WO2013011901A1 - Method for separating/collecting rare earth element, and apparatus for separating/collecting rare earth element - Google Patents

Method for separating/collecting rare earth element, and apparatus for separating/collecting rare earth element Download PDF

Info

Publication number
WO2013011901A1
WO2013011901A1 PCT/JP2012/067736 JP2012067736W WO2013011901A1 WO 2013011901 A1 WO2013011901 A1 WO 2013011901A1 JP 2012067736 W JP2012067736 W JP 2012067736W WO 2013011901 A1 WO2013011901 A1 WO 2013011901A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
water
earth element
soluble polymer
aqueous solution
Prior art date
Application number
PCT/JP2012/067736
Other languages
French (fr)
Japanese (ja)
Inventor
佐々木 洋
小林 金也
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2013524683A priority Critical patent/JP5683705B2/en
Priority to CN201280035250.8A priority patent/CN103827328B/en
Publication of WO2013011901A1 publication Critical patent/WO2013011901A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J39/00Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/08Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
    • B01J39/16Organic material
    • B01J39/17Organic material containing also inorganic materials, e.g. inert material coated with an ion-exchange resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/42Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method and apparatus for separating and recovering rare earth elements contained in a magnet alloy or the like.
  • Magnetic alloys used in motors of magnetic recording devices and hybrid vehicles etc. are added to iron as the main component, and small amounts of neodymium (Nd), dysprosium (Dy), etc. to increase the coercive force.
  • Rare earth elements are added. In recent years, separation, recovery, and reuse of these rare earth elements from discarded magnetic alloys have been studied from the viewpoint of effective utilization of resources.
  • phosphors containing rare earth elements used in cathode ray tubes, plasma display panels (PDPs), etc. are also enormous amounts on a global scale, so separation of rare earth elements from these phosphors Recovery is also required.
  • rare earth elements are difficult to separate as a single substance because various physical properties and chemical properties are similar to each other.
  • the electronegativity of rare earth elements is in the range of 0.86 to 1.14, in particular the electronegativity of Nd in the magnet alloy is 1.07 and that of Dy is very close to 1.10.
  • the ion radius of the rare earth element is also in the range of 0.0745 to 0.117 nm, and in particular, the ion radius of Nd in the magnet alloy is 0.099 nm, and that of Dy is close to 0.091 nm (both trivalent ions).
  • Non-Patent Document 1 scientific article
  • a phosphoric acid-based extractant and a hydrocarbon-based organic solvent are added and stirred, and left standing
  • different types of rare earth elements are distributed to water and an organic solvent depending on the type of extractant.
  • Patent Document 1 discloses a water-soluble polymer having an acidic group by adding a water-soluble polymer having an acidic group and a water-soluble polymer having an amino group to waste water in which a metal salt is dissolved. It is described that a water-soluble polymer having an amino group is crosslinked to trap metal ions in waste water and precipitate as an aggregate.
  • Non Patent Literature 1 uses a hydrocarbon-based organic solvent, recovery and processing of the solvent in consideration of the load on the environment and health are required, which causes an increase in cost.
  • the distribution ratio of different types of rare earth elements is small in the solvent extraction method, it is necessary to repeat the solvent extraction process several dozen times to increase the purity of the separated rare earth elements (for example, to 99% or more). is there.
  • the metal recovery method by aggregate precipitation of the above-mentioned Patent Document 1 is originally intended to efficiently recover (remove) metal ions from a large amount of industrial wastewater, and it is aggressive to separate for each metal species. Not for the purpose. That is, separation of different types of rare earth elements by element type is not sufficiently considered.
  • an object of the present invention is a separation and recovery method capable of increasing the distribution ratio of different types of rare earth elements to solve the above problems and achieving cost reduction in separation and recovery of rare earth elements, and a separation and recovery apparatus for realizing the same. To provide.
  • a rare earth element separation and recovery method comprising the steps of:
  • the present invention can add the following improvement or change in the rare earth element separation and recovery method (I) according to the present invention described above.
  • (I) When the total number of rare earth element ions having the smallest ion radius among the plurality of rare earth elements is “R”, and the total number of acid groups of the water-soluble polymer having the acid group is “C” The water-soluble polymer having the acid group is added to the aqueous solution so as to satisfy the inequality “R ⁇ C ⁇ 3R”.
  • the water-soluble polymer having an acidic group has an average molecular weight of 126 to 25,000, and the water-soluble polymer having an amino group has an average molecular weight of 60 to 25,000.
  • a water-soluble polymer having an amino group is added such that the total number of amino groups is larger than the total number of acidic groups of the polymer, and the method further comprises the additional aggregation step of additionally forming an aggregate.
  • the hydrogen ion exponent pH of the aqueous solution is 1 or more and 5 or less.
  • the water-soluble polymer having an amino group is added such that the pH of the aqueous solution is 6 or more and 9 or less.
  • a strong base is added such that the pH of the solution in which the aggregate is dissolved is 1 or more and 3 or less.
  • the water-soluble polymer having an amino group has a primary amino group and a tertiary amino group.
  • a cation exchange resin having an acid group is added in place of the water-soluble polymer having an acid group in the aggregation step.
  • the cation exchange resin contains magnetic powder.
  • an apparatus for separating and recovering a specific rare earth element from an aqueous solution having ions of a plurality of types of rare earth elements wherein a mixing tank and a mechanism for charging the aqueous solution into the mixing tank , A mechanism for adding a water-soluble polymer having an acidic group to the mixing tank, a mechanism for adding a water-soluble polymer having an amino group to the mixing tank, a mechanism for stirring the aqueous solution, and aggregation from the aqueous solution
  • the rare earth element separation and recovery device is provided with a mechanism for separating and recovering a substance, and a mechanism for dissolving the aggregates and adding an acid for producing a solution to the mixing tank.
  • the present invention can add the following improvements and changes in the rare earth element separation and recovery apparatus (II) according to the present invention described above.
  • the apparatus further comprises a mechanism for washing the aggregate separated and recovered from the aqueous solution.
  • the mechanism for adding the water-soluble polymer having an acidic group to the mixing tank and the mechanism for adding the water-soluble polymer having an amino group to the mixing tank each have a plurality of discharge nozzles. .
  • (Xii) further comprising a mechanism for suctioning the aqueous solution after the aggregates are separated and collected.
  • (Xiii) A mechanism for adding a cation exchange resin to the mixing vessel instead of the mechanism for adding the water-soluble polymer having the acidic group to the mixing vessel, or further comprising a cation exchange resin in the mixing vessel It is housed.
  • the cation exchange resin has a magnetic powder, and is further provided with a mechanism for separating and collecting the cation exchange resin from the mixing tank by a magnetic separation method.
  • a filter is provided at the bottom of the mixing tank to filter the aggregates.
  • the apparatus further includes a mechanism for disposing the upper surface of the filter at a position the same as or higher than the upper end of the inner wall of the mixing tank.
  • the filter comprises a mechanism for heating the aggregates.
  • the surface of the member in contact with the aggregates is treated to have a contact angle with water of 90 ° or more.
  • the present invention it is possible to provide a separation and recovery method in which distribution ratios of different types of rare earth elements are enhanced, and a separation and recovery apparatus for realizing the same.
  • an aqueous solution in which Nd and Dy are mixed is described as an example of an aqueous solution in which a plurality of types of rare earth elements are mixed. This is because these two types of rare earth elements are widely used as magnet alloys in many types of motors.
  • the ion radius of Nd is slightly larger than that of Dy.
  • lanthanum (La), cerium (Ce), europium (Eu), terbium (Tb) or the like used in phosphors can be separated and recovered according to the same principle.
  • FIG. 1 is a schematic view illustrating the aggregation process in the separation and recovery method according to the present invention.
  • a water-soluble polymer 4 having an acidic group is added to an aqueous solution in which Nd ions 1 and Dy ions 2 are mixed.
  • the Nd ion 1 and the Dy ion 2 form an ionic bond with the acidic group 3 of the water-soluble polymer 4.
  • a water-soluble polymer 6 having an amino group is added.
  • the Nd ion 1 having a larger ion radius than the Dy ion 2 preferentially coordinates with the amino group 5 of the water-soluble polymer 6 having an amino group to form a water-soluble aggregate 7 (hereinafter referred to as an aggregate)
  • 7 is referred to as solution 7).
  • the ionic bond between the acid group 3 of the water-soluble polymer 4 having an acid group and the amino group 5 of the water-soluble polymer 6 having an amino group results in intermolecular crosslinking to form an aggregate 8 insoluble in water. Do.
  • the aggregate 8 is formed, the Nd ion 1 and the Dy ion 2 not forming the water-soluble aggregate 7 are taken into the aggregate 8.
  • one amino group 5 is ionically bonded to one acidic group 3. Therefore, considering the amount of amino group 5 necessary to form aggregate 7, the amino acid of water-soluble polymer 6 having an amino group is more than the total number of acidic groups 3 of water-soluble polymer 4 having an acidic group. The total number of groups 5 needs to be large.
  • the water-soluble polymer 4 having an acid group is added after the water-soluble polymer 6 having an amino group is added, it is immediately associated with the water-soluble polymer 6 from the region to which the water-soluble polymer 4 is added. Because of aggregation, most of the Dy ions 2 dispersed throughout the aqueous solution are not taken into the aggregate and remain in the aqueous solution. Therefore, the water-soluble polymer 4 having an acid group is first added to capture the Dy ion 2, and then the water-soluble polymer 6 having an amino group is added. Thereby, the Dy ions 2 in the entire aqueous solution region in the reaction vessel can be taken into the aggregate 8.
  • the dissolved component separated from the aggregate 8 also contains Dy. Therefore, after the water-soluble polymer 4 having an acidic group is added to the aqueous solution from which the aggregate 8 is separated, the water-soluble polymer 6 having an amino group is further added to form an aggregate additionally. Thereby, Dy can be recovered from the solution. In other words, it is possible to efficiently recover Dy without discarding it as much as possible.
  • the rare earth element having the smaller ion radius is preferentially taken into the aggregate 8, and the dissolved portion has the ion radius.
  • the larger rare earth element will be predominantly present.
  • FIG. 2 is a schematic view illustrating a dissolution step and a reaggregation step in the separation and recovery method according to the present invention.
  • the aggregate 8 is dissolved even if a base is added instead of the acid.
  • a base stronger in basicity than the amino group 5 of the water-soluble polymer 6 is brought into contact with the aggregate 8, a state in which the amino group 5 of the water-soluble polymer 6 having an amino group is not dissociated from the dissociated ionic state Change to As a result, the ionic bond bridging the two polymers (water-soluble polymers 4 and 6) disappears, and the aggregate 8 dissolves.
  • the hydrogen ion index pH is 8 or more
  • the Nd ion 1 and the Dy ion 2 change to hydroxides that are poorly soluble in water.
  • the aggregate 8 dissolves, hydroxides of Nd and Dy precipitate, causing problems in the next step. From this, it is preferable to carry out the dissolution process of dissolving the aggregate 8 by adding an acid.
  • (1-6) Reaggregation step After adding the base to the solution in which the aggregate 8 is dissolved in the dissolution step and adjusting the pH to about 2, the water-soluble polymer 6 having an amino group has a pH of about 5 to 5 When it is added until it reaches 6, reaggregates 8 'precipitate.
  • a water-soluble polymer 6 having an amino group may be added as a base for pH adjustment.
  • the liquid of Aggregate 8 is strongly acidic, it is necessary to add water-soluble polymer 6 having a vast amount of amino groups before adjusting pH to about 2, so adjust pH As a base, it is more preferable to use a strong base (base dissociation constant pKb ⁇ 0, for example, sodium hydroxide etc.).
  • the trivalent Nd ion 1 Since the trivalent Nd ion 1 has 3 electrons in the 4f orbit, 11 electrons are required to fill the orbit with electrons. On the other hand, since the number of electrons on the 4f orbital is nine, the trivalent Dy ion 2 requires five electrons to fill the orbital with electrons. Since the Nd ion 1 requires more electrons than the Dy ion 2 to satisfy the 4f orbital, it is presumed that the attractive force with the amino group 5 functioning as an electron donating group is larger. In other words, since the amino group 5 is more easily coordinated by the Nd ion 1, the Nd ion 1 is preferentially distributed in the solution 7, and the Nd ion 1 in a dissociated state in the solution decreases. As a result, the Dy ions 2 in the aggregate 8 and the recoagulate 8 'become relatively large.
  • Yb 3+ is most easily taken into aggregate 8.
  • the order of Tm 3+ , Er 3+ ,... Is as follows, and the more electrons on the 4f orbital, the easier it is to be taken into aggregate 8.
  • Ce 3+ is the largest to be distributed to the dissolved component 7, and in the order of Pr 3+ , Nd 3+,.
  • the present invention aims to increase the distribution ratio of different types of rare earth elements.
  • “raising the distribution ratio of rare earth elements” in the present invention will be briefly described.
  • the purpose is usually to separate and recover as much of the rare earth element as possible from the raw material containing the rare earth element (for example, the discarded rare earth magnet alloy).
  • "to increase the distribution ratio of the rare earth elements” in the present invention means to increase the purity of the rare earth elements to be separated and collected (to separate and collect the rare earth elements having high purity).
  • the present invention differs from the prior art in basic concept.
  • Polymeric material used (3-1) Water-soluble polymer having an acidic group
  • polyacrylic acid is preferable from the viewpoint of being inexpensive and being easy to form an ionic bond with an amino group.
  • polyaspartic acid and polyglutamic acid derived from amino acids are also suitable.
  • Alginic acid is a type of main component of seaweed such as kelp, and has a feature that environmental load is small in that raw materials are derived from organisms.
  • water-soluble polymer having a sulfonic acid group examples include polyvinyl sulfonic acid and polystyrene sulfonic acid. These sulfonic acid groups are preferable in that they have a higher acidity than carboxyl groups, so the proportion of forming ionic bonds with amino groups is high, and stable aggregates can be obtained.
  • the water solubility of the polymer having an acid group is not sufficient, the water solubility (solubility in water) is improved by forming a part of the acid group with an ammonium salt structure, a sodium salt structure, and / or a potassium salt structure. It is possible to By adding a polymer in which some of the acidic groups have an ammonium salt structure, a sodium salt structure, and / or a potassium salt structure, it is possible to efficiently form an ionic bond with a water-soluble polymer having an amino group become.
  • the average molecular weight of the water-soluble polymer 4 having an acidic group 3 is preferably 25,000 or less.
  • the average molecular weight of the water-soluble polymer 4 having the acidic group 3 is more preferably 7,000 or less, and still more preferably 5,000 or less.
  • the shortening of the process time of the dissolution step is particularly advantageous when the aggregation step and the dissolution step are repeated a plurality of times.
  • a water-soluble polymer 6 having an amino group 5 (average molecular weight 25,000) is added to an aqueous solution in which a water-soluble polymer 4 having an acidic group 3 is dissolved to form an aggregate, thereby forming hydrochloric acid (1 N)
  • the aggregate having an average molecular weight of 25,000 of the water-soluble polymer 4 used took about 1 minute to completely dissolve.
  • the aggregate having an average molecular weight of 7,000 of the water-soluble polymer 4 used was completely dissolved in about 40 seconds.
  • the aggregate having an average molecular weight of 5,000 of the water-soluble polymer 4 used was completely dissolved in about 3 seconds.
  • At least two or more acidic groups are required to form the aggregate 8 and the reaggregate 8 '.
  • the organic compounds having two or more acidic groups the one having the lowest molecular weight is oxalic acid, and the molecular weight is 126.
  • Oxalic acid can also be considered as a polymer material having a repeating basic unit of “—COOH”. Therefore, the lower limit of the molecular weight of the water-soluble polymer 4 is 126.
  • the aggregation step As the average molecular weight of the water-soluble polymer 4 used is larger, intermolecular cross-linking with the water-soluble polymer 6 having the amino group 5 is more easily formed, and the poor solubility of the formed aggregate is increased. . That is, since the utilization rate of the added water-soluble polymer 4 is increased, the trapping efficiency of the rare earth element ion to be separated and collected is increased.
  • the ratio of forming the insoluble aggregate among the added water-soluble polymer 4 was about 90% when the average molecular weight of the water-soluble polymer 4 used was less than 1,000, and about 95% when the average molecular weight of the water-soluble polymer 4 used was 1,000 or more and less than 2,000.
  • the average molecular weight of the water-soluble polymer 4 was 2,000 or more, it was about 98%. From these results, the average molecular weight of the water-soluble polymer 4 is required to be at least 126, preferably 1,000 or more, and more preferably 2,000 or more.
  • FIG. 3 is a schematic view illustrating an aggregation step using a cation exchange resin in the separation and recovery method according to the present invention.
  • the cation exchange resin 9 to be used preferably has, for example, a sulfonic acid group or a carboxyl group as the acidic group 3. .
  • Nd ion 1 and Dy ion 2 are the acid groups 3 and ions of cation exchange resin 9 Join. Thereafter, when the water-soluble polymer 6 having the amino group 5 is further added, the Nd ion 1 preferentially forms an aggregate 7 with the water-soluble polymer 6 and dissolves. At the same time, the acidic groups 3 of the cation exchange resin 9 and the amino groups 5 of the water-soluble polymer 6 are ionically bonded while preferentially trapping the Dy ions 2.
  • the relationship between the number of acidic groups 3 of the cation exchange resin 9 and the number of amino groups 5 of the water-soluble polymer 6 is the same as in the above-mentioned “(1-1) aggregation step”.
  • the average particle diameter of the cation exchange resin 9 is preferably about 0.1 mm to 3 mm. In order to improve the trapping rate of the rare earth element ions, it is preferable to increase the surface area by providing asperities on the surface of the cation exchange resin 9 or the like.
  • the cation exchange resin 9 used to trap rare earth element ions (bound to the surface) is separated from non-aggregates (dissolved 7) by filtration etc. It is preferable to be easy to do.
  • the cation exchange resin 9 can also be regarded as an aggregate 8.
  • the specific gravity as the cation exchange resin 9 also becomes large, so that it becomes easy to precipitate.
  • magnetic powder in the inside of the cation exchange resin 9 it can be collected magnetically and it becomes possible to utilize magnetic separation in the separation and recovery step.
  • water-soluble polymer having an amino group As the water-soluble polymer 6 having an amino group 5, polyethyleneimine is preferable in that the ratio of the amino group per unit mass is maximized.
  • linear amino groups such as polyvinylamine and polyallylamine are also preferable because they are relatively inexpensive and easily dissolved in water.
  • chitosan has a slightly lower solubility in water, it is obtained by hydrolyzing chitin, which is the main component of the exoskeleton of organisms (eg, crab, shrimp, beetles, cockroaches, etc.), so the raw material is said to be of biological origin. It has the feature that environmental load is small in point.
  • amino acid-derived polylysine and polyarginine are also suitable.
  • the water-soluble polymer 6 having an amino group 5 it is more efficient for the water-soluble polymer 6 having an amino group 5 to have as many amino groups as possible per unit mass.
  • a structure having a small repeating basic unit or a structure having as many amino groups as possible in the repeating basic unit is preferable.
  • polyethylenimine is efficient among water-soluble polymers 6 having an amino group 5 because the repeating basic unit is “—C 2 H 4 N” and the molecular weight is as small as about 43.
  • some structures of polyallylamine may be mentioned. For example, it is the following compound.
  • Compound A has a molecular weight of the repeating basic unit of about 72.
  • compound B a molecule having a molecular weight of about 72 and a molecule of about 100 are combined to form a repeating basic unit. Since the water-soluble polymer 6 having an amino group 5 other than these has a pyrrole skeleton, a sulfonyl moiety or the like, the molecular weight of the repeating basic unit is around 150 to 300.
  • compounds A and B are preferable among polyethyleneimine and polyallylamine.
  • the amino group 5 of the water-soluble polymer 6 is composed of a primary amino group and a tertiary amino group, it tends to form an aggregate 7 with the Nd ion 1 more easily than the Dy ion 2.
  • Polyethyleneimine has all three types of primary amino group, secondary amino group, and tertiary amino group.
  • the compound B also has two types of primary amino group and tertiary amino group.
  • the viscosity of the water-soluble polymer 6 having an amino group 5 increases as the average molecular weight increases, and thus handling becomes difficult from the viewpoint of input amount control and input operation. Specifically, when the average molecular weight of the water-soluble polymer 6 having an amino group 5 such as polyethylenimine or polyallylamine exceeds 100,000, the viscosity is 1,000 mPa ⁇ s at 20 ° C. even in an aqueous solution of 10 mass%. It becomes more than s.
  • the viscosity is 1,000 mPa ⁇ s or more
  • a device with a small discharge amount per unit time for example, a dispenser, etc.
  • Operation becomes difficult.
  • it is desirable that the viscosity of the water-soluble polymer 6 is low, so that the average molecular weight of the water-soluble polymer 6 having the amino group 5 is preferably at least 100,000 or less.
  • the average molecular weight of the water-soluble polymer 6 having the amino group 5 is excessive, the element species to be distributed to the dissolved component 7 is physically separated by a long molecular chain There is a tendency to be entangled (without association with the linking group) together into aggregate 8 and reaggregate 8 '. This tendency becomes remarkable when the average molecular weight of the water-soluble polymer 6 exceeds 25,000. Therefore, the average molecular weight of the water-soluble polymer 6 having an amino group 5 is more preferably 25,000 or less.
  • the average molecular weight of the water-soluble polymer 6 having an amino group 5 is more preferably 7,000 or less, and most preferably 5,000 or less.
  • a water-soluble polymer 6 having an amino group 5 is added to form an aggregate, and hydrochloric acid (1 N)
  • hydrochloric acid (1 N) When this aggregate was dissolved to use, the aggregate of water-soluble polymer 6 having an average molecular weight of 25,000 required about 1 minute to completely dissolve.
  • the aggregate having an average molecular weight of 7,000 of the water-soluble polymer 6 used was completely dissolved in about 40 seconds.
  • the aggregate having an average molecular weight of 5,000 of the water-soluble polymer 6 used was completely dissolved in about 3 seconds.
  • the shortening of the process time of the dissolution step is particularly advantageous when the aggregation step and the dissolution step are repeated a plurality of times.
  • the organic compound having two or more amino groups and having the lowest molecular weight is ethylenediamine, and the molecular weight is 60.
  • Ethylenediamine can also be considered as a polymer material having a repeating basic unit of “—CH 2 NH 2 ”. Therefore, the lower limit of the molecular weight of the water-soluble polymer 6 is 60.
  • the intermolecularity with the water-soluble polymer 4 having an acidic group 3 is Crosslinks are likely to be formed and the poor solubility of the resulting aggregates is increased. That is, since the utilization rate of the added water-soluble polymer 6 is increased, the trapping efficiency of the rare earth element ions to be separated and recovered is increased.
  • a ratio of forming an insoluble aggregate among the added water-soluble polymer 6 was about 90% when the average molecular weight of the water-soluble polymer 6 used was less than 1,000, and about 95% when the average molecular weight of the water-soluble polymer 6 used was 1,000 or more and less than 2,000.
  • the average molecular weight of the water-soluble polymer 6 was 2,000 or more, it was about 98%. From these results, the average molecular weight of the water-soluble polymer 6 needs to be at least 60, preferably 1,000 or more, and more preferably 2,000 or more.
  • the rare earth element ion having the smallest ion radius among the plural kinds of rare earth element ions present in the aqueous solution is the aggregate 8 and the reaggregates 8 'It is taken in preferentially.
  • the addition ratio of the water-soluble polymer is an important process factor.
  • the addition amount of the water-soluble polymer 4 having the acidic group 3 is the total number (R) of the rare earth element ion having the smallest ion radius (ie, the rare earth element ion to be separated and recovered). Or more) (R C C).
  • R the total number of the rare earth element ion having the smallest ion radius
  • R C C the recovery rate of rare earth element ions to be separated and recovered decreases.
  • the total number R of rare earth element ions can be estimated, for example, by an inductively coupled plasma method.
  • the rare earth ion is trivalent and the acid group 3 is monovalent, a maximum of three ionic bonds are formed per one rare earth ion.
  • the total number C of the acidic groups 3 should be at least 3 times the total number R of the rare earth element ions to be separated and collected. If 3R ⁇ C), the rare earth element ion in the aqueous solution is in principle 100% trapped in the aggregate.
  • the total number C of the acidic groups 3 is more than three times the total number R of the rare earth element ions to be separated and recovered ( If 3R ⁇ C) or more than 3R, it will also trap rare earth element ions other than the rare earth elements to be separated and collected. That is, the separation ability of the rare earth element species (distribution ratio of the rare earth element) is lowered. From this, it is desirable that the total number C of the acidic groups 3 is three times or less (C ⁇ 3R) of the total number R of rare earth element ions (the rare earth element ions having the smallest ion radius) to be separated and collected.
  • the addition amount of the water-soluble polymer 4 having the acidic group 3 desirably satisfies the inequality “R ⁇ C ⁇ 3R”.
  • the total number C of the acidic groups 3 is more preferably 2.5 times or less (C ⁇ 2.5 R) the total number R of rare earth element ions to be separated and recovered from the viewpoint of minimizing the mixing of other types of rare earth elements. It is more desirable that the ratio be 2 times or less (C.ltoreq.2R).
  • the cation exchange resin 9 is acidic because the cation exchange resin 9 itself is solid. It is harder to move than the water-soluble polymer 4 having the group 3 (no fluidity like the water-soluble polymer 4). Therefore, in order to increase the probability of association with the rare earth element ion to be captured, it is necessary to increase the addition amount of the cation exchange resin 9 compared to the water-soluble polymer 4 having the acidic group 3. Specifically, in the case of using the cation exchange resin 9 having an acidic group 3, the total number of acidic groups 3 is about 3 to 10 times the total number of acidic groups 3 of the water-soluble polymer 4. Is preferred.
  • the distribution ratio of the rare earth element can be increased.
  • Acid and Base Used (-1) Acid
  • a common acid can be used as the acid used for dissolving the aggregate 8.
  • the linear water-soluble polymer 6 having the amino group 5 constituting the aggregate 8 forms a salt structure with the amino group 5 and the added acid by addition of an acid, thereby forming the aggregate 8
  • the aggregate 8 dissolves because the ionic bond is eliminated.
  • an acid (weak acid) having a low acidity is used, a large amount of addition is required to dissolve the aggregate 8, so the acid used is a strong acid (pKa ⁇ 1), particularly strong inorganic acid (eg hydrochloric acid, sulfuric acid) , Nitric acid) is preferred.
  • acids water-soluble polymer 4 having these acid groups
  • Acid having the same acid group 3 is not preferred.
  • a common base can be used as a base used to form reaggregate 8 ′ from the solution in which aggregate 8 is dissolved.
  • a strong base pKb ⁇ 0
  • strong inorganic bases for example, sodium hydroxide, potassium hydroxide and the like
  • water-soluble polymer 6 having an amino group 5 is further added to form a reaggregate 8 '.
  • FIG. 4 is a schematic view illustrating the flow of steps of the separation and recovery method according to the present invention.
  • the formation of the aggregate 8 inhibits the flow of the water-soluble polymer 6 having an amino group, and if the aggregate that should be originally formed in the mixing tank 12 remains unformed, the recovery rate of separation of Dy may be reduced. There is sex. Therefore, in order to cause aggregation to occur in the entire mixed aqueous solution 10 in the mixing tank 12, the mechanism for adding the water-soluble polymer 6 having an amino group comprises a plurality of nozzles for releasing the water-soluble polymer 6, It is preferable to make the agglutination reaction occur in the entire region of the mixing tank 12.
  • the shutter 7 of the filter with shutter 11 disposed at the bottom of the mixing tank 12 is opened to discharge the dissolved portion 7 out of the mixing tank 12, and the state as shown in FIG. 4C is obtained.
  • Nd ions are mainly removed from the rare earth element ions trapped in the aggregates 8 and the reaggregates 8 ′, and as a result, the Dy ions are removed.
  • the percentage of Moreover, the separation and recovery rate of Dy can be further improved by collecting the dissolved portion 7 and repeating the additional aggregation step, the dissolution step and the re-aggregation step.
  • FIG. 5 is a schematic view showing one configuration of the rare earth element separation and recovery apparatus according to the present invention.
  • the pH of the mixed aqueous solution (an aqueous solution in which Nd ions and Dy ions are mixed) to be introduced into the separation and recovery apparatus shown in FIG. 5 is preferably 1 or more and 5 or less.
  • the pH of the mixed aqueous solution is 3.0. If the pH of the mixed aqueous solution to be added is less than 1, the acidity is too high, and even if a water-soluble polymer having an amino group is added in a later step, it becomes difficult to form aggregates, so the recovery rate of separation of Dy ions decreases. Do.
  • a mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) is introduced into the mixing tank 17 through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18. Thereafter, the mixed aqueous solution in the mixing tank 17 is stirred by the overhead stirrer 21 equipped with the stirring blade 20. Stirring of the mixed aqueous solution is continued until aggregates 28 are formed in a later step.
  • an aqueous solution of a water-soluble polymer having an acidic group is introduced into the mixing tank 17 from the first tank 22 through the first pipe 24 by the first pump 23.
  • an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the second tank 25 through the second pipe 27 by the second pump 26. Then, the water-soluble polymer having an amino group and the water-soluble polymer having an acidic group are associated in the mixing tank 17 to form an aggregate 28. After the formation of aggregates 28, the stirring is stopped. The amount of the water-soluble polymer having an amino group is adjusted so that the pH of the aqueous solution in the mixing tank 17 is 6 or more and 9 or less.
  • the liquid (dissolution) other than the aggregate 8 is discharged from the mixing tank 17 through the filter 30. Since the aggregate 8 is blocked by the filter 30, it is not discharged from the mixing tank 17. After the liquid component of the mixing tank 17 is discharged, the shutter 29 is closed. The discharged solution passes through a valve 31 and enters a recovery tank 32 disposed below the mixing tank 17.
  • deionized water is dropped by the third pump 34 from the third tank 33 through the third pipe 35 onto the aggregates 28 remaining in the mixing tank 17.
  • This operation is intended to remove the Nd component adhering to the surface of the aggregate 28.
  • the shutter 29 is opened to discharge the deionized water, and then the shutter 29 is closed.
  • an acid for example, a hydrochloric acid aqueous solution
  • a hydrochloric acid aqueous solution is introduced into the mixing tank 17 from the fourth tank 36 through the fourth pipe 38 by the fourth pump 37 to dissolve the aggregates 28.
  • an aqueous solution of hydrochloric acid is added until the aggregate 28 is completely dissolved.
  • the fifth pump 40 feeds the base (for example, aqueous sodium hydroxide solution) into the mixing tank 17 from the fifth tank 39 through the fifth pipe 41.
  • the addition of the sodium hydroxide aqueous solution is continued until the pH of the aqueous solution in the mixing tank 17 becomes 1 to 3.
  • an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the second tank 25 through the second pipe 27 by the second pump 26.
  • the input amount of the water-soluble polymer having an amino group is adjusted such that the pH of the aqueous solution in the mixing tank 17 is 6 or more and 9 or less. This step produces reaggregates.
  • the shutter 29 is opened to discharge the liquid (dissolved matter) other than the reagglomerated material from the mixing tank 17. Thereafter, washing the reaggregation with deionized water, adding an aqueous solution of hydrochloric acid to dissolve the reaggregation, adding sodium hydroxide aqueous solution and a water-soluble polymer having an amino group to form a reaggregation Repeat several times.
  • the proportion of Nd ions in the reagglomerate decreases, and as a result, the proportion of Dy ions increases (ie, the purity of the Dy component increases).
  • the reagglomerate After raising the percentage of Dy ions in the reagglomerate to the desired value, the reagglomerate is dried and collected.
  • the filter 30 preferably includes a heating mechanism (not shown).
  • FIG. 6 is a schematic view showing an operation of recovering reaggregated material in the separation and recovery apparatus shown in FIG.
  • the bottom 17 'of the mixing tank is configured to be slidable in the vertical direction in the figure with respect to the inner wall 42 of the mixing tank.
  • the bottom 17 'of the mixing vessel is raised together with the shutter 29 and the filter 30, so that the top of the shutter 29 or filter 30 is at the same or slightly higher than the upper end of the inner wall 42 of the mixing vessel.
  • the reaggregates 28 'on the shutter 29 and / or the filter 30 are collected by a scraper or the like. By doing so, the reaggregated matter 28 'can be recovered easily and without waste.
  • the bottom 17 'of the mixing tank is lowered to return to the original state.
  • the positional relationship between the bottom 17 'of the mixing tank and the inner wall 42 of the mixing tank is relative, and the operation of FIG. 6 is performed by lowering the inner wall 42 of the mixing tank. It is also good.
  • the reaggregated material recovered above is heated in the air.
  • the organic compound component (water-soluble polymer having an acidic group, water-soluble polymer having an amino group) in the reagglomerate is decomposed and removed, and the Dy ion combines with oxygen to form Dy 2 O 3. can get.
  • the aqueous solution (the dissolved component) collected in the collection tank 32 also contains the Dy component
  • the dissolved component collected in the collection tank 32 is put into the mixing tank 17, and the additional aggregation step, the dissolution step, and the reaggregation described above are performed.
  • Dy can be recovered from the solution by repeating the steps. This can further improve the separation and recovery rate of Dy as a whole.
  • Nd 2 O 3 can be recovered by heating the aqueous solution (dissolved matter) to remove water and organic compound components.
  • the suspension in the mixing tank may be transferred to a centrifuge tube and centrifuged to separate the aggregate and the dissolved component.
  • the tip of the pipe to which the water-soluble polymer having an amino group is added has a plurality of discharge nozzles so that the water-soluble polymer to be charged can be easily dispersed in the aqueous solution.
  • the stirring blade 20 of the overhead stirrer 21, the mixing tank 17, the fourth tank 36 containing an aqueous solution of acid, and the fourth pipe 38 may be corroded because they touch strong acids such as hydrochloric acid. . Therefore, it is preferable to form an acid resistant resin film for preventing direct contact of the acid with these members.
  • a paint obtained by dissolving a thermoplastic resin such as a polycarbonate resin or an acrylic resin in an organic solvent such as acetone or 2-butanone is applied to a desired portion of the above-described member, and the organic solvent is evaporated to evaporate the organic solvent. It is possible to form a resin film.
  • a coating obtained by dissolving an epoxy resin or a phenol resin and a curing agent (for example, diamine) in an organic solvent is applied to a desired portion of the above member and then heated to thermally cure resin molecules. It is possible to form an acid resistant resin film.
  • a resin composed of a combination of an epoxy resin or a phenol resin and a curing agent is particularly suitable when the member is made of metal (for example, SUS, aluminum, etc.) because the adhesion to metal is high.
  • the above-mentioned member may be made of a highly acid resistant resin.
  • the contact angle with water be 90 ° or more. This is because the formed aggregate 28 / reaggregate 28 'contains a large amount of water, so that the aggregate 28 / reaggregate 28' is also less likely to adhere to the surface that is likely to repel water.
  • the treatment for lowering the surface energy is not particularly limited as long as the contact angle with water on the surface of the resin film is 90 ° or more, but as one example, the compatibility with the above-mentioned acid resistant resin is high and A resin film is formed by mixing and applying a highly water-repellent material (for example, a silicone compound having a siloxane skeleton in the molecular structure, a fluorine compound having a large number of fluorine atoms in the molecular structure, etc.) to the above-mentioned paint There is a way.
  • a highly water-repellent material for example, a silicone compound having a siloxane skeleton in the molecular structure, a fluorine compound having a large number of fluorine atoms in the molecular structure, etc.
  • the present inventors add various organic compounds to the above-mentioned acid resistant resin film (polycarbonate resin, acrylic resin, epoxy resin cured with curing agent, phenol resin cured with curing agent), and the water repellency effect thereby (Surface energy reduction effect) was investigated.
  • acid-resistant resin films formed by adding 2 to 5% by mass of the following organic compounds C to M with respect to the resin in the paint have high contact angles with water as high as 100 ° or more, and aggregates There was an effect that the adhesion of was hardly found visually. This was a significant difference compared to the case of a resin film whose contact angle with water was less than 90 °.
  • the added organic compounds C to M are as follows.
  • the fluorine-containing chain in the molecular structure of the above compound is called a perfluoropolyether chain, and good results were obtained when the average molecular weight of the perfluoropolyether chain was 1,500 or more and 3,000 or less in any of the compounds.
  • the average molecular weight of the perfluoropolyether chain was less than 1,500, the water repellency was not sufficient.
  • the average molecular weight is more than 3000, the compatibility with the acid resistant resin is low, and it is easily separated in the paint, so that it is difficult to form a homogeneous resin film.
  • FIG. 7 is a schematic view showing another configuration of the rare earth element separation and recovery apparatus according to the present invention. As shown in FIG. 7, in the present embodiment, no shuttered filter is disposed in the lower region of the mixing tank.
  • a mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) prepared separately is passed through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18 and a filter with a shutter in the lower region Into a mixing tank 43 not equipped with
  • the aqueous solution of the water-soluble polymer having an acidic group is passed from the first tank 22 through the first pipe 24 by the first pump 23. Charge into mixing vessel 43. Thereafter, an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 43 from the second tank 25 through the second pipe 27 by the second pump 26 to form the aggregates 28.
  • the dissolved component in the mixing tank 43 is transferred from the mixing tank 43 to the collecting tank 32 by the dissolved liquid recovery pump 44 through the dissolving pipe 45.
  • the filter 46 is provided at the water intake port of the dissolution pipe 45, it is possible to suppress the mixture of the aggregates 28 in the recovery tank 32.
  • the separation and recovery apparatus of the present embodiment is characterized in that since the dissolved component is sucked by a pump, the aggregate and the dissolved component can be separated in a shorter time as compared with the above-described separation and recovery apparatus of the first embodiment.
  • FIG. 8 is a schematic view showing still another configuration of the rare earth element separation and recovery apparatus according to the present invention.
  • the shuttered filter is not disposed in the lower region of the mixing tank, and the mixing tank has a mechanism for causing the solution to flow out from the side wall.
  • a mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) prepared separately is introduced into the mixing tank 49 through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18.
  • the mixing tank 49 is not provided with a shuttered filter in the lower region, and is provided with a discharge port 48 having a valve 47 for controlling the flow rate of the solution on the side wall.
  • the aqueous solution in the mixing tank 49 is well stirred by the overhead stirrer 21
  • the aqueous solution of the water-soluble polymer having an acidic group is passed from the first tank 22 through the first pipe 24 by the first pump 23.
  • an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 49 from the second tank 25 through the second pipe 27 by the second pump 26 to form the aggregates 28.
  • the valve 47 of the discharge port 48 is opened to discharge the dissolved component from the mixing tank 49 to the recovery tank 32.
  • a filter not shown
  • the discharge port 48 preferably includes a mechanism (not shown) capable of moving in the vertical direction of the mixing tank 49. Thereby, it is possible to more efficiently separate the aggregate and the solution.
  • FIG. 9 is a schematic view showing still another configuration of the rare earth element separation and recovery apparatus according to the present invention.
  • this embodiment basically has the same apparatus configuration as that of the above-mentioned embodiment 1, but instead of using a water-soluble polymer having an acidic group, a cation exchange resin is used to form a rare earth element. They differ in that they are separated and recovered.
  • a separately prepared mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) is introduced into the mixing tank 17 through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18. Thereafter, the aqueous solution in the mixing tank 17 is stirred by the overhead stirrer 21.
  • an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the second tank 25 through the second pipe 27 by the second pump 26. Then, the water-soluble polymer having an amino group and the acid group of the cation exchange resin 50 are ionically bonded in the mixing tank 17 to form an aggregate on the surface of the cation exchange resin 50. Stirring is stopped after the formation of aggregates.
  • the shutter 29 is opened to discharge the solution from the mixing tank 17.
  • the cation exchange resin 50 in which the aggregates are formed on the surface is blocked by the filter 30, so it is not discharged from the mixing tank 17.
  • the shutter 29 is closed.
  • the discharged solution passes through a valve 31 and enters a recovery tank 32 disposed below the mixing tank 17.
  • deionized water is allowed to fall on the cation exchange resin 50 remaining in the mixing tank 17 from the third tank 33 through the third pipe 35 by the third pump 34, and the surface of the cation exchange resin 50 Wash.
  • the fourth pump 37 feeds the hydrochloric acid aqueous solution from the fourth tank 36 through the fourth pipe 38 into the mixing tank 17 to collect the aggregates on the surface of the cation exchange resin 50. Let it dissolve.
  • the aqueous solution of sodium hydroxide is introduced into the mixing tank 17 through the fifth tank 39 through the fifth pipe 41 by the fifth pump 40 to adjust the pH of the solution, and the second pump 26 subsequently
  • an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the tank 25 of the No. 2 through the second pipe 27, reaggregates are formed on the surface of the cation exchange resin 50.
  • the Nd ions are mainly removed from the aggregates and the Dy ions are removed. The proportion will increase.
  • the reagglomerate After raising the percentage of Dy ions in the reagglomerate to the desired value, the reagglomerate is dissolved in aqueous hydrochloric acid.
  • the shutter 29 is opened to discharge the dissolved liquid (other than the cation exchange resin 50) from the mixing tank 17.
  • the discharged liquid portion is recovered through the valve 31 to the second recovery tank 51 disposed below the mixing tank 17.
  • the surface of the cation exchange resin 50 is washed with deionized water, and the washing solution is also transferred to the second recovery tank 51.
  • the sodium hydroxide aqueous solution is introduced into the second recovery tank 51 through the fifth tank 39 through the fifth pipe 41, the mixing tank 17, and the valve 31 by the fifth pump 40, and the second recovery is performed.
  • the pH of the aqueous solution in the tank 51 is adjusted to around 2 (for example, 1 to 3).
  • an aqueous solution of a water-soluble polymer having an amino group is added from the sixth tank 52 through the sixth pipe 54 by the sixth pump 53, reaggregates 55 are formed.
  • the shutter 56 when the shutter 56 is opened, the liquid (dissolved matter) other than the reaggregate 55 is discharged from the second recovery tank 51 through the filter 57. After the liquid component in the second recovery tank 51 is discharged, the shutter 56 is closed, and the reagglomerated material 55 is heated and dried.
  • the dried reaggregates 55 on the filter 57 are collected by a scraper or the like.
  • the bottom of the second recovery tank 51 is raised with respect to the inner wall of the second recovery tank 51 together with the shutter 56 and the filter 57 for recovery, or the second recovery tank 51 is It is preferable to lower the inner wall relative to the bottom of the second recovery tank 51 for recovery.
  • the recovered reaggregation 55 is heated in the air to decompose and remove the organic compound component (water-soluble polymer having an acidic group, water-soluble polymer having an amino group) in the reaggregation 55 , Dy 2 O 3 are obtained.
  • the aggregates in the mixing tank 17 are formed by adhering to the cation exchange resin 50 by using the cation exchange resin 50.
  • the size of the aggregates can be increased more than that. Therefore, when the aggregate and the solution are separated by filtration, the filter 30 is less likely to be clogged, and the filter 30 can be more easily separated (for example, in a short time).
  • an alkali metal hydroxide for example, sodium hydroxide, potassium hydroxide, etc.
  • Dy ion poorly soluble in water. It produces dysprosium.
  • the rare earth element can also be recycled by filtering this compound out and reducing it.
  • FIG. 10 is a schematic view showing still another configuration of the rare earth element separation and recovery apparatus according to the present invention.
  • this embodiment basically has the same apparatus configuration as the above-mentioned embodiment 4, but in that the separation and recovery of the rare earth elements are performed using the magnetic separation method instead of the filtration by the filter. It is different.
  • the cation exchange resin 58 placed in the mixing tank 17 contains magnetic powder inside.
  • illustration of the part which overlaps with FIG. 9 is partially omitted from a viewpoint of simplification of drawing.
  • a separately prepared mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) is introduced into the mixing tank 17, and then an aqueous solution of a water-soluble polymer having an amino group is mixed.
  • an aqueous solution of a water-soluble polymer having an amino group is mixed.
  • aggregates are formed on the surface of the magnetic powder-containing cation exchange resin 58.
  • the shutter 29 is opened to discharge the dissolved component from the mixing tank 17 and the surface of the magnetic powder-containing cation exchange resin 58 is washed with deionized water, and then a hydrochloric acid aqueous solution is introduced into the mixing tank 17 to contain magnetic powder. The aggregates on the surface of the cation exchange resin 58 are dissolved.
  • a sodium hydroxide aqueous solution is introduced into the mixing tank 17 to adjust the pH of the solution, and subsequently, a water-soluble polymer having an amino group from the second tank 25 through the second pipe 27 by the second pump 26 The aqueous solution is placed in the mixing tank 17 to form reaggregates on the surface of the magnetic powder-containing cation exchange resin 58.
  • the magnetic powder-containing cation exchange resin 58 having reaggregates formed on the surface is separated from the mixing tank 17 by the mechanism of separating and recovering by the magnetic separation method. Separate and collect.
  • a mechanism (magnetic powder-containing aggregate conveyance mechanism) for separating and collecting by the magnetic separation method includes a first roller 59, a second roller 60, a third roller 61, a fourth roller 62, and a conveyance belt 63. ing.
  • the surface of the conveyance belt 63 between the fourth roller 62 and the first roller 59 to the second roller 60 has a magnetic force, whereby the magnetic powder-containing cation exchange resin in the mixing tank 17 is obtained. 58 can be adhered to the surface of the conveyor belt 63 along with the reaggregates.
  • the surface of the conveyance belt 63 between the second roller 60, the third roller 61, and the fourth roller 62 has a structure having no magnetic force, and the reaggregates are formed from the surface of the conveyance belt 63. It falls off and falls into the aggregate collection tank 64.
  • a shutter 65 and a filter 66 are provided at the lower part of the aggregate recovery tank 64.
  • the separation and recovery apparatus of the present embodiment can recover the magnetic powder-containing cation exchange resin 58 to which the reaggregated matter in which the Dy ions are trapped adheres from the mixing tank 17 to the aggregate recovery tank 64.
  • FIG. 11 is a schematic view showing a mechanism for recovering the rare earth element from the aggregate recovery tank in the separation and recovery apparatus shown in FIG.
  • the seventh pump 68 feeds the hydrochloric acid aqueous solution to the aggregate recovery tank 64 from the seventh tank 67 through the seventh pipe 69, and the magnetic powder-containing cation exchange resin 58 Dissolve surface aggregates.
  • the shutter 65 is opened, the liquid in which the aggregates are dissolved and the dissolved magnetic powder pass through the filter 66 and enter the collection tank 70. Meanwhile, the cation exchange resin remains on the filter 66.
  • a shutter 74 and a filter 75 are provided at the lower part of the recovery tank 70.
  • the eighth tank 72 feeds the sodium hydroxide aqueous solution into the recovery tank 70 through the eighth tank 71 and the eighth pipe 73. Then, the dissolved rare earth element precipitates as a poorly soluble hydroxide in water. Thereafter, when the shutter 74 is opened, the liquid (dissolved magnetic powder) passes through the filter 75 and enters the medicine recovery tank 76. On the other hand, the precipitated rare earth element hydroxide 77 remains on the filter 75. The rare earth element can be reused by recovering and reducing the hydroxide 77 of the rare earth element.
  • a mixed aqueous solution was prepared in which neodymium chloride (NdCl 3 ) and dysprosium chloride (DyCl 3 ) were dissolved in water. At that time, both Nd concentration and Dy concentration were adjusted to 5000 ppm. When the specific gravity of the obtained mixed aqueous solution is approximated to 1.0, the molar concentration of Nd and the molar concentration of Dy are 34.66 mmol / L and 30.77 mmol / L, respectively.
  • the second time aggregation process (first time of the re-aggregation step), and Dy ions from about 77.4 wt% of the mixed aqueous solution of NdCl 3 and DyCl 3 charged into the mixing tank ( ⁇ 0.88 2), about 4.8 wt% ( ⁇ 0.222 2 ) Nd ions are incorporated into the aggregate. That is, the proportion (that is, the purity) of the Dy ion to the rare earth element ion in the aggregate is 94.2%.
  • Nd ions About 68.15 mass% ( ⁇ 0.88 3 ) of Dy ions and about 1.06 mass% ( ⁇ 0.88 3 ) in the mixed aqueous solution of NdCl 3 and DyCl 3 charged into the mixing tank in the third aggregation step (second reaggregation step) ⁇ 0.223 3 ) Nd ions are incorporated into the aggregate. That is, the ratio (purity) of the Dy ion to the rare earth element ion in the aggregate is 98%.
  • the aggregate was dissolved in 1 N aqueous hydrochloric acid solution, and then 5 N aqueous sodium hydroxide solution was added little by little while stirring. . Then, an aggregate was formed in the vicinity of neutrality, but the aggregate was dissolved by subsequently adding a 5 N aqueous solution of sodium hydroxide.
  • 5 N aqueous sodium hydroxide solution was further added, poorly soluble dysprosium hydroxide (Dy (OH) 3 ) in water was precipitated. The precipitated dysprosium hydroxide was separated by filtration and recovered, and was reduced to obtain dysprosium alone.
  • Example 2 The same steps as in Example 1 were performed until the desired proportion of Dy ions in the aggregate was obtained. After this, the aggregate was recovered in the step shown in FIG. When the recovered aggregate was heated, the organic compounds (water-soluble polymer having an amino group and water-soluble polymer having an acidic group) in the aggregate were thermally decomposed to form dysprosium oxide. When the obtained dysprosium oxide was reduced, dysprosium alone could be obtained.
  • Example 2 100 g of the same mixed aqueous solution as in Example 1 (number of rare earth element ions: 6.54 mmol) was introduced into a mixing tank containing a cation exchange resin, and an aqueous solution of Compound A was added, resulting in the surface of the cation exchange resin. Aggregates were deposited. The aggregate was washed with deionized water, and then the step of dissolving and reaggregating the aggregate was repeated to increase the percentage of Dy ions in the aggregate.
  • Dy ions in the aggregate After the concentration of Dy ions in the aggregate was increased to the desired proportion, the aggregate was dissolved with 1 N hydrochloric acid, and then dysprosium hydroxide was precipitated by adding an aqueous 5 N sodium hydroxide solution. The precipitated dysprosium hydroxide was separated by filtration and recovered, and was reduced to obtain dysprosium alone.
  • Example 3 it was found through Example 3 that about 80% of Dy ions and about 20% of Nd ions are trapped in the aggregate in one aggregation step.
  • the separation and recovery of the rare earth element was performed in the same manner as in Example 3 using the separation and recovery apparatus of FIG. 10 and using a cation exchange resin containing magnetic powder inside the resin instead of a simple cation exchange resin. .
  • the ratio of Dy ions in the aggregates formed on the surface of the magnetic powder-containing cation exchange resin was increased to a desired value.
  • the magnetic powder-containing cation exchange resin to which the aggregates are attached was recovered by a recovery mechanism comprising a roller and a magnetic belt as shown in FIG.
  • the aggregate formed on the surface of the recovered magnetic powder-containing cation exchange resin was dissolved with hydrochloric acid in the same manner as in Example 1. Thereafter, an aqueous solution of sodium hydroxide was added to precipitate dysprosium hydroxide. The precipitated dysprosium hydroxide was separated by filtration and recovered, and was reduced to obtain dysprosium alone.
  • the ratio of Dy ions in the aggregate can be increased even when Compound B is used as a water-soluble polymer having an amino group.
  • the ratio of Dy ions in the aggregate can be increased even if polyethylene imine is used as the water-soluble polymer having an amino group.
  • the ratio of Dy ions in the aggregate can be increased even if polystyrene sulfonic acid is used as the water-soluble polymer having an acidic group.
  • aqueous solution and dysprosium chloride neodymium chloride were dissolved in water, a cerium chloride (CeCl 3) and ytterbium chloride (YbCl 3) using a mixed aqueous solution prepared by dissolving in water.
  • CeCl 3 cerium chloride
  • YbCl 3 ytterbium chloride
  • stirring blade 21 ... overhead stirrer, 22 ... 1st tank, 23 ... 1st pump, 24 ... 1st piping, 25 ... 2nd tank, 26 ... 2nd pump, 27 ... 2nd piping, 28 ... aggregates, 28 '... reaggregates, 29 ... shutters, Reference Signs List 30 filter, 31 valve, 32 recovery tank 33 third tank 34 third pump 35 third piping 36 fourth tank 37 fourth pump 38 ... 4th piping, 39 ... 5th tank, 40 ... 5th pump, 41 ... 5th piping, 42 ... inner wall of mixing tank, 43 ... mixing tank, 44 ... solution recovery pump, 45 ...

