WO2013018449A1 - Radiating device, light-emitting device, illumination device, and vehicle headlight - Google Patents

Radiating device, light-emitting device, illumination device, and vehicle headlight Download PDF

Info

Publication number
WO2013018449A1
WO2013018449A1 PCT/JP2012/065665 JP2012065665W WO2013018449A1 WO 2013018449 A1 WO2013018449 A1 WO 2013018449A1 JP 2012065665 W JP2012065665 W JP 2012065665W WO 2013018449 A1 WO2013018449 A1 WO 2013018449A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
irradiation
light emitting
excitation light
scattering
Prior art date
Application number
PCT/JP2012/065665
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 岸本
洋史 貴島
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013018449A1 publication Critical patent/WO2013018449A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • F21S41/145Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device the main emission direction of the LED being opposite to the main emission direction of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • F21V7/0033Combination of two or more reflectors for a single light source with successive reflections from one reflector to the next or following
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present invention relates to an irradiation device that uses excitation light such as laser light, and a light-emitting device, an illumination device, and a vehicle headlamp equipped with the irradiation device.
  • LEDs light emitting diodes
  • LDs semiconductor lasers
  • the laser light oscillated from the semiconductor laser is coherent light, the directivity is strong, and the laser light can be condensed and used as excitation light without waste. Therefore, various light emitting devices using semiconductor lasers having such characteristics have been proposed.
  • Patent Document 1 An example of a technique related to such a light emitting device is a light source device disclosed in Patent Document 1.
  • this light source device in order to realize a high-intensity light source, laser light emitted from a semiconductor laser is used as the light source.
  • the light emitting point size of the laser light is increased by the light scattering function of the light scattering member so that the laser light is not irradiated to the outside as it is. Thereby, this light source device can irradiate the eye-safe light to the outside.
  • this light source device the laser beam emitted from the semiconductor laser is made eye-safe, and then the eye-safe laser beam is irradiated to the outside.
  • This light source device is safe for human eyes and can obtain high light extraction efficiency even when a high-power semiconductor laser is used.
  • a light source device disclosed in Patent Document 2.
  • this light source device similarly to the light source device disclosed in Patent Document 1, laser light emitted from a semiconductor laser is used as the light source.
  • a light scattering region is provided in a part of the region where the laser beam reaches the external space so that the laser beam is not directly irradiated to the outside. Due to the light scattering function of the light scattering region, the emission point size of the laser light is enlarged and then irradiated to the outside.
  • this light source device also irradiates the laser beam that has been made eye-safe after the laser light emitted from the semiconductor laser is made eye-safe, like the light source device disclosed in Patent Document 1. is there.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2006-352105 (Released on December 28, 2006)”
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2006-32885 (published on February 2, 2006)”
  • a light-emitting device that uses a semiconductor laser and uses the laser light emitted from the semiconductor laser as excitation light to emit light from a light-emitting unit such as a phosphor to obtain illumination light.
  • a light emitting device can realize light of various colors by appropriately selecting the phosphors included in the light emitting portion.
  • the semiconductor laser can be easily condensed and is very effective for use as excitation light for exciting the phosphor contained in the light emitting portion.
  • Patent Documents 1 and 2 discloses or suggests that the phosphors included in the light emitting part are excited by using the laser light emitted from each of them to emit light.
  • the light scattering member is disposed so as to include the semiconductor laser, and the laser light emitted from the semiconductor laser is directly emitted after the emission. Enter.
  • the degree of freedom of the arrangement configuration of the semiconductor laser and the light scattering member is considerably low. This is a fatal defect in an irradiation apparatus aiming at irradiating excitation light suitable for an arbitrary light emitting unit having various sizes and shapes. This is because the low degree of freedom in the arrangement of the semiconductor laser and the light scattering member is one of the factors that hinder the setting of the size of the irradiation apparatus on which they are mounted and the irradiation direction.
  • the present invention has been made to solve the above-described problems, and the purpose of the present invention is to make the excitation light eye-safe after the excitation light is made safe even when excitation light such as laser light is used.
  • An object of the present invention is to provide an irradiating device, a light emitting device, a lighting device, and a vehicle headlamp for irradiating a light emitting part with excitation light.
  • an irradiation apparatus has a scattering member that scatters excitation light emitted from an excitation light source, the scattering member housed therein, and is scattered from the scattering member.
  • the excitation light emitted from the excitation light source is first applied to the scattering member.
  • a scattering member scatters the excitation light irradiated to itself radially.
  • the irradiating member irradiates the scattered light toward the light emitting part outside the irradiating member.
  • laser light emitted from a semiconductor laser element may have a spot size smaller than 10 ⁇ m square, and light emitted from such a light source is assumed to be directly or via an optical member such as a lens or a mirror.
  • an optical member such as a lens or a mirror.
  • the size of the emission point in a typical high-power semiconductor laser is, for example, 1 ⁇ m ⁇ 10 ⁇ m.
  • the image size on the retina can be increased by enlarging the size of the light emitting point, the energy density on the retina can be increased even when light of the same energy is incident on the eye. It can be reduced.
  • the excitation light emitted from the excitation light source is once irradiated to the scattering member, and is scattered radially around the scattering member.
  • the emission point of the excitation light from the excitation light source that can be regarded as a small emission point is greatly expanded.
  • the excitation light with the light emission point widened is irradiated by the irradiation member onto the light emitting portion disposed outside the irradiation member.
  • the light emission point size of the irradiation member is larger than the light emission point size of the excitation light source.
  • the excitation light applied to the light emitting unit can be applied to the light emitting unit by increasing the size of the light emitting point in advance. For this reason, it can prevent effectively that excitation light with a small light emission point size injects into a user's eyes to a user.
  • a light-emitting device includes the irradiation device.
  • the lighting device according to the present invention includes the light emitting device.
  • a vehicle headlamp according to the present invention includes the light emitting device.
  • the irradiation apparatus is the scattering member that scatters the excitation light emitted from the excitation light source, and the excitation light that contains the scattering member inside and is scattered from the scattering member.
  • the light-emitting portion can be irradiated with the eye-safe excitation light.
  • a light-emitting device including a light-emitting unit that is irradiated with light that has been made eye-safe from the irradiation device according to the present invention and emits light by the irradiation light
  • a light emitting device is, for example, a headlamp that satisfies the light distribution characteristic standard of a traveling headlamp (high beam) for an automobile.
  • FIG. 1 is a diagram illustrating a schematic configuration of an irradiation apparatus according to the present embodiment.
  • the irradiation device 11 includes a scattering member 1, an irradiation member 2, and a semiconductor laser (excitation light source) 3.
  • the irradiation device 11 irradiates the light emitting unit 4 with laser light that has been made eye-safe. By this eye-safe laser beam irradiation, a phosphor described later contained in the light emitting unit 4 is excited.
  • the light emitting unit 4 emits fluorescence by excitation of the phosphor.
  • the light-emitting device is the above-described traveling headlamp for automobiles
  • the fluorescence from the light-emitting unit becomes illumination light emitted from the headlamp.
  • the scattering member 1 radiates the laser beam radially around itself by scattering the laser beam emitted from the semiconductor laser 3.
  • the scattering member 1 converts laser light that is coherent light emitted from the semiconductor laser 3 into laser light that is incoherent light by its own scattering function.
  • the irradiation device 11 ensures safety for human eyes by this conversion by the scattering member 1.
  • the scattering member 1 has a function of increasing the emission point size of the semiconductor laser 3.
  • the scattering member 1 for example, a material in which alumina, diamond powder, yttria (Y 2 O 3 ), zirconium, or the like as a scattering material is dispersed in glass as a dispersion material can be used.
  • the above-mentioned alumina, diamond powder and the like basically have a high melting point (>> 1000 ° C.), and therefore, it is necessary to use a relatively low-reliability low-melting glass for the glass as a dispersion material. Absent.
  • the glass as the dispersion material normal glass having a somewhat high melting point (melting point around 1000 ° C.) can be used, thereby improving the reliability of the scattering member 1 and extending the life.
  • the difference in refractive index between the dispersion material and the scattering material described above is at least 0.2 or more, preferably 0.3 or more. This is because if it is less than such a value, the scattering effect of the scattering member 1 cannot be sufficiently obtained, and as a result, the emission point size of the laser light cannot be sufficiently increased.
  • the irradiation member 2 irradiates the laser beam scattered by the scattering member 1 and radially scattered around the scattering member 1 toward the outside of the irradiation device 11. Specifically, the irradiation member 2 irradiates the laser light scattered by the scattering member 1 toward the light emitting unit 4 disposed outside the irradiation device 11.
  • the irradiation member 2 houses the scattering member 1 therein.
  • the scattering member 1 is fixed and arranged on a support member extending from the inner wall of the irradiation member 2, for example.
  • the scattering member 1 may generate heat when irradiated with laser light from the semiconductor laser 3.
  • the support member that fixes and supports the scattering member 1 may be made of a material having high thermal conductivity such as metal.
  • the irradiation member 2 has a reflection surface that reflects the laser light (scattered light) emitted from the scattering member 1 to the inner wall of the scattering member 1 and guides it to the outside of the irradiation device 11. ing.
  • This reflective surface is a reflective surface that realizes a known elliptical reflecting mirror.
  • Such a reflecting surface has two pairs of focal points, one of which is located inside the irradiation member 2 and the other is located outside the irradiation member 2. Light from one focal point passes through the other focal point after reflection, and a high light collection rate can be obtained.
  • the scattering member 1 is disposed on the focal point located inside thereof, and the light emitting unit 4 is disposed on the focal point located outside thereof.
  • the irradiation member 2 can condense the laser light radially scattered from the scattering member 1 onto the light emitting unit 4 again and efficiently irradiate it.
  • the irradiation member 2 has a passage portion that is an opening through which laser light from the semiconductor laser 3 toward the scattering member 1 passes.
  • the semiconductor laser 3 functions as an excitation light source that emits laser light.
  • Laser light (excitation light) is oscillated from the semiconductor laser 3.
  • a plurality of semiconductor lasers 3 may be provided. In that case, laser light is oscillated from each of the plurality of semiconductor lasers 3.
  • the laser light emitted from the semiconductor laser 3 is coherent light having coherency.
  • coherent light is light that is spatially and temporally aligned in phase, and has a single wavelength.
  • the semiconductor laser 3 has 10 light emitting points (10 stripes) in one chip, and oscillates a laser beam of, for example, 405 nm (blue violet), an output of 11.2 W, an operating voltage of 5 V, and a current of 6.4 A. It is mounted on a stem having a diameter of 15 mm. If the semiconductor laser 3 outputs laser light at 11.2 W as described above, the power consumption is 32 W (5 V ⁇ 6.4 A).
  • the laser beam oscillated by the semiconductor laser 3 is not limited to 405 nm, but may be any laser beam having a peak wavelength in the wavelength range of 400 nm to 420 nm.
  • the semiconductor laser 3 may be 420 nm or more, for example, blue (450 nm) laser light, or laser light having a peak wavelength in the wavelength range near blue (440 nm or more and 490 nm or less).
  • the emission point size of the blue (or near blue) laser light oscillated by the semiconductor laser 3 is increased.
  • the laser beam of the semiconductor laser 3 can be used with confidence as part of the illumination light.
  • the laser light not irradiated on the light emitting unit 4 or the light emitting unit 4 is irradiated with fluorescence.
  • a laser beam is a blue (or near-blue) laser beam having an enlarged emission point size as described above, it can be safely used as illumination light together with the fluorescence of the light emitting unit 4. It becomes possible.
  • FIG. 7 (a) schematically shows a circuit diagram of the semiconductor laser 3
  • FIG. 7 (b) is a perspective view showing the basic structure of the semiconductor laser 3.
  • the semiconductor laser 3 has a configuration in which a cathode electrode 23, a substrate 22, a clad layer 113, an active layer 111, a clad layer 112, and an anode electrode 21 are laminated in this order.
  • the substrate 22 is a semiconductor substrate, and it is preferable to use GaN, sapphire, or SiC in order to obtain blue to ultraviolet laser light for exciting the phosphor as in the present application.
  • a group IV semiconductor represented by a group IV semiconductor such as Si, Ge and SiC, GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb and AlN Group V compound semiconductors, Group II-VI compound semiconductors such as ZnTe, ZeSe, ZnS and ZnO, oxide insulators such as ZnO, Al 2 O 3 , SiO 2 , TiO 2 , CrO 2 and CeO 2 , and SiN Any material of the nitride insulator is used.
  • the anode electrode 21 is for injecting current into the active layer 111 through the cladding layer 112.
  • the cathode electrode 23 is for injecting current into the active layer 111 from the lower part of the substrate 22 through the clad layer 113.
  • the current is injected by applying a forward bias to the anode electrode 21 and the cathode electrode 23.
  • the active layer 111 has a structure sandwiched between the cladding layer 113 and the cladding layer 112.
  • a mixed crystal semiconductor made of AlInGaN is used as a material for the active layer 111 and the cladding layer in order to obtain blue to ultraviolet laser light.
  • a mixed crystal semiconductor mainly composed of Al, Ga, In, As, P, N, and Sb is used as an active layer / cladding layer of a semiconductor laser, and such a configuration may be used. Further, it may be composed of a II-VI compound semiconductor such as Zn, Mg, S, Se, Te and ZnO.
  • the active layer 111 is a region where light emission occurs due to the injected current, and the emitted light is confined in the active layer 111 due to a difference in refractive index between the cladding layer 112 and the cladding layer 113.
  • the active layer 111 is formed with a front side cleaved surface 114 and a back side cleaved surface 115 provided to face each other in order to confine light amplified by stimulated emission.
  • the front side cleaved surface 114 and the back side cleaved surface 115 are formed. Plays the role of a mirror.
  • the active layer 111 may form a multilayer quantum well structure.
  • a reflective film (not shown) for laser oscillation is formed on the back side cleaved surface 115 opposite to the front side cleaved surface 114, and the difference in reflectance between the front side cleaved surface 114 and the back side cleaved surface 115 is different.
  • most of the laser light L0 can be irradiated from the light emitting point 116 from the front-side cleavage surface 114 which is a low reflectance end face.
  • the clad layer 113 and the clad layer 112 are made of n-type and p-type GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN group III-V compound semiconductors, and ZnTe, ZeSe. , ZnS, ZnO, or any other II-VI compound semiconductor, and by applying a forward bias to the anode electrode 21 and the cathode electrode 23, current can be injected into the active layer 111. It has become.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • CVD chemical vapor deposition
  • the film can be formed using a general film forming method such as a laser ablation method or a sputtering method.
  • the film formation of each metal layer can be configured using a general film forming method such as a vacuum deposition method, a plating method, a laser ablation method, or a sputtering method.
  • the light emitting unit 4 emits light by receiving laser light that is incoherent light emitted from the irradiation member 2, and includes a phosphor that emits light by receiving the laser light.
  • the light emitting unit 4 is a phosphor in which a phosphor is dispersed inside a silicone resin as a phosphor holding substance.
  • the ratio of silicone resin to phosphor is about 10: 1.
  • the light emitting unit 4 may be formed by pressing and phosphor.
  • the phosphor holding substance is not limited to silicone resin, and may be organic-inorganic hybrid glass (HBG) or inorganic glass.
  • the phosphor is, for example, an oxynitride type or a nitride type, and blue, green, and red phosphors are dispersed in a silicone resin. Since the semiconductor laser 3 oscillates 405 nm (blue-violet) laser light, white light is generated when the light emitting unit 4 is irradiated with the laser light. Therefore, it can be said that the light emitting portion 4 is a wavelength conversion material.
  • the semiconductor laser 3 may oscillate 450 nm (blue) laser light (or so-called blue laser light having a peak wavelength in the wavelength range of 440 nm to 490 nm).
  • the phosphor is a yellow phosphor or a mixture of a green phosphor and a red phosphor.
  • a yellow phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 560 nm to 590 nm.
  • the green phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less.
  • the red phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 600 nm to 680 nm.
  • Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms. It can be made by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), rare earth elements and the like in silicon nitride (Si 3 N 4 ).
  • a semiconductor nanoparticle phosphor using nanometer size particles of a III-V compound semiconductor can be exemplified.
  • One of the features of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color is changed by the quantum size effect by changing the particle diameter to nanometer size. It is a point that can be. For example, InP emits red light when the particle size is about 3 to 4 nm. Here, the particle size was evaluated with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • this semiconductor nanoparticle phosphor is based on a semiconductor, it has a short fluorescence lifetime and can emit laser light power quickly as fluorescence, and thus has a feature that it is highly resistant to high power laser light. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth as the emission center.
  • the emission lifetime is short, the absorption of the laser beam and the emission of the phosphor can be repeated quickly. As a result, high conversion efficiency can be maintained for strong laser light, and heat generation from the phosphor can be reduced.
  • the scattering member 1 and the light emitting unit 4 have the same size, the light emitting unit 4 can be efficiently irradiated with the laser light scattered by the scattering member 1 using the irradiation member 2.
  • the fact that the light cannot be condensed smaller than the size of the scattering member 1 means that only a very small part of the region irradiated with light is not strongly excited. Therefore, the effect that the light emission part 4 can be excited uniformly is also produced.
  • “identical” of “same size” means that it is not limited to being completely the same, and may be substantially the same. Specifically, for example, when the area of the light irradiation surface on the irradiation member 2 side of the light emitting unit 4 is set to 1 as a difference in size between the scattering member and the light emitting unit, the scattering member 1 is closer to the semiconductor laser 3 side. If the area of a certain light irradiation surface is 0.8 or more and 1.2 or less, it can be said that they are the same.
  • the size of the scattering member 1 and the light emitting unit 4 represents the respective projected areas.
  • the scattering member 1 is a projected area in the direction in which light is emitted from the irradiation member 2 to the light emitting unit 4, and the light emitting unit 4 is irradiated with light from the irradiation member 2 to the light emitting unit 4. It is the projected area in the direction opposite to the direction of the image.
  • the laser light applied to the scattering member 1 is scattered by the scattering member 1, so that the laser light having a high coherency and a very small emission point size is affected on the human body (particularly the eye). Converts to light with almost no emission point size.
  • the light emitting unit 4 emits light when irradiated with light having a large light emitting point size.
  • the irradiation device 11 increases the light emission point size of the light with respect to the light emitted to the light emitting unit 4 in advance, collects the light with the increased light emission point size again, and irradiates the light emitting unit 4. .
  • laser light which is coherent light having a small light emitting point size
  • each of the semiconductor laser 3 and the irradiation member 2 is regarded as one emission point that emits light, it can be said that the emission point size of the irradiation member 2 is larger than the emission point size of the semiconductor laser 3.
  • FIG. 2 is a diagram showing a schematic configuration of Modification 1 of the irradiation apparatus 11 shown in FIG.
  • the same parts as those of the irradiation device 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a semiconductor laser 3 is also housed inside the irradiation member 2a.
  • the irradiation member 2 a has a reflection surface that reflects the laser light emitted from the scattering member 1 to the outside of the irradiation device 11 on the inner wall that houses the scattering member 1, similarly to the irradiation member 2 of FIG. 1. ing.
  • This reflecting surface is a reflecting surface that realizes a known elliptical reflecting mirror, like the irradiation device 11. That is, the difference between the irradiation member 2 and the irradiation member 2a is whether or not the semiconductor laser 3 is housed therein. Further, in the irradiation member 2 a, a passing portion for passing the laser light from the semiconductor laser 3 toward the scattering member 1 as in the irradiation member 2 is not necessary.
  • the irradiation member 2a even if there is laser light that has not been irradiated to the scattering member 1 among the laser light emitted from the semiconductor laser 3, it is irradiated to the outside of the irradiation member 2a by the reflection surface.
  • FIG. 3 is a diagram illustrating a schematic configuration of a second modification of the irradiation apparatus 11 illustrated in FIG. 1.
  • the same parts as those of the irradiation device 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the irradiation device 11 of FIG. 1 is different from the irradiation device 11 of FIG. 1 in that it includes a casing 5 that houses the scattering member 1, the irradiation member 2, and the semiconductor laser 3.
  • the housing 5 houses and seals the scattering member 1, the irradiation member 2, and the semiconductor laser 3 therein.
  • dry air dry air
  • the dew point temperature of the dry air is, for example, ⁇ 35 ° C., and dew condensation inside the housing 5 is suppressed.
  • the housing 5 has a front surface portion formed of a material that transmits laser light emitted from the irradiation member 2.
  • the front surface portion faces the opening of the irradiation member 2 and transmits the laser light emitted from the irradiation member 2. From the viewpoint of transmitting the laser beam, only the region through which the laser beam irradiated from the irradiation member 2 passes through the front surface portion of the housing 5 may be formed of the transmission material.
  • the front part of the housing 5 may be made of any material as long as it is transparent, whereby the front part can be easily manufactured at low cost.
  • the housing 5 may be composed of a light shielding member that shields the laser light except for the front portion described above. By doing so, laser light leaking from the irradiation member 2 can be blocked without being scattered by the scattering member 1.
  • the scattering member 1, the irradiation member 2, and the semiconductor laser 3 are housed in the housing 5, and an irradiation device integrated in appearance can be realized.
  • Such an irradiation device 13 is easy to handle, can set the positional relationship with the light emitting unit 4 with high accuracy, and improves the utilization efficiency of laser light.
  • FIG. 4 is a diagram showing a schematic configuration of Modification 3 of the irradiation apparatus 11 shown in FIG.
  • the same parts as those of the irradiation device 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • irradiation member 2b is different from the irradiation device 11 of FIG. 1 in that an irradiation member 2b and a condenser lens (optical member) 6 are provided instead of the irradiation member 2.
  • the irradiation member 2 b irradiates the laser beam scattered by the scattering member 1 and radiated radially around the scattering member 1 toward the outside of the irradiation device 14, similarly to the irradiation member 2. Specifically, the irradiation member 2 b irradiates the laser light scattered by the scattering member 1 toward the light emitting unit 4 disposed outside the irradiation device 14.
  • the irradiation member 2b houses the scattering member 1 therein.
  • the scattering member 1 is, for example, fixed and arranged on a support member that extends from the inner wall of the irradiation member 2b.
  • the support member that fixes and supports the scattering member 1 may be made of a material having high thermal conductivity such as metal.
  • the irradiation member 2 b has a reflection surface that reflects the laser light emitted from the scattering member 1 and guides it to the outside of the irradiation device 14 on the inner wall that houses the scattering member 1, similarly to the irradiation member 2.
  • the reflecting surface of the irradiating member 2b is a reflecting surface that realizes a known parabolic reflecting mirror. Such reflective surfaces generally collect the emitted light from the light source at the focal point and reflect it as a collimated beam parallel to the axis.
  • the scattering member 1 is disposed on the focal point located inside. With such an arrangement, the irradiation member 2b can irradiate the collimated laser beam parallel to the light emitting unit 4 side with the laser beam radially scattered from the scattering member 1.
  • Such parallel collimated laser light passes through the condenser lens 6 and is condensed on the light emitting unit 4.
  • FIG. 5 is a diagram illustrating a schematic configuration of a modification (Modification 4) of the irradiation apparatus 14 illustrated in FIG. 4.
  • the same parts as those of the irradiation device 11 and the irradiation device 14 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the light emitting portion 4a is disposed in the opening of the irradiation member 2b.
  • the light emitting unit 4a since the light emitting unit 4a is disposed in the opening of the irradiation member 2b, the light emitting unit 4a can be reliably irradiated with the laser light emitted from the irradiation member 2b.
  • the utilization efficiency of the laser beam irradiated from the irradiation member 2b is improved, and the light emission unit 4a can be effectively irradiated with the laser beam. Therefore, the light emission amount of the fluorescence 7 emitted from the light emitting unit 4a can be increased.
  • FIG. 6 is a diagram illustrating a schematic configuration of a modified example (modified example 5) of the irradiation device 14 illustrated in FIG. 4.
  • modified example 5 modified example 5 of the irradiation device 14 illustrated in FIG. 4.
  • the same parts as those of the irradiation device 11 and the irradiation device 14 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the reflection member 8 has, for example, a reflection surface on the irradiation member 2b side that reflects and condenses parallel collimated laser light from the irradiation member 2b.
  • This reflecting surface is a reflecting surface that realizes a known off-axis parabolic reflecting mirror.
  • the irradiation member 2b converts the laser light radially scattered from the scattering member 1 into parallel collimated laser light that goes to the outside of the irradiation member 2b, and the reflection member 8 has this parallel.
  • the collimated laser beam can be condensed and irradiated toward the light emitting unit 4.
  • the irradiation member preferably has a reflection surface that reflects the scattered light and guides it in one direction.
  • the scattered light scattered from the scattering member is reflected by the reflecting surface of the irradiation member. Therefore, scattered light can be efficiently derived in one direction.
  • the shape of the reflecting surface is preferably configured to guide the scattered light toward a light emitting unit disposed outside the irradiation member.
  • the light emitting unit can be efficiently irradiated with the excitation light scattered from the scattering member. Therefore, it is possible to increase the utilization efficiency of the excitation light used for light emission of the light emitting unit.
  • the irradiation apparatus of the present invention comprises:
  • the irradiation member further includes an optical member (condenser lens 6) disposed on the side of the scattered light in the direction in which the scattered light travels, and the optical member arranges the scattered light that passes through the optical member outside the irradiation member. It is preferable to proceed toward the light emitting portion.
  • the traveling direction thereof is directed to the light emitting unit. Therefore, it is possible to increase the utilization efficiency of the excitation light used for light emission of the light emitting unit.
  • the irradiation apparatus of the present invention includes It is preferable to further include an excitation light source (semiconductor laser 3) that emits excitation light, and a housing that stores therein the excitation light source, the scattering member, and the irradiation member.
  • an excitation light source semiconductor laser 3
  • a housing that stores therein the excitation light source, the scattering member, and the irradiation member.
  • an irradiation device that is integrated in appearance by housing the excitation light source, the scattering member, and the irradiation member in the casing.
  • Such an irradiation apparatus is easy to handle, can set the positional relationship with the light emitting section with high accuracy, and improves the utilization efficiency of excitation light.
  • the excitation light source is housed inside the irradiation member and emits excitation light toward the scattering member.
  • the light emitting portion outside the irradiation member is irradiated by the irradiation member.
  • the excitation light source is outside the irradiation member, the excitation light that has not been irradiated to the scattering member becomes stray light.
  • the excitation light source is disposed outside the irradiation member, and the irradiation member has a passage portion through which excitation light from the excitation light source toward the scattering member passes.
  • the scattered light scattered from the scattering member collides with the excitation light source when it goes to the outside, and its progress is hindered. In this case, the irradiation efficiency of the scattered light from an irradiation member will fall.
  • the excitation light source is disposed outside the irradiation member and does not hinder the progress of the scattered light scattered from the scattering member.
  • the scattering member in the irradiation direction which is the direction in which the scattered light is irradiated from the irradiation member to the light emitting portion.
  • the projected area and the projected area of the light emitting unit in the direction opposite to the irradiation direction are preferably the same.
  • the scattering member when the emission point size of the excitation light is enlarged by the scattering member, for example, even if it is condensed using a reflecting mirror or a lens, it cannot be condensed smaller than the size of the scattering member.
  • the scattering member by setting the scattering member to the same projected area as that of the light emitting unit, the light emitted from the scattering member can be efficiently irradiated to the light emitting unit using the irradiation member.
  • the excitation light emitted from the excitation light source preferably has a peak wavelength in a wavelength range of 420 nm or more.
  • the excitation light “having a peak wavelength in the wavelength range of 420 nm or more” includes blue (450 nm) laser light or laser light having a peak wavelength in the wavelength range near blue (440 nm to 490 nm). .
  • the excitation light emitted from the excitation light source is not irradiated on the light emitting unit, or the light emitting unit is irradiated with the excitation light. There may be excitation light that is emitted from the light emitting unit again without being used.
  • the emission point size is enlarged, it can be safely used as illumination light together with the light emitted from the light emitting unit.
  • the irradiation apparatus of the present invention includes It is preferable that the light emitting unit further includes a light emitting unit disposed in an opening of the irradiation member from which the scattered light is emitted.
  • the light emitting part is arranged on the irradiation member on the side in which the scattered light is directed, the light emitting part can be effectively irradiated with the scattered light.
  • the meaning of “light collection” in the present invention is not limited to “narrowing light” or “collecting light at one point”.
  • the meaning of “light collection” in the present invention is only to “make light irradiate a desired irradiation region”, and not only to “narrow light” and “collect light at one point”. It also includes the meaning of “spreading light”, more specifically “spreading from one point” and “not changing the traveling direction of light”.
  • the light-emitting device including the irradiation device of the present invention may be applied to a vehicle headlight (low beam) and other lighting devices.
  • a downlight can be mentioned as an example of the illuminating device of this invention.
  • a downlight is a lighting device installed on the ceiling of a structure such as a house or a vehicle.
  • the lighting device of the present invention may be realized as a headlamp of a vehicle and other moving objects (for example, humans, ships, aircrafts, submersibles, rockets, etc.), searchlights, projectors, downlights. It may be realized as a room lighting device other than (such as a stand lamp).
  • the present invention is a light emitting device smaller than a conventional light emitting device while having high luminance and high luminous flux, and can be applied to a vehicle headlamp, a projector, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

