WO2013008841A1 - White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device - Google Patents

White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device Download PDF

Info

Publication number
WO2013008841A1
WO2013008841A1 PCT/JP2012/067680 JP2012067680W WO2013008841A1 WO 2013008841 A1 WO2013008841 A1 WO 2013008841A1 JP 2012067680 W JP2012067680 W JP 2012067680W WO 2013008841 A1 WO2013008841 A1 WO 2013008841A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical semiconductor
curable composition
semiconductor device
molded body
white curable
Prior art date
Application number
PCT/JP2012/067680
Other languages
French (fr)
Japanese (ja)
Inventor
崇至 鹿毛
樋口 勲夫
秀文 保井
秀 中村
貴志 渡邉
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201280031556.6A priority Critical patent/CN103635532B/en
Priority to KR1020137015367A priority patent/KR20140034722A/en
Publication of WO2013008841A1 publication Critical patent/WO2013008841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a white curable composition for an optical semiconductor device that is suitably used for obtaining a molded body disposed on a lead frame on which an optical semiconductor element is mounted in an optical semiconductor device. Moreover, this invention relates to the molded object for optical semiconductor devices and optical semiconductor device which used the said white curable composition for optical semiconductor devices.
  • An optical semiconductor device such as a light emitting diode (LED) device has low power consumption and long life. Moreover, the optical semiconductor device can be used even in a harsh environment. Accordingly, optical semiconductor devices are used in a wide range of applications such as mobile phone backlights, liquid crystal television backlights, automobile lamps, lighting fixtures, and signboards.
  • LED light emitting diode
  • an optical semiconductor element for example, LED
  • LED which is a light emitting element used in an optical semiconductor device
  • the sealing compound for optical semiconductor devices.
  • a frame-shaped molded body is disposed on a lead frame on which the optical semiconductor element is mounted.
  • the sealing agent is filled inside the frame-shaped molded body.
  • the molded body is sometimes called a reflector or a housing.
  • Patent Document 1 discloses a curable composition containing an epoxy resin, a curing agent, a curing catalyst, and an inorganic filler.
  • the light diffuse reflectance at a light wavelength of 400 nm measured after leaving the cured product obtained by curing the curable composition for 500 hours under a high temperature condition of 150 ° C. is 80% or more.
  • the shear mold release force at the time of transfer molding is 200 KPa or less within 10 shots.
  • Patent Document 2 discloses a curable composition containing an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and a white pigment.
  • a light reflection layer having a plurality of through holes formed on a wiring member by transfer molding using a curable composition is formed on the wiring member, and one opening of the through hole is closed with the wiring member.
  • a method of manufacturing an optical semiconductor device comprising a step of dividing the molded body into the recesses to obtain a plurality of optical semiconductor devices.
  • the molded body using the conventional curable composition containing titanium oxide is brittle, when the LED package is separated from the runner portion, the molded body is damaged or deformed, or the molded body is cracked or chipped. Sometimes.
  • the molded body using the conventional curable composition also has a problem that the adhesiveness of the molded body to the lead frame is low.
  • curable compositions such as those described in Patent Documents 1 and 2 have low moldability, and a good molded product may not be obtained. For example, deformation of the lead frame, deformation of the molded body, chipping of the molded body, voids in the molded body and poor filling of the molded body may occur.
  • An object of the present invention is to provide a white curable composition for an optical semiconductor device capable of obtaining a molded body excellent in processability and further improving the adhesion of the molded body to a lead frame, and the white for an optical semiconductor device. It is providing the molded object for optical semiconductor devices and an optical semiconductor device using a curable composition.
  • a limited object of the present invention is to provide a white curable composition for an optical semiconductor device capable of obtaining a molded article excellent in moldability, and for an optical semiconductor device using the white curable composition for an optical semiconductor device. It is to provide a molded body and an optical semiconductor device.
  • a white curable composition for an optical semiconductor device comprising an epoxy compound, a curing agent, titanium oxide, a filler different from titanium oxide, and a curing accelerator.
  • the filler different from the above titanium oxide is silica
  • 1 g of the white curable composition for optical semiconductor devices before thermosetting is put in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and 1 at 80 ° C.
  • the pH of the first extract is 3 or more and 6 or less. After heating at 170 ° C.
  • 1 g of a cured product cured by further heating at 170 ° C. for 2 hours is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and stirred at 80 ° C. for 1 hour. While heating, then filter insoluble components in the liquid after heating Therefore, when the second extract is obtained by removal, the pH of the second extract is 6 or more and 7 or less, and after heating at 170 ° C. for 3 minutes, further heating at 170 ° C. for 2 hours.
  • the cured product after being cured by the above is allowed to stand for 24 hours at 121 ° C., 100% humidity and 2 atm, and then 1 g of the cured product is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water. When heated at 80 ° C.
  • the pH of the third extract is 4 or more, 6 or less
  • the epoxy equivalent of the entire epoxy compound is 500 or more and 20000 or less
  • the curing agent is an acid anhydride curing agent
  • the epoxy equivalent of the entire epoxy compound and the curing agent equivalent of the entire curing agent The equivalent ratio of 0.3: 1 to 2: 1
  • the optical semiconductor device wherein the filler includes both a spherical filler and a crushed filler, and the weight ratio of the content of the spherical filler to the content of the crushed filler is 0.3 or more and 30 or less.
  • a white curable composition is provided.
  • the epoxy compound preferably contains at least one of an epoxy compound having an aromatic skeleton and an epoxy compound having an alicyclic skeleton.
  • the epoxy compound preferably includes an epoxy compound having an aromatic skeleton.
  • the epoxy equivalent of the epoxy compound having an aromatic skeleton is preferably 400 or more and 3000 or less.
  • the epoxy compound preferably includes an epoxy compound having an alicyclic skeleton.
  • the weight ratio of the spherical filler content to the crushed filler content is 1 or more and 15 or less. More preferably.
  • the white curable composition for optical semiconductor devices according to the present invention is a white curable composition for optical semiconductor devices, which is used to obtain a molded body disposed on a lead frame on which an optical semiconductor element is mounted in an optical semiconductor device. It is preferable that it is an adhesive composition.
  • the white curable composition for optical semiconductor devices according to the present invention obtains an individual molded body by dividing the molded body before division after obtaining the molded body before division in which a plurality of molded bodies are connected. Is preferably used for this purpose.
  • the white curable composition for an optical semiconductor device according to the present invention is disposed on a lead frame on which an optical semiconductor element is mounted and on the side of the optical semiconductor element in the optical semiconductor device, and is emitted from the optical semiconductor element. It is preferable that the white curable composition for optical semiconductor devices used for obtaining a molded body having a light reflecting portion that reflects the reflected light.
  • the molded article for an optical semiconductor device according to the present invention is obtained by curing the above-described white curable composition for an optical semiconductor device.
  • An optical semiconductor device includes a lead frame, an optical semiconductor element mounted on the lead frame, and a molded body disposed on the lead frame. It is obtained by curing a white curable composition for semiconductor devices.
  • the white curable composition for optical semiconductor devices according to the present invention includes an epoxy compound, a curing agent, a filler different from titanium oxide and titanium oxide, and a curing accelerator, and the white curable composition for optical semiconductor devices before thermal curing. Since the pH of the first extract using the composition is 3 or more and 6 or less, and the pH of the second extract using the cured product after being cured by heating is 6 or more and 7 or less, A molded body excellent in workability can be obtained. Furthermore, when the molded body in which the white curable composition is cured is disposed on the lead frame, the adhesion between the lead frame and the molded body can be improved.
  • silica is used as a filler different from the titanium oxide, and the cured product after being cured by heating is 121 ° C., humidity 100% and 2 atm.
  • the pH of the third extract using the cured product after standing for 24 hours under the conditions is 4 or more and 6 or less, the epoxy equivalent of the whole epoxy compound is 500 or more and 20000 or less, and the curing agent is an acid.
  • the weight ratio of the content of the spherical filler to the content of the crushed filler is 0.3 or more and 30 or less, including both the crushed filler, to obtain a molded body that is more excellent in workability Can do. Furthermore, when the molded body in which the white curable composition is cured is disposed on the lead frame, the adhesion between the lead frame and the molded body can be further enhanced.
  • FIG. 1A and 1B are a cross-sectional view and a perspective view schematically showing an example of an optical semiconductor device including a molded body using a white curable composition for an optical semiconductor device according to an embodiment of the present invention. It is.
  • FIG. 2 is a cross-sectional view schematically showing a modification of the optical semiconductor device shown in FIG.
  • FIG. 3 schematically illustrates an example of a pre-division optical semiconductor device component including a pre-division molded body in which a plurality of molded bodies using a white curable composition for an optical semiconductor device according to an embodiment of the present invention are connected. It is sectional drawing shown.
  • FIG. 1A and 1B are a cross-sectional view and a perspective view schematically showing an example of an optical semiconductor device including a molded body using a white curable composition for an optical semiconductor device according to an embodiment of the present invention. It is.
  • FIG. 2 is a cross-sectional view schematically showing a modification of the optical semiconductor device shown in FIG.
  • FIG. 4 is a cross-sectional view schematically illustrating an example of a pre-division optical semiconductor device including a pre-division molded body in which a plurality of molded bodies using a white curable composition for an optical semiconductor device according to an embodiment of the present invention are connected.
  • FIG. 4 is a cross-sectional view schematically illustrating an example of a pre-division optical semiconductor device including a pre-division molded body in which a plurality of molded bodies using a white curable composition for an optical semiconductor device according to an embodiment of the present invention are connected.
  • the white curable composition for optical semiconductor devices according to the present invention includes an epoxy compound (A), a curing agent (B), titanium oxide (C), a filler (D) different from titanium oxide, and curing acceleration.
  • Agent (E) is an epoxy compound (A), a curing agent (B), titanium oxide (C), a filler (D) different from titanium oxide, and curing acceleration.
  • the white curable composition for optical semiconductor devices 1 g of the white curable composition for optical semiconductor devices before thermosetting is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and 1 at 80 ° C.
  • the pH of the first extract (in the first extraction method) pH) is 3 or more and 6 or less.
  • the white curable composition for optical semiconductor devices 1 g of the cured product after being cured by heating is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and stirred at 80 ° C. for 1 hour. Then, when the second extract is obtained by removing insoluble components in the heated solution by filtration, the pH of the second extract (pH in the second extraction method) is 6 or more and 7 or less.
  • 1 g of the composition or cured product is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, heated with stirring at 80 ° C. for 1 hour, and then insoluble components in the liquid after heating.
  • the method of measuring the pH of the extract obtained by removing the water by filtration may be referred to as an extraction method.
  • the white curable composition for an optical semiconductor device according to the present invention is a white curable composition for an optical semiconductor device used for obtaining a molded body disposed on a lead frame on which an optical semiconductor element is mounted in the optical semiconductor device. It is preferable that it is a thing.
  • the molded body is a cured product molded into a predetermined shape.
  • the processability is excellent.
  • a molded body can be obtained. Since the white curable composition for optical semiconductor devices according to the present invention is excellent in moldability, the use of the white curable composition for optical semiconductor devices according to the present invention makes it easy to form a molded body having a uniform and good shape. Can get to.
  • the white curable composition for optical semiconductor devices for example, after molding the white curable composition for optical semiconductor devices according to the present invention, when separating the LED package including the molded product from the runner part, the molded product is damaged, deformed, Cracks and chips are less likely to occur. Furthermore, when the pre-division molded body having a plurality of molded bodies is divided into individual molded bodies to obtain a post-division molded body, cracks and chips are less likely to occur in the molded body. That is, by using the white curable composition for optical semiconductor devices according to the present invention, a molded body using the white curable composition for optical semiconductor devices can be diced satisfactorily.
  • the adhesion between the lead frame and the molded body can be improved.
  • the reflectance of the molded object obtained by hardening the white curable composition for optical semiconductor devices is improved by employ
  • the heat resistance of can also be improved.
  • the said molded object has high heat resistance, even if it exposes under high temperature, it is hard to discolor. For this reason, the heat-resistant reliability of an optical semiconductor device can be improved, and the fall of the brightness of the light taken out from the optical semiconductor device when exposed to high temperature can be suppressed.
  • the cured product after being cured by heating is allowed to stand for 24 hours under conditions of 121 ° C., 100% humidity and 2 atmospheres, and then 1 g of the cured product is a liquid containing 5 g of acetone and 5 g of pure water.
  • 1 g of the cured product is a liquid containing 5 g of acetone and 5 g of pure water.
  • the pH (pH in the third extraction method) is 4 or more and 6 or less. Further, when the pH in the third extraction method is not less than the above lower limit and not more than the above upper limit, the workability and heat resistance of the molded body are further enhanced, and the adhesion between the lead frame and the molded body is further enhanced. Further, the heat resistance reliability of the optical semiconductor device can be further improved.
  • the curing conditions for obtaining a cured product cured by heating are as follows: after heating at 170 ° C. for 3 minutes, further at 170 ° C. for 2 hours. It is the hardening conditions to heat.
  • the filler different from the titanium oxide is silica
  • the curing agent is an acid anhydride curing agent
  • the equivalent ratio of the epoxy equivalent of the entire epoxy compound and the curing agent equivalent of the entire curing agent is 0.3: 1 to 2: 1
  • the filler includes both spherical filler and crushed filler, and the weight ratio of the spherical filler content to the crushed filler content is It is 0.3 or more and 30 or less. For this reason, it is possible to obtain a molded body that is more excellent in workability. Further, when a molded body obtained by curing a white curable composition is disposed on the lead frame, the adhesion between the lead frame and the molded body is further improved. It can be further enhanced.
  • the white curable composition contains the epoxy compound (A) so that it can be cured by application of heat.
  • the epoxy compound (A) has an epoxy group.
  • an epoxy compound (A) as a thermosetting compound, the heat resistance and insulation reliability of a molded object become high.
  • an epoxy compound (A) only 1 type may be used and 2 or more types may be used together.
  • epoxy compound (A) examples include bisphenol type epoxy compounds, novolak type epoxy compounds, glycidyl ester type epoxy compounds obtained by reacting polychloric acid compounds with epichlorohydrin, polyamine compounds and epichlorohydrides. Heterocycles such as glycidylamine type epoxy compounds, glycidyl ether type epoxy compounds, aliphatic epoxy compounds, hydrogenated aromatic epoxy compounds, epoxy compounds having an alicyclic skeleton, triglycidyl isocyanurate obtained by reacting with phosphorus And an epoxy compound of the formula.
  • the polychloric acid compound include phthalic acid and dimer acid.
  • polyamine compound examples include diaminodiphenylmethane and isocyanuric acid.
  • the epoxy equivalent of the whole epoxy compound (A) contained in the white curable composition for optical semiconductor devices is 500 or more and 20000 or less.
  • the epoxy equivalent is 500 or more, the moldability of the white curable composition is further improved, the molded body is not easily brittle, and the processability of the molded body is further improved.
  • the epoxy equivalent is 20000 or less, the moldability of the white curable composition is further improved, and the strength of the molded body is further increased.
  • the epoxy equivalent is measured according to JIS K7236.
  • the “epoxy equivalent of the entire epoxy compound (A)” means the epoxy equivalent of the entire white curable composition for an optical semiconductor device.
  • the epoxy equivalent of the whole white curable composition for optical semiconductor devices is preferably 500 or more, and preferably 20000 or less.
  • the epoxy equivalent is 500 or more, the moldability of the white curable composition is further improved, the molded body is not easily brittle, and the processability of the molded body is further improved.
  • the epoxy equivalent is 20000 or less, the moldability of the white curable composition is further improved, and the strength of the molded body is further increased.
  • the epoxy equivalent is measured according to JIS K7236.
  • the epoxy compound (A) is composed of an epoxy compound (A1) having an aromatic skeleton and an epoxy compound (A2) having an alicyclic skeleton. It is preferable that at least one of these is included.
  • the epoxy compound (A) may contain both an epoxy compound (A1) having an aromatic skeleton and an epoxy compound (A2) having an alicyclic skeleton.
  • the said white curable composition may contain only the epoxy compound (A1) which has an aromatic skeleton, and may contain only the epoxy compound (A2) which has an alicyclic skeleton.
  • the epoxy compound (A) preferably contains an epoxy compound (A1) having an aromatic skeleton.
  • the epoxy compound (A1) which has the said aromatic skeleton only 1 type may be used and 2 or more types may be used together.
  • the epoxy compound (A) preferably includes an epoxy compound (A2) having an alicyclic skeleton.
  • the epoxy compound (A2) which has the said alicyclic skeleton only 1 type may be used and 2 or more types may be used together.
  • Examples of the epoxy compound (A1) having an aromatic skeleton include bisphenol A type epoxy compound, bisphenol F type epoxy compound, cresol novolac type epoxy compound, phenol novolac type epoxy compound, polybasic acid compound having aromatic skeleton and epichloro Examples thereof include glycidyl ester type epoxy compounds obtained by reacting with hydrin and glycidyl ether type epoxy compounds having an aromatic skeleton.
  • the epoxy compound (A1) having the aromatic skeleton preferably has a bisphenol skeleton or a novolac skeleton.
  • the epoxy equivalent of the epoxy compound (A1) having an aromatic skeleton is preferably 400 or more, and preferably 3000 or less.
