WO2013014730A1 - インジェクタおよび燃料噴射システムならびにこれを備えた建設機械 - Google Patents

インジェクタおよび燃料噴射システムならびにこれを備えた建設機械 Download PDF

Info

Publication number
WO2013014730A1
WO2013014730A1 PCT/JP2011/066759 JP2011066759W WO2013014730A1 WO 2013014730 A1 WO2013014730 A1 WO 2013014730A1 JP 2011066759 W JP2011066759 W JP 2011066759W WO 2013014730 A1 WO2013014730 A1 WO 2013014730A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cleaning liquid
injector
cylinder chamber
discharge passage
Prior art date
Application number
PCT/JP2011/066759
Other languages
English (en)
French (fr)
Inventor
南 亘
祥司 山口
荒井 康
多原 晃司
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to US14/233,944 priority Critical patent/US20140239090A1/en
Priority to DE112011105459.9T priority patent/DE112011105459T5/de
Priority to CN201180072438.5A priority patent/CN103703241A/zh
Priority to PCT/JP2011/066759 priority patent/WO2013014730A1/ja
Publication of WO2013014730A1 publication Critical patent/WO2013014730A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/007Cleaning
    • F02M65/008Cleaning of injectors only

Definitions

  • the present invention relates to an injector (fuel injection device) and a fuel injection system for a diesel engine mounted on a construction machine, a bus, a truck, and the like, and a construction machine having the same.
  • Recent diesel engines are increasingly using new fuel injection systems such as common rail high pressure fuel injection systems.
  • fuel pressurized to an ultrahigh pressure (about 150 to 200 MPa) by a fuel pump is distributed and injected from a single pipe called a common rail to injectors (fuel injection devices) for each cylinder.
  • the fuel injection amount can be optimized by finely controlling the fuel injection timing and injection amount in units of thousandths of a second by electronic control, resulting in high output and PM (particles such as black smoke) due to incomplete combustion. )
  • PM particles such as black smoke
  • NOx and other air pollutants can be reduced and fuel consumption can be reduced.
  • an injector disclosed in the following Patent Document 1 includes a needle 16 to which an axial force in the valve opening direction is applied and a command piston 17 to which an axial force in the valve closing direction is applied.
  • the end of the command piston 17 on the needle 16 side is slidably supported by the lower body 11 while being brought into contact with the shaft end of the command piston 17.
  • Patent Document 2 discloses a method for preventing malfunction of an injector by mixing an additive for the purpose of removing these sticky deposits or suppressing the occurrence thereof into the fuel in advance. Yes.
  • an object of the present invention is to provide a novel diesel engine injector (fuel) that can suppress the occurrence of sticky deposits without using an additive or the like.
  • An injection device), a fuel injection system, and a construction machine equipped with the same are provided.
  • the diesel oil fuel contains components that generate sludge, and sludge is generated from these components by heat and oxidation reaction from the engine.
  • sludge is produced in fuel by heating (reacting) with oxygen by heating the fuel
  • ASTM D2275 American Society for Testing and Materials
  • a common rail high pressure fuel injection system it is desired to operate with high responsiveness in a short time in order to inject fuel into a cylinder. Since the fuel injection is required a plurality of times while the piston of the engine is rotated once, a plurality of injector operations are required. These injector parts ensure slidability between the parts by fuel (light oil). Depending on the flow path of the fuel flowing between the components, the length of the residence time of the fuel exists, and the fuel that stays for a long time is likely to receive heat transfer from the engine and easily deteriorate.
  • the first invention An injector having a cylinder chamber in an injector body having a nozzle for injecting fuel, and having a command piston for driving a needle for opening and closing the nozzle reciprocally accommodated in the cylinder chamber,
  • the injector is characterized in that a cleaning liquid supply passage for supplying a cleaning liquid into the cylinder chamber and a cleaning liquid discharge passage for discharging the cleaning liquid in the cylinder chamber are connected.
  • the cylinder chamber of the injector body can be effectively cleaned with the cleaning liquid supplied from the cleaning liquid supply passage.
  • the cleaning liquid supplied from the cleaning liquid supply passage.
  • it is possible to suppress the occurrence of sticky deposits (sludge) without using additives that may adversely affect the fuel components as described above, and even if sticky deposits are generated. Since it can be discharged to the outside of the cylinder chamber together with the cleaning liquid, it is possible to reliably prevent inconveniences such as adhesive deposits adhering to the wall surface of the cylinder chamber, the command piston, etc. and hindering its movement.
  • the cylinder chamber is formed in a cylindrical shape having a circular cross section, and one or both of the cleaning liquid supply passage and the cleaning liquid discharge passage are tangential to the cylinder chamber. It is the injector characterized by having connected to.
  • the cleaning liquid flows spirally along the wall surface of the cylinder chamber, the cleaning liquid can be supplied and discharged smoothly. Thereby, a more excellent cleaning effect can be exhibited.
  • a third invention is characterized in that, in the first or second invention, the cleaning liquid supply passage is connected to one end of the cylinder chamber, and the cleaning liquid discharge passage is connected to the other end of the cylinder chamber.
  • This is an injector. According to such a configuration, it is possible to prevent the cleaning liquid from being spread throughout the cylinder chamber and a part of the fuel partially staying in the cylinder chamber and deteriorating. Thereby, a more excellent cleaning effect can be exhibited.
  • a fourth invention is an injector characterized in that, in any one of the first to third inventions, the fuel is used as the cleaning liquid. According to such a configuration, even if the cleaning liquid supplied to the cylinder chamber is mixed with the fuel ejected from the nozzle, there is no possibility of adversely affecting the operation. In addition, since it is not necessary to prepare a dedicated cleaning liquid separately, the cost can be reduced and management such as inspection and replenishment of the cleaning liquid becomes unnecessary.
  • the fuel supply passage for supplying fuel to the injector main body and the fuel discharge passage for discharging fuel in the injector main body are provided.
  • a fuel supply passage for supplying fuel to the injector main body and a fuel discharge passage for discharging fuel in the injector main body are provided.
  • a fuel supply passage for supplying fuel to the injector main body and a fuel discharge passage for discharging fuel in the injector main body are provided.
  • the cleaning liquid is supplied to the cleaning liquid supply passage when the engine having the injector is stopped.
  • a fuel injection system comprising an injector cleaning means for cleaning the cylinder chamber.
  • the sticky deposit generated in the cylinder chamber slowly settles down due to gravity when the engine stops and the flow of fuel in the cylinder chamber stops, and accumulates and adheres to the bottom of the cylinder chamber. There are many cases of obstructing movement. Therefore, if such an injector cleaning means is provided, it is possible to prevent the sticky deposits from settling on the bottom of the cylinder chamber. Moreover, since the cleaning operation is not performed during the operation of the engine, an unexpected situation does not occur.
  • the ninth invention is a construction machine comprising the fuel injection system according to the eighth invention. If such a fuel injection system is provided, it can contribute to the stable operation of the engine over a long period of time, and therefore, a highly reliable construction machine can be provided.
