JP2012069878 W JP 2012069878W WO 2013018900 A1 WO2013018900 A1 WO 2013018900A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
chemical solution
decomposition
membrane precursor
precursor
Prior art date
Application number
PCT/JP2012/069878
Other languages
English (en)
French (fr)
Inventor
倉科 正樹
隅 敏則
泰夫 広本
藤木 浩之
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020147005000A priority Critical patent/KR101580750B1/ko
Priority to US14/236,287 priority patent/US9539547B2/en
Priority to CN201280037926.7A priority patent/CN103717295B/zh
Publication of WO2013018900A1 publication Critical patent/WO2013018900A1/ja
Priority to US14/922,265 priority patent/US20160038883A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0095Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes

Definitions

  • the present invention relates to a method and apparatus for producing a porous membrane such as a hollow fiber membrane.
  • Concentrating and collecting useful components in the fields of food industry, medical field, electronics industry, etc., removal of unnecessary components, fresh water, etc. are composed of cellulose acetate, polyacrylonitrile, polysulfone, fluororesin, etc. Porous hollow fiber membranes produced by dry and wet spinning are frequently used for microfiltration membranes, ultrafiltration membranes, reverse osmosis filtration membranes and the like.
  • a membrane forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is prepared.
  • a solidified product that is, a hollow fiber membrane precursor is formed by a film forming process in which the film forming raw solution is discharged in a ring shape and solidified in the coagulating liquid.
  • the film-forming stock solution may be introduced into the coagulating liquid through a free running portion that is in contact with air (dry wet spinning method) or directly into the coagulating liquid (wet spinning method).
  • the hydrophilic polymer usually remains in a solution state.
  • the hollow fiber membrane precursor after the film forming step is immersed in a low temperature chemical solution containing an oxidizing agent such as hypochlorite, and the chemical solution is held at a low temperature in the hollow fiber membrane precursor.
  • the hollow fiber membrane precursor holding the chemical solution is heated in the gas phase to decompose the hydrophilic polymer remaining in the hollow fiber membrane precursor.
  • a washing step for washing the hydrophilic polymer and its decomposition product is performed.
  • the present invention has been made in view of the above problems, and it is an object to provide a method for manufacturing a porous film and a manufacturing apparatus capable of decomposing the hydrophilic polymer remaining in the porous film precursor after the film forming process in a short time. To do.
  • the inventor adopted a heated high-temperature chemical solution containing an oxide, and contacted the heated chemical solution with the porous membrane precursor after the film-forming step in which the hydrophilic polymer remains.
  • the penetration of the chemical solution into the porous membrane precursor and the decomposition of the hydrophilic polymer remaining in the porous membrane precursor by the oxidizing agent contained in the chemical solution can proceed almost simultaneously.
  • the hydrophilic polymer can be decomposed from the porous membrane precursor after the film forming process in a short time.
  • a porous membrane precursor formed by coagulation of a film-forming stock solution containing a hydrophilic polymer and a hydrophobic polymer is introduced into a decomposition vessel, and an oxidizing agent is added to the porous membrane precursor in the decomposition vessel.
  • a decomposition step of bringing a heated chemical solution into contact, keeping the porous membrane precursor in contact with the chemical solution, and decomposing the hydrophilic polymer remaining in the porous membrane precursor with the oxidizing agent A method for producing a membrane.
  • the contact of the chemical solution with the porous membrane precursor and the heat retention of the porous membrane precursor after the contact with the chemical solution are each performed a plurality of times.
  • the chemical solution is an aqueous solution containing sodium hypochlorite as the oxidant, and when the chemical solution is contacted with the porous membrane precursor a plurality of times, the next chemical solution used in the first time is used.
  • [5] The method for producing a porous membrane according to any one of [1] to [4], wherein the temperature in the decomposition vessel is 60 ° C. or higher and the relative humidity is 90% or higher.
  • [6] The method for producing a porous membrane according to any one of [1] to [5], wherein water is supplied to the decomposition vessel.
  • [8] The porous membrane according to any one of [1] to [7], wherein the chemical solution is brought into contact with the porous membrane precursor by spraying the chemical solution onto the porous membrane precursor. Production method.
  • a device for producing a porous membrane having a decomposition device for decomposing the hydrophilic polymer remaining in a porous membrane precursor formed by coagulation of a membrane-forming stock solution containing a hydrophilic polymer and a hydrophobic polymer.
  • the decomposition apparatus contacts a heated chemical solution containing an oxidant with the porous membrane precursor, keeps the porous membrane precursor in contact with the chemical solution, and in the porous membrane precursor by the oxidant.
  • An apparatus for producing a porous membrane, comprising a decomposition container for decomposing the remaining hydrophilic polymer.
  • the disassembling apparatus includes: Heating means for heating the inside of the decomposition container; Traveling means for traveling the porous membrane precursor in the decomposition vessel; The apparatus for producing a porous membrane according to [9], further comprising: a chemical solution contact means for bringing the chemical solution into contact with the porous membrane precursor traveling in the decomposition vessel.
  • the porous membrane manufacturing apparatus according to [10] wherein the chemical solution contact means is provided at a plurality of locations in the decomposition container.
  • the heating means is a water vapor supply means for supplying water vapor into the decomposition vessel.
  • the chemical solution contact means includes a chemical solution tank in which the chemical solution is charged and the porous membrane precursor travels in the chemical solution.
  • Membrane manufacturing equipment [14] The porous liquid according to [13], wherein the chemical tank is a cascade type in which the tank is divided into a plurality of zones and the chemical liquid overflowed from the upstream zone is sequentially supplied to the downstream zone. Membrane manufacturing equipment.
  • the chemical solution contact means includes spray means for spraying the chemical solution onto the porous film precursor.
  • the traveling means includes a plurality of traveling rolls, and at least one of the traveling rolls has a regulation groove formed on a surface for restricting traveling of the porous membrane precursor.
  • the porous membrane production apparatus according to any one of [18] to [18]. [20] In the decomposition container, an inlet through which the porous membrane precursor is introduced into the decomposition container and an outlet led out from the decomposition container are formed, [9] to [19] are provided at the inlet and the outlet, respectively, which are provided with water seal portions that allow introduction and extraction of the porous membrane precursor while blocking the inside of the decomposition vessel from outside air.
  • the manufacturing apparatus of the porous membrane as described in any one of these.
  • the porous membrane manufacturing apparatus according to [20], wherein the water sealing portion includes a liquid replacement unit that replaces the liquid in the water sealing portion.
  • the decomposition container is formed to have a side wall portion and a top portion that closes an upper end of the side wall portion, The apparatus for producing a porous membrane according to any one of [9] to [21], wherein the top portion includes a top portion and an inclined portion inclined downward from the top portion.
  • the hydrophilic polymer remaining in the porous membrane precursor after the film forming process can be decomposed in a short time.
  • the method for producing a porous membrane of the present invention comprises a membrane-forming step of coagulating a membrane-forming stock solution containing a hydrophilic polymer and a hydrophobic polymer to form a porous membrane precursor, and a porous material obtained in the membrane-forming step.
  • a membrane precursor is introduced into a decomposition vessel, and a chemical solution containing an oxidizing agent is brought into contact with the porous membrane precursor in the decomposition vessel, and the porous membrane precursor in contact with the chemical solution is kept warm, and the porous membrane is oxidized by the oxidizing agent.
  • a decomposition step of decomposing the hydrophilic polymer remaining in the precursor In the present invention, as the chemical solution to be brought into contact with the porous membrane precursor, one heated positively is used.
  • a hollow fiber membrane as an example of the porous membrane.
  • disassembly process is called a hollow fiber membrane (porous membrane)
  • finished is a hollow fiber membrane precursor (porous membrane precursor). Body).
  • a film forming stock solution containing a hydrophobic polymer and a hydrophilic polymer is prepared.
  • a hollow fiber membrane precursor is formed by a membrane forming step of discharging the membrane forming raw solution into a coagulating liquid from a nozzle having an annular discharge port and coagulating in the coagulating liquid.
  • the film-forming process may be performed by either a dry-wet spinning method in which the film-forming stock solution is introduced into the coagulating liquid through an idle running portion in contact with air or a wet spinning method that is directly guided to the coagulating liquid.
  • the configuration of the hollow fiber membrane precursor produced here for example, a porous base material, a multilayer structure, which is durable against rubbing during handling, etc. But you can.
  • porous substrate examples include hollow knitted or braided strings made of various fibers, and various materials can be used alone or in combination. it can.
  • fiber used for the hollow knitted string and braid include synthetic fiber, semi-synthetic fiber, regenerated fiber, natural fiber, and the like, and the form of the fiber may be any of monofilament, multifilament, and spun yarn.
  • the hydrophobic polymer may be any polymer that can be solidified to form a hollow fiber membrane precursor, and can be used without particular limitation as long as it is such, but polysulfone-based resins such as polysulfone and polyethersulfone, and polyfluorinated polymers can be used. Fluorine resins such as vinylidene, polyacrylonitrile, cellulose derivatives, polyamide, polyester, polymethacrylate, polyacrylate, and the like can be given. Further, copolymers of these resins may be used, and those having a substituent introduced into a part of these resins and copolymers can also be used.
  • fluororesins especially polyvinylidene fluoride and copolymers made of vinylidene fluoride and other monomers have excellent durability against oxidizing agents such as hypochlorous acid. Therefore, for example, in the case of producing a hollow fiber membrane precursor that is treated with an oxidizing agent in the decomposition step described later, it is preferable to select a fluororesin as the hydrophobic polymer.
  • the hydrophilic polymer is added to adjust the viscosity of the membrane-forming stock solution to a range suitable for the formation of the hollow fiber membrane and stabilize the membrane-forming state.
  • Polyethylene glycol, polyvinyl pyrrolidone, etc. are preferable. used.
  • polyvinylpyrrolidone and a copolymer obtained by copolymerizing other monomers with polyvinylpyrrolidone are preferable from the viewpoint of controlling the pore diameter of the hollow fiber membrane and the strength of the hollow fiber membrane.
  • 2 or more types of resin can also be mixed and used for a hydrophilic polymer.
  • the low molecular weight hydrophilic polymer is suitable in that it is more easily removed from the hollow fiber membrane precursor in the hydrophilic polymer removing step described later. Therefore, the same kind of hydrophilic polymers having different molecular weights may be appropriately blended depending on the purpose.
  • a film-forming stock solution can be prepared by mixing the above-described hydrophobic polymer and hydrophilic polymer in a solvent (good solvent) in which they are soluble. Other additive components may be added to the film-forming stock solution as necessary.
  • the type of solvent there is no particular limitation on the type of solvent, but when performing the coagulation process by dry and wet spinning, the pore diameter of the hollow fiber membrane is adjusted by absorbing the membrane forming stock solution in the idle running section, so that it is mixed uniformly with water. It is preferable to select a solvent that can be easily treated. Examples of such a solvent include N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, N-methylmorpholine-N-oxide, and the like. Can be used.
  • the temperature of the film-forming stock solution is not particularly limited, but is usually 20 to 40 ° C.
  • the concentration of the hydrophobic polymer in the membrane forming stock solution is too thin or too thick, the stability during film formation tends to be low and a suitable hollow fiber membrane structure tends to be difficult to form. % Is preferable, and 15% by mass is more preferable. Further, the upper limit is preferably 30% by mass, and more preferably 25% by mass. On the other hand, the lower limit of the concentration of the hydrophilic polymer is preferably 1% by mass and more preferably 5% by mass in order to make the hollow fiber membrane precursor easier to form. The upper limit of the concentration of the hydrophilic polymer is preferably 20% by mass, and more preferably 12% by mass from the viewpoint of the handleability of the film-forming stock solution.
  • the coagulation liquid water, alcohols, glycerin, ethylene glycol or the like can be used alone or in combination, or a mixed liquid of water and a good solvent for a hydrophobic polymer may be used.
  • the temperature of the coagulation liquid is not particularly limited, but is usually 60 to 90 ° C.
  • a chemical solution containing an oxidizing agent is brought into contact with the hollow fiber membrane precursor formed in the film forming step, and the hydrophilic polymer remaining in the hollow fiber membrane precursor is decomposed by the action of the oxidizing agent.
  • the decomposition process is performed in one decomposition container having airtightness.
  • the heated chemical solution is brought into contact with the hollow fiber membrane precursor.
  • the chemical solution heated to 30 ° C. or more and 120 ° C. or less is brought into contact with the hollow fiber membrane precursor so that the chemical solution quickly penetrates into the hollow fiber membrane precursor, and the oxidant in the penetrated chemical solution immediately becomes hollow fiber. It acts on the hydrophilic polymer in the film precursor.
  • the penetration of the chemical solution into the hollow fiber membrane precursor and the decomposition of the hydrophilic polymer by the oxidizing agent contained in the chemical solution can proceed almost simultaneously, and as a result, the hydrophilic polymer can be decomposed in a short time. it can.
  • high-temperature water vapor such as saturated water vapor at normal pressure (1 atm) is supplied to the decomposition container, whereby the chemical solution in the decomposition container is heated to a range of 60 ° C. or higher and 100 ° C. or lower.
  • the hollow fiber membrane precursor with which the chemical solution is contacted is also preferably heated in advance, and more preferably heated to 30 ° C. or higher and 120 ° C. or lower. Further, high-temperature steam such as saturated steam at normal pressure (1 atm) is supplied to the decomposition vessel, whereby the hollow fiber membrane precursor traveling in the decomposition vessel is heated to 60 ° C. or more and 120 ° C. or less. More preferably, it is heated to about 100 ° C. Thus, the penetration rate of the chemical solution in the hollow fiber membrane precursor is further improved by preheating the hollow fiber membrane precursor in the decomposition vessel and then bringing it into contact with the chemical solution.
  • high-temperature steam such as saturated steam at normal pressure (1 atm) is supplied to the decomposition vessel, whereby the hollow fiber membrane precursor traveling in the decomposition vessel is heated to 60 ° C. or more and 120 ° C. or less. More preferably, it is heated to about 100 ° C.
  • the temperature of the hollow fiber membrane precursor after the chemical solution is in contact and the oxidant is infiltrated it is preferable to maintain the temperature of the hollow fiber membrane precursor at the same temperature as the temperature of the chemical solution, specifically, 30 ° C to 120 ° C, preferably 60 ° C to 100 ° C. If it is this range, the hollow fiber membrane precursor after a chemical
  • the temperature in the decomposition vessel is preferably 60 ° C. or higher and the relative humidity is maintained at 90% or higher by supplying water vapor. Thereby, evaporation of the water
  • the temperature of the hollow fiber membrane precursor decreases, and the decomposition rate of the hydrophilic polymer remaining in the hollow fiber membrane precursor becomes slow. Therefore, if the relative humidity is maintained as described above, it is possible to suppress a decrease in the decomposition rate of the hydrophilic polymer remaining in the hollow fiber membrane precursor.