  • the epoxy equivalent is 400 or more, the moldability of the white curable composition is further improved.
  • the epoxy equivalent is 3000 or less, the strength of the molded product is further increased.
  • epoxy compound (A2) having the alicyclic skeleton examples include 2- (3,4-epoxy) cyclohexyl-5,5-spiro- (3,4-epoxy) cyclohexane-m-dioxane, 3, 4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, dicyclopentadiene dioxide, vinylcyclohexene monooxide, 1,2-epoxy-4-vinylcyclohexane, 1,2: 8,9-diepoxy Limonene, ⁇ -caprolactone modified tetra (3,4-epoxycyclohexylmethyl) butanetetracarboxylate, 1,2-epoxy-4- (2-oxiranyl) cyclohexane addition of 2,2-bis (hydroxymethyl) -1-butanol Thing etc.
  • the epoxy compound (A2) having the alicyclic skeleton is 1,2-epoxy-4- (2,2-bis (hydroxymethyl) -1-butanol.
  • 2-oxiranyl) cyclohexane adduct (“EHPE-3150” manufactured by Daicel) is preferable.
  • the blending amount of the epoxy compound (A) is appropriately adjusted so as to be appropriately cured by application of heat, and is not particularly limited.
  • the content of the epoxy compound (A) is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, preferably 99%. % By weight or less, more preferably 95% by weight or less, still more preferably 80% by weight or less.
  • the white curable composition is more effectively cured by heating.
  • the heat resistance of the molded product is further increased.
  • the said white curable composition for optical semiconductor devices contains a hardening
  • the curing agent (B) cures the epoxy compound (A).
  • a known curing agent used as a curing agent for the epoxy compound (A) can be used.
  • curing agent (B) only 1 type may be used and 2 or more types may be used together.
  • triphenylphosphine is formed by a shell formed of an acid anhydride, dicyandiamide, a phenol compound, a hydrazide compound, an imidazole compound, a compound having a triazine ring, a methyl (meth) acrylate resin or a styrene resin.
  • a latent curing agent for example, “EPCAT-P” and “EPCAT-PS” manufactured by Nippon Kayaku Co., Ltd.
  • a polyurea polymer, or a shell formed of a radical polymer is used to form an amine. It is obtained by dispersing a curing agent such as a latent curing agent (described in Japanese Patent No.
  • Latent curing agent (Novaki” manufactured by Asahi Kasei E-materials) AHXA3792 “and” HXA3932HP "), a latent curing agent (described in Japanese Patent No. 3098061) in which a curing agent is dispersed and contained in a thermoplastic polymer, and an imidazole latent coated with a tetrakisphenol compound or the like Curable hardeners (for example, “TEP-2E4MZ” and “HIPA-2E4MZ” manufactured by Nippon Soda Co., Ltd.).
  • a curing agent (B) other than these may be used.
  • the curing agent (B) is an acid anhydride curing agent.
  • the acid anhydride curing agent any of an acid anhydride having an aromatic skeleton and an acid anhydride having an alicyclic skeleton can be used.
  • Preferred examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. And methylhexahydrophthalic anhydride and methyltetrahydrophthalic anhydride.
  • the acid anhydride curing agent does not have a double bond.
  • Preferable acid anhydride curing agents having no double bond include hexahydrophthalic anhydride and methylhexahydrophthalic anhydride.
  • the mixing ratio of the epoxy compound (A) and the curing agent (B) is not particularly limited.
  • the content of the curing agent (B) is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, still more preferably 2 parts by weight or more, particularly preferably 100 parts by weight of the epoxy compound (A). 3 parts by weight or more, preferably 500 parts by weight or less, more preferably 300 parts by weight or less, and still more preferably 100 parts by weight or less.
  • the content of the acid anhydride curing agent (B) with respect to 100 parts by weight of the epoxy compound (A) is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, and further preferably 2 parts by weight or more.
  • the amount is particularly preferably 3 parts by weight or more, preferably 500 parts by weight or less, more preferably 300 parts by weight or less, and still more preferably 100 parts by weight or less.
  • curing agent is 0.3: 1. ⁇ 2: 1, preferably 0.5: 1 to 1.5: 1.
  • the equivalent ratio of the epoxy equivalent of the entire epoxy compound (A) to the curing agent equivalent of the acid anhydride curing agent (epoxy equivalent: curing agent equivalent) is 0.3: It is 1 to 2: 1, and preferably 0.5: 1 to 1.5: 1.
  • titanium oxide (C) Since the said white curable composition for optical semiconductor devices contains a titanium oxide (C), the molded object with a high reflectance of light can be obtained. Further, by using the titanium oxide (C), it is possible to obtain a molded article having a high light reflectance as compared with a case where only a filler different from the titanium oxide (C) is used.
  • the titanium oxide (C) contained in the said white curable composition for optical semiconductor devices is not specifically limited. As for titanium oxide (C), only 1 type may be used and 2 or more types may be used together.
  • the titanium oxide (C) is preferably rutile titanium oxide or anatase titanium oxide.
  • rutile-type titanium oxide By using rutile-type titanium oxide, a molded body having further excellent heat resistance can be obtained.
  • the anatase type titanium oxide has a lower hardness than the rutile type titanium oxide. For this reason, the moldability of the said curable composition becomes still higher by use of anatase type titanium oxide.
  • the titanium oxide (C) preferably contains rutile titanium oxide that has been surface-treated with aluminum oxide.
  • the content of the rutile titanium oxide surface-treated from the aluminum oxide is preferably 10% by weight or more, more preferably 30% by weight or more and 100% by weight or less.
  • the total amount of titanium oxide (C) may be rutile titanium oxide surface-treated with the aluminum oxide. Use of the rutile type titanium oxide surface-treated with the aluminum oxide further increases the heat resistance of the molded body.
  • Examples of the rutile-type titanium oxide surface-treated with the above aluminum oxide include, for example, a product number manufactured by Ishihara Sangyo Co., Ltd., which is a rutile chlorine method titanium oxide, and a product number manufactured by Ishihara Sangyo Co., Ltd., which is a rutile sulfuric acid method titanium oxide. : R-630 and the like.
  • the content of the titanium oxide (C) is preferably 3% by weight or more, more preferably 10% by weight or more, further preferably 15% by weight or more, preferably Is 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less.
  • the content of titanium oxide (C) is not less than the above lower limit and not more than the above upper limit, the light reflectance of the molded body is further increased, the heat resistance of the molded body is further increased, and the molded body is exposed to a high temperature. When it is done, it becomes difficult to yellow.
  • the filler (D) is a filler different from titanium oxide.
  • the filler (D) is not particularly limited. As for the said filler (D), only 1 type may be used and 2 or more types may be used together.
  • Examples of the filler (D) include inorganic fillers and organic fillers.
  • Specific examples of the filler (D) include silica, alumina, mica, beryllia, potassium titanate, barium titanate, strontium titanate, calcium titanate, zirconium oxide, antimony oxide, aluminum borate, aluminum hydroxide, Magnesium oxide, calcium carbonate, magnesium carbonate, aluminum carbonate, calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, calcium sulfate, barium sulfate, silicon nitride, boron nitride, calcined clay, talc, silicon carbide, cross-linked Examples include acrylic resin particles and silicone particles.
  • the white curable composition for optical semiconductor devices which concerns on this invention contains a silica as a filler (D) different from the said titanium oxide. It is preferable that the filler (D) different from the titanium oxide is silica. As for the said filler (D), only 1 type may be used and 2 or more types may be used together.
  • the filler (D) includes both a spherical filler (D1) and a crushed filler (D2). That is, the white curable composition preferably contains both spherical silica and crushed silica.
  • the spherical filler (D1) is spherical.
  • the spherical filler (D1) refers to a filler having an aspect ratio of 2 or less.
  • the spherical filler (D1) may be a true sphere, an elliptical sphere obtained by flattening a sphere, or a shape similar to these.
  • the crushed filler (D2) is a crushed filler.
  • the aspect ratio of the crushing filler (D2) is not particularly limited.
  • the aspect ratio of the crushed filler (D2) is preferably 1.5 or more, and preferably 20 or less.
  • the crushed filler (D) having an aspect ratio of less than 1.5 is relatively expensive. Therefore, the cost of a white curable composition becomes high. When the aspect ratio is 20 or less, the crushing filler (D2) can be easily filled.
  • the aspect ratio of the crushed filler (D2) is, for example, measuring the crushed surface of the crushed filler (D2) using a digital image analysis particle size distribution measuring device (trade name: FPA, manufactured by Nippon Heil). It can ask for.
  • FPA digital image analysis particle size distribution measuring device
  • the spherical filler (D1) include silica, alumina, potassium titanate, zirconium oxide, strontium titanate, aluminum borate, magnesium oxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium phosphate and Examples include inorganic spherical fillers such as calcium sulfate, and organic spherical fillers such as crosslinked acrylic resin particles.
  • the white curable composition preferably contains spherical silica.
  • the said spherical filler (D1) only 1 type may be used and 2 or more types may be used together.
  • the crushed filler (D2) include silica, antimony oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, barium carbonate, alumina, mica, beryllia, barium titanate, titanate. Potassium, strontium titanate, calcium titanate, aluminum carbonate, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, calcined clay, etc., talc, aluminum borate, silicon carbide, etc. Can be mentioned.
  • the white curable composition preferably contains crushed silica.
  • the said crushing filler (D2) only 1 type may be used and 2 or more types may be used together.
  • the crushed filler (D2) is composed of silica, alumina, magnesium oxide, antimony oxide, zirconium oxide, aluminum hydroxide or Magnesium hydroxide is preferred.
  • the average particle diameter of the filler (D), the average particle diameter of the spherical filler (D1), and the average particle diameter of the crushed filler (D2) are each preferably 0.1 ⁇ m or more, preferably 100 ⁇ m or less. .
  • the average particle size is not less than the above lower limit, the moldability of the white curable composition is further improved.
  • the average particle size is less than or equal to the above upper limit, the appearance defect of the molded body is more difficult to occur.
  • the average particle diameter of the filler (D) in the spherical filler (D1) and the average particle diameter of the crushed filler (D2) are the particle diameter values when the integrated value is 50% in the volume-based particle size distribution curve. It is.
  • the average particle size can be measured using, for example, a laser beam type particle size distribution meter.
  • a product “LS 13 320” manufactured by Beckman Coulter can be cited.
  • the content of the filler (D) is preferably 5% by weight or more, more preferably 10% by weight or more, and further preferably 20% by weight or more, preferably Is 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less.
  • the content of the filler (D) is not less than the above lower limit and not more than the above upper limit, the moldability of the white curable composition is further enhanced.
  • the content of the filler (D) is not more than the above upper limit, the light reflectance of the molded body is further increased.
  • the total content of the titanium oxide (C) and the filler (D) is preferably 5% by weight or more, more preferably 10% by weight or more. More preferably, it is 20% by weight or more, preferably 95% by weight or less, more preferably 93% by weight or less, and still more preferably 90% by weight or less.
  • the total content of titanium oxide (C) and silica is preferably 5% by weight or more, more preferably 10% by weight or more, and still more preferably 20%. % By weight or more, preferably 95% by weight or less, more preferably 93% by weight or less, still more preferably 90% by weight or less.
  • the weight ratio of the content of the spherical filler (D1) to the content of the crushed filler (D2) Is 0.3 or more and 30 or less, and more preferably 1 or more and 15 or less.
  • Content of the said spherical filler (D1) and content of the said crushing filler (D2) show content in 100 weight% of the said white curable composition. That is, in the white curable composition for optical semiconductor devices, the spherical filler (D1) and the crushed filler (D2) are in a weight ratio (spherical filler (D1): crushed filler (D2)).
  • the content of the spherical filler (D1) is relatively increased, the molded body is less likely to be brittle, the processability of the molded body is further improved, and cracks and chips are less likely to occur in the molded body.
  • the content of the crushing filler (D2) is relatively increased, the strength of the molded body is further increased.
  • the weight ratio of the content of the spherical silica to the content of the crushed silica Is preferably 0.3 or more and 30 or less, and more preferably 1 or more and 15 or less.
  • the content of the spherical silica and the content of the crushed silica indicate the content in 100% by weight of the white curable composition. That is, the white curable composition for an optical semiconductor device preferably includes spherical silica and crushed silica in a weight ratio (spherical silica: crushed silica) of 3:10 to 30: 1.
  • : 1 is more preferable.
  • the content of the spherical silica is relatively increased, the molded body is less likely to be brittle, the processability of the molded body is further enhanced, and cracks and chips are further less likely to occur in the molded body.
  • the content of crushed silica is relatively increased, the strength of the molded body is further increased.
  • the content of the silica in 100% by weight of the filler (D) different from titanium oxide is: It is preferably 10% by weight or more, more preferably 20% by weight or more, further preferably 30% by weight or more, particularly preferably 40% by weight or more, and most preferably 50% by weight or more and 100% by weight or less.
  • the total amount of the filler (D) different from the titanium oxide may be silica.
  • the said white curable composition for optical semiconductor devices contains a hardening accelerator (E) in order to accelerate
  • a hardening accelerator (E) By using the curing accelerator (E), the curability of the white curable composition can be increased, and the heat resistance of the molded body can be further increased.
  • a hardening accelerator (E) only 1 type may be used and 2 or more types may be used together.
  • Examples of the curing accelerator (E) include urea compounds, onium salt compounds, imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
  • urea compound examples include urea, aliphatic urea compounds and aromatic urea compounds. Specific examples of the urea compound include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, and tri-n-. Examples include butylthiourea. Urea compounds other than these may be used.
  • onium salt compounds examples include ammonium salts, phosphonium salts, and sulfonium salt compounds.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • the above phosphorus compound contains phosphorus and is a phosphorus-containing compound.
  • the phosphorus compound include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, and tetra-n- Examples thereof include butylphosphonium-tetraphenylborate. Phosphorus compounds other than these may be used.
  • amine compound examples include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, 4,4-dimethylaminopyridine, diazabicycloalkane, diazabicycloalkene, quaternary ammonium salt, triethylenediamine, and tri-2,4. , 6-dimethylaminomethylphenol. You may use the salt of these compounds.
  • Phenylphosphine tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra-n-butylphosphonium-tetraphenylborate It is done.
  • organometallic compound examples include alkali metal compounds and alkaline earth metal compounds. Specific examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • the curing accelerator (E) may be a urea compound, an onium salt compound, or a phosphorus compound.
  • the curing accelerator (E) is preferably a urea compound, preferably an onium salt compound, and preferably a phosphorus compound.
  • the mixing ratio of the epoxy compound (A) and the curing accelerator (E) is not particularly limited.
  • the content of the curing accelerator (E) is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight or less, based on 100 parts by weight of the epoxy compound (A). Preferably it is 10 weight part or less, More preferably, it is 5 weight part or less.
  • the said white curable composition for optical semiconductor devices further contains a coupling agent (F).
  • a coupling agent (F) By using the coupling agent (F), the adhesiveness between the thermosetting component, titanium oxide (C) and the filler (D) is improved in the molded body.
  • a coupling agent (F) only 1 type may be used and 2 or more types may be used together.
  • the coupling agent (F) is not particularly limited, and examples thereof include a silane coupling agent and a titanate coupling agent.
  • a silane coupling agent generally an epoxy silane coupling agent, an amino silane coupling agent, a cationic silane coupling agent, a vinyl silane coupling agent, an acrylic silane coupling agent, a mercapto silane coupling agent and These composite coupling agents are mentioned.
  • the coupling agent (F) is preferably a silane coupling agent.
  • the content of the coupling agent (F) is preferably 0.01% by weight or more, and preferably 5% by weight or less.
  • the white curable composition for an optical semiconductor device includes an antioxidant, a release agent, a resin modifier, a colorant, a diluent, a surface treatment agent, a flame retardant, a viscosity modifier, a dispersant, if necessary. It may contain a dispersion aid, a surface modifier, a plasticizer, an antibacterial agent, an antifungal agent, a leveling agent, a stabilizer, an anti-sagging agent or a phosphor.
  • the diluent may be a reactive diluent or a non-reactive diluent.
  • antioxidants examples include phenol-based antioxidants, phosphorus-based antioxidants, and amine-based antioxidants.
  • IRGANOX 1010 Commercially available products of the above-mentioned phenolic antioxidants include IRGANOX 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 245, IRGANOX 259, and IRGANOX 295 (all of which are manufactured by BASF), ADK STAB AO-30, ADK STAB AO -40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, and ADK STAB AO-330 (all of which are manufactured by ADEKA), Sumilizer GA-80, and Sumizer MDP -S, Sumilizer BBM-S, Sumilizer GM, Sumilizer GS (F), and Sum riser GP (all of which are manufactured by Sumitomo Chemical Co., Ltd.), HOSTANOX O10, HOSTANOX O16, HOSTANOX
  • Examples of the phosphorus antioxidant include cyclohexylphosphine and triphenylphosphine.