  • the cylinder chamber of the injector body can be effectively cleaned with the cleaning liquid supplied from the cleaning liquid supply passage.
  • the cleaning liquid supply passage As a result, it is possible to suppress the occurrence of sticky deposits (sludge) in the cylinder chamber without using additives that may adversely affect the fuel components as described above, and even if sticky deposits are generated. Since this can be discharged together with the cleaning liquid to the outside of the cylinder chamber, it is possible to reliably prevent inconveniences such as adhesive deposits adhering to the wall surface of the cylinder chamber, the command piston, etc. and hindering its movement.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 1 is an overall view showing an embodiment of a fuel injection system 200 according to the present invention.
  • 5 is a flowchart showing an example of cleaning control of the injector 100.
  • FIG. It is a longitudinal cross-sectional view which shows other embodiment of the injector 100 which concerns on this invention.
  • FIG. 1 shows an embodiment of an injector 100 according to the present invention.
  • the injector 100 includes a cylinder chamber 20 in an injector body 10 having a vertical cylindrical shape, and has a structure in which a command piston 30 is reciprocally accommodated in the cylinder chamber 20.
  • the injector body 10 is formed with a nozzle 11 for injecting fuel (light oil) at the tip (lower end in the figure), and the high-pressure fuel (light oil) supplied from the high-pressure passage 12 is sent into a cylinder of a diesel engine (not shown). It has a function of spraying in the form of a mist.
  • the high-pressure passage 12 is formed along the longitudinal direction of the injector body 10 so as to be parallel to the cylinder chamber 20, and is shown in FIG. 4 via a high-pressure fuel supply port 13 provided on the upper end side of the injector body 10.
  • the common rail 210 shown is in communication.
  • a fuel reservoir 12a and an annular injection passage 12b are formed on the nozzle 11 side of the high pressure passage 12, and the fuel supplied to the high pressure passage 12 is increased in its internal pressure by the fuel reservoir 12a. It is injected from the nozzle 11 through the annular injection passage 12b.
  • a pressure suppression chamber 40 and a solenoid valve (solenoid valve) 50 are provided at the upper end of the injector body 10.
  • the pressure suppression chamber 40 communicates with the cylinder chamber 20 through the orifice 21 and has a function of adjusting the pressure in the cylinder chamber 20 by introducing high-pressure fuel in the cylinder chamber 20.
  • the electromagnetic valve (solenoid valve) 50 is mainly composed of an electromagnet (solenoid coil) 51, a coil spring 52, and a valve body (outer valve) 53.
  • the electromagnet (solenoid coil) by the controller 220 shown in FIG. ) It has a function of opening and closing the inside of the pressure suppression chamber 40 by switching on / off of energization to 51.
  • the specific operation of the solenoid valve (solenoid valve) 50 will be described in detail later.
  • a fuel discharge passage 15 serving as a low pressure passage is further connected to the pressure suppression chamber 40, and the pressure in the pressure suppression chamber 40 is changed from the fuel discharge port 16 provided on the upper end side of the injector body 10 to FIG. 4. It has a function to escape to the fuel tank 230 side shown. Specifically, it has a function of returning the high-pressure fuel that has flowed into the pressure suppression chamber 40 from the orifice 21 to the fuel tank 230 side shown in FIG.
  • the cylinder chamber 20 is located at the axial center of the injector body 10, and the upper end thereof communicates with the pressure suppression chamber 40 side through the orifice 21 and also has a high pressure through the branch passage 14 branched from the high pressure passage 12. It communicates with the passage 12. Further, the lower end portion of the cylinder chamber 20 communicates with the high pressure passage 12 side through the guide hole 22.
  • a bar-like command piston 30 is accommodated in the cylinder chamber 20 so as to freely reciprocate (up and down), and a nozzle needle 60 accommodated in the guide hole 22 so as to freely reciprocate (up and down). Has a function to push down.
  • the command piston 30 has a piston main body 31 and a shaft portion 32 extending from the piston main body 31, and a spring seat 33 at the tip (lower end) of the shaft portion 32.
  • a coil spring 34 is provided between the spring seat 33 and the step portion 23 in the cylinder chamber 20, and the coil spring 34 urges the entire command piston 30 to push down toward the nozzle 11.
  • the piston main body 31 includes a large diameter portion 30 a that contacts the wall surface of the cylinder chamber 20, and a small diameter portion 30 b that is located at a predetermined interval 34 from the wall surface of the cylinder chamber 20.
  • the nozzle needle 60 includes a large-diameter portion 61 that slides in the guide hole 22, a small-diameter portion 62 whose tip is in contact with and separated from the nozzle 11, and a tapered portion 63 that connects them.
  • the tip end portion of the small diameter portion 62 comes into contact with the inside of the nozzle 11 to close the nozzle 11.
  • the tapered portion 63 is pushed up by the pressure, and the tip of the small diameter portion 62 extends from the inside of the nozzle 11. It functions to open the nozzle 11 away.
  • a cleaning liquid supply passage 70 for supplying a cleaning liquid into the cylinder chamber 20 and a cleaning liquid discharge passage 80 for discharging the cleaning liquid in the cylinder chamber 20 are connected to the cylinder chamber 20 of the injector body 10.
  • the cleaning liquid supply passage 70 is connected to the vicinity of the upper end of the cylinder chamber 20 so that the cleaning liquid is supplied from the cleaning liquid supply port 71 into the cylinder chamber 20.
  • the cleaning liquid is not particularly limited as long as it is a liquid having a function of cleaning the fuel that has flowed into the cylinder chamber 20, but has an appropriate lubricity, and even if part of the liquid is mixed with the fuel, It is desirable to use a fuel that does not adversely affect properties, that is, the same fuel (light oil) as the high-pressure fuel injected from the nozzle 11.
  • the cleaning liquid discharge passage 80 is connected to the vicinity of the lower end of the cylinder chamber 20 and discharges the cleaning liquid in the cylinder chamber 20 from the cleaning liquid discharge port 81 together with the fuel in the cylinder chamber 20 and the like.
  • the cleaning liquid supply passage 70 and the cleaning liquid discharge passage 80 are tangentially connected to the cylinder chamber 20 having a circular cross section as shown in FIG. 3, and are supplied from the cleaning liquid supply passage 70 into the cylinder chamber 20.
  • the cleaning liquid spirally flows down in the gap 34 along the wall surface.
  • FIG. 4 shows an embodiment of a fuel injection system 200 provided with a plurality (four in the example shown) of the injectors 100.
  • the fuel injection system 200 mainly includes a fuel tank 230, a high-pressure fuel pump 240, a common rail 210, a controller 220, and an injector cleaning means 250 in addition to the plurality of injectors 100, 100, 100, 100. Configured.
  • the controller 220 monitors the fuel pressure of the common rail 210 by the fuel pressure sensor 211, and controls the high-pressure fuel pump 240 so that the fuel pressure of the common rail 210 becomes a target pressure (for example, 150 to 200 MPa).
  • a target pressure for example, 150 to 200 MPa.
  • the pressure control valve 212 is opened so that the fuel in the common rail 210 is returned to the fuel tank 230.
  • the controller 220 controls the fuel injection timing and the like by controlling the electromagnetic valves 50 of the injectors 100, 100, 100, 100.