This radiating device (11) is provided with: a scattering member (1) that scatters laser light; and a radiating member (2) that radiates the laser light scattered from the scattering member (1) towards a light-emitting section (4). When a semiconductor laser (3) and the radiating member (2) are each considered one light-emitting point, the light-emission point size of the radiating member (2) is larger than the light-emission point size of the semiconductor laser (3).

Description

照射装置、発光装置、照明装置および車両用前照灯Irradiation device, light emitting device, lighting device, and vehicle headlamp
 本発明は、レーザ光等の励起光を利用する照射装置、並びに、この照射装置を備えた発光装置、照明装置および車両用前照灯に関するものである。 The present invention relates to an irradiation device that uses excitation light such as laser light, and a light-emitting device, an illumination device, and a vehicle headlamp equipped with the irradiation device.
 近年、励起光源として発光ダイオード(LED;Light Emitting Diode)や半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起光源から生じた励起光を、蛍光体を含む発光部に照射することによって発生する蛍光を照明光として用いる発光装置の研究が盛んになってきている。 In recent years, semiconductor light emitting devices such as light emitting diodes (LEDs) and semiconductor lasers (LDs) are used as excitation light sources, and excitation light generated from these excitation light sources is applied to light emitting parts including phosphors. Research on light-emitting devices that use fluorescence generated by the above as illumination light has become active.
 特に、半導体レーザから発振されるレーザ光は、コヒーレントな光であるため、指向性が強く、当該レーザ光を、例えば、励起光として無駄なく集光し、利用することができる。それゆえ、このような特性を持つ半導体レーザを用いた様々な発光装置が提案されて来ている。 Particularly, since the laser light oscillated from the semiconductor laser is coherent light, the directivity is strong, and the laser light can be condensed and used as excitation light without waste. Therefore, various light emitting devices using semiconductor lasers having such characteristics have been proposed.
 このような発光装置に関する技術の例として特許文献1に開示された光源装置がある。この光源装置では、高輝度光源を実現するために、半導体レーザから出射されるレーザ光をその光源として用いている。レーザ光はそのまま外部に照射されることがないように、光散乱部材による光散乱機能によって、レーザ光の発光点サイズが拡大される。これにより、この光源装置はアイセーフ化された光を外部に照射することができる。 An example of a technique related to such a light emitting device is a light source device disclosed in Patent Document 1. In this light source device, in order to realize a high-intensity light source, laser light emitted from a semiconductor laser is used as the light source. The light emitting point size of the laser light is increased by the light scattering function of the light scattering member so that the laser light is not irradiated to the outside as it is. Thereby, this light source device can irradiate the eye-safe light to the outside.
 すなわち、この光源装置は、半導体レーザから出射されるレーザ光をアイセーフ化した後、そのアイセーフ化されたレーザ光をその外部に照射するものである。この光源装置は、高出力な半導体レーザを用いても、人の眼に安全で、且つ、高い光取り出し効率を得ることができる。 That is, in this light source device, the laser beam emitted from the semiconductor laser is made eye-safe, and then the eye-safe laser beam is irradiated to the outside. This light source device is safe for human eyes and can obtain high light extraction efficiency even when a high-power semiconductor laser is used.
 また、他の例として特許文献2に開示された光源装置がある。この光源装置でも、特許文献1に開示された光源装置と同様、半導体レーザから出射されるレーザ光をその光源として用いている。この光源装置においても、レーザ光はそのまま外部に照射されることがないように、レーザ光が外部空間に至るまでの領域の一部に、光散乱領域を設けている。この光散乱領域による光散乱機能によって、レーザ光の発光点サイズが拡大され、その後、外部に照射される。 As another example, there is a light source device disclosed in Patent Document 2. In this light source device, similarly to the light source device disclosed in Patent Document 1, laser light emitted from a semiconductor laser is used as the light source. Also in this light source device, a light scattering region is provided in a part of the region where the laser beam reaches the external space so that the laser beam is not directly irradiated to the outside. Due to the light scattering function of the light scattering region, the emission point size of the laser light is enlarged and then irradiated to the outside.
 このように、この光源装置も、特許文献1に開示された光源装置と同様、半導体レーザから出射されるレーザ光をアイセーフ化した後、そのアイセーフ化されたレーザ光をその外部に照射するものである。 As described above, this light source device also irradiates the laser beam that has been made eye-safe after the laser light emitted from the semiconductor laser is made eye-safe, like the light source device disclosed in Patent Document 1. is there.
日本国公開特許公報「特開2006-352105号公報(2006年12月28日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-352105 (Released on December 28, 2006)” 日本国公開特許公報「特開2006-32885号公報(2006年2月2日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-32885 (published on February 2, 2006)”
 ところで、半導体レーザを用い、その半導体レーザから出射されるレーザ光を励起光とし、蛍光体などの発光部を発光させ、照明光を得る発光装置がある。このような発光装置は、発光部に含まれる蛍光体を適宜選択することにより、様々な色の光を実現することができる。半導体レーザは、上述したとおり、容易に集光可能であり、発光部に含まれる蛍光体を励起させるための励起光として用いるのに非常に有効である。 By the way, there is a light-emitting device that uses a semiconductor laser and uses the laser light emitted from the semiconductor laser as excitation light to emit light from a light-emitting unit such as a phosphor to obtain illumination light. Such a light emitting device can realize light of various colors by appropriately selecting the phosphors included in the light emitting portion. As described above, the semiconductor laser can be easily condensed and is very effective for use as excitation light for exciting the phosphor contained in the light emitting portion.
 しかしながら、特許文献1および2のいずれにおいても、各々から出射されるレーザ光を用いて、発光部に含まれる蛍光体を励起し、発光させる点については何ら開示も示唆もない。 However, neither of Patent Documents 1 and 2 discloses or suggests that the phosphors included in the light emitting part are excited by using the laser light emitted from each of them to emit light.
 また、特許文献1および2に開示された、いずれの光源装置においても、半導体レーザを包含するように光散乱部材が配置し、半導体レーザから出射されたレーザ光が、その出射後にそのまま光散乱部材に進入する。レーザ光を光散乱部材により確実に散乱させる観点からは好ましいと言えるものの、半導体レーザと光散乱部材との配置構成の自由度はかなり低いものとなる。このことは、各種の大きさや形状を持つ、任意の発光部に好適な励起光を照射することを目的とする照射装置においては、致命的な欠点となる。半導体レーザと光散乱部材との配置構成の自由度の低さは、それらを搭載する照射装置の大きさや、照射方向を任意に設定することを阻害する要因の一つであるからである。 In any of the light source devices disclosed in Patent Documents 1 and 2, the light scattering member is disposed so as to include the semiconductor laser, and the laser light emitted from the semiconductor laser is directly emitted after the emission. Enter. Although it can be said that it is preferable from the viewpoint of reliably scattering the laser light by the light scattering member, the degree of freedom of the arrangement configuration of the semiconductor laser and the light scattering member is considerably low. This is a fatal defect in an irradiation apparatus aiming at irradiating excitation light suitable for an arbitrary light emitting unit having various sizes and shapes. This is because the low degree of freedom in the arrangement of the semiconductor laser and the light scattering member is one of the factors that hinder the setting of the size of the irradiation apparatus on which they are mounted and the irradiation direction.
 本発明は、上記の課題を解決するためになされたもので、その目的は、レーザ光等の励起光を用いた場合であっても、その励起光をアイセーフ化した後に、そのアイセーフ化された励起光を発光部に照射する照射装置、発光装置、照明装置および車両用前照灯を提供することにある。 The present invention has been made to solve the above-described problems, and the purpose of the present invention is to make the excitation light eye-safe after the excitation light is made safe even when excitation light such as laser light is used. An object of the present invention is to provide an irradiating device, a light emitting device, a lighting device, and a vehicle headlamp for irradiating a light emitting part with excitation light.
 本発明に係る照射装置は、上記の課題を解決するために、励起光源から出射された励起光を散乱させる散乱部材と、上記散乱部材を内部に収納し、且つ、上記散乱部材から散乱された励起光である散乱光を発光部に向かって照射する照射部材とを備え、上記励起光源および上記照射部材の各々を、光を発する1つの発光点としてみなしたとき、上記照射部材の発光点サイズが上記励起光源の発光点サイズよりも大きい。 In order to solve the above problems, an irradiation apparatus according to the present invention has a scattering member that scatters excitation light emitted from an excitation light source, the scattering member housed therein, and is scattered from the scattering member. An irradiation member that irradiates scattered light, which is excitation light, toward the light-emitting portion, and when each of the excitation light source and the irradiation member is regarded as one light-emitting point that emits light, the light-emitting point size of the irradiation member Is larger than the emission point size of the excitation light source.
 上記構成によれば、励起光源から出射される励起光は、先ず、散乱部材に照射される。散乱部材は、自身に照射された励起光を放射状に散乱させる。この散乱光を、照射部材は、自身の外部にある発光部に向かって、照射する。 According to the above configuration, the excitation light emitted from the excitation light source is first applied to the scattering member. A scattering member scatters the excitation light irradiated to itself radially. The irradiating member irradiates the scattered light toward the light emitting part outside the irradiating member.
 ここで、一般に、小さなスポットの光源から放射された高いエネルギーの光が人間の眼に入射した場合、網膜上では、その小さなスポットのサイズにまで光源像が絞られるため、結像個所におけるエネルギー密度が極めて高くなってしまうことがある。例えば、半導体レーザ素子から放射されるレーザ光は、スポットサイズが10μm角よりも小さい場合があり、そのような光源から放射される光が、直接に、あるいはレンズやミラーといった光学部材を介したとしても小さな発光点が直接に見える形で目に入射すると、網膜上の結像個所が損傷してしまうことがある。 Here, in general, when high-energy light emitted from a light source of a small spot is incident on the human eye, the light source image is reduced to the size of the small spot on the retina. May become very high. For example, laser light emitted from a semiconductor laser element may have a spot size smaller than 10 μm square, and light emitted from such a light source is assumed to be directly or via an optical member such as a lens or a mirror. However, if a small light emitting point is directly visible, it may damage the image formation on the retina.
 これを回避するためには、発光点のサイズを、或る有限のサイズ以上(当然、光出力にも依存するが、具体的には、例えば1mm×1mm以上)に拡大する必要がある。 In order to avoid this, it is necessary to enlarge the size of the light emitting point to a certain finite size or more (which naturally depends on the light output, but specifically, for example, 1 mm × 1 mm or more).
 典型的な高出力の半導体レーザにおける発光点のサイズは、例えば1μm×10μmである。面積としては10μm=1.0×10-5mmとなる。すなわち、発光点が1mmの光源と比較すると、同じエネルギーの光であったとしても、網膜上に結像される領域のエネルギー密度は、10倍も高くなってしまう。 The size of the emission point in a typical high-power semiconductor laser is, for example, 1 μm × 10 μm. The area is 10 μm 2 = 1.0 × 10 −5 mm 2 . That is, when compared with a light source having a light emitting point of 1 mm 2 , the energy density of the region imaged on the retina is increased by 10 5 times even if the light has the same energy.
 一方、発光点のサイズを拡大させることにより、網膜上の結像サイズを拡大させることができるようになるため、同じエネルギーの光が眼に入射した場合であっても、網膜上のエネルギー密度を低減させることが可能となる。 On the other hand, since the image size on the retina can be increased by enlarging the size of the light emitting point, the energy density on the retina can be increased even when light of the same energy is incident on the eye. It can be reduced.
 発光点のサイズを拡大させる際には、光源そのものの発光点を視認できないようにする必要がある。 When expanding the size of the light emitting point, it is necessary to make the light emitting point of the light source itself invisible.
 このような観点から、上記構成では、励起光源から出射された励起光を、一旦、散乱部材に照射し、散乱部材を中心に放射状に散乱させる。この散乱によって、小さい発光点としてみなすことができる励起光源からの励起光の発光点は、大きく広げられることになる。このようにして発光点が広げられた励起光は、照射部材によって、照射部材の外部に配置された発光部に照射されることになる。 From such a point of view, in the above configuration, the excitation light emitted from the excitation light source is once irradiated to the scattering member, and is scattered radially around the scattering member. By this scattering, the emission point of the excitation light from the excitation light source that can be regarded as a small emission point is greatly expanded. Thus, the excitation light with the light emission point widened is irradiated by the irradiation member onto the light emitting portion disposed outside the irradiation member.
 すなわち、上記構成では、励起光源および照射部材の各々を、光を発する1つの発光点としてみなしたとき、照射部材の発光点サイズが励起光源の発光点サイズよりも大きくなる。 That is, in the above configuration, when each of the excitation light source and the irradiation member is regarded as one light emission point that emits light, the light emission point size of the irradiation member is larger than the light emission point size of the excitation light source.
 したがって、上記構成によれば、例えば、発光部に照射される励起光を、その発光点のサイズを予め拡大させ、発光部に照射することができる。このため、利用者に発光点サイズの小さい励起光が利用者の眼に入射してしまうことを効果的に防止することができる。 Therefore, according to the above configuration, for example, the excitation light applied to the light emitting unit can be applied to the light emitting unit by increasing the size of the light emitting point in advance. For this reason, it can prevent effectively that excitation light with a small light emission point size injects into a user's eyes to a user.
 それゆえ、安全性の高い高出力光源を実現することができる。 Therefore, a high-output light source with high safety can be realized.
 本発明に係る発光装置は、上記照射装置を備えている。 A light-emitting device according to the present invention includes the irradiation device.