  • Oxidizing agents used in chemicals can be ozone, hydrogen peroxide, permanganate, dichromate, persulfate, etc., but they have strong oxidizing power and excellent decomposition performance, and are easy to handle.
  • hypochlorite is particularly preferable from the viewpoints of inexpensiveness.
  • Examples of hypochlorite include sodium hypochlorite and calcium hypochlorite, with sodium hypochlorite being particularly preferred.
  • the chemical solution can be prepared by dissolving these oxidizing agents in water.
  • the concentration of sodium hypochlorite in the aqueous solution ensures the amount of sodium hypochlorite necessary for the decomposition of the hydrophilic polymer, and hypoxia. From the viewpoint of minimizing the amount of sodium chlorate used, 2000 to 120,000 mg / L is preferable. As will be described later, when the drug solution is contacted with the hollow fiber membrane precursor a plurality of times, the drug used for at least the first contact has a sodium hypochlorite concentration of 2000 to 120,000 mg / L. It is preferable.
  • the decomposition process can be preferably performed by, for example, the decomposition apparatus 10 of FIG.
  • a decomposition apparatus 10 in FIG. 1 includes a single decomposition vessel 11, a steam supply unit 12 that supplies high-temperature, normal-pressure saturated water vapor into the decomposition vessel 11 as a heating unit that heats the decomposition vessel 11, and a hollow fiber membrane
  • traveling means for traveling the precursor 30 in the decomposition container 11 a chemical solution is applied to the one introduction roll 13 and the eight traveling rolls 14 a to 14 h and the hollow fiber membrane precursor 30 traveling in the decomposition container 11. And a chemical solution contact means 15 to be contacted.
  • the decomposition container 11 is an airtight container formed by having a side wall part, a top part (roof) that closes the upper end of the side wall part, and a bottom part. 18a and 18b are provided.
  • the inside of the decomposition vessel 11 is blocked from outside air.
  • the water sealing parts 16 and 17 that enable introduction and withdrawal of the hollow fiber membrane precursor 30 are provided, respectively, and the inside of the decomposition container 11 is airtight.
  • each of the water sealing portions 16 and 17 in this example has a liquid replacement means (not shown) that replaces the liquid (water) in the water sealing portions 16 and 17, respectively.
  • the liquid inside can be replaced with new liquid.
  • the replacement is preferably performed continuously all the time during the decomposition step, but may be performed intermittently as necessary. Since the hollow fiber membrane precursor 30 introduced into the water seal 16 at the inlet contains a lot of hydrophilic polymer derived from the film forming process, the liquid in the water seal 16 at the inlet contains a hollow fiber membrane precursor. As the body 30 is introduced, the hydrophilic polymer is gradually concentrated.
  • the hydrophilic polymer in the liquid of the water sealing part 16 may adhere to the reverse. Therefore, it is preferable to provide a liquid replacement means in the water seal portion 16 at the inlet so that the liquid in the water seal portion 16 is appropriately exchanged to suppress the concentration of the hydrophilic polymer in the liquid.
  • the degradation product of the hydrophilic polymer is attached to the hollow fiber membrane precursor 30 after the decomposition step. Therefore, the degradation product of the hydrophilic polymer is gradually concentrated in the liquid in the water sealing portion 17 at the outlet when the hollow fiber membrane precursor 30 that has been subjected to the decomposition process passes.
  • the degradation product of the hydrophilic polymer in the liquid of the water sealing part 17 adheres to the hollow fiber membrane precursor 30 led out from the decomposition container 11 by passing through the water sealing part 17, and thereafter
  • the hollow fiber membrane precursor 30 sent to the cleaning process may be contaminated. Therefore, it is preferable to provide liquid replacement means in the water seal portion 17 so that the liquid in the water seal portion 17 is appropriately exchanged to suppress the concentration of the degradation product of the hydrophilic polymer in the liquid.
  • the new liquid introduced into the water seals 16 and 17 by the liquid replacement means is preferably new water with no use history.
  • the liquid extracted from the water seals 16 and 17 is diluted with new water. It may be what was done. Further, the liquid sealing portions 16 and 17 may be circulated and supplied while diluting the liquid with fresh water.
  • the water vapor supply means (heating means) 12 is provided outside the decomposition vessel 11 and a vapor supply source (not shown) and an upper portion inside the decomposition vessel 11, and decomposes high temperature normal pressure saturated water vapor from the water vapor supply source. And a pipe 12 a to be introduced into the container 11. As shown in FIG. 2, the pipe 12a is branched into three systems on the downstream side, and a plurality of jet outlets 12c for jetting saturated water vapor downward are provided on the side surfaces (pipe peripheral surfaces) of the branched portions 12b. It is formed in one row along the longitudinal direction of the branch part 12b.
  • the water vapor supply means is not limited to this example as long as it can supply water vapor into the decomposition vessel 11.
  • the traveling means is arranged on the most upstream side in the traveling path of the hollow fiber membrane precursor 30 in the decomposition vessel 11, and introduces a roll 13 that introduces the hollow fiber membrane precursor 30 into the decomposition vessel 11 and the introduced hollow. It comprises a plurality of running rolls 14a to 14h that run the thread film precursor 30 downstream.
  • the traveling rolls 14a to 14h in this example are composed of a total of four pairs of rolls composed of an upper roll and a lower roll. Further, the traveling rolls 14 a to 14 h are formed to have a longer axial length than the introduction roll 13.
  • the hollow fiber membrane precursor 30 introduced by the introduction roll 13 is directed from the front side to the rear side in the drawing of the traveling rolls 14a to 14h (that is, from the upstream side to the downstream side). It can be run while being wound multiple times.
  • the traveling rolls 14a to 14h the lower roll 14a of the first pair of pair rolls and the lower roll 14e of the third pair of pair rolls from the upstream side are drive rolls provided with a drive mechanism, and the drive rolls The traveling rolls other than are free rolls that are not provided with a drive mechanism.
  • the n-th pair of rolls from the upstream side is referred to as an n-th pair roll.
  • the membrane tension imparted to the hollow fiber membrane precursor by the rotational resistance of the free roll upstream of the drive roll can be eliminated, thereby causing the membrane tension.
  • the collapse of the hollow fiber membrane precursor membrane can be suppressed.
  • the traveling rolls 14a to 14h are arranged in parallel to each other as shown in FIG. And each branch part 12b of the water vapor supply means 12 is between each roll between the first pair roll and the second pair roll, between the second pair roll and the third pair roll, and between the third pair roll and the fourth pair roll. On the upper side, they are arranged so as to be parallel to the traveling rolls 14a to 14h.
  • the chemical liquid contact means 15 includes a first chemical liquid tank 15a and a second chemical liquid tank 15b into which a chemical liquid is charged, and is provided below the lower roll 14a of the first pair of rolls and the lower roll 14e of the third pair of rolls. It is provided in two places (a plurality of places) with the lower part. And the lower part of the lower roll 14a and the lower part of the lower roll 14e are immersed and arrange
  • the hollow fiber membrane precursor 30 travels in each chemical solution tank 15a, 15b, and as a result, the chemical solution comes into contact with the hollow fiber membrane precursor 30 and is picked up.
  • illustrations other than these are omitted in order to facilitate understanding of the positional relationship between the pipe 12a and its branching portion 12b, the introduction roll 13, the traveling rolls 14a to 14h, and the chemical tanks 15a and 15b. ing.
  • Each chemical tank 15a, 15b is a so-called cascade type, and the tank is divided into a plurality of unillustrated zones by one or more standing plates along the axial direction of the lower rolls 14a, 14e.
  • the chemical solution overflowed from the side zone is sequentially supplied to the rear side zone in the figure.
  • the zone on the front side in the figure corresponds to the upstream side of the traveling hollow fiber membrane precursor 30, and the zone on the rear side in the figure represents the traveling hollow fiber membrane precursor 30.
  • the zone on the front side in the figure corresponds to the upstream side of the traveling hollow fiber membrane precursor 30, and the zone on the rear side in the figure represents the traveling hollow fiber membrane precursor 30.
  • the number of zones in the first chemical tank 15a is k 1 and the number of zones in the second chemical tank 15b is k 2 (k 1 and k 2 are both integers of 2 or more).
  • the chemical solution is continuously supplied from the chemical solution supply sources 15c and 15d provided outside the decomposition vessel 11 to the most upstream zone of the chemical solution tanks 15a and 15b, respectively. Of these, the chemical solutions are continuously discharged from the most downstream zone.
  • the discharged liquid from the chemical tanks 15a and 15b flows through the bottom of the decomposition vessel 11 and is discharged from the drains 18a and 18b together with the condensed water of saturated water vapor.
  • Reference numeral 20 in the figure denotes a partition plate standing on the bottom of the decomposition vessel 11, and by providing this partition plate 20, the chemical solution from the first chemical solution tank 15 a is supplied from the drain 18 a to the second The chemical solution from the chemical solution tank 15b can be discharged from the drain 18b.
  • the decomposition vessel 11 In the decomposition process by the decomposition apparatus 10 in FIG. 1, first, high-temperature normal pressure saturated water vapor is continuously supplied into the decomposition vessel 11 by the water vapor supply means 12, and the decomposition vessel 11 is filled with saturated water vapor and heated.
  • the temperature in the decomposition vessel 11 is ideally about 100 ° C., which is a saturated water vapor temperature at normal pressure, but may be lower than that.
  • a chemical solution is supplied from the chemical solution supply sources 15c and 15d to the chemical solution tanks 15a and 15b arranged in the decomposition container 11 by supply pumps 19a and 19b.
  • heaters are provided between the supply pump 19 a and the first chemical liquid tank 15 a and between the supply pump 19 b and the second chemical liquid tank 15 b so that the chemical liquid is decomposed into the decomposition container 11. You may make it supply to each chemical
  • the hollow fiber membrane precursor 30 that has passed through the water seal portion 16 is introduced into the decomposition vessel 11 by the introduction roll 13.
  • the traveling speed of the hollow fiber membrane precursor 30 in the decomposition container 11 is preferably 4 to 50 m / min, for example.
  • the hollow fiber membrane precursor 30 introduced into the decomposition container 11 is heated by saturated steam filling the decomposition container 11.
  • the upper roll 14 b and the lower roll 14 a are wound around the upper roll 14 b and the lower roll 14 a multiple times (k 1 times) from the front side in FIG. 3 to the rear side in FIG. Proceeds to the upper roll 14d of the opposite roll.
  • the hollow fiber membrane precursor 30 moves the lower roll 14a of the first pair of rolls a plurality of times (k every time one) pass, the hollow fiber membrane precursor 30 adhered drug solution which is heated by saturated steam, penetrates.
  • the number of times the hollow fiber membrane precursor 30 contacts the drug solution, the number of separated zone vertical plate of not shown in the first chemical bath is the same k 1 none.
  • the hollow fiber membrane precursor 30 passes the lower roll 14a of the first pair of rolls for the first time, the hollow fiber membrane precursor 30 comes into contact with the chemical solution in the most upstream zone among the zones of the first chemical solution tank, and the second time When passing through, the second chemical solution in the zone of the first chemical solution tank contacts the chemical solution in the upstream zone.
  • the hollow fiber membrane precursor 30 passes the lower roll 14a, it contacts the chemical
  • the solid line arrows describe the travel path of the hollow fiber membrane precursor 30, and the broken line arrows indicate the rotation direction of each roll.
  • medical solution tank of this example is a cascade type, and the chemical
  • the hollow fiber membrane precursor 30 in which more hydrophilic polymer remains is in contact with the chemical solution.
  • a part of the hydrophilic polymer from the hollow fiber membrane precursor 30 is in the zone. It migrates into the chemical solution inside, and the decomposition of the migrated hydrophilic polymer proceeds in the chemical solution in the zone.
  • the chemical oxidizing agent in the zone is consumed for the degradation of the transferred hydrophilic polymer, and the concentration thereof decreases.
  • the chemical liquid in which the concentration of the oxidizing agent is thus reduced is supplied to the downstream zone.
  • the time of the chemical liquid to the hollow fiber membrane precursor 30 is contacted once k, toward time of contact from the time of contact of the first k 1 th, the concentration of the oxidizing agent in the chemical solution used Is gradually decreasing.
  • the hollow fiber membrane precursor 30 that is in contact with the chemical solution in the downstream zone has already been partially decomposed on the upstream side, so the remaining amount of the hydrophilic polymer is low, and the oxidizing agent is high in concentration.
  • the cascade type first chemical tank is adopted in this way, and the oxidant is wasted by reducing the concentration of the oxidant in the chemical liquid to be used from the first contact to the first contact. It can be used without any problems, and its usage can be reduced.
  • oxidizing agent concentration decreases continuously as going to the downstream side of the zone
  • the form which falls in steps is also included with a form.
  • the form that gradually decreases is, for example, a form in which the concentration of the oxidizing agent is constant without decreasing over a plurality of some of the entire zones.
  • the number of zones in the first chemical liquid tank is k 1 which is the same as the number of times the hollow fiber membrane precursor 30 contacts the chemical liquid in the first chemical liquid tank.
  • the number of zones in the first chemical bath as less than k 1
  • the number of zones in the first chemical bath may have a structure in which the hollow fiber membrane precursor 30 contacts more than once in the chemical of one zone.
  • the cascade type chemical solution tank has been described here as an example. However, as long as the concentration of the oxidant can be reduced, a cascade type chemical solution tank is adopted. It is not limited.
  • the chemical solution used is an aqueous solution containing sodium hypochlorite as an oxidizing agent, and the drug used for at least the first contact is
  • concentration of sodium hypochlorite is preferably 2000 to 120,000 mg / L.
  • the decomposition vessel 11 is provided with an unillustrated spraying means for spraying a fluid (gas) such as steam to the hollow fiber membrane precursor 30 before the chemical solution comes into contact with the condensed water by the fluid (gas). It is preferable to remove.
  • a removal roll (not shown) is separately provided between the introduction roll 13 and the upper roll 14b, and the hollow fiber membrane precursor passes over the surface of the removal roll.
  • the material of the decomposition container 11, the rolls 14a to 14h, the first and second chemical tanks 15a and 15b, the drains 18a and 18b, and the water vapor supply means 12 is particularly limited as long as it has oxidation resistance and heat resistance.
  • titanium, polytetrafluoroethylene, PEEK, ceramic and the like can be exemplified.
  • a material with poor oxidation resistance such as stainless steel and aluminum, the material exemplified above, the inner surface of the decomposition vessel 11 is lined, and the rolls 14a to 14h Can also be exemplified by those coated on the outer surface.
  • the running rolls 14a to 14h may have a smooth surface. However, when the running rolls 14a to 14h are smooth, the running path of the hollow fiber membrane precursor 30 is shifted on the surface of the roll and loosens, so that the hollow fiber membrane precursor 30 is There is a risk of entanglement. Therefore, it is preferable that a regulation groove for regulating the running of the hollow fiber membrane precursor is formed on the surface of the running rolls 14a to 14h. Also, as shown in FIG. 4, two guide bars 40, 40 along the axial direction are attached near the surface of the traveling roll 14a, for example, at positions facing each other with the traveling roll 14a interposed therebetween. The film precursor 30 may be prevented from loosening and coming off from the traveling roll 14a.
  • reference numeral 41 denotes a shaft of the traveling roll 14a
  • reference numeral 42 denotes a fixed portion to which the shaft 41 is fixed.