  • the injector cleaning means 250 includes a cleaning liquid tank 251 in which cleaning liquid is stored, a cleaning liquid supply line L1 that connects the cleaning liquid tank 251 and the cleaning liquid supply passage 70 of each injector 100, 100, 100, 100, and the cleaning liquid tank 251. It mainly comprises a cleaning liquid discharge line L2 connecting the cleaning liquid discharge passages 80 of the injectors 100, 100, 100, 100 and a cleaning liquid pump 252 controlled by the controller 220. Then, the controller 220 supplies the cleaning liquid in the cleaning liquid tank 251 to the injectors 100, 100, 100, 100 by driving the cleaning liquid pump 252 at the timing described later.
  • a cleaning liquid filter 253 for filtering the cleaning liquid may be provided on the upstream side of the cleaning liquid pump 252.
  • FIG. 1 shows the state of fuel injection of the injector 100 according to the present invention
  • FIG. 2 shows the state of fuel injection (when stopped).
  • the slit 21 communicating between the upper end portion in the cylinder chamber 20 and the pressure suppression chamber 40 is opened, and the high-pressure fuel in the cylinder chamber 20 flows into the pressure suppression chamber 40 through the slit 21 to be in the cylinder chamber 20.
  • the pressure in the fuel reservoir 12 a in the high pressure passage 12 acts on the tapered portion 63 of the nozzle needle 60.
  • the entire nozzle needle 60 is pushed up as shown by the arrow in the figure, the tip of the nozzle needle 60 is separated from the nozzle 11 and the nozzle 11 is opened. (Not shown) will be ejected at once.
  • the valve body 53 is separated from the electromagnet 51 as shown in FIG. 2 and is simultaneously pressed against the cylinder chamber 20 side by the spring force of the coil spring 52. 21 is closed and the pressure suppression chamber 40 is closed. Then, there is no escape space for the high-pressure fuel in the cylinder chamber 20 and the pressure at the upper end of the cylinder chamber 20 rises at once, and the command piston 30 and the nozzle needle 60 are pushed down by the pressure and the spring force of the coil spring 34 as shown by the arrows in the figure. . As a result, the nozzle 11 is closed and fuel injection from the nozzle 11 into a cylinder (not shown) of the diesel engine is instantaneously stopped.
  • the high-pressure fuel that has flowed into the cylinder chamber 20 acts to push down the command piston 30, and part of the high-pressure fuel flows between the large-diameter portion 30 a of the piston body 31 and the wall surface of the cylinder chamber 20. Acts like a lubricant when sliding.
  • step S100 the controller 220 determines whether or not the engine has stopped. When it is determined that the engine has not stopped (NO), it waits as it is, but when it determines that it has stopped (YES). Then, the process proceeds to the next step S102.
  • step S102 the cleaning liquid pump 252 of the injector cleaning means 250 is operated for a predetermined time (for example, several seconds to several tens of seconds).
  • a predetermined time for example, several seconds to several tens of seconds.
  • the generation of sticky deposits is suppressed without using additives that may adversely affect the fuel component, and the sticky deposits adhere to the wall surface of the cylinder chamber 20, the command piston 30, or the like.
  • inconveniences such as obstructing the movement can be surely prevented. That is, when sticky deposits (sludge) are generated in the cylinder chamber 20 due to fuel deterioration or the like, the sticking deposits cause the engine to stop and the movement of the piston body 31 in the cylinder chamber 20 and the fuel flow to stop. In this case, it may slowly settle down due to gravity and deposit and adhere to the bottom of the cylinder chamber 20 to obstruct the movement of the command piston 30 or the like.
  • the injector cleaning means 250 that operates immediately after the engine is stopped in this way, even if sticky deposits are generated, they are moved out of the cylinder chamber 20 before they settle and accumulate on the bottom of the cylinder chamber 20. Can be discharged. Moreover, since the cleaning operation is not performed during the operation of the engine, an unexpected situation does not occur. Further, since the pressure in the cylinder chamber 20 does not become a high pressure like the common rail 210 and the high pressure passage 12 except for the upper end portion thereof, a high pressure is not necessary for supplying the cleaning liquid. Therefore, a normal inexpensive fuel pump can be used as the cleaning liquid pump 253.
  • the nozzle needle 60 can be moved stably with less energy compared to the drive system that assumes the presence of sticky deposits (sludge), which is energy saving.
  • sludge sticky deposits
  • the parts repeatedly collide with each other with a large thrust the sliding part is easily worn, metal fatigue is easily caused by the collision, and the life of the injector is shortened.
  • these disadvantages can also be avoided.
  • the cleaning liquid supply passage 70 and the cleaning liquid discharge passage 80 are connected in a tangential direction to the cylindrical cylinder chamber 20 having a circular cross section, so that the cleaning liquid is spaced along the wall surface of the cylinder chamber 20.
  • the inside flows spirally, and the cleaning liquid can be supplied and discharged smoothly. Thereby, a more excellent cleaning effect can be exhibited.
  • only one of the cleaning liquid supply passage 70 and the cleaning liquid discharge passage 80 may be connected to the cylinder chamber 20 in a tangential direction.
  • the cleaning liquid supply passage 70 is connected to one end (upper end) of the cylinder chamber 20 and the cleaning liquid discharge passage 80 is connected to the other end (lower end) of the cylinder chamber 20, so that the cleaning liquid is entirely contained in the cylinder chamber 20. Therefore, it is possible to prevent a part of the fuel from staying in the cylinder chamber 20 and deteriorating, so that a more excellent cleaning effect can be exhibited.
  • a dedicated cleaning liquid tank 250 is prepared and the cleaning liquid stored in the cleaning liquid tank 250 is used. As described above, this cleaning liquid is used. It is also possible to use a fuel having the same component as the fuel supplied from the common rail 210. Therefore, in this case, the fuel may be supplied directly from the fuel tank 230 by the cleaning liquid pump 253. In addition, in this way, there is no possibility of adversely affecting the operation even if the cleaning liquid supplied to the cylinder chamber 20 is mixed with fuel. Further, since it is not necessary to prepare a separate dedicated cleaning liquid or cleaning liquid tank 250, the cost can be reduced and management such as inspection and replenishment of the cleaning liquid becomes unnecessary.
  • FIGS. 6 to 8 a configuration as shown in FIGS. 6 to 8 may be used. That is, the configuration of FIG. 6 is obtained by joining the cleaning liquid discharge passage 80 to the fuel discharge passage 15 connected to the pressure suppression chamber 40. According to such a configuration, the fuel discharge port 16 of the fuel discharge passage 15 can also be used as the discharge port of the cleaning liquid discharge passage 80, so that it is not necessary to provide the separate fuel discharge port 81 as described above.
  • FIG. 8 further simplifies the configuration of FIG. 7 and uses the fuel discharge passage 15 extending from the pressure suppression chamber 40 as the cleaning liquid supply passage 70 as it is. Even with such a configuration, the same operation and effect as the configuration of FIG. 7 can be obtained, and further, the cleaning liquid supply port 71 is not necessary, so that the configuration can be further simplified.
  • the injector 100 and the fuel injection system 200 according to the present invention configured as described above are mounted on a construction machine such as a hydraulic excavator, a bus, a truck, or other construction vehicles, the engine can be operated stably over a long period of time. Since it is possible to contribute, it is possible to provide highly reliable construction machines and buses, trucks, and other construction vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 燃料を噴射するノズル11を有するインジェクタ本体10内にシリンダ室20を備え、当該シリンダ室20内に、前記ノズル11を開閉するニードル60を駆動するためのコマンドピストン30を往復動自在に収容し、前記シリンダ室20に、洗浄液を供給する洗浄液供給通路70と、洗浄液を排出する洗浄液排出通路80とを接続する。これによって、インジェクタ本体10のシリンダ室20内の粘着性付着物が洗浄液と共にシリンダ室20外へ排出されるため、添加剤などを用いることなく粘着性付着物による悪影響を防止できる。