 上記構成によれば、上記照射装置を備えることにより、安全性の高い高出力の発光装置を実現することができる。 According to the above configuration, by providing the irradiation device, it is possible to realize a light-emitting device with high safety and high output.
 本発明に係る照明装置は、上記発光装置を備えている。 The lighting device according to the present invention includes the light emitting device.
 上記構成によれば、上記発光装置を備えることにより、安全性の高い高出力の照明装置を実現することができる。 According to the above configuration, by providing the light emitting device, it is possible to realize a highly safe and high output lighting device.
 本発明に係る車両用前照灯は、上記発光装置を備えている。 A vehicle headlamp according to the present invention includes the light emitting device.
 上記構成によれば、上記照射装置を備えることにより、安全性の高い高出力の車両用前照灯を実現することができる。 According to the above configuration, by providing the irradiation device, a highly safe and high-power vehicle headlamp can be realized.
 本発明に係る照射装置は、以上のように、励起光源から出射された励起光を散乱させる散乱部材と、上記散乱部材を内部に収納し、且つ、上記散乱部材から散乱された励起光である散乱光を発光部に向かって照射する照射部材とを備え、上記励起光源および上記照射部材の各々を、光を発する1つの発光点としてみなしたとき、上記照射部材の発光点サイズが上記励起光源の発光点サイズよりも大きい。 As described above, the irradiation apparatus according to the present invention is the scattering member that scatters the excitation light emitted from the excitation light source, and the excitation light that contains the scattering member inside and is scattered from the scattering member. An irradiating member that irradiates scattered light toward the light emitting unit, and when each of the excitation light source and the irradiating member is regarded as one light emitting point that emits light, the light emitting point size of the irradiation member is the excitation light source. Is larger than the emission point size.
 それゆえ、レーザ光等の励起光を用いた場合であっても、その励起光をアイセーフ化した後に、そのアイセーフ化された励起光を発光部に照射することができるという効果を奏する。 Therefore, even when excitation light such as laser light is used, after the excitation light is made eye-safe, the light-emitting portion can be irradiated with the eye-safe excitation light.
本発明の一実施形態に係る照射装置の概略構成を示す図である。It is a figure which shows schematic structure of the irradiation apparatus which concerns on one Embodiment of this invention. 上記照射装置の変形例の概略構成を示す図である。It is a figure which shows schematic structure of the modification of the said irradiation apparatus. 上記照射装置の変形例の概略構成を示す図である。It is a figure which shows schematic structure of the modification of the said irradiation apparatus. 上記照射装置の変形例の概略構成を示す図である。It is a figure which shows schematic structure of the modification of the said irradiation apparatus. 上記照射装置の変形例の概略構成を示す図である。It is a figure which shows schematic structure of the modification of the said irradiation apparatus. 上記照射装置の変形例の概略構成を示す図である。It is a figure which shows schematic structure of the modification of the said irradiation apparatus. (a)は、半導体レーザの回路図を模式的に示したものであり、(b)は、半導体レーザの基本構造を示す斜視図である。(A) is a schematic diagram showing a circuit diagram of a semiconductor laser, and (b) is a perspective view showing a basic structure of the semiconductor laser.
 本発明の実施の一形態について図1~図7に基づいて説明すれば、以下のとおりである。ここでは、本発明に係る照射装置からアイセーフ化された光が照射され、その照射光により発光する発光部を備えた、発光装置を例として説明する。なお、このような発光装置は、例えば、自動車用の走行用前照灯(ハイビーム)の配光特性基準を満たすヘッドランプである。 An embodiment of the present invention will be described with reference to FIGS. 1 to 7 as follows. Here, a light-emitting device including a light-emitting unit that is irradiated with light that has been made eye-safe from the irradiation device according to the present invention and emits light by the irradiation light will be described as an example. Such a light emitting device is, for example, a headlamp that satisfies the light distribution characteristic standard of a traveling headlamp (high beam) for an automobile.
 (発光装置の構成)
 本実施形態に係る照射装置を用いた発光装置の構成について図1を用いて説明する。図1は、本実施形態に係る照射装置の概略構成を示す図である。図1に示すように、本実施形態に係る照射装置11は、散乱部材1と、照射部材2と、半導体レーザ(励起光源)3と、を備えている。照射装置11は、発光部4に向けて、後述するように、アイセーフ化されたレーザ光を照射する。このアイセーフ化されたレーザ光の照射により、発光部4に含まれた後述の蛍光体が励起される。発光部4は、この蛍光体の励起により、蛍光を発光する。例えば、この発光装置が上述した自動車用の走行用前照灯であれば、この発光部からの蛍光が、その前照灯から出射される照明光となる。
(Configuration of light emitting device)
A configuration of a light-emitting device using the irradiation apparatus according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a schematic configuration of an irradiation apparatus according to the present embodiment. As shown in FIG. 1, the irradiation device 11 according to this embodiment includes a scattering member 1, an irradiation member 2, and a semiconductor laser (excitation light source) 3. As will be described later, the irradiation device 11 irradiates the light emitting unit 4 with laser light that has been made eye-safe. By this eye-safe laser beam irradiation, a phosphor described later contained in the light emitting unit 4 is excited. The light emitting unit 4 emits fluorescence by excitation of the phosphor. For example, if the light-emitting device is the above-described traveling headlamp for automobiles, the fluorescence from the light-emitting unit becomes illumination light emitted from the headlamp.
 (散乱部材1)
 散乱部材1は、半導体レーザ3から出射されたレーザ光を散乱させることにより、自身を中心にそのレーザ光を放射状に放射する。散乱部材1は、半導体レーザ3から出射された、コヒーレント光であるレーザ光を、自身の散乱機能により、インコヒーレント光であるレーザ光に変換する。照射装置11は、この散乱部材1によるこの変換により、人の眼に対する安全性を確保している。
(Scattering member 1)
The scattering member 1 radiates the laser beam radially around itself by scattering the laser beam emitted from the semiconductor laser 3. The scattering member 1 converts laser light that is coherent light emitted from the semiconductor laser 3 into laser light that is incoherent light by its own scattering function. The irradiation device 11 ensures safety for human eyes by this conversion by the scattering member 1.
 すなわち、散乱部材1は、半導体レーザ3の発光点サイズを拡大させる機能を有するものであると言える。 That is, it can be said that the scattering member 1 has a function of increasing the emission point size of the semiconductor laser 3.
 散乱部材1は、例えば、分散材としてのガラス中に、散乱材としての、アルミナやダイヤモンド粉末、イットリア(Y)、ジルコニウム等、を分散させたものを用いることができる。 As the scattering member 1, for example, a material in which alumina, diamond powder, yttria (Y 2 O 3 ), zirconium, or the like as a scattering material is dispersed in glass as a dispersion material can be used.
 また、上述したアルミナやダイヤモンド粉末等は、基本的に高融点(>>1000℃)であり、それゆえ、分散材としてのガラスについても、比較的信頼性の低い、低融点ガラスを用いる必要はない。分散材としてのガラスとしては、ある程度融点が高い通常のガラス(融点が1000℃前後)を用いることができ、これにより、散乱部材1の信頼性を向上させ、長寿命化することができる。 In addition, the above-mentioned alumina, diamond powder and the like basically have a high melting point (>> 1000 ° C.), and therefore, it is necessary to use a relatively low-reliability low-melting glass for the glass as a dispersion material. Absent. As the glass as the dispersion material, normal glass having a somewhat high melting point (melting point around 1000 ° C.) can be used, thereby improving the reliability of the scattering member 1 and extending the life.
 上述した分散材と散乱材との間における屈折率差は、少なくとも0.2以上、好ましくは0.3以上であることが好ましい。このような値以下である場合、散乱部材1の散乱効果を十分に得ることができず、延いては、レーザ光の発光点サイズを十分に拡大させることができないおそれがあるからである。 The difference in refractive index between the dispersion material and the scattering material described above is at least 0.2 or more, preferably 0.3 or more. This is because if it is less than such a value, the scattering effect of the scattering member 1 cannot be sufficiently obtained, and as a result, the emission point size of the laser light cannot be sufficiently increased.
 (照射部材2)
 照射部材2は、散乱部材1により散乱され、散乱部材1を中心に放射状に散乱・放射されたレーザ光を、照射装置11の外部に向けて、照射する。具体的には、照射部材2は、照射装置11の外部に配置された、発光部4に向けて、散乱部材1により散乱されたレーザ光を照射する。
(Irradiation member 2)
The irradiation member 2 irradiates the laser beam scattered by the scattering member 1 and radially scattered around the scattering member 1 toward the outside of the irradiation device 11. Specifically, the irradiation member 2 irradiates the laser light scattered by the scattering member 1 toward the light emitting unit 4 disposed outside the irradiation device 11.
 照射部材2は、その内部に、散乱部材1を収納するものである。図示はしないが、散乱部材1は、例えば、照射部材2の内部の内壁から延びる、支持部材に固定され、配置される。散乱部材1は、半導体レーザ3からのレーザ光の照射により、熱を発生させる場合がある。このため、このような熱を効率よく、照射装置11の外部に伝導させるためには、散乱部材1を固定、支持する支持部材は、金属等の高熱伝導率の材料を用いれば良い。 The irradiation member 2 houses the scattering member 1 therein. Although not shown, the scattering member 1 is fixed and arranged on a support member extending from the inner wall of the irradiation member 2, for example. The scattering member 1 may generate heat when irradiated with laser light from the semiconductor laser 3. For this reason, in order to efficiently conduct such heat to the outside of the irradiation device 11, the support member that fixes and supports the scattering member 1 may be made of a material having high thermal conductivity such as metal.
 照射部材2は、具体的には、散乱部材1を収納する内部の内壁に、散乱部材1から放射されるレーザ光(散乱光)を反射し、照射装置11の外部に導き出す反射面を有している。 Specifically, the irradiation member 2 has a reflection surface that reflects the laser light (scattered light) emitted from the scattering member 1 to the inner wall of the scattering member 1 and guides it to the outside of the irradiation device 11. ing.
 この反射面は、公知の楕円反射鏡を実現する反射面である。このような反射面は、対になった2つの焦点を持ち、その一方が照射部材2の内部に、他方が照射部材2の外部に位置する。一方の焦点からの光は、反射後にもう一方の焦点を通り、高い集光率を得ることができる。 This reflective surface is a reflective surface that realizes a known elliptical reflecting mirror. Such a reflecting surface has two pairs of focal points, one of which is located inside the irradiation member 2 and the other is located outside the irradiation member 2. Light from one focal point passes through the other focal point after reflection, and a high light collection rate can be obtained.
 照射部材2では、その内部に位置する焦点上に散乱部材1が配置され、その外部に位置する焦点上に発光部4が配置されている。このような配置構成により、照射部材2は、散乱部材1から放射状に散乱されるレーザ光を、再び、発光部4に集光し、効率よく照射することができる。 In the irradiation member 2, the scattering member 1 is disposed on the focal point located inside thereof, and the light emitting unit 4 is disposed on the focal point located outside thereof. With such an arrangement, the irradiation member 2 can condense the laser light radially scattered from the scattering member 1 onto the light emitting unit 4 again and efficiently irradiate it.
 なお、照射部材2は、半導体レーザ3から散乱部材1に向かうレーザ光が通過する開口である通過部を有している。 Note that the irradiation member 2 has a passage portion that is an opening through which laser light from the semiconductor laser 3 toward the scattering member 1 passes.
 (半導体レーザ3)
 半導体レーザ3は、レーザ光を出射する励起光源として機能するものである。半導体レーザ3からレーザ光(励起光)が発振される。もちろん、半導体レーザ3は複数設けられていてもよい。その場合、複数の半導体レーザ3のそれぞれからレーザ光が発振される。
(Semiconductor laser 3)
The semiconductor laser 3 functions as an excitation light source that emits laser light. Laser light (excitation light) is oscillated from the semiconductor laser 3. Of course, a plurality of semiconductor lasers 3 may be provided. In that case, laser light is oscillated from each of the plurality of semiconductor lasers 3.
 半導体レーザ3から出射されるレーザ光は、コヒーレント性を有するコヒーレント光である。コヒーレント光は、一般的には、空間的および時間的に位相がそろっている光とされており、その波長は単一波長である。 The laser light emitted from the semiconductor laser 3 is coherent light having coherency. In general, coherent light is light that is spatially and temporally aligned in phase, and has a single wavelength.
 半導体レーザ3は、1チップに10個の発光点(10ストライプ)を有するものであり、例えば、405nm(青紫色)のレーザ光を発振し、出力11.2W、動作電圧5V、電流6.4Aのものであり、直径15mmのステムに実装されているものである。半導体レーザ3を上で述べた11.2Wでレーザ光を出力させれば、その消費電力は32W(5V×6.4A)となる。もちろん、半導体レーザ3が発振するレーザ光は、405nmに限定されず、400nm以上420nm以下の波長範囲にピーク波長を有するレーザ光であればよい。 The semiconductor laser 3 has 10 light emitting points (10 stripes) in one chip, and oscillates a laser beam of, for example, 405 nm (blue violet), an output of 11.2 W, an operating voltage of 5 V, and a current of 6.4 A. It is mounted on a stem having a diameter of 15 mm. If the semiconductor laser 3 outputs laser light at 11.2 W as described above, the power consumption is 32 W (5 V × 6.4 A). Of course, the laser beam oscillated by the semiconductor laser 3 is not limited to 405 nm, but may be any laser beam having a peak wavelength in the wavelength range of 400 nm to 420 nm.
 また、半導体レーザ3は、420nm以上の、例えば青色(450nm)のレーザ光、または青色近傍(440nm以上490nm以下)の波長範囲にピーク波長を有するレーザ光であってもよい。この場合、半導体レーザ3が発振する青色(または青色近傍)のレーザ光の発光点サイズが拡大される。これにより、照明光の一部として安心して、半導体レーザ3のレーザ光を使用することができるようになる。 Further, the semiconductor laser 3 may be 420 nm or more, for example, blue (450 nm) laser light, or laser light having a peak wavelength in the wavelength range near blue (440 nm or more and 490 nm or less). In this case, the emission point size of the blue (or near blue) laser light oscillated by the semiconductor laser 3 is increased. Thereby, the laser beam of the semiconductor laser 3 can be used with confidence as part of the illumination light.