  • Commercially available phosphoric antioxidants include ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB 522A, ADK STAB 1178, ADK STAB 1178, and ADK STAB 1178 1500, ADK STAB C, ADK STAB 135A, ADK STAB 3010, and ADK STAB TPP (all of which are manufactured by ADEKA), Sandstub P-EPQ, and Hostanox PAR24 (all of which are manufactured by Clariant), and JP-312L, JP -318-0, JPM-308, JPM-313, JPP-613M, JPP-31, JPP-2000PT, and JPH-3800 Re also be mentioned Johoku Chemical Industry Co., Ltd.), and the
  • amine antioxidant examples include triethylamine, melamine, ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6-tolyl-S-triazine, 2,4-diamino- Examples include 6-xylyl-S-triazine and quaternary ammonium salt derivatives.
  • the content of the antioxidant is preferably 0.1 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 30 parts by weight with respect to 100 parts by weight of the epoxy compound (A). Or less.
  • the content of the antioxidant is not less than the above lower limit and not more than the upper limit, a molded body that is more excellent in heat resistance can be obtained.
  • the colorant is not particularly limited, and various organic materials such as phthalocyanine, azo compound, disazo compound, quinacridone, anthraquinone, flavantron, perinone, perylene, dioxazine, condensed azo compound, azomethine compound, infrared absorber and ultraviolet absorber.
  • organic materials such as phthalocyanine, azo compound, disazo compound, quinacridone, anthraquinone, flavantron, perinone, perylene, dioxazine, condensed azo compound, azomethine compound, infrared absorber and ultraviolet absorber.
  • inorganic pigments such as lead sulfate, chromium yellow, zinc yellow, chromium vermillion, valve shell, cobalt purple, bitumen, ultramarine, carbon black, chromium green, chromium oxide and cobalt green.
  • the white curable composition for optical semiconductor devices according to the present invention is preferably used for obtaining a molded body using a mold.
  • the white curable composition for optical semiconductor devices according to the present invention is preferably used for obtaining a molded body having a frame portion.
  • the white curable composition for optical semiconductor devices according to the present invention is disposed on the side of the optical semiconductor element in the optical semiconductor device and seals the optical semiconductor element in a region surrounded by the inner surface. Is preferably used to obtain a molded product to be used.
  • the white curable composition for optical semiconductor devices according to the present invention is preferably used for obtaining a molded body having an opening through which light emitted from the optical semiconductor element is extracted.
  • the white curable composition for an optical semiconductor device is a white curable composition for an optical semiconductor device used for obtaining a molded body disposed on a lead frame on which an optical semiconductor element is mounted in the optical semiconductor device. It is preferable that it is a thing.
  • the lead frame is, for example, a component for supporting and fixing the optical semiconductor element and achieving electrical connection between the electrode of the optical semiconductor element and external wiring.
  • the molded body is a molded body for an optical semiconductor device, and is preferably an optical semiconductor element mounting substrate.
  • the white curable composition for optical semiconductor devices according to the present invention is provided on the lead frame on which the optical semiconductor element is mounted and on the side of the optical semiconductor element in the semiconductor device. It is preferable that the white curable composition for an optical semiconductor device is used for obtaining a molded body that is disposed on the side and has a light reflecting portion that reflects light emitted from the optical semiconductor element.
  • the white curable composition for optical semiconductor devices surrounds the optical semiconductor element on the lead frame on which the optical semiconductor element is mounted in the semiconductor device. It is preferable that the white curable composition for an optical semiconductor device is used for obtaining a molded body that is disposed as described above and has a light reflecting portion that reflects light emitted from the optical semiconductor element on its inner surface.
  • the molded body preferably has a frame portion surrounding the optical semiconductor element, and is preferably an outer wall member surrounding the optical semiconductor element.
  • the molded body is preferably a frame-shaped member.
  • the said molded object differs from the die-bonding material for joining an optical semiconductor element (die bonding) in an optical semiconductor device. It is preferable that the molded body does not include the die bond material.
  • the white curable composition for an optical semiconductor device according to the present invention is used for obtaining individual molded bodies by dividing the pre-divided molded bodies after obtaining the molded bodies before division in which a plurality of molded bodies are continuous. It is preferable. Since the processability of the pre-division molded product using the white curable composition for optical semiconductor devices according to the present invention is high, cracks and Chipping can be made difficult to occur.
  • the said white curable composition for optical semiconductor devices is mix
  • a general method for producing the white curable composition includes a method in which each component is kneaded by an extruder, a kneader, a roll, an extruder, etc., and then the kneaded product is cooled and pulverized. From the viewpoint of improving dispersibility, the kneading of each component is preferably performed in a molten state.
  • the kneading conditions are appropriately determined depending on the type and amount of each component. Kneading at 15 to 150 ° C. for 5 to 100 minutes is preferable, kneading at 15 to 150 ° C. for 5 to 60 minutes is more preferable, and kneading at 5 to 150 ° C. for 5 to 40 minutes is more preferable, and 20 to 100 is preferable. It is particularly preferable to knead at 10 ° C. for 10 to 30 minutes.
  • the molded article for an optical semiconductor device according to the present invention is obtained by curing the above-described white curable composition for an optical semiconductor device.
  • the white curable composition for optical semiconductor devices is formed into a predetermined shape.
  • the molded body obtained by curing the white curable composition for optical semiconductor devices is suitably used for reflecting light emitted from the optical semiconductor element in the optical semiconductor device.
  • Examples of a method for obtaining the molded article for an optical semiconductor device using the white curable composition for an optical semiconductor device include a compression molding method, a transfer molding method, a laminate molding method, an injection molding method, an extrusion molding method, and a blow molding method. Is mentioned. Of these, transfer molding is preferred.
  • the white curable composition for optical semiconductor devices is transfer molded under the conditions of a molding temperature of 100 to 200 ° C., a molding pressure of 5 to 20 MPa, and a molding time of 60 to 300 seconds. can get.
  • An optical semiconductor device includes a lead frame, an optical semiconductor element mounted on the lead frame, and a molded body disposed on the lead frame, and the molded body is for the optical semiconductor device. It is obtained by curing a white curable composition.
  • the molded body is disposed on a side of the optical semiconductor element, and an inner surface of the molded body is a light reflecting portion that reflects light emitted from the optical semiconductor element. It is preferable.
  • FIGS. 1A and 1B schematically show an example of an optical semiconductor device according to an embodiment of the present invention in a cross-sectional view and a perspective view.
  • the optical semiconductor device 1 of this embodiment includes a lead frame 2, an optical semiconductor element 3, a first molded body 4, and a second molded body 5.
  • the optical semiconductor element 3 is preferably a light emitting diode (LED).
  • the first molded body 4 and the second molded body 5 are not formed integrally, but are two other members.
  • the first molded body 4 and the second molded body 5 may be integrally formed.
  • the first molded body 4 is a frame portion.
  • the 2nd molded object 5 is a bottom part.
  • the molded body has a frame portion (first molded body 4) and a bottom portion (second molded body 5).
  • the frame part which is the 1st molded object 4 is an outer wall part.
  • the frame part which is the 1st molded object 4 is cyclic
  • the molded body may be a molded body having no bottom. You may use combining the molded object which has a frame part obtained by hardening the said white curable composition, and another bottom member.
  • the molded body may be a frame-shaped molded body having only a frame portion.
  • the bottom member may be a molded body.
  • the optical semiconductor element 3 is mounted and arranged on the lead frame 2.
  • a first molded body 4 (frame portion) is disposed on the lead frame 2.
  • a second molded body 5 (bottom part) is disposed between the plurality of lead frames 2 and below the lead frames 2. Note that the molded body or the bottom member may not be disposed below the lead frame, and the lead frame may be exposed.
  • the optical semiconductor element 3 is disposed inside the first molded body 4.
  • a first molded body 4 is disposed on the side of the optical semiconductor element 3, and the first molded body 4 is disposed so as to surround the optical semiconductor element 3.
  • the first and second molded bodies 4 and 5 are cured products of the above-described white curable composition for optical semiconductor devices, and the above-described white curable composition for optical semiconductor devices. It is obtained by curing the product. Therefore, the 1st molded object 4 has light reflectivity, and has a light reflection part in the inner surface 4a. That is, the inner surface 4a of the first molded body 4 is a light reflecting portion. Therefore, the periphery of the optical semiconductor element 3 is surrounded by the inner surface 4 a having the light reflectivity of the first molded body 4. Only the 1st molded object 4 may be the hardened
  • the first molded body 4 (frame portion) has an opening through which light emitted from the optical semiconductor element is extracted.
  • the first and second molded bodies 4 and 5 are white.
  • the inner surface 4a of the first molded body 4 is formed such that the diameter of the inner surface 4a increases as it goes toward the opening end. Therefore, of the light emitted from the optical semiconductor element 3, the light indicated by the arrow B reaching the inner surface 4 a is reflected by the inner surface 4 a and travels forward of the optical semiconductor element 3.
  • the optical semiconductor element 3 is connected to the lead frame 2 using a die bond material 6.
  • the die bond material 6 has conductivity.
  • a bonding pad (not shown) provided on the optical semiconductor element 3 and the lead frame 2 are electrically connected by a bonding wire 7.
  • a sealing agent 8 is filled in the region surrounded by the inner surface 4 a of the first molded body 4 so as to seal the optical semiconductor element 3 and the bonding wire 7.
  • the optical semiconductor device 1 when the optical semiconductor element 3 is driven, light is emitted as indicated by a broken line A.
  • the optical semiconductor device 1 not only the light irradiated from the optical semiconductor element 3 to the side opposite to the upper surface of the lead frame 2, that is, the upper side, but also the light reaching the inner surface 4 a of the first molded body 4 is indicated by an arrow B. There is also light that is reflected on the surface. Therefore, the brightness of the light extracted from the optical semiconductor device 1 is bright.
  • FIG. 2 shows a modification of the optical semiconductor device 1 shown in FIG.
  • the optical semiconductor device 1 shown in FIG. 1 differs from the optical semiconductor device 21 shown in FIG. 2 only in the electrical connection structure using the die bonding materials 6 and 22 and the bonding wires 7 and 23.
  • the die bond material 6 in the optical semiconductor device 1 has conductivity.
  • the optical semiconductor device 21 has a die bond material 22, and the die bond material 22 does not have conductivity.
  • a bonding pad (not shown) provided on the optical semiconductor element 3 and a lead frame 2 (lead frame located on the right side in FIG. 1A) are electrically connected by a bonding wire 7.
  • the optical semiconductor device 21 has a bonding wire 23 in addition to the bonding wire 7.
  • a bonding pad (not shown) provided on the optical semiconductor element 3 and a lead frame 2 (a lead frame located on the right side in FIG. 2) are electrically connected by a bonding wire 7. Further, a bonding pad (not shown) provided on the optical semiconductor element 3 and the lead frame 2 (lead frame located on the left side in FIG. 2) are electrically connected by a bonding wire 23.
  • FIGS. 1 and 2 are merely examples of the optical semiconductor device according to the present invention, and can be modified as appropriate to the structure of the molded body, the mounting structure of the optical semiconductor element, and the like.
  • a pre-division optical semiconductor device component 11 in which a plurality of optical semiconductor device components are connected is prepared, and the pre-division optical semiconductor device component 11 is cut at a portion indicated by a broken line X. Individual optical semiconductor device components may be obtained.
  • the pre-division optical semiconductor device component 11 includes a pre-division lead frame 2A, a pre-division first molded body 4A, and a pre-division second molded body 5A. After obtaining individual components for an optical semiconductor device, the optical semiconductor device 3 may be mounted, and the optical semiconductor device 3 may be sealed with a sealant 8 to obtain the optical semiconductor device 1.
  • the lead frame 2 is obtained.
  • the first molded body 4A before division is cut at a portion indicated by a broken line X
  • the first molded body 4 is obtained.
  • the second molded body 5A before division is cut at a portion indicated by a broken line X
  • the second molded body 5 is obtained.
  • a pre-division optical semiconductor device 12 in which a plurality of pre-division optical semiconductor devices are connected is prepared, and the pre-division optical semiconductor device 12 is cut at a portion indicated by a broken line X.
  • a semiconductor device may be obtained.
  • the pre-division optical semiconductor device 12 includes a pre-division lead frame 2A, a pre-division first molded body 4A, and a pre-division second molded body 5A.
  • the optical semiconductor element 3 is mounted and arranged on the pre-division lead frame 2A.
  • a plurality of molded bodies are connected to form a pre-division molded body, but a plurality of molded bodies are not connected to each other.
  • the front optical semiconductor device component and the pre-division optical semiconductor device may be divided to obtain the optical semiconductor device component and the optical semiconductor device.
  • Epoxy compound (A) 1) YD-013 (bisphenol A type epoxy resin having an aromatic skeleton, epoxy equivalent 850, manufactured by Nippon Steel Chemical Co., Ltd.) 2) YD-019 (bisphenol A type epoxy resin having an aromatic skeleton, epoxy equivalent 2900, manufactured by Nippon Steel Chemical Co., Ltd.) 3) YDCN704 (Cresol novolac type epoxy resin having an aromatic skeleton, epoxy equivalent 210, manufactured by Nippon Steel Chemical Co., Ltd.) 4) EHPE3150 (epoxy resin having an alicyclic skeleton, epoxy equivalent 180, manufactured by Daicel) 5) Celoxide 2021P (3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (epoxy equivalent 126, manufactured by Daicel) 6) Epolide GT401 (polyfunctional alicyclic epoxy resin, epoxy equivalent 220, manufactured by Daicel)
  • MSR-3512 spherical silica, average particle size 30 ⁇ m, manufactured by Tatsumori
  • HSP-2000 spherical silica, average particle size 2 ⁇ m, manufactured by Toa Gosei Co., Ltd.
  • A-1 crushed silica, average particle size 11 ⁇ m, manufactured by Tatsumori
  • 5X crushed silica, average particle size 1.4 ⁇ m, manufactured by Tatsumori
  • R-900 fine powder silicone resin as a crushing filler, average particle size 20 ⁇ m, manufactured by Toray Dow Corning
  • AA crushed silica, average particle size 6 ⁇ m, manufactured by Tatsumori
  • Examples 1 to 6, 9, 11, 14 to 16, 20 to 35, Reference Examples 7, 8, 10, 12, 13, 17 to 19 and Comparative Examples 1 to 6) The components shown in Tables 1 to 3 below were blended in the blending amounts shown in Tables 1 to 3 below (blending units are parts by weight), and 15 minutes in a mixer (Laboroplast Mill R-60, manufactured by Toyo Seiki Seisakusho). Mixing was performed to obtain a melt-kneaded product. When the melt-kneaded product was liquid at ordinary temperature (23 ° C.), the melt-kneaded product was used as a white curable composition. When the melt-kneaded material was solid at ordinary temperature (23 ° C.), it was pulverized at ordinary temperature and then tableted to obtain a white curable composition.
  • No abnormality in appearance
  • Deformation of lead frame, deformation of molded body, chipping of molded body, voids in molded body and poor filling of molded body were observed in one place in total
  • X Deformation of lead frame , Deformation of the molded body, chipping of the molded body, voids in the molded body and poor filling of the molded body were observed in two or more places in total.
  • the dicing surfaces of the molded bodies on the 150 optical semiconductor mounting substrates were observed, and the workability was determined according to the following criteria.
  • Adhesion between Lead Frame and Molded Body A copper material (TAMAC 194) was subjected to silver plating to obtain a lead frame having a width of 10 mm, a length of 50 mm, and a thickness of 0.2 mm.
  • a molded body having a width of 8 mm, a length of 30 mm and a thickness of 1 mm was formed on the lead frame by transfer molding (molding temperature: 170 ° C., molding time: 3 minutes), and after-curing was performed at 170 ° C. for 2 hours.
  • the molded body formed on the lead frame was bent together with the lead frame so that the molded body side was a convex side.
  • the bending angle at which the lead frame and the molded body were peeled or the molded body was broken was evaluated, and the adhesion between the lead frame and the molded body was determined according to the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

A white curable composition for optical semiconductor devices is provided from which a molded object having high processability and high adhesion to the lead frame can be obtained. This white curable composition for optical semiconductor devices comprises an epoxy compound, an acid anhydride hardener, titanium oxide, a filler other than titanium oxide, and a hardening accelerator, the filler being silica. The epoxy compound as a whole has an epoxy equivalent of 500-20,000. The ratio of the epoxy equivalent of the whole epoxy compound to the hardener equivalent of the whole hardener is 0.3:1 to 2:1. The filler comprises a spherical filler and a crushed filler. The weight ratio of the content of the spherical filler to the content of the crushed filler is 0.3-30.

Description

光半導体装置用白色硬化性組成物、光半導体装置用成形体及び光半導体装置White curable composition for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
 本発明は、光半導体装置において、光半導体素子が搭載されるリードフレーム上に配置される成形体を得るために好適に用いられる光半導体装置用白色硬化性組成物に関する。また、本発明は、上記光半導体装置用白色硬化性組成物を用いた光半導体装置用成形体及び光半導体装置に関する。 The present invention relates to a white curable composition for an optical semiconductor device that is suitably used for obtaining a molded body disposed on a lead frame on which an optical semiconductor element is mounted in an optical semiconductor device. Moreover, this invention relates to the molded object for optical semiconductor devices and optical semiconductor device which used the said white curable composition for optical semiconductor devices.