Description

インジェクタおよび燃料噴射システムならびにこれを備えた建設機械
 本発明は、建設機械やバス、トラックなどに搭載されるディーゼルエンジンのインジェクタ(燃料噴射装置)および燃料噴射システムならびにこれを備えた建設機械に関するものである。
 近年のディーゼルエンジンは、コモンレール式高圧燃料噴射システムなどの新しい燃料噴射システムを採用したものが増えている。このシステムは、燃料ポンプによって超高圧(約150~200MPa)に加圧された燃料をコモンレールと称される1本のパイプから気筒ごとのインジェクタ(燃料噴射装置)に配分して噴射するシステムである。そして、電子制御により1000分の1秒単位で燃料の噴射タイミング、噴射量をきめ細かに制御することで燃料噴射量の最適化が図れ、高出力化ならびに不完全燃焼によるPM(黒煙などの粒子状物質)やNOxなどの大気汚染物質の低減や低燃費を可能としている。
 このようなコモンレール式燃料噴射システムに採用されるインジェクタは、従来よりもより高圧力、高応答性が求められ、より高機能なものとなっている。例えば、以下の特許文献1に開示されているインジェクタは、開弁方向の軸力が与えられるニードル16と、閉弁方向の軸力が与えられるコマンドピストン17とを備え、ニードル16の軸端をコマンドピストン17の軸端に当接させてコマンドピストン17のニードル16側の端部をロアボディ11によって摺動自在に支持する構造となっている。これによって、ロアボディ11に曲がりが生じても、コマンドピストン17におけるニードル当接端Xの軸ズレが防止されて、ニードル16とコマンドピストン17との当接部には軸方向のみの軸力が加わることとなるため、ニードル摺動部Bには側方荷重が加わらなくなってニードル16の摺動性の悪化を防止することができる。
 また、インジェクタの高機能化に伴って高い機械加工精度が求められており、インジェクタを構成する摺動部材においてもそのクリアランスが0.1mm以下の部品も多く見られる。そのような箇所は、油の劣化に伴って発生した粘着性の付着物により、動作不良を招く原因となる。そのため、以下の特許文献2では、これら粘着性付着物の除去またはその発生抑制を目的とした添加剤を予め燃料中に混ぜ込むことで、インジェクタの動作不良を未然に防止する方法が開示されている。
特許第4552890号公報 特開2009-185306号公報
 ところで、特許文献2のように添加剤を燃料中に混ぜて粘着性付着物の除去またはその発生を抑制する方法では、他の添加剤との組み合わせによっては不具合が発生することがある。特に、作業現場が異なりやすい移動式機械に対しては、燃料の供給元が異なることにより、その不具合が発生する可能性が高くなる。また、効果を発揮する添加剤が含まれていない燃料も市場には存在するために、正確に動作する機械の信頼性を確保することができない問題がある。また、燃料に用いる添加剤には灰分の原因となる金属成分をほとんど用いることができず、主成分が有機物となるため、添加剤自身が熱や酸化によって変性して弊害を招くおそれがある。
 そこで、本発明はこれらの課題を解決するために案出されたものであり、その目的は、添加剤などを用いることなく、粘着性付着物の発生を抑制できる新規なディーゼルエンジンのインジェクタ(燃料噴射装置)および燃料噴射システムならびにこれを備えた建設機械を提供するものである。
 ディーゼルエンジンの燃料となる軽油中には、スラッジを生成する成分が含まれており、エンジンからの熱や酸化反応によってこれらの成分からスラッジが生成する。一般に燃料が加熱されて酸素と反応(劣化)することにより、燃料中にスラッジが生成することは、ASTM D2275(American Society for Testing and Materials)に記載されている燃料におけるスラッジ生成方法として既知の事実である。当該試験方法ではガラスチューブに入れた燃料を加熱して酸化させる方法が採られているが、試験前後の燃料を観察すると、スラッジはガラス壁面でなく液中に一様に存在し、試験後に放置することによって底に沈殿する。燃料中で沈殿したスラッジのうち、粘着性を持つものが粘着性付着物としてインジェクタ部品に付着してその動作に悪影響を及ぼしている。
 コモンレール式高圧燃料噴射システムでは、燃料をシリンダに噴射させるために短時間に高い応答性で動作することが望まれる。エンジンのピストンが1回動く間に複数回の燃料噴射が要求されるために、複数回のインジェクタ動作が必要となる。これらのインジェクタ部品は燃料(軽油)により部品間の摺動性を確保している。部品と部品の間を流れる燃料の流路によっては燃料の滞留時間の長短が存在し、長く滞留する燃料はエンジンからの伝熱を受けやすく劣化しやすい。
 インジェクタ部品の中には部品間の衝突が起こる部位もあり、燃料の油性効果乃至は極圧効果を持つ成分が効果を発揮すると同時に、使用されていた同成分は劣化にも直面する。劣化した燃料中には粘着性付着物が析出する。これらの粘着性付着物は、通常燃料中に浮遊している状態となっているが、インジェクタの動作が停止して燃料の流れがなくなると重力で沈降してくる。沈降した粘着性付着物はインジェクタ内部に堆積し、部品の駆動を妨げ、正常な動作を阻害することになる。その一方、前述したように添加剤を燃料中に添加する方法では、前記のような不都合を招くおそれがある。
 そこで、これらの課題を解決するために第1の発明は、
 燃料を噴射するノズルを有するインジェクタ本体内にシリンダ室を備え、当該シリンダ室内に、前記ノズルを開閉するニードルを駆動するためのコマンドピストンを往復動自在に収容したインジェクタであって、前記シリンダ室に、当該シリンダ室内に洗浄液を供給する洗浄液供給通路と、当該シリンダ室内の洗浄液を排出する洗浄液排出通路とを接続したことを特徴とするインジェクタである。
 このような構成によれば、洗浄液供給通路から供給される洗浄液によってインジェクタ本体のシリンダ室内を効果的に洗浄することができる。これによって、前述したような燃料成分に悪影響を及ぼすおそれがある添加剤などを用いることなく、粘着性付着物(スラッジ)の発生を抑制できると共に、仮に粘着性付着物が発生してもこれを洗浄液と共にシリンダ室外へ排出できるため、粘着性付着物がシリンダ室の壁面やコマンドピストンなどに付着してその動きを阻害するなどといった不都合を確実に防止できる。
 第2の発明は、第1の発明において、前記シリンダ室を断面円形の円筒状に形成すると共に、前記洗浄液供給通路と洗浄液排出通路のいずれか一方あるいは両方を、前記シリンダ室に対して接線方向に接続したことを特徴とするインジェクタである。
 このような構成によれば、洗浄液がシリンダ室の壁面に沿って螺旋状に流れるため、スムーズに洗浄液を供給および排出することができる。これによって、より優れた洗浄効果を発揮できる。
 第3の発明は、第1または第2の発明において、前記洗浄液供給通路を前記シリンダ室の一端部に接続すると共に、前記洗浄液排出通路を前記シリンダ室の他端部に接続したことを特徴とするインジェクタである。このような構成によれば、洗浄液がシリンダ室内の全体に行き渡って燃料の一部がシリンダ室内で部分的に滞留して劣化するのを防止できる。これによって、より優れた洗浄効果を発揮できる。
 第4の発明は、第1乃至第3のいずれかの発明において、前記洗浄液として前記燃料を用いることを特徴とするインジェクタである。このような構成によれば、シリンダ室に供給した洗浄液が仮にノズルから噴出される燃料と混ざった場合でも動作に悪影響を及ぼすおそれがなくなる。また、別途専用の洗浄液を用意する必要がないため、コストを抑えることができると共に、洗浄液の点検や補充などといった管理も不要となる。
 第5の発明は、第1乃至第4のいずれかの発明において、前記インジェクタ本体に燃料を供給する燃料供給通路と、前記インジェクタ本体内の燃料を排出する燃料排出通路とを備え、前記洗浄液排出通路を前記燃料排出通路に合流させたことを特徴とするインジェクタである。このような構成によれば、燃料排出通路を洗浄液排出通路として兼用できるため、別個独立した燃料排出通路を作成する必要がない。
 第6の発明は、第1乃至第4のいずれかの発明において、前記インジェクタ本体に燃料を供給する燃料供給通路と、前記インジェクタ本体内の燃料を排出する燃料排出通路とを備え、前記燃料排出通路を前記洗浄液供給通路に合流させたことを特徴とするインジェクタである。このような構成によれば、燃料排出通路から排出される燃料を洗浄液供給通路からシリンダ室に供給する洗浄液として利用できることから、別途専用の洗浄液を用意するためのコストを抑えることができる、また、洗浄液の点検や補充などといった管理も不要となる。
 第7の発明は、第1乃至第4のいずれかの発明において、前記インジェクタ本体に燃料を供給する燃料供給通路と、前記インジェクタ本体内の燃料を排出する燃料排出通路とを備え、前記燃料排出通路を前記シリンダ室に接続して当該燃料排出通路を前記洗浄液供給通路として用いることを特徴とするインジェクタである。このような構成によれば、第6の発明などと同様な作用・効果が得られると共に、構成をより簡略化することができる。