 例えば、照射部材2から発光部4に向けて照射されたとき、半導体レーザ3から出射されたレーザ光のうち、発光部4に照射されないレーザ光、あるいは、発光部4に照射されるものの、蛍光励起に利用されずに発光部4から再び出射されるレーザ光が存在する場合がある。この場合、このようなレーザ光が、上述したような発光点サイズが拡大された、青色(または青色近傍の)レーザ光であれば、発光部4の蛍光とともに、照明光として、安全に利用することが可能となる。 For example, among the laser beams emitted from the semiconductor laser 3 when irradiated from the irradiation member 2 toward the light emitting unit 4, the laser light not irradiated on the light emitting unit 4 or the light emitting unit 4 is irradiated with fluorescence. There may be laser light that is emitted from the light emitting unit 4 without being used for excitation. In this case, if such a laser beam is a blue (or near-blue) laser beam having an enlarged emission point size as described above, it can be safely used as illumination light together with the fluorescence of the light emitting unit 4. It becomes possible.
 図7の(a)は、半導体レーザ3の回路図を模式的に示したものであり、図7の(b)は、半導体レーザ3の基本構造を示す斜視図である。同図に示すように、半導体レーザ3は、カソード電極23、基板22、クラッド層113、活性層111、クラッド層112、アノード電極21がこの順に積層された構成である。 7 (a) schematically shows a circuit diagram of the semiconductor laser 3, and FIG. 7 (b) is a perspective view showing the basic structure of the semiconductor laser 3. FIG. As shown in the figure, the semiconductor laser 3 has a configuration in which a cathode electrode 23, a substrate 22, a clad layer 113, an active layer 111, a clad layer 112, and an anode electrode 21 are laminated in this order.
 基板22は、半導体基板であり、本願のように蛍光体を励起する為の青色~紫外のレーザ光を得る為にはGaN、サファイア、SiCを用いることが好ましい。一般的には、半導体レーザ用の基板の他の例として、Si、GeおよびSiC等のIV属半導体、GaAs、GaP、InP、AlAs、GaN、InN、InSb、GaSbおよびAlNに代表されるIII-V属化合物半導体、ZnTe、ZeSe、ZnSおよびZnO等のII-VI属化合物半導体、ZnO、Al、SiO、TiO、CrOおよびCeO等の酸化物絶縁体、ならびに、SiNなどの窒化物絶縁体のいずれかの材料が用いられる。 The substrate 22 is a semiconductor substrate, and it is preferable to use GaN, sapphire, or SiC in order to obtain blue to ultraviolet laser light for exciting the phosphor as in the present application. In general, as other examples of a substrate for a semiconductor laser, a group IV semiconductor represented by a group IV semiconductor such as Si, Ge and SiC, GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb and AlN Group V compound semiconductors, Group II-VI compound semiconductors such as ZnTe, ZeSe, ZnS and ZnO, oxide insulators such as ZnO, Al 2 O 3 , SiO 2 , TiO 2 , CrO 2 and CeO 2 , and SiN Any material of the nitride insulator is used.
 アノード電極21は、クラッド層112を介して活性層111に電流を注入するためのものである。 The anode electrode 21 is for injecting current into the active layer 111 through the cladding layer 112.
 カソード電極23は、基板22の下部から、クラッド層113を介して活性層111に電流を注入するためのものである。なお、電流の注入は、アノード電極21・カソード電極23に順方向バイアスをかけて行なう。 The cathode electrode 23 is for injecting current into the active layer 111 from the lower part of the substrate 22 through the clad layer 113. The current is injected by applying a forward bias to the anode electrode 21 and the cathode electrode 23.
 活性層111は、クラッド層113およびクラッド層112で挟まれた構造になっている。 The active layer 111 has a structure sandwiched between the cladding layer 113 and the cladding layer 112.
 また、活性層111およびクラッド層の材料としては、青色~紫外のレーザ光を得る為にはAlInGaNから成る混晶半導体が用いられる。一般に半導体レーザの活性層・クラッド層としては、Al、Ga、In、As、P、N、Sbを主たる組成とする混晶半導体が用いられ、そのような構成としても良い。また、Zn、Mg、S、Se、TeおよびZnO等のII-VI属化合物半導体によって構成されていてもよい。 Also, as a material for the active layer 111 and the cladding layer, a mixed crystal semiconductor made of AlInGaN is used in order to obtain blue to ultraviolet laser light. Generally, a mixed crystal semiconductor mainly composed of Al, Ga, In, As, P, N, and Sb is used as an active layer / cladding layer of a semiconductor laser, and such a configuration may be used. Further, it may be composed of a II-VI compound semiconductor such as Zn, Mg, S, Se, Te and ZnO.
 また、活性層111は、注入された電流により発光が生じる領域であり、クラッド層112およびクラッド層113との屈折率差により、発光した光が活性層111内に閉じ込められる。 The active layer 111 is a region where light emission occurs due to the injected current, and the emitted light is confined in the active layer 111 due to a difference in refractive index between the cladding layer 112 and the cladding layer 113.
 さらに、活性層111には、誘導放出によって増幅される光を閉じ込めるために互いに対向して設けられる表側へき開面114・裏側へき開面115が形成されており、この表側へき開面114・裏側へき開面115が鏡の役割を果す。 Further, the active layer 111 is formed with a front side cleaved surface 114 and a back side cleaved surface 115 provided to face each other in order to confine light amplified by stimulated emission. The front side cleaved surface 114 and the back side cleaved surface 115 are formed. Plays the role of a mirror.
 ただし、完全に光を反射する鏡とは異なり、誘導放出によって増幅される光の一部は、活性層111の表側へき開面114・裏側へき開面115(本実施の形態では、便宜上表側へき開面114とする)から出射され、レーザ光L0となる。なお、活性層111は、多層量子井戸構造を形成していてもよい。 However, unlike a mirror that completely reflects light, a part of the light amplified by stimulated emission is obtained by cleaving the front side cleaved surface 114 and the back side cleaved surface 115 of the active layer 111 (in this embodiment, the front side cleaved surface 114 for convenience. And the laser beam L0. Note that the active layer 111 may form a multilayer quantum well structure.
 なお、表側へき開面114と対向する裏側へき開面115には、レーザ発振のための反射膜(図示せず)が形成されており、表側へき開面114と裏側へき開面115との反射率に差を設けることで、低反射率端面である、例えば、表側へき開面114よりレーザ光L0の大部分を発光点116から照射されるようにすることができる。 A reflective film (not shown) for laser oscillation is formed on the back side cleaved surface 115 opposite to the front side cleaved surface 114, and the difference in reflectance between the front side cleaved surface 114 and the back side cleaved surface 115 is different. By providing, for example, most of the laser light L0 can be irradiated from the light emitting point 116 from the front-side cleavage surface 114 which is a low reflectance end face.
 クラッド層113・クラッド層112は、n型およびp型それぞれのGaAs、GaP、InP、AlAs、GaN、InN、InSb、GaSb、およびAlNに代表されるIII-V属化合物半導体、ならびに、ZnTe、ZeSe、ZnSおよびZnO等のII-VI属化合物半導体のいずれの半導体によって構成されていてもよく、順方向バイアスをアノード電極21およびカソード電極23に印加することで活性層111に電流を注入できるようになっている。 The clad layer 113 and the clad layer 112 are made of n-type and p-type GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN group III-V compound semiconductors, and ZnTe, ZeSe. , ZnS, ZnO, or any other II-VI compound semiconductor, and by applying a forward bias to the anode electrode 21 and the cathode electrode 23, current can be injected into the active layer 111. It has become.
 クラッド層113・クラッド層112および活性層111などの各半導体層との膜形成については、MOCVD(有機金属化学気相成長)法やMBE(分子線エピタキシー)法、CVD(化学気相成長)法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。各金属層の膜形成については、真空蒸着法やメッキ法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。 As for film formation with each semiconductor layer such as the clad layer 113, the clad layer 112, and the active layer 111, MOCVD (metal organic chemical vapor deposition) method, MBE (molecular beam epitaxy) method, CVD (chemical vapor deposition) method. The film can be formed using a general film forming method such as a laser ablation method or a sputtering method. The film formation of each metal layer can be configured using a general film forming method such as a vacuum deposition method, a plating method, a laser ablation method, or a sputtering method.
 (発光部4)
 発光部4は、照射部材2から照射される、インコヒーレント光であるレーザ光を受けて発光するものであり、レーザ光を受けて発光する蛍光体を含んでいる。
(Light emitting part 4)
The light emitting unit 4 emits light by receiving laser light that is incoherent light emitted from the irradiation member 2, and includes a phosphor that emits light by receiving the laser light.
 発光部4は、蛍光体保持物質としてのシリコーン樹脂の内部に蛍光体が分散されているものである。シリコーン樹脂と蛍光体との割合は、10:1程度である。また、発光部4は、蛍光体を押し固めたものであってもよい。蛍光体保持物質は、シリコーン樹脂に限定されず、有機無機ハイブリッドガラス(HBG)や無機ガラスであってもよい。 The light emitting unit 4 is a phosphor in which a phosphor is dispersed inside a silicone resin as a phosphor holding substance. The ratio of silicone resin to phosphor is about 10: 1. In addition, the light emitting unit 4 may be formed by pressing and phosphor. The phosphor holding substance is not limited to silicone resin, and may be organic-inorganic hybrid glass (HBG) or inorganic glass.
 上記蛍光体は、例えば、酸窒化物系、または窒化物系のものであり、青色、緑色および赤色の蛍光体がシリコーン樹脂に分散されている。半導体レーザ3は、405nm(青紫色)のレーザ光を発振するため、発光部4に当該レーザ光が照射されると白色光が発生する。それゆえ、発光部4は、波長変換材料であるといえる。 The phosphor is, for example, an oxynitride type or a nitride type, and blue, green, and red phosphors are dispersed in a silicone resin. Since the semiconductor laser 3 oscillates 405 nm (blue-violet) laser light, white light is generated when the light emitting unit 4 is irradiated with the laser light. Therefore, it can be said that the light emitting portion 4 is a wavelength conversion material.
 なお、半導体レーザ3は、上述したように450nm(青色)のレーザ光(または、440nm以上490nm以下の波長範囲にピーク波長を有する、いわゆる青色近傍のレーザ光)を発振するものでもよく、この場合には、上記蛍光体は、黄色の蛍光体、または緑色の蛍光体と赤色の蛍光体との混合物である。黄色の蛍光体とは、560nm以上590nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。緑色の蛍光体とは、510nm以上560nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。赤色の蛍光体とは、600nm以上680nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。 As described above, the semiconductor laser 3 may oscillate 450 nm (blue) laser light (or so-called blue laser light having a peak wavelength in the wavelength range of 440 nm to 490 nm). In addition, the phosphor is a yellow phosphor or a mixture of a green phosphor and a red phosphor. A yellow phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 560 nm to 590 nm. The green phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less. The red phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 600 nm to 680 nm.
 上記蛍光体は、サイアロンと通称されるものを用いることができる。サイアロンとは、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質である。窒化ケイ素(Si)にアルミナ(Al)、シリカ(SiO)および希土類元素などを固溶させて作ることができる。 As the phosphor, a so-called sialon can be used. Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms. It can be made by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), rare earth elements and the like in silicon nitride (Si 3 N 4 ).
 蛍光体の別の好適な例としては、III-V族化合物半導体のナノメータサイズの粒子を用いた半導体ナノ粒子蛍光体を例示することができる。 As another suitable example of the phosphor, a semiconductor nanoparticle phosphor using nanometer size particles of a III-V compound semiconductor can be exemplified.
 半導体ナノ粒子蛍光体の特徴の一つは、同一の化合物半導体(例えばインジュウムリン:InP)を用いても、その粒子径をナノメータサイズに変更することにより、量子サイズ効果によって発光色を変化させることができる点である。例えば、InPでは、粒子サイズが3~4nm程度のときに赤色に発光する。ここで、粒子サイズは透過型電子顕微鏡(TEM)にて評価した。 One of the features of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color is changed by the quantum size effect by changing the particle diameter to nanometer size. It is a point that can be. For example, InP emits red light when the particle size is about 3 to 4 nm. Here, the particle size was evaluated with a transmission electron microscope (TEM).
 また、この半導体ナノ粒子蛍光体は、半導体ベースであるので蛍光寿命が短く、レーザ光のパワーを素早く蛍光として放射できるのでハイパワーのレーザ光に対して耐性が強いという特徴もある。これは、この半導体ナノ粒子蛍光体の発光寿命が10ナノ秒程度と、希土類を発光中心とする通常の蛍光体材料に比べて5桁も小さいためである。 In addition, since this semiconductor nanoparticle phosphor is based on a semiconductor, it has a short fluorescence lifetime and can emit laser light power quickly as fluorescence, and thus has a feature that it is highly resistant to high power laser light. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth as the emission center.
 さらに、上述したように、発光寿命が短いため、レーザ光の吸収と蛍光体の発光を素早く繰り返すことができる。その結果、強いレーザ光に対して高い変換効率を保つことができ、蛍光体からの発熱を低減させることができる。 Furthermore, as described above, since the emission lifetime is short, the absorption of the laser beam and the emission of the phosphor can be repeated quickly. As a result, high conversion efficiency can be maintained for strong laser light, and heat generation from the phosphor can be reduced.
 よって、発光部4が熱により劣化(変色や変形)するのをより抑制することができる。これにより、発光装置の寿命を延ばすことができる。 Therefore, it is possible to further suppress the light emitting unit 4 from being deteriorated (discolored or deformed) by heat. Thereby, the lifetime of the light emitting device can be extended.
 (散乱部材1と発光部4との大きさについて)
 上述したように、散乱部材1によりレーザ光の発光点サイズが拡大された場合、例えば反射鏡やレンズ等を用いて再び集光したとしても、散乱部材1の大きさよりも小さく集光することはできない。
(About the size of the scattering member 1 and the light emitting part 4)
As described above, when the light emitting point size of the laser beam is enlarged by the scattering member 1, even if the light is condensed again using, for example, a reflecting mirror or a lens, the light is condensed to be smaller than the size of the scattering member 1. Can not.
 したがって、散乱部材1と発光部4とを同一の大きさとすることにより、散乱部材1により散乱されたレーザ光を、照射部材2を用いて、発光部4に効率よく照射することができる。 Therefore, by making the scattering member 1 and the light emitting unit 4 have the same size, the light emitting unit 4 can be efficiently irradiated with the laser light scattered by the scattering member 1 using the irradiation member 2.
 また、散乱部材1の大きさよりも小さく集光することができないということは、逆に、光が照射される領域のごく一部だけを強く励起することがないということでもある。したがって、発光部4をむらなく均一に励起できるという効果も併せて奏することができる。 Also, the fact that the light cannot be condensed smaller than the size of the scattering member 1 means that only a very small part of the region irradiated with light is not strongly excited. Therefore, the effect that the light emission part 4 can be excited uniformly is also produced.