  • guide bars 40, 40 are fixed to the fixed portion 42.
  • FIG. 4 illustrates an example in which the guide bars 40 are attached to the traveling roll 14a
  • the guide bars 40 can be provided on at least one of the traveling rolls 14a to 14h as necessary.
  • a restriction groove can be provided in at least one of the traveling rolls 14a to 14h as necessary. The guide bar and the restriction groove may be used together for one traveling roll.
  • the surfaces of the traveling rolls 14a and 14e installed corresponding to the chemical tanks 15a and 15b are provided with the surface and the standing plate, respectively. It is preferable to form a groove at a position corresponding to the upright plate so that they do not contact each other. Further, it is more preferable that each of the traveling rolls 14a and 14e is constituted by an independent roll corresponding to each zone of the chemical liquid tanks 15a and 15b.
  • the hollow fiber membrane precursor 30 advances from the rear side in the drawing to the front side in the drawing, while being wound around the upper roll 14d and the lower roll 14c a plurality of times in the second pair roll, contrary to the case of the first pair roll. Then, it proceeds to the upper roll 14f of the third pair of rolls.
  • the hollow fiber membrane precursor 30 is wound around the upper roll 14f and the lower roll 14e a plurality of times (k 2 times) from the front side in the figure to the rear side in the figure as in the case of the first pair roll. ,proceed.
  • the second chemical tank not shown in FIG. 3 is arranged on the lower roll 14e of the third pair roll, every time the hollow fiber membrane precursor 30 passes through the lower roll 14e of the third pair roll.
  • the hollow fiber membrane precursor 30 is contacted with a chemical heated by saturated water vapor and penetrates into the hollow fiber membrane precursor 30.
  • the second chemical liquid tank, together with the hollow fiber membrane precursor 30 is divided by the vertical plate of the not shown in wrapped around by the number and the zone equal k 2 in contact with the drug solution of the second chemical liquid tank to the lower roll 14e
  • the chemical solution in which the concentration of the oxidizing agent is reduced is a cascade type in which the upstream zone in the tank is sequentially supplied from the upstream zone to the downstream zone.
  • the hollow fiber membrane precursor 30 passes the lower roll 14e of the third pair of rolls for the first time, the hollow fiber membrane precursor 30 comes into contact with the chemical solution in the most upstream zone among the zones of the second chemical solution tank.
  • the second chemical solution tank is in contact with the chemical solution in the second upstream zone.
  • the hollow fiber membrane precursor 30 comes into contact with the chemical solution in the more downstream zone every time it passes through the lower roll 14e. Therefore, also in the second chemical liquid tank, the time of contacting the chemical k 2 times the hollow fiber membrane precursor 30, subjected upon contact from the time of contact of the first k 2 th, the concentration of the oxidizing agent in the chemical solution to be used It gradually decreases.
  • medical solution tank can take is the same as that of a 1st chemical
  • the hollow fiber membrane precursor 30 advances from the upper roll 14f of the third pair roll to the lower roll 14g of the fourth pair roll, and in the fourth pair roll, the upper roll 14h and the lower roll 14g are wound a plurality of times, After proceeding from the rear side in the figure to the front side in the figure, the lead is led out of the decomposition container 11 through the lower roll 14g of the fourth pair of rolls.
  • the hollow fiber membrane precursor 30 is first heated by saturated steam. Thereafter, the heated hollow fiber membrane precursor 30 is brought into contact with the chemical heated in the first chemical tank 15a.
  • the chemical solution that has come into contact with the hollow fiber membrane precursor 30 immediately penetrates into the hollow fiber membrane precursor 30. Further, since the hollow fiber membrane precursor 30 that has been contacted and infiltrated with the chemical liquid is kept warm with saturated water vapor by running in the decomposition vessel 11, the decomposition of the hydrophilic polymer by the chemical liquid that has been in contact with and infiltrated also involves the penetration of the chemical liquid. Starts and progresses almost simultaneously.
  • the hollow fiber membrane precursor 30 is kept warm, and the decomposition of the hydrophilic polymer proceeds.
  • the third pair roll as in the case of the first pair roll, the contact and penetration of the chemical solution and the decomposition of the hydrophilic polymer are repeated alternately several times.
  • the fourth pair roll the hollow fiber membrane precursor is The body 30 is kept warm and decomposition of the hydrophilic polymer proceeds.
  • the staying time of the hollow fiber membrane precursor 30 in the first chemical liquid tank 15a and the second chemical liquid tank 15b is not particularly limited, but the chemical liquid is sufficiently in contact with the hollow fiber membrane precursor 30, and on the first pair of rolls and The staying time during which the hollow fiber membrane precursor 30 positioned on the third pair roll always holds the chemical solution is set.
  • the concentration gradient and flow rate of the oxidizing agent in the first chemical liquid tank 15a and the second chemical liquid tank 15b which are cascade types are not particularly limited, and the remaining state of the hydrophilic polymer in the hollow fiber membrane precursor 30 and the oxidation What is necessary is just to set suitably from a viewpoint of the use efficiency of an agent.
  • the chemical solution penetrates into the hollow fiber membrane precursor 30.
  • the degradation of the hydrophilic polymer by the oxidizing agent contained in the chemical solution can proceed almost simultaneously, and as a result, the hydrophilic polymer can be degraded in a short time.
  • the decomposition apparatus 10 of this example also includes a decomposition container 11, heating means for heating the decomposition container 11, traveling means for causing the hollow fiber membrane precursor 30 to travel in the decomposition container 11, and traveling in the decomposition container 11. Since the hollow fiber membrane precursor 30 is provided with the chemical solution contact means 15 for bringing the chemical solution into contact therewith, heating of the chemical solution, contact of the heated chemical solution with the hollow fiber membrane precursor 30, and hollow fiber in the decomposition vessel 11 The hydrophilic polymer contained in the film precursor 30 can be kept warm and decomposed, the equipment for performing the decomposition process can be made compact, and the installation space can be saved.
  • the steam supply unit 12 that supplies high-temperature, normal-pressure saturated steam into the decomposition vessel 11 is employed as the heating unit, the hollow fiber membrane precursor 30 before and after contact with the chemical solution, the chemical solution, Each temperature of the gas phase in the container 11 can be easily maintained at the same temperature based on the saturated water vapor temperature, and the heating efficiency is excellent.
  • the heating means is not limited to the steam supply means 12 as long as the inside of the decomposition vessel 11 can be heated.
  • the hollow fiber membrane precursor 30 is dried by filling the inside of the decomposition vessel 11 with normal-pressure saturated water vapor.
  • the water vapor supply means 12 is preferable in that it can be prevented and the hydrophilic polymer can be effectively decomposed.
  • the chemical solution contact means 15 a first chemical solution tank 15a and a second chemical solution tank 15b are installed, and the hollow fiber membrane precursor 30 travels a plurality of times in each chemical solution tank 15a, 15b, so that the hollow fiber of the chemical solution Since the contact with the membrane precursor 30 and the heat retention of the hollow fiber membrane precursor 30 after contact with the chemical solution are alternately repeated a plurality of times, the contact with the hollow fiber membrane precursor 30 is attached. Before all the oxidizing agent in the chemical solution is consumed for the decomposition of the hydrophilic polymer, the chemical solution can be additionally attached to the hollow fiber membrane precursor 30 again, and the decomposition proceeds efficiently.
  • the spray means which sprays a chemical
  • the spray means it is possible to employ a spray unit that is connected to the chemical liquid supply sources 15c and 15d by piping and sprays the chemical liquid from the chemical liquid supply sources 15c and 15d.
  • the chemical solution and at least part of the portion introduced into the decomposition container 11 are provided.
  • a heat exchange section (not shown) in which the chemical solution is heated by heat exchange with the gas in the decomposition vessel 11 may be provided.
  • the heat exchanging portion is composed of a coil tube pipe having a large surface area (heat transfer area) made of polytetrafluoroethylene or the like.
  • the heat exchanging unit may be a plate type, a multi-tube type, or the like in addition to a coil tube type constituted by a coil tube.
  • medical solution contact means the form etc. which employ
  • medical solution on the hollow fiber membrane precursor 30 can also be employ
  • the chemical solution contact means includes a guide having a passage through which the hollow fiber membrane precursor passes and a chemical solution supply passage provided at an angle (for example, 90 degrees) intersecting with the passage direction of the hollow fiber membrane precursor.
  • a mode in which a chemical solution is attached to the peripheral surface side of the hollow fiber membrane precursor passing through the passage using a type of chemical solution applying means can also be adopted.
  • a chemical solution application means for example, a commercially available oiling guide (manufactured by Yuasa Yidodo Co., Ltd.) or the like can be used.
  • the shape of the top (roof) that closes the upper end of the side wall is illustrated as a flat shape, but the top is an inclined portion that is inclined downward from the top and the top. It is also preferable that the shape has When the top portion has such a shape, the condensed water vapor adhering to the top portion flows down the side wall portion through the inclined portion, and drops down to the chemical solution and the hollow fiber membrane precursor 30 in the chemical solution tanks 15a and 15b. It is prevented. Therefore, it is possible to suppress the dilution of the chemical solution with the condensed water and the inhibition of the chemical solution penetration into the membrane.
  • the cleaning liquid used in the cleaning step is not particularly limited as long as it is a clear liquid in which a decomposition product of the hydrophilic polymer is dispersed or dissolved, but water is preferable because of its high cleaning effect.
  • water to be used include tap water, industrial water, river water, well water, and the like, and alcohols, inorganic salts, oxidizing agents, surfactants, and the like may be mixed and used.
  • a mixed liquid of a good solvent for the hydrophobic polymer and water can be used as the cleaning liquid.
  • the washing temperature is preferably high, preferably 50 ° C.
  • the hydrophilic polymer and dirt attached to the outer surface of the hollow fiber membrane precursor can be scraped off by bubbling due to boiling, so that efficient cleaning is possible.
  • a hollow fiber membrane is obtained by such a washing process.
  • a preliminary cleaning step of immersing and cleaning the hollow fiber membrane precursor obtained in the film forming step in a cleaning solution may be performed.
  • the cleaning liquid can be selected from those exemplified in the cleaning step.
  • the hollow fiber membrane is exemplified as the porous membrane, and the production method and the production apparatus have been described.
  • the porous membrane is not limited to the hollow fiber membrane, and for example, a flat membrane, a tube type A film etc. can also be illustrated.
  • a hollow portion is formed at the center, and a nozzle in which an annular discharge port is sequentially formed on the outside so that two kinds of liquids can be sequentially applied (see FIG. 1 of JP-A-2005-42074). ), And a polyester multifilament single-filament braid (multifilament; 420T / 180F) as a porous base material is introduced into the hollow portion while keeping the temperature at 30 ° C.
  • the film-forming stock solution (1) was applied from the inside in order and coagulated in a coagulation liquid (mixed solution of 5 parts by mass of N, N-dimethylacetamide and 95 parts by mass of water) kept at 80 ° C.
  • a hollow fiber membrane precursor was obtained in which the braid was coated with a porous layer having an inclined structure having a fraction layer near the outer surface and the pore diameter increasing toward the inside.
  • the main stock solution forming the membrane structure of the hollow fiber membrane is the film-forming stock solution (1) applied to the outside.
  • a hollow portion having an inner diameter larger than the outer diameter of the hollow fiber membrane precursor is formed at the center, and an annular discharge port is sequentially formed on the outside so that two kinds of liquids can be sequentially applied.
  • a nozzle see FIG. 1 of JP-A-2005-42074) is prepared, and the hollow fiber precursor obtained as described above is introduced into the hollow portion while keeping this at 30 ° C.
  • glycerin first grade manufactured by Wako Pure Chemical Industries, Ltd.
  • a film-forming stock solution (1) were sequentially applied to the outer periphery from the inside, and coagulated in the same coagulating liquid kept at 80 ° C. as previously used.
  • a hollow fiber membrane precursor having a braided support in a two-layer structure coated with a porous layer was obtained.
  • the hollow fiber membrane precursor was pre-washed with water at 100 ° C. for 5 minutes.
  • the spinning speed (running speed of the hollow fiber membrane precursor) at this time was 20 m / min.
  • the hollow fiber membrane precursor 30 thus obtained was continuously introduced into the decomposition apparatus 10 shown in FIG. 1, and the decomposition step was performed under heating with normal-pressure saturated steam.
  • the conditions for the decomposition process are as follows.
  • the traveling speed of the hollow fiber membrane precursor 30 in the decomposition vessel 11 is 20 m / min, and the hollow fiber membrane precursor is placed on each of the first pair roll, the second pair roll, the third pair roll, and the fourth pair roll. It took 66 seconds for each 30 to pass.
  • the hollow fiber membrane precursor 30 was in a condition for picking up an aqueous solution of sodium hypochlorite (oxidant) 10 times.
  • Sodium hypochlorite aqueous solution supplied to each of the first chemical tank 15a and the second chemical tank 15b has a concentration of 120,000 mg / L and a supply amount of 50 ml / min, and hypochlorous acid supplied to the tanks 15a and 15b.
  • the aqueous sodium solution was immediately heated to 100 ° C.
  • the residence time of the hollow fiber membrane precursor in the decomposition vessel was 270 seconds.
  • the concentration of PVP which is a hydrophilic polymer
  • the concentration of PVP was measured to be 1.2%, and the hollow fiber membrane is said to exhibit sufficient membrane water permeability.
  • the condition that the PVP concentration was 2% or less was satisfied.
  • the amount of the hydrophilic polymer remaining in the hollow fiber membrane is determined by obtaining the absorption spectrum of the hollow fiber membrane with an infrared spectrophotometer, and the absorption strength of the hydrophobic polymer and the absorption strength of the hydrophilic polymer in this absorption spectrum.
  • a hollow fiber membrane precursor was formed by the same film forming process as in the example.
  • the hollow fiber membrane precursor is immersed in a dipping tank containing the same sodium hypochlorite concentration 30 ° C. (non-heated) chemical solution as in the example for 80 seconds to bring the hollow fiber membrane precursor into contact with the chemical solution, Held.
  • the hollow fiber membrane precursor holding the chemical solution was introduced into the decomposition vessel and held for 80 seconds in a normal-pressure steam atmosphere. Thereafter, the same cleaning process as in Example 1 was performed. Further, in the same manner as described above, the hollow fiber membrane precursor was immersed in an immersion tank for 80 seconds and held in a decomposition container for 80 seconds.
  • Example 2 Furthermore, the same washing
  • the total immersion time in the chemical solution and the retention time in the decomposition container were 320 seconds.
  • the hollow fiber membrane was introduced into a hot air dryer and dried.
  • the hollow fiber membrane thus obtained was measured for the concentration of PVP in the same manner as in the Example, and it was 2.5%, and 2% that the hollow fiber membrane exhibited sufficient water permeability. The following conditions were not satisfied. From these results, it has been clarified that the hydrophilic polymer remaining in the hollow fiber membrane precursor after the film forming process cannot be sufficiently decomposed by the method of the comparative example, even if it takes a longer time than the examples.
  • maintains a hollow fiber membrane precursor at high temperature are respectively independent tanks, these installations required a big space.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 親水性ポリマーと疎水性ポリマーとを含む製膜原液の凝固により形成された多孔質膜前駆体を分解容器に導入し、該分解容器内で、前記多孔質膜前駆体に酸化剤を含む加熱した薬液を接触させ、前記薬液が接触した前記多孔質膜前駆体を保温し、前記酸化剤により前記多孔質膜前駆体中に残存する前記親水性ポリマーを分解する分解工程を有する、多孔質膜の製造方法、および、前記分解容器を備えた分解装置を有する多孔質膜の製造装置。