 第8の発明は、第1乃至第7のいずれかインジェクタに燃料を供給して噴射する燃料噴射システムにおいて、前記インジェクタを備えたエンジンが停止したときに、前記洗浄液供給通路に洗浄液を供給して前記シリンダ室を洗浄するインジェクタ洗浄手段を備えたことを特徴とする燃料噴射システムである。
 前述したようにシリンダ室で生成した粘着性付着物は、エンジンが停止してシリンダ室内の燃料の流れが停止すると重力によってゆっくりと沈降してシリンダ室の底に堆積・付着してコマンドピストンなどの動きを阻害するケースが多い。したがって、このようなインジェクタ洗浄手段を備えれば、粘着性付着物がシリンダ室の底に沈降して堆積するのを阻止できる。また、エンジンの運転中には洗浄作業を行わないため、不測の事態を招くこともない。
 第9の発明は、第8の発明である燃料噴射システムを備えたことを特徴とする建設機械である。このような燃料噴射システムを備えれば、長期に亘るエンジンの安定的な運転に寄与できるため、信頼性の高い建設機械を提供することができる。
 本発明によれば、洗浄液供給通路から供給される洗浄液によってインジェクタ本体のシリンダ室内を効果的に洗浄することができる。これによって、前述したような燃料成分に悪影響を及ぼすおそれがある添加剤などを用いることなくシリンダ室内における粘着性付着物(スラッジ)の発生を抑制できると共に、仮に粘着性付着物が発生してもこれを洗浄液と共にシリンダ室外へ排出できるため、粘着性付着物がシリンダ室の壁面やコマンドピストンなどに付着してその動きを阻害するなどといった不都合を確実に防止できる。
本発明に係るインジェクタ100の実施の一形態(燃料噴射時)を示す縦断面図である。 本発明に係るインジェクタ100の実施の一形態(燃料非噴射時)を示す縦断面図である。 図2中A-A線断面図である。 本発明に係る燃料噴射システム200の実施の一形態を示す全体図である。 インジェクタ100の洗浄制御の一例を示したフローチャート図である。 本発明に係るインジェクタ100の他の実施の形態を示す縦断面図である。 本発明に係るインジェクタ100の他の実施の形態を示す縦断面図である。 本発明に係るインジェクタ100の他の実施の形態を示す縦断面図である。
 次に、本発明の実施の形態を添付図面を参照しながら説明する。
 図1は本発明に係るインジェクタ100の実施の一形態を示したのである。図示するように、このインジェクタ100は、縦型筒状をしたインジェクタ本体10内にシリンダ室20を備えると共に、このシリンダ室20内にコマンドピストン30を往復動自在に収容した構造となっている。
 インジェクタ本体10は、その先端(図では下端)に燃料(軽油)を噴射するノズル11が形成されており、高圧通路12から供給される高圧の燃料(軽油)を、図示しないディーゼルエンジンのシリンダ内に霧状に噴射する機能を有する。この高圧通路12は、シリンダ室20と平行となるようにインジェクタ本体10の長手方向に沿って形成されており、インジェクタ本体10の上端側に設けられた高圧燃料供給口13を介して図4に示すコモンレール210と連通している。また、この高圧通路12のノズル11側には燃料溜め12aと、環状の噴射通路12bとが形成されており、高圧通路12に供給された燃料は、燃料溜め12aでその内圧を高めた後、環状の噴射通路12bを介してノズル11から噴射されるようになっている。
 また、このインジェクタ本体10の上端には圧力抑制室40と電磁弁(ソレノイドバルブ)50が設けられている。この圧力抑制室40は、オリフィス21を介してシリンダ室20と連通しており、シリンダ室20内の高圧燃料を導入することでシリンダ室20内の圧力を調整する機能を有する。一方、電磁弁(ソレノイドバルブ)50は、電磁石(ソレノイドコイル)51と、コイルバネ52と、弁体(アウターバルブ)53とから主に構成されており、図4に示すコントローラー220による電磁石(ソレノイドコイル)51への通電のオン、オフを切り替えることで圧力抑制室40内を開閉する機能を有する。なお、この電磁弁(ソレノイドバルブ)50の具体的な動作については後に詳述する。
 この圧力抑制室40には、さらに低圧通路となる燃料排出通路15が接続されており、圧力抑制室40内の圧力を、インジェクタ本体10の上端側に設けられた燃料排出口16から図4に示す燃料タンク230側に逃がす機能を有する。具体的には、オリフィス21から圧力抑制室40内に流入してきた高圧燃料を燃料排出口16を介して図4に示す燃料タンク230側に戻す機能を有する。
 シリンダ室20は、インジェクタ本体10の軸心部に位置しており、その上端部はオリフィス21を介して圧力抑制室40側と連通すると共に、高圧通路12から分岐した分岐通路14を介して高圧通路12と連通している。さらに、このシリンダ室20の下端部は、ガイド孔22を介して高圧通路12側と連通している。そして、このシリンダ室20内には棒状をしたコマンドピストン30が往復動(上下動)自在に収容されており、同じくガイド孔22内に往復動(上下動)自在に収容されたノズルニードル60を押し下げる機能を有する。
 このコマンドピストン30は、ピストン本体31と、このピストン本体31から延びる軸部32とを有すると共に、この軸部32の先端(下端)にバネ座33を備えた構成となっている。そして、このバネ座33とシリンダ室20内の段差部23との間にはコイルバネ34が設けられており、このコイルバネ34によってコマンドピストン30全体をノズル11側に押し下げるように付勢している。さらに、このピストン本体31は、シリンダ室20の壁面に接する大径部30aと、シリンダ室20の壁面から所定の間隔34を隔てて位置する小径部30bとからなっている。
 ノズルニードル60は、ガイド孔22内を摺動する大径部61と、先端部がノズル11に当接離間する小径部62と、これらを連結するテーパー部63とから構成されている。そして、コマンドピストン30によってその大径部61がノズル11側に押し下げられるとその小径部62の先端部がノズル11の内側に当接してノズル11を閉じる。反対に、シリンダ室20内上端部の圧力が低下すると同時に高圧通路12の燃料溜め12aの圧力が高くなるとその圧力によってテーパー部63が押し上げられてその小径部62の先端部がノズル11の内側から離れてノズル11を開くように機能する。
 また、このインジェクタ本体10のシリンダ室20には、このシリンダ室20内に洗浄液を供給する洗浄液供給通路70と、このシリンダ室20内の洗浄液を排出する洗浄液排出通路80とが接続されている。
 洗浄液供給通路70は、シリンダ室20の上端付近に接続されており、洗浄液供給口71からシリンダ室20内に洗浄液を流し込んで供給するようになっている。なお、この洗浄液としては、シリンダ室20内に流れ込んだ燃料を洗浄する機能を有する液体であれば特に限定されないが、適度な潤滑性を有し、かつその一部が燃料と混ざっても燃料の性質に悪影響を与えないもの、すなわちノズル11から噴射される高圧燃料と同じ燃料(軽油)を用いることが望ましい。
 一方、洗浄液排出通路80は、シリンダ室20の下端付近に接続されており、シリンダ室20内の洗浄液をシリンダ室20内の燃料等と共に洗浄液排出口81から排出するようになっている。なお、この洗浄液供給通路70および洗浄液排出通路80は、図3に示すように断面円形のシリンダ室20に対して接線方向に接続されており、洗浄液供給通路70からシリンダ室20内に供給された洗浄液がその壁面に沿って隙間34内を螺旋状に流れ落ちるようになっている。
 図4は、このインジェクタ100を複数(図の例では4つ)備えた燃料噴射システム200の実施の一形態を示したものである。この燃料噴射システム200は、これら複数のインジェクタ100、100、100、100の他に、燃料タンク230と、高圧燃料ポンプ240と、コモンレール210と、コントローラー220と、インジェクタ洗浄手段250とを主に備えて構成されている。
 コントローラー220は、燃料圧力センサ211によりコモンレール210の燃料圧力をモニタしており、コモンレール210の燃料圧力が目標圧力(例えば150乃至200MPa)となるように高圧燃料ポンプ240を制御している。なお、コモンレール210の燃料圧力が異常に上がった場合には圧力制御弁212が開いてコモンレール210の燃料を燃料タンク230に戻すようになっている。そして、このコントローラー220は、各インジェクタ100、100、100、100の電磁弁50を制御することで燃料噴射のタイミングなどを制御している。
 インジェクタ洗浄手段250は、洗浄液が溜められた洗浄液タンク251と、この洗浄液タンク251と各インジェクタ100、100、100、100の洗浄液供給通路70とを接続する洗浄液供給ラインL1と、この洗浄液タンク251と各インジェクタ100、100、100、100の洗浄液排出通路80とを接続する洗浄液排出ラインL2と、前記コントローラー220によって制御される洗浄液ポンプ252とから主に構成されている。そして、コントローラー220は、後述するようなタイミングでこの洗浄液ポンプ252を駆動することで洗浄液タンク251内の洗浄液を各インジェクタ100、100、100、100に供給するようになっている。なお、この洗浄液ポンプ252の上流側には洗浄液を濾過する洗浄液フィルタ253を設けても良い。