 ここで、「同一の大きさ」の「同一」は、完全に同一であることに限られること無く、実質的に同一であればよいことを意味する。具体的には、例えば、散乱部材と発光部との大きさの違いとして、発光部4の照射部材2側にある光照射面の面積を1としたとき、散乱部材1の半導体レーザ3側にある光照射面の面積が0.8以上、1.2以下であれば、同一であると言える。 Here, “identical” of “same size” means that it is not limited to being completely the same, and may be substantially the same. Specifically, for example, when the area of the light irradiation surface on the irradiation member 2 side of the light emitting unit 4 is set to 1 as a difference in size between the scattering member and the light emitting unit, the scattering member 1 is closer to the semiconductor laser 3 side. If the area of a certain light irradiation surface is 0.8 or more and 1.2 or less, it can be said that they are the same.
 これらの数値は、散乱部材1および発光部4が矩形である場合、その縦および横の各長さがともに10%の大きさの違いを許容する程度である。一方、散乱部材1および発光部4が円形である場合、その直径が±10%程度の違いを許容する程度である。 These numerical values are such that when the scattering member 1 and the light-emitting portion 4 are rectangular, the vertical and horizontal lengths both allow a difference of 10%. On the other hand, when the scattering member 1 and the light-emitting portion 4 are circular, the diameters are acceptable to allow a difference of about ± 10%.
 なお、散乱部材1および発光部4の大きさとは、それぞれの投影面積を表わすものである。具体的には、散乱部材1に関しては、照射部材2から発光部4に光が照射される方向への投影面積であり、発光部4に関しては、照射部材2から発光部4に光が照射される方向とは反対の方向への投影面積のことである。 In addition, the size of the scattering member 1 and the light emitting unit 4 represents the respective projected areas. Specifically, the scattering member 1 is a projected area in the direction in which light is emitted from the irradiation member 2 to the light emitting unit 4, and the light emitting unit 4 is irradiated with light from the irradiation member 2 to the light emitting unit 4. It is the projected area in the direction opposite to the direction of the image.
 (照射装置11の効果)
 照射装置11によれば、散乱部材1に照射されたレーザ光が散乱部材1によって散乱されることによって、コヒーレント性が高く発光点サイズの極めて小さなレーザ光を、人体(特に眼)への影響がほとんどない発光点サイズの大きな光に変換する。発光部4は、この発光点サイズの大きな光が照射され、発光する。
(Effect of irradiation device 11)
According to the irradiation device 11, the laser light applied to the scattering member 1 is scattered by the scattering member 1, so that the laser light having a high coherency and a very small emission point size is affected on the human body (particularly the eye). Converts to light with almost no emission point size. The light emitting unit 4 emits light when irradiated with light having a large light emitting point size.
 すなわち、照射装置11は、発光部4に照射される光に関し、その光の発光点サイズを予め大きくし、その発光点サイズが大きくなった光を再び、集光し、発光部4に照射する。これにより、発光点サイズの小さい、コヒーレント光であるレーザ光が、そのまま出射され、人の眼に到達してしまうことを確実に防止することができる。 That is, the irradiation device 11 increases the light emission point size of the light with respect to the light emitted to the light emitting unit 4 in advance, collects the light with the increased light emission point size again, and irradiates the light emitting unit 4. . As a result, it is possible to reliably prevent laser light, which is coherent light having a small light emitting point size, from being emitted as it is and reaching the human eye.
 言い換えれば、半導体レーザ3および照射部材2の各々を、光を発する1つの発光点としてみなしたとき、照射部材2の発光点サイズが半導体レーザ3の発光点サイズよりも大きくなると言える。 In other words, when each of the semiconductor laser 3 and the irradiation member 2 is regarded as one emission point that emits light, it can be said that the emission point size of the irradiation member 2 is larger than the emission point size of the semiconductor laser 3.
 それゆえ、照射部材2から光が照射される発光部4を備えた発光装置のアイセーフティを向上させることができる。 Therefore, it is possible to improve the eye safety of the light emitting device including the light emitting unit 4 that is irradiated with light from the irradiation member 2.
 (変形例1)
 図2は、図1に示した照射装置11の変形例1の概略構成を示す図である。以下、照射装置11と同様の部分については、同一符号を付し、その詳細な説明は省略する。
(Modification 1)
FIG. 2 is a diagram showing a schematic configuration of Modification 1 of the irradiation apparatus 11 shown in FIG. Hereinafter, the same parts as those of the irradiation device 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
 この変形例1である照射装置12においては、図2に示すように、照射部材2aの内部に、散乱部材1に加え、さらに、半導体レーザ3も収納する。 As shown in FIG. 2, in the irradiation apparatus 12 which is the modified example 1, in addition to the scattering member 1, a semiconductor laser 3 is also housed inside the irradiation member 2a.
 照射部材2aは、図1の照射部材2と同様、散乱部材1を収納する内部の内壁に、散乱部材1から放射されるレーザ光を反射し、照射装置11の外部に導き出す反射面を有している。この反射面は、照射装置11と同様、公知の楕円反射鏡を実現する反射面である。すなわち、照射部材2と照射部材2aとが異なる点は、その内部に、半導体レーザ3を収納するか否かの違いである。また、照射部材2aでは、照射部材2のような、半導体レーザ3から散乱部材1に向かうレーザ光を通過させる通過部は不要となる。 The irradiation member 2 a has a reflection surface that reflects the laser light emitted from the scattering member 1 to the outside of the irradiation device 11 on the inner wall that houses the scattering member 1, similarly to the irradiation member 2 of FIG. 1. ing. This reflecting surface is a reflecting surface that realizes a known elliptical reflecting mirror, like the irradiation device 11. That is, the difference between the irradiation member 2 and the irradiation member 2a is whether or not the semiconductor laser 3 is housed therein. Further, in the irradiation member 2 a, a passing portion for passing the laser light from the semiconductor laser 3 toward the scattering member 1 as in the irradiation member 2 is not necessary.
 照射部材2aによれば、仮に、半導体レーザ3から出射されたレーザ光のうち、散乱部材1に照射されなかったレーザ光があったとしても、その反射面により、照射部材2aの外部に照射される。 According to the irradiation member 2a, even if there is laser light that has not been irradiated to the scattering member 1 among the laser light emitted from the semiconductor laser 3, it is irradiated to the outside of the irradiation member 2a by the reflection surface. The
 このため、半導体レーザ3からのレーザ光の利用効率を向上させることができる。 For this reason, the utilization efficiency of the laser beam from the semiconductor laser 3 can be improved.
 (変形例2)
 図3は、図1に示した照射装置11の変形例2の概略構成を示す図である。以下、照射装置11と同様の部分については、同一符号を付し、その詳細な説明は省略する。
(Modification 2)
FIG. 3 is a diagram illustrating a schematic configuration of a second modification of the irradiation apparatus 11 illustrated in FIG. 1. Hereinafter, the same parts as those of the irradiation device 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
 この変形例2である照射装置13と、図1の照射装置11とが異なる点は、散乱部材1、照射部材2および半導体レーザ3を格納する筐体5を備える点である。 1 is different from the irradiation device 11 of FIG. 1 in that it includes a casing 5 that houses the scattering member 1, the irradiation member 2, and the semiconductor laser 3.
 筐体5は、その内部に、散乱部材1、照射部材2および半導体レーザ3を格納し、封止している。筐体5の内部には、例えば、ドライエア(乾燥空気)が封入されている。そして、このドライエアの露点温度は、例えば-35℃であり、筐体5内部の結露を抑制している。 The housing 5 houses and seals the scattering member 1, the irradiation member 2, and the semiconductor laser 3 therein. For example, dry air (dry air) is sealed inside the housing 5. The dew point temperature of the dry air is, for example, −35 ° C., and dew condensation inside the housing 5 is suppressed.
 筐体5は、照射部材2から照射されるレーザ光を透過する材質で形成された前面部を有している。この前面部は、照射部材2の開口部と対向しており、照射部材2から照射されるレーザ光を透過する。このレーザ光を透過するという観点からいえば、筐体5の前面部は、照射部材2から照射されるレーザ光が通過する領域だけが上記の透過材質で形成されていてもよい。 The housing 5 has a front surface portion formed of a material that transmits laser light emitted from the irradiation member 2. The front surface portion faces the opening of the irradiation member 2 and transmits the laser light emitted from the irradiation member 2. From the viewpoint of transmitting the laser beam, only the region through which the laser beam irradiated from the irradiation member 2 passes through the front surface portion of the housing 5 may be formed of the transmission material.
 筐体5の前面部は透明であればどのような材質であってもよく、それによって、その前面部を低コストで、且つ、容易に製造することが可能となる。 The front part of the housing 5 may be made of any material as long as it is transparent, whereby the front part can be easily manufactured at low cost.
 筐体5は、上で述べた前面部を除き、レーザ光を遮光する遮光部材で構成すればよい。そうすることにより、散乱部材1により散乱されること無く、照射部材2から漏れ出してくるレーザ光を遮断することができる。 The housing 5 may be composed of a light shielding member that shields the laser light except for the front portion described above. By doing so, laser light leaking from the irradiation member 2 can be blocked without being scattered by the scattering member 1.
 照射装置13によれば、筐体5に、散乱部材1、照射部材2および半導体レーザ3を収め、外見的に一体化された照射装置を実現することができる。このような照射装置13は取り扱いが容易であり、発光部4との位置関係を精度良く設定することができ、レーザ光の利用効率も向上する。 According to the irradiation device 13, the scattering member 1, the irradiation member 2, and the semiconductor laser 3 are housed in the housing 5, and an irradiation device integrated in appearance can be realized. Such an irradiation device 13 is easy to handle, can set the positional relationship with the light emitting unit 4 with high accuracy, and improves the utilization efficiency of laser light.
 (変形例3)
 図4は、図1に示した照射装置11の変形例3の概略構成を示す図である。以下、照射装置11と同様の部分については、同一符号を付し、その詳細な説明は省略する。
(Modification 3)
FIG. 4 is a diagram showing a schematic configuration of Modification 3 of the irradiation apparatus 11 shown in FIG. Hereinafter, the same parts as those of the irradiation device 11 are denoted by the same reference numerals, and detailed description thereof is omitted.
 この変形例3である照射装置14と、図1の照射装置11とが異なる点は、照射部材2に代えて、照射部材2bおよび集光レンズ(光学部材)6を備える点である。 1 is different from the irradiation device 11 of FIG. 1 in that an irradiation member 2b and a condenser lens (optical member) 6 are provided instead of the irradiation member 2.
 照射部材2bは、照射部材2と同様、散乱部材1により散乱され、散乱部材1を中心に放射状に放射されたレーザ光を、照射装置14の外部に向けて、照射する。具体的には、照射部材2bは、照射装置14の外部に配置された、発光部4に向けて、散乱部材1により散乱されたレーザ光を照射する。 The irradiation member 2 b irradiates the laser beam scattered by the scattering member 1 and radiated radially around the scattering member 1 toward the outside of the irradiation device 14, similarly to the irradiation member 2. Specifically, the irradiation member 2 b irradiates the laser light scattered by the scattering member 1 toward the light emitting unit 4 disposed outside the irradiation device 14.
 照射部材2bは、その内部に、散乱部材1を収納する。散乱部材1は、例えば、照射部材2bの内部の内壁から延びる、支持部材に固定され、配置される。散乱部材1からの熱を効率よく、照射装置14の外部に伝導させるためには、散乱部材1を固定、支持する支持部材は、金属等の高熱伝導率の材料を用いれば良い。 The irradiation member 2b houses the scattering member 1 therein. The scattering member 1 is, for example, fixed and arranged on a support member that extends from the inner wall of the irradiation member 2b. In order to efficiently conduct the heat from the scattering member 1 to the outside of the irradiation device 14, the support member that fixes and supports the scattering member 1 may be made of a material having high thermal conductivity such as metal.
 照射部材2bは、照射部材2と同様、散乱部材1を収納する内部の内壁に、散乱部材1から放射されるレーザ光を反射し、照射装置14の外部に導き出す反射面を有している。 The irradiation member 2 b has a reflection surface that reflects the laser light emitted from the scattering member 1 and guides it to the outside of the irradiation device 14 on the inner wall that houses the scattering member 1, similarly to the irradiation member 2.
 但し、照射部材2とは異なり、照射部材2bの反射面は、公知の放物面反射鏡を実現する反射面である。このような反射面は、一般に、光源からの放射光を焦点に集め、軸に平行なコリメートされたビームとして反射する。 However, unlike the irradiating member 2, the reflecting surface of the irradiating member 2b is a reflecting surface that realizes a known parabolic reflecting mirror. Such reflective surfaces generally collect the emitted light from the light source at the focal point and reflect it as a collimated beam parallel to the axis.
 照射部材2bでは、その内部に位置する焦点上に散乱部材1が配置されている。このような配置構成により、照射部材2bは、散乱部材1から放射状に散乱されるレーザ光を、発光部4側に向かう、平行なコリメートされたレーザ光を照射することができる。 In the irradiation member 2b, the scattering member 1 is disposed on the focal point located inside. With such an arrangement, the irradiation member 2b can irradiate the collimated laser beam parallel to the light emitting unit 4 side with the laser beam radially scattered from the scattering member 1.
 このような平行なコリメートされたレーザ光は、集光レンズ6を通り、発光部4に集光される。 Such parallel collimated laser light passes through the condenser lens 6 and is condensed on the light emitting unit 4.
 (変形例4)
 図5は、図4に示した照射装置14の変形例(変形例4)の概略構成を示す図である。以下、照射装置11および照射装置14と同様の部分については、同一符号を付し、その詳細な説明は省略する。
(Modification 4)
FIG. 5 is a diagram illustrating a schematic configuration of a modification (Modification 4) of the irradiation apparatus 14 illustrated in FIG. 4. Hereinafter, the same parts as those of the irradiation device 11 and the irradiation device 14 are denoted by the same reference numerals, and detailed description thereof is omitted.
 この変形例4である照射装置15と、図4の照射装置14とが異なる点は、照射部材2bの開口部に発光部4aを配置した点にある。 4 is different from the irradiation device 15 shown in FIG. 4 in that the light emitting portion 4a is disposed in the opening of the irradiation member 2b.
 この照射装置15によれば、発光部4aは、照射部材2bの開口部に配置されるので、照射部材2bから照射されるレーザ光を確実に発光部4aに照射することができる。 According to the irradiation device 15, since the light emitting unit 4a is disposed in the opening of the irradiation member 2b, the light emitting unit 4a can be reliably irradiated with the laser light emitted from the irradiation member 2b.
 したがって、照射部材2bから照射されるレーザ光の利用効率が向上し、発光部4aへのレーザ光の照射を効果的に行なうことができる。それゆえ、発光部4aから発光される蛍光7の発光量を増大させることができる。 Therefore, the utilization efficiency of the laser beam irradiated from the irradiation member 2b is improved, and the light emission unit 4a can be effectively irradiated with the laser beam. Therefore, the light emission amount of the fluorescence 7 emitted from the light emitting unit 4a can be increased.