Abstract

The purpose of the present invention is to provide: a separation/collection method which can increase the distribution ratio between different rare earth elements for the purpose of achieving the reduction of cost in the separation/collection of a rare earth element; and a separation/collection apparatus which can achieve the method. A method for separating/collecting a rare earth element according to the present invention is a method for separating/collecting a specific rare earth element from an aqueous solution containing ions of multiple rare earth elements, and comprises: an aggregation step of adding a water-soluble polymer having an acidic group to the aqueous solution and then adding a water-soluble polymer having an amino group to the resultant mixture in such a manner that the total number of the amino groups becomes greater than that of the acidic groups of the water-soluble polymer having the acidic group, thereby producing an aggregated product; a separation/collection step of separating and collecting the aggregated product from the aqueous solution; a dissolution step of dissolving the aggregated product in an acid, thereby producing a solution; and a re-aggregation step of adding a water-soluble polymer having an amino group to the solution, thereby producing a re-aggregated product.

Description

希土類元素の分離回収方法および希土類元素の分離回収装置Separation and recovery method of rare earth element and separation and recovery device of rare earth element
 本発明は、磁石合金等に含まれる希土類元素を分離回収する方法及び分離回収装置に関する。 The present invention relates to a method and apparatus for separating and recovering rare earth elements contained in a magnet alloy or the like.
 磁気記録装置やハイブリット車両のモータ等に用いられている磁性合金(強磁性合金)は、主成分の鉄に加えて、保磁力を高めるために少量のネオジム(Nd)やジスプロシウム(Dy)等の希土類元素が添加されている。近年では、資源の有効活用の観点から、廃棄された磁性合金からこれらの希土類元素を分離・回収し、再使用することが検討されている。 Magnetic alloys (ferromagnetic alloys) used in motors of magnetic recording devices and hybrid vehicles etc. are added to iron as the main component, and small amounts of neodymium (Nd), dysprosium (Dy), etc. to increase the coercive force. Rare earth elements are added. In recent years, separation, recovery, and reuse of these rare earth elements from discarded magnetic alloys have been studied from the viewpoint of effective utilization of resources.
 また、上記の磁性合金以外にも、ブラウン管やプラズマディスプレイパネル(PDP)等で使われている希土類元素を含む蛍光体も世界規模では膨大な量となるため、それら蛍光体からの希土類元素の分離回収も求められている。 In addition to the above magnetic alloys, phosphors containing rare earth elements used in cathode ray tubes, plasma display panels (PDPs), etc. are also enormous amounts on a global scale, so separation of rare earth elements from these phosphors Recovery is also required.
 ここで、希土類元素は、種々の物理的性質・化学的性質が互いによく似ているため、単体として分離することが難しいと言われている。例えば、希土類元素の電気陰性度は0.86~1.14の範囲にあり、特に磁石合金中のNdの電気陰性度は1.07で、Dyのそれは1.10とかなり近い。また、希土類元素はイオン半径も0.0745~0.117 nmの範囲にあり、特に磁石合金中のNdのイオン半径は0.099 nmで、Dyのそれは0.091 nm(どちらも3価のイオン)と近い。 Here, it is said that rare earth elements are difficult to separate as a single substance because various physical properties and chemical properties are similar to each other. For example, the electronegativity of rare earth elements is in the range of 0.86 to 1.14, in particular the electronegativity of Nd in the magnet alloy is 1.07 and that of Dy is very close to 1.10. Further, the ion radius of the rare earth element is also in the range of 0.0745 to 0.117 nm, and in particular, the ion radius of Nd in the magnet alloy is 0.099 nm, and that of Dy is close to 0.091 nm (both trivalent ions).
 NdやDy等の希土類元素を分離する従来の方法として、溶媒抽出法がある。例えば、非特許文献1(学術論文)には、複数種の希土類元素を含む合金を強酸に溶解し、リン酸系の抽出剤と炭化水素系の有機溶剤とを加えて攪拌した後、放置すると、抽出剤の種類によって水と有機溶媒とに異なる種類の希土類元素が分配されることが記載されている。 As a conventional method for separating rare earth elements such as Nd and Dy, there is a solvent extraction method. For example, in Non-Patent Document 1 (scientific article), when an alloy containing a plurality of rare earth elements is dissolved in a strong acid, a phosphoric acid-based extractant and a hydrocarbon-based organic solvent are added and stirred, and left standing It is described that different types of rare earth elements are distributed to water and an organic solvent depending on the type of extractant.
 特許文献1には、金属の塩が溶解している排水に、酸性基を有する水溶性高分子とアミノ基を有する水溶性高分子とを添加することで、酸性基を有する水溶性高分子とアミノ基を有する水溶性高分子とが架橋して排水中の金属イオンをトラップし、凝集物として析出させることが記載されている。 Patent Document 1 discloses a water-soluble polymer having an acidic group by adding a water-soluble polymer having an acidic group and a water-soluble polymer having an amino group to waste water in which a metal salt is dissolved. It is described that a water-soluble polymer having an amino group is crosslinked to trap metal ions in waste water and precipitate as an aggregate.
特開2010-172815号公報Unexamined-Japanese-Patent No. 2010-172815
 しかし、上記非特許文献1の溶媒抽出法は、炭化水素系の有機溶媒を用いるので、環境・健康への負荷を考慮した溶媒の回収・処理が必要であり、コスト増の要因となる。また、当該溶媒抽出法は、異なる種類の希土類元素の分配比率が小さいので、分離した希土類元素の純度を高める(例えば、99%以上にする)には、溶媒抽出プロセスを数十回繰り返す必要がある。 However, since the solvent extraction method of Non Patent Literature 1 uses a hydrocarbon-based organic solvent, recovery and processing of the solvent in consideration of the load on the environment and health are required, which causes an increase in cost. In addition, since the distribution ratio of different types of rare earth elements is small in the solvent extraction method, it is necessary to repeat the solvent extraction process several dozen times to increase the purity of the separated rare earth elements (for example, to 99% or more). is there.
 また、上記特許文献1の凝集物析出による金属回収方法は、元来、大量の工業排水から金属イオンを効率よく回収(除去)することを目的としており、金属種毎に分離することを積極的な目的としていない。すなわち、異なる種類の希土類元素を元素種毎に分離することは、十分考慮されていない。 Moreover, the metal recovery method by aggregate precipitation of the above-mentioned Patent Document 1 is originally intended to efficiently recover (remove) metal ions from a large amount of industrial wastewater, and it is aggressive to separate for each metal species. Not for the purpose. That is, separation of different types of rare earth elements by element type is not sufficiently considered.
 したがって、本発明の目的は、上記課題を解決し希土類元素の分離回収におけるコスト低減を達成するため、異なる種類の希土類元素の分配比率を高めることができる分離回収方法およびそれを実現する分離回収装置を提供することにある。 Therefore, an object of the present invention is a separation and recovery method capable of increasing the distribution ratio of different types of rare earth elements to solve the above problems and achieving cost reduction in separation and recovery of rare earth elements, and a separation and recovery apparatus for realizing the same. To provide.
 (I)本発明の一つの態様によると、複数種の希土類元素のイオンが含まれる水溶液から特定の希土類元素を分離回収する方法であって、前記水溶液に酸性基を有する水溶性高分子を添加した後に、前記酸性基を有する水溶性高分子の酸性基の総数よりアミノ基の総数が多くなるようにアミノ基を有する水溶性高分子を添加し、凝集物を生成する凝集工程と、前記凝集物を前記水溶液から分離回収する分離回収工程と、前記凝集物を酸で溶解し溶液を生成する溶解工程と、前記溶液にアミノ基を有する水溶性高分子を添加して再凝集物を生成する再凝集工程とを有する希土類元素分離回収方法を提供する。 (I) According to one aspect of the present invention, there is provided a method of separating and recovering a specific rare earth element from an aqueous solution containing ions of a plurality of rare earth elements, wherein a water-soluble polymer having an acidic group is added to the aqueous solution. And adding a water-soluble polymer having an amino group so that the total number of amino groups is larger than the total number of acidic groups of the water-soluble polymer having an acidic group, and forming an aggregate; Products are separated and recovered from the aqueous solution, a dissolving process of dissolving the aggregates with an acid to form a solution, and a water-soluble polymer having an amino group in the solution to form a reaggregate A rare earth element separation and recovery method comprising the steps of:
 本発明は、上記の本発明に係る希土類元素分離回収方法(I)において、次のような改良や変更を加えることができる。
(i)前記複数種の希土類元素のうち、イオン半径の最も小さな希土類元素イオンの総数を「R」とし、前記酸性基を有する水溶性高分子の酸性基の総数を「C」とした場合、不等式「R ≦ C ≦ 3R」を満たすように前記水溶液に前記酸性基を有する水溶性高分子を添加する。
(ii)前記酸性基を有する水溶性高分子の平均分子量が126以上25,000以下であり、前記アミノ基を有する水溶性高分子の平均分子量が60以上25,000以下である。
(iii)前記水溶液から分離回収された前記凝集物を水洗する凝集物水洗工程と、前記凝集物を分離した前記水溶液に酸性基を有する水溶性高分子を添加した後に、前記酸性基を有する水溶性高分子の酸性基の総数よりアミノ基の総数が多くなるようにアミノ基を有する水溶性高分子を添加し、追加的に凝集物を生成する追加凝集工程とを更に有する。
(iv)前記水溶液の水素イオン指数pHが1以上5以下である。
(v)前記水溶液のpHが6以上9以下になるように前記アミノ基を有する水溶性高分子を添加する。
(vi)前記再凝集工程で前記アミノ基を有する水溶性高分子を添加する前に、前記凝集物が溶解した前記溶液のpHが1以上3以下になるように強塩基を添加する。
(vii)前記アミノ基を有する水溶性高分子が一級のアミノ基と三級のアミノ基とを有する。
(viii)前記凝集工程で前記酸性基を有する水溶性高分子に代えて、酸性基を有する陽イオン交換樹脂を添加する。
(ix)前記陽イオン交換樹脂は磁性粉を含有する。
The present invention can add the following improvement or change in the rare earth element separation and recovery method (I) according to the present invention described above.
(I) When the total number of rare earth element ions having the smallest ion radius among the plurality of rare earth elements is “R”, and the total number of acid groups of the water-soluble polymer having the acid group is “C” The water-soluble polymer having the acid group is added to the aqueous solution so as to satisfy the inequality “R ≦ C ≦ 3R”.
(Ii) The water-soluble polymer having an acidic group has an average molecular weight of 126 to 25,000, and the water-soluble polymer having an amino group has an average molecular weight of 60 to 25,000.
(Iii) an aggregate washing step of washing the aggregates separated and recovered from the aqueous solution, and a water-soluble polymer having an acidic group after adding a water-soluble polymer having an acidic group to the aqueous solution from which the aggregates are separated A water-soluble polymer having an amino group is added such that the total number of amino groups is larger than the total number of acidic groups of the polymer, and the method further comprises the additional aggregation step of additionally forming an aggregate.
(Iv) The hydrogen ion exponent pH of the aqueous solution is 1 or more and 5 or less.
(V) The water-soluble polymer having an amino group is added such that the pH of the aqueous solution is 6 or more and 9 or less.
(Vi) Before adding the water-soluble polymer having an amino group in the reaggregation step, a strong base is added such that the pH of the solution in which the aggregate is dissolved is 1 or more and 3 or less.
(Vii) The water-soluble polymer having an amino group has a primary amino group and a tertiary amino group.
(Viii) A cation exchange resin having an acid group is added in place of the water-soluble polymer having an acid group in the aggregation step.
(Ix) The cation exchange resin contains magnetic powder.
 (II)本発明の他の態様によると、複数種の希土類元素のイオンを有する水溶液から特定の希土類元素を分離回収する装置であって、混合槽と、前記水溶液を前記混合槽に投入する機構と、酸性基を有する水溶性高分子を前記混合槽に添加する機構と、アミノ基を有する水溶性高分子を前記混合槽に添加する機構と、前記水溶液を攪拌する機構と、前記水溶液から凝集物を分離回収する機構と、前記凝集物を溶解し溶液を生成する酸を前記混合槽に添加する機構とを備える希土類元素分離回収装置を提供する。 (II) According to another aspect of the present invention, there is provided an apparatus for separating and recovering a specific rare earth element from an aqueous solution having ions of a plurality of types of rare earth elements, wherein a mixing tank and a mechanism for charging the aqueous solution into the mixing tank , A mechanism for adding a water-soluble polymer having an acidic group to the mixing tank, a mechanism for adding a water-soluble polymer having an amino group to the mixing tank, a mechanism for stirring the aqueous solution, and aggregation from the aqueous solution The rare earth element separation and recovery device is provided with a mechanism for separating and recovering a substance, and a mechanism for dissolving the aggregates and adding an acid for producing a solution to the mixing tank.
 本発明は、上記の本発明に係る希土類元素分離回収装置(II)において、次のような改良や変更を加えることができる。
(x)前記水溶液から分離回収された前記凝集物を水洗する機構を更に備える。
(xi)前記酸性基を有する水溶性高分子を前記混合槽に添加する機構と、前記アミノ基を有する水溶性高分子を前記混合槽に添加する機構とは、複数の吐出ノズルをそれぞれ具備する。
(xii)前記凝集物が分離回収された後の前記水溶液を吸引する機構を更に備える。
(xiii)前記酸性基を有する水溶性高分子を前記混合槽に添加する機構に代えて、陽イオン交換樹脂を前記混合槽に添加する機構を更に備える又は前記混合槽内に陽イオン交換樹脂が収容されている。
(xiv)前記陽イオン交換樹脂は磁性粉を有し、前記陽イオン交換樹脂を前記混合槽から磁気分離方式で分離回収する機構を更に備える。
(xv)前記混合槽の下部に前記凝集物を濾過するフィルタを具備する。
(xvi)前記混合槽の内壁の上端と同じまたは該上端よりも高い位置に前記フィルタの上面を配置する機構を更に備える。
(xvii)前記フィルタは前記凝集物を加熱する機構を備える。
(xviii)前記凝集物が接触する部材の面は、水との接触角が90°以上となるような処理がなされている。
The present invention can add the following improvements and changes in the rare earth element separation and recovery apparatus (II) according to the present invention described above.
(X) The apparatus further comprises a mechanism for washing the aggregate separated and recovered from the aqueous solution.
(Xi) The mechanism for adding the water-soluble polymer having an acidic group to the mixing tank and the mechanism for adding the water-soluble polymer having an amino group to the mixing tank each have a plurality of discharge nozzles. .
(Xii) further comprising a mechanism for suctioning the aqueous solution after the aggregates are separated and collected.
(Xiii) A mechanism for adding a cation exchange resin to the mixing vessel instead of the mechanism for adding the water-soluble polymer having the acidic group to the mixing vessel, or further comprising a cation exchange resin in the mixing vessel It is housed.
(Xiv) The cation exchange resin has a magnetic powder, and is further provided with a mechanism for separating and collecting the cation exchange resin from the mixing tank by a magnetic separation method.
(Xv) A filter is provided at the bottom of the mixing tank to filter the aggregates.
(Xvi) The apparatus further includes a mechanism for disposing the upper surface of the filter at a position the same as or higher than the upper end of the inner wall of the mixing tank.
(Xvii) The filter comprises a mechanism for heating the aggregates.
(Xviii) The surface of the member in contact with the aggregates is treated to have a contact angle with water of 90 ° or more.
 本発明によれば、異なる種類の希土類元素の分配比率が高められた分離回収方法およびそれを実現する分離回収装置を提供することができる。 According to the present invention, it is possible to provide a separation and recovery method in which distribution ratios of different types of rare earth elements are enhanced, and a separation and recovery apparatus for realizing the same.
本発明に係る分離回収方法における凝集工程を説明する模式図である。It is a schematic diagram explaining the aggregation process in the separation-and-recovery method concerning the present invention. 本発明に係る分離回収方法における溶解工程および再凝集工程を説明する模式図である。It is a schematic diagram explaining the melt | dissolution process and reaggregation process in the separation-and-recovery method which concerns on this invention. 本発明に係る分離回収方法において、陽イオン交換樹脂を用いた凝集工程を説明する模式図である。In the separation-and-recovery method concerning the present invention, it is a mimetic diagram explaining the condensation process using a cation exchange resin. 本発明に係る分離回収方法の工程の流れを説明する模式図である。It is a schematic diagram explaining the flow of the process of the separation-and-recovery method concerning the present invention. 本発明に係る希土類元素分離回収装置の一構成を示す模式図である。It is a schematic diagram which shows one structure of the rare earth element separation-and-recovery apparatus which concerns on this invention. 図5に示した分離回収装置において再凝集物を回収する動作を示す模式図である。It is a schematic diagram which shows the operation | movement which collect | recovers reaggregates in the separation-and-recovery apparatus shown in FIG. 本発明に係る希土類元素分離回収装置の他の一構成を示す模式図である。It is a schematic diagram which shows another one structure of the rare earth element separation-and-recovery apparatus based on this invention. 本発明に係る希土類元素分離回収装置の更に他の一構成を示す模式図である。It is a schematic diagram which shows the further another structure of the rare earth element separation-and-recovery apparatus based on this invention. 本発明に係る希土類元素分離回収装置の更に他の一構成を示す模式図である。It is a schematic diagram which shows the further another structure of the rare earth element separation-and-recovery apparatus based on this invention. 本発明に係る希土類元素分離回収装置の更に他の一構成を示す模式図である。It is a schematic diagram which shows the further another structure of the rare earth element separation-and-recovery apparatus based on this invention. 図10に示した分離回収装置において凝集物回収槽から希土類元素を回収する機構を示す模式図である。It is a schematic diagram which shows the mechanism which collect | recovers rare earth elements from an aggregate collection | recovery tank in the separation-and-recovery apparatus shown in FIG.
 以下、図面等を参照しながら、本発明の実施形態について説明する。ただし、本発明はここで取り上げた実施形態に限定されるものではなく、発明の技術的思想を逸脱しない範囲で適宜組み合わせや改良が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like. However, the present invention is not limited to the embodiments described herein, and appropriate combinations and improvements can be made without departing from the technical concept of the invention.
 本明細書では、複数種の希土類元素が混合している水溶液として、NdとDyとが混合している水溶液を例にして説明する。これは、この2種類の希土類元素が、多くの種類のモータで磁石合金として広く利用されているためである。前述したように、Ndのイオン半径の方が、わずかではあるがDyのそれよりも大きい。なお、NdおよびDy以外には、例えば、蛍光体で用いられるランタン(La)、セリウム(Ce)、ユウロピウム(Eu)、テルビウム(Tb)等でも同様の原理で分離回収可能である。 In this specification, an aqueous solution in which Nd and Dy are mixed is described as an example of an aqueous solution in which a plurality of types of rare earth elements are mixed. This is because these two types of rare earth elements are widely used as magnet alloys in many types of motors. As mentioned above, the ion radius of Nd is slightly larger than that of Dy. In addition to Nd and Dy, for example, lanthanum (La), cerium (Ce), europium (Eu), terbium (Tb) or the like used in phosphors can be separated and recovered according to the same principle.
 第1の実施形態(希土類元素の分離回収方法)
 (1)基本的な手順
 NdイオンとDyイオンとが混合している水溶液中からDyを分離・回収する方法について、図1、図2を参照しながら説明する。なお、磁石合金を酸で溶解した場合、NdおよびDyは共に3価のイオンになるため、以下のNdイオンおよびDyイオンは、特に断らない限りどちらも3価のイオンを意味するものとする。
First Embodiment (Method for separating and recovering rare earth elements)
(1) Basic Procedure A method for separating and recovering Dy from an aqueous solution in which Nd ions and Dy ions are mixed will be described with reference to FIG. 1 and FIG. When the magnet alloy is dissolved in acid, Nd and Dy both become trivalent ions, so both Nd ions and Dy ions below mean trivalent ions unless otherwise specified.
 (1-1)凝集工程
 図1は、本発明に係る分離回収方法における凝集工程を説明する模式図である。図1に示したように、まずNdイオン1とDyイオン2とが混合している水溶液に酸性基を有する水溶性高分子4を添加する。すると、Ndイオン1およびDyイオン2が水溶性高分子4の酸性基3とイオン結合する。
(1-1) Aggregation Process FIG. 1 is a schematic view illustrating the aggregation process in the separation and recovery method according to the present invention. As shown in FIG. 1, first, a water-soluble polymer 4 having an acidic group is added to an aqueous solution in which Nd ions 1 and Dy ions 2 are mixed. Then, the Nd ion 1 and the Dy ion 2 form an ionic bond with the acidic group 3 of the water-soluble polymer 4.
 次にアミノ基を有する水溶性高分子6を加える。すると、Dyイオン2よりもイオン半径の大きなNdイオン1が優先的にアミノ基を有する水溶性高分子6のアミノ基5と配位し、水溶性の会合体7を形成する(以下、会合体7を溶解分7と称する場合もある)。一方、酸性基を有する水溶性高分子4の酸性基3とアミノ基を有する水溶性高分子6のアミノ基5とがイオン結合することで分子間架橋し、水に不溶の凝集物8を形成する。凝集物8が形成される際、水溶性の会合体7を形成していないNdイオン1とDyイオン2とは、凝集物8の中に取り込まれる。 Next, a water-soluble polymer 6 having an amino group is added. Then, the Nd ion 1 having a larger ion radius than the Dy ion 2 preferentially coordinates with the amino group 5 of the water-soluble polymer 6 having an amino group to form a water-soluble aggregate 7 (hereinafter referred to as an aggregate) In some cases, 7 is referred to as solution 7). On the other hand, the ionic bond between the acid group 3 of the water-soluble polymer 4 having an acid group and the amino group 5 of the water-soluble polymer 6 having an amino group results in intermolecular crosslinking to form an aggregate 8 insoluble in water. Do. When the aggregate 8 is formed, the Nd ion 1 and the Dy ion 2 not forming the water-soluble aggregate 7 are taken into the aggregate 8.
 凝集物8の形成は、1つの酸性基3に対して1つのアミノ基5がイオン結合する。そのため、会合体7を形成するために必要なアミノ基5の量を考慮すると、酸性基を有する水溶性高分子4の酸性基3の総数よりも、アミノ基を有する水溶性高分子6のアミノ基5の総数が多いことが必要である。 In the formation of the aggregate 8, one amino group 5 is ionically bonded to one acidic group 3. Therefore, considering the amount of amino group 5 necessary to form aggregate 7, the amino acid of water-soluble polymer 6 having an amino group is more than the total number of acidic groups 3 of water-soluble polymer 4 having an acidic group. The total number of groups 5 needs to be large.
 水溶性高分子4,6を添加する順番には理由がある。もしも、アミノ基を有する水溶性高分子6を加えた後に、酸性基を有する水溶性高分子4を加えた場合、水溶性高分子4を加えた領域から直ちに水溶性高分子6と会合して凝集してしまうため、水溶液中の全体に分散するDyイオン2の多くが凝集物中に取り込まれず、水溶液中に残ってしまう。そこで、先に酸性基を有する水溶性高分子4を加えてDyイオン2を捕捉しておいてから、アミノ基を有する水溶性高分子6を加える。これにより、反応容器内の水溶液全体領域のDyイオン2を凝集物8中に取り込むことができる。 There is a reason for the order of adding the water soluble polymers 4 and 6. If the water-soluble polymer 4 having an acid group is added after the water-soluble polymer 6 having an amino group is added, it is immediately associated with the water-soluble polymer 6 from the region to which the water-soluble polymer 4 is added. Because of aggregation, most of the Dy ions 2 dispersed throughout the aqueous solution are not taken into the aggregate and remain in the aqueous solution. Therefore, the water-soluble polymer 4 having an acid group is first added to capture the Dy ion 2, and then the water-soluble polymer 6 having an amino group is added. Thereby, the Dy ions 2 in the entire aqueous solution region in the reaction vessel can be taken into the aggregate 8.
 (1-2)分離回収工程
 凝集物8を形成した後、濾過などにより水溶液から凝集物8を分離回収する。
(1-2) Separation and Recovery Step After forming the aggregate 8, the aggregate 8 is separated and recovered from the aqueous solution by filtration or the like.
 (1-3)凝集物水洗工程
次に、分離回収した凝集物8を水洗し、凝集物8の表面に付着している溶解分を除去する。水洗除去した溶解分は、水溶液に戻されることが好ましい。
(1-3) Aggregate Washing with Water Next, the separated and collected aggregate 8 is washed with water to remove the dissolved component adhering to the surface of the aggregate 8. It is preferable that the solution removed by washing is returned to the aqueous solution.
 (1-4)追加凝集工程
 凝集物8と分離した溶解分にもDyが含まれている。そこで、凝集物8を分離した水溶液に対し、酸性基を有する水溶性高分子4を加えた後に、アミノ基を有する水溶性高分子6を更に加えて、追加的に凝集物を生成させる。これにより、溶解分からもDyを回収することができる。言い換えると、Dyを極力廃棄せずに効率良く回収することが可能になる。
(1-4) Additional Agglomeration Step The dissolved component separated from the aggregate 8 also contains Dy. Therefore, after the water-soluble polymer 4 having an acidic group is added to the aqueous solution from which the aggregate 8 is separated, the water-soluble polymer 6 having an amino group is further added to form an aggregate additionally. Thereby, Dy can be recovered from the solution. In other words, it is possible to efficiently recover Dy without discarding it as much as possible.
 なお、NdやDy以外の希土類元素の混合液中から凝集物を分離回収する場合でも、イオン半径の小さい方の希土類元素が凝集物8中に優先的に取り込まれ、溶解分にはイオン半径の大きい方の希土類元素が主に存在するようになる。 Even when the aggregate is separated and recovered from a mixture liquid of rare earth elements other than Nd and Dy, the rare earth element having the smaller ion radius is preferentially taken into the aggregate 8, and the dissolved portion has the ion radius. The larger rare earth element will be predominantly present.
 (1-5)溶解工程
 図2は、本発明に係る分離回収方法における溶解工程および再凝集工程を説明する模式図である。水溶性高分子4の酸性基3よりも酸性度の強い酸を凝集物8に接触させると、水溶性高分子4の酸性基3が解離したイオン状態から解離していない状態に変化する。それにより、2種類の高分子(水溶性高分子4,6)を架橋しているイオン結合が消失し、凝集物8が溶解する。加える酸の酸解離定数pKaは小さい方が好ましい。言い換えると、酸性度が強いほど凝集物8の溶解が敏速に進行するので、強酸(pKa < 1、例えば、塩酸等)が好適である。
(1-5) Dissolution Step FIG. 2 is a schematic view illustrating a dissolution step and a reaggregation step in the separation and recovery method according to the present invention. When an acid having a stronger acidity than the acid group 3 of the water-soluble polymer 4 is brought into contact with the aggregate 8, the dissociated ion state of the acid group 3 of the water-soluble polymer 4 changes to a non-dissociated state. As a result, the ionic bond bridging the two polymers (water-soluble polymers 4 and 6) disappears, and the aggregate 8 dissolves. The acid dissociation constant pKa of the acid to be added is preferably small. In other words, the stronger the acidity is, the faster the dissolution of the aggregate 8 proceeds, so a strong acid (pKa <1, for example, hydrochloric acid etc.) is preferable.
 ところで、酸の代わりに塩基を添加しても凝集物8は溶解する。水溶性高分子6のアミノ基5よりも塩基性度の強い塩基を凝集物8に接触させると、アミノ基を有する水溶性高分子6のアミノ基5が解離したイオン状態から解離していない状態に変化する。それにより、2種類の高分子(水溶性高分子4,6)を架橋しているイオン結合が消失し、凝集物8が溶解する。しかし、Ndイオン1およびDyイオン2は水素イオン指数pHが8以上になると、水に難溶の水酸化物に変化する。そのため凝集物8は溶解するもののNdおよびDyの水酸化物が析出し、次の工程で問題が生じる。このことから、凝集物8を溶解する溶解工程は、酸を加えて行うことが好ましい。 By the way, the aggregate 8 is dissolved even if a base is added instead of the acid. When a base stronger in basicity than the amino group 5 of the water-soluble polymer 6 is brought into contact with the aggregate 8, a state in which the amino group 5 of the water-soluble polymer 6 having an amino group is not dissociated from the dissociated ionic state Change to As a result, the ionic bond bridging the two polymers (water-soluble polymers 4 and 6) disappears, and the aggregate 8 dissolves. However, when the hydrogen ion index pH is 8 or more, the Nd ion 1 and the Dy ion 2 change to hydroxides that are poorly soluble in water. As a result, although the aggregate 8 dissolves, hydroxides of Nd and Dy precipitate, causing problems in the next step. From this, it is preferable to carry out the dissolution process of dissolving the aggregate 8 by adding an acid.