 次に、このような構成をした本発明に係るインジェクタ100および燃料噴射システム200の基本的な動作を説明する。図1は本発明に係るインジェクタ100の燃料噴射時、図2は燃料噴射時(停止時)の状態を示したものである。先ず、図1に示すように電磁弁50がオンの状態になると、その電磁石(ソレノイドコイル)51が励磁されて図中矢印に示すように弁体53がコイルバネ52のバネ力に抗して電磁石(ソレノイドコイル)51に吸着するように上昇する。
 すると、シリンダ室20内の上端部と圧力抑制室40間を連通するスリット21が開いて、シリンダ室20内の高圧燃料がスリット21を介して圧力抑制室40内に流れてシリンダ室20内の上端部の圧力が減少すると同時に高圧通路12の燃料溜12aの圧力がノズルニードル60のテーパー部63に作用する。これによって、図示矢印で示すようにノズルニードル60全体が押し上げられてその先端がノズル11から離れてノズル11が開き、高圧の燃料が噴射通路12bを通過してノズル11からディーゼルエンジンのシリンダ(図示せず)内に一気に噴出されることになる。また、この燃料溜12aの燃料の一部は、ノズルニードル60の大径部61とノズル孔22との隙間に流れ込んでノズルニードル60が摺動する際の潤滑剤の如き作用する。なお、このノズルニードル60は常時コマンドピストン30のバネ座33の先端に接触した状態となっているため、ノズルニードル60全体が押し上げられるとコイルバネ34のバネ力に抗してコマンドピストン30全体も図示矢印で示すように押し上げられるように移動するが、前記のようにシリンダ室20内の上端部の圧力が減少しているため、その動きはスムーズに行われる。
 次に、このような状態からコントローラー220によって電磁弁50をオフにすると、図2に示すように電磁石51から弁体53が離れると同時にコイルバネ52のバネ力によってシリンダ室20側に押しつけられてスリット21を塞いで圧力抑制室40を閉じる。すると、シリンダ室20内の高圧燃料の逃げ場が無くなってその上端部の圧力が一気に上昇し、その圧力とコイルバネ34のバネ力によって図中矢印に示すようにコマンドピストン30およびノズルニードル60が押し下げられる。これによって、ノズル11が閉じられてノズル11からディーゼルエンジンのシリンダ(図示せず)内への燃料の噴射が瞬時に停止する。また、シリンダ室20内へ流れ込んだ高圧燃料は、コマンドピストン30を押し下げるように作用すると共に、その一部はピストン本体31の大径部30aとシリンダ室20の壁面間に流れ込んでピストン本体31などが摺動する際の潤滑剤の如き作用する。このような電磁弁50のオン・オフ制御によるノズルニードル60およびコマンドピストン30の動作を所定のタイミングで繰り返すことで効率の良い燃焼を行うことができる。
 そして、さらにこのコントローラー220は、エンジンが停止して上記のような燃料噴射制御が終了したならば、インジェクタ洗浄手段250によるインジェクタ100の洗浄制御を実行する。図5は、このコントローラー220によるインジェクタ100の洗浄制御の一例を示したフローチャートである。先ず、コントローラー220は、最初のステップS100において、エンジンが停止したか否かを判断し、停止していないと判断したとき(NO)はそのまま待機するが、停止したと判断したとき(YES)は、次のステップS102に移行する。
 ステップS102では、インジェクタ洗浄手段250の洗浄液ポンプ252を所定時間(例えば数秒~数十秒)作動させる。これによって、洗浄液タンク250内の洗浄液が洗浄液供給ラインL1からインジェクタ100に供給されてインジェクタ本体10のシリンダ室20内が洗浄されるため、シリンダ室20内で粘着性付着物(スラッジ)が生成する可能性が低くなり、仮に粘着性付着物が生成しても、これが洗浄液と共に洗浄液排出通路80からシリンダ室20外へ排出されることになる。
 この結果、燃料成分に悪影響を及ぼすおそれがある添加剤などを用いることなく、粘着性付着物(スラッジ)の発生を抑制し、粘着性付着物がシリンダ室20の壁面やコマンドピストン30などに付着してその動きを阻害するなどの不都合を確実に防止できる。すなわち、シリンダ室20で燃料の劣化などにより粘着性付着物(スラッジ)が生成すると、この粘着性付着物は、エンジンが停止してシリンダ室20内のピストン本体31の動きや燃料の流れが停止した際に重力によってゆっくりと沈降してシリンダ室20の底に堆積・付着してコマンドピストン30などの動きを阻害する場合がある。したがって、このようにエンジン停止後、直ちに作動するインジェクタ洗浄手段250を備えれば、粘着性付着物が生成しても、これがシリンダ室20の底に沈降して堆積する前にシリンダ室20外へ排出することができる。また、エンジンの運転中には洗浄作業を行わないため、不測の事態を招くこともない。また、このシリンダ室20内の圧力はその上端部を除き、コモンレール210や高圧通路12のような高圧にはならないため、洗浄液を供給するために高い圧力は必要でない。したがって、洗浄液ポンプ253としては、通常の安価な燃料ポンプを用いることが可能となる。
 また、粘着性付着物(スラッジ)が存在することを想定した駆動方式と比べて少ないエネルギーで安定してノズルニードル60を動かすことができ、省エネである。また、ノズルニードル60に大きな推進力を与えると、部品同士が繰り返し衝突を大きな推進力で行うことになり、摺動部が磨耗しやすく、衝突などで金属疲労を起こしやすく、インジェクタの寿命を縮めることに繋がるが、本発明によればこれらの不都合も未然に回避することができる。
 また、図3に示したように洗浄液供給通路70と洗浄液排出通路80とを断面円形の円筒状のシリンダ室20に対して接線方向に接続したため、洗浄液がシリンダ室20の壁面に沿って隙間34内を螺旋状に流れ、スムーズに洗浄液を供給および排出することができる。これによって、より優れた洗浄効果を発揮できる。なお、洗浄液供給通路70と洗浄液排出通路80はいずれか一方のみをシリンダ室20に対して接線方向に接続する形態であっても良い。また、さらに洗浄液供給通路70をシリンダ室20の一端部(上端部)に接続すると共に、洗浄液排出通路80をシリンダ室20の他端部(下端部)に接続したため、洗浄液がシリンダ室20の全体に行き渡って燃料の一部がシリンダ室20内部で滞留して劣化するのを防止することが可能となり、より優れた洗浄効果を発揮できる。
 なお、本実施の形態では、図4に示すように専用の洗浄液タンク250を用意し、この洗浄液タンク250内に溜められた洗浄液を利用するようにしたものであるが、前述したようにこの洗浄液としてはコモンレール210から供給される燃料と同じ成分の燃料を用いることも可能である、したがって、この場合には、燃料タンク230から直接洗浄液ポンプ253で供給するようにすれば良い。しかも、このようにすれば、シリンダ室20に供給した洗浄液が仮に燃料と混ざった場合でも動作に悪影響を及ぼすおそれもなくなる。また、別途専用の洗浄液や洗浄液タンク250を用意する必要がないため、コストを抑えることができると共に、洗浄液の点検や補充などといった管理も不要となる。
 また、本発明の他の実施の形態として図6乃至図8に示すような構成であっても良い。すなわち、図6の構成は、洗浄液排出通路80を、圧力抑制室40に接続された燃料排出通路15に合流させたものである。このような構成によれば、燃料排出通路15の燃料排出口16を洗浄液排出通路80の排出口として兼用できるため、前述したような別個独立した燃料排出口81を設ける必要がない。
 また、図7の構成は、圧力抑制室40に接続された燃料排出通路15を洗浄液供給通路70に合流させて圧力抑制室40から排出される燃料の一部または全部を洗浄液として利用可能としたものである。このような構成によれば、前述したような別個独立した専用の燃料排出口81を設ける必要がない上に、燃料排出通路15から排出される燃料を洗浄液として利用できることから、別途専用の洗浄液を用意するためのコストを抑えることができると共に、洗浄液の点検や補充などといった管理も不要となる。
 また、図8の構成は、図7の構成をさらに簡略化したものであり、圧力抑制室40から延びる燃料排出通路15をそのまま洗浄液供給通路70として利用したものである。このような構成によっても図7の構成と同様な作用・効果が得られると共に、さらに洗浄液供給口71が不要となるため、その構成をより簡略化することが可能となる。
 そして、このような構成をした本発明に係るインジェクタ100および燃料噴射システム200を油圧ショベルなどの建設機械やバス、トラックその他の建設車両などに搭載すれば、長期に亘るエンジンの安定的な運転に寄与できるため、信頼性の高い建設機械およびバス、トラックその他の建設車両を提供することができる。
 100…インジェクタ
 200…燃料噴射システム
 210…コモンレール
 220…コントローラー
 230…燃料タンク
 240…高圧燃料ポンプ
 250…インジェクタ洗浄手段
 251…洗浄液タンク
 252…洗浄液ポンプ
 253…洗浄液フィルタ
 L1…洗浄液供給ライン
 L2…洗浄液排出ライン
 10…インジェクタ本体
 11…ノズル
 20…シリンダ室
 30…コマンドピストン
 40…圧力抑制室
 50…電磁弁(ソレノイドバルブ)
 60…ノズルニードル
 70…洗浄液供給通路
 80…洗浄液排出通路

