WO2013017702A1 - Method for determining the genotype of multiple sequences - Google Patents

Method for determining the genotype of multiple sequences Download PDF

Info

Publication number
WO2013017702A1
WO2013017702A1 PCT/ES2011/070565 ES2011070565W WO2013017702A1 WO 2013017702 A1 WO2013017702 A1 WO 2013017702A1 ES 2011070565 W ES2011070565 W ES 2011070565W WO 2013017702 A1 WO2013017702 A1 WO 2013017702A1
Authority
WO
WIPO (PCT)
Prior art keywords
interest
amplification
reaction
sequencing
sequences
Prior art date
Application number
PCT/ES2011/070565
Other languages
Spanish (es)
French (fr)
Inventor
Pablo CASTÁN GARCÍA
Ivana TONIC
Alistair Edward RITCHIE
Pedro Manuel Franco De Sarabia Rosado
Original Assignee
2B Blackbio S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 2B Blackbio S.L. filed Critical 2B Blackbio S.L.
Priority to PCT/ES2011/070565 priority Critical patent/WO2013017702A1/en
Publication of WO2013017702A1 publication Critical patent/WO2013017702A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention describes a method for the determination of the genotype of multiple sequences of interest, more specifically, it describes a method for determining the genotype of multiple sequences simultaneously in a single reaction, and in particular, a method for the determination of the genotype of single nucleotide polymorphisms (SNPs) simultaneously in a single reaction.
  • SNPs single nucleotide polymorphisms
  • sequences which are the basis of the aforementioned syndromes, are very often separated long distances upstream / downstream of a particular genetic marker, therefore their parallel analysis is a requirement to be able to provide an accurate diagnosis.
  • a significant number of clinical uses occur when this kind of distant sequences (which often show different coupling patterns) are analyzed, including the determination of the consequences of complex diseases, uses in farmocogenetics, legal medicine, and epidemiological studies. In this sense, a significant number of genetic disorders are the result of the interaction between sequences distant from each other, contributing to the risk of developing a particular disease.
  • Single nucleotide polymorphisms represent the most abundant type of sequence variation in the human genome and can be useful for many diverse uses, including determining the genetic architecture of complex traits and diseases, applications in pharmacogenetics, legal medicine , and evolutionary studies. Many genetic disorders are the result of the interaction of more than one SNP, each contributing to the risk of developing a particular disease. In many cases these SNPs with which the risk of disease development are associated are very separated in the same gene, or even present in different genes. Traditionally the genotype of sequences and in particular SNPs is determined by microsequencing reactions.
  • the conventional method includes a PCR reaction to amplify a region of DNA that contains the sequence of interest and in particular the SNP of interest and to amplify a DNA sequence that flanks the sequence / SNP of interest and that can be used as a quality control. internal.
  • the microsequencing reaction is then carried out with which the sequence flanking the sequence / SNP of interest as well as the sequence of interest itself and in particular the SNP can be read and its genotype can be resolved.
  • Genotyping of multiple sequences and in particular of multiple SNPs is carried out by doing a PCR reaction and a sequencing reaction for each sequence and / or SNP of interest.
  • a sequencing reaction for example see Lin YS, Liu FG, Wang TY, Pan CT, Chang WT, Li WH (2010) "A simple method using Pyrosequencing TM to identify de novo SNPs in pooled DNA samples.”
  • Anal Biochem 363 (2): 275-287 The method requires multiple sequencing reactions that make it more expensive as well as lengthen the test.
  • large quantities of starting template DNA necessary to sequence the multiple regions of interest are required, thus making this process unfeasible for cases where the amount of starting template DNA sequencing is very low.
  • the present invention aims at determining the genotype of multiple sequences of interest, in particular, of multiple single nucleotide polymorphisms (SNPs) simultaneously in a single sequencing reaction.
  • SNPs single nucleotide polymorphisms
  • FIG. 1 shows a simple PCR reaction with a multiplex genotyping reaction.
  • FIG. 2 shows a multiplex PCR reaction with a multiplex genotyping reaction.
  • FIG. 3 shows the image of the agarose gel that results from the simple PCR, according to example 1.
  • FIG. 4 shows an overview of the overall quality of pyrosequencing reactions, according to example 1.
  • FIG. 5 shows the image of the pyrograms obtained from the simple and multiplex genotyping of SNP, according to example 1.
  • FIG. 6 shows the results of the genotype obtained for the template DNA, according to example 1.
  • FIG. 7 shows the image of the agarose gel that results from the simple PCR, according to example 2.
  • FIG. 8 shows a view of the quality of pyrosequencing reactions, according to example 2.
  • FIG. 9 shows the image of the pyrograms of the simple and multiplex genotyping of SNP, according to example 2.
  • FIG. 10 shows the genotype results obtained for the template DNA, according to example 2.
  • FIG. 1 1 shows the image of the agarose gel that results from the simple PCR, according to example 3.
  • FIG. 12 shows the image of the agarose gel that results from multiplex PCR, according to example 3.
  • FIG. 13 shows an overview of the overall quality of pyrosequencing reactions, according to example 3.
  • FIG. 14 shows the genotype results obtained for the template DNA, according to example 3.
  • FIG. 15 shows the image of the agarose gel that results from the gelled PCR, according to example 4.
  • FIG. 16 shows an overview of the overall quality of pyrosequencing reactions, according to example 4.
  • sequences of interest includes, but is not limited to, genetic areas encoding or not (ie introns / exons), repetitions in tanden and satellites, 5 'UTR leader regions, high mutational intensity points ... and, in general, any DNA fragment whose modification leads to changes in the behavior of a particular organism in relation to the development of abnormalities.
  • target includes, but is not limited to, molecules, genes, or genomes, which contain a nucleic acid sequence or segment of a sequence that is interested in being characterized by identification, quantification or amplification.
  • Targets contemplated under this invention can be derived from any organism, including mammals and non-mammals, bacteria, viruses or fungi.
  • a retrovirus is an example of a target that can be identified or quantified using highly conserved sequences to make genomic mapping.
  • nucleic acid analyte may alternatively be used to identify a nucleic acid, a nucleic acid sequence, or a segment of a sequence of a nucleic acid within an organism, bacteria, or virus, which is subject to characterization.
  • gene includes, but is not limited to, a particular nucleic acid sequence within a DNA molecule that occupies a precise position on a chromosome and is capable of self-replication by encoding a specific polypeptide chain.
  • gene refers to a complete set of genes in the chromosomes of each cell of a specific organism.
  • nucleotide and nucleoside include, but are not limited to, nucleosides that contain not only the four nucleotide bases of natural DNA, ie, guanine purine bases (G ) and adenine (A) and pyrimidine cytosine (C) and thymine (T) bases, but also the uracil (U) RNA purine base, iso-G and iso-C non-natural nucleotide bases, universal bases , degenerate bases, and other modified nucleotides and nucleosides.
  • G guanine purine bases
  • A adenine
  • C pyrimidine cytosine
  • T thymine
  • U uracil
  • oligonucleotide includes, but is not limited to, polydeoxosiribonucleotides (containing 2-dexosi-D-ribose), polybibonucleotides (containing D-ribose), and any other type of polynucleotide that is a N-glycoside of a purine or pyrimidine base, and other polymers containing non-nucleotide characters (for example, any type of modified DNA or RNA chain from those used in different applications in molecular biology and medicine, where they can be used as a probe to investigate diseases, viral infections, identify genes, specific target regions within a chromosome ... etc.
  • modified oligonucleotides can be made of different nucleotide-derived base units, organized in various forms such as nucleic acids from proteins and polymers of synthetic nucleic acids with a specific sequence commercially available through Anti-Gene Development Group, Corvallis, Oregon, such as NEUGENE TM polymers) or non-standard junctions, provided that the polymers contain core-bases in a configuration that allows for matching and alignment of the bases, such as found in DNA and RNA.
  • oligonucleotides include double and single stranded DNA, as well as double and single stranded RNA and DNA: RNA hybrids, and also includes known types of modified oligonucleotides, such as, for example, oligonucleotides where one or more of the natural nucleotides are replaced by an analog; oligonucleotides that contain inter-nucleotide modifications such as, for example, those with non-anionic / non-cationic junctions (e.g., methyl phosphonates, phosphotriesters, phosphoromidates, carbamates, etc.), anionic junctions (e.g., phosphorothioates, phosphorodithioates, etc.) , and cationic junctions (eg amino-alkyl phosphoromidates, amino-alkyl phosphotriesters), which contain interaction domains such as, for example, proteins (including nucleases, toxins, antibodies, signal peptides,
  • amplification oligonucleotide includes, but is not limited to, an oligonucleotide that is complementary to the cDNA or RNA target molecule and provides the 3'-OH end as a substrate to which any DNA polymerase can add the nucleosides of a chain. increasing DNA in the 5'-3 'direction.
  • Simple includes, but is not limited to, a single test that is not carried out simultaneously with any other test.
  • Singleplex tests include individual tests that are carried out sequentially.
  • multiplex assay includes, but is not limited to, multiple tests that are carried out simultaneously, in which the detection and analysis steps are generally carried out in parallel.
  • a multiplex assay will include the use of primers and probes, alone or in combination with other primers and additional probes for the identification, for example, of the influenza virus together with one or more additional viruses.
  • primers and probes for internal controls and assays may include for example oligonucleotides.
  • gelled amplification reagents includes, but is not limited to, stabilized amplification reagents that preserve their chemical and biochemical qualities.
  • amplification reagents include but are not limited to, reaction buffers, reaction enhancers, and enzymes involved in an enzymatic reaction, in this case the amplification of nucleic acids and the reactions associated with sequencing by synthesis, once all are included.
  • reaction buffers in this case multi-well tubes or plates, so that they are each dosed in the optimal reaction amounts, and do not interact or react with each other, immobilizing the biochemical reaction in which they intervene, being able to activate the enzymatic reaction at the will of the user, without having produced a significant decrease in their activity, having elapsed days, weeks, months or even years after mixing and stabilization.
  • the stabilization thus understood is achieved by the addition of a stabilizing mixture to a solution containing the reaction mixture, and the subsequent elimination of all or part of the water present in the resulting solution.
  • This removal of all or part of the water can be achieved by lyophilization processes, dried in a fluid bed, dried at room temperature and atmospheric pressure, dried at room temperature and low pressure, dried at high temperature and atmospheric pressure, and dried at high Temperature and low pressure.
  • the stabilization method preferably used is the stabilization by gelation, described in WO 02/072002, assigned to Biotools Biotechnological & Medical Laboratories, SA
  • the stabilizing mixture of the reaction mixture is preferably composed of trehalose, melezitosa , lysine or betaine and glycogen or raffinose, at different concentrations depending on the enzymatic reaction to stabilize. More preferably the gelation mixture is composed of trehalose, melezitose, glycogen and lysine.
  • stabilizers are preferably desiccation by vacuum at a temperature between 30 5 C and 40 5 C, depending on the enzymatic reaction to be stabilized. Specifically, in the present invention the moisture content is maintained between 10-30% water.
  • the present invention discloses a method for the determination of multiple sequences, in particular, single nucleotide polymorphisms (SNPs) simultaneously.
  • the method comprises the amplification of one or more target sequences present in a sample to produce an amplified product, and the genotyping of the amplified product with multiple sequencing oligonucleotides simultaneously.
  • the sample may be a DNA sample or an RNA sample and the target sequence is a sequence in the DNA sample or in the RNA sample comprising one or more sequences to be identified, in particular, SNP sites of interest and a adjacent sequence which can be used as internal quality control.
  • the amplification reaction may be a simple amplification reaction or a multiplex amplification reaction depending on the location of the sequence of interest, in particular the SNP sites in the sample.
  • the simple amplification reaction is used when two or more sequences of interest, in particular SNP sites of interest, are located at a distance not exceeding 1 kbp from each other.
  • a single reaction is designed with a pair of amplification oligonucleotides that covers all relevant sequences, in particular SNP sites in a single amplicon.
  • the multiplex amplification reaction is used when the sequences of interest, in particular the SNP sites of interest are located too far from each other to be included in a single amplicon, or due to the presence of a long intermediate sequence, or because the sequences of interest, particularly SNP sites are located in different genes or chromosomes
  • Multiplex amplification reactions are designed with a mixture of pairs of amplification oligonucleotides that share similar chemical compositions, so they can be used under the same concentrations of some reagents, same alignment temperatures and same extension times. Similar chemical compositions should be understood as nucleotide base units that need to be organized so that each unit has a complementary base to which it will bind.
  • the mixture of amplification oligonucleotide pairs comprises at least one pair of amplification oligonucleotides corresponding to each of the target sequences to be amplified.
  • the primers and amplification oligonucleotides used are complementary to the 3 '(three prime) ends of each parallel and anti-parallel strand of the strand of the target sequence.
  • the oligonucleotides align first to the sample and then the amplification reaction takes place.
  • One of the oligonucleotides of the amplification oligonucleotide pair is biotinylated so that the amplified product obtained is biotinylated.
  • the amplification reaction is the polymerase chain reaction (PCR), however, other amplification reactions such as, but not limited to, the ligase chain reaction (LCR), mutagenesis systems synthesis-directed (ARMS), specific allele PCR (ASPCR), degenerate PCR can be used for amplification of the target sequence without altering the scope or spirit of the present invention.
  • PCR polymerase chain reaction
  • other amplification reactions such as, but not limited to, the ligase chain reaction (LCR), mutagenesis systems synthesis-directed (ARMS), specific allele PCR (ASPCR), degenerate PCR can be used for amplification of the target sequence without altering the scope or spirit of the present invention.
  • the amplification reaction is stabilized by the process and gelation reagents described in WO 02/072002.
  • the sequencing oligos are stabilized by the process and gelation reagents described in WO 02/072002.
  • the amplified product produced by a simple amplification reaction or a multiplex amplification reaction is a hybrid of at least two sequences of interest, in particular SNPs sites and their adjacent sequences.
  • This amplified product is then genotyped with a mixture of sequencing oligonucleotides. simultaneously in a single multiplex genotyping reaction.
  • the sequencing oligonucleotide mixture comprises at least one sequencing oligonucleotide for each of the sequences of interest, in particular SNP sites of interest.
  • the sequencing oligonucleotides bind a few bases upstream to the sequence of interest, in particular the SNP site to initiate the sequencing process.
  • genotyping of the amplified product is done by the pyrosequencing method, however, other genotyping methods such as, but not limited to, Sanger sequencing, mass sequencing systems by fragment stacking (MPSS), sequencing polarized, Illumination sequencing, SOLiD sequencing, SANGER microfluidic sequencing, hybridization sequencing or the like can also be used for genotyping the amplified product without altering the scope and spirit of the present invention.
  • MPSS fragment stacking
  • the genotyping reaction is carried out as follows: an oligonucleotide or hybrid sequencing primer with a single stranded amplified product or amplified amplicon or PCR amplicon serving as a template, and is incubated with the enzymes, DNA polymerase, ATP sulphorylase, luciferase and apyrase as well as with the substrates, 5 'phosphosulfate adenosine (APS), and luciferin.
  • an oligonucleotide or hybrid sequencing primer with a single stranded amplified product or amplified amplicon or PCR amplicon serving as a template, and is incubated with the enzymes, DNA polymerase, ATP sulphorylase, luciferase and apyrase as well as with the substrates, 5 'phosphosulfate adenosine (APS), and luciferin.
  • APS 5 'phosphosulfate adenosine
  • the first deoxyribonucleotide triphosphate (dNTP) is added to the reaction.
  • DNA polymerase catalyzes the incorporation of dNTPs into the DNA strand, if it is complementary to the base present in the template strand.
  • PPi pyrophosphate
  • ATP sulphorylase converts PPi to ATP in the presence of APS. This ATP conducts the luciferase-mediated conversion of luciferin to oxyluciferin that produces visible light in amounts proportional to the amount of ATP.
  • the light produced in the reaction catalyzed by luciferase is detected by a camera or a photomultiplier and is observed as a peak in the information of the raw data obtained (Pyrogram).
  • the height of each peak corresponds to the light signal that is proportional to the number of nucleotides incorporated during the genotyping reaction.
  • An enzyme that degrades nucleotides such as apyrase, degrades nucleotides that have not been incorporated and ATP. When degradation is complete, another nucleotide is added. This is a continuous process during the genotyping reaction. The addition of dNTPs is sequential.
  • dATP.S dexosiadenosine alpha-thio-triphosphate
  • dATP dexosiadenosine triphosphate
  • the sequencer such as, but not limited to, microsequencer used during the genotyping reaction is programmed with a target sequence that includes the sequences adjacent to each of the multiple sequences of interest, in particular SNPs sites. This allows the genotyping software to determine if the correct reference sequence is present.
  • FIG. 1 shows a simple PCR reaction with a multiplex genotyping reaction according to an exemplary embodiment of the present invention.
  • the DNA sample contains two SNP sites of interest (SNP1 and SNP2) that are located less than 1 kb from each other.
  • a target sequence of the DNA sample containing both SNP sites (SNP1 and SNP2) is amplified by polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • A01 and A01 ' are used, of which one of them, A01' is biotinylated.
  • the resulting PCR product is biotinylated and contains both SNP SNP1 and SNP2 sites.
  • two sequencing oligonucleotides S01 and S02 are aligned to the PCR product.
  • During genotyping reactions adjacent sequences and those that include both SNPs overlap.
  • FIG.2 shows a multiplex PCR with a multiplex genotyping reaction according to an exemplary embodiment of the present invention.
  • the DNA sample contains two SNP sites of interest (SNP1 and SNP2) that are located in two different genes.
  • Two target sequences of the DNA sample, each containing one of the SNP sites of interest, are amplified by the use of two pairs of amplification oligonucleotides, wherein the first pair of amplification oligonucleotides (A01 and A01 ') It is for the first SNP site of interest (SNP1) and the second couple of amplification oligonucleotides (A02 and A02 ') is for the second SNP site of interest.
  • the amplification oligonucleotides A01 'and A02' are biotinylated.
  • the resulting PCR products are biotinylated and contain an SNP site.
  • two sequencing oligonucleotides S01 and S02 are aligned to the PCR products. During genotyping reactions adjacent sequences and those that include both SNPs overlap
  • the method according to one of the exemplary embodiments of the present invention uses a single amplification reaction and a single genotyping reaction reducing the work and costs related to the preparation of the sample, numerous tests, need to have a large amount of Starting DNA and large number of sequencing reactions. In addition, the method is technically less complicated and also reduces the overall cost.
  • kits consist of: i) all the necessary reagents in the optimal amounts and concentrations for the generation of a simple or multiplex amplification reaction of the targets of interest ( precisely amplification oligonucleotides, DNA polymerase, dexosinucleotides and reaction buffer) all pre-mixed and stabilized by means of the gelation process and,
  • the CDKN2a gene contains two SNPs, Rs10757283 and Rs1081 1661, which are associated with an increased risk of suffering from type II diabetes mellitus. These SNPs are linked in equilibrium and are separated by 77 bases.
  • the following amplification oligonucleotides are designed: (i) a 23-base unmodified forward oligonucleotide and (ii) a 20-base reverse-biotinylated oligonucleotide.
  • the forward oligonucleotide has a theoretical alignment temperature of 60.8 5 C and the reverse oligonucleotide has an alignment temperature of 62.4 5 C.
  • the optimal reaction alignment temperature was determined experimentally at 55 5 C.
  • the two SNPs are read by the sequencing oligonucleotide 1 of 17 bases, which hybridizes 3 bases upstream of Rs1081 1661 and has an alignment temperature of 50.0 5 C, and sequencing oligonucleotide 2 of 19 bases, which hybrid adjacent to Rs10757283 and has an alignment temperature of 53.7 5 C.
  • the sequencing oligonucleotide 1 reads the sequence SEQ ID NO: 1 (TTCYCATGAC) with the dispensing order SEQ ID NO: 2 (GTCTCGATGA), and the sequencing oligonucleotide 2 reads the sequence SEQ ID NO: 3 ( YTGATATTCT) with the dispensing order SEQ ID NO: 4 (GCTCGATAT).
  • the sequences are read in the order of dispensing SEQ ID NO: 5 (GCTAGCTCGATGA).
  • a reaction mixture is prepared with the amplification oligonucleotides of CDKN2a.
  • DNA polymerase enzyme manufactured by Biotools Biotechnological & Medical Laboratories SA, 5 ⁇ of a reaction that is marketed together with the enzyme, between 0.1 ⁇ and 0.3 ⁇ of a 10mM solution containing the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP) and between 0.2 ⁇ and 0.5 ⁇ of a solution 10 ⁇ of the pair of amplification oligonucleotides described in the materials section to generate a 246 bp amplicon containing the two SNPs of interest (Rs10757283 and Rs1081 1661).
  • FIG. 3 shows the results of the agarose gel. 30ng of template DNA was loaded onto the agarose gel together with a control without template DNA (NTC), where 10 ⁇ of PCR product was mixed with 2 ⁇ of loading buffer and ran on a 2% agarose gel in TBE 0.5x to 100V for 30 minutes.
  • NTC control without template DNA
  • FIG. 4 shows the overall quality of pyrosequencing reactions.
  • Wells A1 and A2 correspond to the single-stranded PCR product with oligo sequencing 1.
  • Wells A3 and A4 correspond to the single-stranded PCR product with sequencing oligo 2.
  • Wells A5 and A6 correspond to the single-stranded PCR product with oligos sequencing 1 and 2 at equimolar concentrations. The blue circles represent the high quality of the sequence obtained.
  • FIG. 5 represents the pyrograms of SNP simple and multiplex genotyping.
  • the first pyrogram represents the resulting peaks when the sequencing oligo 1 is added to the template DNA.
  • the second pyrogram represents the resulting peaks when oligo sequencing 2 is added to the template DNA.
  • the third pyrogram represents the resulting peaks when the oligos of sequencing 1 and 2 are added at equimolar concentrations. The peaks determine the incorporation of each new additional dexosinucleotide.
  • FIG. 6 shows the genotypic results obtained for the template DNA
  • Wells A1 and A2 correspond to the single stranded PCR product with the sequencing oligo 1.
  • Wells A3 and A4 correspond to the single-stranded PCR product with the sequencing oligo 2.
  • Wells A5 and A6 correspond to the single-stranded PCR product with the sequencing oligos 1 and 2 at equimolar concentrations. Consequently, any person skilled in the art understands that in wells from A1 to A4 where only one SNP was genotyped and the result of a single genotype is shown. The multiplex reactions shown in wells A5 to A6 give two results, of course.
  • the image described in FIG. 3 shows that the amount of PCR product produced is approximately equivalent as long as 30ng of template DNA is added to the reaction. Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded.
  • the control without template DNA shows some signals that occur as a result of a residual signal from the PCR product loaded into the adjacent well in the gel or due to aerosol formation during PCR assembly. In any case, the difference between PCR reactions and controls without template DNA is evident. Since the amount of PCR products is very similar, any difference in genotyping results is due to simple versus multiple genotyping methods. The quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art. The results illustrated in FIG.