 (1-6)再凝集工程
 溶解工程により凝集物8を溶解したものに、塩基を加えてpHが約2になるまで調整した後に、アミノ基を有する水溶性高分子6をpHが約5~6になるまで添加すると、再凝集物8’が析出する。ここで、pH調整をする塩基として、アミノ基を有する水溶性高分子6を加えてもかまわない。ただし、凝集物8を溶解したものの液性が強酸性の場合、pHを約2に調整するまでに膨大な量のアミノ基を有する水溶性高分子6を加える必要が生じるので、pH調整をする塩基としては強塩基(塩基解離定数がpKb < 0、例えば、水酸化ナトリウム等)を用いる方が好適である。
(1-6) Reaggregation step After adding the base to the solution in which the aggregate 8 is dissolved in the dissolution step and adjusting the pH to about 2, the water-soluble polymer 6 having an amino group has a pH of about 5 to 5 When it is added until it reaches 6, reaggregates 8 'precipitate. Here, a water-soluble polymer 6 having an amino group may be added as a base for pH adjustment. However, if the liquid of Aggregate 8 is strongly acidic, it is necessary to add water-soluble polymer 6 having a vast amount of amino groups before adjusting pH to about 2, so adjust pH As a base, it is more preferable to use a strong base (base dissociation constant pKb <0, for example, sodium hydroxide etc.).
 この工程においては、凝集工程で形成した凝集物8中に取り込まれていたNdイオン1が先に会合体7を形成するため、溶液中で解離した状態のNdイオンが減り、その結果、再凝集物8’中のDyイオン2の割合が大きくなる。すなわち、NdイオンとDyイオンとが混合している水溶液中からDyを高い分配比率で分離回収可能となる。 In this step, since the Nd ions 1 incorporated in the aggregate 8 formed in the aggregation step first form the association 7, the Nd ions in the dissociated state in the solution decrease, as a result, reaggregation The proportion of Dy ions 2 in the object 8 'is increased. That is, Dy can be separated and recovered from the aqueous solution in which Nd ions and Dy ions are mixed at a high distribution ratio.
 (1-7)焙煎工程
 Dyが濃縮された再凝集物8’を濾過などにより分離回収した後に焙煎する。これにより、Dy2O3が得られ、リサイクル原料となる。例えば、得られた希土類酸化物を還元して、ハードディスクドライブ(HDD)等の希土類磁石に再生利用することができる。
(1-7) Roasting step The reaggregated substance 8 'having Dy concentrated is separated and recovered by filtration or the like and then roasted. Thereby, Dy 2 O 3 is obtained and becomes a recycled raw material. For example, the obtained rare earth oxide can be reduced and recycled to a rare earth magnet such as a hard disk drive (HDD).
 (2)基本原理
 NdイオンとDyイオンとが混在している水溶液に、アミノ基5を有する水溶性高分子6を添加した場合、Ndイオン1が優先的にアミノ基5を有する水溶性高分子6と結合する理由は、以下のように推定される。
(2) Basic Principle When a water-soluble polymer 6 having an amino group 5 is added to an aqueous solution in which Nd ions and Dy ions are mixed, a water-soluble polymer in which the Nd ion 1 preferentially has an amino group 5 The reason for combining with 6 is estimated as follows.
 3価のNdイオン1は、4f軌道上の電子の数が3個なので、該軌道を電子で満たすためには電子が11個も必要となる。これに対し、3価のDyイオン2は、4f軌道上の電子の数が9個なので、該軌道を電子で満たすためには電子が5個必要である。Ndイオン1は、4f軌道を満たすのに必要とする電子数がDyイオン2よりも多いので、電子供与基として機能するアミノ基5との吸引力がより大きいものと推定される。言い換えると、アミノ基5はNdイオン1の方により配位しやすいので、溶解分7中にNdイオン1が優先的に分配され、溶液中で解離した状態のNdイオン1が少なくなる。その結果、凝集物8および再凝固物8’中のDyイオン2が相対的に多くなる。 Since the trivalent Nd ion 1 has 3 electrons in the 4f orbit, 11 electrons are required to fill the orbit with electrons. On the other hand, since the number of electrons on the 4f orbital is nine, the trivalent Dy ion 2 requires five electrons to fill the orbital with electrons. Since the Nd ion 1 requires more electrons than the Dy ion 2 to satisfy the 4f orbital, it is presumed that the attractive force with the amino group 5 functioning as an electron donating group is larger. In other words, since the amino group 5 is more easily coordinated by the Nd ion 1, the Nd ion 1 is preferentially distributed in the solution 7, and the Nd ion 1 in a dissociated state in the solution decreases. As a result, the Dy ions 2 in the aggregate 8 and the recoagulate 8 'become relatively large.
 希土類元素の3価のイオンを4f軌道の電子の数が少ない順に並べると、以下のようになる。セリウムイオン(Ce3+、4f軌道上の電子数=1)、プラセオジムイオン(Pr3+、4f軌道上の電子数=2)、ネオジムイオン(Nd3+、4f軌道上の電子数=3)、プロメチウムイオン(Pm3+、4f軌道上の電子数=4)、サマリウムイオン(Sm3+、4f軌道上の電子数=5)、ユーロピウムイオン(Eu3+、4f軌道上の電子数=6)、ガドリウムイオン(Gd3+、4f軌道上の電子数=7)、テルビウムイオン(Tb3+、4f軌道上の電子数=8)、ジスプロシウムイオン(Dy3+、4f軌道上の電子数=9)、ホロミウムイオン(Ho3+、4f軌道上の電子数=10)、エルビウムイオン(Er3+、4f軌道上の電子数=11)、ツリウムイオン(Tm3+、4f軌道上の電子数=12)、イッテルビウムイオン(Yb3+、4f軌道上の電子数=13)。これら希土類元素の3価のイオンをイオン半径で考えていくと、4f軌道上の電子数が多くなると、ランタニド収縮により、イオン半径が小さくなる。イオン半径が小さいものほど、凝集物8や再凝固物8’内に取り込まれ易くなる。また、イオン半径が小さい(4f軌道の不足電子数が少ない)ほど、アミノ基5と配位しにくくなる。すなわち、イオン半径が小さいものは凝集物8および再凝固物8’に分配され、イオン半径が大きいものは溶解分7中に分配される。 If the trivalent ions of the rare earth element are arranged in ascending order of the number of electrons in the 4f orbital, it is as follows. Cerium ion (Ce 3+ , number of electrons on 4f orbital = 1), praseodymium ion (Pr 3+ , number of electrons on 4f orbital = 2), neodymium ion (Nd 3+ , number of electrons on 4f orbital = 3) , Promethium ion (Pm 3+ , number of electrons on 4f orbit = 4), samarium ion (Sm 3 + , number of electrons on 4f orbit = 5), europium ion (Eu 3+ , number of electrons on 4f orbit = 6 ), Gadolium ion (Gd 3+ , number of electrons on 4f orbit = 7), terbium ion (Tb 3+ , number of electrons on 4f orbit = 8), dysprosium ion (Dy 3+ , number of electrons on 4f orbit = 9), holmium ion (Ho 3+ , number of electrons on 4f orbit = 10), erbium ion (Er 3 + , number of electrons on 4f orbit = 11), thulium ion (Tm 3 + , on 4f orbit) Electron number = 12), Ytterbium ion (Yb 3+ , electron number on 4f orbit = 13). Considering these trivalent ions of the rare earth element in terms of the ion radius, if the number of electrons on the 4f orbit increases, the ion radius decreases due to lanthanide contraction. The smaller the ion radius, the easier it is to be incorporated into the aggregate 8 or recoagulate 8 '. Further, as the ion radius is smaller (the number of insufficient electrons in the 4f orbital is smaller), coordination with the amino group 5 becomes more difficult. That is, the one having a small ion radius is distributed to the aggregate 8 and the recoagulate 8 ′, and the one having a large ion radius is distributed in the solution 7.
 もし、上記の希土類元素の3価イオンがそれぞれ当量ずつ混合している水溶液を用いて前述の凝集工程を行ったとすると、最も凝集物8に取り込まれ易いのは、Yb3+となる。以下Tm3+、Er3+、…の順であり、4f軌道上の電子が多いほど凝集物8に取り込まれ易い。一方、溶解分7に分配されるのはCe3+が最も多くなり、以下Pr3+、Nd3+、…の順となる。 If the above aggregation step is performed using an aqueous solution in which trivalent ions of the above-mentioned rare earth elements are mixed in equivalent amounts, Yb 3+ is most easily taken into aggregate 8. The order of Tm 3+ , Er 3+ ,... Is as follows, and the more electrons on the 4f orbital, the easier it is to be taken into aggregate 8. On the other hand, Ce 3+ is the largest to be distributed to the dissolved component 7, and in the order of Pr 3+ , Nd 3+,.
 前述したように、本発明は、異なる種類の希土類元素の分配比率を高めることを目的としている。ここで、本発明における「希土類元素の分配比率を高める」について簡単に説明する。従来技術では、希土類元素を含む原料(例えば、廃棄された希土類磁石合金)から、通常、できるだけ多くの希土類元素を分離回収することを目的とする。これに対し、本発明における「希土類元素の分配比率を高める」とは、分離回収しようとする希土類元素の純度を高めること(純度の高い希土類元素を分離回収すること)を意味する。この点において、本発明は従来技術と基本コンセプトが異なっている。 As mentioned above, the present invention aims to increase the distribution ratio of different types of rare earth elements. Here, “raising the distribution ratio of rare earth elements” in the present invention will be briefly described. In the prior art, the purpose is usually to separate and recover as much of the rare earth element as possible from the raw material containing the rare earth element (for example, the discarded rare earth magnet alloy). On the other hand, "to increase the distribution ratio of the rare earth elements" in the present invention means to increase the purity of the rare earth elements to be separated and collected (to separate and collect the rare earth elements having high purity). In this respect, the present invention differs from the prior art in basic concept.
 本発明の目的を達成するためには、分離回収しようとする希土類元素を含む凝集物に、他種類の希土類元素の混入を極力抑制することがプロセス上のキーポイントとなる。言い換えると、分離回収しようとする希土類元素を凝集物中に取り込み損じることよりも、それ以外の希土類元素の凝集物中への混入を抑制することを優先する。以下では、本発明の目的を達成するためのポイントについてより詳細に説明する。 In order to achieve the object of the present invention, it is a key point on the process to minimize the mixing of other types of rare earth elements into the aggregates containing the rare earth elements to be separated and collected. In other words, prior to incorporation and failure of the rare earth element to be separated and recovered into the aggregate, priority is given to suppressing the mixing of the other rare earth element into the aggregate. In the following, points for achieving the object of the present invention will be described in more detail.
 (3)用いる高分子材料
 (3-1)酸性基を有する水溶性高分子
 酸性基3を有する水溶性高分子4の酸性基3としては、例えば、カルボキシル基(-COOH)あるいはスルホン酸基(-SO3H)が挙げられる。
(3) Polymeric material used (3-1) Water-soluble polymer having an acidic group As the acidic group 3 of the water-soluble polymer 4 having an acidic group 3, for example, a carboxyl group (—COOH) or a sulfonic acid group ( -SO 3 H).
 より具体的には、カルボキシル基を有する水溶性高分子としては、安価である点とアミノ基とイオン結合しやすい点とからポリアクリル酸が好適である。このほか、アミノ酸由来のポリアスパラギン酸やポリグルタミン酸等も好適である。アルギン酸はコンブ等の海草の主成分の一種であり、原料が生物由来という点で環境負荷が小さい特徴を持つ。 More specifically, as a water-soluble polymer having a carboxyl group, polyacrylic acid is preferable from the viewpoint of being inexpensive and being easy to form an ionic bond with an amino group. Besides these, polyaspartic acid and polyglutamic acid derived from amino acids are also suitable. Alginic acid is a type of main component of seaweed such as kelp, and has a feature that environmental load is small in that raw materials are derived from organisms.
 スルホン酸基を有する水溶性高分子としては、例えば、ポリビニルスルホン酸やポリスチレンスルホン酸が挙げられる。これらスルホン酸基は、カルボキシル基よりも酸性度が大きいため、アミノ基とのイオン結合を形成する割合が高く、安定な凝集物を得られる点で好ましい。 Examples of the water-soluble polymer having a sulfonic acid group include polyvinyl sulfonic acid and polystyrene sulfonic acid. These sulfonic acid groups are preferable in that they have a higher acidity than carboxyl groups, so the proportion of forming ionic bonds with amino groups is high, and stable aggregates can be obtained.
 なお、酸性基を有する高分子の水溶性が十分でない場合、酸性基の一部をアンモニウム塩構造、ナトリウム塩構造、および/またはカリウム塩構造にすることで水溶性(水に対する溶解性)を向上させることが可能である。酸性基の一部をアンモニウム塩構造、ナトリウム塩構造、および/またはカリウム塩構造とした高分子を添加することで、アミノ基を有する水溶性高分子と効率良くイオン結合を形成することが可能となる。 In addition, when the water solubility of the polymer having an acid group is not sufficient, the water solubility (solubility in water) is improved by forming a part of the acid group with an ammonium salt structure, a sodium salt structure, and / or a potassium salt structure. It is possible to By adding a polymer in which some of the acidic groups have an ammonium salt structure, a sodium salt structure, and / or a potassium salt structure, it is possible to efficiently form an ionic bond with a water-soluble polymer having an amino group Become.
 酸性基3を有する水溶性高分子4の平均分子量が過大な場合、凝集の際に、溶解分7に分配したい元素種を長い分子鎖で物理的に絡ませて(結合基との会合なしで)一緒に凝集物8や再凝集物8’に取り込んでしまう傾向がある。この傾向は水溶性高分子4の平均分子量が25,000を超えると顕著になる。そのため、酸性基3を有する水溶性高分子4の平均分子量は25,000以下であることが望ましい。 When the average molecular weight of the water-soluble polymer 4 having an acidic group 3 is too large, during aggregation, the type of element to be distributed to the dissolved component 7 is physically entangled with a long molecular chain (without association with the binding group) There is a tendency to be taken into aggregate 8 and reaggregate 8 'together. This tendency becomes remarkable when the average molecular weight of the water-soluble polymer 4 exceeds 25,000. Therefore, the average molecular weight of the water-soluble polymer 4 having the acidic group 3 is preferably 25,000 or less.
 加えて、生成した凝集物の溶解工程においては、使用した水溶性高分子4の平均分子量が小さいほど溶解し易くより短時間で溶解する。この観点から、酸性基3を有する水溶性高分子4の平均分子量は7,000以下がより望ましく、5,000以下が更に望ましい。溶解工程のプロセス時間の短縮は、凝集工程・溶解工程を複数回繰り返す場合に特にメリットが大きい。例えば、酸性基3を有する水溶性高分子4を溶解した水溶液に対し、アミノ基5を有する水溶性高分子6(平均分子量25,000)を添加して凝集物を形成し、塩酸(1 N)を用いてこの凝集物を溶解させた場合、用いた水溶性高分子4の平均分子量が25,000の凝集物は、完全に溶解するまでに約1分間を要した。用いた水溶性高分子4の平均分子量が7,000の凝集物は、約40秒間で完全に溶解した。用いた水溶性高分子4の平均分子量が5,000の凝集物は、約3秒間で完全に溶解した。 In addition, in the dissolution step of the formed aggregate, the smaller the average molecular weight of the water-soluble polymer 4 used, the easier it is to dissolve and the dissolution is in a shorter time. From this viewpoint, the average molecular weight of the water-soluble polymer 4 having the acidic group 3 is more preferably 7,000 or less, and still more preferably 5,000 or less. The shortening of the process time of the dissolution step is particularly advantageous when the aggregation step and the dissolution step are repeated a plurality of times. For example, a water-soluble polymer 6 having an amino group 5 (average molecular weight 25,000) is added to an aqueous solution in which a water-soluble polymer 4 having an acidic group 3 is dissolved to form an aggregate, thereby forming hydrochloric acid (1 N) When this aggregate was dissolved to use, the aggregate having an average molecular weight of 25,000 of the water-soluble polymer 4 used took about 1 minute to completely dissolve. The aggregate having an average molecular weight of 7,000 of the water-soluble polymer 4 used was completely dissolved in about 40 seconds. The aggregate having an average molecular weight of 5,000 of the water-soluble polymer 4 used was completely dissolved in about 3 seconds.
 一方、凝集物8や再凝集物8’を形成するためには、酸性基が少なくとも2個以上必要である。酸性基を2個以上有する有機化合物で分子量が最も小さいのはシュウ酸であり、分子量は126である。シュウ酸は繰り返し基本単位が「-COOH」の高分子材料として考えることもできる。よって、水溶性高分子4の分子量の下限は126となる。 On the other hand, at least two or more acidic groups are required to form the aggregate 8 and the reaggregate 8 '. Among the organic compounds having two or more acidic groups, the one having the lowest molecular weight is oxalic acid, and the molecular weight is 126. Oxalic acid can also be considered as a polymer material having a repeating basic unit of “—COOH”. Therefore, the lower limit of the molecular weight of the water-soluble polymer 4 is 126.
 また、凝集工程においては、使用した水溶性高分子4の平均分子量が大きいほど、アミノ基5を有する水溶性高分子6との分子間架橋が形成され易く、生成した凝集物の難溶性が高まる。すなわち、添加した水溶性高分子4の利用率が高まることから、分離回収しようとする希土類元素イオンのトラップ効率が高まる。例えば、アミノ基5を有する水溶性高分子6(平均分子量5,000)を添加して凝集物を形成する凝集工程を行ったところ、添加した水溶性高分子4のうち不溶性の凝集物を形成した割合は、使用した水溶性高分子4の平均分子量が1,000未満の場合に約90%であり、使用した水溶性高分子4の平均分子量が1,000以上2,000未満の場合に約95%であり、使用した水溶性高分子4の平均分子量が2,000以上の場合に約98%であった。これらの結果から、水溶性高分子4の平均分子量は、少なくとも126以上が必要であり、1,000以上がより望ましく、2,000以上が更に望ましいと言える。 In addition, in the aggregation step, as the average molecular weight of the water-soluble polymer 4 used is larger, intermolecular cross-linking with the water-soluble polymer 6 having the amino group 5 is more easily formed, and the poor solubility of the formed aggregate is increased. . That is, since the utilization rate of the added water-soluble polymer 4 is increased, the trapping efficiency of the rare earth element ion to be separated and collected is increased. For example, when the aggregation step of forming an aggregate by adding a water-soluble polymer 6 (average molecular weight 5,000) having an amino group 5 was carried out, the ratio of forming the insoluble aggregate among the added water-soluble polymer 4 Was about 90% when the average molecular weight of the water-soluble polymer 4 used was less than 1,000, and about 95% when the average molecular weight of the water-soluble polymer 4 used was 1,000 or more and less than 2,000. When the average molecular weight of the water-soluble polymer 4 was 2,000 or more, it was about 98%. From these results, the average molecular weight of the water-soluble polymer 4 is required to be at least 126, preferably 1,000 or more, and more preferably 2,000 or more.
 (3-2)陽イオン交換樹脂
 前述した酸性基を有する水溶性高分子の代わりに陽イオン交換樹脂を使うことも可能である。図3は、本発明に係る分離回収方法において、陽イオン交換樹脂を用いた凝集工程を説明する模式図である。用いる陽イオン交換樹脂9は、例えば、酸性基3としてスルホン酸基やカルボキシル基を有しているものが好ましい。。
(3-2) Cation Exchange Resin It is also possible to use a cation exchange resin instead of the water-soluble polymer having an acidic group described above. FIG. 3 is a schematic view illustrating an aggregation step using a cation exchange resin in the separation and recovery method according to the present invention. The cation exchange resin 9 to be used preferably has, for example, a sulfonic acid group or a carboxyl group as the acidic group 3. .
 図3に示すように、Ndイオン1とDyイオン2とが混合している水溶液に陽イオン交換樹脂9を加えると、Ndイオン1およびDyイオン2が陽イオン交換樹脂9の酸性基3とイオン結合する。その後、更にアミノ基5を有する水溶性高分子6を加えると、Ndイオン1が優先的に水溶性高分子6と会合体7を形成し溶解する。それと同時に、Dyイオン2を優先的にトラップしながら、陽イオン交換樹脂9の酸性基3と水溶性高分子6のアミノ基5とがイオン結合する。陽イオン交換樹脂9の酸性基3の数と、水溶性高分子6のアミノ基5の数との関係は、前述した「(1-1)凝集工程」と同様である。 As shown in FIG. 3, when cation exchange resin 9 is added to an aqueous solution in which Nd ion 1 and Dy ion 2 are mixed, Nd ion 1 and Dy ion 2 are the acid groups 3 and ions of cation exchange resin 9 Join. Thereafter, when the water-soluble polymer 6 having the amino group 5 is further added, the Nd ion 1 preferentially forms an aggregate 7 with the water-soluble polymer 6 and dissolves. At the same time, the acidic groups 3 of the cation exchange resin 9 and the amino groups 5 of the water-soluble polymer 6 are ionically bonded while preferentially trapping the Dy ions 2. The relationship between the number of acidic groups 3 of the cation exchange resin 9 and the number of amino groups 5 of the water-soluble polymer 6 is the same as in the above-mentioned “(1-1) aggregation step”.
 陽イオン交換樹脂9のサイズに関しては、陽イオン交換樹脂9の粒子径が大き過ぎると、単位質量当たりの希土類元素イオンをトラップする量が下がる。一方、粒子径が小さ過ぎると分離回収工程の際の濾過でフィルタ等に詰まりやすくなる。そのため、陽イオン交換樹脂9の平均粒子径としては0.1 mm~3 mm程度が望ましい。希土類元素イオンのトラップ率を向上するため、陽イオン交換樹脂9の表面に凹凸を設ける等して表面積を大きくすることは好ましい。 With regard to the size of the cation exchange resin 9, when the particle size of the cation exchange resin 9 is too large, the amount for trapping the rare earth element ion per unit mass decreases. On the other hand, if the particle size is too small, the filter and the like are easily clogged by filtration in the separation and recovery step. Therefore, the average particle diameter of the cation exchange resin 9 is preferably about 0.1 mm to 3 mm. In order to improve the trapping rate of the rare earth element ions, it is preferable to increase the surface area by providing asperities on the surface of the cation exchange resin 9 or the like.
 また、分離回収工程では、希土類元素イオンをトラップした(表面に結合した)陽イオン交換樹脂9を、濾過等により非凝集物(溶解分7)と分離するので、用いる陽イオン交換樹脂9は沈降しやすい方が好適である。この場合、陽イオン交換樹脂9も含めて凝集物8と見なすことができる。陽イオン交換樹脂9の内部に比重の大きな金属を含有させると、陽イオン交換樹脂9としての比重も大きくなるので沈降しやすくなる。また、陽イオン交換樹脂9の内部に磁性粉を含有させることで磁気によって捕集可能となり、分離回収工程で磁気分離を利用することが可能となる。 Also, in the separation and recovery step, the cation exchange resin 9 used to trap rare earth element ions (bound to the surface) is separated from non-aggregates (dissolved 7) by filtration etc. It is preferable to be easy to do. In this case, the cation exchange resin 9 can also be regarded as an aggregate 8. When a metal having a large specific gravity is contained in the inside of the cation exchange resin 9, the specific gravity as the cation exchange resin 9 also becomes large, so that it becomes easy to precipitate. Further, by containing magnetic powder in the inside of the cation exchange resin 9, it can be collected magnetically and it becomes possible to utilize magnetic separation in the separation and recovery step.
 (3-3)アミノ基を有する水溶性高分子
 アミノ基5を有する水溶性高分子6としては、単位質量当たりのアミノ基の割合が最も大きくなる点でポリエチレンイミンが好適である。また、ポリビニルアミンやポリアリルアミン等のような直鎖にアミノ基を有するタイプも比較的安価で水に溶解しやすいので好適である。キトサンは、水に対する溶解性は若干低いが、生物(例えば、かに、えび、カブトムシ、ゴキブリ等)の外骨格の主成分であるキチンを加水分解することで得られるので、原料が生物由来という点で環境負荷が小さい特徴を持つ。アミノ酸由来のポリリシンやポリアルギニン等も好適である。
(3-3) Water-soluble polymer having an amino group As the water-soluble polymer 6 having an amino group 5, polyethyleneimine is preferable in that the ratio of the amino group per unit mass is maximized. In addition, linear amino groups such as polyvinylamine and polyallylamine are also preferable because they are relatively inexpensive and easily dissolved in water. Although chitosan has a slightly lower solubility in water, it is obtained by hydrolyzing chitin, which is the main component of the exoskeleton of organisms (eg, crab, shrimp, beetles, cockroaches, etc.), so the raw material is said to be of biological origin. It has the feature that environmental load is small in point. Also suitable are amino acid-derived polylysine and polyarginine.
 上述したように、アミノ基5を有する水溶性高分子6は、単位質量当たりでなるべく多くのアミノ基を有する方が効率的である。具体的には、繰り返し基本単位が小さい構造、或いは繰り返し基本単位中になるべく多くのアミノ基を有する構造が好ましい。例えば、ポリエチレンイミンは、繰り返し基本単位が「-C2H4N」であり、分子量が約43と小さいのでアミノ基5を有する水溶性高分子6の中では効率的である。また、これ以外ではポリアリルアミンのうちの幾つかの構造が挙げられる。例えば、下記化合物である。 As described above, it is more efficient for the water-soluble polymer 6 having an amino group 5 to have as many amino groups as possible per unit mass. Specifically, a structure having a small repeating basic unit or a structure having as many amino groups as possible in the repeating basic unit is preferable. For example, polyethylenimine is efficient among water-soluble polymers 6 having an amino group 5 because the repeating basic unit is “—C 2 H 4 N” and the molecular weight is as small as about 43. In addition to this, some structures of polyallylamine may be mentioned. For example, it is the following compound.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 化合物Aは、繰り返し基本単位の分子量が約72である。化合物Bは、分子量が約72の分子と約100の分子とが結合して繰り返し基本単位を構成する。これら以外のアミノ基5を有する水溶性高分子6は、ピロール骨格やスルホニル部位等を有しているので、繰り返し基本単位の分子量は150~300前後となる。このことから、ポリエチレンイミンやポリアリルアミンのうち化合物A,Bが好ましい。 Compound A has a molecular weight of the repeating basic unit of about 72. In compound B, a molecule having a molecular weight of about 72 and a molecule of about 100 are combined to form a repeating basic unit. Since the water-soluble polymer 6 having an amino group 5 other than these has a pyrrole skeleton, a sulfonyl moiety or the like, the molecular weight of the repeating basic unit is around 150 to 300. Among these, compounds A and B are preferable among polyethyleneimine and polyallylamine.
 また、水溶性高分子6のアミノ基5が一級アミノ基および三級アミノ基からなると、Dyイオン2に比べてNdイオン1と会合体7を形成しやすい傾向がある。ポリエチレンイミンは、一級アミノ基、二級アミノ基、三級アミノ基の3種類を全て有している。また、前記化合物Bも一級アミノ基、三級アミノ基の2種類を有している。これらポリエチレンイミンやポリアリルアミンを本発明の分離回収方法で用いることは、Ndイオン1とDyイオン2とが混在する水溶液中からDyイオン2を選択的に分離回収する点で好適である。 In addition, when the amino group 5 of the water-soluble polymer 6 is composed of a primary amino group and a tertiary amino group, it tends to form an aggregate 7 with the Nd ion 1 more easily than the Dy ion 2. Polyethyleneimine has all three types of primary amino group, secondary amino group, and tertiary amino group. The compound B also has two types of primary amino group and tertiary amino group. The use of these polyethyleneimines and polyallylamines in the separation and recovery method of the present invention is preferable in that the Dy ions 2 are selectively separated and recovered from an aqueous solution in which Nd ions 1 and Dy ions 2 are mixed.
 アミノ基5を有する水溶性高分子6は、平均分子量が大きくなるとその粘度が高くなるため、投入量管理や投入操作の観点で取り扱いが難しくなる。具体的には、ポリエチレンイミンやポリアリルアミン等のアミノ基5を有する水溶性高分子6において、その平均分子量が100,000を超えると、10質量%の水溶液にしても、粘度は20℃で1,000 mPa・s以上になる。粘度が1,000 mPa・s以上になると、水溶性高分子6の投入操作において単位時間当たりの吐出量の小さい装置(例えば、ディスペンサ等)を使用することが必要になり、分離回収作業の効率的なオペレーションが困難になる。分離回収作業を効率的にオペレーションするためには、水溶性高分子6の粘度が低いことが望ましく、そのため、アミノ基5を有する水溶性高分子6の平均分子量は少なくとも100,000以下が好ましい。 The viscosity of the water-soluble polymer 6 having an amino group 5 increases as the average molecular weight increases, and thus handling becomes difficult from the viewpoint of input amount control and input operation. Specifically, when the average molecular weight of the water-soluble polymer 6 having an amino group 5 such as polyethylenimine or polyallylamine exceeds 100,000, the viscosity is 1,000 mPa · s at 20 ° C. even in an aqueous solution of 10 mass%. It becomes more than s. When the viscosity is 1,000 mPa · s or more, it is necessary to use a device with a small discharge amount per unit time (for example, a dispenser, etc.) in the operation of injecting the water-soluble polymer 6, and the separation and recovery operation is efficient. Operation becomes difficult. In order to operate the separation and recovery process efficiently, it is desirable that the viscosity of the water-soluble polymer 6 is low, so that the average molecular weight of the water-soluble polymer 6 having the amino group 5 is preferably at least 100,000 or less.
 また、水溶性高分子4と同様に、アミノ基5を有する水溶性高分子6の平均分子量が過大な場合、凝集の際に、溶解分7に分配したい元素種を長い分子鎖で物理的に絡ませて(結合基との会合なしで)一緒に凝集物8や再凝集物8’に取り込んでしまう傾向がある。この傾向は水溶性高分子6の平均分子量が25,000を超えると顕著になる。そのため、アミノ基5を有する水溶性高分子6の平均分子量は25,000以下であることがより望ましい。 Further, as in the case of the water-soluble polymer 4, when the average molecular weight of the water-soluble polymer 6 having the amino group 5 is excessive, the element species to be distributed to the dissolved component 7 is physically separated by a long molecular chain There is a tendency to be entangled (without association with the linking group) together into aggregate 8 and reaggregate 8 '. This tendency becomes remarkable when the average molecular weight of the water-soluble polymer 6 exceeds 25,000. Therefore, the average molecular weight of the water-soluble polymer 6 having an amino group 5 is more preferably 25,000 or less.