Description

多孔質膜の製造方法および製造装置
 本発明は、中空糸膜などの多孔質膜の製造方法および製造装置に関する。
 本願は、2011年08月03日に、日本に出願された特願2011-170064号に基づき優先権を主張し、その内容をここに援用する。
 食品工業分野、医療分野、電子工業分野等の分野における有用成分の濃縮、回収、不要成分の除去、造水等には、セルロースアセテート、ポリアクリロニトリル、ポリスルホン、フッ素系樹脂等からなり、例えば湿式または乾湿式紡糸により製造された多孔質の中空糸膜が、精密濾過膜、限外濾過膜、逆浸透濾過膜等に多用されている。
 湿式または乾湿式紡糸により中空糸膜を製造する場合には、まず、疎水性ポリマーおよび親水性ポリマーを含む製膜原液を調製する。ついで、この製膜原液を環状に吐出し、凝固液中で凝固させる製膜工程により、凝固物即ち中空糸膜前駆体を形成する。なお、製膜原液は空気と接触する空走部を経て、凝固液中へ導入されても(乾湿式紡糸法)、直接凝固液に導入されても(湿式紡糸法)よい。
 ここで製膜工程後の中空糸膜前駆体の膜中には、通常、親水性ポリマーが溶液の状態で残存している。このように親水性ポリマーが膜中に残存していると、中空糸膜は高い透水性(膜通水能)を発揮することが困難である。
 そこで、例えば、特許文献1には、次亜塩素酸塩などの酸化剤を含む低温の薬液に製膜工程後の中空糸膜前駆体を浸漬し、中空糸膜前駆体に薬液を低温で保持させた後、薬液を保持した中空糸膜前駆体を気相中で加熱し、中空糸膜前駆体中に残存する親水性ポリマーを分解することが記載されている。気相での加熱後には、親水性ポリマーおよびその分解物を洗浄する洗浄工程を行う。
特開2005-220202号公報
 しかしながら、特許文献1の技術により、製膜工程後の中空糸膜前駆体中に残存する親水性ポリマーを充分に分解するためには、低温での薬液の浸漬工程と、気相中での加熱分解工程と、その後の洗浄工程とを複数サイクル繰り返すことが必須であり、長時間を要した。
 このように従来、中空糸膜前駆体などの多孔質膜前駆体に残存する親水性ポリマーを短時間で分解できる技術は見出されていなかった。
 本発明は上記課題に鑑みてなされたもので、短時間で、製膜工程後の多孔質膜前駆体に残存する親水性ポリマーを分解できる多孔質膜の製造方法および製造装置の提供を課題とする。
 本発明者は鋭意検討した結果、酸化物を含む薬液として、加熱された高温のものを採用し、この加熱された薬液を親水性ポリマーが残存する製膜工程後の多孔質膜前駆体に接触させることによって、多孔質膜前駆体への薬液の浸透と、薬液に含まれる酸化剤による多孔質膜前駆体中に残存する親水性ポリマーの分解とをほぼ同時に進行させることができ、その結果、短時間で、製膜工程後の多孔質膜前駆体から親水性ポリマーを分解できることに想到した。
[1]親水性ポリマーと疎水性ポリマーとを含む製膜原液の凝固により形成された多孔質膜前駆体を分解容器に導入し、該分解容器内で、前記多孔質膜前駆体に酸化剤を含む加熱した薬液を接触させ、前記薬液が接触した前記多孔質膜前駆体を保温し、前記酸化剤により前記多孔質膜前駆体中に残存する前記親水性ポリマーを分解する分解工程を有する、多孔質膜の製造方法。
[2]前記薬液を接触させる前記多孔質膜前駆体を予め加熱する、[1]に記載の多孔質膜の製造方法。
[3]前記分解工程では、前記分解容器内で、前記薬液の前記多孔質膜前駆体への接触と、前記薬液が接触した後の前記多孔質膜前駆体の保温とをそれぞれ複数回行う、[1]または[2]に記載の多孔質膜の製造方法。
[4]前記薬液は前記酸化剤として次亜塩素酸ナトリウムを含む水溶液であり、前記薬液を前記多孔質膜前駆体へ複数回接触させる際に、1回目に使用される前記薬液中の前記次亜塩素酸ナトリウムの濃度は、2000~120000mg/Lである、[3]に記載の多孔質膜の製造方法。
[5]前記分解容器内は、温度が60℃以上、相対湿度が90%以上である、[1]~[4]のいずれか1つに記載の多孔質膜の製造方法。
[6]前記分解容器には、水蒸気が供給される、[1]~[5]のいずれか1つに記載の多孔質膜の製造方法。
[7]前記多孔質膜前駆体を前記薬液中に導入することにより、前記薬液を前記多孔質膜前駆体に接触させる、[1]~[6]のいずれか1つに記載の多孔質膜の製造方法。
[8]前記多孔質膜前駆体に前記薬液をスプレーすることにより、前記薬液を前記多孔質膜前駆体に接触させる、[1]~[7]のいずれか1つに記載の多孔質膜の製造方法。
[9]親水性ポリマーと疎水性ポリマーとを含む製膜原液の凝固により形成された多孔質膜前駆体に残存する前記親水性ポリマーを分解する分解装置を有する多孔質膜の製造装置であって、
 前記分解装置は、前記多孔質膜前駆体に酸化剤を含む加熱した薬液を接触させ、前記薬液が接触した前記多孔質膜前駆体を保温し、前記酸化剤により前記多孔質膜前駆体中に残存する前記親水性ポリマーを分解する分解容器を有する、多孔質膜の製造装置。
[10]前記分解装置は、
 前記分解容器内を加熱する加熱手段と、
 前記多孔質膜前駆体を前記分解容器内で走行させる走行手段と、
 前記分解容器内を走行する前記多孔質膜前駆体に、前記薬液を接触させる薬液接触手段と、をさらに有する、[9]に記載の多孔質膜の製造装置。
[11]前記薬液接触手段は、前記分解容器内の複数箇所に設けられている、[10]に記載の多孔質膜の製造装置。
[12]前記加熱手段は、前記分解容器内に水蒸気を供給する水蒸気供給手段である、[10]または[11]に記載の多孔質膜の製造装置。
[13]前記薬液接触手段は、前記薬液が投入され、該薬液中を前記多孔質膜前駆体が走行する薬液槽を備える、[10]~[12]のいずれか1つに記載の多孔質膜の製造装置。
[14]前記薬液槽は、槽内が複数のゾーンに分割され、上流側のゾーンからオーバーフローした薬液が、下流側のゾーンへと順次供給されるカスケード式である[13]に記載の多孔質膜の製造装置。
[15]前記薬液接触手段は、前記多孔質膜前駆体に前記薬液をスプレーするスプレー手段を備える、[10]~[14]のいずれか1つに記載の多孔質膜の製造装置。
[16]前記分解容器内に、前記薬液と前記分解容器内の気体との熱交換により前記薬液が加熱される熱交換部を有する、[10]~[15]のいずれか1つに記載の多孔質膜の製造装置。
[17]前記走行手段は、複数の走行ロールを備え、該走行ロールのうちの一部が駆動ロールである、[10]~[16]のいずれか1つに記載の多孔質膜の製造装置。
[18]前記走行手段は、複数の走行ロールを備え、該走行ロールのうちの少なくとも1つには、前記多孔質膜前駆体が前記走行ロールから外れることを防止するガイドバーが取り付けられている、[10]~[17]のいずれか一項に記載の多孔質膜の製造装置。
[19]前記走行手段は、複数の走行ロールを備え、該走行ロールのうちの少なくとも1つには、前記多孔質膜前駆体の走行を規制する規制溝が表面に形成されている、[10]~[18]のいずれか一項に記載の多孔質膜の製造装置。
[20]前記分解容器には、前記多孔質膜前駆体が前記分解容器に導入される入口と、前記分解容器から導出される出口とが形成され、
 前記入口と前記出口には、前記分解容器内を外気と遮断しつつ、前記多孔質膜前駆体の導入と導出とが可能な水封部がそれぞれ設けられている、[9]~[19]のいずれか1つに記載の多孔質膜の製造装置。
[21]前記水封部は、該水封部内の液体を置換する液体置換手段を有する、[20]に記載の多孔質膜の製造装置。
[22]前記分解容器は、側壁部と該側壁部の上端を閉塞する天部とを有して形成され、
 前記天部は、頂部と該頂部から下方に傾斜する傾斜部とを有する、[9]~[21]のいずれか1つに記載の多孔質膜の製造装置。
 本発明によれば、短時間で、製膜工程後の多孔質膜前駆体に残存する親水性ポリマーを分解できる。
本発明の分解装置の一例を示す概略構成図である。 図1の分解装置における水蒸気供給手段と、走行手段と、薬液槽との位置関係を説明する斜視図である。 図1の分解装置における中空糸膜前駆体の走行経路を説明する斜視図である。 ガイドバーが取り付けられた走行ロールの一例を示す斜視図である。
 本発明の多孔質膜の製造方法は、親水性ポリマーと疎水性ポリマーとを含む製膜原液を凝固させて多孔質膜前駆体を形成する製膜工程と、製膜工程で得られた多孔質膜前駆体を分解容器に導入し、該分解容器内で、多孔質膜前駆体に酸化剤を含む薬液を接触させ、薬液が接触した多孔質膜前駆体を保温し、酸化剤により多孔質膜前駆体中に残存する親水性ポリマーを分解する分解工程とを有する。本発明では、多孔質膜前駆体に接触させる薬液として、積極的に加熱したものを用いる。
 以下、多孔質膜の一例として中空糸膜を挙げて、本発明を詳細に説明する。なお、本明細書では、分解工程後の洗浄工程が終了したものを中空糸膜(多孔質膜)と言い、洗浄工程が終了する前の段階のものを中空糸膜前駆体(多孔質膜前駆体)と言う。
[製膜工程]
 製膜工程では、まず、疎水性ポリマーと親水性ポリマーとを含む製膜原液を調製する。ついで、この製膜原液を環状の吐出口が形成されたノズルから凝固液中に吐出し、凝固液中で凝固させる製膜工程により、中空糸膜前駆体を形成する。
 製膜工程は、製膜原液が空気と接触する空走部を経て、凝固液中へ導入される乾湿式紡糸法でも、直接凝固液に導かれる湿式紡糸法のいずれにより行ってもよい。また、ここで製造する中空糸膜前駆体の構成には特に制限はなく、例えば多孔質基材を備えたものでも、多層構造であって、取扱時の擦れ等に対して耐久性のあるものでもよい。
 なお、多孔質基材の例としては、特に限定されるものではないが、各種の繊維で製紐された中空状の編紐や組紐等が挙げられ、各種素材を単独または組み合わせて用いることができる。中空編紐や組紐に使用される繊維として、合成繊維、半合成繊維、再生繊維、天然繊維等が挙げられ、また繊維の形態は、モノフィラメント、マルチフィラメント、紡績糸のいずれであってもよい。
 疎水性ポリマーは、凝固して中空糸膜前駆体を形成し得るものであればよく、そのようなものであれば特に制限なく使用できるが、ポリスルホンやポリエーテルスルホンなどのポリスルホン系樹脂、ポリフッ化ビニリデンなどのフッ素系樹脂、ポリアクリロニトリル、セルロース誘導体、ポリアミド、ポリエステル、ポリメタクリレート、ポリアクリレートなどが挙げられる。また、これらの樹脂の共重合体を使用してもよいし、これら樹脂や共重合体の一部に置換基を導入したものも使用できる。また、分子量などが異なる同種のポリマーをブレンドして用いても構わないし、2種以上の異なる種類の樹脂を混合して使用してもよい。これらのなかでフッ素系樹脂、中でもポリフッ化ビニリデンやフッ化ビニリデン単体と他の単量体からなる共重合体は、次亜塩素酸などの酸化剤に対する耐久性が優れている。よって、例えば後述の分解工程などで、酸化剤により処理されるような中空糸膜前駆体を製造する場合には、疎水性ポリマーとしてフッ素系樹脂を選択することが好適である。
 親水性ポリマーは、製膜原液の粘度を中空糸膜の形成に好適な範囲に調整し、製膜状態の安定化を図るために添加されるものであって、ポリエチレングリコールやポリビニルピロリドンなどが好ましく使用される。これらの中でも、中空糸膜の孔径の制御や中空糸膜の強度の点から、ポリビニルピロリドンやポリビニルピロリドンに他の単量体が共重合した共重合体が好ましい。
 また、親水性ポリマーには、2種以上の樹脂を混合して使用することもできる。例えば親水性ポリマーとして、より高分子量のものを用いると、膜構造の良好な中空糸膜を形成しやすい傾向がある。一方、低分子量の親水性ポリマーは、後述の親水性ポリマー除去工程において中空糸膜前駆体からより除去されやすい点で好適である。よって、目的に応じて、分子量が異なる同種の親水性ポリマーを適宜ブレンドして用いてもよい。
 上述した疎水性ポリマーおよび親水性ポリマーをこれらが可溶な溶媒(良溶媒)に混合することにより、製膜原液を調製することができる。製膜原液には、必要に応じてその他の添加成分を加えてもよい。
 溶媒の種類には特に制限はないが、乾湿式紡糸で凝固工程を行う場合には、空走部において製膜原液を吸湿させることによって中空糸膜の孔径を調整するため、水と均一に混合しやすい溶媒を選択することが好ましい。このような溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチル-2-ピロリドン、N-メチルモルホリン-N-オキシドなどが挙げられ、これらを1種以上使用できる。また、溶媒への疎水性ポリマーや親水性ポリマーの溶解性を損なわない範囲で、疎水性ポリマーや親水性ポリマーの貧溶媒を混合して使用してもよい。製膜原液の温度は、特に制限はないが通常は20~40℃である。