  • the image illustrated in FIG. 5 describes the resulting pyrograms obtained.
  • Well-defined peaks appear at the expected positions, coinciding with the reference sequence,
  • (a) the first pyrogram was obtained from the genotyping reaction where only oligo sequencing 1 was used.
  • (b) the second pyrogram was obtained from the genotyping reaction where only the sequencing oligo 2 was used.
  • (c) the third pyrogram was obtained from the genotyping reaction where the sequencing oligos 1 and 2 were used
  • the resulting pyrogram of the multiplex genotyping corresponds to the sequences obtained with the sequencing oligo 1 superimposed with the sequence obtained with the sequencing oligo. 2.
  • the two polymorphic bases present a great approximation with the results of simple reactions.
  • the results illustrated in FIG. 6 describe the genotypes obtained by multiple sequencing according to the genotypes obtained by simple sequencing.
  • the genotype of SNP 1 is shown in wells A1, A2, A5 and A6 with position 1, and is T / T in all cases.
  • the genotype of SNP 2 is shown in wells A2 and A3 with position 1 and in wells A5 and A6 with position 2. Therefore, the result of the same genotypes from both single genotyping and multiple genotyping is shown. . Therefore, it is apparent to any person skilled in the art that it is possible to obtain genotype data related to multiple SNPs using multiple sequencing oligos with the same single stranded template DNA.
  • the TCF7a gene contains two SNPs, Rs12255372 and Rs7903146, which are associated with damage to sulfonylurea metabolism. These SNPs are linked in equilibrium and are separated by more than 50,000 bases of coding and non-coding sequence.
  • the following amplification oligonucleotides are designed to generate a 278 bp amplicon and a 246 bp amplicon.
  • the 278 bp amplicon uses (i) an 18-base unmodified forward oligonucleotide and (ii) a 21-base reverse-biotinylated oligonucleotide.
  • the forward oligonucleotide has a theoretical alignment temperature of 56.9 5 C and the reverse oligonucleotide has an alignment temperature of 57.9 5 C.
  • the optimal reaction alignment temperature was determined experimentally at 55 5 C.
  • the 246 bp amplicon uses (i ) a 20-base unmodified forward oligonucleotide and (ii) a 20-base reverse-biotinylated oligonucleotide.
  • the forward oligonucleotide has a theoretical alignment temperature of 54.9 5 C and the reverse oligonucleotide has an alignment temperature of 54.9 5 C.
  • the optimal reaction alignment temperature was determined experimentally at 55 5 C.
  • the two SNPs are read by the 16 base sequencing oligonucleotide 1, which hybridizes from the third base prior to Rs1081 1661 and has a alignment temperature of 53.3 5 C, and the 19 base sequencing oligonucleotide 2, which hybridizes from first base prior to Rs10757283 and has an alignment temperature of 48.1 5 C.
  • the sequencing oligonucleotide 1 reads the sequence SEQ ID NO: 9 (AATKACCATA) with the dispensing order SEQ ID NO: 10 (GATGACAT), and the sequencing oligonucleotide 2 reads the sequence SEQ ID NO: 1 1 (AYTATATAATTTAATTGCCGTATGAGG) with the dispensing order SEQ ID NO: 12 (GACTGATAT).
  • the sequences are read in the order of dispensing SEQ ID NO: 13 (GACTGCATACA).
  • a reaction mixture is prepared with the amplification oligonucleotides of TCF7L2.
  • DNA polymerase enzyme manufactured by Biotools Biotechnological & Medical Laboratories SA, 5 ⁇ of reaction buffer that is sold together with the enzyme, between 0.1 ⁇ and 0.3 ⁇ of a 10mM solution containing the four deoxyribonucleotides that make up the deoxyribonucleic acid chain (dATP, dTTP, dGTP, dCTP) and between 0.2 ⁇ and 0.5 ⁇ of a 10 ⁇ solution of the pair (four in total) of amplification oligonucleotides described in the materials section for generate a 278 bp amplicon and a 246 bp amplicon in a single multiplex amplification reaction.
  • Each amplicon contains SNP Rs12255372 and SNP Rs7903146 respectively.
  • FIG. 7 Shows the results of the agarose gel. 30ng 2% agarose gel was loaded onto the template DNA together with a control without template DNA (NTC). Each PCR replica should have approximately equivalent amounts of the PCR products. The theoretical sizes of the PCR products are 278pb and 246pb.
  • FIG. 8 Shows the overall quality of pyrosequencing reactions.
  • Wells B1 and B2 contain two single chain PCR products only with oligo 1 sequencing.
  • Wells B3 and B4 contain two single chain PCR products only with oligo 2 sequencing.
  • Wells B5 and B6 contain two single chain PCR products with oligo 1 and 2 sequencing at equimolar concentrations. The blue circles represent the high quality of the sequence obtained.
  • FIG. 9 represents the pyrograms of SNP simple and multiplex genotyping. The first pyrogram represents the resulting peaks when oligo 1 sequencing is added to the template DNA. The second pyrogram represents the resulting peaks when oligo 2 sequencing is added to the template DNA. The third pyrogram represents the resulting peaks when sequencing oligos 1 and 2 are added at equimolar concentrations to the template DNA. The peaks determine the incorporation of each new additional dexosinucleotide.
  • FIG. 10 shows the genotypic results obtained for the template DNA
  • Wells B1 and B2 contain two single chain PCR products only with oligo 1 sequencing.
  • Wells B3 and B4 contain two single chain PCR products only with oligo 2 sequencing.
  • Wells B5 and B6 contain two single chain PCR products with oligo 1 and 2 sequencing at equimolar concentrations. Consequently, any person skilled in the art understands that in wells B1 to B4 a single SNP was genotyped since only one genotype is shown. The multiplex sequencing reactions shown in wells B5 and B6 clearly yield two results.
  • the image described in FIG. 7 shows that the amount of PCR product produced is approximately equivalent as long as 30ng of template DNA is added to the reaction. Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded.
  • the control without template DNA can give signal drawn from the PCR product loaded into the adjacent well in the gel or by aerosol formation during PCR assembly. The signal strength of the PCR product may be such that it is difficult to distinguish between the 278 bp PCR product and the 246 bp PCR product, however this seems to be uniform for both reactions in all wells. In any case, the difference between the PCR reaction and the control without template DNA is evident.
  • any difference in genotyping results is due to simple versus multiple genotyping methods.
  • the quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art.
  • the results illustrated in FIG. 8 show high quality data in genotyping reactions as expected. The blue circles appear to confirm the high quality. A failure in the reaction is indicated by a red circle and means low quality. The inconsistency between the reference sequence and the results obtained or a poor signal ratio appears yellow. All reactions in this case pass the quality test regardless of the number of sequencing oligos that were added.
  • the image illustrated in FIG. 9 describes the pyrograms obtained. Well defined peaks appear in the expected positions, coinciding with the reference sequence, (a) the first pyrogram was obtained from the genotyping reaction using only oligo 1 sequencing. (b) the second pyrogram was obtained from the genotyping reaction using only oligo 2 sequencing. (c) the third pyrogram was obtained from the genotyping reaction using oligos 1 and 2 sequencing. The pyrogram resulting from multiple genotyping corresponds to the sequences obtained with the sequencing oligo 1 superimposed with the sequence obtained with the sequencing oligo 2. The two polymorphic bases present a great approximation with the results of simple reactions.
  • the results illustrated in FIG. 10 describe the genotypes obtained by multiple sequencing according to the genotypes obtained by simple sequencing.
  • the genotype of SNP 1 is shown in wells B1, B2, B5 and B6 with position 1, and is G / G in all cases.
  • the genotype of SNP 2 is shown in wells B2 and B3 with position 1 and in wells B5 and B6 with position 2, and is T / C in each case.
  • TCF7L2 MULTIPLEX GELIFIED PCR, MULTIPLE GENOTIPATE WITH GELIFIED SEQUENCING OLIGONUCLEOTIDES Introduction:
  • This example reproduces Example 2 using the gelation process applied to multiplex PCR reactions and sequencing oligos used for multiple genotyping.
  • a reaction mixture is prepared with the amplification oligonucleotides of TCF7L2.
  • This reaction mixture is composed of DNA polymerase enzyme at a final concentration of 6 U, manufactured by Biotools Biotechnological & Medical Laboratories SA, reaction buffer that is marketed together with the enzyme at a final concentration of 1 X, the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP) at a final concentration between 200 ⁇ and 250 ⁇ each and a solution at a final concentration between 75 nM and 150 nM each of: i) the two pairs (four oligos in total) of amplification oligos described in the materials section to generate at the same time in a multiplex amplification reaction a 278bp amplicon and a 246bp amplicon.
  • Each amplicon contains SNP Rs12255372 and SNP Rs7903146 respectively, ii) the pair of amplification oligonucleotides individually for the simple PCR reactions corresponding to the amplification of SNP Rs12255372 and SNP Rs7903146 independently.
  • the reaction mixtures (both simple and multiplex) are stabilized by the gelation process.
  • a gelation mixture composed of trehalose, melezitose, glycogen and lysine is added to the reaction mixtures described above which contain all the reagents necessary to carry out the PCR reactions.
  • the gelation process is completed after drying under vacuum conditions and at a temperature below 40 5 C, resulting in a stabilized reaction mixture containing between 10% and 30% water.
  • the two sequencing oligos were stabilized by the gelation process following the same protocol described above for the PCR reaction mixture.
  • the gelled oligos are re-hydrated with 85 ⁇ of Milli-Q water. Prepare a 96 Q96 plate with 20 ⁇ hybridization buffer, and with the following combinations of sequencing oligos:
  • FIG. 1 1 shows the results of the agarose gel. 10 ⁇ of the simple PCR products were loaded on the 2% agarose gel. Each replica of the PCR reaction must contain approximately equivalent amounts of PCR product. The expected product sizes are 278bp and 246bp.
  • FIG. 12 shows the results of the agarose gel. 10 ⁇ of the products of the multiplex PCR reaction were loaded on the 2% agarose gel. Each replica of the PCR reaction must contain approximately equivalent amounts of PCR product. The expected product sizes are 278bp and 246bp, although with a 2% agarose gel it is not possible to distinguish between these two bands individually.
  • FIG. 13 shows the overall quality of pyrosequencing reactions.
  • Wells C1, C2 and C3 correspond to the two single-stranded PCR products obtained only with oligo sequencing 1.
  • Wells C4, C5 and C6 correspond to the two single-stranded PCR products obtained only with the sequencing oligo 2.
  • Wells C7, C8 and C9 correspond to the two single-stranded PCR products obtained with a mixing at equimolar concentration of the oligos of sequencing 1 and 2. The blue circles represent the high quality of the sequence obtained.
  • FIG. 14 shows the genotypic results obtained for the template DNA
  • Pocilios C1, C2 and C3 correspond to the two single-stranded PCR products obtained with only the oligo of sequencing 1.
  • C4, C5 and C6 wells correspond to the two single stranded PCR products obtained with only sequencing oligo 2.
  • C7, C8 and C9 wells correspond to the two single stranded PCR products obtained with a mixing at equimolar concentrations of the oligos of sequencing 1 and 2. Consequently, any person skilled in the art understands that in the wells of C1 to C6 where only one SNP was genotyped, the result of a single genotype is shown. The multiple genotyping reactions shown in wells C7, C8 and C9 give two results, of course.
  • FIG. 1 and FIG. 12 show that the amount of PCR product produced is approximately equivalent as long as 30 ng of template DNA is added to the gelled simple reaction (FIG. 1 1) and to the gelled multiplex reaction. (FIG. 12). Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded.
  • the signal strength of the PCR products is such that it is difficult to distinguish between the band of the PCR product of 278bp and the band of the PCR product of 246bp however a uniformity is maintained between the products obtained in the simple reaction and in the multiplex in all wells. Since the amount of PCR products remains very similar, any difference in genotyping results is due to simple versus multiple genotyping methods. The quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art.
  • results obtained in FIG. 13 show high quality data in genotyping reactions as expected.
  • the blue circles appear to confirm the high quality obtained.
  • a reaction failure would have been indicated by a red circle and a poor quality result.
  • the inconsistency between the reference sequence and the results obtained or poor signal / noise ratios would have appeared yellow. It is clear to one skilled in the art that all reactions in this case pass the quality test regardless of the number of gelled sequencing oligos added.
  • the results illustrated in FIG. 14 describe the genotypes obtained by multiple sequencing in accordance with the genotypes obtained by simple sequencing.
  • the genotype of SNP 1 is shown in wells C1, C2, C3, C7, C8 and C9 with position 1, and is GG / in all cases.
  • the genotype of SNP 2 is shown in wells C4, C5 and C6 with position 1 and wells C7, C8 and C9 with position 2 and is T / C in all cases.
  • Mutations in the EmbB gene can result in strains of Mycobacterium ethambutol-resistant. There are two regions in the EmbB gene that appear to be critical targets for ethambutol activity. These two regions of the EmbB gene are separated by approximately 300 DNA bases. These two regions can be amplified by a simple PCR reaction generating a product of more than 300bp. Both regions are small, covering a maximum of 3 bases, and are likely to be sequenced by microsequencing techniques. Microsequencing normally yields information on 40 base sequences with good quality, so that both regions related to ethambutol resistance within the EmbB gene should be sequenced with two sequencing oligos individually.
  • the conventional method for sequencing the two regions of the EmbB gene mentioned would involve carrying out the same PCR reaction twice for each sample, and sequencing the two products with different sequencing oligos independently. With the conventional method it is clear that two PCR reactions and two sequencing reactions are needed. In order to reduce the cost per sample, both in economic terms and in terms relative to the volume of sample needed, it would be preferable to make a single PCR reaction and a single sequencing reaction to read both sequences at the same time. This method would reduce the costs of the test and reduce the workload necessary to complete said test, as well as allow a greater number of samples to be sequenced at the same time.
  • the fundamental difference between the simple conventional protocol and the multiple sequencing protocol is that in the latter case only a single PCR reaction to cover both regions and a single sequencing reaction would be carried out to solve both sequences simultaneously.
  • a total coverage of the two regions related to ethambutol resistance is obtained by using two sequencing oligonucleotides in a single sequencing reaction.
  • the resulting sequence is an overlap of the sequences read by each of the sequencing oligonucleotides. This overlapping sequence can be predicted by knowing all possible combinations of mutations. sought and the order in which dexosinucleotides are dispensed during the sequencing reaction.
  • DNA from a wild-type Mycobacterium fortuitum reference strain was amplified using gelled reagents. After two rounds of PCR amplification, the sample is sequenced individually with the gelled TB2a and TB2b sequencing oligos and is also sequenced in a single reaction with a mixture of the two gelled TB2a and TB2b oligos. The same information is generated both with the multiple sequencing reactions that contain the gelled sequencing oligos and with the two simple sequencing reactions each containing one of the gelled sequencing oligos.
  • DNA isolated from a wild reference strain of Mycobacterium fortuitum is prepared at a concentration of 10 ng / ⁇ . This DNA is previously characterized and the sequence of the EmbB gene in the wild strain is confirmed. The colonies from which this DNA is obtained grew under standard Mycobacterium culture conditions and their growth was inhibited by the presence of ethambutol. Growth inhibition in the presence of ethambutol as well as DNA sequencing undoubtedly confirms that this DNA does not contain mutations in any of the two regions of the EmbB gene studied in this experiment. The DNA is stored at 4 5 C at high concentration and diluted to a concentration of 10ng / ⁇ just before use.
  • a pre-amplification reaction was made to enrich the PCR templates used to amplify the regions related to ethambutol resistance. Although this is not essential since in this experiment the concentration of the isolated DNA is known, it is considered that it should be a standard step in the protocol when working with unknown samples, in which the quality and quantity of DNA in the cells is normally unknown. same. This step in this experiment is done to demonstrate that the pre-amplification phase does not interfere with the sequencing reaction either in its simple mode or in its multiple mode.
  • the pre-amplification reaction mixture consists of 511 of ultrapure DNA polymerase enzyme, manufactured by Biotools Biotechnologial & Medical Laboratories SA, reaction buffer at a final concentration 1 x that is marketed together with the enzyme, between 200 ⁇ and 250 ⁇ concentration final of each of the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP), and between 50nM and 75nM final concentration of each of the amplification oligonucleotides designed for pre-amplification of the EmbB target gene .
  • dATP dexosiribonucleotides that form the dexosiribonucleic acid chain
  • dATP dexosiribonucleotides that form the dexosiribonucleic acid chain
  • dATP dexosiribonucleotides that form the dexosiribonucleic acid
  • amplification oligonucleotides included in the pre-amplification reaction are not biotinylated and cannot be used for sequencing. They are used only to improve the amount of template DNA available for the subsequent amplification reaction.
  • the pre-amplification reaction mixture including all the reagents described above is stabilized by the gelation process.
  • a gelation mixture composed of trehalose, melezitose, glycogen and lysine is added to the reaction mixture described above which contains all the reagents necessary to carry out the pre-amplification PCR reaction.
  • the gelation process is completed after drying under vacuum conditions and at a temperature below 40 5 C, resulting in a stabilized reaction mixture containing between 10% and 30% water.
  • a gelled PCR reaction is prepared to amplify the two regions of the EmbB gene related to ethambutol resistance.
  • This reaction includes all the reagents necessary to amplify a 409bp region of the EmbB gene that incorporates the two mutation points related to ethambutol resistance.
  • the reverse amplification oligonucleotide TB2 is biotinylated to allow separation of the strands of the PCR product obtained and thus have a single stranded template DNA for sequencing.
  • the PCR reaction is carried out 9 times so that the PCR product obtained can be sequenced three times with the TB2a gelled sequencing oligo, three times with the TB2b gelled sequencing oligo and three times with the mixture of both TB2a and Tb2b sequenced oligos gelled in a multiplex format.
  • the composition of the mastermix is composed of 5U of ultrapure DNA polymerase enzyme, manufactured by Biotools Biotechnologial & Medical Laboratories SA, reaction buffer at a final concentration 1 x that is marketed together with the enzyme, between 200 ⁇ and 250 ⁇ final concentration of each of the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP), and between 100nM and 200nM final concentration of each of the amplification oligonucleotides designed for amplification of the EmbB target gene.
  • the amplification reaction mixture including all the reagents described above is stabilized by the gelation process.
  • a gelation mixture composed of trehalose, melezitose, glycogen and lysine is added to the reaction mixture described above which contains all the reagents necessary to carry out the amplification PCR reaction.
  • the gelation process is completed after drying under vacuum conditions and at a temperature below 40 5 C, resulting in a stabilized reaction mixture containing between 10% and 30% water.
  • PCR product is mixed with 2 ⁇ of loading buffer and electrophoresis is performed on a 2% agarose gel in 0.5X TBE buffer, stained with 1 x SYBRsafe. Run the gel for 30 minutes at 100V in 0.5x TBE buffer, and load in a lateral well next to the PCR product 2 ⁇ of 100 bp DNA marker as standard for the band size.
  • the sequencing oligo TB2a covers the resistance mutations Met306Val, Met306Leu, and two mutations Met306lle (one is the substitution of G by T and the other is the substitution of G for A) and read SEQ ID NO: 17 (CATGGCCCG AGTCGCCG ACCACGCC) ⁇
  • the sequencing oligo TB2b covers the resistance mutations Arg406Cys, Arg406Ser, Arg406Ala, and Arg406Asp and reads SEQ ID NO: 18 (CCGGAGGGCATCATCGCGCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCAT.
  • the mixture of both oligo of sequencing TB2a and TB2b in the multiple genotyping sequence mode reads SEQ ID NO: 19
  • the remaining product of the PCR reaction is used to prepare single stranded DNA for pyrosequencing. 44 ⁇ of a 10: 1 mixture of binding buffer and streptavidin sepharose are added to the PCR products and mixed for 5 minutes. The mixture is then aspirated on the filters of the Q96 vacuum work station and immersed in 70% ethanol, denaturation buffer and wash solution all under vacuum conditions.
  • the resulting single strand of DNA is dispensed in a multi-well plate Q96 containing 20 ⁇ of hybridization buffer and 3 ⁇ of sequencing oligonucleotides at 10 ⁇ concentration (once they have been re-hydrated by adding 100 ⁇ of Milli-Q water to its gelled form) in the case of simple reactions, or 3 ⁇ of the mixture of sequencing oligos at a concentration of 10 ⁇ (once they have been re-hydrated by adding 100 ⁇ of Milli-Q water to its gelled form) in the case of multiple reactions.
  • the multiwell plate Q96 already containing single stranded DNA, oligonucleotides and annealing buffer is then sequencing incubated at 80 5 C for 2 minutes and then cooled to room temperature. While the samples are cooling, the Q96ID pyrosequencer is programmed including the names of the samples, the choice of the cartridge as well as the dispensing order, which in this case are 10 TGCA dispensations. Deoxynucleotides, enzyme mixing and substrate mixing are then added to the cartridge in the volumes indicated by the program and thus sequencing begins.
  • FIG. 15 shows the results of the agarose gel. 10 ⁇ of the PCR product was run on a 2% agarose gel. Each replication of the PCR reaction must contain approximately equivalent amounts of the PCR product. The theoretical size of the PCR product is 409bp
  • FIG. 16 shows the overall quality of pyrosequencing reactions. The blue circles represent the high quality of the sequence obtained.
  • Table 1 shows the sequence data obtained by using the oligo of sequencing of the EmbB gene in its simple mode.
  • the reference sequence for this region of the EmbB gene of Mycobacter ⁇ um fortuitum is shown in black, with sites related to the mutation responsible for ethambutol resistance underlined.
  • the text below shows the high quality of the sequence data obtained in the three sequencing replicas carried out with the oligos TB2a and TB2b separately.
  • Table 2 shows the sequence data obtained, in triplicate, using the EmbB sequencing oligos in their multiple mode.
  • the upper lines of the text show the expected multiple sequence, the sequence obtained with the sequencing oligo TB2a is shown in red and the sequence obtained with the sequencing oligo TB2b is shown in blue.
  • the underlined bases show the positions where they are located sites related to mutation related to ethambutol resistance.
  • Below the expected sequence the sequence data obtained for the three replicates of the multiple sequencing reactions are shown.
  • the color code to indicate the sequence quality is, blue for high quality sequences, orange if the sequence quality is acceptable and red if the sequence is of poor quality.
  • FIG. 15 shows that the amount of PCR product produced when 10 ⁇ of PCR product is added to the reactions is equivalent in all PCR reactions. Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded. The expected size of the band, 409 bp is achieved in all reactions. In no case the difference between the PCR reactions is apparent. The quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art.
  • results illustrated in FIG. 16 show high quality data in the genotyping reactions of sequences as expected.
  • the blue circles appear to confirm the high quality obtained.
  • a reaction failure would have been indicated by a red circle and a poor quality result.
  • the inconsistency between the reference sequence and the results obtained or poor signal / noise ratios would have appeared yellow. It is evident to an expert in the field that all reactions in this case pass the quality test regardless of the number of sequencing oligos added.
  • Table 2 show that the multiple sequencing mode is possible through the use of a single sequencing reaction and that the information that can usually only be obtained with two microsequencing reactions is achieved with the genotyping of multiple mode sequences. .
  • the sequence obtained through the multiple mode can be foreseen in advance and generate consistent results. Then, it is evident that the same genotypic sequences are obtained as a result of both sequencing in its single and multiple mode.