 加えて前述と同様に、生成した凝集物の溶解工程においては、使用した水溶性高分子6の平均分子量が小さいほど溶解し易くより短時間で溶解する。この観点から、アミノ基5を有する水溶性高分子6の平均分子量は7,000以下が更に望ましく、5,000以下が最も望ましい。例えば、酸性基3を有する水溶性高分子4(平均分子量25,000)を溶解した水溶液に対し、アミノ基5を有する水溶性高分子6を添加して凝集物を形成し、塩酸(1 N)を用いてこの凝集物を溶解させた場合、用いた水溶性高分子6の平均分子量が25,000の凝集物は、完全に溶解するまでに約1分間を要した。用いた水溶性高分子6の平均分子量が7,000の凝集物は、約40秒間で完全に溶解した。用いた水溶性高分子6の平均分子量が5,000の凝集物は、約3秒間で完全に溶解した。溶解工程のプロセス時間の短縮は、凝集工程・溶解工程を複数回繰り返す場合に特にメリットが大きい。 In addition, as described above, in the dissolution step of the formed aggregate, the smaller the average molecular weight of the water-soluble polymer 6 used, the easier it is to dissolve and the dissolution is performed in a shorter time. From this viewpoint, the average molecular weight of the water-soluble polymer 6 having an amino group 5 is more preferably 7,000 or less, and most preferably 5,000 or less. For example, to an aqueous solution in which a water-soluble polymer 4 (average molecular weight 25,000) having an acidic group 3 is dissolved, a water-soluble polymer 6 having an amino group 5 is added to form an aggregate, and hydrochloric acid (1 N) When this aggregate was dissolved to use, the aggregate of water-soluble polymer 6 having an average molecular weight of 25,000 required about 1 minute to completely dissolve. The aggregate having an average molecular weight of 7,000 of the water-soluble polymer 6 used was completely dissolved in about 40 seconds. The aggregate having an average molecular weight of 5,000 of the water-soluble polymer 6 used was completely dissolved in about 3 seconds. The shortening of the process time of the dissolution step is particularly advantageous when the aggregation step and the dissolution step are repeated a plurality of times.
 一方、凝集物8や再凝集物8’を形成するためには、アミノ基が少なくとも2個以上必要である。アミノ基を2個以上有する有機化合物で分子量が最も小さいのはエチレンジアミンであり、分子量は60である。エチレンジアミンは繰り返し基本単位が「-CH2NH2」の高分子材料として考えることもできる。よって、水溶性高分子6の分子量の下限は60となる。 On the other hand, at least two or more amino groups are required to form aggregate 8 and reaggregate 8 '. The organic compound having two or more amino groups and having the lowest molecular weight is ethylenediamine, and the molecular weight is 60. Ethylenediamine can also be considered as a polymer material having a repeating basic unit of “—CH 2 NH 2 ”. Therefore, the lower limit of the molecular weight of the water-soluble polymer 6 is 60.
 また、酸性基を有する水溶性高分子4の場合と同様に、凝集工程においては、使用した水溶性高分子6の平均分子量が大きいほど、酸性基3を有する水溶性高分子4との分子間架橋が形成され易く、生成した凝集物の難溶性が高まる。すなわち、添加した水溶性高分子6の利用率が高まることから、分離回収しようとする希土類元素イオンのトラップ効率が高まる。例えば、酸性基3を有する水溶性高分子4(平均分子量5,000)を添加して凝集物を形成する凝集工程を行ったところ、添加した水溶性高分子6のうち不溶性の凝集物を形成した割合は、使用した水溶性高分子6の平均分子量が1,000未満の場合に約90%であり、使用した水溶性高分子6の平均分子量が1,000以上2,000未満の場合に約95%であり、使用した水溶性高分子6の平均分子量が2,000以上の場合に約98%であった。これらの結果から、水溶性高分子6の平均分子量は、少なくとも60以上が必要であり、1,000以上がより望ましく、2,000以上が更に望ましいと言える。 Further, as in the case of the water-soluble polymer 4 having an acidic group, in the aggregation step, as the average molecular weight of the water-soluble polymer 6 used is larger, the intermolecularity with the water-soluble polymer 4 having an acidic group 3 is Crosslinks are likely to be formed and the poor solubility of the resulting aggregates is increased. That is, since the utilization rate of the added water-soluble polymer 6 is increased, the trapping efficiency of the rare earth element ions to be separated and recovered is increased. For example, when a flocculation step of forming an aggregate by adding a water-soluble polymer 4 (average molecular weight 5,000) having an acidic group 3 is performed, a ratio of forming an insoluble aggregate among the added water-soluble polymer 6 Was about 90% when the average molecular weight of the water-soluble polymer 6 used was less than 1,000, and about 95% when the average molecular weight of the water-soluble polymer 6 used was 1,000 or more and less than 2,000. When the average molecular weight of the water-soluble polymer 6 was 2,000 or more, it was about 98%. From these results, the average molecular weight of the water-soluble polymer 6 needs to be at least 60, preferably 1,000 or more, and more preferably 2,000 or more.
 (4)水溶性高分子の添加比率
 本発明の分離回収方法によると、水溶液中に存在する複数種の希土類元素イオンのうち、イオン半径の最も小さな希土類元素イオンが凝集物8および再凝集物8’中に優先的に取り込まれる。このとき、他種類の希土類元素イオンを凝集物中に極力取り込まないようにすることが肝要であり、それを実現するため、水溶性高分子の添加比率が重要なプロセス因子となる。
(4) Addition Ratio of Water-Soluble Polymer According to the separation and recovery method of the present invention, the rare earth element ion having the smallest ion radius among the plural kinds of rare earth element ions present in the aqueous solution is the aggregate 8 and the reaggregates 8 'It is taken in preferentially. At this time, it is important to prevent other types of rare earth element ions from being incorporated into the aggregate as much as possible, and in order to realize it, the addition ratio of the water-soluble polymer is an important process factor.
 まず、酸性基3を有する水溶性高分子4の添加量は、酸性基3の総数(C)をイオン半径の最も小さな希土類元素イオン(すなわち、分離回収しようとする希土類元素イオン)の総数(R)以上(R ≦ C)とすることが好ましい。「C < R」となると、酸性基の総数が少な過ぎて分離回収しようとする希土類元素イオンの回収率が低下する。なお、希土類元素イオンの総数Rは、例えば、誘導結合プラズマ法(Inducutively Coupled Plasma法)により見積もることができる。 First, the addition amount of the water-soluble polymer 4 having the acidic group 3 is the total number (R) of the rare earth element ion having the smallest ion radius (ie, the rare earth element ion to be separated and recovered). Or more) (R C C). When “C <R”, the total number of acid groups is too small, and the recovery rate of rare earth element ions to be separated and recovered decreases. The total number R of rare earth element ions can be estimated, for example, by an inductively coupled plasma method.
 水中では希土類元素イオンは3価であり酸性基3は1価なので、希土類元素イオン1個当たり最大3つのイオン結合を形成する。ここで、もしも水溶液中の希土類元素イオンの全てが、分離回収しようとする希土類元素イオンであったとすると、酸性基3の総数Cを分離回収しようとする希土類元素イオンの総数Rの3倍以上(3R ≦ C)にすれば、水溶液中の当該希土類元素イオンは、原理的に凝集物中に100%トラップされる。 In water, since the rare earth ion is trivalent and the acid group 3 is monovalent, a maximum of three ionic bonds are formed per one rare earth ion. Here, if all of the rare earth element ions in the aqueous solution are the rare earth element ions to be separated and collected, the total number C of the acidic groups 3 should be at least 3 times the total number R of the rare earth element ions to be separated and collected. If 3R ≦ C), the rare earth element ion in the aqueous solution is in principle 100% trapped in the aggregate.
 しかしながら、本発明が対象とする混合水溶液は複数種の希土類元素イオンが含まれているので、酸性基3の総数Cが分離回収しようとする希土類元素イオンの総数Rの3倍よりも多くなると(3R < C)、3Rを超える分は分離回収しようとする希土類元素以外の希土類元素イオンをもトラップしてしまう。すなわち、希土類元素種の分離能(希土類元素の分配比率)が低下する。このことから、酸性基3の総数Cは、分離回収しようとする希土類元素イオン(イオン半径の最も小さな希土類元素イオン)の総数Rの3倍以下(C ≦ 3R)が望ましい。 However, since the mixed aqueous solution targeted by the present invention contains plural kinds of rare earth element ions, the total number C of the acidic groups 3 is more than three times the total number R of the rare earth element ions to be separated and recovered ( If 3R <C) or more than 3R, it will also trap rare earth element ions other than the rare earth elements to be separated and collected. That is, the separation ability of the rare earth element species (distribution ratio of the rare earth element) is lowered. From this, it is desirable that the total number C of the acidic groups 3 is three times or less (C ≦ 3R) of the total number R of rare earth element ions (the rare earth element ions having the smallest ion radius) to be separated and collected.
 上記の観点から、酸性基3を有する水溶性高分子4の添加量は、不等式「R ≦ C ≦ 3R」を満たすことが望ましい。なお、他種類の希土類元素の混入を極力抑制する観点からは、酸性基3の総数Cは、分離回収しようとする希土類元素イオンの総数Rの2.5倍以下(C ≦ 2.5R)がより望ましく、2倍以下(C ≦ 2R)が更に望ましい。 From the above viewpoint, the addition amount of the water-soluble polymer 4 having the acidic group 3 desirably satisfies the inequality “R ≦ C ≦ 3R”. The total number C of the acidic groups 3 is more preferably 2.5 times or less (C ≦ 2.5 R) the total number R of rare earth element ions to be separated and recovered from the viewpoint of minimizing the mixing of other types of rare earth elements. It is more desirable that the ratio be 2 times or less (C.ltoreq.2R).
 一方、酸性基3を有する水溶性高分子4の代わりに、酸性基3を有する陽イオン交換樹脂9を用いる場合、陽イオン交換樹脂9自身が固体であるため、陽イオン交換樹脂9は、酸性基3を有する水溶性高分子4のよりも動きにくい(水溶性高分子4のような流動性がない)。そこで、捕捉したい希土類元素イオンと会合する確率を上げるため、陽イオン交換樹脂9は、酸性基3を有する水溶性高分子4に比べて添加量を増やす必要がある。具体的には、酸性基3を有する陽イオン交換樹脂9を用いる場合の添加量は、その酸性基3の総数が水溶性高分子4の酸性基3の総数の約3~10倍になるようにするのが好適である。 On the other hand, when using a cation exchange resin 9 having an acidic group 3 instead of the water-soluble polymer 4 having an acidic group 3, the cation exchange resin 9 is acidic because the cation exchange resin 9 itself is solid. It is harder to move than the water-soluble polymer 4 having the group 3 (no fluidity like the water-soluble polymer 4). Therefore, in order to increase the probability of association with the rare earth element ion to be captured, it is necessary to increase the addition amount of the cation exchange resin 9 compared to the water-soluble polymer 4 having the acidic group 3. Specifically, in the case of using the cation exchange resin 9 having an acidic group 3, the total number of acidic groups 3 is about 3 to 10 times the total number of acidic groups 3 of the water-soluble polymer 4. Is preferred.
 上記のような条件で凝集工程および追加凝集工程を行うことにより、希土類元素の分配比率を高めることができる。 By performing the aggregation step and the additional aggregation step under the conditions as described above, the distribution ratio of the rare earth element can be increased.
 (5)用いる酸および塩基
 (5-1)酸
 溶解工程において、凝集物8の溶解に用いる酸としては通常の酸が使える。凝集物8を構成するアミノ基5を有する直鎖の水溶性高分子6は、酸が加えられることにより、アミノ基5と添加された酸とが塩構造を形成し、凝集物8を形成しているイオン結合が解消されるため凝集物8が溶解する。なお、酸性度の低い酸(弱酸)を用いた場合、凝集物8の溶解には大量添加が必要になるので、用いる酸は強酸(pKa < 1)、特に無機の強酸(例えば、塩酸、硫酸、硝酸)が好適である。また、溶解に用いる酸としてカルボキシル基やスルホン酸基を有する酸を用いると、これらの酸性基が次工程の追加凝集工程に悪影響を与えるので、これらの酸性基を有する酸(水溶性高分子4と同じ酸性基3を有する酸)は好ましくない。
(5) Acid and Base Used (5-1) Acid In the dissolution step, a common acid can be used as the acid used for dissolving the aggregate 8. The linear water-soluble polymer 6 having the amino group 5 constituting the aggregate 8 forms a salt structure with the amino group 5 and the added acid by addition of an acid, thereby forming the aggregate 8 The aggregate 8 dissolves because the ionic bond is eliminated. When an acid (weak acid) having a low acidity is used, a large amount of addition is required to dissolve the aggregate 8, so the acid used is a strong acid (pKa <1), particularly strong inorganic acid (eg hydrochloric acid, sulfuric acid) , Nitric acid) is preferred. In addition, when an acid having a carboxyl group or a sulfonic acid group is used as the acid to be used for dissolution, these acid groups adversely affect the additional aggregation step in the next step, so acids (water-soluble polymer 4 having these acid groups) Acid having the same acid group 3) is not preferred.
 (5-2)塩基
 再凝集工程において、凝集物8を溶解した溶液から再凝集物8’の形成に用いる塩基としては通常の塩基が使える。ただし、先の溶解工程において強酸を用いているので、弱塩基のみを用いると緩衝作用が発現する。そこで、凝集物8を溶解した溶液のpHを2程度まで調整するために加える塩基は、強塩基(pKb < 0)を用いることが好ましい。具体的には、無機の強塩基(例えば、水酸化ナトリウム、水酸化カリウム等)が好適である。その後、アミノ基5を有する水溶性高分子6を更に加えて、再凝集物8’を形成させる。なお、添加する塩基量に特段の制限がなければ、アミノ基5を有する水溶性高分子6のみを加えて再凝集工程を行っても良い。
(5-2) Base In the reaggregation step, a common base can be used as a base used to form reaggregate 8 ′ from the solution in which aggregate 8 is dissolved. However, since a strong acid is used in the previous dissolution step, the use of only a weak base causes a buffering action. Therefore, it is preferable to use a strong base (pKb <0) as the base added to adjust the pH of the solution in which the aggregate 8 is dissolved to about 2. Specifically, strong inorganic bases (for example, sodium hydroxide, potassium hydroxide and the like) are preferable. Thereafter, the water-soluble polymer 6 having an amino group 5 is further added to form a reaggregate 8 '. In addition, if there is no special restriction | limiting in the amount of bases to add, you may add only the water-soluble polymer 6 which has the amino group 5, and you may perform a reaggregation process.
 (6)分離回収率向上のためのスキーム
 本発明に係る分離回収方法における所定の希土類元素の分離回収率を向上させる方法(NdイオンとDyイオンとが混合している水溶液中からのDyイオンを選択的に凝集物中に取り込む方法)について、図4を用いてより詳細に説明する。図4は、本発明に係る分離回収方法の工程の流れを説明する模式図である。
(6) Scheme for improving separation and recovery rate A method for improving separation and recovery rate of a predetermined rare earth element in the separation and recovery method according to the present invention (Dy ions from an aqueous solution in which Nd ions and Dy ions are mixed The method of selectively incorporating into aggregates) will be described in more detail using FIG. FIG. 4 is a schematic view illustrating the flow of steps of the separation and recovery method according to the present invention.
 (a)撹拌工程
 初めに図4の(a)に示すように、シャッター付きフィルタ11を底部に具備する混合槽12にNdイオンとDyイオンとが混合している混合水溶液10を投入する。撹拌機構13を稼働させ、混合槽12内の混合水溶液10を撹拌する。
(A) Stirring Step First, as shown in FIG. 4A, the mixed aqueous solution 10 in which Nd ions and Dy ions are mixed is introduced into a mixing tank 12 having a shuttered filter 11 at the bottom. The stirring mechanism 13 is operated to stir the mixed aqueous solution 10 in the mixing tank 12.
 (b)凝集工程
 混合槽12内の混合水溶液10を撹拌しながら、酸性基を有する水溶性高分子4を加え、次にアミノ基を有する水溶性高分子6を加える。すると、図4の(b)に示すように、混合槽12内に凝集物8が形成される。
(B) Agglomeration Step While stirring the mixed aqueous solution 10 in the mixing tank 12, the water-soluble polymer 4 having an acidic group is added, and then the water-soluble polymer 6 having an amino group is added. Then, as shown in (b) of FIG. 4, aggregates 8 are formed in the mixing tank 12.
 凝集物8の形成によりアミノ基を有する水溶性高分子6の流動が阻害され、混合槽12内で本来形成されるはずの凝集物が未形成のままになると、Dyの分離回収率が下がる可能性がある。そこで、凝集が混合槽12中の混合水溶液10全体で起きるようにするため、アミノ基を有する水溶性高分子6を加える機構は、水溶性高分子6を放出する複数個のノズルを具備し、混合槽12全体領域で凝集反応が起きるようにすることが好ましい。 The formation of the aggregate 8 inhibits the flow of the water-soluble polymer 6 having an amino group, and if the aggregate that should be originally formed in the mixing tank 12 remains unformed, the recovery rate of separation of Dy may be reduced. There is sex. Therefore, in order to cause aggregation to occur in the entire mixed aqueous solution 10 in the mixing tank 12, the mechanism for adding the water-soluble polymer 6 having an amino group comprises a plurality of nozzles for releasing the water-soluble polymer 6, It is preferable to make the agglutination reaction occur in the entire region of the mixing tank 12.
 (c)水洗工程
 次に、混合槽12の底部に配設されたシャッター付きフィルタ11のシャッターを開放することで、混合水溶液10の溶解分7が混合槽12の外に排出され、図4の(c)のような状態となる。その後、残った凝集物8を水14で洗浄し、凝集物8に付着した溶解分7を除去する。
(C) Rinsing Step Next, by releasing the shutter of the shuttered filter 11 disposed at the bottom of the mixing tank 12, the dissolved portion 7 of the mixed aqueous solution 10 is discharged out of the mixing tank 12, as shown in FIG. The state is as shown in (c). Thereafter, the remaining aggregate 8 is washed with water 14 to remove the dissolved matter 7 attached to the aggregate 8.
 (d)凝集物の溶解工程
 次に、シャッター付きフィルタ11のシャッターを閉じ、凝集物8に酸の水溶液15を滴下すると、凝集物8が溶解する。
(D) Dissolution step of aggregate Next, when the shutter of the shuttered filter 11 is closed and the aqueous solution 15 of acid is dropped to the aggregate 8, the aggregate 8 is dissolved.
 (e)再凝集工程
 次に図4の(d)に示すように、凝集物8が溶解した溶液に塩基の水溶液16を加え、溶液のpHを1~5に調整する。その後、溶液のpHが6~9になるまでアミノ基を有する水溶性高分子6を加える。すると、図4の(e)に示すように、混合槽12内に溶解分7と再凝集物8’とが形成される。
(E) Reaggregation Step Next, as shown in (d) of FIG. 4, an aqueous solution 16 of a base is added to the solution in which the aggregate 8 is dissolved, and the pH of the solution is adjusted to 1 to 5. Thereafter, a water-soluble polymer 6 having an amino group is added until the pH of the solution reaches 6-9. Then, as shown in (e) of FIG. 4, the dissolved matter 7 and the reagglomerated substance 8 ′ are formed in the mixing tank 12.
 次に、混合槽12の底部に配設されたシャッター付きフィルタ11のシャッターを開放することで溶解分7が混合槽12の外に排出され、図4の(c)のような状態となる。ここで、上記(c)から(e)の工程を繰り返すことにより、凝集物8および再凝集物8’にトラップされる希土類元素イオンのうち、主にNdイオンが除去され、その結果としてDyイオンの割合が高まる。また、溶解分7を集め、追加凝集工程と溶解工程と再凝集工程とを繰り返すことにより、Dyの分離回収率を更に向上させることができる。 Next, the shutter 7 of the filter with shutter 11 disposed at the bottom of the mixing tank 12 is opened to discharge the dissolved portion 7 out of the mixing tank 12, and the state as shown in FIG. 4C is obtained. Here, by repeating the steps (c) to (e), Nd ions are mainly removed from the rare earth element ions trapped in the aggregates 8 and the reaggregates 8 ′, and as a result, the Dy ions are removed. The percentage of Moreover, the separation and recovery rate of Dy can be further improved by collecting the dissolved portion 7 and repeating the additional aggregation step, the dissolution step and the re-aggregation step.
 (f)最終水洗工程
 Dyイオンが所望の分配比率まで高まったら、図4の(f)に示すように、混合槽12の底部に配設されたシャッター付きフィルタ11のシャッターを開放して、溶解分7を混合槽12の外に排出し、残った再凝集物8’を水14で最終洗浄する。
(F) Final water washing step When the Dy ions are increased to the desired distribution ratio, the shutter of the shuttered filter 11 disposed at the bottom of the mixing tank 12 is opened as shown in (f) of FIG. The part 7 is drained out of the mixing tank 12 and the remaining reaggregates 8 'are finally washed with water 14.
 (g)凝集物加熱工程
 最終洗浄した再凝集物8’を大気中で加熱する。それにより、用いた凝集剤(水溶性高分子4および水溶性高分子6、または陽イオン交換樹脂9および水溶性高分子6)が熱分解し、Dyイオンが酸素と化合してDy2O3が得られる(図4の(g)参照)。なお、得られた希土類元素酸化物を磁性合金に再利用する場合は、これを還元してDyとした後、HDDやハイブリット車のモータ等の磁石として用いることが可能となる。
(G) Agglomerate heating step The final washed reaggregate 8 'is heated in the air. As a result, the used flocculant (water-soluble polymer 4 and water-soluble polymer 6, or cation exchange resin 9 and water-soluble polymer 6) is thermally decomposed, and the Dy ion combines with oxygen to form Dy 2 O 3 Is obtained (see (g) in FIG. 4). When the obtained rare earth element oxide is recycled to a magnetic alloy, it can be reduced to Dy and then used as a magnet of a motor of an HDD or a hybrid car.
 第2の実施形態(希土類元素の分離回収装置)
 (7)分離回収装置の形態1
 次に、本発明に係る希土類元素分離回収装置の一形態について、図5、図6を参照しながら説明する。なお、ここでは、希土類元素イオンとしてNdイオンおよびDyイオンの混合されている混合水溶液からDyイオンを選択的に分離回収する場合を例にして説明する。
Second embodiment (separating and collecting apparatus for rare earth elements)
(7) Form 1 of separation and recovery apparatus
Next, an embodiment of the rare earth element separation and recovery apparatus according to the present invention will be described with reference to FIGS. 5 and 6. Here, a case where Dy ions are selectively separated and recovered from a mixed aqueous solution in which Nd ions and Dy ions are mixed as rare earth element ions will be described as an example.
 図5は、本発明に係る希土類元素分離回収装置の一構成を示す模式図である。図5に示す分離回収装置に投入する混合水溶液(NdイオンおよびDyイオンの混合されている水溶液)のpHは1以上5以下が望ましい。一例として、該混合水溶液のpHを3.0とする。投入する混合水溶液のpHが1未満の場合、酸性度が高過ぎて、後工程でアミノ基を有する水溶性高分子を加えても凝集物を形成しにくくなるためDyイオンの分離回収率が低下する。また一方、投入する混合水溶液のpHが5を超えると、後工程でアミノ基を有する水溶性高分子を加えた時に、混合水溶液のpHが高くなり過ぎて、生成した凝集物の一部が再溶解してDyイオンの分離回収率が低下する。 FIG. 5 is a schematic view showing one configuration of the rare earth element separation and recovery apparatus according to the present invention. The pH of the mixed aqueous solution (an aqueous solution in which Nd ions and Dy ions are mixed) to be introduced into the separation and recovery apparatus shown in FIG. 5 is preferably 1 or more and 5 or less. As an example, the pH of the mixed aqueous solution is 3.0. If the pH of the mixed aqueous solution to be added is less than 1, the acidity is too high, and even if a water-soluble polymer having an amino group is added in a later step, it becomes difficult to form aggregates, so the recovery rate of separation of Dy ions decreases. Do. On the other hand, when the pH of the mixed aqueous solution to be added exceeds 5, when the water-soluble polymer having an amino group is added in a later step, the pH of the mixed aqueous solution becomes too high, and some of the formed aggregates are re-reacted. It dissolves to lower the separation and recovery of Dy ions.
 まず、別途用意した混合水溶液(Ndイオン及びDyのイオンが含まれている水溶液)を混合水溶液供給ポンプ18により、混合水溶液配管19を通って混合槽17に投入する。その後、撹拌羽根20を装着したオーバーヘッドスターラー21によって混合槽17中の混合水溶液を攪拌する。なお、混合水溶液の攪拌は、後工程で凝集物28が形成するまで続けられる。 First, a mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) is introduced into the mixing tank 17 through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18. Thereafter, the mixed aqueous solution in the mixing tank 17 is stirred by the overhead stirrer 21 equipped with the stirring blade 20. Stirring of the mixed aqueous solution is continued until aggregates 28 are formed in a later step.
 次に、第1のポンプ23により、第1のタンク22から第1の配管24を通って酸性基を有する水溶性高分子の水溶液を混合槽17に投入する。 Next, an aqueous solution of a water-soluble polymer having an acidic group is introduced into the mixing tank 17 from the first tank 22 through the first pipe 24 by the first pump 23.
 次に、第2のポンプ26により、第2のタンク25から第2の配管27を通ってアミノ基を有する水溶性高分子の水溶液を混合槽17に投入する。すると、混合槽17内でアミノ基を有する水溶性高分子と酸性基を有する水溶性高分子とが会合し、凝集物28が形成される。凝集物28の形成後、撹拌を停止する。なお、アミノ基を有する水溶性高分子の投入量は、混合槽17内の水溶液のpHが6以上9以下になるよう調整する。 Next, an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the second tank 25 through the second pipe 27 by the second pump 26. Then, the water-soluble polymer having an amino group and the water-soluble polymer having an acidic group are associated in the mixing tank 17 to form an aggregate 28. After the formation of aggregates 28, the stirring is stopped. The amount of the water-soluble polymer having an amino group is adjusted so that the pH of the aqueous solution in the mixing tank 17 is 6 or more and 9 or less.
 続いて、シャッター29を開くと、フィルタ30を通って混合槽17から凝集物8以外の液体(溶解分)が排出される。凝集物8はフィルタ30でせき止められるため、混合槽17からは排出されない。混合槽17の液体成分が排出された後、シャッター29を閉じる。排出された溶解分は、バルブ31を通って混合槽17の下方に配設された回収槽32に入る。 Subsequently, when the shutter 29 is opened, the liquid (dissolution) other than the aggregate 8 is discharged from the mixing tank 17 through the filter 30. Since the aggregate 8 is blocked by the filter 30, it is not discharged from the mixing tank 17. After the liquid component of the mixing tank 17 is discharged, the shutter 29 is closed. The discharged solution passes through a valve 31 and enters a recovery tank 32 disposed below the mixing tank 17.
 次に、第3のポンプ34により、第3のタンク33から第3の配管35を通って脱イオン水を混合槽17に残留した凝集物28に降りかける。この操作は、凝集物28表面に付着したNd成分を除去するのが目的である。脱イオン水が混合槽17にある程度溜まったら、シャッター29を開いて脱イオン水を排出し、その後シャッター29を閉じる。脱イオン水を降りかける工程と脱イオン水を排出する工程とを数回繰り返すことで、凝集物28の表面に付着したNd成分のほとんどが除去される。 Next, deionized water is dropped by the third pump 34 from the third tank 33 through the third pipe 35 onto the aggregates 28 remaining in the mixing tank 17. This operation is intended to remove the Nd component adhering to the surface of the aggregate 28. When the deionized water is partially accumulated in the mixing tank 17, the shutter 29 is opened to discharge the deionized water, and then the shutter 29 is closed. By repeating the steps of pouring the deionized water and discharging the deionized water several times, most of the Nd components adhering to the surface of the aggregate 28 are removed.
 次に、第4のポンプ37により、第4のタンク36から第4の配管38を通って酸(例えば、塩酸水溶液)を混合槽17に投入して、凝集物28を溶解させる。凝集物28が溶解し始めたら、オーバーヘッドスターラー21で緩やかに撹拌する。この状態で凝集物28が完全に溶解するまで塩酸水溶液を加える。 Next, an acid (for example, a hydrochloric acid aqueous solution) is introduced into the mixing tank 17 from the fourth tank 36 through the fourth pipe 38 by the fourth pump 37 to dissolve the aggregates 28. When the aggregate 28 starts to dissolve, it is gently stirred by the overhead stirrer 21. In this state, an aqueous solution of hydrochloric acid is added until the aggregate 28 is completely dissolved.
 凝集物28が完全に溶解したら、第5のポンプ40により、第5のタンク39から第5の配管41を通って塩基(例えば、水酸化ナトリウム水溶液)を混合槽17に投入する。なお、水酸化ナトリウム水溶液の投入は、混合槽17中の水溶液のpHが1~3になるまで続けられる。 When the aggregate 28 is completely dissolved, the fifth pump 40 feeds the base (for example, aqueous sodium hydroxide solution) into the mixing tank 17 from the fifth tank 39 through the fifth pipe 41. The addition of the sodium hydroxide aqueous solution is continued until the pH of the aqueous solution in the mixing tank 17 becomes 1 to 3.
 この後、第2ポンプ26により、第2のタンク25から第2配管27を通ってアミノ基を有する水溶性高分子の水溶液を混合槽17に投入する。なお、アミノ基を有する水溶性高分子の投入量は、混合槽17内の水溶液のpHが6以上9以下になるように調整される。この工程により、再凝集物が生成する。 Thereafter, an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the second tank 25 through the second pipe 27 by the second pump 26. In addition, the input amount of the water-soluble polymer having an amino group is adjusted such that the pH of the aqueous solution in the mixing tank 17 is 6 or more and 9 or less. This step produces reaggregates.
 次に、上記と同様に、シャッター29を開けて混合槽17から再凝集物以外の液体(溶解分)を排出する。その後、脱イオン水で再凝集物を洗浄する工程、塩酸水溶液を加えて再凝集物を溶解する工程、水酸化ナトリウム水溶液及びアミノ基を有する水溶性高分子を加えて再凝集物を生成する工程を数回繰り返す。それにより、再凝集物中のNdイオンの割合が低下し、結果的にDyイオンの割合が高くなる(すなわち、Dy成分の精製度が上がる)。 Next, as described above, the shutter 29 is opened to discharge the liquid (dissolved matter) other than the reagglomerated material from the mixing tank 17. Thereafter, washing the reaggregation with deionized water, adding an aqueous solution of hydrochloric acid to dissolve the reaggregation, adding sodium hydroxide aqueous solution and a water-soluble polymer having an amino group to form a reaggregation Repeat several times. As a result, the proportion of Nd ions in the reagglomerate decreases, and as a result, the proportion of Dy ions increases (ie, the purity of the Dy component increases).