 製膜原液中における疎水性ポリマーの濃度は、薄すぎても濃すぎても製膜時の安定性が低下し、好適な中空糸膜構造が形成され難くなる傾向にあるため、下限は10質量%が好ましく、15質量%がより好ましい。また、上限は30質量%が好ましく、25質量%がより好ましい。
 一方、親水性ポリマーの濃度の下限は、中空糸膜前駆体をより形成しやすいものとするために1質量%が好ましく、5質量%がより好ましい。親水性ポリマーの濃度の上限は、製膜原液の取扱性の点から20質量%が好ましく、12質量%がより好ましい。
 凝固液としては、水、アルコール類、グリセリン、エチレングリコール等を単独または混合して用いることができるし、水と疎水性ポリマーの良溶剤との混合液でもよい。凝固液の温度は、特に制限はないが通常は60~90℃である。
[分解工程]
 分解工程では、製膜工程で形成された中空糸膜前駆体に、酸化剤を含む薬液を接触させ、中空糸膜前駆体中に残存する親水性ポリマーを酸化剤の作用で分解する。分解工程は、気密性を備えた1つの分解容器内で行う。
 ここでは、加熱した薬液を中空糸膜前駆体に接触させる。好ましくは30℃以上120℃以下に加熱した薬液を中空糸膜前駆体に接触させることにより、薬液が中空糸膜前駆体へ速やかに浸透し、また、浸透した薬液中の酸化剤が直ちに中空糸膜前駆体中の親水性ポリマーに作用する。すなわち、中空糸膜前駆体への薬液の浸透と、薬液に含まれる酸化剤による親水性ポリマーの分解とをほぼ同時に進行させることができ、その結果、短時間で親水性ポリマーを分解することができる。より好ましくは、分解容器に、例えば常圧(1気圧)における飽和水蒸気などの高温の水蒸気を供給し、これにより、分解容器内の薬液を60℃以上100℃以下の範囲に加熱する。
 薬液を接触させる中空糸膜前駆体についても、予め加熱しておくことが好ましく、30℃以上120℃以下に加熱しておくことがより好ましい。さらには、常圧(1気圧)における飽和水蒸気などの高温の水蒸気を分解容器に供給し、これにより、分解容器内を走行する中空糸膜前駆体を60℃以上120℃以下に加熱しておくことがさらに好ましく、より好ましくは約100℃に加熱しておく。このように中空糸膜前駆体を分解容器内で予め加熱してから薬液に接触させることにより、中空糸膜前駆体中での薬液の浸透速度がより向上する。
 また、その場合には、中空糸膜前駆体を予め加熱した際に中空糸膜前駆体の表面に生成した凝縮水を、薬液に接触させる前に該表面から除去しておくことが好ましい。これにより、該凝縮水による薬液の希釈や膜への薬液浸透阻害を抑制できる。
 薬液との接触後には、薬液が接触し、酸化剤が浸透した後の中空糸膜前駆体を保温して、その温度を維持することが好ましい。その場合、中空糸膜前駆体の温度を薬液の温度と同じ温度に維持することが好ましく、具体的には30℃以上120℃以下、好ましくは60℃以上100℃以下の範囲に維持する。この範囲であれば、常圧(1気圧)における高温の飽和水蒸気などの水蒸気を分解容器内に供給することにより、薬液が接触した後の中空糸膜前駆体を分解容器内で保温可能である。この温度を超えて保温しようとすると、例えば熱風乾燥機を用いる必要が生じ、中空糸膜前駆体の湿潤状態が維持できなくなる可能性が生じたり、あるいは加圧蒸気を用いる必要が生じ、装置が大掛かりになったりする可能性がある。薬液が接触した後の中空糸膜前駆体を保温することにより、中空糸膜前駆体中に残存する親水性ポリマーの分解速度がさらに向上する。
 また、特に保温時には、分解容器内の温度を好ましくは60℃以上とするとともに、水蒸気の供給により相対湿度を90%以上に維持することが好ましい。これにより、中空糸膜前駆体に浸透した薬液中の水分の蒸発が抑制される。水分が蒸発すると、中空糸膜前駆体の温度が低下し、中空糸膜前駆体中に残存する親水性ポリマーの分解速度が遅くなる。よって、上述のように相対湿度を維持すると、中空糸膜前駆体中に残存する親水性ポリマーの分解速度の低下を抑制できる。
 薬液に使用する酸化剤としては、オゾン、過酸化水素、過マンガン酸塩、重クロム酸塩、過硫酸塩等を用いることもできるが、酸化力が強く分解性能に優れること、取扱い性に優れること、安価なこと等の点より、特に次亜塩素酸塩が好ましい。次亜塩素酸塩としては、次亜塩素酸ナトリウム、次亜塩素酸カルシウムなどが挙げられるが、特に次亜塩素酸ナトリウムが好ましい。薬液は、これらの酸化剤を水に溶解させることにより調製できる。
 また、薬液として次亜塩素酸ナトリウムが溶解した水溶液を用いる場合、該水溶液の次亜塩素酸ナトリウム濃度は、親水性ポリマーの分解に必要な次亜塩素酸ナトリウム量を確保し、かつ、次亜塩素酸ナトリウム使用量を極力抑える観点から、2000~120000mg/Lが好ましい。
 なお、後述のように、薬液を中空糸膜前駆体へ複数回接触させる場合には、少なくとも1回目の接触に使用される薬剤は、次亜塩素酸ナトリウムの濃度が2000~120000mg/Lであることが好ましい。
 分解工程は、例えば図1の分解装置10により好ましく行うことができる。
 図1の分解装置10は、1つの分解容器11と、分解容器11内を加熱する加熱手段として、高温の常圧の飽和水蒸気を分解容器11内に供給する水蒸気供給手段12と、中空糸膜前駆体30を分解容器11内で走行させる走行手段として、1本の導入ロール13および8本の走行ロール14a~14hと、分解容器11内を走行する中空糸膜前駆体30に対して薬液を接触させる薬液接触手段15とを有する。
 分解容器11は、側壁部と、該側壁部の上端を閉塞する天部(屋根)と、底部とを有して形成された気密性を備えた容器であり、底部には、2箇所のドレイン18a,18bが設けられている。
 分解容器11において、中空糸膜前駆体30が分解容器11に導入される入口と、中空糸膜前駆体30が分解容器11から導出される出口には、分解容器11内を外気から遮断しつつ、中空糸膜前駆体30の導入と導出とを可能とした水封部16,17がそれぞれ設けられ、分解容器11内は気密性を有している。
 また、この例の各水封部16,17は、それぞれ、水封部16,17内の液体(水)を置換する図示略の液体置換手段を有し、これにより、水封部16,17内の液体を新しい液体で置換できるようになっている。置換は、分解工程中、連続的に常時行われることが好適であるが、必要に応じて間欠的に行われてもよい。入口の水封部16に導入される中空糸膜前駆体30は、製膜工程に由来する親水性ポリマーを多く含んでいるため、入口の水封部16内の液体には、中空糸膜前駆体30の導入にともなって、次第に親水性ポリマーが濃縮されていく。その結果、分解容器11内に導入される中空糸膜前駆体30には、水封部16を通過することによって、水封部16の液体中の親水性ポリマーが逆に付着することがある。よって、入口の水封部16には液体置換手段を設けて、水封部16内の液体を適宜交換し、該液体中の親水性ポリマーの濃度を抑制することが好ましい。一方、分解工程を終えた中空糸膜前駆体30には、親水性ポリマーの分解物が付着している。そのため、出口の水封部17内の液体には、分解工程を終えた中空糸膜前駆体30が通過することにより、次第に親水性ポリマーの分解物が濃縮されていく。その結果、分解容器11内から導出される中空糸膜前駆体30には、水封部17を通過することによって、水封部17の液体中の親水性ポリマーの分解物が付着し、その後の洗浄工程に送られる中空糸膜前駆体30が汚染される可能性がある。よって、水封部17にも液体置換手段を設けて、水封部17内の液体を適宜交換し、該液体への親水性ポリマーの分解物の濃縮を抑制することが好ましい。
 なお、液体置換手段により水封部16,17に導入される新しい液体とは、使用履歴のない新しい水が好ましいが、例えば、水封部16,17から抜き出された液体を新しい水で希釈したものなどであってもよい。また、水封部16,17には、液体を新しい水で希釈しつつ循環供給してもよい。
 水蒸気供給手段(加熱手段)12は、分解容器11外に設けられた図示略の水蒸気供給源と、分解容器11内の上部に設けられ、水蒸気供給源からの高温の常圧の飽和水蒸気を分解容器11内に導入する配管12aとを備えている。配管12aは、図2に示すように、下流側で3系統に分岐し、分岐した各分岐部12bの側面(配管周面)には、飽和水蒸気を下方に向けて噴き出す複数の噴出口12cが分岐部12bの長手方向に沿って1列に形成されている。なお、水蒸気供給手段は、分解容器11内に水蒸気を供給できる形態であれば、この例に限定されない。
 走行手段は、分解容器11内における中空糸膜前駆体30の走行経路中、最も上流側に配置され、中空糸膜前駆体30を分解容器11内に導入する導入ロール13と、導入された中空糸膜前駆体30を下流側へと走行させる複数の走行ロール14a~14hとから構成されている。この例の走行ロール14a~14hは、上ロールおよび下ロールからなる合計4組の対ロールから構成されている。また、走行ロール14a~14hは、導入ロール13よりも軸方向の長さが大きく形成されている。これにより、詳しくは後述するが、導入ロール13により導入された中空糸膜前駆体30は、走行ロール14a~14hの図中手前側から後方側(すなわち、上流側から下流側。)に向けて複数回巻き付きながら、走行できるようになっている。
 これら走行ロール14a~14hのうち、上流側から1組目の対ロールの下ロール14aと、3組目の対ロールの下ロール14eとが、駆動機構を備えた駆動ロールであり、該駆動ロール以外の走行ロールは、駆動機構を備えていないフリーロールである。なお、以下、上流側からn組目の対ロールを第n対ロールという。
 このように走行ロール14a~14hのうちの一部が駆動ロールであると、中空糸膜前駆体30の膜の潰れを抑制できる。
 すなわち、全ての走行ロールが仮にフリーロールであると、フリーロールの回転抵抗が、フリーロールの数だけ中空糸膜前駆体に付与されて、中空糸膜前駆体の膜張力の増加につながる。一方、一部が駆動ロールであると、該駆動ロールにおいて、それよりも上流側のフリーロールの回転抵抗により中空糸膜前駆体に付与された膜張力を解消でき、それにより、膜張力に起因する中空糸膜前駆体の膜の潰れを抑制できる。
 走行ロール14a~14hは、図2に示すように、互いに平行に配置されている。そして、水蒸気供給手段12の各分岐部12bは、第1対ロールと第2対ロール間、第2対ロールと第3対ロール間、第3対ロールと第4対ロール間の各ロール間の上方において、各走行ロール14a~14hと平行になるように配置されている。
 薬液接触手段15は、この例では、薬液が投入された第1薬液槽15aおよび第2薬液槽15bを備え、第1対ロールの下ロール14aの下方と、第3対ロールの下ロール14eの下方との2箇所(複数箇所)にそれぞれ設けられている。そして、下ロール14aの下部と、下ロール14eの下部とが、それぞれ第1薬液槽15aと第2薬液槽15bとに浸漬配置されている。これにより、中空糸膜前駆体30が各薬液槽15a,15b中を走行し、その結果、中空糸膜前駆体30に薬液が接触しピックアップされるようになっている。
 なお、図2においては、配管12aやその分岐部12bと、導入ロール13および走行ロール14a~14hと、薬液槽15a,15bとの位置関係を理解しやすくするために、これら以外の図示を略している。
 各薬液槽15a,15bは、いわゆるカスケード式であって、下ロール14a、14eの軸方向に沿って、槽内が1つ以上の立板により図示略の複数のゾーンに分割され、図中手前側のゾーンからオーバーフローした薬液が、図中後方側のゾーンへと順次供給されるようになっている。詳しくは後述するが、この例では、図中手前側のゾーンが、走行する中空糸膜前駆体30の上流側に相当し、図中後方側のゾーンが、走行する中空糸膜前駆体30の下流側に相当する。また、第1薬液槽15aにおけるゾーンの数はkで、第2薬液槽15bにおけるゾーンの数はkとされている(k,kはいずれも2以上の整数。)。
 また、各薬液槽15a,15bのうち、最も上流側のゾーンには、分解容器11外に設けられた薬液供給源15c,15dから薬液がそれぞれ連続的に供給され、各薬液槽15a,15bのうち、最も下流側のゾーンからは、薬液がそれぞれ連続的に排出されるようになっている。
 薬液槽15a,15bからの排出液は、分解容器11の底部を流れ、飽和水蒸気の凝縮水とともにドレイン18a,18bから排出される。
 なお、図中符号20は、分解容器11の底部に立設された仕切板であり、この仕切板20が設けられていることにより、第1薬液槽15aからの薬液はドレイン18aから、第2薬液槽15bからの薬液はドレイン18bから排出可能となっている。