 発光ダイオード(LED)装置などの光半導体装置の消費電力は低く、かつ寿命は長い。また、光半導体装置は、過酷な環境下でも使用され得る。従って、光半導体装置は、携帯電話用バックライト、液晶テレビ用バックライト、自動車用ランプ、照明器具及び看板などの幅広い用途で使用されている。 An optical semiconductor device such as a light emitting diode (LED) device has low power consumption and long life. Moreover, the optical semiconductor device can be used even in a harsh environment. Accordingly, optical semiconductor devices are used in a wide range of applications such as mobile phone backlights, liquid crystal television backlights, automobile lamps, lighting fixtures, and signboards.
 光半導体装置に用いられている発光素子である光半導体素子(例えばLED)が大気と直接触れると、大気中の水分又は浮遊するごみ等により、光半導体素子の発光特性が急速に低下する。このため、上記光半導体素子は、通常、光半導体装置用封止剤により封止されている。また、該封止剤を充填するために、上記光半導体素子が搭載されるリードフレーム上に、枠状の成形体が配置されている。該枠状の成形体の内側に、上記封止剤が充填されている。該成形体は、リフレクター又はハウジングと呼ばれることがある。 When an optical semiconductor element (for example, LED), which is a light emitting element used in an optical semiconductor device, is in direct contact with the atmosphere, the light emission characteristics of the optical semiconductor element rapidly deteriorate due to moisture in the atmosphere or floating dust. For this reason, the said optical semiconductor element is normally sealed with the sealing compound for optical semiconductor devices. In order to fill the sealing agent, a frame-shaped molded body is disposed on a lead frame on which the optical semiconductor element is mounted. The sealing agent is filled inside the frame-shaped molded body. The molded body is sometimes called a reflector or a housing.
 上記成形体を形成するための組成物の一例として、下記の特許文献1には、エポキシ樹脂と硬化剤と硬化触媒と無機充填材とを含む硬化性組成物が開示されている。この硬化性組成物を硬化させた硬化物を150℃の高温条件下に500時間放置した後に測定される光波長400nmにおける光拡散反射率は80%以上である。また、上記硬化性組成物では、トランスファー成形時のせん断離型力が10ショット以内に200KPa以下である。 As an example of a composition for forming the molded body, the following Patent Document 1 discloses a curable composition containing an epoxy resin, a curing agent, a curing catalyst, and an inorganic filler. The light diffuse reflectance at a light wavelength of 400 nm measured after leaving the cured product obtained by curing the curable composition for 500 hours under a high temperature condition of 150 ° C. is 80% or more. Moreover, in the said curable composition, the shear mold release force at the time of transfer molding is 200 KPa or less within 10 shots.
 下記の特許文献2には、エポキシ樹脂と硬化剤と硬化促進剤と無機充填材と白色顔料とを含む硬化性組成物が開示されている。また、特許文献2では、硬化性組成物を用いたトランスファー成形によって貫通孔が複数形成された光反射層を配線部材上に形成し、上記貫通孔の一方の開口部を上記配線部材で塞いでなる複数の凹部が形成された成形体を得る工程と、光半導体素子を上記凹部内にそれぞれ配置する工程と、上記光反射層の表面を覆うように上記半導体素子が配置された上記凹部に封止樹脂を供給する工程と、上記封止樹脂を介在させることにより、上記光反射層の上記表面から離間させた状態で上記凹部を覆うレンズを配置した後、上記封止樹脂を硬化させる工程と、上記成形体を上記凹部ごとに分割して複数の光半導体装置を得る工程とを備える光半導体装置の製造方法が開示されている。 The following Patent Document 2 discloses a curable composition containing an epoxy resin, a curing agent, a curing accelerator, an inorganic filler, and a white pigment. In Patent Document 2, a light reflection layer having a plurality of through holes formed on a wiring member by transfer molding using a curable composition is formed on the wiring member, and one opening of the through hole is closed with the wiring member. A step of obtaining a molded body in which a plurality of recesses are formed, a step of disposing an optical semiconductor element in each of the recesses, and a sealing in the recess in which the semiconductor element is disposed so as to cover the surface of the light reflecting layer. A step of supplying a stop resin, and a step of curing the sealing resin after disposing a lens covering the recess in a state of being spaced from the surface of the light reflecting layer by interposing the sealing resin. And a method of manufacturing an optical semiconductor device comprising a step of dividing the molded body into the recesses to obtain a plurality of optical semiconductor devices.
特開2009-141327号公報JP 2009-141327 A 特開2011-9519号公報JP 2011-9519 A
 特許文献1に記載のような従来の硬化性組成物をトランスファー成形する場合には、ランナー部分から、トランスファー成形された成形体を含むLEDパッケージを分離する必要がある。 In the case of transfer molding a conventional curable composition as described in Patent Document 1, it is necessary to separate the LED package including the transfer molded molded body from the runner portion.
 しかしながら、従来の酸化チタンを含む硬化性組成物を用いた成形体は脆いので、上記LEDパッケージをランナー部分から分離する際に、成形体が損傷又は変形したり、成形体にクラック又は欠けが生じたりすることがある。 However, since the molded body using the conventional curable composition containing titanium oxide is brittle, when the LED package is separated from the runner portion, the molded body is damaged or deformed, or the molded body is cracked or chipped. Sometimes.
 また、特許文献2に記載のような光半導体装置の製造方法では、成形体が複数連なった分割前成形体を、個々の成形体に分割する必要がある。しかしながら、該分割前成形体を個々の成形体に分割する際に、成形体にクラックが生じたり、欠けが生じたりすることがある。 Also, in the method of manufacturing an optical semiconductor device as described in Patent Document 2, it is necessary to divide a pre-division molded body in which a plurality of molded bodies are continuous into individual molded bodies. However, when the pre-division molded body is divided into individual molded bodies, the molded body may be cracked or chipped.
 すなわち、従来の硬化性組成物を用いた場合には、成形体の加工性が低いという問題がある。さらに、従来の硬化性組成物を用いた成形体では、該成形体のリードフレームに対する密着性が低いという問題もある。 That is, when a conventional curable composition is used, there is a problem that the workability of the molded body is low. Furthermore, the molded body using the conventional curable composition also has a problem that the adhesiveness of the molded body to the lead frame is low.
 また、特許文献1,2に記載のような従来の硬化性組成物では、成形性が低く、良好な成形体が得られないことがある。例えば、リードフレームの変形、成形体の変形、成形体の欠け、成形体におけるボイド及び成形体の充填不良などが生じることがある。 In addition, conventional curable compositions such as those described in Patent Documents 1 and 2 have low moldability, and a good molded product may not be obtained. For example, deformation of the lead frame, deformation of the molded body, chipping of the molded body, voids in the molded body and poor filling of the molded body may occur.
 本発明の目的は、加工性に優れた成形体を得ることができ、更にリードフレームに対する成形体の密着性を高めることができる光半導体装置用白色硬化性組成物、並びに該光半導体装置用白色硬化性組成物を用いた光半導体装置用成形体及び光半導体装置を提供することである。 An object of the present invention is to provide a white curable composition for an optical semiconductor device capable of obtaining a molded body excellent in processability and further improving the adhesion of the molded body to a lead frame, and the white for an optical semiconductor device. It is providing the molded object for optical semiconductor devices and an optical semiconductor device using a curable composition.
 本発明の限定的な目的は、成形性にも優れた成形体を得ることができる光半導体装置用白色硬化性組成物、並びに該光半導体装置用白色硬化性組成物を用いた光半導体装置用成形体及び光半導体装置を提供することである。 A limited object of the present invention is to provide a white curable composition for an optical semiconductor device capable of obtaining a molded article excellent in moldability, and for an optical semiconductor device using the white curable composition for an optical semiconductor device. It is to provide a molded body and an optical semiconductor device.
 本発明の広い局面によれば、白色の光半導体装置用白色硬化性組成物であって、エポキシ化合物と、硬化剤と、酸化チタンと、酸化チタンとは異なる充填材と、硬化促進剤とを含み、上記酸化チタンとは異なる充填材が、シリカであり、熱硬化前の光半導体装置用白色硬化性組成物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第1の抽出液を得たときに、該第1の抽出液のpHが3以上、6以下であり、170℃で3分間加熱した後、170℃で2時間更に加熱することにより硬化された後の硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第2の抽出液を得たときに、該第2の抽出液のpHが6以上、7以下であり、170℃で3分間加熱した後、170℃で2時間更に加熱することにより硬化された後の硬化物を、121℃、湿度100%及び2気圧の条件で24時間放置した後、放置後の硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第3の抽出液を得たときに、該第3の抽出液のpHが4以上、6以下であり、上記エポキシ化合物全体のエポキシ当量が500以上、20000以下であり、上記硬化剤が酸無水物硬化剤であり、上記エポキシ化合物全体のエポキシ当量と上記硬化剤全体の硬化剤当量との当量比が、0.3:1~2:1であり、上記充填材が、球状充填材と破砕充填材との双方を含み、上記球状充填材の含有量の上記破砕充填材の含有量に対する重量比が0.3以上、30以下である、光半導体装置用白色硬化性組成物が提供される。 According to a wide aspect of the present invention, there is a white curable composition for an optical semiconductor device, comprising an epoxy compound, a curing agent, titanium oxide, a filler different from titanium oxide, and a curing accelerator. The filler different from the above titanium oxide is silica, and 1 g of the white curable composition for optical semiconductor devices before thermosetting is put in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and 1 at 80 ° C. When the first extract is obtained by heating with stirring for a period of time and then removing insoluble components in the heated solution by filtration, the pH of the first extract is 3 or more and 6 or less. After heating at 170 ° C. for 3 minutes, 1 g of a cured product cured by further heating at 170 ° C. for 2 hours is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and stirred at 80 ° C. for 1 hour. While heating, then filter insoluble components in the liquid after heating Therefore, when the second extract is obtained by removal, the pH of the second extract is 6 or more and 7 or less, and after heating at 170 ° C. for 3 minutes, further heating at 170 ° C. for 2 hours. The cured product after being cured by the above is allowed to stand for 24 hours at 121 ° C., 100% humidity and 2 atm, and then 1 g of the cured product is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water. When heated at 80 ° C. with stirring for 1 hour and then removing insoluble components in the heated liquid by filtration to obtain a third extract, the pH of the third extract is 4 or more, 6 or less, the epoxy equivalent of the entire epoxy compound is 500 or more and 20000 or less, the curing agent is an acid anhydride curing agent, the epoxy equivalent of the entire epoxy compound and the curing agent equivalent of the entire curing agent, The equivalent ratio of 0.3: 1 to 2: 1 The optical semiconductor device, wherein the filler includes both a spherical filler and a crushed filler, and the weight ratio of the content of the spherical filler to the content of the crushed filler is 0.3 or more and 30 or less. A white curable composition is provided.
 上記エポキシ化合物は、芳香族骨格を有するエポキシ化合物及び脂環式骨格を有するエポキシ化合物の内の少なくとも1種を含むことが好ましい。上記エポキシ化合物は、芳香族骨格を有するエポキシ化合物を含むことが好ましい。上記芳香族骨格を有するエポキシ化合物のエポキシ当量は、400以上、3000以下であることが好ましい。上記エポキシ化合物は、脂環式骨格を有するエポキシ化合物を含むことが好ましい。 The epoxy compound preferably contains at least one of an epoxy compound having an aromatic skeleton and an epoxy compound having an alicyclic skeleton. The epoxy compound preferably includes an epoxy compound having an aromatic skeleton. The epoxy equivalent of the epoxy compound having an aromatic skeleton is preferably 400 or more and 3000 or less. The epoxy compound preferably includes an epoxy compound having an alicyclic skeleton.
 本発明に係る光半導体装置用白色硬化性組成物では、上記球状充填材の含有量の上記破砕充填材の含有量に対する重量比(球状充填材/破砕充填材)が、1以上、15以下であることがより好ましい。 In the white curable composition for optical semiconductor devices according to the present invention, the weight ratio of the spherical filler content to the crushed filler content (spherical filler / crushed filler) is 1 or more and 15 or less. More preferably.
 本発明に係る光半導体装置用白色硬化性組成物は、光半導体装置において、光半導体素子が搭載されるリードフレーム上に配置される成形体を得るために用いられる白色の光半導体装置用白色硬化性組成物であることが好ましい。この場合に、本発明に係る光半導体装置用白色硬化性組成物は、複数の成形体が連なった分割前成形体を得た後に、該分割前成形体を分割して個々の成形体を得るために用いられることが好ましい。 The white curable composition for optical semiconductor devices according to the present invention is a white curable composition for optical semiconductor devices, which is used to obtain a molded body disposed on a lead frame on which an optical semiconductor element is mounted in an optical semiconductor device. It is preferable that it is an adhesive composition. In this case, the white curable composition for optical semiconductor devices according to the present invention obtains an individual molded body by dividing the molded body before division after obtaining the molded body before division in which a plurality of molded bodies are connected. Is preferably used for this purpose.
 本発明に係る光半導体装置用白色硬化性組成物は、光半導体装置において、光半導体素子が搭載されるリードフレーム上にかつ上記光半導体素子の側方に配置され、上記光半導体素子から発せられた光を反射する光反射部を有する成形体を得るために用いられる光半導体装置用白色硬化性組成物であることが好ましい。 The white curable composition for an optical semiconductor device according to the present invention is disposed on a lead frame on which an optical semiconductor element is mounted and on the side of the optical semiconductor element in the optical semiconductor device, and is emitted from the optical semiconductor element. It is preferable that the white curable composition for optical semiconductor devices used for obtaining a molded body having a light reflecting portion that reflects the reflected light.
 本発明に係る光半導体装置用成形体は、上述した光半導体装置用白色硬化性組成物を硬化させることにより得られる。 The molded article for an optical semiconductor device according to the present invention is obtained by curing the above-described white curable composition for an optical semiconductor device.
 本発明に係る光半導体装置は、リードフレームと、該リードフレーム上に搭載された光半導体素子と、該リードフレーム上に配置された成形体とを備えており、上記成形体が、上述した光半導体装置用白色硬化性組成物を硬化させることにより得られる。 An optical semiconductor device according to the present invention includes a lead frame, an optical semiconductor element mounted on the lead frame, and a molded body disposed on the lead frame. It is obtained by curing a white curable composition for semiconductor devices.
 本発明に係る光半導体装置用白色硬化性組成物は、エポキシ化合物と硬化剤と酸化チタンと酸化チタンとは異なる充填材と硬化促進剤とを含み、熱硬化前の光半導体装置用白色硬化性組成物を用いた第1の抽出液のpHが3以上、6以下であり、加熱により硬化された後の硬化物を用いた第2の抽出液のpHが6以上、7以下であるので、加工性に優れた成形体を得ることができる。さらに、リードフレーム上に白色硬化性組成物を硬化させた成形体を配置したときに、リードフレームと成形体との密着性を高めることができる。 The white curable composition for optical semiconductor devices according to the present invention includes an epoxy compound, a curing agent, a filler different from titanium oxide and titanium oxide, and a curing accelerator, and the white curable composition for optical semiconductor devices before thermal curing. Since the pH of the first extract using the composition is 3 or more and 6 or less, and the pH of the second extract using the cured product after being cured by heating is 6 or more and 7 or less, A molded body excellent in workability can be obtained. Furthermore, when the molded body in which the white curable composition is cured is disposed on the lead frame, the adhesion between the lead frame and the molded body can be improved.
 さらに、本発明に係る光半導体装置用白色硬化性組成物では、上記酸化チタンとは異なる充填材としてシリカを用い、加熱により硬化された後の硬化物を121℃、湿度100%及び2気圧の条件で24時間放置した後の硬化物を用いた第3の抽出液のpHが4以上、6以下であり、上記エポキシ化合物全体のエポキシ当量が500以上、20000以下であり、上記硬化剤が酸無水物硬化剤であり、上記エポキシ化合物全体のエポキシ当量と上記硬化剤全体の硬化剤当量との当量比が、0.3:1~2:1であり、上記充填材が、球状充填材と破砕充填材との双方を含み、上記球状充填材の含有量の上記破砕充填材の含有量に対する重量比が0.3以上、30以下であるため、加工性により一層優れた成形体を得ることができる。さらに、リードフレーム上に白色硬化性組成物を硬化させた成形体を配置したときに、リードフレームと成形体との密着性をより一層高めることができる。 Further, in the white curable composition for an optical semiconductor device according to the present invention, silica is used as a filler different from the titanium oxide, and the cured product after being cured by heating is 121 ° C., humidity 100% and 2 atm. The pH of the third extract using the cured product after standing for 24 hours under the conditions is 4 or more and 6 or less, the epoxy equivalent of the whole epoxy compound is 500 or more and 20000 or less, and the curing agent is an acid. An anhydride curing agent, wherein an equivalent ratio of an epoxy equivalent of the entire epoxy compound to a curing agent equivalent of the entire curing agent is 0.3: 1 to 2: 1, and the filler is a spherical filler. Since the weight ratio of the content of the spherical filler to the content of the crushed filler is 0.3 or more and 30 or less, including both the crushed filler, to obtain a molded body that is more excellent in workability Can do. Furthermore, when the molded body in which the white curable composition is cured is disposed on the lead frame, the adhesion between the lead frame and the molded body can be further enhanced.