Abstract

Method for determining the genotype of multiple sequences. A method is disclosed for the determination of the genotype of multiple sequences of interest, in particular single nucleotide polymorphisms (SNPs). The method uses a single amplification reaction for the amplification of the target sequences that comprise multiple sequences of interest, in particular SNP sites, and a single genotyping reaction for the sequencing of multiple sequences of interest, in particular SNP sites, in a simultaneous manner. The method reduces the number of reactions needed to sequence small regions of interest in longer lengths of DNA of little interest. The method also reduces the cost of the tests that would otherwise require a high number of sequencing reactions, reduces the amount of starting template DNA required for sequencing multiple regions of interest, and yields a product that is technically less complex.

Description

MÉTODO PARA LA DETERMINACIÓN DEL GENOTIPO DE SECUENCIAS  METHOD FOR THE DETERMINATION OF THE SEQUENCE GENOTYPE
MÚLTIPLES  MULTIPLE
SECTOR TÉCNICO DE LA INVENCIÓN TECHNICAL SECTOR OF THE INVENTION
La presente invención describe un método para la determinación del genotipo de secuencias múltiples de interés, mas específicamente, describe un método para determinar el genotipo de múltiples secuencias de forma simultanea en una única reacción, y en particular, un método para la determinación del genotipo de polimorfismos de un solo nucleótido (SNPs) simultáneamente en una única reacción. The present invention describes a method for the determination of the genotype of multiple sequences of interest, more specifically, it describes a method for determining the genotype of multiple sequences simultaneously in a single reaction, and in particular, a method for the determination of the genotype of single nucleotide polymorphisms (SNPs) simultaneously in a single reaction.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La caracterización de múltiples secuencias es un requisito en el diagnóstico de síndromes poligénicos y/o enfermedades cuya causa es el resultado de diferentes variaciones genéticas/cromosómicas. Tales secuencias, que son la base de los mencionados síndromes, muy frecuentemente están separadas largas distancias corriente arriba/corriente abajo de un determinado marcador genético, por tanto su análisis en paralelo es requisito para poder proporcionar un diagnóstico preciso. Un importante número de usos clínicos se presentan cuando esta clase de secuencias lejanas (que muestran a menudo diversos patrones de acoplamiento) son analizadas, incluyendo la determinación de las consecuencias de enfermedades complejas, usos en farmocogenética, medicina legal, y estudios epidemiológicos. En este sentido, un importante número de desordenes genéticos son el resultado de la interacción entre secuencias distantes la una de la otra, contribuyendo al riesgo de desarrollar una enfermedad en particular. The characterization of multiple sequences is a requirement in the diagnosis of polygenic syndromes and / or diseases whose cause is the result of different genetic / chromosomal variations. Such sequences, which are the basis of the aforementioned syndromes, are very often separated long distances upstream / downstream of a particular genetic marker, therefore their parallel analysis is a requirement to be able to provide an accurate diagnosis. A significant number of clinical uses occur when this kind of distant sequences (which often show different coupling patterns) are analyzed, including the determination of the consequences of complex diseases, uses in farmocogenetics, legal medicine, and epidemiological studies. In this sense, a significant number of genetic disorders are the result of the interaction between sequences distant from each other, contributing to the risk of developing a particular disease.
Los polimorfismos de un solo nucleótido (SNPs) representan el tipo mas abundante de variación de secuencia en el genoma humano y pueden ser útiles para muchos usos diversos, incluyendo la determinación de la arquitectura genética de rasgos y enfermedades complejas, aplicaciones en farmacogenética, medicina legal, y estudios evolutivos. Muchos desórdenes genéticos son el resultado de la interacción de más de un SNP, cada uno contribuyendo al riesgo de desarrollar una enfermedad en particular. En muchas ocasiones estos SNPs a los cuales se les asocia el riesgo de desarrollo de enfermedades están muy separados en el mismo gen, o incluso están presentes en diferentes genes. Tradicionalmente el genotipo de secuencias y en particular de SNPs se determina mediante reacciones de microsecuenciación. El método convencional incluye una reacción de PCR para amplificar una región de ADN que contiene la secuencia de interés y en particular el SNP de interés y para amplificar una secuencia de ADN que flanquea la secuencia/SNP de interés y que puede usarse como control de calidad interno. A continuación se lleva a cabo la reacción de microsecuenciación con la cual se puede leer tanto la secuencia que flanquea la secuencia/SNP de interés como la propia secuencia de interés y en particular el SNP pudiendo resolverse su genotipo. Single nucleotide polymorphisms (SNPs) represent the most abundant type of sequence variation in the human genome and can be useful for many diverse uses, including determining the genetic architecture of complex traits and diseases, applications in pharmacogenetics, legal medicine , and evolutionary studies. Many genetic disorders are the result of the interaction of more than one SNP, each contributing to the risk of developing a particular disease. In many cases these SNPs with which the risk of disease development are associated are very separated in the same gene, or even present in different genes. Traditionally the genotype of sequences and in particular SNPs is determined by microsequencing reactions. The conventional method includes a PCR reaction to amplify a region of DNA that contains the sequence of interest and in particular the SNP of interest and to amplify a DNA sequence that flanks the sequence / SNP of interest and that can be used as a quality control. internal. The microsequencing reaction is then carried out with which the sequence flanking the sequence / SNP of interest as well as the sequence of interest itself and in particular the SNP can be read and its genotype can be resolved.
El genotipado de múltiples secuencias y en particular de múltiples SNPs se lleva a cabo haciendo una reacción de PCR y una reacción de secuenciación por cada secuencia y/o SNP de interés. Por ejemplo ver Lin YS, Liu FG, Wang TY, Pan CT, Chang WT, Li WH (2010) "A simple method using Pyrosequencing™ to identify de novo SNPs in pooled DNA samples." Nucleic Acids Res 39(5): e28; Mashayekhi F, Ronaghi M. (2007) "Analysis of read length limiting factors in Pyrosequencing chemistry." Anal Biochem 363(2): 275-287. El método requiere de múltiples reacciones de secuenciación que encarecen así como alargan el ensayo. Además con este método se precisan grandes cantidades de ADN molde de partida necesarias para secuenciar las múltiples regiones de interés, haciendo por tanto este proceso no factible para casos donde la cantidad de ADN molde de partida objeto de secuenciación es muy escasa. Genotyping of multiple sequences and in particular of multiple SNPs is carried out by doing a PCR reaction and a sequencing reaction for each sequence and / or SNP of interest. For example see Lin YS, Liu FG, Wang TY, Pan CT, Chang WT, Li WH (2010) "A simple method using Pyrosequencing ™ to identify de novo SNPs in pooled DNA samples." Nucleic Acids Res 39 (5): e28; Mashayekhi F, Ronaghi M. (2007) "Analysis of read length limiting factors in Pyrosequencing chemistry." Anal Biochem 363 (2): 275-287. The method requires multiple sequencing reactions that make it more expensive as well as lengthen the test. In addition, with this method, large quantities of starting template DNA necessary to sequence the multiple regions of interest are required, thus making this process unfeasible for cases where the amount of starting template DNA sequencing is very low.
Además, aunque los procesos de pirosecuenciación usados son relativamente simples, los usuarios se enfrentan a retos debidos a la gran variedad de parámetros a considerar en el desarrollo de la PCR, así como los relativos al diseño de cebadores de secuenciación, y los que afectan tanto a la preparación de muestra como a la dispensación de nucleótidos. Estos retos son laboriosos y costosos. Por ejemplo ver Gharizadeh B, Akhras M, Nourizad N, Ghaderi M, Yasuda K, Nyrén P, Pourmand N. (2006) "Methodological improvements of pyrosequencing technology." J Biotechnol. 124(3): 504-51 1 . In addition, although the pyrosequencing processes used are relatively simple, users face challenges due to the wide variety of parameters to be considered in the development of the PCR, as well as those related to the design of sequencing primers, and those that affect both to the sample preparation as to the dispensing of nucleotides. These challenges are laborious and expensive. For example, see Gharizadeh B, Akhras M, Nourizad N, Ghaderi M, Yasuda K, Nyrén P, Pourmand N. (2006) "Methodological improvements of pyrosequencing technology." J Biotechnol. 124 (3): 504-51 1.
Por tanto es clara la necesidad de contar con un método para la determinación del genotipo de secuencias múltiples y en particular de múltiples SNPs que resuelva las desventajas que presentan los métodos descritos hasta la fecha como estado del arte. RESUMEN DE LA INVENCIÓN La presente invención tiene como propósito la determinación del genotipo de múltiples secuencias de interés, en particular, de múltiples polimorfismos de un solo nucleótido (SNPs) simultáneamente en una única reacción de secuenciación. Therefore, the need for a method for the determination of the genotype of multiple sequences and in particular of multiple SNPs that solves the disadvantages of the methods described to date as a state of the art is clear. SUMMARY OF THE INVENTION The present invention aims at determining the genotype of multiple sequences of interest, in particular, of multiple single nucleotide polymorphisms (SNPs) simultaneously in a single sequencing reaction.
Es un objeto de la presente invención reducir el número de reacciones requeridas para la secuenciación de múltiples secuencias de interés, en particular de múltiples polimorfismos de un solo nucleótido (SNPs) mediante el uso de una única reacción múltiplex de genotipado. It is an object of the present invention to reduce the number of reactions required for the sequencing of multiple sequences of interest, in particular of multiple single nucleotide polymorphisms (SNPs) by using a single multiplex genotyping reaction.
Es otro objeto de la presente invención reducir el trabajo y coste que supone el genotipado de múltiples secuencias de interés, en particular de múltiples polimorfismos de un solo nucleótido (SNPs). Sigue siendo otro objeto de la presente invención proporcionar un método para el genotipado de múltiples secuencias de interés, en particular SNPs, este método consta de la amplificación en una muestra de al menos una secuencia objetivo para producir un producto amplificado, en donde dicha secuencia objetivo consta de al menos uno o mas sitios de una secuencia de interés, en particular, polimorfismos de un solo nucleótido (SNP); y del genotipado de dicho producto amplificado mediante el uso de una mezcla de oligonucleótidos de secuenciación, en donde dicha mezcla consta de al menos un oligonucleótido de secuenciación por cada una de las secuencias mencionadas, en particular, sitios de SNP It is another object of the present invention to reduce the work and cost of genotyping multiple sequences of interest, in particular multiple single nucleotide polymorphisms (SNPs). It is still another object of the present invention to provide a method for genotyping multiple sequences of interest, in particular SNPs, this method consists of amplification in a sample of at least one objective sequence to produce an amplified product, wherein said objective sequence it consists of at least one or more sites of a sequence of interest, in particular, single nucleotide polymorphisms (SNPs); and genotyping said amplified product by using a mixture of sequencing oligonucleotides, wherein said mixture consists of at least one sequencing oligonucleotide for each of the aforementioned sequences, in particular SNP sites
Sigue siendo otro objeto de la presente invención la determinación del genotipo de múltiples secuencias de interés, en particular, SNPs que están localizados no mas de 1 kB uno de otro mediante el uso de una reacción de amplificación simple y una reacción múltiplex de genotipado. It is still another object of the present invention to determine the genotype of multiple sequences of interest, in particular, SNPs that are located no more than 1 kB from each other by the use of a simple amplification reaction and a multiplex genotyping reaction.
Sigue siendo otro objeto de la presente invención la determinación del genotipo de múltiples secuencias de interés, en particular, SNPs que están localizados a una distancia superior a 1 kb mediante el uso de una reacción múltiplex de amplificación y una reacción múltiplex de genotipado. It is still another object of the present invention to determine the genotype of multiple sequences of interest, in particular, SNPs that are located at a distance greater than 1 kb through the use of a multiplex amplification reaction and a multiplex genotyping reaction.
Sigue siendo otro objeto de la presente invención la determinación del genotipo de múltiples secuencias de interés, en particular, SNPs mediante el uso de reactivos de amplificación gelificados para producir productos amplificados, los cuales posteriormente serán objeto de secuenciación múltiple. Los objetos, las realizaciones, las características y las ventajas precedentes y otras de la presente invención serán evidentes a partir de la descripción mas detallada y particular de la misma así como de las reivindicaciones que de ella se derivan. It is still another object of the present invention to determine the genotype of multiple sequences of interest, in particular SNPs through the use of gelled amplification reagents to produce amplified products, which will subsequently be subject to multiple sequencing. The objects, embodiments, features and the preceding and other advantages of the present invention will be apparent from the more detailed and particular description thereof as well as from the claims derived therefrom.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
A continuación se describen ejemplos conjuntamente con figuras que tienen el propósito de ilustrar y no de limitar el alcance del concepto inventivo de la presente invención. Examples are described below in conjunction with figures that are intended to illustrate and not limit the scope of the inventive concept of the present invention.
FIG. 1 muestra una reacción simple de PCR con una reacción múltiplex de genotipado. FIG. 1 shows a simple PCR reaction with a multiplex genotyping reaction.
FIG. 2 muestra una reacción múltiplex de PCR con una reacción múltiplex de genotipado. FIG. 3 muestra la imagen del gel de agarosa que resulta de la PCR simple, según el ejemplo 1 . FIG. 2 shows a multiplex PCR reaction with a multiplex genotyping reaction. FIG. 3 shows the image of the agarose gel that results from the simple PCR, according to example 1.
FIG. 4 muestra una visión de la calidad global de las reacciones de pirosecuenciación, según el ejemplo 1 . FIG. 4 shows an overview of the overall quality of pyrosequencing reactions, according to example 1.
FIG. 5 muestra la imagen de los pirogramas que se obtienen del genotipado simple y múltiplex de SNP, según el ejemplo 1 . FIG. 5 shows the image of the pyrograms obtained from the simple and multiplex genotyping of SNP, according to example 1.
FIG. 6 muestra los resultados del genotipo obtenido para el ADN molde, según el ejemplo 1 . FIG. 6 shows the results of the genotype obtained for the template DNA, according to example 1.
FIG. 7 muestra la imagen del gel de agarosa que resulta de la PCR simple, según el ejemplo 2. FIG. 8 muestra una visión de la calidad de las reacciones de pirosecuenciación, según el ejemplo 2. FIG. 7 shows the image of the agarose gel that results from the simple PCR, according to example 2. FIG. 8 shows a view of the quality of pyrosequencing reactions, according to example 2.
FIG.9 muestra la imagen de los pirogramas del genotipado simple y múltiplex de SNP, según el ejemplo 2. FIG. 9 shows the image of the pyrograms of the simple and multiplex genotyping of SNP, according to example 2.
FIG. 10 muestra los resultados del genotipo obtenidos para el ADN molde, según el ejemplo 2. FIG. 1 1 muestra la imagen del gel de agarosa que resulta de la PCR simple, según el ejemplo 3. FIG. 10 shows the genotype results obtained for the template DNA, according to example 2. FIG. 1 1 shows the image of the agarose gel that results from the simple PCR, according to example 3.
FIG. 12 muestra la imagen del gel de agarosa que resulta de la PCR múltiplex, según el ejemplo 3. FIG. 12 shows the image of the agarose gel that results from multiplex PCR, according to example 3.
FIG. 13 muestra una visión de la calidad global de las reacciones de pirosecuenciación, según el ejemplo 3. FIG. 13 shows an overview of the overall quality of pyrosequencing reactions, according to example 3.
FIG. 14 muestra los resultados del genotipo obtenidos para el ADN molde, según el ejemplo 3. FIG. 14 shows the genotype results obtained for the template DNA, according to example 3.
FIG. 15 muestra la imagen del gel de agarosa que resulta de la PCR gelificada, según el ejemplo 4. FIG. 16 muestra una visión de la calidad global de las reacciones de pirosecuenciación, según el ejemplo 4. FIG. 15 shows the image of the agarose gel that results from the gelled PCR, according to example 4. FIG. 16 shows an overview of the overall quality of pyrosequencing reactions, according to example 4.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La siguiente descripción de las realizaciones y ejemplos preferidos se proporciona a modo de explicación e ilustración. Como tal, no deben ser vistos como limitantes del alcance de la invención según lo definido por las reivindicaciones. Además, cuando se proporcionan los ejemplos, se hace solamente a modo de ilustración y no con el objeto de ser restrictivos. The following description of the preferred embodiments and examples is provided by way of explanation and illustration. As such, they should not be seen as limiting the scope of the invention as defined by the claims. In addition, when the examples are provided, it is done by way of illustration only and not for the purpose of being restrictive.
A lo largo de la descripción y de las reivindicaciones de la presente invención, la siguiente terminología será usada de acuerdo a las explicaciones que se detallan abajo. El término "secuencias de interés" incluye, pero no se limita a, áreas genéticas codificantes o no (es decir intrones/exones), repeticiones en tanden y satélites, regiones líder 5' UTR, puntos de alta intensidad mutacional... y, en general, cualquier fragmento de ADN cuya modificación conduce a cambios en el comportamiento de un organismo en particular en relación al desarrollo de anormalidades. Estas modificaciones pueden funcionar a cualquier nivel, genético, genómico o metagenómico, por tanto es necesario abarcar el análisis en paralelo de cada una de ellas El término "diana" incluye, pero no se limita a, moléculas, genes, o genomas, que contienen una secuencia de ácido nucleico o segmento de una secuencia que interesa ser caracterizado mediante identificación, cuantificación o amplificación. Dianas contempladas bajo esta invención pueden ser derivadas de cualquier organismo, incluyendo animales mamíferos y no-mamíferos, bacterias, virus u hongos. Un retrovirus es un ejemplo de una diana que puede ser identificada o cuantificada usando secuencias altamente conservadas para hacer mapeado genómico. Debe entenderse que en su caso, los términos "analito de ácido nucleico", "diana", y "analito diana de ácido nucleico" pueden ser usados alternativamente para identificar un ácido nucleico, una secuencia de ácido nucleico, o un segmento de una secuencia de un ácido nucleico dentro de un organismo, bacteria, o virus, que es objeto de caracterización. Throughout the description and claims of the present invention, the following terminology will be used according to the explanations detailed below. The term "sequences of interest" includes, but is not limited to, genetic areas encoding or not (ie introns / exons), repetitions in tanden and satellites, 5 'UTR leader regions, high mutational intensity points ... and, in general, any DNA fragment whose modification leads to changes in the behavior of a particular organism in relation to the development of abnormalities. These modifications can work at any level, genetic, genomic or metagenomic, therefore it is necessary to cover the parallel analysis of each of them The term "target" includes, but is not limited to, molecules, genes, or genomes, which contain a nucleic acid sequence or segment of a sequence that is interested in being characterized by identification, quantification or amplification. Targets contemplated under this invention can be derived from any organism, including mammals and non-mammals, bacteria, viruses or fungi. A retrovirus is an example of a target that can be identified or quantified using highly conserved sequences to make genomic mapping. It should be understood that where appropriate, the terms "nucleic acid analyte", "target", and "target nucleic acid analyte" may alternatively be used to identify a nucleic acid, a nucleic acid sequence, or a segment of a sequence of a nucleic acid within an organism, bacteria, or virus, which is subject to characterization.
El término "gen" incluye, pero no se limita a, una secuencia particular de ácido nucleico dentro de una molécula de ADN que ocupa una posición precisa en un cromosoma y es capaz de autorreplicación codificando una cadena polipeptídica específica. El término "genoma" se refiere a un conjunto completo de genes en los cromosomas de cada célula de un organismo específico. The term "gene" includes, but is not limited to, a particular nucleic acid sequence within a DNA molecule that occupies a precise position on a chromosome and is capable of self-replication by encoding a specific polypeptide chain. The term "genome" refers to a complete set of genes in the chromosomes of each cell of a specific organism.
Se entenderá, según se describe a continuación, que los términos "nucleótido" y "nucleósido" incluyen, pero no se limitan a, nucleósidos que contienen no solo las cuatro bases nucleotídicas del ADN natural, es decir, las bases de purina guanina (G) y adenina (A) y las bases de pirimidina citosina (C) y timina (T), sino también la base de purina del RNA uracilo (U), las bases de nucleótidos no naturales iso-G e iso-C, bases universales, bases degeneradas, y otros nucleótidos y nucleósidos modificados. It will be understood, as described below, that the terms "nucleotide" and "nucleoside" include, but are not limited to, nucleosides that contain not only the four nucleotide bases of natural DNA, ie, guanine purine bases (G ) and adenine (A) and pyrimidine cytosine (C) and thymine (T) bases, but also the uracil (U) RNA purine base, iso-G and iso-C non-natural nucleotide bases, universal bases , degenerate bases, and other modified nucleotides and nucleosides.
Según se describe a continuación, el término "oligonucleótido" incluye, pero no se limita a, polidexosirribonucleótidos (que contienen 2-dexosi-D-ribosa), polirribonuceótidos (que contienen D-ribosa), y cualquier otro tipo de polinucleótido que es un N-glicósido de una base de purina o de pirimidina, y otros polímeros que contienen caracteres no nucleotídicos (por ejemplo, cualquier tipo de cadena modificada de ADN o ARN de los que se utilizan en diferentes aplicaciones en biología molecular y medicina, donde pueden ser usados como una sonda para investigar enfermedades, infecciones virales, identificar genes, regiones diana específicas dentro de un cromosoma... etc. Estos oligonucleótidos modificados pueden estar hechos de diferentes unidades de bases derivadas de nucleótidos, organizadas en diversas formas tales como ácidos nucleicos de proteínas y polímeros de ácidos nucleicos sintéticos con una secuencia específica comercialmente disponible a través de Anti-Gene Development Group, Corvallis, Oreg., tales como polímeros NEUGENE™) o uniones no estándar, siempre que los polímeros contengan núcleo-bases en una configuración que permita emparejamiento y alineamiento de las bases, tal como se encuentran en el ADN y ARN. Por tanto, "oligonucleótidos" aquí mencionados incluyen ADN de cadena doble y simple, así como ARN de cadena doble y simple e híbridos ADN:ARN, y también incluye tipos conocidos de oligonucleótidos modificados, tales como, por ejemplo, oligonucleótidos donde uno o mas de los nucleótidos naturales se substituyen por un análogo; oligonucleótidos que contienen modificaciones inter-nucleótido tales como, por ejemplo, aquellos con uniones no aniónicas/no catiónicas (por ejemplo, metil fosfonatos, fosfotriesteres, fosforomidatos, carbamatos, etc), uniones aniónicas (por ejemplo, fosforotioatos, fosforoditioatos, etc.), y uniones catiónicas (por ejemplo amino-alquil-fosforomidatos, amino-alquil-fosfotriesteres), que contienen dominios de interacción tales como, por ejemplo, proteínas (incluyendo nucleasas, toxinas, anticuerpos, péptidos de señal, poli- L-lisina, etc)., aquellos con intercalantes (por ejemplo, acridina, psoraleno, etc.), aquellos con queladores (por ejemplo, metales, metales radioactivos, boro, metales oxidativos, etc.), y aquellos con alquilators. No se pretende hacer distinción respecto los términos "polinucleótido" y "oligonucleótido" que serán usados alternativamente. Estos términos se refieren únicamente a la estructura primaria de la molécula. Según se describe a continuación los símbolos para nucleótidos y polinucleótidos se corresponden con los establecidos por la lUPAC-lUBMB comisión conjunta sobre nomenclatura bioquímica. As described below, the term "oligonucleotide" includes, but is not limited to, polydeoxosiribonucleotides (containing 2-dexosi-D-ribose), polybibonucleotides (containing D-ribose), and any other type of polynucleotide that is a N-glycoside of a purine or pyrimidine base, and other polymers containing non-nucleotide characters (for example, any type of modified DNA or RNA chain from those used in different applications in molecular biology and medicine, where they can be used as a probe to investigate diseases, viral infections, identify genes, specific target regions within a chromosome ... etc. These modified oligonucleotides can be made of different nucleotide-derived base units, organized in various forms such as nucleic acids from proteins and polymers of synthetic nucleic acids with a specific sequence commercially available through Anti-Gene Development Group, Corvallis, Oregon, such as NEUGENE ™ polymers) or non-standard junctions, provided that the polymers contain core-bases in a configuration that allows for matching and alignment of the bases, such as found in DNA and RNA. Thus, "oligonucleotides" mentioned herein include double and single stranded DNA, as well as double and single stranded RNA and DNA: RNA hybrids, and also includes known types of modified oligonucleotides, such as, for example, oligonucleotides where one or more of the natural nucleotides are replaced by an analog; oligonucleotides that contain inter-nucleotide modifications such as, for example, those with non-anionic / non-cationic junctions (e.g., methyl phosphonates, phosphotriesters, phosphoromidates, carbamates, etc.), anionic junctions (e.g., phosphorothioates, phosphorodithioates, etc.) , and cationic junctions (eg amino-alkyl phosphoromidates, amino-alkyl phosphotriesters), which contain interaction domains such as, for example, proteins (including nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalating agents (for example, acridine, psoralen, etc.), those with chelators (for example, metals, radioactive metals, boron, oxidative metals, etc.), and those with alkylators. It is not intended to distinguish between the terms "polynucleotide" and "oligonucleotide" that will be used alternately. These terms refer only to the primary structure of the molecule. As described below, the symbols for nucleotides and polynucleotides correspond to those established by the lUPAC-lUBMB joint commission on biochemical nomenclature.