 図1の分解装置10による分解工程では、まず、水蒸気供給手段12により分解容器11内に高温の常圧の飽和水蒸気を連続的に供給し、分解容器11内を飽和水蒸気で満たして加熱する。ここで分解容器11内の温度は、理想的には、常圧の飽和水蒸気温度である約100℃であるが、それよりも低温であってもよい。一方、分解容器11内に配置された各薬液槽15a,15bには、供給ポンプ19a,19bにより、薬液供給源15c,15dから薬液を供給する。ここで、分解容器11外における、供給ポンプ19aと第1薬液槽15aの間、および、供給ポンプ19bと第2薬液槽15bの間には、図示略のヒータを設けて、薬液を分解容器11外で加熱してから、各薬液槽15a,15bに供給するようにしてもよい。
 ついで、各薬液槽15a,15b内の薬液が定常温度になってから、導入ロール13により、水封部16を経た中空糸膜前駆体30を分解容器11内に導入する。中空糸膜前駆体30の分解容器11内における走行速度は、例えば4~50m/minが好ましい。
 分解容器11内に導入された中空糸膜前駆体30は、分解容器11内を満たす飽和水蒸気により加熱される。そして、図3に示すように、第1対ロールにおいて、その上ロール14bおよび下ロール14aに、図3中手前側から図3中後方側へと複数回(k回)巻き付きつつ、第2対ロールの上ロール14dへと進行する。
 ここで第1対ロールの下ロール14aには、図3では図示略の第1薬液槽が配置されているため、中空糸膜前駆体30が第1対ロールの下ロール14aを複数回(k回)通過する毎に、中空糸膜前駆体30には飽和水蒸気により加熱された薬液が付着し、浸透する。また、この例では、中空糸膜前駆体30が薬液に接触する回数と、第1薬液槽において図示略の立板で区切られたゾーンの数とは、いずれも同じkとされている。そのため、中空糸膜前駆体30は、第1対ロールの下ロール14aを1回目に通過する際には、第1薬液槽のゾーンのうち、最も上流側のゾーンの薬液に接触し、2回目に通過する際には、第1薬液槽のゾーンのうち、2番目に上流側のゾーンの薬液に接触する。このように中空糸膜前駆体30は、下ロール14aを通過する毎に、より下流側のゾーンの薬液に接触していく。図3において、実線の矢印は、中空糸膜前駆体30の走行経路を説明するもので、破線の矢印は、各ロールの回転方向を示すものである。
 そして、上述のとおり、この例の第1薬液槽は、カスケード式であり、上流側のゾーンからオーバーフローした薬液は、下流側のゾーンへと順次供給されるようになっている。
 より上流側のゾーンでは、親水性ポリマーがより多く残存している中空糸膜前駆体30が薬液に接触し、その際、中空糸膜前駆体30からは、親水性ポリマーの一部が該ゾーン内の薬液中に移行し、移行した親水性ポリマーの分解が該ゾーンの薬液中で進行する。その結果、該ゾーン中の薬液の酸化剤は、移行してきた親水性ポリマーの分解に消費され、その濃度は低下する。そして、カスケード式である第1薬液槽では、このように酸化剤の濃度が低下した薬液がそれもより下流側のゾーンに供給される。
 このように第1薬液槽においては、中空糸膜前駆体30に薬液をk回接触させる際において、1回目の接触時からk回目の接触時にかけて、使用する薬液中の酸化剤の濃度が徐々に低下するようになっている。
 下流側のゾーンの薬液と接触する中空糸膜前駆体30は、上流側において親水性ポリマーの一部がすでに分解されたものであるため、親水性ポリマーの残存量が低く、高濃度で酸化剤を含む薬液を使用する必要はない。
 よって、このようにカスケード式の第1の薬液槽を採用し、1回目の接触時からk回目の接触時にかけて、使用する薬液中の酸化剤の濃度を低下させることによって、酸化剤を無駄なく使用でき、その使用量を削減できる。
 なお、「1回目の接触時からk回目の接触時にかけて、使用する薬液中の酸化剤の濃度を低下させる」形態には、酸化剤濃度が下流側のゾーンにいくにつれて連続的に低下する形態とともに、段階的に低下する形態も含まれる。段階的に低下する形態とは、例えば、全ゾーンのうちの一部の複数のゾーンにわたっては、酸化剤の濃度が低下せずに一定である形態である。
 また、第1薬液槽におけるゾーンの数は、この例では、中空糸膜前駆体30が第1薬液槽内の薬液に接触する回数と同じkとされ、1つのゾーンにおいて1回ずつ接触が行われる態様となっているが、第1薬液槽におけるゾーンの数をk未満として、1つのゾーンの薬液に中空糸膜前駆体30が複数回接触する態様であってもよい。
 また、このように酸化剤の濃度を低下させる形態として、ここではカスケード式の薬液槽を例示して説明したが、酸化剤の濃度を低下させ得る限り、カスケード式の薬液槽を採用する形態に限定されない。
 なお、このように薬液を中空糸膜前駆体へ複数回接触させる場合、使用される薬液は、酸化剤として次亜塩素酸ナトリウムを含む水溶液であり、少なくとも1回目の接触に使用される薬剤は、次亜塩素酸ナトリウムの濃度が2000~120000mg/Lであることが好ましい。
 また、導入ロール13により分解容器11内に導入された中空糸膜前駆体30は、分解容器11内を満たす飽和水蒸気により加熱された際に、上述したように、その表面には凝縮水が生成する。そこで、分解容器11には、薬液が接触する前の中空糸膜前駆体30に対して蒸気などの流体(気体)を吹き付ける図示略の吹付け手段を設けて、流体(気体)により凝縮水を除去することが好ましい。凝縮水を除去するその他の方法としては、例えば、導入ロール13と上ロール14bとの間に図示略の除去用ロールを別途設けて、この除去用ロールの表面上を中空糸膜前駆体が通過する際の遠心力により凝縮水を除去できるようにしてもよい。あるいは、導入ロール13や上ロール14b上を中空糸膜前駆体30が通過する際の遠心力などにより、薬液の接触前に凝縮水が自ずと中空糸膜前駆体30から除去されるような場合には、敢えて吹付け手段や除去用ロールを設けなくてもよい。
 分解容器11、ロール14a~14h、第1および第2薬液槽15a,15b、ドレイン18a,18b、水蒸気供給手段12の素材は、耐酸化剤性と耐熱性を有したものであれば、特に限定されないが、例えば、チタン、ポリテトラフルオロエチレン、PEEK、セラミックなどを例示することができる。また、特殊な素材形態としては、ステンレスやアルミニウムなどの耐酸化材性の乏しい素材に、上記に例示した素材で、分解容器11に対しては内面をライニングしたもの、ロール14a~14hに対しては外面をコーティングしたもの、なども例示することができる。
 なお、走行ロール14a~14hは、表面が平滑でもよいが、平滑な場合には、中空糸膜前駆体30の走行する糸道がロールの表面上でずれて弛み、中空糸膜前駆体30が絡み合うおそれが生じる。そのため、これら走行ロール14a~14hの表面には、中空糸膜前駆体の走行を規制する規制溝が形成されていることが好ましい。また、図4に示すように、走行ロール14aの表面近傍には、その軸方向に沿うガイドバー40,40を、例えば走行ロール14aを挟んで対向する位置に2本取り付け、それにより、中空糸膜前駆体30が弛んで走行ロール14aから外れて絡まらないようにしてよい。図中、符号41は走行ロール14aの軸、符号42は軸41が固定される固定部であって、この例では、該固定部42にガイドバー40,40が固定されている。
 なお、図4では、ガイドバー40,40を走行ロール14aに取り付ける形態を例示したが、必要に応じて、走行ロール14a~14hのうちの少なくとも1つに設けることができる。また、規制溝も、必要に応じて、走行ロール14a~14hのうちの少なくとも1つに設けることができる。ガイドバーと規制溝は、1つの走行ロールに対して併用してもよい。
 また、薬液槽15a,15b内が立板により複数のゾーンに区切られている場合、薬液槽15a,15bに対応して設置された走行ロール14a,14eの表面には、該表面と立板とが接触しないように、立板に対応する位置に溝を形成することが好ましい。また、走行ロール14a,14eそれぞれを、薬液槽15a,15bのゾーン毎に対応する独立したロールにより構成することがさらに好ましい。
 ついで中空糸膜前駆体30は、第2対ロールにおいて、上ロール14dおよび下ロール14cに複数回巻き付きつつ、第1対ロールの場合とは逆に図中後方側から図中手前側へと進行した後、第3対ロールの上ロール14fへと進行する。
 第3対ロールでは、中空糸膜前駆体30は、第1対ロールの場合と同様に、上ロール14fおよび下ロール14eに図中手前側から図中後方側へ複数回(k回)巻き付き、進行する。
 ここで第3対ロールの下ロール14eには、図3では図示略の第2薬液槽が配置されているため、中空糸膜前駆体30が第3対ロールの下ロール14eを通過する毎に、中空糸膜前駆体30には飽和水蒸気により加熱された薬液が接触し、中空糸膜前駆体30中に浸透する。そして、第2薬液槽も、中空糸膜前駆体30が下ロール14eに巻きついて第2薬液槽中の薬液に接触する回数と同じkのゾーンに図示略の立板で分割されているとともに、酸化剤の濃度が低下した薬液が、槽内の上流側のゾーンから下流側のゾーンに順次供給されるカスケード式である。そして、中空糸膜前駆体30は、第3対ロールの下ロール14eを1回目に通過する際には、第2薬液槽のゾーンのうち、最も上流側のゾーンの薬液に接触し、2回目に通過する際には、第2薬液槽のゾーンのうち、2番目に上流側のゾーンの薬液に接触する。このように第2薬液槽においても、中空糸膜前駆体30は、下ロール14eを通過する毎に、より下流側のゾーンの薬液に接触していく。
 よって、第2薬液槽においても、中空糸膜前駆体30に薬液をk回接触させる際において、1回目の接触時からk回目の接触時にかけて、使用する薬液中の酸化剤の濃度は徐々に低下するようになっている。
 なお、第2薬液槽が採り得る態様は、第1薬液槽と同様である。
 また、第1薬液槽と第2薬液槽とのそれぞれにおいて、薬液中の酸化剤の濃度が上流側から下流側に向けて低下している場合、第1薬液槽におけるk回目の接触時の薬液よりも、第2薬液槽における1回目の接触時の薬液の方が、酸化剤の濃度が低くなるように設定されていてもよいし、設定されていなくてもよい。すなわち、薬液への全k(=k+k)回の接触において、1回目の接触時からk回目の接触時にかけて、使用する薬液中の酸化剤の濃度が必ずしも徐々に低下していなくてもよい。
 ついで中空糸膜前駆体30は、第3対ロールの上ロール14fから第4対ロールの下ロール14gへと進み、第4対ロールにおいて、その上ロール14hおよび下ロール14gに複数回巻き付きつつ、図中後方側から図中手前側へと進行した後、第4対ロールの下ロール14gを経て分解容器11外へと導出される。
 このように分解容器11内では、中空糸膜前駆体30はまず飽和水蒸気により加熱される。その後、加熱した中空糸膜前駆体30には、第1薬液槽15aにおいて加熱された薬液が接触する。中空糸膜前駆体30に接触した薬液は中空糸膜前駆体30に直ちに浸透する。また、薬液が接触、浸透した中空糸膜前駆体30は、分解容器11内を走行することにより飽和水蒸気で保温されるため、接触、浸透した薬液による親水性ポリマーの分解も、薬液の浸透とともにほぼ同時に開始、進行する。
 第1対ロールにおいては、このような薬液の接触、浸透と、親水性ポリマーの分解とが複数回交互に繰り返される。第2対ロールでは、中空糸膜前駆体30が保温され、親水性ポリマーの分解が進行する。ついで、第3対ロールにおいては、第1対ロールの場合と同様に、薬液の接触、浸透と、親水性ポリマーの分解とが複数回交互に繰り返され、第4対ロールでは、中空糸膜前駆体30が保温され、親水性ポリマーの分解が進行する。
 第1薬液槽15aおよび第2薬液槽15bにおける中空糸膜前駆体30の滞在時間には、特に制限はないが、薬液が中空糸膜前駆体30に充分に接触し、第1対ロール上および第3対ロール上に位置する中空糸膜前駆体30が常に薬液を保持した状態となる滞在時間を設定する。
 また、カスケード式である第1薬液槽15aおよび第2薬液槽15b内での酸化剤の濃度勾配や流量は特に制限されず、中空糸膜前駆体30中の親水性ポリマーの残存状態や、酸化剤の使用効率の観点から適宜設定すればよい。
 以上説明したように、このような分解装置10を用いた分解工程によれば、加熱した薬液を中空糸膜前駆体30に接触、付着させるため、中空糸膜前駆体30への薬液の浸透と、薬液に含まれる酸化剤による親水性ポリマーの分解とをほぼ同時に進行させることができ、その結果、短時間で親水性ポリマーを分解できる。