Claims (9)

  1.  燃料を噴射するノズルを有するインジェクタ本体内にシリンダ室を備え、当該シリンダ室内に、前記ノズルを開閉するニードルを駆動するためのコマンドピストンを往復動自在に収容したインジェクタであって、
     前記シリンダ室に、当該シリンダ室内に洗浄液を供給する洗浄液供給通路と、当該シリンダ室内の洗浄液を排出する洗浄液排出通路とを接続したことを特徴とするインジェクタ。
  2.  請求項1に記載のインジェクタにおいて、
     前記シリンダ室を断面円形の円筒状に形成すると共に、前記洗浄液供給通路と洗浄液排出通路のいずれか一方あるいは両方を、前記シリンダ室に対して接線方向に接続したことを特徴とするインジェクタ。
  3.  請求項1または2に記載のインジェクタにおいて、
     前記洗浄液供給通路を前記シリンダ室の一端部に接続すると共に、前記洗浄液排出通路を前記シリンダ室の他端部に接続したことを特徴とするインジェクタ。
  4.  請求項1乃至3のいずれか1項に記載のインジェクタにおいて、
     前記洗浄液として前記燃料を用いることを特徴とするインジェクタ。
  5.  請求項1乃至4のいずれか1項に記載のインジェクタにおいて、
     前記インジェクタ本体に燃料を供給する燃料供給通路と、前記インジェクタ本体内の燃料を排出する燃料排出通路とを備え、前記洗浄液排出通路を前記燃料排出通路に合流させたことを特徴とするインジェクタ。
  6.  請求項1乃至4のいずれか1項に記載のインジェクタにおいて、
     前記インジェクタ本体に燃料を供給する燃料供給通路と、前記インジェクタ本体内の燃料を排出する燃料排出通路とを備え、前記燃料排出通路を前記洗浄液供給通路に合流させたことを特徴とするインジェクタ。
  7.  請求項1乃至4のいずれか1項に記載のインジェクタにおいて、
     前記インジェクタ本体に燃料を供給する燃料供給通路と、前記インジェクタ本体内の燃料を排出する燃料排出通路とを備え、前記燃料排出通路を前記シリンダ室に接続して当該燃料排出通路を前記洗浄液供給通路として用いることを特徴とするインジェクタ。
  8.  請求項1乃至7のいずれか1項に記載のインジェクタに燃料を供給して噴射する燃料噴射システムにおいて、
     前記インジェクタを備えたエンジンが停止したときに、前記洗浄液供給通路に洗浄液を供給して前記シリンダ室を洗浄するインジェクタ洗浄手段を備えたことを特徴とする燃料噴射システム。
  9.  請求項8に記載の燃料噴射システムを備えたことを特徴とする建設機械。
PCT/JP2011/066759 2011-07-22 2011-07-22 インジェクタおよび燃料噴射システムならびにこれを備えた建設機械 WO2013014730A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/233,944 US20140239090A1 (en) 2011-07-22 2011-07-22 Injector, fuel injection system, and construction machine provided with same
DE112011105459.9T DE112011105459T5 (de) 2011-07-22 2011-07-22 Injektor, Kraftstoffeinspritzsystem und damit vorgesehene Baumaschine
CN201180072438.5A CN103703241A (zh) 2011-07-22 2011-07-22 喷射器及燃料喷射系统以及具备燃料喷射系统的工程机械
PCT/JP2011/066759 WO2013014730A1 (ja) 2011-07-22 2011-07-22 インジェクタおよび燃料噴射システムならびにこれを備えた建設機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066759 WO2013014730A1 (ja) 2011-07-22 2011-07-22 インジェクタおよび燃料噴射システムならびにこれを備えた建設機械