El término "oligonucleótido de amplificación" incluye, pero no se limita a, un oligonucleótido que es complementario a la molécula diana de cADN o ARN y proporciona el extremo 3'-OH como substrato al cual cualquier ADN polimerasa puede añadir los nucleósidos de una cadena creciente de ADN en la dirección 5'-3'. The term "amplification oligonucleotide" includes, but is not limited to, an oligonucleotide that is complementary to the cDNA or RNA target molecule and provides the 3'-OH end as a substrate to which any DNA polymerase can add the nucleosides of a chain. increasing DNA in the 5'-3 'direction.
El término "simple" incluye, pero no se limita a, un ensayo único que no se lleva a cabo simultáneamente con ningún otro ensayo. Los ensayos singleplex incluyen ensayos individuales que se llevan a cabo de forma secuencial. The term "simple" includes, but is not limited to, a single test that is not carried out simultaneously with any other test. Singleplex tests include individual tests that are carried out sequentially.
El término "multiplex" incluye, pero no se limita a, ensayos múltiples que se llevan a cabo simultáneamente, en los cuales los pasos de detección y de análisis son generalmente llevados a cabo en paralelo. Dentro del contexto de la presente invención, un ensayo multiplex incluirá el uso de cebadores y sondas, solas o en combinación con otros cebadores y sondas adicionales para la identificación, por ejemplo, del virus de la gripe junto con uno o mas virus adicionales. Se entiende que dentro del contexto de la presente invención, los cebadores y sondas para controles internos y ensayos pueden incluir por ejemplo oligonucleótidos. The term "multiplex" includes, but is not limited to, multiple tests that are carried out simultaneously, in which the detection and analysis steps are generally carried out in parallel. Within the context of the present invention, a multiplex assay will include the use of primers and probes, alone or in combination with other primers and additional probes for the identification, for example, of the influenza virus together with one or more additional viruses. It is understood that within the context of the present invention, primers and probes for internal controls and assays may include for example oligonucleotides.
El término "reactivos de amplificación gelificados" incluye, pero no se limita a, reactivos de amplificación estabilizados que preservan sus cualidades químicas y bioquímicas. Tales reactivos de amplificación incluyen pero no están limitados a, tampones de reacción, mejorantes de reacción, y enzimas que intervienen en una reacción enzimática, en este caso la amplificación de ácidos nucleicos y las reacciones asociadas a la secuenciación mediante síntesis, una vez incluidos todos estos reactivos, tampones de reacción, potenciadores de reacción y enzimas en un mismo contenedor, en este caso tubos o placas multipocillo, de manera que se encuentran dosificados cada uno de ellos en las cantidades óptimas de reacción, y no interactúan ni reaccionan entre sí, inmovilizando la reacción bioquímica en la que intervienen, pudiéndose activar la reacción enzimática a voluntad del usuario, sin haberse producido una disminución significativa de su actividad, habiendo trascurrido días, semanas, meses o incluso años después de su mezcla y estabilización. The term "gelled amplification reagents" includes, but is not limited to, stabilized amplification reagents that preserve their chemical and biochemical qualities. Such amplification reagents include but are not limited to, reaction buffers, reaction enhancers, and enzymes involved in an enzymatic reaction, in this case the amplification of nucleic acids and the reactions associated with sequencing by synthesis, once all are included. these reagents, reaction buffers, reaction enhancers and enzymes in the same container, in this case multi-well tubes or plates, so that they are each dosed in the optimal reaction amounts, and do not interact or react with each other, immobilizing the biochemical reaction in which they intervene, being able to activate the enzymatic reaction at the will of the user, without having produced a significant decrease in their activity, having elapsed days, weeks, months or even years after mixing and stabilization.
La estabilización así entendida se consigue mediante la adición de una mezcla estabilizante a una solución que contiene la mezcla de reacción, y la posterior eliminación de la totalidad o parte del agua presente en la solución resultante. Esta eliminación de la totalidad o parte del agua puede ser conseguida mediante procesos de liofilización, desecado en lecho fluido, desecado a temperatura ambiente y presión atmosférica, desecado a temperatura ambiente y baja presión, desecado a alta temperatura y presión atmosférica, y desecado a alta temperatura y baja presión. The stabilization thus understood is achieved by the addition of a stabilizing mixture to a solution containing the reaction mixture, and the subsequent elimination of all or part of the water present in the resulting solution. This removal of all or part of the water can be achieved by lyophilization processes, dried in a fluid bed, dried at room temperature and atmospheric pressure, dried at room temperature and low pressure, dried at high temperature and atmospheric pressure, and dried at high Temperature and low pressure.
En la presente invención, el procedimiento de estabilización preferentemente utilizado es la estabilización mediante gelificación, descrito en la patente WO 02/072002, asignada a Biotools Biotechnological & Medical Laboratories, S.A. La mezcla estabilizante de la mezcla de reacción preferentemente está compuesta por trehalosa, melezitosa, lisina o betaína y glucógeno o rafinosa, a diferentes concentraciones en dependencia de la reacción enzimática a estabilizar. Más preferentemente la mezcla de gelificación está compuesta por trehalosa, melezitosa, glucógeno y lisina. El método de extracción del agua de la mezcla de reacción tras la adición de la mezcla de agentes estabilizantes es en la presente invención preferentemente la desecación mediante vacío a temperatura comprendida entre los 305C y los 405C, dependiendo de la reacción enzimática a estabilizar. Concretamente, en la presente invención el contenido de humedad se mantiene entre un 10-30% de agua. In the present invention, the stabilization method preferably used is the stabilization by gelation, described in WO 02/072002, assigned to Biotools Biotechnological & Medical Laboratories, SA The stabilizing mixture of the reaction mixture is preferably composed of trehalose, melezitosa , lysine or betaine and glycogen or raffinose, at different concentrations depending on the enzymatic reaction to stabilize. More preferably the gelation mixture is composed of trehalose, melezitose, glycogen and lysine. The method of extracting water from the reaction mixture after the addition of the agent mixture In the present invention, stabilizers are preferably desiccation by vacuum at a temperature between 30 5 C and 40 5 C, depending on the enzymatic reaction to be stabilized. Specifically, in the present invention the moisture content is maintained between 10-30% water.
La definición o nomenclatura señalada solo tiene el propósito de ser ejemplar y no de ser restrictiva. No debe ser entendida como una limitación del alcance de la invención según lo definido. The definition or nomenclature indicated is only intended to be exemplary and not to be restrictive. It should not be understood as a limitation of the scope of the invention as defined.
A continuación se describen algunas de las realizaciones y ejemplos preferidos de la invención reivindicada. Las realizaciones y modificaciones adicionales en la función, el propósito, o la estructura de las realizaciones expuestas tienen la intención de ser cubiertas por las reivindicaciones de esta solicitud. Some of the preferred embodiments and examples of the claimed invention are described below. Additional embodiments and modifications in the function, purpose, or structure of the disclosed embodiments are intended to be covered by the claims of this application.
La presente invención da a conocer un método para la determinación de secuencias múltiples, en particular, polimorfismos de un solo nucleótido (SNPs) simultáneamente. El método comprende la amplificación de una o mas secuencias diana presentes en una muestra para producir un producto amplificado, y el genotipado del producto amplificado con múltiples oligonucleotidos de secuenciacion de forma simultanea. La muestra puede ser una muestra de ADN o una muestra de ARN y la secuencia diana es una secuencia en la muestra de ADN o en la muestra de ARN que comprende una o mas secuencias para ser identificadas, en particular, sitios SNP de interés y una secuencia adyacente la cual puede usarse como control de calidad interno. La reacción de amplificación puede ser una reacción de amplificación simple o una reacción de amplificación multiplex dependiendo de la localización de la secuencia de interés, en particular de los sitios SNP en la muestra. La reacción de amplificación simple se usa cuando dos o mas secuencias de interés, en particular sitios SNP de interés están localizados a una distancia no superior a 1 kbp uno de otro. En la reacción de amplificación simple, una única reacción es diseñada con una pareja de oligonucleotidos de amplificación que cubre todas las secuencias relevantes, en particular sitios SNP en un único amplicon. La reacción de amplificación multiplex se usa cuando las secuencias de interés, en particular los sitios SNP de interés están localizados demasiado lejos unos de otros para ser incluidos en un único amplicon, o debido a la presencia de una secuencia intermedia larga, o debido a que las secuencias de interés, en particular los sitios SNP están localizados en diferentes genes o cromosomas. Las reacciones de amplificación multiplex están diseñadas con una mezcla de pares de oligonucleótidos de amplificación que comparten composiciones químicas similares, por lo que pueden ser usados bajo las mismas concentraciones de algunos reactivos, mismas temperaturas de alineamiento y mismos tiempos de extensión. Las composiciones químicas similares deben ser entendidas como unidades de bases de nucleótidos que necesitan ser organizadas de tal forma que cada unidad tenga una base complementaria a la que se unirá. Esto dará como resultado una hebra que tiene un conjunto de bases opuesto al que se une, y es esta combinación de bases la que reporta la secuencia requerida en formato multiplex o simple. La mezcla de pares de oligonucleótidos de amplificación comprende al menos una pareja de oligonucleótidos de amplificación correspondientes a cada una de las secuencias diana que será amplificada. The present invention discloses a method for the determination of multiple sequences, in particular, single nucleotide polymorphisms (SNPs) simultaneously. The method comprises the amplification of one or more target sequences present in a sample to produce an amplified product, and the genotyping of the amplified product with multiple sequencing oligonucleotides simultaneously. The sample may be a DNA sample or an RNA sample and the target sequence is a sequence in the DNA sample or in the RNA sample comprising one or more sequences to be identified, in particular, SNP sites of interest and a adjacent sequence which can be used as internal quality control. The amplification reaction may be a simple amplification reaction or a multiplex amplification reaction depending on the location of the sequence of interest, in particular the SNP sites in the sample. The simple amplification reaction is used when two or more sequences of interest, in particular SNP sites of interest, are located at a distance not exceeding 1 kbp from each other. In the single amplification reaction, a single reaction is designed with a pair of amplification oligonucleotides that covers all relevant sequences, in particular SNP sites in a single amplicon. The multiplex amplification reaction is used when the sequences of interest, in particular the SNP sites of interest are located too far from each other to be included in a single amplicon, or due to the presence of a long intermediate sequence, or because the sequences of interest, particularly SNP sites are located in different genes or chromosomes Multiplex amplification reactions are designed with a mixture of pairs of amplification oligonucleotides that share similar chemical compositions, so they can be used under the same concentrations of some reagents, same alignment temperatures and same extension times. Similar chemical compositions should be understood as nucleotide base units that need to be organized so that each unit has a complementary base to which it will bind. This will result in a thread that has a set of bases opposite to the one that joins, and it is this combination of bases that reports the required sequence in multiplex or simple format. The mixture of amplification oligonucleotide pairs comprises at least one pair of amplification oligonucleotides corresponding to each of the target sequences to be amplified.
Los cebadores y oligonucleótidos de amplificación usados son complementarios a los extremos 3' (tres prima) de cada hebra paralela y anti-paralela de la hebra de la secuencia diana. Los oligonucleótidos se alinean primero a la muestra y luego tiene lugar la reacción de amplificación. Uno de los oligonucleótidos de la pareja de oligonucleótidos de amplificación es biotinilado para que el producto amplificado obtenido esté biotinilado. The primers and amplification oligonucleotides used are complementary to the 3 '(three prime) ends of each parallel and anti-parallel strand of the strand of the target sequence. The oligonucleotides align first to the sample and then the amplification reaction takes place. One of the oligonucleotides of the amplification oligonucleotide pair is biotinylated so that the amplified product obtained is biotinylated.
En una realización ejemplar, la reacción de amplificación es la reacción en cadena de la polimerasa (PCR), sin embargo, otras reacciones de amplificación tales como, aunque no limitadas a, la reacción en cadena de la ligasa (LCR), sistemas de mutagénesis dirigida mediante síntesis (ARMS), PCR alelo específica (ASPCR), PCR degenerada pueden usarse para la amplificación de la secuencia diana sin alterar el alcance ni el espíritu de la presente invención. In an exemplary embodiment, the amplification reaction is the polymerase chain reaction (PCR), however, other amplification reactions such as, but not limited to, the ligase chain reaction (LCR), mutagenesis systems synthesis-directed (ARMS), specific allele PCR (ASPCR), degenerate PCR can be used for amplification of the target sequence without altering the scope or spirit of the present invention.
En una realización ejemplar, la reacción de amplificación es estabilizada mediante el proceso y reactivos de gelificación descritos en la patente WO 02/072002. In an exemplary embodiment, the amplification reaction is stabilized by the process and gelation reagents described in WO 02/072002.
En una realización ejemplar, los oligos de secuenciación están estabilizados mediante el proceso y reactivos de gelificación descritos en la patente WO 02/072002. In an exemplary embodiment, the sequencing oligos are stabilized by the process and gelation reagents described in WO 02/072002.
El producto amplificado producido mediante una reacción de amplificación simple o una reacción de amplificación multiplex es un híbrido de al menos dos secuencias de interés, en particular sitios SNPs y sus secuencias adyacentes. Este producto amplificado es luego genotipado con una mezcla de oligonucleótidos de secuenciación simultáneamente en una única reacción multiplex de genotipado. La mezcla de oligonucleótidos de secuenciación comprende al menos un oligonucleótido de secuenciación por cada una de las secuencias de interés, en particular sitios SNP de interés. Los oligonucleótidos de secuenciación se unen unas pocas bases corriente arriba a la secuencia de interés, en particular al sitio SNP para iniciar el proceso de secuenciación. The amplified product produced by a simple amplification reaction or a multiplex amplification reaction is a hybrid of at least two sequences of interest, in particular SNPs sites and their adjacent sequences. This amplified product is then genotyped with a mixture of sequencing oligonucleotides. simultaneously in a single multiplex genotyping reaction. The sequencing oligonucleotide mixture comprises at least one sequencing oligonucleotide for each of the sequences of interest, in particular SNP sites of interest. The sequencing oligonucleotides bind a few bases upstream to the sequence of interest, in particular the SNP site to initiate the sequencing process.
En una realización ejemplar, el genotipado del producto amplificado se hace mediante el método de la pirosecuenciación, sin embargo, otros métodos de genotipado tales como, pero no limitados a, secuenciación Sanger, sistemas de secuenciación masiva por apilamiento de fragmentos (MPSS), secuenciación polarizada, secuenciación ¡Ilumina, secuenciación SOLiD, secuenciación microfluídica SANGER, secuenciación por hibridación o similares pueden también usarse para el genotipado del producto amplificado sin alterar el alcance y el espíritu de la presente invención. In an exemplary embodiment, genotyping of the amplified product is done by the pyrosequencing method, however, other genotyping methods such as, but not limited to, Sanger sequencing, mass sequencing systems by fragment stacking (MPSS), sequencing polarized, Illumination sequencing, SOLiD sequencing, SANGER microfluidic sequencing, hybridization sequencing or the like can also be used for genotyping the amplified product without altering the scope and spirit of the present invention.
En una realización ejemplar, la reacción de genotipado se lleva a cabo como sigue: un oligonucleótido o cebador de secuenciación híbrida con un producto amplificado de una sola hebra o amplicon amplificado o amplicon de PCR que sirve como molde, y es incubado con las enzimas, ADN polimerasa, ATP sulforilasa, luciferasa y apirasa así como con los substratos, adenosina 5' fosfosulfato (APS), y luciferina. In an exemplary embodiment, the genotyping reaction is carried out as follows: an oligonucleotide or hybrid sequencing primer with a single stranded amplified product or amplified amplicon or PCR amplicon serving as a template, and is incubated with the enzymes, DNA polymerase, ATP sulphorylase, luciferase and apyrase as well as with the substrates, 5 'phosphosulfate adenosine (APS), and luciferin.
Después, el primer desoxirribonucleótido trifosfato (dNTP) se añade a la reacción. La ADN polimerasa cataliza la incorporación de los dNTPs a la hebra de ADN, si es complementario a la base presente en la hebra molde. Cada vez que se produce una incorporación, esta se acompaña de la liberación de pirofosfato (PPi) en una cantidad equimolar a la cantidad de nucleótido incorporado. La ATP sulforilasa convierte PPi en ATP en presencia de APS. Este ATP conduce la conversión, mediada por la luciferasa, de luciferina en oxiluciferina que produce luz visible en cantidades proporcionales a la cantidad de ATP. La luz producida en la reacción catalizada por la luciferasa es detectada por una cámara o un fotomultiplicador y se observa como un pico en la información de los datos brutos obtenidos (Pirograma). La altura de cada pico corresponde a la señal de luz que es proporcional al número de nucleótidos incorporados durante la reacción de genotipado. Una enzima que degrada los nucleótidos tal como la apirasa, degrada los nucleótidos que no han sido incorporados y el ATP. Cuando se completa la degradación, otro nucleótido es añadido. Este es un proceso continuo durante la reacción de genotipado. La adición de dNTPs es secuencial. Then, the first deoxyribonucleotide triphosphate (dNTP) is added to the reaction. DNA polymerase catalyzes the incorporation of dNTPs into the DNA strand, if it is complementary to the base present in the template strand. Each time an incorporation occurs, it is accompanied by the release of pyrophosphate (PPi) in an amount equimolar to the amount of nucleotide incorporated. ATP sulphorylase converts PPi to ATP in the presence of APS. This ATP conducts the luciferase-mediated conversion of luciferin to oxyluciferin that produces visible light in amounts proportional to the amount of ATP. The light produced in the reaction catalyzed by luciferase is detected by a camera or a photomultiplier and is observed as a peak in the information of the raw data obtained (Pyrogram). The height of each peak corresponds to the light signal that is proportional to the number of nucleotides incorporated during the genotyping reaction. An enzyme that degrades nucleotides such as apyrase, degrades nucleotides that have not been incorporated and ATP. When degradation is complete, another nucleotide is added. This is a continuous process during the genotyping reaction. The addition of dNTPs is sequential.
En una realización ejemplar, durante la reacción de genotipado se usa dexosiadenosina alfa-tio-trifosfato (dATP.S) como un sustituto de la dexosiadenosina trifosfato natural (dATP) ya que es muy eficientemente usado por la ADN polimerasa., pero no es reconocido por la luciferasa. Como el proceso continúa, la hebra complementaria de ADN es generada y la secuencia de nucleotidos es determinada a partir de los picos de señal que se trazan en el Pirograma. In an exemplary embodiment, during the genotyping reaction dexosiadenosine alpha-thio-triphosphate (dATP.S) is used as a substitute for natural dexosiadenosine triphosphate (dATP) since it is very efficiently used by DNA polymerase., But it is not recognized for the luciferase. As the process continues, the complementary strand of DNA is generated and the nucleotide sequence is determined from the signal peaks that are plotted in the Pyrogram.
En una realización ejemplar, el secuenciador tal como, pero no limitado a, microsecuenciador usado durante la reacción de genotipado es programado con una secuencia diana que incluye las secuencias adyacentes a cada una de las secuencias múltiples de interés, en particular sitios SNPs. Esto permite al software de genotipado determinar si la secuencia de referencia correcta está presente. In an exemplary embodiment, the sequencer such as, but not limited to, microsequencer used during the genotyping reaction is programmed with a target sequence that includes the sequences adjacent to each of the multiple sequences of interest, in particular SNPs sites. This allows the genotyping software to determine if the correct reference sequence is present.
FIG. 1 muestra una reacción de PCR simple con una reacción múltiplex de genotipado de acuerdo a una realización ejemplar de la presente invención. La muestra de ADN contiene dos sitios SNP de interés (SNP1 y SNP2) que están localizados a menos de 1 kb uno del otro. Una secuencia diana de la muestra de ADN conteniendo ambos sitios SNP (SNP1 y SNP2) es amplificada mediante la reacción en cadena de la polimerasa (PCR). Para llevar a cabo la PCR, una pareja de oligonucleótidos de amplificación A01 y A01 ' son usados, de los cuales uno de ellos, A01 ' está biotinilado. El producto resultante de la PCR está biotinilado y contiene ambos sitios SNP SNP1 y SNP2. Después de producir ADN de cadena simple para servir de molde de la secuenciación, dos oligonucleótidos de secuenciación S01 y S02 son alineados al producto de PCR. Durante las reacciones de genotipado las secuencias adyacentes y las que incluyen ambos SNPs se superponen. FIG. 1 shows a simple PCR reaction with a multiplex genotyping reaction according to an exemplary embodiment of the present invention. The DNA sample contains two SNP sites of interest (SNP1 and SNP2) that are located less than 1 kb from each other. A target sequence of the DNA sample containing both SNP sites (SNP1 and SNP2) is amplified by polymerase chain reaction (PCR). To carry out the PCR, a pair of amplification oligonucleotides A01 and A01 'are used, of which one of them, A01' is biotinylated. The resulting PCR product is biotinylated and contains both SNP SNP1 and SNP2 sites. After producing single stranded DNA to serve as a sequencing template, two sequencing oligonucleotides S01 and S02 are aligned to the PCR product. During genotyping reactions adjacent sequences and those that include both SNPs overlap.
FIG.2 muestra una PCR múltiplex con una reacción múltiplex de genotipado de acuerdo a una realización ejemplar de la presente invención. La muestra de ADN contiene dos sitios SNP de interés (SNP1 y SNP2) que están localizados en dos genes diferentes. Dos secuencias diana de la muestra de ADN, cada una de ellas conteniendo uno de los sitios SNP de interés, son amplificadas mediante el uso de dos parejas de oligonucleótidos de amplificación, en donde la primera pareja de oligonucleótidos de amplificación (A01 y A01 ') es para el primer sitio SNP de interés (SNP1 ) y la segunda pareja de oligonucleótidos de amplificación (A02 y A02') es para el segundo sitio SNP de interés. Los oligonucleótidos de amplificación A01 ' y A02' están biotinilados. Los productos de PCR resultantes están biotinilados y contienen un sitio SNP. Después de la producción de ADN de cadena simple que sirve de molde de la secuenciacion, dos oligonucleótidos de secuenciacion S01 y S02 son alineados a los productos de PCR. Durante las reacciones de genotipado las secuencias adyacentes y las que incluyen ambos SNPs se superponen FIG.2 shows a multiplex PCR with a multiplex genotyping reaction according to an exemplary embodiment of the present invention. The DNA sample contains two SNP sites of interest (SNP1 and SNP2) that are located in two different genes. Two target sequences of the DNA sample, each containing one of the SNP sites of interest, are amplified by the use of two pairs of amplification oligonucleotides, wherein the first pair of amplification oligonucleotides (A01 and A01 ') It is for the first SNP site of interest (SNP1) and the second couple of amplification oligonucleotides (A02 and A02 ') is for the second SNP site of interest. The amplification oligonucleotides A01 'and A02' are biotinylated. The resulting PCR products are biotinylated and contain an SNP site. After the production of single-stranded DNA that serves as a template for sequencing, two sequencing oligonucleotides S01 and S02 are aligned to the PCR products. During genotyping reactions adjacent sequences and those that include both SNPs overlap
El método de acuerdo a una de las realizaciones ejemplares de la presente invención usa una única reacción de amplificación y una única reacción de genotipado reduciéndose el trabajo y costes relacionados con la preparación de la muestra, numerosos ensayos, necesidad de contar con una gran cantidad de ADN de partida y gran número de reacciones de secuenciacion. Además, el método es técnicamente menos complicado y también reduce el coste global. The method according to one of the exemplary embodiments of the present invention uses a single amplification reaction and a single genotyping reaction reducing the work and costs related to the preparation of the sample, numerous tests, need to have a large amount of Starting DNA and large number of sequencing reactions. In addition, the method is technically less complicated and also reduces the overall cost.