 また、この例の分解装置10は、分解容器11と、分解容器11内を加熱する加熱手段と、中空糸膜前駆体30を分解容器11内で走行させる走行手段と、分解容器11内を走行する中空糸膜前駆体30に、薬液を接触させる薬液接触手段15とを有するため、分解容器11内において、薬液の加熱と、加熱した薬液の中空糸膜前駆体30への接触と、中空糸膜前駆体30に含まれる親水性ポリマーの保温、分解とを行うことができ、分解工程を行う設備をコンパクトにし、設備設置の省スペース化を実現できる。仮に、薬液の接触、中空糸膜前駆体の保温を1つの分解容器内ではなく、別々の容器でそれぞれ行う構成にすると、設備が大型化する。
 また、この分解装置10では、1つの分解容器11内で、薬液を加熱するだけでなく、薬液の接触前の中空糸膜前駆体30を予め加熱し、かつ、薬液が接触した後の中空糸膜前駆体30を高温に保温することもできるため、中空糸膜前駆体30への薬液の浸透速度をより向上させ、かつ、中空糸膜前駆体30に残存する親水性ポリマーの分解速度をより高めることができる。仮に、薬液の接触、中空糸膜前駆体の保温をそれぞれ別々の容器で行うと、各容器間で中空糸膜前駆体が冷却され、親水性ポリマーの分解速度が低くなるおそれがある。
 さらに、この例では、加熱手段として、分解容器11内に高温の常圧の飽和水蒸気を供給する水蒸気供給手段12を採用しているため、薬液、薬液接触前後の中空糸膜前駆体30、分解容器11内の気相の各温度を容易に、飽和水蒸気温度に基く同一温度に維持でき、加熱効率に優れる。加熱手段としては、分解容器11内を加熱できるものであれば、水蒸気供給手段12に限定されないが、分解容器11内を常圧の飽和水蒸気で満たすことにより、中空糸膜前駆体30の乾燥を防止でき、効果的に親水性ポリマーを分解できる点で、水蒸気供給手段12が好ましい。
 また、薬液接触手段15として、第1薬液槽15aおよび第2薬液槽15bを設置し、各薬液槽15a,15b中を中空糸膜前駆体30が複数回走行するようにして、薬液の中空糸膜前駆体30への接触と、薬液が接触した後の中空糸膜前駆体30の保温とがそれぞれ複数回、交互に繰り返されるようにしているため、中空糸膜前駆体30に接触して付着した薬液中の酸化剤が、親水性ポリマーの分解のためにすべて消費される前に、薬液を再度中空糸膜前駆体30に追加付着させることができ、分解が効率的に進行する。
 なお、薬液接触手段としては、分解容器11内を走行する中空糸膜前駆体30に薬液をスプレーするスプレー手段を採用し、分解容器11内を走行する中空糸膜前駆体30に薬液を噴霧して付着させるようにしてもよい。スプレー手段としては、薬液供給源15c,15dと配管により接続され、薬液供給源15c,15dからの薬液を噴霧する噴霧部を備えたものを採用できる。
 また、このように噴霧部を備えたスプレー手段などの薬液接触手段と薬液供給源15c,15dとを接続する配管のうち、分解容器11内に導入されている部分の少なくとも一部に、薬液と分解容器11内の気体との熱交換により薬液が加熱される図示略の熱交換部を設けてもよい。具体的には、例えばポリテトラフルオロエチレンなどからなる表面積(伝熱面積)の大きなコイルチューブ配管などで熱交換部を構成することが好適である。これにより、薬液供給源15c,15dからの薬液が中空糸膜前駆体30に噴霧される前に、表面積の大きなコイルチューブ配管内を流れることで効率的に加熱される。なお、熱交換部は、コイルチューブから構成されるコイルチューブ式の他、プレート式、多管式などでもよい。
 なお、薬液接触手段としては、異なる形態の手段を併用して、分解容器内のある箇所ではスプレー手段を採用し、他の箇所では薬液槽を採用した形態などであってもよい。
 また、中空糸膜前駆体の走行経路の複数箇所にスプレー手段を設置することにより、薬液の中空糸膜前駆体への接触と、薬液が接触した後の中空糸膜前駆体の保温とがそれぞれ複数回、交互に繰り返されるようにすることもできる。
 スプレー手段の設置箇所には特に制限はないが、上ロール14b上を通過する中空糸膜前駆体30に薬液が噴霧されるような位置への設置が好ましい。これにより、噴霧された薬液の大部分が中空糸膜前駆体30に接触し、薬液を無駄にすることなく効率的な接触を行える。
 また、より効率的に薬液を中空糸膜前駆体30に接触させるために、薬液を中空糸膜前駆体30上に滴下する方法を採用することもできる。
 また、薬液接触手段には、中空糸膜前駆体が通過する通過路と、中空糸膜前駆体の通過方向と交差する角度(例えば90度。)で設けられた薬液供給路とを備えたガイド型の薬液付与手段を用い、通過路を通過する中空糸膜前駆体の周面側に薬液を付着させる形態も採用できる。このような薬液付与手段としては、例えば、市販されているオイリングガイド(湯浅糸道工業(株)製)などを転用することもできる。
 なお、分解容器11の形状としては、図示例では、側壁部の上端を閉塞する天部(屋根)が平坦である形状を例示したが、天部は、頂部と頂部から下方に傾斜する傾斜部とを有する形状であることも好ましい。天部がこのような形状であると、天部に付着した水蒸気の凝縮水は、傾斜部を経て側壁部を流下し、薬液槽15a,15b内の薬液や中空糸膜前駆体30に滴り落ちることが防止される。そのため、凝縮水による薬液の希釈や膜への薬液浸透阻害を抑制できる。
[洗浄工程]
 分解工程後には、中空糸膜前駆体を洗浄液に浸漬して洗浄する洗浄工程を行うことが好ましい。洗浄工程で使用する洗浄液としては、清澄で、親水性ポリマーの分解物が分散または溶解する液体であれば特に限定されるものではないが、洗浄効果が高いことから水が好ましい。使用する水としては、水道水、工業用水、河川水、井戸水等が挙げられ、これらにアルコール、無機塩類、酸化剤、界面活性剤等を混合して使用してもよい。また、洗浄液としては、疎水性ポリマーの良溶媒と水との混合液を用いることもできる。
 洗浄温度は、親水性ポリマーの溶液の粘度を低く抑えて、拡散移動速度の低下を防ぐため、高い方が好適であり、50℃以上が好ましく、より好ましくは80℃以上である。さらに、洗浄液を沸騰させながら洗浄を行うと、沸騰によるバブリングによって中空糸膜前駆体の外表面に付着した親水性ポリマーや汚れを掻き取ることもできるため、効率のよい洗浄が可能となる。このような洗浄工程により、中空糸膜が得られる。
[乾燥工程]
 洗浄工程後には、中空糸膜を乾燥する乾燥工程を行う。乾燥工程の方法としては特に制限はなく、中空糸膜を熱風乾燥機などの乾燥装置に導入する方法で行えばよい。
[その他]
 製膜工程と分解工程との間には、製膜工程で得られた中空糸膜前駆体を洗浄液に浸漬して洗浄する予備洗浄工程を行ってもよい。洗浄液としては、洗浄工程で例示したもののなかから選択できる。
 また、以上の説明においては、多孔質膜として中空糸膜を例示して、その製造方法および製造装置を説明したが、多孔質膜は中空糸膜に限定されず、例えば、平膜、管型膜なども例示することができる。
 以下、実施例を挙げて本発明を具体的に説明する。
<実施例>
[製膜工程]
 表1に示す質量比となるように、ポリフッ化ビニリデンA(アトフィナジャパン製、商品名カイナー301F)、ポリフッ化ビニリデンB(アトフィナジャパン製、商品名カイナー9000LD)、ポリビニルピロリドン(ISP社製、商品名K-90)、N,N-ジメチルアセトアミドをそれぞれ混合して、製膜原液(1)および製膜原液(2)を調製した。以下、ポリフッ化ビニリデンをPVDF、ポリビニルピロリドンをPVPという場合がある。
 ついで、中心に中空部が形成され、その外側に、2種の液を順次塗布できるように環状の吐出口が二重に順次形成されたノズル(特開2005-42074号公報の図1参照。)を用意し、これを30℃に保温した状態で、中空部には多孔質基材としてポリエステル製マルチフィラメント単繊組紐(マルチフィラメント;420T/180F)を導入するとともに、その外周に製膜原液(2)、製膜原液(1)を内側から順次塗布し、80℃に保温した凝固液(N,N-ジメチルアセトアミド5質量部と水95質量部との混合液)中で凝固させた。このようにして、外表面近傍に分画層を1層有し、内部に向かって孔径が増大する傾斜構造の多孔質層が組紐にコーティングされた中空糸膜前駆体を得た。なお、塗布された製膜原液(1)および(2)のうち、中空糸膜の膜構造を形成する主原液は、外側に塗布された製膜原液(1)である。
 さらに、この中空糸膜前駆体の外径よりも大きい内径の中空部が中心に形成され、その外側に、2種の液を順次塗布できるように環状の吐出口が二重に順次形成されたノズル(特開2005-42074号公報の図1参照。)を用意し、これを30℃に保温した状態で、中空部には上述のようにして得られた中空糸膜前駆体を導入するとともに、その外周にグリセリン(和光純薬工業製一級)、製膜原液(1)を内側から順次塗布し、先に使用したものと同じ80℃に保温された凝固液中で凝固させた。このようにしてさらに多孔質層がコーティングされた2層構造で組紐支持体を有する中空糸膜前駆体を得た。
 さらに、該中空糸膜前駆体を100℃の水で5分間予備洗浄した。
 このときの紡糸速度(中空糸膜前駆体の走行速度)は20m/minとした。
Figure JPOXMLDOC01-appb-T000001
 [分解工程]
 図1に示す分解装置10に、こうして得られた中空糸膜前駆体30を連続的に導入して、常圧の飽和水蒸気による加熱下で分解工程を行った。分解工程の条件は以下の通りである。
 中空糸膜前駆体30の分解容器11における走行速度は20m/minであり、第1対ロール、第2対ロール、第3対ロール、第4対ロールの各対ロール上を中空糸膜前駆体30が通過するのには、それぞれ66秒間を要した。また、第1薬液槽15aおよび第2薬液槽15bそれぞれにおいて、中空糸膜前駆体30は次亜塩素酸ナトリウム(酸化剤)水溶液を10回ピックアップする条件とした。
 第1薬液槽15aおよび第2薬液槽15bそれぞれに供給する次亜塩素酸ナトリウム水溶液は、濃度:120000mg/L、供給量:50ml/minとし、各槽15a、15bに供給された次亜塩素酸ナトリウム水溶液は、直ちに100℃に加熱された。
[洗浄工程および乾燥工程]
 特開2008-161755号公報の実施例4に記載された減圧工程-洗浄液供給工程-減圧工程により構成された洗浄工程により、中空糸膜前駆体30の中に残存している洗浄可能な親水性ポリマーを洗浄除去し、中空糸膜を得た。
 ついで、中空糸膜を熱風乾燥機に導入して乾燥した。
 本実施例において、中空糸膜前駆体の分解容器中の滞在時間は270秒であった。
 また、本実施例により得られた中空糸膜について、親水性ポリマーであるPVPの濃度を測定したところ、1.2%であり、中空糸膜が充分な膜通水能を発揮するとされる、PVP濃度2%以下という条件を満たしていた。
 なお、中空糸膜に残存している親水性ポリマーの量は、赤外分光光度計により中空糸膜の吸光度スペクトルを得て、この吸収スペクトルにおける疎水性ポリマーの吸収強度と親水性ポリマーの吸収強度とを比較することにより把握できる。疎水性ポリマーとしてPVDF、親水性ポリマーとしてPVPを使用して中空糸膜を製造した場合には、PVPのカルボニル基伸縮振動(1700cm-1)による吸収強度と、PVDFのC-H伸縮振動(1400cm-1)による吸収強度を求める。そして、PVDFのC-H伸縮振動による吸収強度を100%とした際に、PVPのカルボニル基伸縮振動の吸収強度が何%に相当するかをこれら吸収強度の比から求め、この値(%)を残存している親水性ポリマーの量とする。
<比較例>
 実施例と同様の製膜工程により、中空糸膜前駆体を形成した。
 ついで、中空糸膜前駆体を実施例と同じ次亜塩素酸ナトリウム濃度の30℃(非加熱)の薬液が投入された浸漬槽に80秒間浸漬して中空糸膜前駆体に薬液を接触させ、保持させた。ついで、薬液を保持した中空糸膜前駆体を分解容器に導入し、常圧の水蒸気雰囲気にて80秒間保持した。その後、実施例1と同様の洗浄工程を行った。
 さらに、前記と同様に中空糸膜前駆体を浸漬槽に80秒間浸漬して、分解容器に80秒間保持した。さらに、実施例1と同様の洗浄工程を行って中空糸膜を得た。薬液への浸漬時間と分解容器での保持時間は、合わせて320秒間であった。
 ついで、中空糸膜を熱風乾燥機に導入して乾燥した。
 このようにして得られた中空糸膜について、実施例と同様にPVPの濃度を測定したところ、2.5%であって、中空糸膜が充分な膜通水能を発揮するとされる2%以下の条件を満たしていなかった。この結果から、比較例の方法では、実施例より長時間を要しても、製膜工程後の中空糸膜前駆体に残存する親水性ポリマーを充分には分解できないことが明らかとなった。また、中空糸膜前駆体に薬液を保持させる浸漬槽と、中空糸膜前駆体を高温に保持する分解容器とは、それぞれ独立した槽であるため、これらの設置には大きなスペースを要した。
10 分解装置
11 分解容器
12 水蒸気供給手段
15 薬液接触手段
30 中空糸膜前駆体