 再凝集物中のDyイオンの割合を所望の値まで高めた後、再凝集物を乾燥させ回収する。なお、凝集物/再凝集物を乾燥させるため、フィルタ30は加熱機構(図示せず)を具備していることが好ましい。 After raising the percentage of Dy ions in the reagglomerate to the desired value, the reagglomerate is dried and collected. In order to dry the aggregates / reaggregates, the filter 30 preferably includes a heating mechanism (not shown).
 図6は、図5に示した分離回収装置において再凝集物を回収する動作を示す模式図である。図6に示すように、混合槽の底部17’は、混合槽の内壁42に対して図中の上下方向に摺動可能に構成されている。混合槽の底部17’をシャッター29およびフィルタ30と共に上昇させ、シャッター29又はフィルタ30の上面が混合槽の内壁42の上端と同じまたは該上端よりも少し高い位置になるように配置する。次に、スクレイパー等でシャッター29および/またはフィルタ30上の再凝集物28’を回収する。このようにすることで、再凝集物28’を容易にかつ無駄なく回収することができる。その後、混合槽の底部17’を下降させて元の状態に戻す。なお、当然のことながら、混合槽の底部17’と混合槽の内壁42との位置関係は相対的なものであり、混合槽の内壁42を下方に下げることで、図6の動作を行ってもよい。 FIG. 6 is a schematic view showing an operation of recovering reaggregated material in the separation and recovery apparatus shown in FIG. As shown in FIG. 6, the bottom 17 'of the mixing tank is configured to be slidable in the vertical direction in the figure with respect to the inner wall 42 of the mixing tank. The bottom 17 'of the mixing vessel is raised together with the shutter 29 and the filter 30, so that the top of the shutter 29 or filter 30 is at the same or slightly higher than the upper end of the inner wall 42 of the mixing vessel. Next, the reaggregates 28 'on the shutter 29 and / or the filter 30 are collected by a scraper or the like. By doing so, the reaggregated matter 28 'can be recovered easily and without waste. Thereafter, the bottom 17 'of the mixing tank is lowered to return to the original state. As a matter of course, the positional relationship between the bottom 17 'of the mixing tank and the inner wall 42 of the mixing tank is relative, and the operation of FIG. 6 is performed by lowering the inner wall 42 of the mixing tank. It is also good.
 次に、上記で回収した再凝集物を大気中で加熱する。それにより、再凝集物中の有機化合物成分(酸性基を有する水溶性高分子、アミノ基を有する水溶性高分子)が分解除去され、Dyイオンが酸素と化合することで、Dy2O3が得られる。 Next, the reaggregated material recovered above is heated in the air. As a result, the organic compound component (water-soluble polymer having an acidic group, water-soluble polymer having an amino group) in the reagglomerate is decomposed and removed, and the Dy ion combines with oxygen to form Dy 2 O 3. can get.
 なお、回収槽32に回収した水溶液(溶解分)にもDy成分が含まれているので、回収槽32に回収した溶解分を混合槽17に入れ、上記の追加凝集工程と溶解工程と再凝集工程とを繰り返すことで溶解分からもDyを回収することができる。これにより、Dyの全体としての分離回収率を更に向上させることができる。 Since the aqueous solution (the dissolved component) collected in the collection tank 32 also contains the Dy component, the dissolved component collected in the collection tank 32 is put into the mixing tank 17, and the additional aggregation step, the dissolution step, and the reaggregation described above are performed. Dy can be recovered from the solution by repeating the steps. This can further improve the separation and recovery rate of Dy as a whole.
 また、回収槽32に溜められた水溶液からDyを分離回収することは、回収槽32に回収される水溶液(溶解分)中のNdイオンの割合が高まることにつながる。そこで、Ndイオンの割合が所望の値まで高まったら、水溶液(溶解分)を加熱して水分と有機化合物成分とを除去することにより、Nd2O3を回収することが可能である。 Further, separating and recovering Dy from the aqueous solution stored in the recovery tank 32 leads to an increase in the proportion of Nd ions in the aqueous solution (dissolved matter) recovered in the recovery tank 32. Therefore, when the proportion of Nd ions increases to a desired value, Nd 2 O 3 can be recovered by heating the aqueous solution (dissolved matter) to remove water and organic compound components.
 凝集工程および再凝集工程において凝集物が生成する際、そのサイズが小さ過ぎて、混合槽中を漂って沈降に多大な時間を要する場合がある。その場合、混合槽内の縣濁液を遠心管に移し、遠心分離することにより、凝集物と溶解分とを分離してもよい。 When aggregates are formed in the aggregation step and re-aggregation step, their size may be too small and it may take a long time to settle down the mixing tank. In that case, the suspension in the mixing tank may be transferred to a centrifuge tube and centrifuged to separate the aggregate and the dissolved component.
 また、凝集工程および再凝集工程において、アミノ基を有する水溶性高分子を加えると凝集は瞬時に起こるので、水溶液の撹拌が不十分だと、凝集物や再凝固物の中に未反応のアミノ基を有する水溶性高分子が取り込まれ、トラップするはずの希土類元素イオンを取りこぼす可能性がある。そこで、アミノ基を有する水溶性高分子を加える管の先は、複数の吐出ノズルを具備し、投入する水溶性高分子が水溶液中に分散しやすくなるように構成されていることが好ましい。 In addition, since aggregation occurs instantaneously when a water-soluble polymer having an amino group is added in the aggregation step and reaggregation step, if the aqueous solution is not sufficiently stirred, unreacted amino acid in the aggregates or recoagulates A water-soluble polymer having a group may be incorporated, and the rare earth element ion to be trapped may be dropped. Therefore, it is preferable that the tip of the pipe to which the water-soluble polymer having an amino group is added has a plurality of discharge nozzles so that the water-soluble polymer to be charged can be easily dispersed in the aqueous solution.
 オーバーヘッドスターラー21の撹拌羽根20、混合槽17、酸の水溶液の入っている第4のタンク36、及び第4の配管38は、塩酸等の強酸に触れるので、金属材が腐食する可能性がある。そこで、これら部材に対し、直接酸が接触することを防ぐための耐酸性の樹脂皮膜を形成することが好ましい。具体的には、ポリカーボネート樹脂やアクリル樹脂等の熱可塑性樹脂をアセトンや2-ブタノン等の有機溶媒に溶解した塗料を、上記部材の所望の箇所に塗布し、有機溶媒を揮発させることで耐酸性樹脂皮膜を形成することができる。 The stirring blade 20 of the overhead stirrer 21, the mixing tank 17, the fourth tank 36 containing an aqueous solution of acid, and the fourth pipe 38 may be corroded because they touch strong acids such as hydrochloric acid. . Therefore, it is preferable to form an acid resistant resin film for preventing direct contact of the acid with these members. Specifically, a paint obtained by dissolving a thermoplastic resin such as a polycarbonate resin or an acrylic resin in an organic solvent such as acetone or 2-butanone is applied to a desired portion of the above-described member, and the organic solvent is evaporated to evaporate the organic solvent. It is possible to form a resin film.
 また、エポキシ樹脂やフェノール樹脂と、硬化剤(例えば、ジアミン等)とを有機溶媒に溶解した塗料を、上記部材の所望の箇所に塗布後、加熱することにより、樹脂分子同士が熱硬化して耐酸性樹脂皮膜を形成することが可能である。エポキシ樹脂やフェノール樹脂と、硬化剤との組み合わせからなる樹脂は、金属との密着性が高いので、上記部材が金属製(例えば、SUS、アルミ等)の場合に特に好適である。なお、上記部材を耐酸性の高い樹脂で作製しても、もちろん良い。 In addition, a coating obtained by dissolving an epoxy resin or a phenol resin and a curing agent (for example, diamine) in an organic solvent is applied to a desired portion of the above member and then heated to thermally cure resin molecules. It is possible to form an acid resistant resin film. A resin composed of a combination of an epoxy resin or a phenol resin and a curing agent is particularly suitable when the member is made of metal (for example, SUS, aluminum, etc.) because the adhesion to metal is high. Of course, the above-mentioned member may be made of a highly acid resistant resin.
 混合槽の内壁42やシャッター29の表面やフィルタ30の表面に凝集物28や再凝集物28’がこびりつくと、凝集物28/再凝集物28’の回収に支障をきたす場合がある。そこで、これら凝集物28/再凝集物28’が接触する可能性のある部材の表面は、表面エネルギーが低くなるような処理を施しておくことが望ましい。 If the aggregates 28 or reaggregates 28 'stick to the inner wall 42 of the mixing tank, the surface of the shutter 29 or the surface of the filter 30, the recovery of the aggregates 28 / reaggregates 28' may be disturbed. Therefore, it is desirable that the surface of the member to which the aggregates 28 / reaggregates 28 'may come in contact be treated so as to lower the surface energy.
 表面エネルギーが低い表面としては、例えば、水との接触角が90°以上であることが好適である。生成した凝集物28/再凝集物28’は水分をかなり含有しているので、水を弾きやすい表面に対しては凝集物28/再凝集物28’も付着しにくくなるためである。表面エネルギーが低くなるような処理としては、樹脂皮膜表面の水との接触角が90°以上になるものであれば特に限定は無いが、一例として、前述の耐酸性樹脂に対する相溶性が高く且つ撥水性の高い材料(例えば、分子構造中にシロキサン骨格を有するシリコーン化合物や、分子構造中にフッ素原子を多く含有するフッ素系化合物等)を前述の塗料に混合・塗布して樹脂皮膜を形成する方法がある。 As a surface with low surface energy, for example, it is preferable that the contact angle with water be 90 ° or more. This is because the formed aggregate 28 / reaggregate 28 'contains a large amount of water, so that the aggregate 28 / reaggregate 28' is also less likely to adhere to the surface that is likely to repel water. The treatment for lowering the surface energy is not particularly limited as long as the contact angle with water on the surface of the resin film is 90 ° or more, but as one example, the compatibility with the above-mentioned acid resistant resin is high and A resin film is formed by mixing and applying a highly water-repellent material (for example, a silicone compound having a siloxane skeleton in the molecular structure, a fluorine compound having a large number of fluorine atoms in the molecular structure, etc.) to the above-mentioned paint There is a way.
 本発明者等は、前述の耐酸性樹脂皮膜(ポリカーボネート樹脂、アクリル樹脂、硬化剤で硬化したエポキシ樹脂、硬化剤で硬化したフェノール樹脂)に種々の有機化合物を添加し、それによる撥水化効果(表面エネルギーの低下効果)を調査した。その結果、下記の有機化合物C~Mを塗料中の樹脂に対して2~5質量%添加して形成した耐酸性樹脂皮膜は、水との接触角がいずれも100°以上と高く、凝集物の付着が目視でほとんど見つけられない程の効果があった。これは、水との接触角が90°未満の樹脂皮膜の場合に比べて、有意な差であった。添加した有機化合物C~Mは、具体的には以下のとおりである。 The present inventors add various organic compounds to the above-mentioned acid resistant resin film (polycarbonate resin, acrylic resin, epoxy resin cured with curing agent, phenol resin cured with curing agent), and the water repellency effect thereby (Surface energy reduction effect) was investigated. As a result, acid-resistant resin films formed by adding 2 to 5% by mass of the following organic compounds C to M with respect to the resin in the paint have high contact angles with water as high as 100 ° or more, and aggregates There was an effect that the adhesion of was hardly found visually. This was a significant difference compared to the case of a resin film whose contact angle with water was less than 90 °. Specifically, the added organic compounds C to M are as follows.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記化合物の分子構造中の含フッ素鎖はパーフルオロポリエーテル鎖と呼ばれ、いずれの化合物でもパーフルオロポリエーテル鎖の平均分子量が1500以上3000以下の場合に良好な結果が得られた。パーフルオロポリエーテル鎖の平均分子量が1500未満の場合は撥水性が十分でなかった。また、該平均分子量が3000超の場合は耐酸性樹脂に対する相溶性が低く、塗料中で容易に分離するため、均質な樹脂皮膜の形成が困難であった。 The fluorine-containing chain in the molecular structure of the above compound is called a perfluoropolyether chain, and good results were obtained when the average molecular weight of the perfluoropolyether chain was 1,500 or more and 3,000 or less in any of the compounds. When the average molecular weight of the perfluoropolyether chain was less than 1,500, the water repellency was not sufficient. In addition, when the average molecular weight is more than 3000, the compatibility with the acid resistant resin is low, and it is easily separated in the paint, so that it is difficult to form a homogeneous resin film.
 (8)分離回収装置の形態2
 次に、本発明に係る希土類元素分離回収装置の他の形態について、図7を参照しながら説明する。図7は、本発明に係る希土類元素分離回収装置の他の一構成を示す模式図である。図7に示したように、本形態では、混合槽の下部領域にシャッター付きフィルタが配設されていない。
(8) Form 2 of separation and recovery device
Next, another embodiment of the rare earth element separation and recovery apparatus according to the present invention will be described with reference to FIG. FIG. 7 is a schematic view showing another configuration of the rare earth element separation and recovery apparatus according to the present invention. As shown in FIG. 7, in the present embodiment, no shuttered filter is disposed in the lower region of the mixing tank.
 前述の形態1と同様に、まず、別途用意した混合水溶液(Ndイオン及びDyイオンが含まれている水溶液)を、混合水溶液供給ポンプ18により混合水溶液配管19を通って、下部領域にシャッター付きフィルタを具備しない混合槽43に投入する。 In the same manner as in the first embodiment, first, a mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) prepared separately is passed through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18 and a filter with a shutter in the lower region Into a mixing tank 43 not equipped with
 次に、オーバーヘッドスターラー21によって混合槽43中の水溶液をよく攪拌しながら、第1のポンプ23により第1のタンク22から第1の配管24を通って酸性基を有する水溶性高分子の水溶液を混合槽43に投入する。その後、第2のポンプ26により第2のタンク25から第2の配管27を通ってアミノ基を有する水溶性高分子の水溶液を混合槽43に投入して、凝集物28を形成させる。 Next, while the aqueous solution in the mixing tank 43 is well stirred by the overhead stirrer 21, the aqueous solution of the water-soluble polymer having an acidic group is passed from the first tank 22 through the first pipe 24 by the first pump 23. Charge into mixing vessel 43. Thereafter, an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 43 from the second tank 25 through the second pipe 27 by the second pump 26 to form the aggregates 28.
 次に、溶解分回収ポンプ44により混合槽43から溶解分配管45を通って混合槽43中の溶解分を回収槽32に移送する。その際、溶解分配管45の取水口にはフィルタ46が設けられていることから、回収槽32内への凝集物28の混入を抑制することができる。 Next, the dissolved component in the mixing tank 43 is transferred from the mixing tank 43 to the collecting tank 32 by the dissolved liquid recovery pump 44 through the dissolving pipe 45. At that time, since the filter 46 is provided at the water intake port of the dissolution pipe 45, it is possible to suppress the mixture of the aggregates 28 in the recovery tank 32.
 その他の装置構成および工程は、前述の形態1と同様である。本形態の分離回収装置は、溶解分をポンプで吸引することから、前述の形態1の分離回収装置に比して、凝集物と溶解分とをより短時間で分離できる特徴がある。 The other device configurations and steps are the same as in the first embodiment. The separation and recovery apparatus of the present embodiment is characterized in that since the dissolved component is sucked by a pump, the aggregate and the dissolved component can be separated in a shorter time as compared with the above-described separation and recovery apparatus of the first embodiment.
 (9)分離回収装置の形態3
 次に、本発明に係る希土類元素分離回収装置の更に他の形態について、図8を参照しながら説明する。図8は、本発明に係る希土類元素分離回収装置の更に他の一構成を示す模式図である。図8に示したように、本形態では、混合槽の下部領域にシャッター付きフィルタが配設されておらず、混合槽が側壁から溶解分を流出させる機構を具備している。
(9) Form 3 of separation and recovery device
Next, another embodiment of the rare earth element separation and recovery apparatus according to the present invention will be described with reference to FIG. FIG. 8 is a schematic view showing still another configuration of the rare earth element separation and recovery apparatus according to the present invention. As shown in FIG. 8, in the present embodiment, the shuttered filter is not disposed in the lower region of the mixing tank, and the mixing tank has a mechanism for causing the solution to flow out from the side wall.
 前述の形態1と同様に、まず、別途用意した混合水溶液(Ndイオン及びDyイオンが含まれている水溶液)を、混合水溶液供給ポンプ18により混合水溶液配管19を通って混合槽49に投入する。混合槽49は、下部領域にシャッター付きフィルタが配設されておらず、側壁に溶解分の流量を制御するためのバルブ47を有する排出口48が具備されている。 As in the first embodiment, first, a mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) prepared separately is introduced into the mixing tank 49 through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18. The mixing tank 49 is not provided with a shuttered filter in the lower region, and is provided with a discharge port 48 having a valve 47 for controlling the flow rate of the solution on the side wall.
 次に、オーバーヘッドスターラー21によって混合槽49中の水溶液をよく攪拌しながら、第1のポンプ23により第1のタンク22から第1の配管24を通って酸性基を有する水溶性高分子の水溶液を混合槽49に投入する。その後、第2のポンプ26により第2のタンク25から第2の配管27を通ってアミノ基を有する水溶性高分子の水溶液を混合槽49に投入して、凝集物28を形成させる。 Next, while the aqueous solution in the mixing tank 49 is well stirred by the overhead stirrer 21, the aqueous solution of the water-soluble polymer having an acidic group is passed from the first tank 22 through the first pipe 24 by the first pump 23. Charge into mixing tank 49. Thereafter, an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 49 from the second tank 25 through the second pipe 27 by the second pump 26 to form the aggregates 28.
 次に、排出口48のバルブ47を開放することにより、混合槽49から中の溶解分を回収槽32に排出する。その際、排出口48の先端および/または取水口にフィルタ(図示せず)を設けることが望ましく、それにより回収槽32内への凝集物28の混入を抑制することができる。また、排出口48は、混合槽49の上下方向に移動できる機構(図示せず)を具備していることが好ましい。それにより、凝集物と溶解分との分離をより効率的に行うことが可能になる。その他の装置構成および工程は、前述の形態1と同様である。 Next, the valve 47 of the discharge port 48 is opened to discharge the dissolved component from the mixing tank 49 to the recovery tank 32. At that time, it is desirable to provide a filter (not shown) at the tip of the discharge port 48 and / or the water intake port, whereby the inclusion of the aggregates 28 in the recovery tank 32 can be suppressed. Further, the discharge port 48 preferably includes a mechanism (not shown) capable of moving in the vertical direction of the mixing tank 49. Thereby, it is possible to more efficiently separate the aggregate and the solution. The other device configurations and steps are the same as in the first embodiment.
 (10)分離回収装置の形態4
 次に、本発明に係る希土類元素分離回収装置の更に他の形態について、図9を参照しながら説明する。図9は、本発明に係る希土類元素分離回収装置の更に他の一構成を示す模式図である。図9に示したように、本形態は、基本的に前述の形態1と同様の装置構成を有するが、酸性基を有する水溶性高分子を用いる代わりに陽イオン交換樹脂を用いて希土類元素の分離回収を行う点で異なっている。具体的には、酸性基を有する水溶性高分子の水溶液を混合槽に投入する機構(第1のタンク、第1のポンプ、第1の配管)が無く、予め混合槽17の中に陽イオン交換樹脂50を入れておく。
(10) Form 4 of separation and recovery device
Next, another embodiment of the rare earth element separation and recovery apparatus according to the present invention will be described with reference to FIG. FIG. 9 is a schematic view showing still another configuration of the rare earth element separation and recovery apparatus according to the present invention. As shown in FIG. 9, this embodiment basically has the same apparatus configuration as that of the above-mentioned embodiment 1, but instead of using a water-soluble polymer having an acidic group, a cation exchange resin is used to form a rare earth element. They differ in that they are separated and recovered. Specifically, there is no mechanism (a first tank, a first pump, a first pipe) for charging an aqueous solution of a water-soluble polymer having an acidic group into the mixing tank, and the cation in the mixing tank 17 in advance. Insert the replacement resin 50.
 まず、別途用意した混合水溶液(Ndイオン及びDyイオンが含まれている水溶液)を混合水溶液供給ポンプ18により、混合水溶液配管19を通って混合槽17に投入する。その後、オーバーヘッドスターラー21によって混合槽17中の水溶液を攪拌する。 First, a separately prepared mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) is introduced into the mixing tank 17 through the mixed aqueous solution pipe 19 by the mixed aqueous solution supply pump 18. Thereafter, the aqueous solution in the mixing tank 17 is stirred by the overhead stirrer 21.
 次に、第2のポンプ26により、第2のタンク25から第2の配管27を通ってアミノ基を有する水溶性高分子の水溶液を混合槽17に投入する。すると、混合槽17内でアミノ基を有する水溶性高分子と陽イオン交換樹脂50の酸性基とがイオン結合して、陽イオン交換樹脂50の表面に凝集物が形成される。凝集物の形成後、撹拌を停止する。 Next, an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the second tank 25 through the second pipe 27 by the second pump 26. Then, the water-soluble polymer having an amino group and the acid group of the cation exchange resin 50 are ionically bonded in the mixing tank 17 to form an aggregate on the surface of the cation exchange resin 50. Stirring is stopped after the formation of aggregates.
 次に、シャッター29を開いて混合槽17から溶解分を排出する。表面に凝集物が形成された陽イオン交換樹脂50はフィルタ30でせき止められるため、混合槽17からは排出されない。混合槽17の溶解分が排出された後、シャッター29を閉じる。排出された溶解分は、バルブ31を通って混合槽17の下方に配設された回収槽32に入る。 Next, the shutter 29 is opened to discharge the solution from the mixing tank 17. The cation exchange resin 50 in which the aggregates are formed on the surface is blocked by the filter 30, so it is not discharged from the mixing tank 17. After the dissolved content of the mixing tank 17 is discharged, the shutter 29 is closed. The discharged solution passes through a valve 31 and enters a recovery tank 32 disposed below the mixing tank 17.
 次に、第3のポンプ34により、第3のタンク33から第3の配管35を通って脱イオン水を混合槽17に残留した陽イオン交換樹脂50に降りかけ、陽イオン交換樹脂50の表面を洗浄する。洗浄水を排出した後、第4のポンプ37により、第4のタンク36から第4の配管38を通って塩酸水溶液を混合槽17に投入して、陽イオン交換樹脂50の表面の凝集物を溶解させる。 Next, deionized water is allowed to fall on the cation exchange resin 50 remaining in the mixing tank 17 from the third tank 33 through the third pipe 35 by the third pump 34, and the surface of the cation exchange resin 50 Wash. After draining the washing water, the fourth pump 37 feeds the hydrochloric acid aqueous solution from the fourth tank 36 through the fourth pipe 38 into the mixing tank 17 to collect the aggregates on the surface of the cation exchange resin 50. Let it dissolve.
 次に、第5のポンプ40により第5のタンク39から第5の配管41を通って水酸化ナトリウム水溶液を混合槽17に投入して溶液のpHを調整し、引き続き、第2ポンプ26により第2のタンク25から第2配管27を通ってアミノ基を有する水溶性高分子の水溶液を混合槽17に投入すると、陽イオン交換樹脂50の表面に再凝集物が形成される。 Next, the aqueous solution of sodium hydroxide is introduced into the mixing tank 17 through the fifth tank 39 through the fifth pipe 41 by the fifth pump 40 to adjust the pH of the solution, and the second pump 26 subsequently When an aqueous solution of a water-soluble polymer having an amino group is introduced into the mixing tank 17 from the tank 25 of the No. 2 through the second pipe 27, reaggregates are formed on the surface of the cation exchange resin 50.
 陽イオン交換樹脂50の表面への凝集物の形成、凝集物の洗浄、凝集物の溶解、および凝集物の再形成を繰り返すことにより、凝集物中から主にNdイオンが除去され、Dyイオンの割合が高まる。 By repeating the formation of aggregates on the surface of the cation exchange resin 50, the washing of the aggregates, the dissolution of the aggregates, and the re-formation of the aggregates, the Nd ions are mainly removed from the aggregates and the Dy ions are removed. The proportion will increase.
 再凝集物中のDyイオンの割合を所望の値まで高めた後、再凝集物を塩酸水溶液で溶解する。シャッター29を開いて溶解した液体分(陽イオン交換樹脂50以外)を混合槽17から排出する。排出された液体分は、バルブ31を通って混合槽17の下方に配設された第2の回収槽51に回収される。さらに、脱イオン水で陽イオン交換樹脂50の表面を洗浄し、その洗浄液も第2の回収槽51に移す。 After raising the percentage of Dy ions in the reagglomerate to the desired value, the reagglomerate is dissolved in aqueous hydrochloric acid. The shutter 29 is opened to discharge the dissolved liquid (other than the cation exchange resin 50) from the mixing tank 17. The discharged liquid portion is recovered through the valve 31 to the second recovery tank 51 disposed below the mixing tank 17. Furthermore, the surface of the cation exchange resin 50 is washed with deionized water, and the washing solution is also transferred to the second recovery tank 51.
 次に、第5のポンプ40により、第5のタンク39から第5の配管41、混合槽17およびバルブ31を通って水酸化ナトリウム水溶液を第2の回収槽51に投入し、第2の回収槽51中の水溶液のpHを2前後(例えば、1~3)に調整する。続いて、第6のポンプ53により第6のタンク52から第6の配管54を通ってアミノ基を有する水溶性高分子の水溶液を加えると再凝集物55が形成する。 Next, the sodium hydroxide aqueous solution is introduced into the second recovery tank 51 through the fifth tank 39 through the fifth pipe 41, the mixing tank 17, and the valve 31 by the fifth pump 40, and the second recovery is performed. The pH of the aqueous solution in the tank 51 is adjusted to around 2 (for example, 1 to 3). Subsequently, when an aqueous solution of a water-soluble polymer having an amino group is added from the sixth tank 52 through the sixth pipe 54 by the sixth pump 53, reaggregates 55 are formed.
 次に、シャッター56を開くと、フィルタ57を通って第2の回収槽51から再凝集物55以外の液体(溶解分)が排出される。第2の回収槽51中の液体成分が排出された後、シャッター56を閉じ、再凝集物55を加熱して乾燥させる。 Next, when the shutter 56 is opened, the liquid (dissolved matter) other than the reaggregate 55 is discharged from the second recovery tank 51 through the filter 57. After the liquid component in the second recovery tank 51 is discharged, the shutter 56 is closed, and the reagglomerated material 55 is heated and dried.
 その後、スクレイパー等でフィルタ57上の乾燥した再凝集物55を回収する。このとき、図6と同様に、第2の回収槽51の底部をシャッター56およびフィルタ57と共に第2の回収槽51の内壁に対して上昇させて回収する、または、第2の回収槽51の内壁を第2の回収槽51の底部に対して下降させて回収することが好ましい。 Thereafter, the dried reaggregates 55 on the filter 57 are collected by a scraper or the like. At this time, similarly to FIG. 6, the bottom of the second recovery tank 51 is raised with respect to the inner wall of the second recovery tank 51 together with the shutter 56 and the filter 57 for recovery, or the second recovery tank 51 is It is preferable to lower the inner wall relative to the bottom of the second recovery tank 51 for recovery.
 次に、回収した再凝集物55を大気中で加熱し、再凝集物55中の有機化合物成分(酸性基を有する水溶性高分子、アミノ基を有する水溶性高分子)を分解除去することで、Dy2O3が得られる。 Next, the recovered reaggregation 55 is heated in the air to decompose and remove the organic compound component (water-soluble polymer having an acidic group, water-soluble polymer having an amino group) in the reaggregation 55 , Dy 2 O 3 are obtained.
 本形態の分離回収装置は、陽イオン交換樹脂50を用いることにより、混合槽17中の凝集物が陽イオン交換樹脂50に付着した形で形成されるため、他の形態の分離回収装置の場合よりも凝集物のサイズを大型化できる。そのため、凝集物と溶解分とを濾別する際、フィルタ30が詰まりにくく、より簡便に(例えば、短時間で)分離できる特徴がある。 In the separation and recovery apparatus of this embodiment, the aggregates in the mixing tank 17 are formed by adhering to the cation exchange resin 50 by using the cation exchange resin 50. The size of the aggregates can be increased more than that. Therefore, when the aggregate and the solution are separated by filtration, the filter 30 is less likely to be clogged, and the filter 30 can be more easily separated (for example, in a short time).
 なお、溶解分を第2の回収槽51に回収した後、アルカリ金属水酸化物(例えば、水酸化ナトリウム、水酸化カリウム等)を加えると、Dyイオンと化合して水に難溶な水酸化ジスプロシウムが生成する。この化合物を濾別し、還元することによっても、希土類元素を再利用することができる。 After the solution is recovered in the second recovery tank 51, when an alkali metal hydroxide (for example, sodium hydroxide, potassium hydroxide, etc.) is added, it is combined with the Dy ion and poorly soluble in water. It produces dysprosium. The rare earth element can also be recycled by filtering this compound out and reducing it.
 (11)分離回収装置の形態5
 次に、本発明に係る希土類元素分離回収装置の更に他の形態について、図10を参照しながら説明する。図10は、本発明に係る希土類元素分離回収装置の更に他の一構成を示す模式図である。図10に示したように、本形態は、基本的に前述の形態4と同様の装置構成を有するが、フィルタによる濾別の代わりに磁気分離法を用いて希土類元素の分離回収を行う点で異なっている。より具体的には、混合槽17に入れる陽イオン交換樹脂58はその内部に磁性粉を含有している。なお、図10では、図面の簡素化の観点から、図9と重複する部分の図示を一部省略している。
(11) Form 5 of separation and recovery device