Con el propósito de llevar a cabo el proceso de la presente invención, se describen kits que constan de: i) todos los reactivos necesarios en las cantidades y concentraciones óptimas para la generación de una reacción de amplificación simple o multiplex de las dianas de interés (de forma precisa oligonucleótidos de amplificación, ADN polimerasa, dexosinucleótidos y tampón de reacción) todos ellos pre-mezclados y estabilizados por medio del proceso de gelificación y, With the purpose of carrying out the process of the present invention, kits are described that consist of: i) all the necessary reagents in the optimal amounts and concentrations for the generation of a simple or multiplex amplification reaction of the targets of interest ( precisely amplification oligonucleotides, DNA polymerase, dexosinucleotides and reaction buffer) all pre-mixed and stabilized by means of the gelation process and,
¡i) oligonucleótidos de secuenciacion para el genotipado multiplex de las secuencias de interés, los cuales están estabilizados por medio del proceso de gelificación. I) sequencing oligonucleotides for multiplex genotyping of the sequences of interest, which are stabilized by the gelation process.
Los siguientes ejemplos se proporcionan meramente como ilustrativos de los diversos aspectos de la invención y no serán interpretados como una limitación de la invención en modo alguno. En los siguientes ejemplos, debe ser entendido que mientras que se han hecho esfuerzos para asegurar la exactitud de los parámetros experimentales (por ejemplo, cantidades, temperatura etc.), un cierto error experimental y desviación deben ser considerados cuando se reproduzcan los experimentos que se describen abajo. EJEMPLOS Ejemplo 1 : The following examples are provided merely as illustrative of the various aspects of the invention and will not be construed as limiting the invention in any way. In the following examples, it should be understood that while efforts have been made to ensure the accuracy of the experimental parameters (eg, quantities, temperature etc.), a certain experimental error and deviation should be considered when reproducing the experiments that are described below. EXAMPLES Example 1 :
TEST CDKN2a PCR SIMPLE, GENOTIPADO MULTIPLEX A. Materiales TEST CDKN2a SIMPLE PCR, MULTIPLEX GENOTIPATE A. Materials
El gen CDKN2a contiene dos SNPs, Rs10757283 y Rs1081 1661 , que están asociados con un incremento del riesgo de sufrir diabetes mellitus tipo II. Estos SNPs están vinculados en equilibrio y están separados por 77 bases. Para generar un amplicon de 246pb, se diseñan los siguientes oligonucleótidos de amplificación: (i) un oligonucleotido forward no modificado de 23 bases y (ii) un oligonucleotido reverso- biotinilado de 20 bases. El oligonucleotido forward presenta una temperatura de alineamiento teórica de 60.85C y el oligonucleotido reverso tiene una temperatura de alineamiento de 62.45C. La temperatura óptima de alineamiento de la reacción se determinó experimentalmente en 555C. Los dos SNPs son leídos por el oligonucleotido de secuenciacion 1 de 17 bases, que híbrida 3 bases corriente arriba de Rs1081 1661 y tiene una temperatura de alineamiento de 50.05C, y el oligonucleotido de secuenciacion 2 de 19 bases, que híbrida adyacente a Rs10757283 y tiene una temperatura de alineamiento de 53.75C. The CDKN2a gene contains two SNPs, Rs10757283 and Rs1081 1661, which are associated with an increased risk of suffering from type II diabetes mellitus. These SNPs are linked in equilibrium and are separated by 77 bases. To generate a 246 bp amplicon, the following amplification oligonucleotides are designed: (i) a 23-base unmodified forward oligonucleotide and (ii) a 20-base reverse-biotinylated oligonucleotide. The forward oligonucleotide has a theoretical alignment temperature of 60.8 5 C and the reverse oligonucleotide has an alignment temperature of 62.4 5 C. The optimal reaction alignment temperature was determined experimentally at 55 5 C. The two SNPs are read by the sequencing oligonucleotide 1 of 17 bases, which hybridizes 3 bases upstream of Rs1081 1661 and has an alignment temperature of 50.0 5 C, and sequencing oligonucleotide 2 of 19 bases, which hybrid adjacent to Rs10757283 and has an alignment temperature of 53.7 5 C.
Cuando se usan individualmente, el oligonucleotido de secuenciacion 1 lee la secuencia SEQ ID NO: 1 (TTCYCATGAC) con el orden de dispensación SEQ ID NO: 2 (GTCTCGATGA), y el oligonucleotido de secuenciacion 2 lee la secuencia SEQ ID NO: 3 (YTGATATTCT) con el orden de dispensación SEQ ID NO: 4 (GCTCGATAT). En el modo múltiplex las secuencias son leídas con el orden de dispensación SEQ ID NO: 5 (GCTAGCTCGATGA). When used individually, the sequencing oligonucleotide 1 reads the sequence SEQ ID NO: 1 (TTCYCATGAC) with the dispensing order SEQ ID NO: 2 (GTCTCGATGA), and the sequencing oligonucleotide 2 reads the sequence SEQ ID NO: 3 ( YTGATATTCT) with the dispensing order SEQ ID NO: 4 (GCTCGATAT). In multiplex mode the sequences are read in the order of dispensing SEQ ID NO: 5 (GCTAGCTCGATGA).
B. Métodos B. Methods
Reacción de Amplificación Amplification Reaction
Se prepara una mezcla de reacción con los oligonucleótidos de amplificación de CDKN2a. A ésta mezcla de reacción se le añaden 3 μΙ de enzima ADN polimerasa, fabricada por Biotools Biotechnological & Medical Laboratories S.A., 5 μΙ de tampón de reacción que se comercializa junto con la enzima, entre 0.1 μΙ y 0.3 μΙ de una solución 10mM que contiene los cuatro dexosirribonucleótidos que forman la cadena de ácido dexosirribonucleico (dATP, dTTP, dGTP, dCTP) y entre 0.2 μΙ y 0.5 μΙ de una solución 10 μΜ de la pareja de oligonucleótidos de amplificación descritos en la sección de materiales para generar un amplicon de 246pb que contiene los dos SNPs de interés (Rs10757283 y Rs1081 1661 ). A reaction mixture is prepared with the amplification oligonucleotides of CDKN2a. To this reaction mixture is added 3 μΙ of DNA polymerase enzyme, manufactured by Biotools Biotechnological & Medical Laboratories SA, 5 μΙ of a reaction that is marketed together with the enzyme, between 0.1 μΙ and 0.3 μΙ of a 10mM solution containing the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP) and between 0.2 μΙ and 0.5 μΙ of a solution 10 μΜ of the pair of amplification oligonucleotides described in the materials section to generate a 246 bp amplicon containing the two SNPs of interest (Rs10757283 and Rs1081 1661).
Preparar 3 alícuotas de 47.0 μΙ cada una. Añadir además 3.0 μΙ de ADN molde a una concentración 10ng/μΙ o agua Milli-Q. Incubar a 955C durante 3 minutos; a 955C 20 segundos, a 555C 20 segundos, a 725C 30 segundos durante aproximadamente 45 ciclos. Incubar a 725C durante 5 minutos. Enfriar la alícuota a 105C. Finalizada la amplificación, añadir a 10 μΙ de producto de PCR 2 μΙ de tampón de carga y hacer una electroforesis en un gel de agarosa al 2% en tampón TBE 0.5x, teñido con SYBRsafe 1 x. Dejar correr el gel durante 30 minutos a 100V en tampón TBE 0.5x, y cargar en un pocilio lateral al lado del producto de PCR 2 μΙ de marcador de DNA de 10Opb como estándar del tamaño de las bandas. I. Reacción de Genotipado Prepare 3 aliquots of 47.0 μΙ each. Also add 3.0 μΙ of template DNA at a concentration of 10ng / μΙ or Milli-Q water. Incubate at 95 5 C for 3 minutes; at 95 5 C 20 seconds, at 55 5 C 20 seconds, at 72 5 C 30 seconds for approximately 45 cycles. Incubate at 72 5 C for 5 minutes. Cool the aliquot to 10 5 C. After the amplification, add to 2 μΙ of PCR product 2 μΙ of loading buffer and make an electrophoresis in a 2% agarose gel in 0.5x TBE buffer, stained with SYBRsafe 1 x. Run the gel for 30 minutes at 100V in 0.5x TBE buffer, and load in a lateral well next to the PCR product 2 μΙ of 10Opb DNA marker as standard for band size. I. Genotyping reaction
Preparar una placa de 96 pocilios Q96 con 20 μΙ de tampón de hibridación, y con las siguientes combinaciones de oligos de secuenciación: Prepare a 96-well Q96 plate with 20 μΙ hybridization buffer, and with the following combinations of sequencing oligos:
Figure imgf000017_0001
Figure imgf000017_0001
Programar el orden de dispensación: (a) Pocilio A1 +A2, SEQ ID NO: 6 (GTCTCATGA) (b) Pocilio A3+A4, SEQ ID NO: 7 (GCTGATAT) (c) Pocilio A5+A6, SEQ ID NO: 8 (GCTAGCTCGATGA). Añadir 40 μΙ de tampón de unión y 4 μΙ de sefarosa estreptavidina a cada producto de PCR. Agitarlo durante 5 minutos. En la estación de trabajo del Q96 se separan las cadenas de ADN y seguidamente se añade el molde de cadena simple a la placa del Q96. Incubar a 805C durante 2 minutos y enfriar a temperatura ambiente. Ahora iniciar el programa de genotipado. C. Resultados Program the dispensing order: (a) Pocilio A1 + A2, SEQ ID NO: 6 (GTCTCATGA) (b) Pocilio A3 + A4, SEQ ID NO: 7 (GCTGATAT) (c) Pocilio A5 + A6, SEQ ID NO: 8 (GCTAGCTCGATGA). Add 40 μΙ of binding buffer and 4 μΙ of sepharose streptavidin to each PCR product. Shake it for 5 minutes. In the workstation of the Q96 the DNA chains are separated and then the single chain template is added to the plate of the Q96. Incubate at 80 5 C for 2 minutes and cool to room temperature. Now start the genotyping program. C. Results
I. Reacción de Amplificación I. Amplification Reaction
FIG. 3 muestra los resultados del gel de agarosa. Se cargaron en el gel de agarosa 30ng de ADN molde junto con un control sin ADN molde (NTC), dónde se mezclaron 10 μΙ de producto de PCR con 2 μΙ de buffer de carga y se corrió en un gel de agarosa al 2% en TBE 0.5x a 100V durante 30 minutos. El tamaño teórico del producto de PCR es de 246pb FIG. 3 shows the results of the agarose gel. 30ng of template DNA was loaded onto the agarose gel together with a control without template DNA (NTC), where 10 µΙ of PCR product was mixed with 2 µΙ of loading buffer and ran on a 2% agarose gel in TBE 0.5x to 100V for 30 minutes. The theoretical size of the PCR product is 246bp
II. Reacción de Genotipado II. Genotyping reaction
FIG. 4 muestra la calidad global de las reacciones de pirosecuenciación. (a) Pocilios A1 y A2 corresponden al producto de PCR de hebra simple con oligo de secuenciacion 1 . (b) Pocilios A3 y A4 corresponden al producto de PCR de hebra simple con oligo de secuenciacion 2. (c) Pocilios A5 y A6 corresponden al producto de PCR de cadena simple con oligos de secuenciacion 1 y 2 a concentraciones equimolares. Los círculos azules representan la alta calidad de la secuencia obtenida. FIG. 4 shows the overall quality of pyrosequencing reactions. (a) Wells A1 and A2 correspond to the single-stranded PCR product with oligo sequencing 1. (b) Wells A3 and A4 correspond to the single-stranded PCR product with sequencing oligo 2. (c) Wells A5 and A6 correspond to the single-stranded PCR product with oligos sequencing 1 and 2 at equimolar concentrations. The blue circles represent the high quality of the sequence obtained.
FIG. 5 representa los pirogramas del genotipado simple y multiplex de SNP. El primer pirograma representa los picos resultantes cuando se añade el oligo de secuenciacion 1 al ADN molde. El segundo pirograma representa los picos resultantes cuando se añade el oligo de secuenciacion 2 al ADN molde. El tercer pirograma representa los picos resultantes cuando se añaden los oligos de secuenciacion 1 y 2 a concentraciones equimolares. Los picos determinan la incorporación de cada nuevo dexosinucleótido adicional. FIG. 5 represents the pyrograms of SNP simple and multiplex genotyping. The first pyrogram represents the resulting peaks when the sequencing oligo 1 is added to the template DNA. The second pyrogram represents the resulting peaks when oligo sequencing 2 is added to the template DNA. The third pyrogram represents the resulting peaks when the oligos of sequencing 1 and 2 are added at equimolar concentrations. The peaks determine the incorporation of each new additional dexosinucleotide.
FIG. 6 muestra los resultados genotípicos obtenidos para el ADN molde, (a) Pocilios A1 y A2 corresponden al producto de PCR de hebra simple con el oligo de secuenciacion 1 . (b) Pocilios A3 y A4 corresponden al producto de PCR de hebra simple con el oligo de secuenciacion 2. (c) Pocilios A5 y A6 corresponden al producto de PCR de hebra simple con los oligos de secuenciacion 1 y 2 a concentraciones equimolares. En consecuencia cualquier experto en la materia entiende, que en los pocilios de A1 a A4 donde solo un SNP fue genotipado y el resultado de un único genotipo es mostrado. Las reacciones múltiplex mostradas en los pocilios A5 a A6 dan dos resultados, evidentemente. FIG. 6 shows the genotypic results obtained for the template DNA, (a) Wells A1 and A2 correspond to the single stranded PCR product with the sequencing oligo 1. (b) Wells A3 and A4 correspond to the single-stranded PCR product with the sequencing oligo 2. (c) Wells A5 and A6 correspond to the single-stranded PCR product with the sequencing oligos 1 and 2 at equimolar concentrations. Consequently, any person skilled in the art understands that in wells from A1 to A4 where only one SNP was genotyped and the result of a single genotype is shown. The multiplex reactions shown in wells A5 to A6 give two results, of course.
D. Discusión D. Discussion
La imagen descrita en la FIG.3 muestra que la cantidad de producto de PCR producido es aproximadamente equivalente siempre que se añadan 30ng de ADN molde a la reacción. Aparecen leves diferencias debido a errores en el pipeteo, durante el montaje de la PCR, o cuando se carga el gel. Además, el control sin ADN molde (NTCs) muestra algunas señales que se presentan como consecuencia de una señal residual del producto de PCR cargado en el pocilio adyacente en el gel o debido a la formación de aerosoles durante el montaje de la PCR. En todo caso la diferencia entre las reacciones de PCR y los controles sin DNA molde es evidente. Ya que la cantidad de productos de PCR es muy similar, cualquier diferencia en los resultados de genotipado es debida a los métodos de genotipado simple versus múltiple. La calidad de los productos de PCR permanece similar en todos los casos y no es variable, lo cuál es evidente para un experto en la materia. Los resultados ilustrados en la FIG.4 muestran datos de alta calidad en las reacciones de genotipado como era de esperar. Los círculos azules aparecen para confirmar la alta calidad obtenida. Un fallo en la reacción hubiera sido indicado mediante un círculo rojo y un resultado de baja calidad. La inconsistencia entre la secuencia de referencia y los resultados obtenidos o ratios señal/ruido pobres hubieran aparecido con color amarillo. Es evidente para un experto en la materia, que todas las reacciones en este caso pasan el test de calidad independientemente del número de oligos de secuenciacion añadidos. The image described in FIG. 3 shows that the amount of PCR product produced is approximately equivalent as long as 30ng of template DNA is added to the reaction. Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded. In addition, the control without template DNA (NTCs) shows some signals that occur as a result of a residual signal from the PCR product loaded into the adjacent well in the gel or due to aerosol formation during PCR assembly. In any case, the difference between PCR reactions and controls without template DNA is evident. Since the amount of PCR products is very similar, any difference in genotyping results is due to simple versus multiple genotyping methods. The quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art. The results illustrated in FIG. 4 show high quality data in genotyping reactions as expected. The blue circles appear to confirm the high quality obtained. A reaction failure would have been indicated by a red circle and a poor quality result. The inconsistency between the reference sequence and the results obtained or poor signal / noise ratios would have appeared yellow. It is clear to one skilled in the art, that all reactions in this case pass the quality test regardless of the number of sequencing oligos added.
La imagen ilustrada en la FIG.5 describe los pirogramas resultantes obtenidos. Aparecen picos bien definidos en las posiciones esperadas, coincidiendo con la secuencia de referencia, (a) el primer pirograma se obtuvo a partir de la reacción de genotipado donde se usó sólo el oligo de secuenciacion 1 . (b) el segundo pirograma se obtuvo a partir de la reacción de genotipado donde se usó sólo el oligo de secuenciacion 2. (c) el tercer pirograma se obtuvo a partir de la reacción de genotipado donde se usaron los oligos de secuenciacion 1 y 2. El pirograma resultante del genotipado múltiplex corresponde a las secuencias obtenidas con el oligo de secuenciacion 1 superpuesta con la secuencia obtenida con el oligo de secuenciacion 2. Las dos bases polimórficas presentan una gran aproximación con los resultados de las reacciones simples. The image illustrated in FIG. 5 describes the resulting pyrograms obtained. Well-defined peaks appear at the expected positions, coinciding with the reference sequence, (a) the first pyrogram was obtained from the genotyping reaction where only oligo sequencing 1 was used. (b) the second pyrogram was obtained from the genotyping reaction where only the sequencing oligo 2 was used. (c) the third pyrogram was obtained from the genotyping reaction where the sequencing oligos 1 and 2 were used The resulting pyrogram of the multiplex genotyping corresponds to the sequences obtained with the sequencing oligo 1 superimposed with the sequence obtained with the sequencing oligo. 2. The two polymorphic bases present a great approximation with the results of simple reactions.
Los resultados ilustrados en la FIG.6 describen los genotipos obtenidos por secuenciación múltiple en concordancia con los genotipos obtenidos por secuenciación simple. El genotipo del SNP 1 se muestra en los pocilios A1 , A2, A5 y A6 con posición 1 , y es T/T en todos los casos. Mientras que el genotipo del SNP 2 se muestra en los pocilios A2 y A3 con posición 1 y en los pocilios A5 y A6 con posición 2. Por tanto, se muestra el resultado de los mismos genotipos tanto a partir del genotipado simple como del genotipado múltiple. Por lo tanto, es evidente para cualquier experto en la materia que es posible obtener datos de genotipos relativos a múltiples SNPs usando oligos múltiples de secuenciación con el mismo ADN molde de cadena simple. The results illustrated in FIG. 6 describe the genotypes obtained by multiple sequencing according to the genotypes obtained by simple sequencing. The genotype of SNP 1 is shown in wells A1, A2, A5 and A6 with position 1, and is T / T in all cases. While the genotype of SNP 2 is shown in wells A2 and A3 with position 1 and in wells A5 and A6 with position 2. Therefore, the result of the same genotypes from both single genotyping and multiple genotyping is shown. . Therefore, it is apparent to any person skilled in the art that it is possible to obtain genotype data related to multiple SNPs using multiple sequencing oligos with the same single stranded template DNA.
Ejemplo 2: Example 2:
TCF7L2 PCR MULTIPLEX, GENOTIPADO MULTIPLEX A. Material  TCF7L2 MULTIPLEX PCR, MULTIPLEX GENOTIPATE A. Material
El gen TCF7a contiene dos SNPs, Rs12255372 y Rs7903146, que están asociados con daños en el metabolismo de la sulfonilurea. Estos SNPs están vinculados en equilibrio y están separados por más de 50,000 bases de secuencia codificante y no codificante. Para generar un amplicon de 278pb y un amplicon de 246pb se diseñan los oligonucleótidos de amplificación siguientes. El amplicon de 278pb usa (i) un oligonucleotido forward no modificado de 18 bases y (ii) un oligonucleotido reverso- biotinilado de 21 bases. El oligonucleotido forward presenta una temperatura de alineamiento teórica de 56.95C y el oligonucleotido reverso tiene una temperatura de alineamiento de 57.95C. La temperatura óptima de alineamiento de la reacción se determinó experimentalmente en 555C. El amplicon de 246pb usa (i) un oligonucleotido forward no modificado de 20 bases y (ii) un oligonucleotido reverso-biotinilado de 20 bases. El oligonucleotido forward presenta una temperatura de alineamiento teórica de 54.95C y el oligonucleotido reverso tiene una temperatura de alineamiento de 54.95C. La temperatura óptima de alineamiento de la reacción se determinó experimentalmente en 555C. Los dos SNPs son leídos por el oligonucleotido 1 de secuenciación de 16 bases, que híbrida a partir de la tercera base previa a Rs1081 1661 y tiene una temperatura de alineamiento de 53.35C, y el oligonucleótido 2 de secuenciación de 19 bases, que híbrida a partir de la primera base previa a Rs10757283 y tiene una temperatura de alineamiento de 48.15C. The TCF7a gene contains two SNPs, Rs12255372 and Rs7903146, which are associated with damage to sulfonylurea metabolism. These SNPs are linked in equilibrium and are separated by more than 50,000 bases of coding and non-coding sequence. The following amplification oligonucleotides are designed to generate a 278 bp amplicon and a 246 bp amplicon. The 278 bp amplicon uses (i) an 18-base unmodified forward oligonucleotide and (ii) a 21-base reverse-biotinylated oligonucleotide. The forward oligonucleotide has a theoretical alignment temperature of 56.9 5 C and the reverse oligonucleotide has an alignment temperature of 57.9 5 C. The optimal reaction alignment temperature was determined experimentally at 55 5 C. The 246 bp amplicon uses (i ) a 20-base unmodified forward oligonucleotide and (ii) a 20-base reverse-biotinylated oligonucleotide. The forward oligonucleotide has a theoretical alignment temperature of 54.9 5 C and the reverse oligonucleotide has an alignment temperature of 54.9 5 C. The optimal reaction alignment temperature was determined experimentally at 55 5 C. The two SNPs are read by the 16 base sequencing oligonucleotide 1, which hybridizes from the third base prior to Rs1081 1661 and has a alignment temperature of 53.3 5 C, and the 19 base sequencing oligonucleotide 2, which hybridizes from first base prior to Rs10757283 and has an alignment temperature of 48.1 5 C.
Cuando se usan individualmente, el oligonucleótido 1 de secuenciación lee la secuencia SEQ ID NO: 9 (AATKACCATA) con el orden de dispensación SEQ ID NO: 10 (GATGACAT), y el oligonucleótido 2 de secuenciación lee la secuencia SEQ ID NO: 1 1 (AYTATATAATTTAATTGCCGTATGAGG) con el orden de dispensación SEQ ID NO: 12 (GACTGATAT). En el modo múltiplex las secuencias son leídas con el orden de dispensación SEQ ID NO: 13 (GACTGCATACA). When used individually, the sequencing oligonucleotide 1 reads the sequence SEQ ID NO: 9 (AATKACCATA) with the dispensing order SEQ ID NO: 10 (GATGACAT), and the sequencing oligonucleotide 2 reads the sequence SEQ ID NO: 1 1 (AYTATATAATTTAATTGCCGTATGAGG) with the dispensing order SEQ ID NO: 12 (GACTGATAT). In multiplex mode the sequences are read in the order of dispensing SEQ ID NO: 13 (GACTGCATACA).
B. Métodos I. Reacción de Amplificación B. Methods I. Amplification reaction
Se prepara una mezcla de reacción con los oligonucleotidos de amplificación de TCF7L2. A ésta mezcla de reacción se le añaden 3 μΙ de enzima DNA polimerasa, fabricada por Biotools Biotechnological & Medical Laboratories S.A., 5 μΙ de buffer de reacción que se comercializa junto con la enzima , entre 0.1 μΙ y 0.3 μΙ de una solución 10mM que contiene los cuatro desoxirribonucleótidos que forman la cadena de ácido desoxirribonucleico (dATP, dTTP, dGTP, dCTP) y entre 0.2 μΙ y 0.5 μΙ de una solución 10 μΜ de la pareja (cuatro en total) de oligonucleotidos de amplificación descritos en la sección de materiales para generar en una única reacción de amplificación múltiplex un amplicon de 278pb y un amplicon de 246pb. Cada amplicon contiene el SNP Rs12255372 y el SNP Rs7903146 respectivamente. A reaction mixture is prepared with the amplification oligonucleotides of TCF7L2. To this reaction mixture is added 3 μΙ of DNA polymerase enzyme, manufactured by Biotools Biotechnological & Medical Laboratories SA, 5 μΙ of reaction buffer that is sold together with the enzyme, between 0.1 μΙ and 0.3 μΙ of a 10mM solution containing the four deoxyribonucleotides that make up the deoxyribonucleic acid chain (dATP, dTTP, dGTP, dCTP) and between 0.2 μΙ and 0.5 μΙ of a 10 μΜ solution of the pair (four in total) of amplification oligonucleotides described in the materials section for generate a 278 bp amplicon and a 246 bp amplicon in a single multiplex amplification reaction. Each amplicon contains SNP Rs12255372 and SNP Rs7903146 respectively.
Preparar volumen para alícuotas por triplicado de 47.0 μΙ. Añadir además 3.0 μΙ de ADN molde 10ng/ μΙ o agua Milli-Q. Incubar a 955C durante 3 minutos; a 955C 20 segundos, a 555C 20 segundos, a 725C 30 segundos durante aproximadamente 45 ciclos. Incubar a 725C durante 5 minutos. Enfriar la alícuota a 105C. Finalizada de amplificación, añadir a 10 μΙ de producto de PCR 2 μΙ de orange tampón de carga y hacer una electroforesis en un gel de agarosa al 2% en tampón TBE 0.5x, teñido con SYBRsafe 1 x. Dejar correr el gel durante 30 minutos a 100V en tampón TBE 0.5x, y cargar en un pocilio lateral al lado del producto de PCR 2 μΙ de marcador de ADN de 10Opb como estándar del tamaño de las bandas. II. Reacción de Genotipado Prepare volume for triplicate aliquots of 47.0 μΙ. Also add 3.0 μΙ of 10ng / μΙ template DNA or Milli-Q water. Incubate at 95 5 C for 3 minutes; at 95 5 C 20 seconds, at 55 5 C 20 seconds, at 72 5 C 30 seconds for approximately 45 cycles. Incubate at 72 5 C for 5 minutes. Cool the aliquot to 10 5 C. After completion of amplification, add to 2 μ PCR of PCR product 2 μΙ of orange loading buffer and make an electrophoresis in a 2% agarose gel in 0.5x TBE buffer, stained with SYBRsafe 1 x . Run the gel for 30 minutes at 100V in 0.5x TBE buffer, and load in a lateral well next to the PCR product 2 μΙ of 10Opb DNA marker as standard for band size. II. Genotyping reaction
Preparar una placa de 96 pocilios Q96 con 20 μΙ de tampón de hibridación, y siguientes combinaciones de oligos de secuenciacion: Prepare a 96-well plate Q96 with 20 μΙ hybridization buffer, and following combinations of sequencing oligos:
Figure imgf000022_0001
Figure imgf000022_0001
Programar el orden de dispensación: (a) Pocilio B1 +2, SEQ ID NO: 14 (GATGACAT) (b) Pocilio B3+A, SEQ ID NO: 15 (GACTGATAT) (c) Pocilio B5+6, SEQ ID NO: 16 (GACTGCATACA). Añadir 40 μΙ de tampón de unión y 4 μΙ de sefarosa estreptavidina a cada producto de PCR. Agitarlo durante 5 minutos. En la estación de trabajo del Q96 se separan las cadenas de ADN y seguidamente se añade el molde de cadena simple a la placa del Q96. Se incuba la placa a 805C durante 2 minutos y se deja enfriar a temperatura ambiente. Poner en funcionamiento el programa de genotipado. Program the dispensing order: (a) Pocilio B1 +2, SEQ ID NO: 14 (GATGACAT) (b) Pocilio B3 + A, SEQ ID NO: 15 (GACTGATAT) (c) Pocilio B5 + 6, SEQ ID NO: 16 (GACTGCATACA). Add 40 μΙ of binding buffer and 4 μΙ of sepharose streptavidin to each PCR product. Shake it for 5 minutes. In the workstation of the Q96 the DNA chains are separated and then the single chain template is added to the plate of the Q96. The plate is incubated at 80 5 C for 2 minutes and allowed to cool to room temperature. Put the genotyping program into operation.
C. Resultados C. Results
I. Reacción de Amplificación I. Amplification Reaction
FIG. 7 Muestra los resultados del gel de agarosa. Se cargaron en el gel de agarosa al 2% 30ng de DNA molde junto con un control sin DNA molde (NTC). Cada réplica de PCR debería presentar cantidades aproximadamente equivalentes de los productos de PCR. Los tamaños teóricos de los productos de PCR son 278pb y 246pb. FIG. 7 Shows the results of the agarose gel. 30ng 2% agarose gel was loaded onto the template DNA together with a control without template DNA (NTC). Each PCR replica should have approximately equivalent amounts of the PCR products. The theoretical sizes of the PCR products are 278pb and 246pb.
I. Reacción de Genotipado I. Genotyping reaction