 (変形例5)
 図6は、図4に示した照射装置14の変形例(変形例5)の概略構成を示す図である。以下、照射装置11および照射装置14と同様の部分については、同一符号を付し、その詳細な説明は省略する。
(Modification 5)
FIG. 6 is a diagram illustrating a schematic configuration of a modified example (modified example 5) of the irradiation device 14 illustrated in FIG. 4. Hereinafter, the same parts as those of the irradiation device 11 and the irradiation device 14 are denoted by the same reference numerals, and detailed description thereof is omitted.
 この変形例5である照射装置16と、図4の照射装置14とが異なる点は、集光レンズ6に代えて、反射部材8を備えた点にある。 4 is different from the irradiation device 14 shown in FIG. 4 in that the reflecting member 8 is provided in place of the condenser lens 6.
 反射部材8は、例えば、その照射部材2b側に、照射部材2bからの平行なコリメートされたレーザ光を反射し、集光する反射面を有している。この反射面は、公知の軸外し放物面反射鏡を実現する反射面である。 The reflection member 8 has, for example, a reflection surface on the irradiation member 2b side that reflects and condenses parallel collimated laser light from the irradiation member 2b. This reflecting surface is a reflecting surface that realizes a known off-axis parabolic reflecting mirror.
 この照射装置16によれば、照射部材2bが、散乱部材1から放射状に散乱されるレーザ光を、照射部材2bの外部に向かう、平行なコリメートされたレーザ光とし、反射部材8が、この平行なコリメートされたレーザ光を、発光部4に向けて、集光し、照射することができる。 According to this irradiation device 16, the irradiation member 2b converts the laser light radially scattered from the scattering member 1 into parallel collimated laser light that goes to the outside of the irradiation member 2b, and the reflection member 8 has this parallel. The collimated laser beam can be condensed and irradiated toward the light emitting unit 4.
 以上のように、本発明の照射装置では、
 上記照射部材は、上記散乱光を反射し、一方向に導き出す反射面を内部に有することが好ましい。
As described above, in the irradiation apparatus of the present invention,
The irradiation member preferably has a reflection surface that reflects the scattered light and guides it in one direction.
 上記構成によれば、散乱部材から散乱された散乱光は、照射部材の反射面により反射する。それゆえ、散乱光を一方向に向かって効率よく導き出すことができる。 According to the above configuration, the scattered light scattered from the scattering member is reflected by the reflecting surface of the irradiation member. Therefore, scattered light can be efficiently derived in one direction.
 上記反射面の形状は、上記散乱光を、上記照射部材の外部に配置された発光部に向かって、導き出すように構成されることが好ましい。 The shape of the reflecting surface is preferably configured to guide the scattered light toward a light emitting unit disposed outside the irradiation member.
 上記構成によれば、散乱部材から散乱された励起光を、発光部に効率よく照射することができる。それゆえ、発光部の発光に利用される、励起光の利用効率を高めることができる。 According to the above configuration, the light emitting unit can be efficiently irradiated with the excitation light scattered from the scattering member. Therefore, it is possible to increase the utilization efficiency of the excitation light used for light emission of the light emitting unit.
 また、本発明の照射装置は、
 上記照射部材の、上記散乱光が向かう方向側に、配置された光学部材(集光レンズ6)をさらに備え、上記光学部材は、自身を透過する上記散乱光を、上記照射部材の外部に配置された発光部に向かって、進行させることが好ましい。
Moreover, the irradiation apparatus of the present invention comprises:
The irradiation member further includes an optical member (condenser lens 6) disposed on the side of the scattered light in the direction in which the scattered light travels, and the optical member arranges the scattered light that passes through the optical member outside the irradiation member. It is preferable to proceed toward the light emitting portion.
 上記構成によれば、散乱部材から散乱された散乱光は、光学部材を通過する際、その進行方向が発光部に向けられる。それゆえ、発光部の発光に利用される、励起光の利用効率を高めることができる。 According to the above configuration, when the scattered light scattered from the scattering member passes through the optical member, the traveling direction thereof is directed to the light emitting unit. Therefore, it is possible to increase the utilization efficiency of the excitation light used for light emission of the light emitting unit.
 さらに、本発明の照射装置は、
 励起光を出射する励起光源(半導体レーザ3)と、上記励起光源、上記散乱部材および上記照射部材を内部に格納する筐体とをさらに備えることが好ましい。
Furthermore, the irradiation apparatus of the present invention includes
It is preferable to further include an excitation light source (semiconductor laser 3) that emits excitation light, and a housing that stores therein the excitation light source, the scattering member, and the irradiation member.
 上記構成によれば、筐体に励起光源、散乱部材および照射部材を収め、外見的に一体化された照射装置を実現することができる。このような照射装置は取り扱いが容易であり、発光部との位置関係を精度良く設定することができ、励起光の利用効率も向上する。 According to the above configuration, it is possible to realize an irradiation device that is integrated in appearance by housing the excitation light source, the scattering member, and the irradiation member in the casing. Such an irradiation apparatus is easy to handle, can set the positional relationship with the light emitting section with high accuracy, and improves the utilization efficiency of excitation light.
 さらに、本発明の照射装置では、
 上記励起光源は、上記照射部材の内部に収納され、且つ、上記散乱部材に向かって、励起光を出射することが好ましい。
Furthermore, in the irradiation apparatus of the present invention,
Preferably, the excitation light source is housed inside the irradiation member and emits excitation light toward the scattering member.
 上記構成によれば、励起光源から出射された励起光のうち、散乱部材に照射されなかった励起光があっても、照射部材により、照射部材の外部にある発光部に照射される。励起光源が照射部材の外部にあった場合、散乱部材に照射されなかった励起光は迷光となってしまう。 According to the above configuration, even if there is excitation light that has not been irradiated to the scattering member among the excitation light emitted from the excitation light source, the light emitting portion outside the irradiation member is irradiated by the irradiation member. When the excitation light source is outside the irradiation member, the excitation light that has not been irradiated to the scattering member becomes stray light.
 それゆえ、上記構成によれば、励起光の利用効率を向上させることができる。 Therefore, according to the above configuration, the utilization efficiency of the excitation light can be improved.
 さらに、本発明の照射装置では、
 上記励起光源は、上記照射部材の外部に配置されており、上記照射部材は、上記励起光源から上記散乱部材に向かう励起光が通過する通過部を有することが好ましい。
Furthermore, in the irradiation apparatus of the present invention,
It is preferable that the excitation light source is disposed outside the irradiation member, and the irradiation member has a passage portion through which excitation light from the excitation light source toward the scattering member passes.
 照射部材の内部に励起光源が配置された場合、散乱部材から散乱された散乱光が外部に向かう際、励起光源に衝突し、その進行が妨げられる。この場合、照射部材からの散乱光の照射効率が低下してしまう。 When the excitation light source is arranged inside the irradiation member, the scattered light scattered from the scattering member collides with the excitation light source when it goes to the outside, and its progress is hindered. In this case, the irradiation efficiency of the scattered light from an irradiation member will fall.
 上記構成によれば、励起光源は照射部材の外部に配置されており、散乱部材から散乱された散乱光の進行を妨げることはない。 According to the above configuration, the excitation light source is disposed outside the irradiation member and does not hinder the progress of the scattered light scattered from the scattering member.
 それゆえ、励起光の利用効率を向上させることができる。 Therefore, the utilization efficiency of excitation light can be improved.
 さらに、本発明の照射装置では、
 上記散乱部材と、上記照射部材から上記散乱光が照射される発光部との間において、上記散乱部材の、上記照射部材から上記発光部に上記散乱光が照射される方向である照射方向への投影面積と、上記発光部の、上記照射方向とは反対の方向への投影面積とは、同一であることが好ましい。
Furthermore, in the irradiation apparatus of the present invention,
Between the scattering member and the light emitting portion irradiated with the scattered light from the irradiation member, the scattering member in the irradiation direction, which is the direction in which the scattered light is irradiated from the irradiation member to the light emitting portion. The projected area and the projected area of the light emitting unit in the direction opposite to the irradiation direction are preferably the same.
 ただし、散乱部材により励起光の発光点サイズを拡大した場合、例えば反射鏡やレンズ等を用いて集光したとしても、散乱部材の大きさよりも小さく集光することはできない。 However, when the emission point size of the excitation light is enlarged by the scattering member, for example, even if it is condensed using a reflecting mirror or a lens, it cannot be condensed smaller than the size of the scattering member.
 上記構成によれば、散乱部材を発光部と同一の投影面積とすることにより、散乱部材からの散乱光を、照射部材を用いて、発光部に効率よく照射することができる。 According to the above configuration, by setting the scattering member to the same projected area as that of the light emitting unit, the light emitted from the scattering member can be efficiently irradiated to the light emitting unit using the irradiation member.
 さらに、本発明の照射装置では、
 上記励起光源から出射される励起光は、420nm以上の波長範囲にピーク波長を有することが好ましい。
Furthermore, in the irradiation apparatus of the present invention,
The excitation light emitted from the excitation light source preferably has a peak wavelength in a wavelength range of 420 nm or more.
 ここで、「420nm以上の波長範囲にピーク波長を有する」励起光は、青色(450nm)のレーザ光、あるいは、青色近傍(440nm以上490nm以下)の波長範囲にピーク波長を有するレーザ光を含むものである。 Here, the excitation light “having a peak wavelength in the wavelength range of 420 nm or more” includes blue (450 nm) laser light or laser light having a peak wavelength in the wavelength range near blue (440 nm to 490 nm). .
 上記構成においては、照射部材から発光部に向けて照射されるとき、励起光源から出射された励起光のうち、発光部に照射されない励起光、あるいは、発光部に照射されるものの、蛍光励起に利用されずに発光部から再び出射される励起光が存在する場合がある。 In the above configuration, when the light is emitted from the irradiation member toward the light emitting unit, the excitation light emitted from the excitation light source is not irradiated on the light emitting unit, or the light emitting unit is irradiated with the excitation light. There may be excitation light that is emitted from the light emitting unit again without being used.
 上記構成によれば、このような励起光であっても、発光点サイズが拡大されているので、発光部から発光された光とともに、照明光として、安全に利用することができる。 According to the above configuration, even with such excitation light, since the emission point size is enlarged, it can be safely used as illumination light together with the light emitted from the light emitting unit.
 さらに、本発明の照射装置は、
 上記照射部材の、上記散乱光が出射される開口部に配置された発光部をさらに備えることが好ましい。
Furthermore, the irradiation apparatus of the present invention includes
It is preferable that the light emitting unit further includes a light emitting unit disposed in an opening of the irradiation member from which the scattered light is emitted.
 上記構成によれば、照射部材の、散乱光が向かう方向側に、発光部が配置されるので、発光部への散乱光の照射を効果的に行なうことができる。 According to the above configuration, since the light emitting part is arranged on the irradiation member on the side in which the scattered light is directed, the light emitting part can be effectively irradiated with the scattered light.
 (本発明における集光の定義)
 本発明における「集光」の意義は、「光を狭める」や「一点に集める」に限られるものではない。本発明における「集光」の意義は、要は、「所望の照射領域に光が照射されるようにする」ことのみであり、「光を狭める」や「一点に集める」といった意義のみならず、「光を広げる」、より具体的には、「一点から広げる」といった意義や、「光の進行方向を変化させない」といった意義も含むものである。
(Definition of light collection in the present invention)
The meaning of “light collection” in the present invention is not limited to “narrowing light” or “collecting light at one point”. The meaning of “light collection” in the present invention is only to “make light irradiate a desired irradiation region”, and not only to “narrow light” and “collect light at one point”. It also includes the meaning of “spreading light”, more specifically “spreading from one point” and “not changing the traveling direction of light”.
 (発光装置のその他の構成例)
 本発明の照射装置を備える発光装置は、自動車のすれ違い用前照灯(ロービーム)や、その他の照明装置に適用されてもよい。本発明の照明装置の一例として、ダウンライトを挙げることができる。ダウンライトは、家屋、乗物などの構造物の天井に設置される照明装置である。その他にも、本発明の照明装置は、車両および他の移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、サーチライト、プロジェクタ、ダウンライト以外の室内照明器具(スタンドランプなど)として実現されてもよい。
(Other configuration examples of light emitting device)
The light-emitting device including the irradiation device of the present invention may be applied to a vehicle headlight (low beam) and other lighting devices. A downlight can be mentioned as an example of the illuminating device of this invention. A downlight is a lighting device installed on the ceiling of a structure such as a house or a vehicle. In addition, the lighting device of the present invention may be realized as a headlamp of a vehicle and other moving objects (for example, humans, ships, aircrafts, submersibles, rockets, etc.), searchlights, projectors, downlights. It may be realized as a room lighting device other than (such as a stand lamp).
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 本発明は、高輝度かつ高光束でありながら、従来の発光装置よりも小さな発光装置であり、車両用のヘッドランプ、プロジェクタなどに適用することができる。 The present invention is a light emitting device smaller than a conventional light emitting device while having high luminance and high luminous flux, and can be applied to a vehicle headlamp, a projector, and the like.
 11、12、13、14、15、16  照射装置
 2、2a、2b  照射部材
 3  半導体レーザ(励起光源)
 4、4a  発光部
 5  筐体
 6  集光レンズ(光学部材)
 8  反射部材
11, 12, 13, 14, 15, 16 Irradiation device 2, 2a, 2b Irradiation member 3 Semiconductor laser (excitation light source)
4, 4a Light emission part 5 Case 6 Condensing lens (optical member)
8 Reflective member