図1(a)及び(b)は、本発明の一実施形態に係る光半導体装置用白色硬化性組成物を用いた成形体を備える光半導体装置の一例を模式的に示す断面図及び斜視図である。1A and 1B are a cross-sectional view and a perspective view schematically showing an example of an optical semiconductor device including a molded body using a white curable composition for an optical semiconductor device according to an embodiment of the present invention. It is. 図2は、図1に示す光半導体装置の変形例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a modification of the optical semiconductor device shown in FIG. 図3は、本発明の一実施形態に係る光半導体装置用白色硬化性組成物を用いた複数の成形体が連なった分割前成形体を含む分割前光半導体装置用部品の一例を模式的に示す断面図である。FIG. 3 schematically illustrates an example of a pre-division optical semiconductor device component including a pre-division molded body in which a plurality of molded bodies using a white curable composition for an optical semiconductor device according to an embodiment of the present invention are connected. It is sectional drawing shown. 図4は、本発明の一実施形態に係る光半導体装置用白色硬化性組成物を用いた複数の成形体が連なった分割前成形体を含む分割前光半導体装置の一例を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically illustrating an example of a pre-division optical semiconductor device including a pre-division molded body in which a plurality of molded bodies using a white curable composition for an optical semiconductor device according to an embodiment of the present invention are connected. FIG.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 (光半導体装置用白色硬化性組成物)
 本発明に係る光半導体装置用白色硬化性組成物は、エポキシ化合物(A)と、硬化剤(B)と、酸化チタン(C)と、酸化チタンとは異なる充填材(D)と、硬化促進剤(E)とを含む。
(White curable composition for optical semiconductor devices)
The white curable composition for optical semiconductor devices according to the present invention includes an epoxy compound (A), a curing agent (B), titanium oxide (C), a filler (D) different from titanium oxide, and curing acceleration. Agent (E).
 本発明に係る光半導体装置用白色硬化性組成物では、熱硬化前の該光半導体装置用白色硬化性組成物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第1の抽出液を得たときに、該第1の抽出液のpH(第1の抽出法でのpH)が3以上、6以下である。 In the white curable composition for optical semiconductor devices according to the present invention, 1 g of the white curable composition for optical semiconductor devices before thermosetting is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and 1 at 80 ° C. When the first extract is obtained by removing the insoluble components in the heated solution by filtration and then filtering, the pH of the first extract (in the first extraction method) pH) is 3 or more and 6 or less.
 さらに、本発明に係る光半導体装置用白色硬化性組成物では、加熱により硬化された後の硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第2の抽出液を得たときに、該第2の抽出液のpH(第2の抽出法でのpH)が6以上、7以下である。 Furthermore, in the white curable composition for optical semiconductor devices according to the present invention, 1 g of the cured product after being cured by heating is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and stirred at 80 ° C. for 1 hour. Then, when the second extract is obtained by removing insoluble components in the heated solution by filtration, the pH of the second extract (pH in the second extraction method) is 6 or more and 7 or less.
 なお、本願明細書では、組成物又は硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して得られた抽出液のpHを測定する方法を、抽出法と呼ぶことがある。 In the present specification, 1 g of the composition or cured product is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, heated with stirring at 80 ° C. for 1 hour, and then insoluble components in the liquid after heating. The method of measuring the pH of the extract obtained by removing the water by filtration may be referred to as an extraction method.
 本発明に係る光半導体装置用白色硬化性組成物は、光半導体装置において、光半導体素子が搭載されるリードフレーム上に配置される成形体を得るために用いられる光半導体装置用白色硬化性組成物であることが好ましい。上記成形体は、所定の形状に成形された硬化物である。 The white curable composition for an optical semiconductor device according to the present invention is a white curable composition for an optical semiconductor device used for obtaining a molded body disposed on a lead frame on which an optical semiconductor element is mounted in the optical semiconductor device. It is preferable that it is a thing. The molded body is a cured product molded into a predetermined shape.
 本発明に係る光半導体装置用白色硬化性組成物における上記組成を採用し、かつ上記第1,第2の抽出法におけるpHを上記下限以上及び上記上限以下にすることによって、加工性に優れた成形体を得ることができる。本発明に係る光半導体装置用白色硬化性組成物は成形性に優れているので、本発明に係る光半導体装置用白色硬化性組成物の使用により、均質なかつ良好な形状を有する成形体を容易に得ることができる。 By adopting the above-mentioned composition in the white curable composition for optical semiconductor devices according to the present invention and making the pH in the first and second extraction methods above the lower limit and below the upper limit, the processability is excellent. A molded body can be obtained. Since the white curable composition for optical semiconductor devices according to the present invention is excellent in moldability, the use of the white curable composition for optical semiconductor devices according to the present invention makes it easy to form a molded body having a uniform and good shape. Can get to.
 本発明では、例えば、本発明に係る光半導体装置用白色硬化性組成物を成形した後、ランナー部分から、成形された成形体を含むLEDパッケージを分離する際に、成形体に損傷、変形、クラック及び欠けが生じ難くなる。さらに、成形体が複数連なった分割前成形体を、個々の成形体に分割して、分割後成形体を得る場合に、成形体にクラック及び欠けが生じ難くなる。すなわち、本発明に係る光半導体装置用白色硬化性組成物の使用により、該光半導体装置用白色硬化性組成物を用いた成形体を良好にダイシングすることができる。 In the present invention, for example, after molding the white curable composition for optical semiconductor devices according to the present invention, when separating the LED package including the molded product from the runner part, the molded product is damaged, deformed, Cracks and chips are less likely to occur. Furthermore, when the pre-division molded body having a plurality of molded bodies is divided into individual molded bodies to obtain a post-division molded body, cracks and chips are less likely to occur in the molded body. That is, by using the white curable composition for optical semiconductor devices according to the present invention, a molded body using the white curable composition for optical semiconductor devices can be diced satisfactorily.
 さらに、本発明に係る光半導体装置用白色硬化性組成物における上記組成を採用し、かつ上記第1,第2の抽出法におけるpHを上記下限以上及び上記上限以下にすることによって、リードフレーム上に白色硬化性組成物を硬化させた成形体を配置したときに、リードフレームと成形体との密着性を高めることもできる。 Further, by adopting the above composition in the white curable composition for optical semiconductor devices according to the present invention, and setting the pH in the first and second extraction methods above the lower limit and below the upper limit, When the molded body in which the white curable composition is cured is disposed, the adhesion between the lead frame and the molded body can be improved.
 また、本発明に係る光半導体装置用白色硬化性組成物における上記組成を採用することによって、光半導体装置用白色硬化性組成物を硬化させることにより得られる成形体の光の反射率を高めることができる。得られる成形体は、光の反射率が高いので、光半導体素子から発せられる光が成形体に到達したときに光を効果的に反射させる。このため、光半導体装置から取り出される光の明るさを明るくすることができる。 Moreover, the reflectance of the molded object obtained by hardening the white curable composition for optical semiconductor devices is improved by employ | adopting the said composition in the white curable composition for optical semiconductor devices which concerns on this invention. Can do. Since the obtained molded body has a high reflectance of light, the light is effectively reflected when the light emitted from the optical semiconductor element reaches the molded body. For this reason, the brightness of the light extracted from the optical semiconductor device can be increased.
 さらに、本発明に係る光半導体装置用白色硬化性組成物における上記組成を採用し、かつ上記第1,第2の抽出法におけるpHを上記下限以上及び上記上限以下にすることによって、上記成形体の耐熱性も高めることができる。また、上記成形体は、耐熱性が高いので高温下に晒されても変色し難い。このため、光半導体装置の耐熱信頼性を高めることができ、高温下に晒されたときの光半導体装置から取り出される光の明るさの低下を抑制できる。 Furthermore, by adopting the above composition in the white curable composition for optical semiconductor devices according to the present invention, and setting the pH in the first and second extraction methods to the above lower limit and the above upper limit, The heat resistance of can also be improved. Moreover, since the said molded object has high heat resistance, even if it exposes under high temperature, it is hard to discolor. For this reason, the heat-resistant reliability of an optical semiconductor device can be improved, and the fall of the brightness of the light taken out from the optical semiconductor device when exposed to high temperature can be suppressed.
 また、上記第1の抽出法でのpHが3以上であると、金属リードフレームの腐食も生じ難くなる。上記第1の抽出法でのpHが6以下であると、成形体の強度が高くなる。 Also, when the pH in the first extraction method is 3 or more, corrosion of the metal lead frame hardly occurs. When the pH in the first extraction method is 6 or less, the strength of the molded body increases.
 本発明では、加熱により硬化された後の硬化物を、121℃、湿度100%及び2気圧の条件で24時間放置した後、放置後の硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第3の抽出液を得たときに、該第3の抽出液のpH(第3の抽出法でのpH)は4以上、6以下である。また、上記第3の抽出法でのpHが上記下限以上及び上記上限以下であると、成形体の加工性及び耐熱性をより一層高くし、リードフレームと成形体との密着性をより一層高め、更に光半導体装置の耐熱信頼性をより一層高めることができる。 In the present invention, the cured product after being cured by heating is allowed to stand for 24 hours under conditions of 121 ° C., 100% humidity and 2 atmospheres, and then 1 g of the cured product is a liquid containing 5 g of acetone and 5 g of pure water. Into 10 g, heated with stirring at 80 ° C. for 1 hour, and then removed insoluble components in the heated liquid by filtration to obtain a third extract. The pH (pH in the third extraction method) is 4 or more and 6 or less. Further, when the pH in the third extraction method is not less than the above lower limit and not more than the above upper limit, the workability and heat resistance of the molded body are further enhanced, and the adhesion between the lead frame and the molded body is further enhanced. Further, the heat resistance reliability of the optical semiconductor device can be further improved.
 上記第2,第3の抽出法でのpHを測定する際に、加熱により硬化された後の硬化物を得るための硬化条件は、170℃で3分間加熱した後、170℃で2時間更に加熱する硬化条件である。 When measuring the pH in the second and third extraction methods, the curing conditions for obtaining a cured product cured by heating are as follows: after heating at 170 ° C. for 3 minutes, further at 170 ° C. for 2 hours. It is the hardening conditions to heat.
 本発明では、上記酸化チタンとは異なる充填材がシリカであり、上記硬化剤が酸無水物硬化剤であり、上記エポキシ化合物全体のエポキシ当量と上記硬化剤全体の硬化剤当量との当量比が、0.3:1~2:1であり、上記充填材が、球状充填材と破砕充填材との双方を含み、上記球状充填材の含有量の上記破砕充填材の含有量に対する重量比が0.3以上、30以下である。このため、加工性により一層優れた成形体を得ることができ、更にリードフレーム上に白色硬化性組成物を硬化させた成形体を配置したときに、リードフレームと成形体との密着性をより一層高めることができる。 In the present invention, the filler different from the titanium oxide is silica, the curing agent is an acid anhydride curing agent, and the equivalent ratio of the epoxy equivalent of the entire epoxy compound and the curing agent equivalent of the entire curing agent is 0.3: 1 to 2: 1, and the filler includes both spherical filler and crushed filler, and the weight ratio of the spherical filler content to the crushed filler content is It is 0.3 or more and 30 or less. For this reason, it is possible to obtain a molded body that is more excellent in workability. Further, when a molded body obtained by curing a white curable composition is disposed on the lead frame, the adhesion between the lead frame and the molded body is further improved. It can be further enhanced.
 以下、本発明に係る光半導体装置用白色硬化性組成物に含まれている各成分の詳細を説明する。 Hereinafter, the detail of each component contained in the white curable composition for optical semiconductor devices which concerns on this invention is demonstrated.
 [エポキシ化合物(A)]
 上記白色硬化性組成物は、熱の付与によって硬化可能であるように、エポキシ化合物(A)を含む。エポキシ化合物(A)はエポキシ基を有する。熱硬化性化合物としてエポキシ化合物(A)を用いることにより、成形体の耐熱性及び絶縁信頼性が高くなる。エポキシ化合物(A)は1種のみが用いられてもよく、2種以上が併用されてもよい。
[Epoxy compound (A)]
The white curable composition contains the epoxy compound (A) so that it can be cured by application of heat. The epoxy compound (A) has an epoxy group. By using an epoxy compound (A) as a thermosetting compound, the heat resistance and insulation reliability of a molded object become high. As for an epoxy compound (A), only 1 type may be used and 2 or more types may be used together.
 上記エポキシ化合物(A)の具体例としては、ビスフェノール型エポキシ化合物、ノボラック型エポキシ化合物、多塩素酸化合物とエピクロロヒドリンとを反応させて得られるグリシジルエステル型エポキシ化合物、ポリアミン化合物とエピクロロヒドリンとを反応させて得られるグリシジルアミン型エポキシ化合物、グリシジルエーテル型エポキシ化合物、脂肪族エポキシ化合物、水添型芳香族エポキシ化合物、脂環式骨格を有するエポキシ化合物、トリグリシジルイソシアヌレート等の複素環式エポキシ化合物などが挙げられる。上記多塩素酸化合物としては、フタル酸及びダイマー酸等が挙げられる。上記ポリアミン化合物としては、ジアミノジフェニルメタン及びイソシアヌル酸等が挙げられる。 Specific examples of the epoxy compound (A) include bisphenol type epoxy compounds, novolak type epoxy compounds, glycidyl ester type epoxy compounds obtained by reacting polychloric acid compounds with epichlorohydrin, polyamine compounds and epichlorohydrides. Heterocycles such as glycidylamine type epoxy compounds, glycidyl ether type epoxy compounds, aliphatic epoxy compounds, hydrogenated aromatic epoxy compounds, epoxy compounds having an alicyclic skeleton, triglycidyl isocyanurate obtained by reacting with phosphorus And an epoxy compound of the formula. Examples of the polychloric acid compound include phthalic acid and dimer acid. Examples of the polyamine compound include diaminodiphenylmethane and isocyanuric acid.
 上記光半導体装置用白色硬化性組成物に含まれている上記エポキシ化合物(A)全体のエポキシ当量は500以上、20000以下である。該エポキシ当量が500以上であると、上記白色硬化性組成物の成形性がより一層良好になり、更に成形体が脆くなり難く、成形体の加工性がより一層良好になる。該エポキシ当量が20000以下であると、上記白色硬化性組成物の成形性がより一層良好になり、更に成形体の強度がより一層高くなる。上記エポキシ当量は、JIS K7236に準拠して測定される。「上記エポキシ化合物(A)全体のエポキシ当量」は、上記光半導体装置用白色硬化性組成物全体のエポキシ当量」を意味する。 The epoxy equivalent of the whole epoxy compound (A) contained in the white curable composition for optical semiconductor devices is 500 or more and 20000 or less. When the epoxy equivalent is 500 or more, the moldability of the white curable composition is further improved, the molded body is not easily brittle, and the processability of the molded body is further improved. When the epoxy equivalent is 20000 or less, the moldability of the white curable composition is further improved, and the strength of the molded body is further increased. The epoxy equivalent is measured according to JIS K7236. The “epoxy equivalent of the entire epoxy compound (A)” means the epoxy equivalent of the entire white curable composition for an optical semiconductor device.
 従って、上記光半導体装置用白色硬化性組成物全体のエポキシ当量は好ましくは500以上、好ましくは20000以下である。該エポキシ当量が500以上であると、上記白色硬化性組成物の成形性がより一層良好になり、更に成形体が脆くなり難く、成形体の加工性がより一層良好になる。該エポキシ当量が20000以下であると、上記白色硬化性組成物の成形性がより一層良好になり、更に成形体の強度がより一層高くなる。上記エポキシ当量は、JIS K7236に準拠して測定される。 Therefore, the epoxy equivalent of the whole white curable composition for optical semiconductor devices is preferably 500 or more, and preferably 20000 or less. When the epoxy equivalent is 500 or more, the moldability of the white curable composition is further improved, the molded body is not easily brittle, and the processability of the molded body is further improved. When the epoxy equivalent is 20000 or less, the moldability of the white curable composition is further improved, and the strength of the molded body is further increased. The epoxy equivalent is measured according to JIS K7236.
 成形体の強度を高め、成形体の加工性をより一層高める観点からは、上記エポキシ化合物(A)は、芳香族骨格を有するエポキシ化合物(A1)及び脂環式骨格を有するエポキシ化合物(A2)の内の少なくとも1種を含むことが好ましい。上記エポキシ化合物(A)は、芳香族骨格を有するエポキシ化合物(A1)と脂環式骨格を有するエポキシ化合物(A2)との双方を含んでいてもよい。上記白色硬化性組成物は、芳香族骨格を有するエポキシ化合物(A1)のみを含んでいてもよく、脂環式骨格を有するエポキシ化合物(A2)のみを含んでいてもよい。 From the viewpoint of increasing the strength of the molded body and further improving the workability of the molded body, the epoxy compound (A) is composed of an epoxy compound (A1) having an aromatic skeleton and an epoxy compound (A2) having an alicyclic skeleton. It is preferable that at least one of these is included. The epoxy compound (A) may contain both an epoxy compound (A1) having an aromatic skeleton and an epoxy compound (A2) having an alicyclic skeleton. The said white curable composition may contain only the epoxy compound (A1) which has an aromatic skeleton, and may contain only the epoxy compound (A2) which has an alicyclic skeleton.