Next, still another embodiment of the rare earth element separation and recovery apparatus according to the present invention will be described with reference to FIG. FIG. 10 is a schematic view showing still another configuration of the rare earth element separation and recovery apparatus according to the present invention. As shown in FIG. 10, this embodiment basically has the same apparatus configuration as the above-mentioned embodiment 4, but in that the separation and recovery of the rare earth elements are performed using the magnetic separation method instead of the filtration by the filter. It is different. More specifically, the cation exchange resin 58 placed in the mixing tank 17 contains magnetic powder inside. In addition, in FIG. 10, illustration of the part which overlaps with FIG. 9 is partially omitted from a viewpoint of simplification of drawing.
 前述の形態4と同様に、まず、別途用意した混合水溶液(Ndイオン及びDyイオンが含まれている水溶液)を混合槽17に投入し、次にアミノ基を有する水溶性高分子の水溶液を混合槽17に投入することで、磁性粉含有陽イオン交換樹脂58の表面に凝集物を形成させる。 As in the above-mentioned embodiment 4, first, a separately prepared mixed aqueous solution (an aqueous solution containing Nd ions and Dy ions) is introduced into the mixing tank 17, and then an aqueous solution of a water-soluble polymer having an amino group is mixed. By charging into the tank 17, aggregates are formed on the surface of the magnetic powder-containing cation exchange resin 58.
 次に、シャッター29を開いて混合槽17から溶解分を排出し、磁性粉含有陽イオン交換樹脂58の表面を脱イオン水で洗浄した後、塩酸水溶液を混合槽17に投入して磁性粉含有陽イオン交換樹脂58の表面の凝集物を溶解させる。次に、水酸化ナトリウム水溶液を混合槽17に投入して溶液のpHを調整し、引き続き、第2ポンプ26により第2のタンク25から第2配管27を通ってアミノ基を有する水溶性高分子の水溶液を混合槽17に投入して、磁性粉含有陽イオン交換樹脂58の表面に再凝集物を形成させる。 Next, the shutter 29 is opened to discharge the dissolved component from the mixing tank 17 and the surface of the magnetic powder-containing cation exchange resin 58 is washed with deionized water, and then a hydrochloric acid aqueous solution is introduced into the mixing tank 17 to contain magnetic powder. The aggregates on the surface of the cation exchange resin 58 are dissolved. Next, a sodium hydroxide aqueous solution is introduced into the mixing tank 17 to adjust the pH of the solution, and subsequently, a water-soluble polymer having an amino group from the second tank 25 through the second pipe 27 by the second pump 26 The aqueous solution is placed in the mixing tank 17 to form reaggregates on the surface of the magnetic powder-containing cation exchange resin 58.
 磁性粉含有陽イオン交換樹脂58の表面への凝集物の形成、凝集物の洗浄、凝集物の溶解、および凝集物の再形成を繰り返すことにより、凝集物中から主にNdイオンが除去され、Dyイオンの割合が高まる。 By repeating the formation of aggregates on the surface of the magnetic powder-containing cation exchange resin 58, the washing of the aggregates, the dissolution of the aggregates, and the re-formation of the aggregates, mainly Nd ions are removed from the aggregates, The percentage of Dy ions increases.
 再凝集物中のDyイオンの割合を所望の値まで高めた後、磁気分離方式で分離回収する機構によって、表面に再凝集物が形成された磁性粉含有陽イオン交換樹脂58を混合槽17から分離回収する。 After the proportion of Dy ions in the reaggregates is increased to a desired value, the magnetic powder-containing cation exchange resin 58 having reaggregates formed on the surface is separated from the mixing tank 17 by the mechanism of separating and recovering by the magnetic separation method. Separate and collect.
 磁気分離方式で分離回収する機構(磁性粉含有凝集物搬送機構)は、第1のローラー59、第2のローラー60、第3のローラー61、第4のローラー62、および搬送ベルト63を具備している。第4のローラー62から第1のローラー59を経て第2のローラー60までの間の搬送ベルト63の表面は、磁力を有する構造とすることで、混合槽17中の磁性粉含有陽イオン交換樹脂58を再凝集物と共に搬送ベルト63の表面に付着させることができる。第2のローラー60から第3のローラー61を経て第4のローラー62までの間の搬送ベルト63の表面は、磁力を有しない構造となっており、再凝集物は、搬送ベルト63の表面から外れて凝集物回収槽64に落ちる。この凝集物回収槽64には、下部にシャッター65及びフィルタ66が設けられている。 A mechanism (magnetic powder-containing aggregate conveyance mechanism) for separating and collecting by the magnetic separation method includes a first roller 59, a second roller 60, a third roller 61, a fourth roller 62, and a conveyance belt 63. ing. The surface of the conveyance belt 63 between the fourth roller 62 and the first roller 59 to the second roller 60 has a magnetic force, whereby the magnetic powder-containing cation exchange resin in the mixing tank 17 is obtained. 58 can be adhered to the surface of the conveyor belt 63 along with the reaggregates. The surface of the conveyance belt 63 between the second roller 60, the third roller 61, and the fourth roller 62 has a structure having no magnetic force, and the reaggregates are formed from the surface of the conveyance belt 63. It falls off and falls into the aggregate collection tank 64. A shutter 65 and a filter 66 are provided at the lower part of the aggregate recovery tank 64.
 本形態の分離回収装置は、このようにして、Dyイオンをトラップした再凝集物が付着した磁性粉含有陽イオン交換樹脂58を混合槽17から凝集物回収槽64に回収することができる。 In this way, the separation and recovery apparatus of the present embodiment can recover the magnetic powder-containing cation exchange resin 58 to which the reaggregated matter in which the Dy ions are trapped adheres from the mixing tank 17 to the aggregate recovery tank 64.
 次に、図11を参照しながら、磁性粉含有陽イオン交換樹脂58の表面に形成した再凝集物から希土類元素を回収する工程について説明する。図11は、図10に示した分離回収装置において凝集物回収槽から希土類元素を回収する機構を示す模式図である。 Next, with reference to FIG. 11, the process of recovering the rare earth element from the reaggregation formed on the surface of the magnetic powder-containing cation exchange resin 58 will be described. FIG. 11 is a schematic view showing a mechanism for recovering the rare earth element from the aggregate recovery tank in the separation and recovery apparatus shown in FIG.
 図11に示したように、第7のポンプ68により、第7のタンク67から第7の配管69を通って塩酸水溶液を凝集物回収槽64に投入して、磁性粉含有陽イオン交換樹脂58の表面の凝集物を溶解させる。次に、シャッター65を開けると、凝集物が溶解した液体と溶解した磁性粉とがフィルタ66を通過して回収槽70に入る。一方、陽イオン交換樹脂はフィルタ66上に残る。この回収槽70には、下部にシャッター74及びフィルタ75が設けられている。 As shown in FIG. 11, the seventh pump 68 feeds the hydrochloric acid aqueous solution to the aggregate recovery tank 64 from the seventh tank 67 through the seventh pipe 69, and the magnetic powder-containing cation exchange resin 58 Dissolve surface aggregates. Next, when the shutter 65 is opened, the liquid in which the aggregates are dissolved and the dissolved magnetic powder pass through the filter 66 and enter the collection tank 70. Meanwhile, the cation exchange resin remains on the filter 66. A shutter 74 and a filter 75 are provided at the lower part of the recovery tank 70.
 次に、第8のポンプ72により、第8のタンク71から第8の配管73を通って水酸化ナトリウム水溶液を回収槽70に投入する。すると、溶解していた希土類元素が水に難溶な水酸化物となって析出する。その後、シャッター74を開けると、液体分(溶解した磁性粉)はフィルタ75を通過して薬剤回収槽76に入る。一方、析出した希土類元素の水酸化物77はフィルタ75上に残る。希土類元素の水酸化物77を回収して還元することにより、希土類元素を再利用することができる。 Next, the eighth tank 72 feeds the sodium hydroxide aqueous solution into the recovery tank 70 through the eighth tank 71 and the eighth pipe 73. Then, the dissolved rare earth element precipitates as a poorly soluble hydroxide in water. Thereafter, when the shutter 74 is opened, the liquid (dissolved magnetic powder) passes through the filter 75 and enters the medicine recovery tank 76. On the other hand, the precipitated rare earth element hydroxide 77 remains on the filter 75. The rare earth element can be reused by recovering and reducing the hydroxide 77 of the rare earth element.
 以下に具体的な実施例を示して、本発明の内容を更に詳細に説明する。ただし、以下の実施例は本発明の内容の具体例を示すものであり、本発明がこれらの実施例に限定されるものではない。また、本発明は、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。 Hereinafter, the present invention will be described in more detail by way of specific examples. However, the following examples show specific examples of the contents of the present invention, and the present invention is not limited to these examples. Furthermore, the present invention is capable of various changes and modifications by those skilled in the art within the scope of the technical idea disclosed herein.
 塩化ネオジム(NdCl3)と塩化ジスプロシウム(DyCl3)とを水に溶解した混合水溶液を調製した。その際、Nd濃度およびDy濃度がどちらも5000 ppmとなるよう調整した。得られた混合水溶液の比重を1.0と近似した場合、Ndのモル濃度およびDyのモル濃度はそれぞれ34.66 mmol/L及び30.77 mmol/Lとなる。 A mixed aqueous solution was prepared in which neodymium chloride (NdCl 3 ) and dysprosium chloride (DyCl 3 ) were dissolved in water. At that time, both Nd concentration and Dy concentration were adjusted to 5000 ppm. When the specific gravity of the obtained mixed aqueous solution is approximated to 1.0, the molar concentration of Nd and the molar concentration of Dy are 34.66 mmol / L and 30.77 mmol / L, respectively.
 この混合水溶液100 g(希土類元素イオン数は6.54 mmol)を図5に示す分離回収装置の混合槽に入れて撹拌しながら、酸性基を有する水溶性高分子としてポリアクリル酸の10質量%水溶液を0.942 g(平均分子量が5,000、繰り返し単位数は1.31 mmol)添加した。更にアミノ基を有する水溶性高分子として化合物Aの10質量%水溶液を4.709 g(繰り返し単位数は6.54 mmol)添加した。 While putting 100 g of this mixed aqueous solution (rare earth element ion number is 6.54 mmol) in the mixing tank of the separation and recovery apparatus shown in FIG. 5 and stirring, a 10 mass% aqueous solution of polyacrylic acid as a water-soluble polymer having an acidic group 0.942 g (average molecular weight 5,000, repeat unit number 1.31 mmol) was added. Furthermore, 4.709 g (number of repeating units: 6.54 mmol) of a 10% by mass aqueous solution of Compound A was added as a water-soluble polymer having an amino group.
 すると、白い凝集物が生成した。得られた凝集物をフィルタで濾別し、フィルタ上の凝集物を脱イオン水で洗浄した。凝集物を塩酸で溶解し、誘導結合プラズマ法(Inducutively Coupled Plasma法)により凝集物中のNdおよびDyの比率を測定したところ、それぞれ約20%および約80%であった。また、溶解分中のそれを測定したところ、Ndが約3900 ppmで、Dyが約600 ppmであった。すなわち、濾液および洗浄液には主にNdイオンが含まれており、凝集物には主にDyイオンが含まれていた。この結果から、一度目の凝集工程により、混合溶液中の希土類元素のうち約88質量%のDyイオンと、約22質量%のNdイオンとを凝集物内に取り込むことが判明した。 Then, white aggregates were formed. The resulting aggregate was filtered off with a filter and the aggregate on the filter was washed with deionized water. The aggregate was dissolved with hydrochloric acid, and the ratio of Nd and Dy in the aggregate was measured by inductively coupled plasma method to be about 20% and about 80%, respectively. In addition, when it was measured in the solution, it was found that Nd was about 3900 ppm and Dy was about 600 ppm. That is, the filtrate and the washing solution mainly contained Nd ions, and the aggregates mainly contained Dy ions. From this result, it was found that in the first aggregation step, about 88% by mass of Dy ions and about 22% by mass of Nd ions of the rare earth elements in the mixed solution were incorporated into the aggregate.
 次に、凝集物の溶解工程及び再凝集工程について、より具体的に説明する。 Next, the step of dissolving the aggregates and the step of reaggregation will be described more specifically.
 凝集物に1 Nの塩酸(HCl)水溶液を滴下すると、凝集物が次第に溶解した。この溶解液を撹拌しながら、pHが約2になるまで1 Nの水酸化ナトリウム(NaOH)水溶液を滴下した。この溶液を撹拌しながら、続いて化合物Aの10質量%水溶液をpHが約8になるまで滴下した。すると、再び凝集物が生成した。得られた再凝集物をフィルタで濾別し、フィルタ上の再凝集物を脱イオン水で洗浄した。 When 1 N hydrochloric acid (HCl) aqueous solution was dropped to the aggregates, the aggregates gradually dissolved. While stirring this solution, a 1 N aqueous solution of sodium hydroxide (NaOH) was added dropwise until the pH reached about 2. While stirring this solution, a 10% by weight aqueous solution of Compound A was subsequently added dropwise until the pH reached about 8. Then, aggregates were formed again. The resulting reagglomerate was filtered off with a filter and the reaggregate on the filter was washed with deionized water.
 以上が凝集物の溶解工程及び再凝集工程であり、これらを繰り返すことにより、凝集物中のNdイオンが徐々に濾液に移り、結果的に凝集物中のDyイオンの割合が大きくなる。 The above is the dissolving and re-flocculating steps of the aggregate. By repeating these steps, the Nd ions in the aggregate gradually transfer to the filtrate, and as a result, the percentage of Dy ions in the aggregate increases.
 二度目の凝集工程(一度目の再凝集工程)により、混合槽に投入したNdCl3とDyCl3との混合水溶液中の約77.4質量%(≒0.882)のDyイオンと、約4.8質量%(≒0.222)のNdイオンとが凝集物内に取り込まれる。すなわち、凝集物内の希土類元素イオンのうちのDyイオンの割合(すなわち純度)は94.2%となる。 The second time aggregation process (first time of the re-aggregation step), and Dy ions from about 77.4 wt% of the mixed aqueous solution of NdCl 3 and DyCl 3 charged into the mixing tank (≒ 0.88 2), about 4.8 wt% ( ≒ 0.222 2 ) Nd ions are incorporated into the aggregate. That is, the proportion (that is, the purity) of the Dy ion to the rare earth element ion in the aggregate is 94.2%.
 三度目の凝集工程(二度目の再凝集工程)により、混合槽に投入したNdCl3とDyCl3との混合水溶液中の約68.15質量%(≒0.883)のDyイオンと、約1.06質量%(≒0.223)のNdイオンとが凝集物内に取り込まれる。すなわち、凝集物内の希土類元素イオンのうちのDyイオンの割合(純度)は98%となる。 About 68.15 mass% (≒ 0.88 3 ) of Dy ions and about 1.06 mass% (≒ 0.88 3 ) in the mixed aqueous solution of NdCl 3 and DyCl 3 charged into the mixing tank in the third aggregation step (second reaggregation step) ≒ 0.223 3 ) Nd ions are incorporated into the aggregate. That is, the ratio (purity) of the Dy ion to the rare earth element ion in the aggregate is 98%.
 このようにして所望の割合まで凝集物内のDyイオンの濃度を高めた後、凝集物を1 Nの塩酸水溶液で溶解し、その後、撹拌しながら少しずつ5 Nの水酸化ナトリウム水溶液を加えた。すると、中性近傍で凝集物を生成したが、引き続き5 Nの水酸化ナトリウム水溶液を加えることにより、凝集物は溶解した。更に5 Nの水酸化ナトリウム水溶液を加えると、水に難溶の水酸化ジスプロシウム(Dy(OH)3)が析出した。析出した水酸化ジスプロシウムを濾別して回収し、これを還元したところ、ジスプロシウム単体を得ることができた。 After the concentration of Dy ions in the aggregate was increased to the desired ratio in this way, the aggregate was dissolved in 1 N aqueous hydrochloric acid solution, and then 5 N aqueous sodium hydroxide solution was added little by little while stirring. . Then, an aggregate was formed in the vicinity of neutrality, but the aggregate was dissolved by subsequently adding a 5 N aqueous solution of sodium hydroxide. When 5 N aqueous sodium hydroxide solution was further added, poorly soluble dysprosium hydroxide (Dy (OH) 3 ) in water was precipitated. The precipitated dysprosium hydroxide was separated by filtration and recovered, and was reduced to obtain dysprosium alone.
 凝集物中のDyイオンが所望の割合となるまでは、前述の実施例1と同様の工程で行った。この後、凝集物を図6に示す工程で回収した。回収した凝集物を加熱すると、凝集物中の有機化合物(アミノ基を有する水溶性高分子、及び酸性基を有する水溶性高分子)が熱により分解し、酸化ジスプロシウムが生成した。得られた酸化ジスプロシウムを還元したところ、ジスプロシウム単体を得ることができた。 The same steps as in Example 1 were performed until the desired proportion of Dy ions in the aggregate was obtained. After this, the aggregate was recovered in the step shown in FIG. When the recovered aggregate was heated, the organic compounds (water-soluble polymer having an amino group and water-soluble polymer having an acidic group) in the aggregate were thermally decomposed to form dysprosium oxide. When the obtained dysprosium oxide was reduced, dysprosium alone could be obtained.
 ポリアクリル酸の10質量%水溶液0.942 g(繰り返し単位数は1.31 mmol)を用いる代わりに、交換当量が4.7 mEq/mLの陽イオン交換樹脂(真比重は約0.8)0.446 g(酸性基の数は2.62 mmol)を用い、図9に示す分離回収装置を用いる以外は実施例1と同様の実験を行った。 Instead of using 0.942 g of a 10% by weight aqueous solution of polyacrylic acid (the number of repeating units is 1.31 mmol), 0.446 g (the number of acid groups) of a cation exchange resin having an exchange equivalent of 4.7 mEq / mL The same experiment as in Example 1 was conducted using 2.62 mmol) and using the separation and recovery apparatus shown in FIG.
 実施例1と同じ混合水溶液100 g(希土類元素イオン数は6.54 mmol)を、陽イオン交換樹脂が入っている混合槽に投入し、化合物Aの水溶液を添加したところ、陽イオン交換樹脂の表面に凝集物が析出した。この凝集物を脱イオン水で洗浄し、その後、凝集物の溶解工程および再凝集工程を繰り返すことで、凝集物中のDyイオンの比率を高めた。 100 g of the same mixed aqueous solution as in Example 1 (number of rare earth element ions: 6.54 mmol) was introduced into a mixing tank containing a cation exchange resin, and an aqueous solution of Compound A was added, resulting in the surface of the cation exchange resin. Aggregates were deposited. The aggregate was washed with deionized water, and then the step of dissolving and reaggregating the aggregate was repeated to increase the percentage of Dy ions in the aggregate.
 所望の割合まで凝集物内のDyイオンの濃度を高めた後、凝集物を1 Nの塩酸で溶解し、その後、5 Nの水酸化ナトリウム水溶液を加えることにより水酸化ジスプロシウムを析出させた。析出した水酸化ジスプロシウムを濾別して回収し、これを還元したところ、ジスプロシウム単体を得ることができた。 After the concentration of Dy ions in the aggregate was increased to the desired proportion, the aggregate was dissolved with 1 N hydrochloric acid, and then dysprosium hydroxide was precipitated by adding an aqueous 5 N sodium hydroxide solution. The precipitated dysprosium hydroxide was separated by filtration and recovered, and was reduced to obtain dysprosium alone.
 なお、この実施例3を通して、一度の凝集工程でDyイオンの約80%とNdイオンの約20%とが、凝集物中にトラップされることが判った。 In addition, it was found through Example 3 that about 80% of Dy ions and about 20% of Nd ions are trapped in the aggregate in one aggregation step.
 図10の分離回収装置を用い、単純な陽イオン交換樹脂の代わりに、樹脂内部に磁性粉を含有した陽イオン交換樹脂を用いる以外は実施例3と同様にして希土類元素の分離回収を行った。前述と同様の工程により、磁性粉含有陽イオン交換樹脂の表面に生成する凝集物中のDyイオンの比率を所望の値まで高めた。その後、凝集物の付着した磁性粉含有陽イオン交換樹脂を図10に示したローラーと磁気ベルトとからなる回収機構で回収した。 The separation and recovery of the rare earth element was performed in the same manner as in Example 3 using the separation and recovery apparatus of FIG. 10 and using a cation exchange resin containing magnetic powder inside the resin instead of a simple cation exchange resin. . By the same process as described above, the ratio of Dy ions in the aggregates formed on the surface of the magnetic powder-containing cation exchange resin was increased to a desired value. Thereafter, the magnetic powder-containing cation exchange resin to which the aggregates are attached was recovered by a recovery mechanism comprising a roller and a magnetic belt as shown in FIG.
 回収した磁性粉含有陽イオン交換樹脂の表面に生成した凝集物を、実施例1と同様に塩酸で溶解した。その後、水酸化ナトリウム水溶液を加えて水酸化ジスプロシウムを析出させた。析出した水酸化ジスプロシウムを濾別して回収し、これを還元したところ、ジスプロシウム単体を得ることができた。 The aggregate formed on the surface of the recovered magnetic powder-containing cation exchange resin was dissolved with hydrochloric acid in the same manner as in Example 1. Thereafter, an aqueous solution of sodium hydroxide was added to precipitate dysprosium hydroxide. The precipitated dysprosium hydroxide was separated by filtration and recovered, and was reduced to obtain dysprosium alone.
 アミノ基を有する水溶性高分子として化合物A(10質量%水溶液、4.709 g)の代わりに化合物Bの10質量%水溶液5.625 g(繰り返し単位数は3.27 mmol)を添加した。それ以外は実施例1と同様にして希土類元素の分離回収を行った。なお、化合物Bは繰り返し単位の中にアミノ基を2個有するので、添加する繰り返し単位数は化合物Aの半分でアミノ基数が同数となる。 As a water-soluble polymer having an amino group, 5.625 g (number of repeating units: 3.27 mmol) of a 10% by weight aqueous solution of compound B was added instead of the compound A (10% by weight aqueous solution, 4.709 g). Separately, the rare earth element was separated and recovered in the same manner as in Example 1 except for the above. Since Compound B has two amino groups in the repeating units, the number of repeating units to be added is half of that of Compound A and the number of amino groups is the same.
 この化合物Bを使った場合、一度の凝集工程により、溶液中の希土類元素のうち約85質量%のDyイオンと、約20質量%のNdイオンとが凝集物内に取り込まれることが判明した。 When this compound B was used, it was found that about 85% by mass of Dy ions and about 20% by mass of Nd ions of the rare earth elements in the solution were incorporated into the aggregate by one aggregation step.
 本実施例により、アミノ基を有する水溶性高分子として化合物Bを用いても、凝集物中のDyイオンの比率を高められることが確認された。 According to this example, it was confirmed that the ratio of Dy ions in the aggregate can be increased even when Compound B is used as a water-soluble polymer having an amino group.
 アミノ基を有する水溶性高分子として化合物A(10質量%水溶液、4.709 g)の代わりにポリエチレンイミンの10質量%水溶液2.812 g(平均分子量が300、アミノ基の数は6.54 mmol)を添加した。それ以外は実施例1と同様にして希土類元素の分離回収を行った。 As a water-soluble polymer having an amino group, 2.812 g (average molecular weight is 300, the number of amino groups is 6.54 mmol) of a 10% by weight aqueous solution of polyethyleneimine is added instead of the compound A (10% by weight aqueous solution, 4.709 g). Separately, the rare earth element was separated and recovered in the same manner as in Example 1 except for the above.
 この化合物を使った場合、一度の凝集工程により、溶液中の希土類元素のうち約83質量%のDyイオンと、約21質量%のNdイオンとが凝集物内に取り込まれることが判明した。 When this compound was used, it was found that about 83% by mass of Dy ions and about 21% by mass of Nd ions of the rare earth elements in the solution were incorporated into the aggregate by one aggregation step.
 本実施例により、アミノ基を有する水溶性高分子としてポリエチレンイミンを用いても、凝集物中のDyイオンの比率を高められることが確認された。 According to this example, it was confirmed that the ratio of Dy ions in the aggregate can be increased even if polyethylene imine is used as the water-soluble polymer having an amino group.
 酸性基を有する水溶性高分子としてポリアクリル酸の10質量%水溶液0.942 g(平均分子量が5,000、繰り返し単位数は1.31 mmol)を用いる代わりにポリスチレンスルホン酸の10質量%水溶液2.69 g(平均分子量が100,000、繰り返し単位数は1.31 mmol)を添加した。それ以外は実施例1と同様にして希土類元素の分離回収をを行った。 Instead of using 0.942 g of a 10% by weight aqueous solution of polyacrylic acid (average molecular weight is 5,000, the number of repeating units is 1.31 mmol) as a water-soluble polymer having an acidic group, 2.69 g of 10% by weight aqueous solution of polystyrene sulfonic acid (average molecular weight is 100,000, repeating unit number 1.31 mmol) was added. The separation and recovery of the rare earth elements were performed in the same manner as in Example 1 except for the above.
 この化合物を使った場合、一度の凝集工程により、溶液中の希土類元素のうち約86質量%のDyイオンと、約21質量%のNdイオンとが凝集物内に取り込まれることが判明した。 When this compound was used, it was found that about 86% by mass of Dy ions and about 21% by mass of Nd ions of the rare earth elements in the solution were incorporated into the aggregate by one aggregation step.
 本実施例により、酸性基を有する水溶性高分子としてポリスチレンスルホン酸を用いても、凝集物中のDyイオンの比率を高められることが確認された。 According to this example, it was confirmed that the ratio of Dy ions in the aggregate can be increased even if polystyrene sulfonic acid is used as the water-soluble polymer having an acidic group.
 塩化ネオジムと塩化ジスプロシウムとを水に溶解した混合水溶液の代わりに、塩化セリウム(CeCl3)と塩化イッテルビウム(YbCl3)とを水に溶解した混合水溶液を用いた。それ以外は実施例1と同様にして希土類元素の分離回収を行った。なお、混合水液中のCe濃度およびYb濃度はどちらも5000 ppmとなるよう調整した。 Instead of mixing the aqueous solution and dysprosium chloride neodymium chloride were dissolved in water, a cerium chloride (CeCl 3) and ytterbium chloride (YbCl 3) using a mixed aqueous solution prepared by dissolving in water. Separately, the rare earth element was separated and recovered in the same manner as in Example 1 except for the above. The Ce concentration and the Yb concentration in the mixed water solution were both adjusted to 5000 ppm.
 CeイオンとYbイオンとの混合水溶液の場合、一度の凝集工程により、溶液中の希土類元素のうち約88質量%のYbイオンと、約19質量%のCeイオンとが凝集物内に取り込まれることが判明した。前述したように、Ybイオンは4f軌道に13個の電子を有し、Ceイオンは1個の電子を有している。実験の結果、イオン半径が小さい(4f軌道の電子数が多い)Ybイオンの方が凝集物中にトラップされ易く、凝集物中のYbイオンの比率を高められることが判明した。 In the case of a mixed aqueous solution of Ce ions and Yb ions, approximately 88% by mass of Yb ions and approximately 19% by mass of Ce ions of rare earth elements in the solution are incorporated into aggregates in one aggregation step. There was found. As described above, the Yb ion has 13 electrons in the 4f orbital, and the Ce ion has 1 electron. As a result of the experiment, it was found that Yb ions having a smaller ion radius (the number of electrons in the 4f orbital) are more easily trapped in the aggregate, and the ratio of Yb ions in the aggregate can be increased.
 本実施例により、NdおよびDy以外の希土類元素でもイオン半径の小さい方の希土類元素ほど凝集物中にトラップされ易く、凝集物中での比率を高められることが確認された。 According to this example, it was confirmed that even the rare earth elements other than Nd and Dy are more easily trapped in the aggregate as the rare earth element having a smaller ion radius, and the ratio in the aggregate can be increased.
 1…Ndイオン、2…Dyイオン、3…酸性基、4…酸性基を有する水溶性高分子、5…アミノ基、6…アミノ基を有する水溶性高分子、7…会合体,溶解分、8…凝集物、8’…再凝集物、9…陽イオン交換樹脂、10…混合水溶液、11…シャッター付きフィルタ、12…混合槽、13…撹拌機構、14…水、15…酸の水溶液、16…塩基の水溶液、17…混合槽、17’…混合槽の底部、18…混合水溶液供給ポンプ、19…混合水溶液配管、20…撹拌羽根、21…オーバーヘッドスターラー、22…第1のタンク、23…第1のポンプ、24…第1の配管、25…第2のタンク、26…第2のポンプ、27…第2の配管、28…凝集物、28’…再凝集物、29…シャッター、30…フィルタ、31…バルブ、32…回収槽、33…第3のタンク、34…第3のポンプ、35…第3の配管、36…第4のタンク、37…第4のポンプ、38…第4の配管、39…第5のタンク、40…第5のポンプ、41…第5の配管、42…混合槽の内壁、43…混合槽、44…溶解分回収ポンプ、45…溶解分配管、46…フィルタ、47…バルブ、48…排出口、49…混合槽、50…陽イオン交換樹脂、51…第2の回収槽、52…第6のタンク、53…第6のポンプ、54…第6の配管、55…再凝集物、56…シャッター、57…フィルタ、58…磁性粉含有陽イオン交換樹脂、59…第1のローラー、60…第2のローラー、61…第3のローラー、62…第4のローラー、63…搬送ベルト、64…凝集物回収槽、65…シャッター、66…フィルタ、67…第7のタンク、68…第7のポンプ、69…第7の配管、70…回収槽、71…第8のタンク、72…第8のポンプ、73…第8の配管、74…シャッター、75…フィルタ、76…薬剤回収槽、77…希土類元素の水酸化物。 1 ... Nd ion, 2 ... Dy ion, 3 ... acidic group, 4 ... water soluble polymer having an acidic group, 5 ... amino group, 6 ... water soluble polymer having an amino group, 7 ... aggregate, dissolved matter, 8: aggregate, 8 ': reaggregate, 9: cation exchange resin, 10: mixed aqueous solution, 11: filter with shutter, 12: mixing tank, 13: stirring mechanism, 14: water, aqueous solution of 15: acid, DESCRIPTION OF SYMBOLS 16 aqueous solution of a base, 17 ... mixing tank, 17 '... bottom part of mixing tank, 18 ... mixed aqueous solution supply pump, 19 ... mixed aqueous solution piping, 20 ... stirring blade, 21 ... overhead stirrer, 22 ... 1st tank, 23 ... 1st pump, 24 ... 1st piping, 25 ... 2nd tank, 26 ... 2nd pump, 27 ... 2nd piping, 28 ... aggregates, 28 '... reaggregates, 29 ... shutters, Reference Signs List 30 filter, 31 valve, 32 recovery tank 33 third tank 34 third pump 35 third piping 36 fourth tank 37 fourth pump 38 ... 4th piping, 39 ... 5th tank, 40 ... 5th pump, 41 ... 5th piping, 42 ... inner wall of mixing tank, 43 ... mixing tank, 44 ... solution recovery pump, 45 ... solution Piping, 46: filter, 47: valve, 48: outlet, 49: mixing tank, 50: cation exchange resin, 51: second recovery tank, 52: sixth tank, 53: sixth pump, 54 ... sixth pipe, 55 ... reaggregates, 56 ... shutter, 57 ... filter, 58 ... magnetic powder containing cation exchange resin, 59 ... first roller, 60 ... second roller, 61 ... third roller , 62: fourth roller, 63: conveyance belt, 64: aggregate collection tank, 65: shutter, 66: filter, 67: seventh tank, 68: seventh pump, 69: seventh piping, 70 ... Recovery tank, 71: Eighth tank, 72: Eighth pump, 73: Eighth pipe, 74: Shutter, 75: Filter, 76: Drug recovery tank, 77: Hydroxide of rare earth element.