Claims (13)

  1.  励起光源から出射された励起光を散乱させる散乱部材と、
     上記散乱部材を内部に収納し、且つ、上記散乱部材から散乱された励起光である散乱光を発光部に向かって照射する照射部材と
    を備え、
     上記励起光源および上記照射部材の各々を、光を発する1つの発光点としてみなしたとき、上記照射部材の発光点サイズが上記励起光源の発光点サイズよりも大きいことを特徴とする照射装置。
    A scattering member that scatters excitation light emitted from the excitation light source;
    An irradiating member that houses the scattering member therein and irradiates the light emitting unit with scattered light that is excitation light scattered from the scattering member;
    An irradiation apparatus, wherein each of the excitation light source and the irradiation member is regarded as one light emitting point that emits light, and a light emission point size of the irradiation member is larger than a light emission point size of the excitation light source.
  2.  上記照射部材は、上記散乱光を反射し、一方向に導き出す反射面を内部に有することを特徴とする請求項1に記載の照射装置。 The irradiation apparatus according to claim 1, wherein the irradiation member includes a reflection surface that reflects the scattered light and guides the scattered light in one direction.
  3.  上記反射面の形状は、上記散乱光を、上記照射部材の外部に配置された発光部に向かって、導き出すように構成されることを特徴とする請求項2に記載の照射装置。 The irradiation apparatus according to claim 2, wherein the shape of the reflection surface is configured to guide the scattered light toward a light emitting unit disposed outside the irradiation member.
  4.  上記照射部材の、上記散乱光が向かう方向側に、配置された光学部材をさらに備え、
     上記光学部材は、自身を透過する上記散乱光を、上記照射部材の外部に配置された発光部に向かって、進行させることを特徴とする請求項1または2に記載の照射装置。
    Further comprising an optical member arranged on the side of the irradiation member in the direction of the scattered light,
    The irradiation apparatus according to claim 1, wherein the optical member causes the scattered light that passes through the optical member to travel toward a light emitting unit disposed outside the irradiation member.
  5.  励起光を出射する励起光源と、
     上記励起光源、上記散乱部材および上記照射部材を内部に格納する筐体と
    をさらに備えることを特徴とする請求項1~4のいずれか一項に記載の照射装置。
    An excitation light source that emits excitation light;
    The irradiation apparatus according to any one of claims 1 to 4, further comprising a casing that stores the excitation light source, the scattering member, and the irradiation member therein.
  6.  上記励起光源は、上記照射部材の内部に収納され、且つ、上記散乱部材に向かって、励起光を出射することを特徴とする請求項5に記載の照射装置。 6. The irradiation apparatus according to claim 5, wherein the excitation light source is housed inside the irradiation member and emits excitation light toward the scattering member.
  7.  上記励起光源は、上記照射部材の外部に配置されており、
     上記照射部材は、上記励起光源から上記散乱部材に向かう励起光が通過する通過部を有することを特徴とする請求項5に記載の照射装置。
    The excitation light source is disposed outside the irradiation member,
    The irradiation device according to claim 5, wherein the irradiation member has a passage portion through which excitation light directed from the excitation light source toward the scattering member passes.
  8.  上記散乱部材と、上記照射部材から上記散乱光が照射される発光部との間において、
     上記散乱部材の、上記照射部材から上記発光部に上記散乱光が照射される方向である照射方向への投影面積と、上記発光部の、上記照射方向とは反対の方向への投影面積とは、同一であることを特徴とする請求項2または3に記載の照射装置。
    Between the scattering member and the light emitting portion irradiated with the scattered light from the irradiation member,
    The projected area of the scattering member in the irradiation direction, which is the direction in which the scattered light is irradiated from the irradiation member to the light emitting unit, and the projected area of the light emitting unit in the direction opposite to the irradiation direction The irradiation apparatus according to claim 2, wherein the irradiation apparatuses are the same.
  9.  上記励起光源から出射される励起光は、420nm以上の波長範囲にピーク波長を有することを特徴とする請求項1~8のいずれか一項に記載の照射装置。 The irradiation apparatus according to any one of claims 1 to 8, wherein the excitation light emitted from the excitation light source has a peak wavelength in a wavelength range of 420 nm or more.
  10.  上記照射部材の、上記散乱光が出射される開口部に配置された発光部をさらに備えることを特徴とする請求項1または2に記載の照射装置。 The irradiation apparatus according to claim 1 or 2, further comprising a light emitting unit disposed in an opening of the irradiation member from which the scattered light is emitted.
  11.  請求項1~9のいずれか一項に記載の照射装置と、
     上記照射装置から出力される光により発光する発光部と
    を備えることを特徴とする発光装置。
    Irradiation device according to any one of claims 1 to 9,
    A light emitting device comprising: a light emitting portion that emits light by light output from the irradiation device.
  12.  請求項11に記載の発光装置を備えることを特徴とする照明装置。 An illumination device comprising the light-emitting device according to claim 11.
  13.  請求項11に記載の発光装置を備えることを特徴とする車両用前照灯。 A vehicle headlamp comprising the light-emitting device according to claim 11.
PCT/JP2012/065665 2011-07-29 2012-06-19 Radiating device, light-emitting device, illumination device, and vehicle headlight WO2013018449A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-167738 2011-07-29
JP2011167738A JP2013030444A (en) 2011-07-29 2011-07-29 Radiation device, light-emitting device, lighting apparatus, and vehicle headlight