 成形体の強度及び耐熱性をより一層高める観点からは、上記エポキシ化合物(A)は、芳香族骨格を有するエポキシ化合物(A1)を含むことが好ましい。上記芳香族骨格を有するエポキシ化合物(A1)は1種のみが用いられてもよく、2種以上が併用されてもよい。 From the viewpoint of further enhancing the strength and heat resistance of the molded article, the epoxy compound (A) preferably contains an epoxy compound (A1) having an aromatic skeleton. As for the epoxy compound (A1) which has the said aromatic skeleton, only 1 type may be used and 2 or more types may be used together.
 リードフレームと成形体との密着性をより一層高める観点からは、上記エポキシ化合物(A)は、脂環式骨格を有するエポキシ化合物(A2)を含むことが好ましい。上記脂環式骨格を有するエポキシ化合物(A2)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 From the viewpoint of further improving the adhesion between the lead frame and the molded body, the epoxy compound (A) preferably includes an epoxy compound (A2) having an alicyclic skeleton. As for the epoxy compound (A2) which has the said alicyclic skeleton, only 1 type may be used and 2 or more types may be used together.
 上記芳香族骨格を有するエポキシ化合物(A1)としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、芳香族骨格を有する多塩基酸化合物とエピクロロヒドリンとを反応させて得られるグリシジルエステル型エポキシ化合物、及び芳香族骨格を有するグリシジルエーテル型エポキシ化合物等が挙げられる。 Examples of the epoxy compound (A1) having an aromatic skeleton include bisphenol A type epoxy compound, bisphenol F type epoxy compound, cresol novolac type epoxy compound, phenol novolac type epoxy compound, polybasic acid compound having aromatic skeleton and epichloro Examples thereof include glycidyl ester type epoxy compounds obtained by reacting with hydrin and glycidyl ether type epoxy compounds having an aromatic skeleton.
 上記成形体の強度及び耐熱性をより一層高める観点からは、上記芳香族骨格を有するエポキシ化合物(A1)は、ビスフェノール骨格又はノボラック骨格を有することが好ましい。 From the viewpoint of further enhancing the strength and heat resistance of the molded article, the epoxy compound (A1) having the aromatic skeleton preferably has a bisphenol skeleton or a novolac skeleton.
 上記芳香族骨格を有するエポキシ化合物(A1)のエポキシ当量は、好ましくは400以上、好ましくは3000以下である。該エポキシ当量が400以上であると、上記白色硬化性組成物の成形性がより一層良好になる。該エポキシ当量が3000以下であると、成形体の強度がより一層高くなる。 The epoxy equivalent of the epoxy compound (A1) having an aromatic skeleton is preferably 400 or more, and preferably 3000 or less. When the epoxy equivalent is 400 or more, the moldability of the white curable composition is further improved. When the epoxy equivalent is 3000 or less, the strength of the molded product is further increased.
 上記脂環式骨格を有するエポキシ化合物(A2)の具体例としては、2-(3,4-エポキシ)シクロヘキシル-5,5-スピロ-(3,4-エポキシ)シクロヘキサン-m-ジオキサン、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、ジシクロペンタジエンジオキシド、ビニルシクロヘキセンモノオキサイド、1,2-エポキシ-4-ビニルシクロヘキサン、1,2:8,9-ジエポキシリモネン、ε-カプロラクトン修飾テトラ(3,4-エポキシシクロヘキシルメチル)ブタンテトラカルボキシレート、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物等が挙げられる。上記成形体の耐熱性をより一層高める観点から、上記脂環式骨格を有するエポキシ化合物(A2)は、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物(ダイセル社製「EHPE-3150」)であることが好ましい。 Specific examples of the epoxy compound (A2) having the alicyclic skeleton include 2- (3,4-epoxy) cyclohexyl-5,5-spiro- (3,4-epoxy) cyclohexane-m-dioxane, 3, 4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, dicyclopentadiene dioxide, vinylcyclohexene monooxide, 1,2-epoxy-4-vinylcyclohexane, 1,2: 8,9-diepoxy Limonene, ε-caprolactone modified tetra (3,4-epoxycyclohexylmethyl) butanetetracarboxylate, 1,2-epoxy-4- (2-oxiranyl) cyclohexane addition of 2,2-bis (hydroxymethyl) -1-butanol Thing etc. are mentioned. From the viewpoint of further enhancing the heat resistance of the molded article, the epoxy compound (A2) having the alicyclic skeleton is 1,2-epoxy-4- (2,2-bis (hydroxymethyl) -1-butanol. 2-oxiranyl) cyclohexane adduct (“EHPE-3150” manufactured by Daicel) is preferable.
 上記エポキシ化合物(A)の配合量は、熱の付与により適度に硬化するように適宜調整され、特に限定されない。上記光半導体装置用白色硬化性組成物100重量%中、エポキシ化合物(A)の含有量は好ましくは3重量%以上、より好ましくは5重量%以上、更に好ましくは10重量%以上、好ましくは99重量%以下、より好ましくは95重量%以下、更に好ましくは80重量%以下である。エポキシ化合物(A)の含有量が上記下限以上であると、加熱により白色硬化性組成物がより一層効果的に硬化する。エポキシ化合物(A)の含有量が上記上限以下であると、成形体の耐熱性がより一層高くなる。 The blending amount of the epoxy compound (A) is appropriately adjusted so as to be appropriately cured by application of heat, and is not particularly limited. In 100% by weight of the white curable composition for optical semiconductor devices, the content of the epoxy compound (A) is preferably 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, preferably 99%. % By weight or less, more preferably 95% by weight or less, still more preferably 80% by weight or less. When the content of the epoxy compound (A) is not less than the above lower limit, the white curable composition is more effectively cured by heating. When the content of the epoxy compound (A) is not more than the above upper limit, the heat resistance of the molded product is further increased.
 [硬化剤(B)]
 上記光半導体装置用白色硬化性組成物は、熱の付与によって効率的に硬化可能であるように、硬化剤(B)を含む。硬化剤(B)は、エポキシ化合物(A)を硬化させる。硬化剤(B)として、エポキシ化合物(A)の硬化剤として使用される公知の硬化剤が使用可能である。上記硬化剤(B)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing agent (B)]
The said white curable composition for optical semiconductor devices contains a hardening | curing agent (B) so that it can harden | cure efficiently by provision of heat. The curing agent (B) cures the epoxy compound (A). As the curing agent (B), a known curing agent used as a curing agent for the epoxy compound (A) can be used. As for the said hardening | curing agent (B), only 1 type may be used and 2 or more types may be used together.
 上記硬化剤(B)としては、酸無水物、ジシアンジアミド、フェノール化合物、ヒドラジド化合物、イミダゾール化合物、トリアジン環を有する化合物、メチル(メタ)アクリレート樹脂又はスチレン樹脂等により形成されたシェルにより、トリフェニルホスフィン(硬化剤)が被覆されている潜在性硬化剤(例えば、日本化薬社製「EPCAT-P」及び「EPCAT-PS」)、ポリウレア系重合体又はラジカル重合体により形成されたシェルにより、アミンなどの硬化剤が被覆されている潜在性硬化剤(特許第3031897号公報及び特許第3199818号公報に記載)、変性イミダゾールなどの硬化剤をエポキシ樹脂中に分散させて閉じ込め、粉砕することにより得られた潜在性硬化剤(旭化成イーマテリアルズ社製「ノバキュアHXA3792」及び「HXA3932HP」)、熱可塑性高分子内に硬化剤を分散させ、含有させた潜在性硬化剤(特許第3098061号公報に記載)、並びにテトラキスフェノール類化合物などにより被覆されたイミダゾール潜在性硬化剤(例えば、日本曹達社製「TEP-2E4MZ」及び「HIPA-2E4MZ」)等が挙げられる。これら以外の硬化剤(B)を用いてもよい。 As the curing agent (B), triphenylphosphine is formed by a shell formed of an acid anhydride, dicyandiamide, a phenol compound, a hydrazide compound, an imidazole compound, a compound having a triazine ring, a methyl (meth) acrylate resin or a styrene resin. A latent curing agent (for example, “EPCAT-P” and “EPCAT-PS” manufactured by Nippon Kayaku Co., Ltd.), a polyurea polymer, or a shell formed of a radical polymer is used to form an amine. It is obtained by dispersing a curing agent such as a latent curing agent (described in Japanese Patent No. 3031897 and Japanese Patent No. 3199818) coated with a curing agent such as modified imidazole in an epoxy resin and confining and grinding. Latent curing agent ("Novaki" manufactured by Asahi Kasei E-materials) AHXA3792 "and" HXA3932HP "), a latent curing agent (described in Japanese Patent No. 3098061) in which a curing agent is dispersed and contained in a thermoplastic polymer, and an imidazole latent coated with a tetrakisphenol compound or the like Curable hardeners (for example, “TEP-2E4MZ” and “HIPA-2E4MZ” manufactured by Nippon Soda Co., Ltd.). A curing agent (B) other than these may be used.
 リードフレームと成形体との密着性をより一層高める観点などから、上記硬化剤(B)は、酸無水物硬化剤である。上記酸無水物硬化剤としては、芳香族骨格を有する酸無水物及び脂環式骨格を有する酸無水物の内のいずれも使用可能である。 From the viewpoint of further improving the adhesion between the lead frame and the molded body, the curing agent (B) is an acid anhydride curing agent. As the acid anhydride curing agent, any of an acid anhydride having an aromatic skeleton and an acid anhydride having an alicyclic skeleton can be used.
 好ましい上記酸無水物硬化剤としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸及びメチルテトラヒドロ無水フタル酸等が挙げられる。 Preferred examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. And methylhexahydrophthalic anhydride and methyltetrahydrophthalic anhydride.
 上記酸無水物硬化剤は、二重結合を有さないことが好ましい。二重結合を有さない好ましい酸無水物硬化剤としては、ヘキサヒドロ無水フタル酸及びメチルヘキサヒドロ無水フタル酸等が挙げられる。 It is preferable that the acid anhydride curing agent does not have a double bond. Preferable acid anhydride curing agents having no double bond include hexahydrophthalic anhydride and methylhexahydrophthalic anhydride.
 上記エポキシ化合物(A)と上記硬化剤(B)との配合比率は特に限定されない。エポキシ化合物(A)100重量部に対して、硬化剤(B)の含有量は、好ましくは0.5重量部以上、より好ましくは1重量部以上、更に好ましくは2重量部以上、特に好ましくは3重量部以上、好ましくは500重量部以下、より好ましくは300重量部以下、更に好ましくは100重量部以下である。エポキシ化合物(A)100重量部に対して、酸無水物硬化剤(B)の含有量は、好ましくは0.5重量部以上、より好ましくは1重量部以上、更に好ましくは2重量部以上、特に好ましくは3重量部以上、好ましくは500重量部以下、より好ましくは300重量部以下、更に好ましくは100重量部以下である。 The mixing ratio of the epoxy compound (A) and the curing agent (B) is not particularly limited. The content of the curing agent (B) is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, still more preferably 2 parts by weight or more, particularly preferably 100 parts by weight of the epoxy compound (A). 3 parts by weight or more, preferably 500 parts by weight or less, more preferably 300 parts by weight or less, and still more preferably 100 parts by weight or less. The content of the acid anhydride curing agent (B) with respect to 100 parts by weight of the epoxy compound (A) is preferably 0.5 parts by weight or more, more preferably 1 part by weight or more, and further preferably 2 parts by weight or more. The amount is particularly preferably 3 parts by weight or more, preferably 500 parts by weight or less, more preferably 300 parts by weight or less, and still more preferably 100 parts by weight or less.
 また、上記光半導体装置用白色硬化性組成物中で、エポキシ化合物(A)全体のエポキシ当量と硬化剤の硬化剤当量との当量比(エポキシ当量:硬化剤当量)は、0.3:1~2:1であり、0.5:1~1.5:1であることが好ましい。上記光半導体装置用白色硬化性組成物中で、エポキシ化合物(A)全体のエポキシ当量と酸無水物硬化剤の硬化剤当量との当量比(エポキシ当量:硬化剤当量)は、0.3:1~2:1であり、0.5:1~1.5:1であることが好ましい。上記当量比(エポキシ当量:硬化剤当量)が上記範囲を満足すると、成形体の耐熱性及び耐候性がより一層高くなる。 Moreover, in the said white curable composition for optical semiconductor devices, the equivalent ratio (epoxy equivalent: hardener equivalent) of the epoxy equivalent of the whole epoxy compound (A) and the hardening | curing agent equivalent of a hardening | curing agent is 0.3: 1. ˜2: 1, preferably 0.5: 1 to 1.5: 1. In the white curable composition for an optical semiconductor device, the equivalent ratio of the epoxy equivalent of the entire epoxy compound (A) to the curing agent equivalent of the acid anhydride curing agent (epoxy equivalent: curing agent equivalent) is 0.3: It is 1 to 2: 1, and preferably 0.5: 1 to 1.5: 1. When the equivalent ratio (epoxy equivalent: curing agent equivalent) satisfies the above range, the heat resistance and weather resistance of the molded article are further enhanced.
 (酸化チタン(C))
 上記光半導体装置用白色硬化性組成物は酸化チタン(C)を含むので、光の反射率が高い成形体を得ることができる。また、上記酸化チタン(C)の使用によって、酸化チタン(C)とは異なる充填材のみを用いた場合と比較して、光の反射率が高い成形体が得られる。上記光半導体装置用白色硬化性組成物に含まれている酸化チタン(C)は特に限定されない。酸化チタン(C)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Titanium oxide (C))
Since the said white curable composition for optical semiconductor devices contains a titanium oxide (C), the molded object with a high reflectance of light can be obtained. Further, by using the titanium oxide (C), it is possible to obtain a molded article having a high light reflectance as compared with a case where only a filler different from the titanium oxide (C) is used. The titanium oxide (C) contained in the said white curable composition for optical semiconductor devices is not specifically limited. As for titanium oxide (C), only 1 type may be used and 2 or more types may be used together.
 上記酸化チタン(C)は、ルチル型酸化チタン又はアナターゼ型酸化チタンであることが好ましい。ルチル型酸化チタンの使用により、耐熱性により一層優れた成形体が得られる。上記アナターゼ型酸化チタンは、ルチル型酸化チタンよりも、硬度が低い。このため、アナターゼ型酸化チタンの使用により、上記硬化性組成物の成形性がより一層高くなる。 The titanium oxide (C) is preferably rutile titanium oxide or anatase titanium oxide. By using rutile-type titanium oxide, a molded body having further excellent heat resistance can be obtained. The anatase type titanium oxide has a lower hardness than the rutile type titanium oxide. For this reason, the moldability of the said curable composition becomes still higher by use of anatase type titanium oxide.
 上記酸化チタン(C)は、アルミニウム酸化物により表面処理されたルチル型酸化チタンを含むことが好ましい。上記酸化チタン(C)100重量%中、上記アルミニウム酸化物より表面処理されたルチル型酸化チタンの含有量は好ましくは10重量%以上、より好ましくは30重量%以上、100重量%以下である。上記酸化チタン(C)の全量が、上記アルミニウム酸化物により表面処理されたルチル型酸化チタンであってもよい。上記アルミニウム酸化物により表面処理されたルチル型酸化チタンの使用により、成形体の耐熱性がより一層高くなる。 The titanium oxide (C) preferably contains rutile titanium oxide that has been surface-treated with aluminum oxide. In 100% by weight of the titanium oxide (C), the content of the rutile titanium oxide surface-treated from the aluminum oxide is preferably 10% by weight or more, more preferably 30% by weight or more and 100% by weight or less. The total amount of titanium oxide (C) may be rutile titanium oxide surface-treated with the aluminum oxide. Use of the rutile type titanium oxide surface-treated with the aluminum oxide further increases the heat resistance of the molded body.
 上記アルミニウム酸化物により表面処理されたルチル型酸化チタンとしては、例えば、ルチル塩素法酸化チタンである石原産業社製の品番:CR-58や、ルチル硫酸法酸化チタンである石原産業社製の品番:R-630等が挙げられる。 Examples of the rutile-type titanium oxide surface-treated with the above aluminum oxide include, for example, a product number manufactured by Ishihara Sangyo Co., Ltd., which is a rutile chlorine method titanium oxide, and a product number manufactured by Ishihara Sangyo Co., Ltd., which is a rutile sulfuric acid method titanium oxide. : R-630 and the like.
 上記光半導体装置用白色硬化性組成物100重量%中、上記酸化チタン(C)の含有量は、好ましくは3重量%以上、より好ましくは10重量%以上、更に好ましくは15重量%以上、好ましくは95重量%以下、より好ましくは90重量%以下、更に好ましくは85重量%以下である。酸化チタン(C)の含有量が上記下限以上及び上記上限以下であると、成形体の光の反射率がより一層高くなり、更に成形体の耐熱性が高くなって、成形体が高温に晒されたときに黄変し難くなる。 In 100% by weight of the white curable composition for optical semiconductor devices, the content of the titanium oxide (C) is preferably 3% by weight or more, more preferably 10% by weight or more, further preferably 15% by weight or more, preferably Is 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less. When the content of titanium oxide (C) is not less than the above lower limit and not more than the above upper limit, the light reflectance of the molded body is further increased, the heat resistance of the molded body is further increased, and the molded body is exposed to a high temperature. When it is done, it becomes difficult to yellow.