Publications (1)

Publication Number Publication Date
WO2013014730A1 true WO2013014730A1 (ja) 2013-01-31

Family

ID=47600622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066759 WO2013014730A1 (ja) 2011-07-22 2011-07-22 インジェクタおよび燃料噴射システムならびにこれを備えた建設機械

Country Status (4)

Country Link
US (1) US20140239090A1 (ja)
CN (1) CN103703241A (ja)
DE (1) DE112011105459T5 (ja)
WO (1) WO2013014730A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2543826B (en) * 2015-10-30 2019-07-24 Caterpillar Inc A fuel injector, a fuel injector assembly and an associated method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276461A (ja) * 2001-03-22 2002-09-25 Isuzu Motors Ltd 燃料噴射機構
JP2007278282A (ja) * 2006-04-08 2007-10-25 Man Diesel Se 燃料洗浄ピストン
JP2008121545A (ja) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd 燃料噴射装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61200376A (ja) * 1985-03-01 1986-09-04 Yanmar Diesel Engine Co Ltd 燃料噴射ポンプ
US4856713A (en) * 1988-08-04 1989-08-15 Energy Conservation Innovations, Inc. Dual-fuel injector
DE69000339T2 (de) * 1989-02-14 1993-02-25 High Tech Auto Tools Pty Ltd Verfahren zur reinigung eines elektronisch gesteuerten einspritzventils.
US6761325B2 (en) * 1998-09-16 2004-07-13 Westport Research Inc. Dual fuel injection valve and method of operating a dual fuel injection valve
DE10033428C2 (de) * 2000-07-10 2002-07-11 Bosch Gmbh Robert Druckgesteuerter Injektor zum Einspritzen von Kraftstoff
US6779513B2 (en) * 2002-03-22 2004-08-24 Chrysalis Technologies Incorporated Fuel injector for an internal combustion engine
KR200396713Y1 (ko) * 2005-07-01 2005-09-27 윤환 디젤 엔진용 인젝터 클리너
CA2532775C (en) * 2006-01-31 2008-04-15 Westport Research Inc. Method and apparatus for delivering two fuels to a direct injection internal combustion engine
JP2008057524A (ja) * 2006-08-01 2008-03-13 Denso Corp インジェクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002276461A (ja) * 2001-03-22 2002-09-25 Isuzu Motors Ltd 燃料噴射機構
JP2007278282A (ja) * 2006-04-08 2007-10-25 Man Diesel Se 燃料洗浄ピストン
JP2008121545A (ja) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd 燃料噴射装置

Also Published As

Publication number Publication date
DE112011105459T5 (de) 2014-04-17
US20140239090A1 (en) 2014-08-28
CN103703241A (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
JP3700981B2 (ja) 蓄圧式燃料噴射装置
CN101657630B (zh) 用于内燃机的燃料喷射阀
CN101297108B (zh) 适合于低粘性燃油的燃油喷射系统
EP1275840A2 (en) Fuel injector with directly controlled dual concentric check needle and engine using same
CN100540881C (zh) 流体喷射喷嘴
US10655580B2 (en) High pressure fuel supply pump
CN102713235B (zh) 使用于喷射燃料到内燃机燃烧室里面的喷射装置的喷射器恒温的方法
US8881709B2 (en) Fluid injector with back end rate shaping capability
WO2013014730A1 (ja) インジェクタおよび燃料噴射システムならびにこれを備えた建設機械
CN102840075A (zh) 具有后端速率整形能力的流体喷射器
JP5708466B2 (ja) デュアルインジェクタ
JPWO2013014730A1 (ja) インジェクタおよび燃料噴射システムならびにこれを備えた建設機械
US20140054396A1 (en) Fluid injector
KR20140063864A (ko) 압력 제어 시스템 및 압력 제어 밸브
CN102086827B (zh) 具有热负载控制的流体喷射器
CN103097681B (zh) 喷射和计量分配装置
JP2011058462A (ja) 燃料噴射装置
JP4229059B2 (ja) 内燃機関用燃料噴射装置
JPH11351105A (ja) 内燃機関用燃料噴射弁
CN107060954B (zh) 用于净化排气碳烟颗粒的喷射系统及控制方法
JP2019173712A (ja) 燃料噴射装置
JP2008163772A (ja) 燃料制御弁
US20220186697A1 (en) Two-piece outlet check in fuel injector for starting-flow rate shaping
AU2017320332B2 (en) Improved injector arrangement for diesel engines using slurry or emulsion fuels
JP5157988B2 (ja) 燃料噴射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525457

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112011105459

Country of ref document: DE

Ref document number: 1120111054599

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 14233944

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11870119

Country of ref document: EP

Kind code of ref document: A1