Claims (20)

  1.  複数種の希土類元素のイオンが含まれる水溶液から特定の希土類元素を分離回収する方法であって、
     前記水溶液に酸性基を有する水溶性高分子を添加した後に、前記酸性基を有する水溶性高分子の酸性基の総数よりアミノ基の総数が多くなるようにアミノ基を有する水溶性高分子を添加し、凝集物を生成する凝集工程と、
     前記凝集物を前記水溶液から分離回収する分離回収工程と、
     前記凝集物を酸で溶解し溶液を生成する溶解工程と、
     前記溶液にアミノ基を有する水溶性高分子を添加して再凝集物を生成する再凝集工程とを有することを特徴とする希土類元素分離回収方法。
    A method of separating and recovering a specific rare earth element from an aqueous solution containing ions of a plurality of rare earth elements,
    After the water-soluble polymer having an acidic group is added to the aqueous solution, the water-soluble polymer having an amino group is added such that the total number of amino groups is larger than the total number of acidic groups of the water-soluble polymer having the acidic group. Flocculation step to form agglomerates,
    A separation and recovery step of separating and collecting the aggregates from the aqueous solution;
    Dissolving the aggregates with acid to form a solution;
    And a reaggregation step of adding a water-soluble polymer having an amino group to the solution to form a reaggregate.
  2.  請求項1に記載の希土類元素分離回収方法において、
     前記複数種の希土類元素のうち、イオン半径の最も小さな希土類元素イオンの総数を「R」とし、前記酸性基を有する水溶性高分子の酸性基の総数を「C」とした場合、不等式「R ≦ C ≦ 3R」を満たすように前記水溶液に前記酸性基を有する水溶性高分子を添加することを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to claim 1,
    When the total number of the rare earth element ions having the smallest ion radius among the plurality of rare earth elements is “R” and the total number of acidic groups of the water-soluble polymer having the acidic group is “C”, the inequality formula “R 2. A method for separating and recovering rare earth elements, which comprises adding a water-soluble polymer having an acidic group to the aqueous solution so as to satisfy ≦ C ≦ 3R.
  3.  請求項1または請求項2に記載の希土類元素分離回収方法において、
     前記酸性基を有する水溶性高分子の平均分子量が126以上25,000以下であり、
     前記アミノ基を有する水溶性高分子の平均分子量が60以上25,000以下であることを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to claim 1 or 2,
    The water-soluble polymer having the acidic group has an average molecular weight of 126 or more and 25,000 or less,
    The rare earth element separation and recovery method, wherein the average molecular weight of the water-soluble polymer having an amino group is 60 or more and 25,000 or less.
  4.  請求項1乃至請求項3のいずれかに記載の希土類元素分離回収方法において、
     前記水溶液から分離回収された前記凝集物を水洗する凝集物水洗工程と、
     前記凝集物を分離した前記水溶液に酸性基を有する水溶性高分子を添加した後に、前記酸性基を有する水溶性高分子の酸性基の総数よりアミノ基の総数が多くなるようにアミノ基を有する水溶性高分子を添加し、追加的に凝集物を生成する追加凝集工程とを更に有することを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to any one of claims 1 to 3,
    An aggregate water washing step of washing the aggregates separated and recovered from the aqueous solution;
    After adding a water-soluble polymer having an acidic group to the aqueous solution from which the aggregate has been separated, it has an amino group such that the total number of amino groups is larger than the total number of acidic groups of the water-soluble polymer having the acidic group A method of separating and recovering rare earth elements, the method further comprising the step of adding a water-soluble polymer and additionally forming an aggregate.
  5.  請求項1乃至請求項4のいずれかに記載の希土類元素分離回収方法において、
     前記水溶液の水素イオン指数pHが1以上5以下であることを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to any one of claims 1 to 4,
    The method for separating and recovering rare earth elements, wherein a pH value of a hydrogen ion index of the aqueous solution is 1 or more and 5 or less.
  6.  請求項1乃至請求項5のいずれかに記載の希土類元素分離回収方法において、
     前記水溶液の水素イオン指数pHが6以上9以下になるように前記アミノ基を有する水溶性高分子を添加することを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to any one of claims 1 to 5,
    A method of separating and recovering a rare earth element, comprising adding the water-soluble polymer having an amino group such that the pH value of the aqueous solution is 6 or more and 9 or less.
  7.  請求項1乃至請求項6のいずれかに記載の希土類元素分離回収方法において、
     前記再凝集工程で前記アミノ基を有する水溶性高分子を添加する前に、前記凝集物が溶解した前記溶液の水素イオン指数pHが1以上3以下になるように強塩基を添加することを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to any one of claims 1 to 6,
    Before adding the water-soluble polymer having an amino group in the reaggregation step, a strong base is added so that the pH value of the solution in which the aggregates are dissolved is 1 or more and 3 or less. Rare earth element separation and recovery method.
  8.  請求項1乃至請求項7のいずれかに記載の希土類元素分離回収方法において、
     前記アミノ基を有する水溶性高分子が一級のアミノ基と三級のアミノ基とを有することを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to any one of claims 1 to 7,
    A method of separating and recovering rare earth elements, wherein the water-soluble polymer having an amino group has a primary amino group and a tertiary amino group.
  9.  請求項1に記載の希土類元素分離回収方法において、
     前記凝集工程で前記酸性基を有する水溶性高分子に代えて、酸性基を有する陽イオン交換樹脂を添加することを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to claim 1,
    A method for separating and recovering a rare earth element, which comprises adding a cation exchange resin having an acidic group in place of the water-soluble polymer having an acidic group in the aggregation step.
  10.  請求項9に記載の希土類元素分離回収方法において、
     前記陽イオン交換樹脂は磁性粉を含有することを特徴とする希土類元素分離回収方法。
    In the rare earth element separation and recovery method according to claim 9,
    The said cation exchange resin contains magnetic powder, The rare earth element separation-and-recovery method characterized by the above-mentioned.
  11.  複数種の希土類元素のイオンを有する水溶液から特定の希土類元素を分離回収する装置であって、
     混合槽と、
     前記水溶液を前記混合槽に投入する機構と、
     酸性基を有する水溶性高分子を前記混合槽に添加する機構と、
     アミノ基を有する水溶性高分子を前記混合槽に添加する機構と、
     前記水溶液を攪拌する機構と、
     前記水溶液から凝集物を分離回収する機構と、
     前記凝集物を溶解し溶液を生成する酸を前記混合槽に添加する機構とを備えることを特徴とする希土類元素分離回収装置。
    An apparatus for separating and recovering a specific rare earth element from an aqueous solution having ions of a plurality of rare earth elements,
    Mixing tank,
    A mechanism for charging the aqueous solution into the mixing tank;
    A mechanism for adding a water-soluble polymer having an acidic group to the mixing tank;
    A mechanism for adding a water-soluble polymer having an amino group to the mixing tank;
    A mechanism for stirring the aqueous solution;
    A mechanism for separating and collecting aggregates from the aqueous solution;
    A rare earth element separation and recovery device comprising: a mechanism for dissolving the aggregates and adding an acid that generates a solution to the mixing tank.
  12.  請求項11に記載の希土類元素分離回収装置において、
     前記水溶液から分離回収された前記凝集物を水洗する機構を更に備えることを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to claim 11,
    A rare earth element separation and recovery apparatus, further comprising a mechanism for washing the aggregate separated and recovered from the aqueous solution.
  13.  請求項11または請求項12に記載の希土類元素分離回収装置において、
     前記酸性基を有する水溶性高分子を前記混合槽に添加する機構と、前記アミノ基を有する水溶性高分子を前記混合槽に添加する機構とは、複数の吐出ノズルをそれぞれ具備することを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to claim 11 or 12,
    The mechanism for adding the water-soluble polymer having the acidic group to the mixing tank and the mechanism for adding the water-soluble polymer having the amino group to the mixing tank include a plurality of discharge nozzles. And rare earth element separation and recovery equipment.
  14.  請求項11乃至請求項13のいずれかに記載の希土類元素分離回収装置において、
     前記凝集物が分離回収された後の前記水溶液を吸引する機構を更に備えることを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to any one of claims 11 to 13,
    A rare earth element separation and recovery apparatus, further comprising a mechanism for suctioning the aqueous solution after separation and recovery of the aggregates.
  15.  請求項11または請求項12に記載の希土類元素分離回収装置において、
     前記酸性基を有する水溶性高分子を前記混合槽に添加する機構に代えて、陽イオン交換樹脂を前記混合槽に添加する機構を更に備える又は前記混合槽内に陽イオン交換樹脂が収容されていることを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to claim 11 or 12,
    Instead of adding a water-soluble polymer having an acidic group to the mixing tank, a mechanism for adding a cation exchange resin to the mixing tank is further provided, or a cation exchange resin is contained in the mixing tank A rare earth element separation and recovery device characterized by
  16.  請求項15に記載の希土類元素分離回収装置において、
     前記陽イオン交換樹脂は磁性粉を有し、前記陽イオン交換樹脂を前記混合槽から磁気分離方式で分離回収する機構を更に備えることを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to claim 15,
    The rare earth element separation and recovery device according to claim 1, wherein the cation exchange resin has a magnetic powder and further comprises a mechanism for separating and recovering the cation exchange resin from the mixing tank by a magnetic separation method.
  17.  請求項11または請求項12に記載の希土類元素分離回収装置において、
     前記混合槽の下部に前記凝集物を濾過するフィルタを具備することを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to claim 11 or 12,
    The rare earth element separation and recovery device according to claim 1, further comprising: a filter for filtering the aggregates at a lower portion of the mixing tank.
  18.  請求項17に記載の希土類元素分離回収装置において、
     前記混合槽の内壁の上端と同じまたは該上端よりも高い位置に前記フィルタの上面を配置する機構を更に備えることを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to claim 17,
    A rare earth element separation and recovery apparatus, further comprising a mechanism for disposing the upper surface of the filter at the same position as or higher than the upper end of the inner wall of the mixing tank.
  19.  請求項17または請求項18に記載の希土類元素分離回収装置において、
     前記フィルタは前記凝集物を加熱する機構を備えることを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to claim 17 or 18,
    The rare earth element separation and recovery apparatus, wherein the filter comprises a mechanism for heating the aggregates.
  20.  請求項11乃至請求項19のいずれかに記載の希土類元素分離回収装置において、
     前記凝集物が接触する部材の面は、水との接触角が90°以上となるような処理がなされていることを特徴とする希土類元素分離回収装置。
    In the rare earth element separation and recovery apparatus according to any one of claims 11 to 19,
    The rare earth element separation and recovery apparatus is characterized in that the surface of the member in contact with the aggregate is treated so as to have a contact angle with water of 90 ° or more.
PCT/JP2012/067736 2011-07-19 2012-07-11 Method for separating/collecting rare earth element, and apparatus for separating/collecting rare earth element WO2013011901A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013524683A JP5683705B2 (en) 2011-07-19 2012-07-11 Rare earth element separation and recovery method and rare earth element separation and recovery apparatus
CN201280035250.8A CN103827328B (en) 2011-07-19 2012-07-11 The separation and recovery method of rare earth element and the separating and reclaiming device of rare earth element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011157411 2011-07-19
JP2011-157411 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013011901A1 true WO2013011901A1 (en) 2013-01-24