 (充填材(D))
 上記充填材(D)は、酸化チタンとは異なる充填材である。上記充填材(D)は特に限定されない。上記充填材(D)は1種のみが用いられてもよく、2種以上が併用されてもよい。
(Filler (D))
The filler (D) is a filler different from titanium oxide. The filler (D) is not particularly limited. As for the said filler (D), only 1 type may be used and 2 or more types may be used together.
 上記充填材(D)として、無機充填材及び有機充填材等が挙げられる。上記充填材(D)の具体例としては、シリカ、アルミナ、マイカ、ベリリア、チタン酸カリウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、酸化ジルコニウム、酸化アンチモン、ホウ酸アルミニウム、水酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸アルミニウム、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム、硫酸カルシウム、硫酸バリウム、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、タルク、炭化ケイ素、架橋アクリルの樹脂粒子及びシリコーン粒子等が挙げられる。但し、本発明に係る光半導体装置用白色硬化性組成物は、上記酸化チタンとは異なる充填材(D)として、シリカを含有する。上記酸化チタンとは異なる充填材(D)がシリカであることが好ましい。上記充填材(D)は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the filler (D) include inorganic fillers and organic fillers. Specific examples of the filler (D) include silica, alumina, mica, beryllia, potassium titanate, barium titanate, strontium titanate, calcium titanate, zirconium oxide, antimony oxide, aluminum borate, aluminum hydroxide, Magnesium oxide, calcium carbonate, magnesium carbonate, aluminum carbonate, calcium silicate, aluminum silicate, magnesium silicate, calcium phosphate, calcium sulfate, barium sulfate, silicon nitride, boron nitride, calcined clay, talc, silicon carbide, cross-linked Examples include acrylic resin particles and silicone particles. However, the white curable composition for optical semiconductor devices which concerns on this invention contains a silica as a filler (D) different from the said titanium oxide. It is preferable that the filler (D) different from the titanium oxide is silica. As for the said filler (D), only 1 type may be used and 2 or more types may be used together.
 成形体の強靭性を高め、成形体の加工性をより一層高める観点などから、上記充填材(D)は、球状充填材(D1)と破砕充填材(D2)との双方を含む。すなわち、上記白色硬化性組成物は、球状シリカと破砕シリカとの双方を含むことが好ましい。 From the viewpoint of enhancing the toughness of the molded body and further improving the workability of the molded body, the filler (D) includes both a spherical filler (D1) and a crushed filler (D2). That is, the white curable composition preferably contains both spherical silica and crushed silica.
 上記球状充填材(D1)は球状である。球状充填材(D1)はアスペクト比が2以下である充填材をいう。球状充填材(D1)は、真球状であってもよく、球を扁平にした楕円球状であってもよく、又はこれらに類似した形状であってもよい。 The spherical filler (D1) is spherical. The spherical filler (D1) refers to a filler having an aspect ratio of 2 or less. The spherical filler (D1) may be a true sphere, an elliptical sphere obtained by flattening a sphere, or a shape similar to these.
 上記破砕充填材(D2)は、破砕された充填材である。上記破砕充填材(D2)のアスペクト比は、特に限定されない。破砕充填材(D2)のアスペクト比は好ましくは1.5以上、好ましくは20以下である。アスペクト比が1.5未満である破砕充填材(D)は、比較的高価である。従って、白色硬化性組成物のコストが高くなる。上記アスペクト比が20以下であると、破砕充填材(D2)の充填が容易である。 The crushed filler (D2) is a crushed filler. The aspect ratio of the crushing filler (D2) is not particularly limited. The aspect ratio of the crushed filler (D2) is preferably 1.5 or more, and preferably 20 or less. The crushed filler (D) having an aspect ratio of less than 1.5 is relatively expensive. Therefore, the cost of a white curable composition becomes high. When the aspect ratio is 20 or less, the crushing filler (D2) can be easily filled.
 上記破砕充填材(D2)のアスペクト比は、例えば、デジタル画像解析方式粒度分布測定装置(商品名:FPA、日本ルフト社製)を用いて、破砕充填材(D2)の破砕面を測定することにより求めることができる。 The aspect ratio of the crushed filler (D2) is, for example, measuring the crushed surface of the crushed filler (D2) using a digital image analysis particle size distribution measuring device (trade name: FPA, manufactured by Nippon Luft). It can ask for.
 上記球状充填材(D1)の好ましい例としては、シリカ、アルミナ、チタン酸カリウム、酸化ジルコニウム、チタン酸ストロンチウム、硼酸アルミニウム、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、リン酸カルシウム及び硫酸カルシウム等の無機球状充填材、並びに架橋アクリルの樹脂粒子等の有機球状充填材等が挙げられる。本発明では、上記白色硬化性組成物は球状シリカを含むことが好ましい。上記球状充填材(D1)は1種のみが用いられてもよく、2種以上が併用されてもよい。 Preferred examples of the spherical filler (D1) include silica, alumina, potassium titanate, zirconium oxide, strontium titanate, aluminum borate, magnesium oxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium phosphate and Examples include inorganic spherical fillers such as calcium sulfate, and organic spherical fillers such as crosslinked acrylic resin particles. In the present invention, the white curable composition preferably contains spherical silica. As for the said spherical filler (D1), only 1 type may be used and 2 or more types may be used together.
 上記破砕充填材(D2)の好ましい例としては、シリカ、酸化アンチモン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム、炭酸バリウム、アルミナ、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、タルク、ホウ酸アルミニウム及び炭化ケイ素等が挙げられる。本発明では、上記白色硬化性組成物は破砕シリカを含むことが好ましい。上記破砕充填材(D2)は1種のみが用いられてもよく、2種以上が併用されてもよい。 Preferred examples of the crushed filler (D2) include silica, antimony oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate, barium carbonate, alumina, mica, beryllia, barium titanate, titanate. Potassium, strontium titanate, calcium titanate, aluminum carbonate, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, calcined clay, etc., talc, aluminum borate, silicon carbide, etc. Can be mentioned. In the present invention, the white curable composition preferably contains crushed silica. As for the said crushing filler (D2), only 1 type may be used and 2 or more types may be used together.
 成形性を高め、かつ熱伝導性及び光反射特性に優れた成形体を得る観点からは、上記破砕充填材(D2)は、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化ジルコニウム、水酸化アルミニウム又は水酸化マグネシウムであることが好ましい。 From the viewpoint of improving the moldability and obtaining a molded article excellent in thermal conductivity and light reflection characteristics, the crushed filler (D2) is composed of silica, alumina, magnesium oxide, antimony oxide, zirconium oxide, aluminum hydroxide or Magnesium hydroxide is preferred.
 上記充填材(D)の平均粒径、上記球状充填材(D1)の平均粒径及び上記破砕充填材(D2)の平均粒径はそれぞれ、好ましくは0.1μm以上、好ましくは100μm以下である。該平均粒径が上記下限以上であると、上記白色硬化性組成物の成形性がより一層良好になる。該平均粒径が上記上限以下であると、成形体の外観不良がより一層生じ難くなる。 The average particle diameter of the filler (D), the average particle diameter of the spherical filler (D1), and the average particle diameter of the crushed filler (D2) are each preferably 0.1 μm or more, preferably 100 μm or less. . When the average particle size is not less than the above lower limit, the moldability of the white curable composition is further improved. When the average particle size is less than or equal to the above upper limit, the appearance defect of the molded body is more difficult to occur.
 上記充填材(D)の上記球状充填材(D1)における平均粒径及び上記破砕充填材(D2)における平均粒径とは、体積基準粒度分布曲線において積算値が50%のときの粒径値である。該平均粒径は、例えばレーザ光式粒度分布計を用いて測定可能である。該レーザ光式粒度分布計の市販品としては、Beckman Coulter社製の商品「LS 13 320」等が挙げられる。 The average particle diameter of the filler (D) in the spherical filler (D1) and the average particle diameter of the crushed filler (D2) are the particle diameter values when the integrated value is 50% in the volume-based particle size distribution curve. It is. The average particle size can be measured using, for example, a laser beam type particle size distribution meter. As a commercial product of the laser beam type particle size distribution analyzer, a product “LS 13 320” manufactured by Beckman Coulter can be cited.
 上記光半導体装置用白色硬化性組成物100重量%中、上記充填材(D)の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは20重量%以上、好ましくは95重量%以下、より好ましくは90重量%以下、更に好ましくは85重量%以下である。充填材(D)の含有量が上記下限以上及び上記上限以下であると、白色硬化性組成物の成形性がより一層高くなる。充填材(D)の含有量が上記上限以下であると、成形体の光の反射率がより一層高くなる。 In 100% by weight of the white curable composition for optical semiconductor devices, the content of the filler (D) is preferably 5% by weight or more, more preferably 10% by weight or more, and further preferably 20% by weight or more, preferably Is 95% by weight or less, more preferably 90% by weight or less, and still more preferably 85% by weight or less. When the content of the filler (D) is not less than the above lower limit and not more than the above upper limit, the moldability of the white curable composition is further enhanced. When the content of the filler (D) is not more than the above upper limit, the light reflectance of the molded body is further increased.
 上記光半導体装置用白色硬化性組成物100重量%中、上記酸化チタン(C)と上記充填材(D)との合計の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは20重量%以上、好ましくは95重量%以下、より好ましくは93重量%以下、更に好ましくは90重量%以下である。上記光半導体装置用白色硬化性組成物100重量%中、上記酸化チタン(C)とシリカとの合計の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは20重量%以上、好ましくは95重量%以下、より好ましくは93重量%以下、更に好ましくは90重量%以下である。酸化チタン(C)と充填材(D)の合計の含有量及び酸化チタン(C)とシリカとの合計の含有量が上記下限以上及び上記上限以下であると、白色硬化性組成物の成形性及び成形体の光の反射率がより一層高くなる。 In 100% by weight of the white curable composition for optical semiconductor devices, the total content of the titanium oxide (C) and the filler (D) is preferably 5% by weight or more, more preferably 10% by weight or more. More preferably, it is 20% by weight or more, preferably 95% by weight or less, more preferably 93% by weight or less, and still more preferably 90% by weight or less. In 100% by weight of the white curable composition for optical semiconductor devices, the total content of titanium oxide (C) and silica is preferably 5% by weight or more, more preferably 10% by weight or more, and still more preferably 20%. % By weight or more, preferably 95% by weight or less, more preferably 93% by weight or less, still more preferably 90% by weight or less. When the total content of titanium oxide (C) and filler (D) and the total content of titanium oxide (C) and silica are above the above lower limit and below the above upper limit, the moldability of the white curable composition And the reflectance of the light of a molded object becomes still higher.
 上記光半導体装置用白色硬化性組成物では、上記球状充填材(D1)の含有量の上記破砕充填材(D2)の含有量に対する重量比(球状充填材(D1)/破砕充填材(D2))が、0.3以上、30以下であり、1以上、15以下であることがより好ましい。上記球状充填材(D1)の含有量及び上記破砕充填材(D2)の含有量は、上記白色硬化性組成物100重量%中での含有量を示す。すなわち、上記光半導体装置用白色硬化性組成物は、球状充填材(D1)と破砕充填材(D2)とを重量比(球状充填材(D1):破砕充填材(D2))で、3:10~30:1で含み、1:1~15:1で含むことが好ましい。球状充填材(D1)の含有量が相対的に多くなると、成形体が脆くなり難く、成形体の加工性がより一層高くなって、成形体にクラック及び欠けがより一層生じ難くなる。破砕充填材(D2)の含有量が相対的に多くなると、成形体の強度がより一層高くなる。 In the white curable composition for optical semiconductor devices, the weight ratio of the content of the spherical filler (D1) to the content of the crushed filler (D2) (spherical filler (D1) / crushed filler (D2) ) Is 0.3 or more and 30 or less, and more preferably 1 or more and 15 or less. Content of the said spherical filler (D1) and content of the said crushing filler (D2) show content in 100 weight% of the said white curable composition. That is, in the white curable composition for optical semiconductor devices, the spherical filler (D1) and the crushed filler (D2) are in a weight ratio (spherical filler (D1): crushed filler (D2)). It is preferably 10 to 30: 1, and preferably 1: 1 to 15: 1. When the content of the spherical filler (D1) is relatively increased, the molded body is less likely to be brittle, the processability of the molded body is further improved, and cracks and chips are less likely to occur in the molded body. When the content of the crushing filler (D2) is relatively increased, the strength of the molded body is further increased.
 上記球状シリカと上記破砕シリカとを併用する場合には、上記光半導体装置用白色硬化性組成物では、上記球状シリカの含有量の上記破砕シリカの含有量に対する重量比(球状シリカ/破砕シリカ)が、0.3以上、30以下であることが好ましく、1以上、15以下であることがより好ましい。上記球状シリカの含有量及び上記破砕シリカの含有量は、上記白色硬化性組成物100重量%中での含有量を示す。すなわち、上記光半導体装置用白色硬化性組成物は、球状シリカと破砕シリカとを重量比(球状シリカ:破砕シリカ)で、3:10~30:1で含むことが好ましく、1:1~15:1で含むことがより好ましい。球状シリカの含有量が相対的に多くなると、成形体が脆くなり難く、成形体の加工性がより一層高くなって、成形体にクラック及び欠けがより一層生じ難くなる。破砕シリカの含有量が相対的に多くなると、成形体の強度がより一層高くなる。 When the spherical silica and the crushed silica are used in combination, in the white curable composition for an optical semiconductor device, the weight ratio of the content of the spherical silica to the content of the crushed silica (spherical silica / crushed silica) Is preferably 0.3 or more and 30 or less, and more preferably 1 or more and 15 or less. The content of the spherical silica and the content of the crushed silica indicate the content in 100% by weight of the white curable composition. That is, the white curable composition for an optical semiconductor device preferably includes spherical silica and crushed silica in a weight ratio (spherical silica: crushed silica) of 3:10 to 30: 1. : 1 is more preferable. When the content of the spherical silica is relatively increased, the molded body is less likely to be brittle, the processability of the molded body is further enhanced, and cracks and chips are further less likely to occur in the molded body. When the content of crushed silica is relatively increased, the strength of the molded body is further increased.
 上記酸化チタンとは異なる充填材(D)が、シリカとシリカとは異なる充填材とを含有する場合に、酸化チタンとは異なる充填材(D)100重量%中、上記シリカの含有量は、好ましくは10重量%以上、より好ましくは20重量%以上、更に好ましくは30重量%以上、特に好ましくは40重量%以上、最も好ましくは50重量%以上、100重量%以下である。上記酸化チタンとは異なる充填材(D)の全量がシリカであってもよい。 When the filler (D) different from the titanium oxide contains silica and a filler different from silica, the content of the silica in 100% by weight of the filler (D) different from titanium oxide is: It is preferably 10% by weight or more, more preferably 20% by weight or more, further preferably 30% by weight or more, particularly preferably 40% by weight or more, and most preferably 50% by weight or more and 100% by weight or less. The total amount of the filler (D) different from the titanium oxide may be silica.
 (硬化促進剤(E))
 上記光半導体装置用白色硬化性組成物は、上記エポキシ化合物(A)と上記硬化剤(B)との反応を促進するために、硬化促進剤(E)を含む。硬化促進剤(E)の使用により、上記白色硬化性組成物の硬化性を高めることができ、更に成形体の耐熱性を高めることができる。硬化促進剤(E)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Curing accelerator (E))
The said white curable composition for optical semiconductor devices contains a hardening accelerator (E) in order to accelerate | stimulate reaction with the said epoxy compound (A) and the said hardening | curing agent (B). By using the curing accelerator (E), the curability of the white curable composition can be increased, and the heat resistance of the molded body can be further increased. As for a hardening accelerator (E), only 1 type may be used and 2 or more types may be used together.
 上記硬化促進剤(E)としては、例えば、ウレア化合物、オニウム塩化合物、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。 Examples of the curing accelerator (E) include urea compounds, onium salt compounds, imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
 上記ウレア化合物としては、ウレア、脂肪族ウレア化合物及び芳香族ウレア化合物等が挙げられる。上記ウレア化合物の具体例としては、ウレア、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア及びトリ-n-ブチルチオウレア等が挙げられる。これら以外のウレア化合物を用いてもよい。 Examples of the urea compound include urea, aliphatic urea compounds and aromatic urea compounds. Specific examples of the urea compound include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, and tri-n-. Examples include butylthiourea. Urea compounds other than these may be used.
 上記オニウム塩化合物としては、アンモニウム塩、ホスホニウム塩及びスルホニウム塩化合物等が挙げられる。 Examples of the onium salt compounds include ammonium salts, phosphonium salts, and sulfonium salt compounds.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Can be mentioned.
 上記リン化合物は、リンを含有し、リン含有化合物である。上記リン化合物としては、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート、テトラ-n-ブチルホスホニウム-テトラフルオロボレート、及びテトラ-n-ブチルホスホニウム-テトラフェニルボレート等が挙げられる。これら以外のリン化合物を用いてもよい。 The above phosphorus compound contains phosphorus and is a phosphorus-containing compound. Examples of the phosphorus compound include triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, and tetra-n- Examples thereof include butylphosphonium-tetraphenylborate. Phosphorus compounds other than these may be used.