FIG. 8 Muestra la calidad global de las reacciones de pirosecuenciación. (a) Los pocilios B1 y B2 contienen dos productos de PCR de cadena simple sólo con el oligo 1 de secuenciacion. (b) Los pocilios B3 y B4 contienen dos productos de PCR de cadena simple sólo con el oligo 2 de secuenciacion. (c) Pocilios B5 y B6 contienen dos productos de PCR de cadena simple con oligo 1 y 2 de secuenciacion a concentraciones equimolares. Los círculos azules representan la alta calidad de la secuencia obtenida. FIG.9 representa los pirogramas del genotipado simple y multiplex de SNP. El primer pirograma representa los picos resultantes cuando se añade el oligo 1 de secuenciacion al ADN molde. El segundo pirograma representa los picos resultantes cuando se añade el oligo 2 de secuenciacion al ADN molde. El tercer pirograma representa los picos resultantes cuando se añaden los oligos 1 y 2 de secuenciacion a concentraciones equimolares al ADN molde. Los picos determinan la incorporación de cada nuevo dexosinucleótido adicional. FIG. 8 Shows the overall quality of pyrosequencing reactions. (a) Wells B1 and B2 contain two single chain PCR products only with oligo 1 sequencing. (b) Wells B3 and B4 contain two single chain PCR products only with oligo 2 sequencing. (c) Wells B5 and B6 contain two single chain PCR products with oligo 1 and 2 sequencing at equimolar concentrations. The blue circles represent the high quality of the sequence obtained. FIG. 9 represents the pyrograms of SNP simple and multiplex genotyping. The first pyrogram represents the resulting peaks when oligo 1 sequencing is added to the template DNA. The second pyrogram represents the resulting peaks when oligo 2 sequencing is added to the template DNA. The third pyrogram represents the resulting peaks when sequencing oligos 1 and 2 are added at equimolar concentrations to the template DNA. The peaks determine the incorporation of each new additional dexosinucleotide.
FIG.10 muestra los resultados genotípicos obtenidos para el ADN molde, (a) Los pocilios B1 y B2 contienen dos productos de PCR de cadena simple sólo con el oligo 1 de secuenciacion. (b) Los pocilios B3 y B4 contienen dos productos de PCR de cadena simple sólo con el oligo 2 de secuenciacion. (c) Pocilios B5 y B6 contienen dos productos de PCR de cadena simple con oligo 1 y 2 de secuenciacion a concentraciones equimolares. En consecuencia cualquier experto en la materia entiende, que en los pocilios B1 a B4 un único SNP fue genotipado ya que solo un genotipo es mostrado. Las reacciones de secuenciacion multiplex mostradas en los pocilios B5 y B6 rinden de forma evidente dos resultados. FIG. 10 shows the genotypic results obtained for the template DNA, (a) Wells B1 and B2 contain two single chain PCR products only with oligo 1 sequencing. (b) Wells B3 and B4 contain two single chain PCR products only with oligo 2 sequencing. (c) Wells B5 and B6 contain two single chain PCR products with oligo 1 and 2 sequencing at equimolar concentrations. Consequently, any person skilled in the art understands that in wells B1 to B4 a single SNP was genotyped since only one genotype is shown. The multiplex sequencing reactions shown in wells B5 and B6 clearly yield two results.
D. Discusión D. Discussion
La imagen descrita en la FIG.7 muestra que la cantidad de producto de PCR producida es aproximadamente equivalente siempre que se añadan 30ng de ADN molde a la reacción. Aparecen leves diferencias debido a errores en el pipeteo, durante el montaje de la PCR, o cuando se carga el gel. Además, el control sin ADN molde puede dar señal arrastrada desde el producto de PCR cargado en el pocilio adyacente en el gel o por la formación de aerosoles durante el montaje de la PCR. La intensidad de señal del producto de PCR puede ser tal que dificulte distinguir entre el producto de PCR de 278pb y el producto de PCR de 246pb, sin embargo ésta parece ser uniforme para ambas reacciones en todos los pocilios. En todo caso la diferencia entre la reacción de PCR y el control sin ADN molde es evidente. Ya que la cantidad de productos de PCR es muy similar, cualquier diferencia en los resultados de genotipado es debida a los métodos de genotipado simple versus múltiple. La calidad de los productos de PCR permanece similar en todos los casos y no es variable, lo cuál es evidente para un experto en la materia. Los resultados ilustrados en la FIG.8 muestran datos de alta calidad en las reacciones de genotipado como era de esperar. Los círculos azules aparecen para confirmar la alta calidad. Un fallo en la reacción es indicado por un círculo rojo y significa una calidad baja. La inconsistencia entre la secuencia de referencia y los resultados obtenidos o un ratio de señal pobre aparece de color amarillo. Todas las reacciones en este caso pasan el test de calidad independientemente del número de oligos de secuenciacion que se añadieron. The image described in FIG. 7 shows that the amount of PCR product produced is approximately equivalent as long as 30ng of template DNA is added to the reaction. Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded. In addition, the control without template DNA can give signal drawn from the PCR product loaded into the adjacent well in the gel or by aerosol formation during PCR assembly. The signal strength of the PCR product may be such that it is difficult to distinguish between the 278 bp PCR product and the 246 bp PCR product, however this seems to be uniform for both reactions in all wells. In any case, the difference between the PCR reaction and the control without template DNA is evident. Since the amount of PCR products is very similar, any difference in genotyping results is due to simple versus multiple genotyping methods. The quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art. The results illustrated in FIG. 8 show high quality data in genotyping reactions as expected. The blue circles appear to confirm the high quality. A failure in the reaction is indicated by a red circle and means low quality. The inconsistency between the reference sequence and the results obtained or a poor signal ratio appears yellow. All reactions in this case pass the quality test regardless of the number of sequencing oligos that were added.
La imagen ilustrada en la FIG.9 describe los pirogramas obtenidos. Aparecen picos bien definidos en las posiciones esperadas, coincidiendo con la secuencia de referencia, (a) el primer pirograma se obtuvo desde la reacción de genotipado usando sólo el oligo 1 de secuenciacion. (b) el segundo pirograma se obtuvo desde la reacción de genotipado usando sólo el oligo 2 de secuenciacion. (c) el tercer pirograma se obtuvo desde la reacción de genotipado usando los oligos 1 y 2 de secuenciacion. El pirograma resultante del genotipado múltiple corresponde a las secuencias obtenidas con el oligo 1 de secuenciacion superpuesta con la secuencia obtenida con el oligo 2 de secuenciacion. Las dos bases polimórficas presentan una gran aproximación con los resultados de las reacciones simples. The image illustrated in FIG. 9 describes the pyrograms obtained. Well defined peaks appear in the expected positions, coinciding with the reference sequence, (a) the first pyrogram was obtained from the genotyping reaction using only oligo 1 sequencing. (b) the second pyrogram was obtained from the genotyping reaction using only oligo 2 sequencing. (c) the third pyrogram was obtained from the genotyping reaction using oligos 1 and 2 sequencing. The pyrogram resulting from multiple genotyping corresponds to the sequences obtained with the sequencing oligo 1 superimposed with the sequence obtained with the sequencing oligo 2. The two polymorphic bases present a great approximation with the results of simple reactions.
Los resultados ilustrados en la FIG.10 describen los genotipos obtenidos por secuenciacion múltiple de acuerdo con los genotipos obtenidos por secuenciacion simple. El genotipo del SNP 1 se muestra en los pocilios B1 , B2, B5 y B6 con posición 1 , y es G/G en todos los casos. Mientras que el genotipo del SNP 2 se muestra en los pocilios B2 y B3 con posición 1 y en los pocilios B5 y B6 con posición 2, y es T/C en cada caso. The results illustrated in FIG. 10 describe the genotypes obtained by multiple sequencing according to the genotypes obtained by simple sequencing. The genotype of SNP 1 is shown in wells B1, B2, B5 and B6 with position 1, and is G / G in all cases. While the genotype of SNP 2 is shown in wells B2 and B3 with position 1 and in wells B5 and B6 with position 2, and is T / C in each case.
Esto, ilustra que tanto con el genotipado simple como con el genotipado múltiple los resultados de los genotipos obtenidos son iguales. Entonces, a partir de los resultados de arriba, un experto en la materia sería capaz de obtener información del genotipo de varios SNPs usando múltiples oligos de secuenciacion con el mismo ADN molde de cadena simple. This illustrates that with both simple genotyping and multiple genotyping the results of the genotypes obtained are the same. Then, from the results above, a person skilled in the art would be able to obtain genotype information from several SNPs using multiple sequencing oligos with the same single stranded template DNA.
Ejemplo 3: Example 3:
TCF7L2: PCR MULTIPLEX GELIFICADA, GENOTIPADO MULTIPLE CON OLIGONUCLEOTIDOS DE SECUENCIACION GELIFICADOS Introducción: TCF7L2: MULTIPLEX GELIFIED PCR, MULTIPLE GENOTIPATE WITH GELIFIED SEQUENCING OLIGONUCLEOTIDES Introduction:
Este ejemplo reproduce el ejemplo 2 usando el proceso de gelificación aplicado a las reacciones multiplex de PCR y a los oligos de secuenciación usados para el genotipado múltiple. This example reproduces Example 2 using the gelation process applied to multiplex PCR reactions and sequencing oligos used for multiple genotyping.
A. Materiales Ver sección A. Materiales (Ejemplo 2). A. Materials See section A. Materials (Example 2).
B. Métodos B. Methods
I. Reacción de Amplificación I. Amplification Reaction
Se prepara una mezcla de reacción con los oligonucleótidos de amplificación de TCF7L2. Esta mezcla de reacción está compuesta por enzima ADN polimerasa a una concentración final de 6 U, fabricada por Biotools Biotechnological & Medical Laboratories S.A., tampón de reacción que se comercializa junto con la enzima a una concentración final 1 X , los cuatro dexosirribonucleótidos que forman la cadena de ácido dexosirribonucleico (dATP, dTTP, dGTP, dCTP) a una concentración final entre 200 μΜ y 250 μΜ cada uno y una solución a una concentración final entre 75 nM y 150 nM cada uno de : i) las dos parejas (cuatro oligos en total) de oligos de amplificación descritos en la sección de materiales para generar al mismo tiempo en una reacción de amplificación multiplex un amplicon de 278bp y un amplicon de 246bp. Cada amplicon contiene el SNP Rs12255372 y el SNP Rs7903146 respectivamente, ii) la pareja de oligonucleótidos de amplificación de forma individual para las reacciones simples de PCR correspondiente a la amplificación del SNP Rs12255372 y del SNP Rs7903146 de forma independiente. Las mezclas de reacción (tanto la simple como la multiplex) están estabilizadas mediante el proceso de gelificación. En particular una mezcla de gelificación compuesta de trehalosa, melezitosa, glucógeno y lisina es añadida a las mezclas de reacción anteriormente descritas las cuales contienen todos los reactivos necesarios para llevar a cabo las reacciones de PCR. El proceso de gelificación se completa después de la desecación en condiciones de vacío y a una temperatura inferior de 405C, dando como resultado una mezcla de reacción estabilizada que contiene entre un 10% y un 30% de agua. 47μΙ de agua Milli-Q y 3 μΙ de TaqMan Human Control DNA a una concentración de 10ng/μΙ son dispensados en cada uno de los tubos gelificados. Incubar a 955C durante 5 minutos. Después incubar a 955C durante 20 segundos, a 555C durante 20 segundos y a 725C durante 40 segundos durante aproximadamente 45 ciclos. Adicionalmente incubar a 725C durante 5 minutos. Enfriar la alícuota a 105C. Finalizada la amplificación, añadir a 10 μΙ de producto de PCR 2μΙ de tampón de carga y hacer una electroforesis en un gel de agarosa al 2% en tampón TBE 0.5X, teñido con SYBRsafe 1 x. Dejar correr el gel durante 30 minutos a 100V en tampón TBE 0.5x, y cargar en un pocilio lateral al lado del producto de PCR 2 μΙ de marcador de ADN de 100pb como estándar del tamaño de las bandas. II. Reacción de Genotipado A reaction mixture is prepared with the amplification oligonucleotides of TCF7L2. This reaction mixture is composed of DNA polymerase enzyme at a final concentration of 6 U, manufactured by Biotools Biotechnological & Medical Laboratories SA, reaction buffer that is marketed together with the enzyme at a final concentration of 1 X, the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP) at a final concentration between 200 μΜ and 250 μΜ each and a solution at a final concentration between 75 nM and 150 nM each of: i) the two pairs (four oligos in total) of amplification oligos described in the materials section to generate at the same time in a multiplex amplification reaction a 278bp amplicon and a 246bp amplicon. Each amplicon contains SNP Rs12255372 and SNP Rs7903146 respectively, ii) the pair of amplification oligonucleotides individually for the simple PCR reactions corresponding to the amplification of SNP Rs12255372 and SNP Rs7903146 independently. The reaction mixtures (both simple and multiplex) are stabilized by the gelation process. In particular a gelation mixture composed of trehalose, melezitose, glycogen and lysine is added to the reaction mixtures described above which contain all the reagents necessary to carry out the PCR reactions. The gelation process is completed after drying under vacuum conditions and at a temperature below 40 5 C, resulting in a stabilized reaction mixture containing between 10% and 30% water. 47μΙ of Milli-Q water and 3 μΙ of TaqMan Human Control DNA at a concentration of 10ng / μΙ are dispensed into each of the gelled tubes. Incubate at 95 5 C for 5 minutes. Then incubate at 95 5 C for 20 seconds, at 55 5 C for 20 seconds and at 72 5 C for 40 seconds for approximately 45 cycles. Additionally incubate at 72 5 C for 5 minutes. Cool the aliquot to 10 5 C. After the amplification, add to 2 μΙ of PCR product 2μΙ of loading buffer and make an electrophoresis in a 2% agarose gel in 0.5X TBE buffer, stained with SYBRsafe 1 x. Run the gel for 30 minutes at 100V in 0.5x TBE buffer, and load in a lateral well next to the PCR product 2 μΙ of 100 bp DNA marker as standard for the band size. II. Genotyping reaction
Los dos oligos de secuenciación fueron estabilizados mediante el proceso de gelificación siguiendo el mismo protocolo descrito anteriormente para la mezcla de reacción de PCR. The two sequencing oligos were stabilized by the gelation process following the same protocol described above for the PCR reaction mixture.
Los oligos gelificados son re-hidratados con 85 μΙ de agua Milli-Q. Preparar una placa de 96 Q96 con 20 μΙ de tampón de hibridación, y con las siguientes combinaciones de oligos de secuenciación: The gelled oligos are re-hydrated with 85 μΙ of Milli-Q water. Prepare a 96 Q96 plate with 20 μΙ hybridization buffer, and with the following combinations of sequencing oligos:
Figure imgf000026_0001
Figure imgf000026_0001
Programar el orden de dispensación: (a) Pocilio C1 +2+3, SEQ ID NO: 14 (GATGACAT) (b) Pocilio C4+5+6, SEQ ID NO: 15 (GACTGATAT) (c) Pocilio C7+8+9, SEQ ID NO: 16 (GACTGCATACA). Añadir 40μΙ de tampón de unión y 4μΙ de sefarosa estreptavidina a cada producto de PCR. Agitarlo durante 5 minutos. En la estación de trabajo del Q96 se separan las cadenas de ADN y seguidamente se añade el molde de cadena simple a la placa del Q96. Incubar a 805C durante 2 minutos y enfriar a temperatura ambiente. Ahora iniciar el programa de genotipado. C. Resultados I. Reacción de Amplificación Program the dispensing order: (a) Well C1 + 2 + 3, SEQ ID NO: 14 (GATGACAT) (b) Well C4 + 5 + 6, SEQ ID NO: 15 (GACTGATAT) (c) Well C7 + 8 + 9, SEQ ID NO: 16 (GACTGCATACA). Add 40μΙ of binding buffer and 4μΙ of sepharose streptavidin to each PCR product. Shake it for 5 minutes. In the workstation of the Q96 the DNA chains are separated and then the single chain template is added to the plate of the Q96. Incubate at 80 5 C for 2 minutes and cool to room temperature. Now start the genotyping program. C. Results I. Amplification Reaction
FIG. 1 1 muestra los resultados del gel de agarosa. Se cargaron en el gel de agarosa al 2% 10 μΙ de los productos de la PCR simple. Cada réplica de la reacción de PCR debe contener cantidades aproximadamente equivalentes de producto de PCR. Los tamaños esperados de los productos son 278bp y 246bp. FIG. 1 1 shows the results of the agarose gel. 10 μΙ of the simple PCR products were loaded on the 2% agarose gel. Each replica of the PCR reaction must contain approximately equivalent amounts of PCR product. The expected product sizes are 278bp and 246bp.
FIG. 12 muestra los resultados del gel de agarosa. Se cargaron en el gel de agarosa al 2% 10 μΙ de los productos de la reacción multiplex de PCR. Cada réplica de la reacción de PCR debe contener cantidades aproximadamente equivalentes de producto de PCR. Lo tamaños de los productos esperados son 278bp y 246bp, aunque con un gel de agarosa al 2% no es posible distinguir entre estas dos bandas de forma individual. FIG. 12 shows the results of the agarose gel. 10 μΙ of the products of the multiplex PCR reaction were loaded on the 2% agarose gel. Each replica of the PCR reaction must contain approximately equivalent amounts of PCR product. The expected product sizes are 278bp and 246bp, although with a 2% agarose gel it is not possible to distinguish between these two bands individually.
II. Reacción de Genotipado II. Genotyping reaction
FIG. 13 muestra la calidad global de las reacciones de pirosecuenciación. (a) Pocilios C1 , C2 y C3 corresponden a los dos productos de PCR de hebra simple obtenidos únicamente con el oligo de secuenciacion 1 . (b) Pocilios C4, C5 y C6 corresponden a los dos productos de PCR de hebra simple obtenidos únicamente con el oligo de secuenciacion 2. (c) Pocilios C7, C8 y C9 corresponden a los dos productos de PCR de hebra simple obtenidos con una mezcla a concentración equimolar de los oligos de secuenciacion 1 y 2. Los círculos azules representan la alta calidad de la secuencia obtenida. FIG. 13 shows the overall quality of pyrosequencing reactions. (a) Wells C1, C2 and C3 correspond to the two single-stranded PCR products obtained only with oligo sequencing 1. (b) Wells C4, C5 and C6 correspond to the two single-stranded PCR products obtained only with the sequencing oligo 2. (c) Wells C7, C8 and C9 correspond to the two single-stranded PCR products obtained with a mixing at equimolar concentration of the oligos of sequencing 1 and 2. The blue circles represent the high quality of the sequence obtained.
FIG. 14 muestra los resultados genotípicos obtenidos para el ADN molde, (a) Pocilios C1 , C2 y C3 corresponden a los dos productos de PCR de hebra simple obtenidos con solo el oligo de secuenciacion 1 . (b) Pocilios C4, C5 y C6 corresponden a los dos productos de PCR de hebra simple obtenidos con solo el oligo de secuenciacion 2. (c) Pocilios C7, C8 y C9 corresponden a los dos productos de PCR de hebra simple obtenidos con una mezcla a concentraciones equimolares de los oligos de secuenciacion 1 y 2. En consecuencia cualquier experto en la materia entiende, que en los pocilios de C1 a C6 donde solo un SNP fue genotipado, se muestra el resultado de un único genotipo. Las reacciones de genotipado múltiple mostradas en los pocilios C7, C8 y C9 dan dos resultados, evidentemente. FIG. 14 shows the genotypic results obtained for the template DNA, (a) Pocilios C1, C2 and C3 correspond to the two single-stranded PCR products obtained with only the oligo of sequencing 1. (b) C4, C5 and C6 wells correspond to the two single stranded PCR products obtained with only sequencing oligo 2. (c) C7, C8 and C9 wells correspond to the two single stranded PCR products obtained with a mixing at equimolar concentrations of the oligos of sequencing 1 and 2. Consequently, any person skilled in the art understands that in the wells of C1 to C6 where only one SNP was genotyped, the result of a single genotype is shown. The multiple genotyping reactions shown in wells C7, C8 and C9 give two results, of course.
D. Discusión La imagen descrita en la FIG.1 1 y FIG.12 muestra que la cantidad de producto de PCR producido es aproximadamente equivalente siempre que se añadan 30 ng de ADN molde a la reacción simple gelificada (FIG.1 1 ) y a la reacción multiplex gelificada (FIG.12). Aparecen leves diferencias debido a errores en el pipeteo, durante el montaje de la PCR, o cuando se carga el gel. La intensidad de la señal de los productos de PCR es tal que es difícil distinguir entre la banda del producto de PCR de 278bp y la banda del producto de PCR de 246bp sin embargo se mantiene una uniformidad entre los productos obtenidos en la reacción simple y en la multiplex en todos los pocilios. Puesto que la cantidad de los productos de PCR permanece muy similar, cualquier diferencia en los resultados de genotipado es debido a los métodos de genotipado simple versus múltiple. La calidad de los productos de PCR permanece similar en todos los casos y no es variable, lo cual es evidente para un experto en la materia. D. Discussion The image described in FIG. 1 and FIG. 12 shows that the amount of PCR product produced is approximately equivalent as long as 30 ng of template DNA is added to the gelled simple reaction (FIG. 1 1) and to the gelled multiplex reaction. (FIG. 12). Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded. The signal strength of the PCR products is such that it is difficult to distinguish between the band of the PCR product of 278bp and the band of the PCR product of 246bp however a uniformity is maintained between the products obtained in the simple reaction and in the multiplex in all wells. Since the amount of PCR products remains very similar, any difference in genotyping results is due to simple versus multiple genotyping methods. The quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art.
Los resultados obtenidos en la FIG. 13 muestran datos de alta calidad en las reacciones de genotipado como era de esperar. Los círculos azules aparecen para confirmar la alta calidad obtenida. Un fallo en la reacción hubiera sido indicado mediante un círculo rojo y un resultado de baja calidad La inconsistencia entre la secuencia de referencia y los resultados obtenidos o ratios señal/ruido pobres hubieran aparecido con color amarillo. Es evidente para un experto en la materia, que todas las reacciones en este caso pasan el test de calidad independientemente del número de oligos de secuenciación gelificados añadidos. Los resultados ilustrados en la FIG. 14 describen los genotipos obtenidos mediante secuenciación múltiple en concordancia con los genotipos obtenidos por secuenciación simple. El genotipo del SNP 1 se muestra en los pocilios C1 , C2, C3, C7, C8 y C9 con posición 1 , y es GG/ en todos los casos. Mientras que el genotipo del SNP 2 se muestra en los pocilios C4, C5 y C6 con posición 1 y pocilios C7, C8 y C9 con posición 2 y es T/C en todos los casos. The results obtained in FIG. 13 show high quality data in genotyping reactions as expected. The blue circles appear to confirm the high quality obtained. A reaction failure would have been indicated by a red circle and a poor quality result. The inconsistency between the reference sequence and the results obtained or poor signal / noise ratios would have appeared yellow. It is clear to one skilled in the art that all reactions in this case pass the quality test regardless of the number of gelled sequencing oligos added. The results illustrated in FIG. 14 describe the genotypes obtained by multiple sequencing in accordance with the genotypes obtained by simple sequencing. The genotype of SNP 1 is shown in wells C1, C2, C3, C7, C8 and C9 with position 1, and is GG / in all cases. While the genotype of SNP 2 is shown in wells C4, C5 and C6 with position 1 and wells C7, C8 and C9 with position 2 and is T / C in all cases.
Luego, es evidente que los resultados del genotipado simple y múltiple son los mismos. Then, it is clear that the results of single and multiple genotyping are the same.
Por lo tanto, es evidente para cualquier experto en la materia que es posible obtener datos de genotipos relativos a múltiples SNPs usando múltiples oligonucleotidos de secuenciación gelificados con el mismo ADN molde de cadena simple. Ejemplo 4 EmbB: PCR, GENOTIPADO MÚLTIPLE DE SECUENCIAS A. Introducción Therefore, it is apparent to any person skilled in the art that it is possible to obtain genotype data related to multiple SNPs using multiple sequencing oligonucleotides gelled with the same single stranded template DNA. Example 4 EmbB: PCR, MULTIPLE SEQUENCE GENOTIPATE A. Introduction
Mutaciones en el gene EmbB pueden dar como resultado cepas de Mycobacteríum etambutol-resistentes. Hay dos regiones en el gen EmbB que parecen ser dianas críticas para la actividad del etambutol. Estas dos regiones del gen EmbB están separadas por aproximadamente 300 bases de ADN. Estas dos regiones pueden ser amplificadas mediante una reacción de PCR simple generando un producto de más de 300bp. Ambas regiones son pequeñas, abarcando como máximo 3 bases, y son susceptibles de ser secuenciadas mediante técnicas de microsecuenciación. La microsecuenciación normalmente rinde información sobre secuencias de 40 bases con buena calidad, por lo que ambas regiones relacionadas con la resistencia a etambutol dentro del gen EmbB deberían ser secuenciadas con dos oligos de secuenciacion de forma individual. El método convencional para secuenciar las dos regiones del gen EmbB mencionadas implicaría llevar a cabo una misma reacción de PCR dos veces para cada muestra, y secuenciar los dos productos con diferentes oligos de secuenciacion de modo independiente. Con el método convencional es claro que se necesitan dos reacciones de PCR y dos reacciones de secuenciacion. Con el objetivo de reducir el coste por muestra, tanto en términos económicos como en términos relativos al volumen de muestra necesario, sería preferible hacer una única reacción de PCR y una única reacción de secuenciacion para leer ambas secuencias a la vez. Este método reduciría los costes del ensayo y reduciría la carga de trabajo necesaria para completar dicho ensayo, así como permitiría que un mayor número de muestras fueran secuenciadas al mismo tiempo. Mutations in the EmbB gene can result in strains of Mycobacterium ethambutol-resistant. There are two regions in the EmbB gene that appear to be critical targets for ethambutol activity. These two regions of the EmbB gene are separated by approximately 300 DNA bases. These two regions can be amplified by a simple PCR reaction generating a product of more than 300bp. Both regions are small, covering a maximum of 3 bases, and are likely to be sequenced by microsequencing techniques. Microsequencing normally yields information on 40 base sequences with good quality, so that both regions related to ethambutol resistance within the EmbB gene should be sequenced with two sequencing oligos individually. The conventional method for sequencing the two regions of the EmbB gene mentioned would involve carrying out the same PCR reaction twice for each sample, and sequencing the two products with different sequencing oligos independently. With the conventional method it is clear that two PCR reactions and two sequencing reactions are needed. In order to reduce the cost per sample, both in economic terms and in terms relative to the volume of sample needed, it would be preferable to make a single PCR reaction and a single sequencing reaction to read both sequences at the same time. This method would reduce the costs of the test and reduce the workload necessary to complete said test, as well as allow a greater number of samples to be sequenced at the same time.