Family

ID=47558079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067736 WO2013011901A1 (en) 2011-07-19 2012-07-11 Method for separating/collecting rare earth element, and apparatus for separating/collecting rare earth element

Country Status (3)

Country Link
JP (1) JP5683705B2 (en)
CN (1) CN103827328B (en)
WO (1) WO2013011901A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149003A (en) * 2015-10-15 2015-12-16 东华大学 Preparation method and application of chitosan bi-metal complex catalyst
US9409185B2 (en) 2014-04-17 2016-08-09 General Electric Company Systems and methods for recovery of rare-earth constituents from environmental barrier coatings
CN113481375B (en) * 2021-07-26 2024-01-30 沛县宗赢工程机械制造有限公司 Energy-saving and environment-friendly rare earth dissolution separation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108164858A (en) * 2017-12-21 2018-06-15 宁波市河清源技术转移服务有限公司 A kind of Th for adding radiation protection, Cr- combination ion exchange resins/nano oxidized aluminium composite material
CN109052602B (en) * 2018-09-05 2021-04-23 南京大学 Natural polymeric flocculant for starch wastewater treatment and treatment method thereof
WO2021040551A1 (en) * 2019-08-28 2021-03-04 N9Ve - Nature, Ocean And Value, Lda Methods and systems for recovering rare earth elements and/or lithium using marine macroalgae

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550444A (en) * 1978-10-09 1980-04-12 Mitsubishi Chem Ind Ltd Removing method for tetravalent cerium in aqueous solution
JPH0474711A (en) * 1990-06-19 1992-03-10 Mitsui Cyanamid Co Method for separating and purifying rare earth metal
JP2011132573A (en) * 2009-12-25 2011-07-07 Hitachi Ltd Chemical for recovering metal, method for recovering metal, and apparatus for separation-recovering metal using chemical for recovering metal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009332B (en) * 1986-08-23 1990-08-29 北京有色金属研究总院 Extracting and separating rear earth element from sulfuric acid system
JP2756794B2 (en) * 1988-09-16 1998-05-25 日本重化学工業株式会社 Rare earth element separation method
CN101319275B (en) * 2007-06-04 2010-11-10 北京有色金属研究总院 Process for solvent extraction separation purification of rare earth element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550444A (en) * 1978-10-09 1980-04-12 Mitsubishi Chem Ind Ltd Removing method for tetravalent cerium in aqueous solution
JPH0474711A (en) * 1990-06-19 1992-03-10 Mitsui Cyanamid Co Method for separating and purifying rare earth metal
JP2011132573A (en) * 2009-12-25 2011-07-07 Hitachi Ltd Chemical for recovering metal, method for recovering metal, and apparatus for separation-recovering metal using chemical for recovering metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9409185B2 (en) 2014-04-17 2016-08-09 General Electric Company Systems and methods for recovery of rare-earth constituents from environmental barrier coatings
CN105149003A (en) * 2015-10-15 2015-12-16 东华大学 Preparation method and application of chitosan bi-metal complex catalyst
CN113481375B (en) * 2021-07-26 2024-01-30 沛县宗赢工程机械制造有限公司 Energy-saving and environment-friendly rare earth dissolution separation device

Also Published As

Publication number Publication date
CN103827328B (en) 2016-02-10
JPWO2013011901A1 (en) 2015-02-23
CN103827328A (en) 2014-05-28
JP5683705B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2013011901A1 (en) Method for separating/collecting rare earth element, and apparatus for separating/collecting rare earth element
JP5213925B2 (en) Rare earth metal flocculant
JP5478240B2 (en) Metal recovery method and metal separation recovery device
CN109874342A (en) The purposes of fluoropolymer resin, preparation method and its extraction (one or more) precious metal that composite extractant enhances
Wang et al. Functionalized magnetic silica nanoparticles for highly efficient adsorption of Sm3+ from a dilute aqueous solution
TWI674245B (en) Glass honing liquid regeneration method and glass honing device
KR20080076953A (en) Silicon resin coating composition containing redispersible powder of mineral particle dispersions stabilized with a polymer
RU2676705C2 (en) Sulphated, aminomethylated chelate resins
CN108585339A (en) A kind of processing of chromate waste water and waste liqouor method
CN111215021B (en) Titanium carbide/poly (m-phenylenediamine) composite material and preparation method and application thereof
JP2014064968A (en) Method for treating brine including phenols and heavy metals by using adsorbent and method for regenerating adsorbent
JP5887411B2 (en) Transition metal separation method, transition metal separation device
CN1223549C (en) Process for preparing silicon carbide slurry
CN113754130B (en) Tin stripping waste liquid recycling and regeneration treatment system and method
WO2019023054A1 (en) Treatment of aqueous compositions of coal waste
WO2021261078A1 (en) Apparatus for magnetic separation of microplastics and method for magnetic separation of microplastics
CN110339592B (en) Heavy metal ion extracting agent based on fatty acid, preparation method and extraction method
US11633715B2 (en) DNA complex, adsorbent, adsorption column, purification system, liquid treatment method, and method for producing DNA complex
KR101284740B1 (en) Silica-coated magnetite micrometer (μm) size magnetic sorbent and preparation method thereof
JP2005021723A (en) Treatment method for arsenic-containing wastewater and arsenic removing apparatus
JP2005152865A (en) Coating slag sedimenting agent, treating agent for coating booth circulation water containing coating slag sedimenting agent and method of treating coating booth circulation water using them
US20220356088A1 (en) Selective removal of charged species
CN112010416B (en) Method for removing arsenic and chlorine in ultrasonic-enhanced contaminated acid
JP2012091112A (en) Magnetic chelating agent
US20210140011A1 (en) Methods and compositions for recovery of lithium from liquid solutions with nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814933

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524683

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814933

Country of ref document: EP

Kind code of ref document: A1