Claims (22)

  1.  親水性ポリマーと疎水性ポリマーとを含む製膜原液の凝固により形成された多孔質膜前駆体を分解容器に導入し、該分解容器内で、前記多孔質膜前駆体に酸化剤を含む加熱した薬液を接触させ、前記薬液が接触した前記多孔質膜前駆体を保温し、前記酸化剤により前記多孔質膜前駆体中に残存する前記親水性ポリマーを分解する分解工程を有する、多孔質膜の製造方法。
  2.  前記薬液を接触させる前記多孔質膜前駆体を予め加熱する、請求項1に記載の多孔質膜の製造方法。
  3.  前記分解工程では、前記分解容器内で、前記薬液の前記多孔質膜前駆体への接触と、前記薬液が接触した後の前記多孔質膜前駆体の保温とをそれぞれ複数回行う、請求項1または2に記載の多孔質膜の製造方法。
  4.  前記薬液は前記酸化剤として次亜塩素酸ナトリウムを含む水溶液であり、前記薬液を前記多孔質膜前駆体へ複数回接触させる際に、1回目に使用される前記薬液中の前記次亜塩素酸ナトリウムの濃度は、2000~120000mg/Lである、請求項3に記載の多孔質膜の製造方法。
  5.  前記分解容器内は、温度が60℃以上、相対湿度が90%以上である、請求項1~4のいずれか一項に記載の多孔質膜の製造方法。
  6.  前記分解容器には、水蒸気が供給される、請求項1~5のいずれか一項に記載の多孔質膜の製造方法。
  7.  前記多孔質膜前駆体を前記薬液中に導入することにより、前記薬液を前記多孔質膜前駆体に接触させる、請求項1~6のいずれか一項に記載の多孔質膜の製造方法。
  8.  前記多孔質膜前駆体に前記薬液をスプレーすることにより、前記薬液を前記多孔質膜前駆体に接触させる、請求項1~7のいずれか一項に記載の多孔質膜の製造方法。
  9.  親水性ポリマーと疎水性ポリマーとを含む製膜原液の凝固により形成された多孔質膜前駆体に残存する前記親水性ポリマーを分解する分解装置を有する多孔質膜の製造装置であって、
     前記分解装置は、前記多孔質膜前駆体に酸化剤を含む加熱した薬液を接触させ、前記薬液が接触した前記多孔質膜前駆体を保温し、前記酸化剤により前記多孔質膜前駆体中に残存する前記親水性ポリマーを分解する分解容器を有する、多孔質膜の製造装置。
  10.  前記分解装置は、
     前記分解容器内を加熱する加熱手段と、
     前記多孔質膜前駆体を前記分解容器内で走行させる走行手段と、
     前記分解容器内を走行する前記多孔質膜前駆体に、前記薬液を接触させる薬液接触手段と、をさらに有する、請求項9に記載の多孔質膜の製造装置。
  11.  前記薬液接触手段は、前記分解容器内の複数箇所に設けられている、請求項10に記載の多孔質膜の製造装置。
  12.  前記加熱手段は、前記分解容器内に水蒸気を供給する水蒸気供給手段である、請求項10または11に記載の多孔質膜の製造装置。
  13.  前記薬液接触手段は、前記薬液が投入され、該薬液中を前記多孔質膜前駆体が走行する薬液槽を備える、請求項10~12のいずれか一項に記載の多孔質膜の製造装置。
  14.  前記薬液槽は、槽内が複数のゾーンに分割され、上流側のゾーンからオーバーフローした薬液が、下流側のゾーンへと順次供給されるカスケード式である請求項13に記載の多孔質膜の製造装置。
  15.  前記薬液接触手段は、前記多孔質膜前駆体に前記薬液をスプレーするスプレー手段を備える、請求項10~14のいずれか一項に記載の多孔質膜の製造装置。
  16.  前記分解容器内に、前記薬液と前記分解容器内の気体との熱交換により前記薬液が加熱される熱交換部を有する、請求項10~15のいずれか一項に記載の多孔質膜の製造装置。
  17.  前記走行手段は、複数の走行ロールを備え、該走行ロールのうちの一部が駆動ロールである、請求項10~16のいずれか一項に記載の多孔質膜の製造装置。
  18.  前記走行手段は、複数の走行ロールを備え、該走行ロールのうちの少なくとも1つには、前記多孔質膜前駆体が前記走行ロールから外れることを防止するガイドバーが取り付けられている、請求項10~17のいずれか一項に記載の多孔質膜の製造装置。
  19.  前記走行手段は、複数の走行ロールを備え、該走行ロールのうちの少なくとも1つには、前記多孔質膜前駆体の走行を規制する規制溝が表面に形成されている、請求項10~18のいずれか一項に記載の多孔質膜の製造装置。
  20.  前記分解容器には、前記多孔質膜前駆体が前記分解容器に導入される入口と、前記分解容器から導出される出口とが形成され、
     前記入口と前記出口には、前記分解容器内を外気と遮断しつつ、前記多孔質膜前駆体の導入と導出とが可能な水封部がそれぞれ設けられている、請求項9~19のいずれか一項に記載の多孔質膜の製造装置。
  21.  前記水封部は、該水封部内の液体を置換する液体置換手段を有する、請求項20に記載の多孔質膜の製造装置。
  22.  前記分解容器は、側壁部と該側壁部の上端を閉塞する天部とを有して形成され、
     前記天部は、頂部と該頂部から下方に傾斜する傾斜部とを有する、請求項9~21のいずれか一項に記載の多孔質膜の製造装置。
PCT/JP2012/069878 2011-08-03 2012-08-03 多孔質膜の製造方法および製造装置 WO2013018900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147005000A KR101580750B1 (ko) 2011-08-03 2012-08-03 다공질막의 제조 방법 및 제조 장치
US14/236,287 US9539547B2 (en) 2011-08-03 2012-08-03 Porous film manufacturing method and apparatus
CN201280037926.7A CN103717295B (zh) 2011-08-03 2012-08-03 多孔质膜的制造方法及制造装置
US14/922,265 US20160038883A1 (en) 2011-08-03 2015-10-26 Porous film manufacturing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-170064 2011-08-03
JP2011170064 2011-08-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/236,287 A-371-Of-International US9539547B2 (en) 2011-08-03 2012-08-03 Porous film manufacturing method and apparatus
US14/922,265 Division US20160038883A1 (en) 2011-08-03 2015-10-26 Porous film manufacturing method and apparatus

Publications (1)

Publication Number Publication Date
WO2013018900A1 true WO2013018900A1 (ja) 2013-02-07

Family

ID=47629413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069878 WO2013018900A1 (ja) 2011-08-03 2012-08-03 多孔質膜の製造方法および製造装置

Country Status (4)

Country Link
US (2) US9539547B2 (ja)
JP (1) JP5617930B2 (ja)
KR (1) KR101580750B1 (ja)
WO (1) WO2013018900A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070087C (zh) * 1995-10-11 2001-08-29 彭斯干 工业烟气海水洗脱净化工艺方法及其装置
US10407800B2 (en) * 2014-10-18 2019-09-10 Oerlikon Textile Gmbh & Co. Kg Method and device for producing a multifilament thread from a polyamide melt
US9872399B1 (en) * 2016-07-22 2018-01-16 International Business Machines Corporation Implementing backdrilling elimination utilizing anti-electroplate coating
CN107570019A (zh) * 2017-10-16 2018-01-12 苏州富淼膜科技有限公司 一种增强型中空纤维膜及其生产方法
DE102019126317B4 (de) * 2019-09-30 2021-12-30 Qcoat Gmbh Vorrichtung zum Spülen oder Imprägnieren einer Filtermembranbahn
DE102019126315B4 (de) * 2019-09-30 2022-02-24 Qcoat Gmbh Vorrichtung zum Spülen oder Imprägnieren einer Membranfaser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196029B2 (ja) * 1989-04-28 2001-08-06 エツクス―フロウ ベー.フアー 微細孔膜の作成法
JP2002119833A (ja) * 2000-10-16 2002-04-23 Nok Corp 乾湿式紡糸法多孔質中空糸膜の洗浄方法
JP2005042074A (ja) * 2002-08-15 2005-02-17 Mitsubishi Rayon Co Ltd 多孔質膜の製造方法
JP2011200799A (ja) * 2010-03-25 2011-10-13 Asahi Kasei Chemicals Corp 多孔質膜の製造方法及び多孔質膜

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2967120A (en) 1956-11-07 1961-01-03 John L Chaney Method and apparatus for cleaning thermometers
DE2842835C3 (de) 1978-10-02 1989-06-08 Akzo Patente GmbH, 5600 Wuppertal Dialysemembranhohlfadenkette
LU81735A1 (de) 1978-10-02 1980-01-24 Akzo Nv Dialysemembranhohlfadenkette
US4338282A (en) 1980-01-18 1982-07-06 Duskin Franchise Co., Ltd. Selective collecting system of washingly treated articles
JPS61146301A (ja) 1984-12-19 1986-07-04 Daicel Chem Ind Ltd 膜およびその製造方法
JPS6320339A (ja) 1986-07-14 1988-01-28 Mitsubishi Rayon Co Ltd 多孔質膜の製造方法
JP2687142B2 (ja) 1988-08-09 1997-12-08 日本原子力研究所 多孔性ポリイミド膜の製造方法
DE3834039A1 (de) * 1988-10-06 1990-04-12 Rieter Ag Maschf Querbandanordnung am ausgang einer karde
US6126826A (en) * 1992-05-06 2000-10-03 Whatman Inc. PVDF microporous membrane and method
SE503491C2 (sv) * 1994-10-12 1996-06-24 Tetra Laval Holdings & Finance Metod och anordning för att styra en tunn materialbana vid formning av materialbanan
CA2206990A1 (en) 1994-12-15 1996-06-20 Akzo Nobel N.V. Process for producing cellulosic moldings
JPH0957078A (ja) 1995-08-22 1997-03-04 Mitsubishi Rayon Co Ltd 中空糸膜の洗浄方法及び洗浄装置
US5772935A (en) * 1996-08-14 1998-06-30 Zhadanovsky; Igor Method of continuous extraction of plasticizer from battery separator membranes and the like during their manufacture, and extractor apparatus therefor
JP3321392B2 (ja) 1997-08-29 2002-09-03 科学技術振興事業団 二重構造連続多孔体とその製造方法
US6156381A (en) 1998-12-30 2000-12-05 Mg Generon Ozone treatment of surface of membrane to improve permselectivity
KR100513397B1 (ko) 2001-01-12 2005-09-09 삼성전자주식회사 반도체 웨이퍼 세정시스템 및 그 세정액 공급방법
JP2003081625A (ja) 2001-09-10 2003-03-19 Canon Inc 多孔質膜の製造方法
JP2004033854A (ja) * 2002-07-01 2004-02-05 Mitsubishi Rayon Co Ltd 多孔質膜の製造方法
US7165682B1 (en) 2003-07-16 2007-01-23 Accord Partner Limited Defect free composite membranes, method for producing said membranes and use of the same
JP2005220202A (ja) 2004-02-04 2005-08-18 Mitsubishi Rayon Co Ltd 多孔質膜の製造方法及び多孔質膜
JP5076320B2 (ja) 2006-01-11 2012-11-21 東洋紡績株式会社 ポリフッ化ビニリデン系中空糸型微多孔膜の製造方法
JP4841996B2 (ja) 2006-03-31 2011-12-21 富士フイルム株式会社 洗浄装置、めっき被膜付きフィルムの製造装置、洗浄方法及びめっき被膜付きフィルムの製造方法
JP4951332B2 (ja) 2006-12-27 2012-06-13 三菱レイヨン株式会社 中空糸膜の製造方法
JP2008207050A (ja) 2007-02-23 2008-09-11 Toray Ind Inc 中空糸膜の製造方法
JP2008237987A (ja) 2007-03-26 2008-10-09 Toyobo Co Ltd 中空糸膜の製造方法および中空糸膜
KR101439478B1 (ko) * 2008-05-16 2014-09-11 에스케이이노베이션 주식회사 2차 전지용 미세다공막
JP5138572B2 (ja) 2008-12-25 2013-02-06 三菱レイヨン株式会社 中空糸膜の製造方法および中空糸膜の乾燥装置
JP5782814B2 (ja) 2011-04-27 2015-09-24 三菱レイヨン株式会社 多孔質膜処理装置および多孔質膜処理方法
WO2013039223A1 (ja) 2011-09-15 2013-03-21 三菱レイヨン株式会社 多孔質中空糸膜の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3196029B2 (ja) * 1989-04-28 2001-08-06 エツクス―フロウ ベー.フアー 微細孔膜の作成法
JP2002119833A (ja) * 2000-10-16 2002-04-23 Nok Corp 乾湿式紡糸法多孔質中空糸膜の洗浄方法
JP2005042074A (ja) * 2002-08-15 2005-02-17 Mitsubishi Rayon Co Ltd 多孔質膜の製造方法
JP2011200799A (ja) * 2010-03-25 2011-10-13 Asahi Kasei Chemicals Corp 多孔質膜の製造方法及び多孔質膜

Also Published As

Publication number Publication date
JP5617930B2 (ja) 2014-11-05
KR101580750B1 (ko) 2015-12-28
US20160038883A1 (en) 2016-02-11
CN103717295A (zh) 2014-04-09
US20140163124A1 (en) 2014-06-12
US9539547B2 (en) 2017-01-10
JPWO2013018900A1 (ja) 2015-03-05
KR20140051364A (ko) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5617930B2 (ja) 多孔質膜の製造方法および製造装置
JP5633576B2 (ja) 多孔質中空糸膜の製造方法
JP5296794B2 (ja) 中空糸膜の乾燥装置および乾燥方法
JP4951332B2 (ja) 中空糸膜の製造方法
JP5928330B2 (ja) 多孔質中空糸膜の洗浄装置、および多孔質中空糸膜の製造方法
JP5834507B2 (ja) 多孔質中空糸膜の製造方法および製造装置
KR101712714B1 (ko) 다공질막의 제조 방법 및 다공질막의 건조 장치
JP6048180B2 (ja) 多孔質膜の製造方法および製造装置
JP2016000403A (ja) 洗浄装置、および多孔質膜の製造方法
JP5138572B2 (ja) 中空糸膜の製造方法および中空糸膜の乾燥装置
JP5742433B2 (ja) 多孔質膜処理装置
JP5782814B2 (ja) 多孔質膜処理装置および多孔質膜処理方法
JP4803697B2 (ja) 多孔質膜の製造方法
WO2012144612A1 (ja) 多孔質膜の製造方法および製造装置
JP6149577B2 (ja) 中空糸膜の製造方法
JP6436185B2 (ja) 中空糸膜の製造方法
CN103717295B (zh) 多孔质膜的制造方法及制造装置
JP2018143930A (ja) 多孔質膜の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012539101

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14236287

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147005000

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12820458

Country of ref document: EP

Kind code of ref document: A1