Publications (1)

Publication Number Publication Date
WO2013018449A1 true WO2013018449A1 (en) 2013-02-07

Family

ID=47628986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065665 WO2013018449A1 (en) 2011-07-29 2012-06-19 Radiating device, light-emitting device, illumination device, and vehicle headlight

Country Status (2)

Country Link
JP (1) JP2013030444A (en)
WO (1) WO2013018449A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157060A1 (en) * 2019-01-31 2020-08-06 Bayerische Motoren Werke Aktiengesellschaft Illumination apparatus for a motor vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616085A (en) * 1992-06-30 1994-01-25 Nissan Motor Co Ltd Lighting apparatus
JP2001520801A (en) * 1995-11-01 2001-10-30 アジレント・テクノロジーズ・インク Vertical cavity surface emitting diode laser array for irradiation
JP2003295319A (en) * 2002-04-04 2003-10-15 Nitto Kogaku Kk Light source unit and projector
JP2006113085A (en) * 2004-10-12 2006-04-27 Sony Corp Light source device
JP2010108604A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Spotlight
JP2011119200A (en) * 2009-04-15 2011-06-16 Ushio Inc Laser-driven light source

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616085A (en) * 1992-06-30 1994-01-25 Nissan Motor Co Ltd Lighting apparatus
JP2001520801A (en) * 1995-11-01 2001-10-30 アジレント・テクノロジーズ・インク Vertical cavity surface emitting diode laser array for irradiation
JP2003295319A (en) * 2002-04-04 2003-10-15 Nitto Kogaku Kk Light source unit and projector
JP2006113085A (en) * 2004-10-12 2006-04-27 Sony Corp Light source device
JP2010108604A (en) * 2008-10-28 2010-05-13 Panasonic Electric Works Co Ltd Spotlight
JP2011119200A (en) * 2009-04-15 2011-06-16 Ushio Inc Laser-driven light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020157060A1 (en) * 2019-01-31 2020-08-06 Bayerische Motoren Werke Aktiengesellschaft Illumination apparatus for a motor vehicle
US11326754B2 (en) 2019-01-31 2022-05-10 Bayerische Motoren Werke Aktiengesellschaft Illumination apparatus for a motor vehicle

Also Published As

Publication number Publication date
JP2013030444A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP4991834B2 (en) Vehicle headlamp
JP5329511B2 (en) Lighting device and vehicle headlamp
JP5232815B2 (en) Vehicle headlamp
WO2013024668A1 (en) Misalignment detection device, light-emitting device, lighting device, projector, vehicle headlight, and misalignment adjustment method
JP5204885B2 (en) Lighting device and vehicle headlamp
JP5059208B2 (en) Lighting device and vehicle headlamp
JP5090549B2 (en) Sintered light emitter, light emitting device, lighting device, vehicle headlamp, and method for producing sintered light emitter
JP5254418B2 (en) Lighting device and headlamp
JP5380476B2 (en) Light emitting device, lighting device and headlamp
JP2012099282A (en) Lighting system and headlight for vehicle
WO2014080705A1 (en) Light emitting apparatus, method for manufacturing same, lighting apparatus, and headlamp
JP5624384B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2011129376A (en) Light emitting device, lighting system, headlamp for vehicle, and projector
JP2012099279A (en) Light-emitting device, lighting system, and headlight for vehicle
JP2013109928A (en) Lighting system, vehicle headlamp, and downlight
JP5059166B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2012193283A (en) Light-emitting body, illuminating device, and headlight
JP2014022472A (en) Light emission device, lighting device, and light emission method
JP5356998B2 (en) Vehicle headlamp
JP2013079311A (en) Light-emitting body, illumination device, and headlight
JP5086392B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP5737861B2 (en) Lighting device and vehicle headlamp
JP2012204071A (en) Lighting device and headlight
JP5518964B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2012204072A (en) Light-emitting device, lighting device, and vehicular headlight

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820525

Country of ref document: EP

Kind code of ref document: A1