La diferencia fundamental entre el protocolo convencional simple y el protocolo de secuenciacion múltiple es que en este último caso solo una única reacción de PCR para cubrir ambas regiones y una única reacción de secuenciacion sería llevada a cabo para resolver ambas secuencias de modo simultáneo. Una cobertura total de las dos regiones relacionadas con la resistencia a etambutol se obtiene mediante el uso de dos oligonucleótidos de secuenciacion en una única reacción de secuenciacion. La secuencia resultante es un solapamiento de las secuencias leídas por cada uno de los oligonucleótidos de secuenciacion. Esta secuencia solapada puede ser predicha mediante el conocimiento de todas las posibles combinaciones de las mutaciones buscadas y el orden en el cual los dexosinucleotidos son dispensados durante la reacción de secuenciación. The fundamental difference between the simple conventional protocol and the multiple sequencing protocol is that in the latter case only a single PCR reaction to cover both regions and a single sequencing reaction would be carried out to solve both sequences simultaneously. A total coverage of the two regions related to ethambutol resistance is obtained by using two sequencing oligonucleotides in a single sequencing reaction. The resulting sequence is an overlap of the sequences read by each of the sequencing oligonucleotides. This overlapping sequence can be predicted by knowing all possible combinations of mutations. sought and the order in which dexosinucleotides are dispensed during the sequencing reaction.
Para demostrar que el genotipado múltiple de secuencias es posible, ADN procedente de una cepa salvaje de referencia de Mycobacterium fortuitum fue amplificada usando reactivos gelificados. Después de dos rondas de amplificación por PCR la muestra es secuenciada de forma individual con los oligos de secuenciación TB2a y TB2b gelificados y también es secuenciada en una única reacción con una mezcla de los dos oligos TB2a y TB2b gelificados. La misma información se genera tanto con las reacciones de secuenciación múltiple que contienen los oligos de secuenciación gelificados como con las dos reacciones de secuenciación simples que contienen cada una de ellas uno de los oligos de secuenciación gelificados. To demonstrate that multiple genotyping of sequences is possible, DNA from a wild-type Mycobacterium fortuitum reference strain was amplified using gelled reagents. After two rounds of PCR amplification, the sample is sequenced individually with the gelled TB2a and TB2b sequencing oligos and is also sequenced in a single reaction with a mixture of the two gelled TB2a and TB2b oligos. The same information is generated both with the multiple sequencing reactions that contain the gelled sequencing oligos and with the two simple sequencing reactions each containing one of the gelled sequencing oligos.
B. Métodos B. Methods
ADN aislado de una cepa salvaje de referencia de Mycobacterium fortuitum se prepara a una concentración de 10 ng/μΙ. Este ADN se caracteriza previamente y se confirma la secuencia del gen EmbB en la cepa salvaje. Las colonias a partir de las cuales se obtiene este ADN crecieron bajo condiciones estándar de cultivo de Mycobacterium y su crecimiento fue inhibido mediante la presencia de etambutol. La inhibición de crecimiento en presencia de etambutol así como la secuenciación del ADN confirma sin duda que este ADN no contiene mutaciones en ninguna de las dos regiones del gen EmbB estudiadas en este experimento. El ADN se almacena a 45C a alta concentración y se diluye a una concentración de 10ng/μΙ justo antes de su uso. DNA isolated from a wild reference strain of Mycobacterium fortuitum is prepared at a concentration of 10 ng / μΙ. This DNA is previously characterized and the sequence of the EmbB gene in the wild strain is confirmed. The colonies from which this DNA is obtained grew under standard Mycobacterium culture conditions and their growth was inhibited by the presence of ethambutol. Growth inhibition in the presence of ethambutol as well as DNA sequencing undoubtedly confirms that this DNA does not contain mutations in any of the two regions of the EmbB gene studied in this experiment. The DNA is stored at 4 5 C at high concentration and diluted to a concentration of 10ng / μΙ just before use.
I. Reacción de Pre-amplificación I. Pre-amplification reaction
En este experimento en particular se hizo una reacción de pre-amplificación para enriquecer los moldes de PCR usados para amplificar las regiones relacionadas con la resistencia a etambutol. Aunque esto no es imprescindible ya que en este experimento se conoce la concentración del ADN aislado, se considera que debe ser un paso estándar en el protocolo cuando se trabaja con muestras desconocidas, en las cuales normalmente se desconoce la calidad y cantidad de ADN en las mismas. Este paso en este experimento se hace para demostrar que la fase de pre-amplificación no interfiere con la reacción de secuenciación ni en su modo simple ni en su modo múltiple. La mezcla de la reacción de pre-amplificación está compuesta por 511 de enzima ADN polimerasa ultrapura, fabricada por Biotools Biotechnologial & Medical Laboratories S.A., tampón de reacción a una concentración final 1 x que se comercializa junto con la enzima, entre 200μηι y 250μΜ concentración final de cada uno de los cuatro dexosirribonucleótidos que forman la cadena de ácido dexosirribonucleico (dATP, dTTP, dGTP, dCTP), y entre 50nM y 75nM concentración final de cada uno de los oligonucleótidos de amplificación diseñados para la pre-amplificación del gen diana EmbB. Estos oligonucleótidos de amplificación incluidos en la reacción de pre- amplificación no están biotinilados y no se pueden usar para secuenciación. Ellos se usan solo para mejorar la cantidad de ADN molde disponible para la reacción posterior de amplificación. La mezcla de reacción de pre-amplificación incluyendo todos los reactivos descritos arriba es estabilizada mediante el proceso de gelificacion. En particular una mezcla de gelificacion compuesta de trehalosa, melezitosa, glucógeno y lisina es añadida a la mezcla de reacción anteriormente descrita la cual contiene todos los reactivos necesarios para llevar a cabo la reacción PCR de pre-amplificación. El proceso de gelificacion se completa después de la desecación en condiciones de vacío y a una temperatura inferior a 405C, dando como resultado una mezcla de reacción estabilizada que contiene entre un 10% y un 30% de agua. In this particular experiment, a pre-amplification reaction was made to enrich the PCR templates used to amplify the regions related to ethambutol resistance. Although this is not essential since in this experiment the concentration of the isolated DNA is known, it is considered that it should be a standard step in the protocol when working with unknown samples, in which the quality and quantity of DNA in the cells is normally unknown. same. This step in this experiment is done to demonstrate that the pre-amplification phase does not interfere with the sequencing reaction either in its simple mode or in its multiple mode. The pre-amplification reaction mixture consists of 511 of ultrapure DNA polymerase enzyme, manufactured by Biotools Biotechnologial & Medical Laboratories SA, reaction buffer at a final concentration 1 x that is marketed together with the enzyme, between 200μηι and 250μΜ concentration final of each of the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP), and between 50nM and 75nM final concentration of each of the amplification oligonucleotides designed for pre-amplification of the EmbB target gene . These amplification oligonucleotides included in the pre-amplification reaction are not biotinylated and cannot be used for sequencing. They are used only to improve the amount of template DNA available for the subsequent amplification reaction. The pre-amplification reaction mixture including all the reagents described above is stabilized by the gelation process. In particular a gelation mixture composed of trehalose, melezitose, glycogen and lysine is added to the reaction mixture described above which contains all the reagents necessary to carry out the pre-amplification PCR reaction. The gelation process is completed after drying under vacuum conditions and at a temperature below 40 5 C, resulting in a stabilized reaction mixture containing between 10% and 30% water.
42μΙ de agua Milli-Q y 3 μΙ de ADN de Mycobacterium fortuitum a una concentración de 10ng/μΙ son dispensados en cada uno de los tubos gelificados. Incubar a 955C durante 5 minutos. Después incubar a 955C durante 20 segundos, a 585C durante 20 segundos y a 725C durante 40 segundos durante 10 ciclos. Adicionalmente incubar a 725C durante 5 minutos. Enfriar la alícuota a 105C. 42μΙ of Milli-Q water and 3 μΙ of Mycobacterium fortuitum DNA at a concentration of 10ng / μΙ are dispensed into each of the gelled tubes. Incubate at 95 5 C for 5 minutes. Then incubate at 95 5 C for 20 seconds, at 58 5 C for 20 seconds and at 72 5 C for 40 seconds for 10 cycles. Additionally incubate at 72 5 C for 5 minutes. Cool the aliquot to 10 5 C.
II. Reacción de Amplificación II. Amplification Reaction
A continuación de la reacción de pre-amplificación, se prepara una reacción de PCR gelificada para amplificar las dos regiones del gen EmbB relacionadas con la resistencia a etambutol. Esta reacción incluye todos los reactivos necesarios para amplificar una región de 409bp del gen EmbB que incorpora los dos puntos de mutación relacionados con la resistencia a etambutol. El oligonucleotido reverso de amplificación TB2 está biotinilado para permitir la separación de las hebras del producto de PCR obtenido y contar así con una ADN molde de hebra simple para secuenciación. La reacción de PCR se lleva a cabo 9 veces para que el producto de PCR obtenido pueda ser secuenciado tres veces con el oligo de secuenciación gelificado TB2a, tres veces con el oligo de secuenciación gelificado TB2b y tres veces con la mezcla de ambos oligos de secuenciación TB2a y Tb2b gelificados en una formato multiplex. La composición de la mastermix está compuesta por 5U de enzima ADN polimerasa ultrapura, fabricada por Biotools Biotechnologial & Medical Laboratories S.A., tampón de reacción a una concentración final 1 x que se comercializa junto con la enzima, entre 200μηι y 250μΜ concentración final de cada uno de los cuatro dexosirribonucleotidos que forman la cadena de ácido dexosirribonucleico (dATP, dTTP, dGTP, dCTP), y entre 100nM y 200nM concentración final de cada uno de los oligonucleótidos de amplificación diseñados para la amplificación del gen diana EmbB. La mezcla de reacción de amplificación incluyendo todos los reactivos descritos arriba es estabilizada mediante el proceso de gelificación. En particular una mezcla de gelificación compuesta de trehalosa, melezitosa, glucógeno y lisina es añadida a la mezcla de reacción anteriormente descrita la cual contiene todos los reactivos necesarios para llevar a cabo la reacción PCR de amplificación. El proceso de gelificación se completa después de la desecación en condiciones de vacío y a una temperatura inferior a 405C, dando como resultado una mezcla de reacción estabilizada que contiene entre un 10% y un 30% de agua. Following the pre-amplification reaction, a gelled PCR reaction is prepared to amplify the two regions of the EmbB gene related to ethambutol resistance. This reaction includes all the reagents necessary to amplify a 409bp region of the EmbB gene that incorporates the two mutation points related to ethambutol resistance. The reverse amplification oligonucleotide TB2 is biotinylated to allow separation of the strands of the PCR product obtained and thus have a single stranded template DNA for sequencing. The PCR reaction is carried out 9 times so that the PCR product obtained can be sequenced three times with the TB2a gelled sequencing oligo, three times with the TB2b gelled sequencing oligo and three times with the mixture of both TB2a and Tb2b sequenced oligos gelled in a multiplex format. The composition of the mastermix is composed of 5U of ultrapure DNA polymerase enzyme, manufactured by Biotools Biotechnologial & Medical Laboratories SA, reaction buffer at a final concentration 1 x that is marketed together with the enzyme, between 200μηι and 250μΜ final concentration of each of the four dexosiribonucleotides that form the dexosiribonucleic acid chain (dATP, dTTP, dGTP, dCTP), and between 100nM and 200nM final concentration of each of the amplification oligonucleotides designed for amplification of the EmbB target gene. The amplification reaction mixture including all the reagents described above is stabilized by the gelation process. In particular a gelation mixture composed of trehalose, melezitose, glycogen and lysine is added to the reaction mixture described above which contains all the reagents necessary to carry out the amplification PCR reaction. The gelation process is completed after drying under vacuum conditions and at a temperature below 40 5 C, resulting in a stabilized reaction mixture containing between 10% and 30% water.
42μΙ de agua Milli-Q y 3 μΙ de producto resultante de la amplificación son dispensados en cada uno de los 9 tubos TB2 gelificados. Incubar a 955C durante 5 minutos. Después incubar a 955C durante 20 segundos, a 585C durante 20 segundos y a 725C durante 40 segundos durante 35 ciclos. Adicionalmente incubar a 725C durante 5 minutos. Enfriar la alícuota a 105C. 42μΙ of Milli-Q water and 3 μΙ of product resulting from the amplification are dispensed into each of the 9 gelled TB2 tubes. Incubate at 95 5 C for 5 minutes. Then incubate at 95 5 C for 20 seconds, at 58 5 C for 20 seconds and at 72 5 C for 40 seconds for 35 cycles. Additionally incubate at 72 5 C for 5 minutes. Cool the aliquot to 10 5 C.
Finalizada la amplificación, se mezcla 10 μΙ de producto de PCR con 2μΙ de tampón de carga y se hace una electroforesis en un gel de agarosa al 2% en tampón TBE 0.5X, teñido con SYBRsafe 1 x. Dejar correr el gel durante 30 minutos a 100V en tampón TBE 0.5x, y cargar en un pocilio lateral al lado del producto de PCR 2 μΙ de marcador de ADN de 100pb como estándar del tamaño de las bandas. Once the amplification is finished, 10 μΙ of PCR product is mixed with 2 μΙ of loading buffer and electrophoresis is performed on a 2% agarose gel in 0.5X TBE buffer, stained with 1 x SYBRsafe. Run the gel for 30 minutes at 100V in 0.5x TBE buffer, and load in a lateral well next to the PCR product 2 μΙ of 100 bp DNA marker as standard for the band size.
III. Genotipado III. Genotyping
Se usan dos oligos de secuenciación para cubrir las dos regiones del gen EmbB de Mycobacterium relacionadas con la resistencia a etambutol, estos oligos son TB2a y TB2b. El oligo de secuenciación TB2a cubre las mutaciones de resistencia Met306Val, Met306Leu, y dos mutaciones Met306lle (una es la substitución de G por T y la otra es la substitución de G por A) y lee la SEQ ID NO: 17 (CATGGCCCG AGTCGCCG ACCACGCC)■ El oligo de secuenciacion TB2b cubre las mutaciones de resistencia Arg406Cys, Arg406Ser, Arg406Ala, y Arg406Asp y lee la SEQ ID NO: 18 (CCGGAGGGCATCATCGCGCTCGGCTC). La mezcla de ambos oligos de secuenciacion TB2a y TB2b en el modo de genotipado múltiple de secuencias lee la SEQ ID NO: 19Two sequencing oligos are used to cover the two regions of the Mycobacterium EmbB gene related to ethambutol resistance, these oligos are TB2a and TB2b. The sequencing oligo TB2a covers the resistance mutations Met306Val, Met306Leu, and two mutations Met306lle (one is the substitution of G by T and the other is the substitution of G for A) and read SEQ ID NO: 17 (CATGGCCCG AGTCGCCG ACCACGCC) ■ The sequencing oligo TB2b covers the resistance mutations Arg406Cys, Arg406Ser, Arg406Ala, and Arg406Asp and reads SEQ ID NO: 18 (CCGGAGGGCATCATCGCGCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCATCAT . The mixture of both oligo of sequencing TB2a and TB2b in the multiple genotyping sequence mode reads SEQ ID NO: 19
(CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC ) . (CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC).
El producto que queda de la reacción de PCR se usa para preparar ADN de hebra simple para la pirosecuenciación. Se añaden 44μΙ de una mezcla 10:1 de tampón de unión y sefarosa estreptavidina a los productos de PCR y se mezclan durante 5 minutos. A continuación, la mezcla es aspirada sobre los filtros de la estación de trabajo de vacío del Q96 y sumergidos en etanol al 70%, tampón de desnaturalización y solución de lavado todo ello bajo condiciones de vacío. La hebra simple de ADN resultante se dispensa en una placa multipocillo Q96 que contiene 20μΙ de tampón de hibridación y 3μΙ de oligonucleótidos de secuenciacion a concentración 10μΜ (una vez que han sido re-hidratados añadiendo 100μΙ de agua Milli-Q a su forma gelificada) en el caso de las reacciones simples, o 3μΙ de la mezcla de oligos de secuenciacion a una concentración 10μΜ (una vez que han sido re-hidratados añadiendo 100μΙ de agua Milli-Q a su forma gelificada) en el caso de las reacciones múltiples. The remaining product of the PCR reaction is used to prepare single stranded DNA for pyrosequencing. 44μΙ of a 10: 1 mixture of binding buffer and streptavidin sepharose are added to the PCR products and mixed for 5 minutes. The mixture is then aspirated on the filters of the Q96 vacuum work station and immersed in 70% ethanol, denaturation buffer and wash solution all under vacuum conditions. The resulting single strand of DNA is dispensed in a multi-well plate Q96 containing 20μΙ of hybridization buffer and 3μΙ of sequencing oligonucleotides at 10μΜ concentration (once they have been re-hydrated by adding 100μΙ of Milli-Q water to its gelled form) in the case of simple reactions, or 3μΙ of the mixture of sequencing oligos at a concentration of 10μΜ (once they have been re-hydrated by adding 100μΙ of Milli-Q water to its gelled form) in the case of multiple reactions.
La placa multipocillo Q96 que ya contiene ADN de hebra simple, tampón de hibridación y oligonucleótidos de secuenciacion es entonces incubada a 805C durante 2 minutos y después se enfría a temperatura ambiente. Mientras las muestras se enfrían se procede a la programación del pirosecuenciador Q96ID incluyendo los nombres de las muestras, la elección del cartucho así como el orden de dispensación, que en este caso son 10 dispensaciones de TGCA. Desoxynucleótidos, mezcla de enzimas y mezcla de substratos se añaden entonces al cartucho en los volúmenes indicados por el programa y se inicia así la secuenciacion. The multiwell plate Q96 already containing single stranded DNA, oligonucleotides and annealing buffer is then sequencing incubated at 80 5 C for 2 minutes and then cooled to room temperature. While the samples are cooling, the Q96ID pyrosequencer is programmed including the names of the samples, the choice of the cartridge as well as the dispensing order, which in this case are 10 TGCA dispensations. Deoxynucleotides, enzyme mixing and substrate mixing are then added to the cartridge in the volumes indicated by the program and thus sequencing begins.
C. Resultados C. Results
I. Reacción de Amplificación FIG. 15 muestra los resultados del gel de agarosa. 10 μΙ del producto de PCR se corrieron en un gel de agarosa al 2%. Cada réplica de la reacción de PCR debe contener aproximadamente cantidades equivalentes del producto de PCR. El tamaño teórico del producto de PCR es de 409pb I. Amplification Reaction FIG. 15 shows the results of the agarose gel. 10 μΙ of the PCR product was run on a 2% agarose gel. Each replication of the PCR reaction must contain approximately equivalent amounts of the PCR product. The theoretical size of the PCR product is 409bp
II. Reacción de Genotipado FIG. 16 muestra la calidad global de las reacciones de pirosecuenciación. Los círculos azules representan la alta calidad de la secuencia obtenida. II. Genotyping reaction FIG. 16 shows the overall quality of pyrosequencing reactions. The blue circles represent the high quality of the sequence obtained.
Tabla 1 muestra los datos de secuencia obtenidos mediante el uso de los oligos de secuenciación del gen EmbB en su modo simple. La secuencia de referencia para esta región del gen EmbB de Mycobacteríum fortuitum se muestra en negro, con los sitios relativos a la mutación responsable de la resistencia a etambutol subrayados. El texto abajo muestra la alta calidad de los datos de secuencia obtenidos en las tres réplicas de secuenciación llevadas a cabo con los oligos TB2a y TB2b de forma separada. Table 1 shows the sequence data obtained by using the oligo of sequencing of the EmbB gene in its simple mode. The reference sequence for this region of the EmbB gene of Mycobacteríum fortuitum is shown in black, with sites related to the mutation responsible for ethambutol resistance underlined. The text below shows the high quality of the sequence data obtained in the three sequencing replicas carried out with the oligos TB2a and TB2b separately.
Datos de Secuencia - Simple EmbB Sequence Data - Simple EmbB
SEQ ID: NO 20 CATGGCCCGAGTCGCCGACCACGCC SEQ ID: NO 20 Simple 1 CATGGCCCGAGTCGCCGACCACGCC SEQ ID: NO 20 Simple 2 CATGGCCCGAGTCGCCGACCACGCC SEQ ID: NO 20 Simple 3 CATGGCCCGAGTCGCCGACCACGCC SEQ ID: NO 20 CATGGCCCGAGTCGCCGACCACGCC SEQ ID: NO 20 Simple 1 CATGGCCCGAGTCGCCGACCACGCC SEQ ID: NO 20 Simple 2 CATGGCCCGAGTCGCCGACCACGCC SEQ ID: NO 20 Simple 3 CATGGCCCGAGTCGCCGACCACGCC
SEQ ID: NO 21 CCGGAGGGCATCATCGCGCTCGGCTC SEQ ID: NO 21 Simple 1 CCGGAGGGCATCATCGCGCTCGGCTC SEQ ID: NO 21 CCGGAGGGCATCATCGCGCTCGGCTC SEQ ID: NO 21 Simple 1 CCGGAGGGCATCATCGCGCTCGGCTC
SEQ ID: NO 21 Simple 2 CCGGAGGGCATCATCGCGCTCGGCTC SEQ ID: NO 21 Simple 2 CCGGAGGGCATCATCGCGCTCGGCTC
SEQ ID: NO 21 Simple 3 CCGGAGGGCATCATCGCGCTCGGCTC SEQ ID: NO 21 Simple 3 CCGGAGGGCATCATCGCGCTCGGCTC
Tabla 2 muestra los datos de secuencia obtenidos, por triplicado, usando los oligos de secuenciación de EmbB en su modo múltiple. Las líneas superiores del texto muestran la secuencia múltiple prevista, en color rojo se muestra la secuencia obtenida con el oligo de secuenciación TB2a y en azul se muestra la secuencia obtenida con el oligo de secuenciación TB2b. Las bases subrayadas muestran las posiciones donde se localizan los sitios relativos a la mutación relacionada con la resistencia a etambutol. Debajo de la secuencia prevista se muestran los datos de secuencia obtenidos para las tres réplicas de las reacciones de secuenciación múltiple. El código de color para indicar la calidad de la secuencia es, azul para secuencias de alta calidad, naranja si la calidad de la secuencia es aceptable y rojo si la secuencia es de baja calidad. Datos de Secuencia- EmbB Múltiple Table 2 shows the sequence data obtained, in triplicate, using the EmbB sequencing oligos in their multiple mode. The upper lines of the text show the expected multiple sequence, the sequence obtained with the sequencing oligo TB2a is shown in red and the sequence obtained with the sequencing oligo TB2b is shown in blue. The underlined bases show the positions where they are located sites related to mutation related to ethambutol resistance. Below the expected sequence, the sequence data obtained for the three replicates of the multiple sequencing reactions are shown. The color code to indicate the sequence quality is, blue for high quality sequences, orange if the sequence quality is acceptable and red if the sequence is of poor quality. Sequence Data - Multiple EmbB
SEQ ID: NO 22 SEQ ID: NO 22
CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC SEQ ID: NO 22 múltiple 1  CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC SEQ ID: NO 22 multiple 1
CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC SEQ ID: NO 22 múltiple 2  CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC SEQ ID: NO 22 multiple 2
CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC  CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC
SEQ ID: NO 22 múltiple 3 SEQ ID: NO 22 multiple 3
CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC D. Discusión La imagen representada en la FIG. 15 muestra que la cantidad de producto de PCR producido cuando 10μΙ de producto de PCR se añade a las reacciones es equivalente en todas las reacciones de PCR. Aparecen ligeras diferencias debido a errores en el pipeteo, durante el montaje de la PCR, o cuando se carga el gel. El tamaño previsto de la banda, 409 bp se consigue en todas las reacciones. En ningún caso la diferencia entre las reacciones de PCR es aparente. La calidad de los productos de PCR permanece similar en todos los casos y no es variable, lo cuál es evidente para un experto en la materia.  CCCATGGGGCCCAGGGGCAATGCATTCCGGCCCGGCATCCCAGGCCTGCCC D. Discussion The image depicted in FIG. 15 shows that the amount of PCR product produced when 10μΙ of PCR product is added to the reactions is equivalent in all PCR reactions. Slight differences appear due to errors in the pipetting, during the assembly of the PCR, or when the gel is loaded. The expected size of the band, 409 bp is achieved in all reactions. In no case the difference between the PCR reactions is apparent. The quality of the PCR products remains similar in all cases and is not variable, which is evident to one skilled in the art.
Los resultados ilustrados en la FIG.16 muestran datos de alta calidad en las reacciones de genotipado de secuencias como era de esperar. Los círculos azules aparecen para confirmar la alta calidad obtenida. Un fallo en la reacción hubiera sido indicado mediante un círculo rojo y un resultado de baja calidad. La inconsistencia entre la secuencia de referencia y los resultados obtenidos o ratios señal/ruido pobres hubieran aparecido con color amarillo. Es evidente para un experto en la materia, que todas las reacciones en este caso pasan el test de calidad independientemente del número de oligos de secuenciación añadidos. The results illustrated in FIG. 16 show high quality data in the genotyping reactions of sequences as expected. The blue circles appear to confirm the high quality obtained. A reaction failure would have been indicated by a red circle and a poor quality result. The inconsistency between the reference sequence and the results obtained or poor signal / noise ratios would have appeared yellow. It is evident to an expert in the field that all reactions in this case pass the quality test regardless of the number of sequencing oligos added.
Los resultados obtenidos en la Tabla 1 muestran que las dos reacciones de secuenciación simple rinden las secuencias de referencia esperadas con alta calidad. The results obtained in Table 1 show that the two simple sequencing reactions yield the expected reference sequences with high quality.
Los resultados ilustrados en la Tabla 2 muestran que el modo de secuenciación múltiple es posible mediante el uso de una única reacción de secuenciación y que la información que habitualmente solo se puede obtener con dos reacciones de microsecuenciación se consigue con el genotipado de secuencias en modo múltiple. La secuencia obtenida mediante el modo múltiple puede ser prevista de antemano y generar resultados consistentes. Luego, es evidente que las mismas secuencias genotípicas se obtienen como resultado tanto de la secuenciación en su modo simple como múltiple. The results illustrated in Table 2 show that the multiple sequencing mode is possible through the use of a single sequencing reaction and that the information that can usually only be obtained with two microsequencing reactions is achieved with the genotyping of multiple mode sequences. . The sequence obtained through the multiple mode can be foreseen in advance and generate consistent results. Then, it is evident that the same genotypic sequences are obtained as a result of both sequencing in its single and multiple mode.
Por lo tanto, es evidente para cualquier experto en la materia que es posible obtener datos de genotipos relativos a secuencias múltiples usando múltiples oligonucleotidos de secuenciación gelificados con el mismo ADN molde de cadena simple. Mientras que la presente invención se ha mostrado y descrito de forma particular con referencia a las realizaciones ejemplares relatadas, será comprendido por cualquier experto en la materia que varios cambios en la forma y en detalles pueden ser hechos sin que esto implique una modificación ni del espíritu ni del alcance de la presente invención como es definido a través de las siguientes reivindicaciones: Therefore, it is apparent to any person skilled in the art that it is possible to obtain genotype data relating to multiple sequences using multiple sequencing oligonucleotides gelled with the same single stranded template DNA. While the present invention has been shown and described in particular with reference to the exemplary embodiments reported, it will be understood by any person skilled in the art that various changes in form and details can be made without this implying a modification or spirit nor of the scope of the present invention as defined by the following claims:

Claims

REIVINDICACIONES
Un método para la determinación del genotipo de secuencias múltiples de interés, en donde dicho método comprende los siguientes pasos: A method for the determination of the genotype of multiple sequences of interest, wherein said method comprises the following steps:
a) amplificación de al menos una o mas secuencias diana de una muestra para producir un producto amplificado, en donde dicha secuencia diana comprende al menos uno o mas sitios de la secuencia de interés; y  a) amplification of at least one or more target sequences of a sample to produce an amplified product, wherein said target sequence comprises at least one or more sites of the sequence of interest; Y
b) genotipado de dicho producto amplificado con una mezcla de oligonucleótidos de secuenciación de forma simultánea, en donde dicha mezcla comprende al menos un oligonucleótido de secuenciación por cada una de dichas secuencias de interés.  b) genotyping said amplified product with a mixture of sequencing oligonucleotides simultaneously, wherein said mixture comprises at least one sequencing oligonucleotide for each of said sequences of interest.
Método de acuerdo con la reivindicación 1 , en donde dicho paso de amplificación amplifica secuencias múltiples de interés sobre una sola secuencia diana en donde dichas secuencias de interés están localizadas a una distancia inferior o igual a 1 kb una de la otra en dicha muestra. . Method according to claim 1, wherein said amplification step amplifies multiple sequences of interest on a single target sequence wherein said sequences of interest are located at a distance less than or equal to 1 kb from each other in said sample. .
Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicho paso de amplificación amplifica secuencias múltiples de interés sobre múltiples secuencias diana en donde dichas secuencias de interés están localizadas a una distancia superior a 1 kb una de la otra. Method according to any of the preceding claims, wherein said amplification step amplifies multiple sequences of interest on multiple target sequences wherein said sequences of interest are located at a distance greater than 1 kb from each other.
Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicha amplificación es llevada a cabo mediante la reacción en cadena de la polimerasa (PCR). 5. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicha reacción en cadena de la polimerasa es una reacción en cadena de la polimerasa simple cuando dichas secuencias múltiples de interés están localizadas máximo 1 kb una de la otra. 6. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicha reacción en cadena de la polimerasa es una reacción en cadena de la polimerasa multiplex cuando dichas secuencias múltiples de interés están localizadas a una distancia superior a 1 kb una de la otra. Method according to any of the preceding claims, wherein said amplification is carried out by polymerase chain reaction (PCR). 5. Method according to any of the preceding claims, wherein said polymerase chain reaction is a simple polymerase chain reaction when said multiple sequences of interest are located maximum 1 kb from each other. Method according to any of the preceding claims, wherein said polymerase chain reaction is a multiplex polymerase chain reaction when said multiple sequences of interest are located at a distance greater than 1 kb from each other.
Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicha reacción en cadena de la polimerasa multiplex utiliza oligonucleótidos de amplificación que son usados bajo las mismas concentraciones de reactivos, temperaturas de alineamiento y tiempos de extensión, en donde dichos oligonucleótidos de amplificación son conjuntos de oligonucleótidos que son completamente o parcialmente específicos al extremo o limites exteriores de la secuencia diana sin compartir en absoluto homología con la región de alineamiento. Method according to any of the preceding claims, wherein said multiplex polymerase chain reaction uses amplification oligonucleotides that are used under the same reagent concentrations, alignment temperatures and extension times, wherein said amplification oligonucleotides are assemblies. of oligonucleotides that are completely or partially specific to the outer end or limits of the target sequence without sharing in any homology with the alignment region.
Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicho paso de amplificación usa al menos una pareja de oligonucleótidos de amplificación correspondiente a cada una de las secuencias dianas que se amplificarán. Method according to any of the preceding claims, wherein said amplification step uses at least one pair of amplification oligonucleotides corresponding to each of the target sequences to be amplified.
9. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde al menos un oligonucleotido de amplificación de los que constituyen la pareja de oligonucleótidos de amplificación está biotinilado. 9. Method according to any of the preceding claims, wherein at least one amplification oligonucleotide of which constitute the amplification oligonucleotide pair is biotinylated.
10. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicha reacción de amplificación se caracteriza por el uso de reactivos de amplificación gelificados para producir productos amplificados. 10. Method according to any of the preceding claims, wherein said amplification reaction is characterized by the use of gelled amplification reagents to produce amplified products.
1 1 . Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicha secuencia diana comprende al menos una secuencia de interés y una secuencia de ADN adyacente. eleven . Method according to any of the preceding claims, wherein said target sequence comprises at least one sequence of interest and an adjacent DNA sequence.
12. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicho producto amplificado está biotinilado. 12. Method according to any of the preceding claims, wherein said amplified product is biotinylated.
13. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicho producto amplificado comprende secuencias múltiples de interés. 13. Method according to any of the preceding claims, wherein said amplified product comprises multiple sequences of interest.
14. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde dicho genotipado es llevado a cabo mediante el uso del método de la pirosecuenciación. 14. Method according to any of the preceding claims, wherein said genotyping is carried out by using the pyrosequencing method.
15. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde durante dicho paso de genotipado, la secuencia adyacente a dichas secuencias múltiples de interés y la secuencia que incluye dichas secuencias múltiples se solapan.  15. Method according to any of the preceding claims, wherein during said genotyping step, the sequence adjacent to said multiple sequences of interest and the sequence including said multiple sequences overlap.
16. Método de acuerdo con cualquiera de las reivindicaciones precedentes, en donde el paso de amplificación a) es llevado a cabo en una reacción de amplificación simple y el paso de genotipado b) es llevado a cabo en una reacción única de genotipado multiplex. 16. Method according to any of the preceding claims, wherein the amplification step a) is carried out in a simple amplification reaction and the genotyping step b) is carried out in a single multiplex genotyping reaction.
17. Método de acuerdo con cualquiera de las reivindicaciones precedentes en donde la reacción de genotipado es llevada a cabo simultáneamente a la reacción de amplificación. 17. Method according to any of the preceding claims wherein the genotyping reaction is carried out simultaneously to the amplification reaction.
18. Método de acuerdo con cualquiera de las reivindicaciones precedentes en donde las secuencias de interés son sitios de polimorfismos de un solo nucleótido (SNPs). 18. Method according to any of the preceding claims wherein the sequences of interest are single nucleotide polymorphism sites (SNPs).
19. Kit que comprende: i) todos los reactivos necesarios dosificados a las concentraciones óptimas para la generación de una reacción de amplificación simple o multiplex de las dianas de interés pre-mezclados y estabilizados mediante el proceso de gelificación y ii) oligonucleótidos de secuenciación para el genotipado multiplex de las secuencias de interés los cuales son estabilizados por medio del proceso de gelificación, para uso en el método de las reivindicaciones de la 1 a la 18. 19. Kit comprising: i) all the necessary reagents dosed at the optimum concentrations for the generation of a single or multiplex amplification reaction of the pre-mixed and stabilized targets of interest by the gelation process and ii) sequencing oligonucleotides for multiplex genotyping of the sequences of interest which are stabilized by the gelation process, for use in the method of claims 1 to 18.
PCT/ES2011/070565 2011-08-01 2011-08-01 Method for determining the genotype of multiple sequences WO2013017702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070565 WO2013017702A1 (en) 2011-08-01 2011-08-01 Method for determining the genotype of multiple sequences

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070565 WO2013017702A1 (en) 2011-08-01 2011-08-01 Method for determining the genotype of multiple sequences

Publications (1)

Publication Number Publication Date
WO2013017702A1 true WO2013017702A1 (en) 2013-02-07

Family

ID=44883290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070565 WO2013017702A1 (en) 2011-08-01 2011-08-01 Method for determining the genotype of multiple sequences

Country Status (1)

Country Link
WO (1) WO2013017702A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002072002A2 (en) 2001-03-12 2002-09-19 Biotools Biotechnological & Medical Laboratories, S.A. Method for preparing stabilised reaction mixtures, which are totally or partially dried, comprising at least one enzyme, reaction mixtures and kits containing said mixtures
US20050084851A1 (en) * 2000-09-08 2005-04-21 Mostafa Ronaghi Method
WO2011091046A1 (en) * 2010-01-19 2011-07-28 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic dna by whole genome sequencing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050084851A1 (en) * 2000-09-08 2005-04-21 Mostafa Ronaghi Method
WO2002072002A2 (en) 2001-03-12 2002-09-19 Biotools Biotechnological & Medical Laboratories, S.A. Method for preparing stabilised reaction mixtures, which are totally or partially dried, comprising at least one enzyme, reaction mixtures and kits containing said mixtures
US7919294B2 (en) * 2001-03-12 2011-04-05 Biotools Biotechnological & Medical Laboratories, S.A. Process for preparing stabilized reaction mixtures which are partially dried, comprising at least one enzyme, reaction mixtures and kits containing said mixtures
WO2011091046A1 (en) * 2010-01-19 2011-07-28 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic dna by whole genome sequencing

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BENDER ET AL: "A multiplex SNP typing approach for the DNA pyrosequencing technology", INTERNATIONAL CONGRESS SERIES, EXCERPTA MEDICA, AMSTERDAM, NL, vol. 1288, 1 April 2006 (2006-04-01), pages 73 - 75, XP005393388, ISSN: 0531-5131, DOI: 10.1016/J.ICS.2005.12.031 *
FORTINA P ET AL: "SIMPLE TWO-COLOR ARRAY-BASED APPROCH FOR MUTATION DETECTION", EUROPEAN JOURNAL OF HUMAN GENETICS, KARGER, BASEL, CH, vol. 8, no. 11, 1 November 2000 (2000-11-01), pages 884 - 894, XP009012254, ISSN: 1018-4813, DOI: 10.1038/SJ.EJHG.5200558 *
GHARIZADEH B, AKHRAS M, NOURIZAD N, GHADERI M, YASUDA K, NYREN P, POURMAND N: "Methodological improvements of pyrosequencing technology", J BIOTECHNOL., vol. 124, no. 3, 2006, pages 504 - 511, XP024956720, DOI: doi:10.1016/j.jbiotec.2006.01.025
LANGAEE T ET AL: "Genetic variation analyses by Pyrosequencing", MUTATION RESEARCH, ELSEVIER, AMSTERDAM, NL, vol. 573, no. 1-2, 3 June 2005 (2005-06-03), pages 96 - 102, XP027632670, ISSN: 0027-5107, [retrieved on 20050603] *
LIN YS, LIU FG, WANG TY, PAN CT, CHANG WT, LI WH: "A simple method using PyrosequencingT'''' to identify de novo SNPs in pooled DNA samples", NUCLEIC ACIDS RES, vol. 39, no. 5, 2010, pages 28
MASHAYEKHI F, RONAGHI M: "Analysis of read length limiting factors in Pyrosequencing chemistry", ANAL BIOCHEM, vol. 363, no. 2, 2007, pages 275 - 287, XP025611966, DOI: doi:10.1016/j.ab.2007.02.002
PASTINEN T ET AL: "MINISEQUENCING: A SPECIFIC TOOL FOR DNA ANALYSIS AND DIAGNOSTICS ONOLIGONUCLEOTIDE ARRAYS", GENOME RESEARCH, COLD SPRING HARBOR LABORATORY PRESS, WOODBURY, NY, US, vol. 7, no. 6, 1 June 1997 (1997-06-01), pages 606 - 614, XP000699761, ISSN: 1088-9051 *
PETER M. VALLONE ET AL: "A multiplex allele-specific primer extension assay for forensically informative SNPs distributed throughout the mitochondrial genome", INTERNATIONAL JOURNAL OF LEGAL MEDICINE, vol. 118, no. 3, 1 June 2004 (2004-06-01), pages 147 - 157, XP055032759, ISSN: 0937-9827, DOI: 10.1007/s00414-004-0428-5 *
POURMAND N ET AL: "Multiplex Pyrosequencing", NUCLEIC ACIDS RESEARCH SPECIAL PUBLICATION, OXFORD UNIVERSITY PRESS, SURREY, GB, vol. 30, no. 7, 1 January 2002 (2002-01-01), pages E31/1 - E31/5, XP002329580, ISSN: 0305-1048, DOI: 10.1093/NAR/30.7.E31 *
SOBRINO B ET AL: "SNPs in forensic genetics: a review on SNP typing methodologies", FORENSIC SCIENCE INTERNATIONAL, ELSEVIER SCIENTIFIC PUBLISHERS IRELAND LTD, IE, vol. 154, no. 2-3, 25 November 2005 (2005-11-25), pages 181 - 194, XP027757784, ISSN: 0379-0738, [retrieved on 20051125] *
Y.-S. LIN ET AL: "A simple method using PyrosequencingTM to identify de novo SNPs in pooled DNA samples", NUCLEIC ACIDS RESEARCH, vol. 39, no. 5, 1 March 2011 (2011-03-01), pages E28 - E28, XP055032687, ISSN: 0305-1048, DOI: 10.1093/nar/gkq1249 *

Similar Documents

Publication Publication Date Title
TWI324182B (en) Detection of nucleic acid variation by cleavage-amplification method
US9951384B2 (en) Genotyping by next-generation sequencing
Dixon et al. Validation of a 21-locus autosomal SNP multiplex for forensic identification purposes
ES2304739T3 (en) METHODS OF GENOTIPAJE USING DIFFERENCES IN THE FUSION TEMPERATURE.
Hirotsu et al. Protocol: a simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species
CN101855363A (en) Analysis of nucleic acids by digital pcr
US8232051B2 (en) Primer set for gene amplification, reagent for gene amplification including the same, and uses thereof
BRPI0911906A2 (en) substances and methods for a DNA-based profiling test
CN102168141A (en) Primer set for amplification of UGT1A1 gene, reagent for amplification of UGT1A1 gene comprising the same, and use of the same
JP2009529337A5 (en)
CN110628891A (en) Method for screening embryo for gene abnormality
CN101899518B (en) Kit for detecting 7 hot mutant sites of phenylketonuria PAH gene and PCR amplification method thereof
CN102268476B (en) Method for detecting polymorphism at nucleotide position -1639 of vkorc1 gene, and nucleic acid probe and kit therefor
WO2008066164A1 (en) Primer set for amplification of obesity gene, reagent for amplification of obesity gene comprising the primer set, and use of the primer set
JP6875411B2 (en) Single nucleotide substitution detection method using ion exchange chromatography
Catsburg et al. Analysis of multiple single nucleotide polymorphisms (SNP) on DNA traces from plasma and dried blood samples
CN113913530B (en) Molecular marker related to sheep body height and application thereof
WO2013017702A1 (en) Method for determining the genotype of multiple sequences
KR101068605B1 (en) Primer set for amplification of nat2 gene, reagent for amplification of nat2 gene comprising the same, and use of the same
JP4491276B2 (en) Method and kit for detecting the presence of a single nucleotide polymorphism in a target DNA sequence
KR20120138519A (en) Method for identification of coat colour and sex of cattle using allele specific polymerase chain reaction
KR102108737B1 (en) Composition for determining the color of a bovine including an agent capable of detecting or amplifying SNP
Asari et al. A new method for human ABO genotyping using a universal reporter primer system
Cordeiro et al. Coupling an universal primer to SBE combined spectral codification strategy for single nucleotide polymorphism analysis
CN105695575A (en) Multicolor fluorescence composite detection method and kit for 55 SNP loci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11773303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11773303

Country of ref document: EP

Kind code of ref document: A1