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン、4,4-ジメチルアミノピリジン、ジアザビシクロアルカン、ジアザビシクロアルケン、第4級アンモニウム塩、トリエチレンジアミン、及びトリ-2,4,6-ジメチルアミノメチルフェノールが挙げられる。これらの化合物の塩を用いてもよい。フェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオエート、テトラ-n-ブチルホスホニウム-テトラフルオロボレート、テトラ-n-ブチルホスホニウム-テトラフェニルボレートが挙げられる。 Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, 4,4-dimethylaminopyridine, diazabicycloalkane, diazabicycloalkene, quaternary ammonium salt, triethylenediamine, and tri-2,4. , 6-dimethylaminomethylphenol. You may use the salt of these compounds. Phenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra-n-butylphosphonium-tetraphenylborate It is done.
 上記有機金属化合物としては、アルカリ金属化合物及びアルカリ土類金属化合物等が挙げられる。上記有機金属化合物の具体例としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organometallic compound include alkali metal compounds and alkaline earth metal compounds. Specific examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
 上記白色硬化性組成物の硬化性をより一層高め、更に成形体の耐熱性をより一層高める観点からは、上記硬化促進剤(E)は、ウレア化合物、オニウム塩化合物又はリン化合物であることが好ましい。上記硬化促進剤(E)は、ウレア化合物であることが好ましく、オニウム塩化合物であることも好ましく、リン化合物であることも好ましい。 From the viewpoint of further enhancing the curability of the white curable composition and further enhancing the heat resistance of the molded article, the curing accelerator (E) may be a urea compound, an onium salt compound, or a phosphorus compound. preferable. The curing accelerator (E) is preferably a urea compound, preferably an onium salt compound, and preferably a phosphorus compound.
 上記エポキシ化合物(A)と上記硬化促進剤(E)との配合比率は特に限定されない。エポキシ化合物(A)100重量部に対して、硬化促進剤(E)の含有量は、好ましくは0.01重量部以上、より好ましくは0.1重量部以上、好ましくは100重量部以下、より好ましくは10重量部以下、更に好ましくは5重量部以下である。 The mixing ratio of the epoxy compound (A) and the curing accelerator (E) is not particularly limited. The content of the curing accelerator (E) is preferably 0.01 parts by weight or more, more preferably 0.1 parts by weight or more, preferably 100 parts by weight or less, based on 100 parts by weight of the epoxy compound (A). Preferably it is 10 weight part or less, More preferably, it is 5 weight part or less.
 (カップリング剤(F))
 上記光半導体装置用白色硬化性組成物は、カップリング剤(F)をさらに含むことが好ましい。カップリング剤(F)の使用により、成形体において熱硬化性成分と酸化チタン(C)と充填材(D)との接着性が良好になる。カップリング剤(F)は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Coupling agent (F))
It is preferable that the said white curable composition for optical semiconductor devices further contains a coupling agent (F). By using the coupling agent (F), the adhesiveness between the thermosetting component, titanium oxide (C) and the filler (D) is improved in the molded body. As for a coupling agent (F), only 1 type may be used and 2 or more types may be used together.
 上記カップリング剤(F)としては特に限定されないが、例えば、シランカップリング剤及びチタネート系カップリング剤が挙げられる。該シランカップリング剤としては、一般にエポキシシラン系カップリング剤、アミノシラン系カップリング剤、カチオニックシラン系カップリング剤、ビニルシラン系カップリング剤、アクリルシラン系カップリング剤、メルカプトシラン系カップリング剤及びこれらの複合系カップリング剤が挙げられる。カップリング剤(F)は、シランカップリング剤であることが好ましい。 The coupling agent (F) is not particularly limited, and examples thereof include a silane coupling agent and a titanate coupling agent. As the silane coupling agent, generally an epoxy silane coupling agent, an amino silane coupling agent, a cationic silane coupling agent, a vinyl silane coupling agent, an acrylic silane coupling agent, a mercapto silane coupling agent and These composite coupling agents are mentioned. The coupling agent (F) is preferably a silane coupling agent.
 上記光半導体装置用白色硬化性組成物100重量%中、上記カップリング剤(F)の含有量は好ましくは0.01重量%以上、好ましくは5重量%以下である。 In 100% by weight of the white curable composition for optical semiconductor devices, the content of the coupling agent (F) is preferably 0.01% by weight or more, and preferably 5% by weight or less.
 (他の成分)
 上記光半導体装置用白色硬化性組成物は、必要に応じて、酸化防止剤、離型剤、樹脂改質剤、着色剤、希釈剤、表面処理剤、難燃剤、粘度調節剤、分散剤、分散助剤、表面改質剤、可塑剤、抗菌剤、防黴剤、レベリング剤、安定剤、タレ防止剤又は蛍光体等を含んでいてもよい。上記希釈剤は、反応性希釈剤であってもよく、非反応性希釈剤であってもよい。
(Other ingredients)
The white curable composition for an optical semiconductor device includes an antioxidant, a release agent, a resin modifier, a colorant, a diluent, a surface treatment agent, a flame retardant, a viscosity modifier, a dispersant, if necessary. It may contain a dispersion aid, a surface modifier, a plasticizer, an antibacterial agent, an antifungal agent, a leveling agent, a stabilizer, an anti-sagging agent or a phosphor. The diluent may be a reactive diluent or a non-reactive diluent.
 上記酸化防止剤としては、フェノール系酸化防止剤、リン系酸化防止剤及びアミン系酸化防止剤等が挙げられる。 Examples of the antioxidant include phenol-based antioxidants, phosphorus-based antioxidants, and amine-based antioxidants.
 上記フェノール系酸化防止剤の市販品としては、IRGANOX 1010、IRGANOX 1035、IRGANOX 1076、IRGANOX 1135、IRGANOX 245、IRGANOX 259、及びIRGANOX 295(以上、いずれもBASF社製)、アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-70、アデカスタブ AO-80、アデカスタブ AO-90、及びアデカスタブ AO-330(以上、いずれもADEKA社製)、Sumilizer GA-80、Sumilizer MDP-S、Sumilizer BBM-S、Sumilizer GM、Sumilizer GS(F)、及びSumilizer GP(以上、いずれも住友化学工業社製)、HOSTANOX O10、HOSTANOX O16、HOSTANOX O14、及びHOSTANOX O3(以上、いずれもクラリアント社製)、アンテージ BHT、アンテージ W-300、アンテージ W-400、及びアンテージ W500(以上、いずれも川口化学工業社製)、並びにSEENOX 224M、及びSEENOX 326M(以上、いずれもシプロ化成社製)等が挙げられる。 Commercially available products of the above-mentioned phenolic antioxidants include IRGANOX 1010, IRGANOX 1035, IRGANOX 1076, IRGANOX 1135, IRGANOX 245, IRGANOX 259, and IRGANOX 295 (all of which are manufactured by BASF), ADK STAB AO-30, ADK STAB AO -40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, and ADK STAB AO-330 (all of which are manufactured by ADEKA), Sumilizer GA-80, and Sumizer MDP -S, Sumilizer BBM-S, Sumilizer GM, Sumilizer GS (F), and Sum riser GP (all of which are manufactured by Sumitomo Chemical Co., Ltd.), HOSTANOX O10, HOSTANOX O16, HOSTANOX O14, and HOSTANOX O3 (all of which are manufactured by Clariant), Antage BHT, Antage W-300, Antage W-400, and Antage W500 (above, both are manufactured by Kawaguchi Chemical Industry Co., Ltd.), SEENOX 224M, and SEENOX 326M (all are manufactured by Sipro Kasei Co., Ltd.).
 上記リン系酸化防止剤としては、シクロヘキシルフォスフィン及びトリフェニルフォスフィン等が挙げられる。上記リン系酸化防止剤の市販品としては、アデカスタブ PEP-4C、アデカスタブ PEP-8、アデカスタブ PEP-24G、アデカスタブ PEP-36、アデカスタブ HP-10、アデカスタブ 2112、アデカスタブ 260、アデカスタブ 522A、アデカスタブ 1178、アデカスタブ 1500、アデカスタブ C、アデカスタブ 135A、アデカスタブ 3010、及びアデカスタブ TPP(以上、いずれもADEKA社製)、サンドスタブ P-EPQ、及びホスタノックス PAR24(以上、いずれもクラリアント社製)、並びにJP-312L、JP-318-0、JPM-308、JPM-313、JPP-613M、JPP-31、JPP-2000PT、及びJPH-3800(以上、いずれも城北化学工業社製)等が挙げられる。 Examples of the phosphorus antioxidant include cyclohexylphosphine and triphenylphosphine. Commercially available phosphoric antioxidants include ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB 522A, ADK STAB 1178, ADK STAB 1178, and ADK STAB 1178 1500, ADK STAB C, ADK STAB 135A, ADK STAB 3010, and ADK STAB TPP (all of which are manufactured by ADEKA), Sandstub P-EPQ, and Hostanox PAR24 (all of which are manufactured by Clariant), and JP-312L, JP -318-0, JPM-308, JPM-313, JPP-613M, JPP-31, JPP-2000PT, and JPH-3800 Re also be mentioned Johoku Chemical Industry Co., Ltd.), and the like.
 上記アミン系酸化防止剤としては、トリエチルアミン、メラミン、エチルジアミノ-S-トリアジン、2,4-ジアミノ-S-トリアジン、2,4-ジアミノ-6-トリル-S-トリアジン、2,4-ジアミノ-6-キシリル-S-トリアジン及び第四級アンモニウム塩誘導体等が挙げられる。 Examples of the amine antioxidant include triethylamine, melamine, ethyldiamino-S-triazine, 2,4-diamino-S-triazine, 2,4-diamino-6-tolyl-S-triazine, 2,4-diamino- Examples include 6-xylyl-S-triazine and quaternary ammonium salt derivatives.
 上記エポキシ化合物(A)100重量部に対して、上記酸化防止剤の含有量は好ましくは0.1重量部以上、より好ましくは5重量部以上、好ましくは50重量部以下、より好ましくは30重量部以下である。上記酸化防止剤の含有量が上記下限以上及び上限以下であると、耐熱性により一層優れた成形体が得られる。 The content of the antioxidant is preferably 0.1 parts by weight or more, more preferably 5 parts by weight or more, preferably 50 parts by weight or less, more preferably 30 parts by weight with respect to 100 parts by weight of the epoxy compound (A). Or less. When the content of the antioxidant is not less than the above lower limit and not more than the upper limit, a molded body that is more excellent in heat resistance can be obtained.
 上記着色剤としては特に限定されず、フタロシアニン、アゾ化合物、ジスアゾ化合物、キナクリドン、アントラキノン、フラバントロン、ペリノン、ペリレン、ジオキサジン、縮合アゾ化合物、アゾメチン化合物、赤外吸収材及び紫外線吸収剤などの各種有機系色素、並びに硫酸鉛、クロムエロー、ジンクエロー、クロムバーミリオン、弁殻、コバルト紫、紺青、群青、カーボンブラック、クロムグリーン、酸化クロム及びコバルトグリーン等の無機顔料等が挙げられる。 The colorant is not particularly limited, and various organic materials such as phthalocyanine, azo compound, disazo compound, quinacridone, anthraquinone, flavantron, perinone, perylene, dioxazine, condensed azo compound, azomethine compound, infrared absorber and ultraviolet absorber. And inorganic pigments such as lead sulfate, chromium yellow, zinc yellow, chromium vermillion, valve shell, cobalt purple, bitumen, ultramarine, carbon black, chromium green, chromium oxide and cobalt green.
 (光半導体装置用白色硬化性組成物の他の詳細及び光半導体装置用成形体)
 本発明に係る光半導体装置用白色硬化性組成物は、金型を用いて成形体を得るために用いられることが好ましい。本発明に係る光半導体装置用白色硬化性組成物は、枠部を有する成形体を得るために用いられることが好ましい。本発明に係る光半導体装置用白色硬化性組成物は、光半導体装置において光半導体素子の側方に配置され、内面で囲まれた領域内に上記光半導体素子を封止するように封止剤が充填されて用いられる成形体を得るために用いられることが好ましい。本発明に係る光半導体装置用白色硬化性組成物は、光半導体素子から発せられた光が外部に取り出される開口を有する成形体を得るために用いられることが好ましい。
(Other details of white curable composition for optical semiconductor device and molded body for optical semiconductor device)
The white curable composition for optical semiconductor devices according to the present invention is preferably used for obtaining a molded body using a mold. The white curable composition for optical semiconductor devices according to the present invention is preferably used for obtaining a molded body having a frame portion. The white curable composition for optical semiconductor devices according to the present invention is disposed on the side of the optical semiconductor element in the optical semiconductor device and seals the optical semiconductor element in a region surrounded by the inner surface. Is preferably used to obtain a molded product to be used. The white curable composition for optical semiconductor devices according to the present invention is preferably used for obtaining a molded body having an opening through which light emitted from the optical semiconductor element is extracted.
 本発明に係る光半導体装置用白色硬化性組成物は、光半導体装置において、光半導体素子が搭載されるリードフレーム上に配置される成形体を得るために用いられる光半導体装置用白色硬化性組成物であることが好ましい。上記リードフレームは、例えば、光半導体素子を支持しかつ固定し、光半導体素子の電極と外部配線との電気的な接続を果たすための部品である。上記成形体は、光半導体装置用成形体であり、光半導体素子搭載用基板であることが好ましい。 The white curable composition for an optical semiconductor device according to the present invention is a white curable composition for an optical semiconductor device used for obtaining a molded body disposed on a lead frame on which an optical semiconductor element is mounted in the optical semiconductor device. It is preferable that it is a thing. The lead frame is, for example, a component for supporting and fixing the optical semiconductor element and achieving electrical connection between the electrode of the optical semiconductor element and external wiring. The molded body is a molded body for an optical semiconductor device, and is preferably an optical semiconductor element mounting substrate.
 光の反射率が高い成形体が得られるので、本発明に係る光半導体装置用白色硬化性組成物は、半導体装置において、光半導体素子が搭載されるリードフレーム上にかつ上記光半導体素子の側方に配置され、上記光半導体素子から発せられた光を反射する光反射部を有する成形体を得るために用いられる光半導体装置用白色硬化性組成物であることが好ましい。 Since a molded article having high light reflectance is obtained, the white curable composition for optical semiconductor devices according to the present invention is provided on the lead frame on which the optical semiconductor element is mounted and on the side of the optical semiconductor element in the semiconductor device. It is preferable that the white curable composition for an optical semiconductor device is used for obtaining a molded body that is disposed on the side and has a light reflecting portion that reflects light emitted from the optical semiconductor element.
 光の反射率が高い成形体が得られるので、本発明に係る光半導体装置用白色硬化性組成物は、半導体装置において、光半導体素子が搭載されるリードフレーム上にかつ上記光半導体素子を取り囲むように配置され、上記光半導体素子から発せられた光を反射する光反射部を内面に有する成形体を得るために用いられる光半導体装置用白色硬化性組成物であることが好ましい。上記成形体は、上記光半導体素子を取り囲む枠部を有することが好ましく、上記光半導体素子を取り囲む外壁部材であることが好ましい。上記成形体は、枠状部材であることが好ましい。なお、上記成形体は、光半導体装置において、光半導体素子を接合(ダイボンディング)するためのダイボンド材とは異なることが好ましい。上記成形体は、上記ダイボンド材を含まないことが好ましい。 Since a molded article having high light reflectance is obtained, the white curable composition for optical semiconductor devices according to the present invention surrounds the optical semiconductor element on the lead frame on which the optical semiconductor element is mounted in the semiconductor device. It is preferable that the white curable composition for an optical semiconductor device is used for obtaining a molded body that is disposed as described above and has a light reflecting portion that reflects light emitted from the optical semiconductor element on its inner surface. The molded body preferably has a frame portion surrounding the optical semiconductor element, and is preferably an outer wall member surrounding the optical semiconductor element. The molded body is preferably a frame-shaped member. In addition, it is preferable that the said molded object differs from the die-bonding material for joining an optical semiconductor element (die bonding) in an optical semiconductor device. It is preferable that the molded body does not include the die bond material.
 本発明に係る光半導体装置用白色硬化性組成物は、複数の成形体が連なった分割前成形体を得た後に、該分割前成形体を分割して個々の成形体を得るために用いられることが好ましい。本発明に係る光半導体装置用白色硬化性組成物を用いた分割前成形体の加工性は高いので、該分割前成形体を分割して個々の成形体を得ても、成形体にクラック及び欠けを生じ難くすることができる。 The white curable composition for an optical semiconductor device according to the present invention is used for obtaining individual molded bodies by dividing the pre-divided molded bodies after obtaining the molded bodies before division in which a plurality of molded bodies are continuous. It is preferable. Since the processability of the pre-division molded product using the white curable composition for optical semiconductor devices according to the present invention is high, cracks and Chipping can be made difficult to occur.
 上記光半導体装置用白色硬化性組成物は、エポキシ化合物(A)と硬化剤(B)と酸化チタン(C)と充填材(D)と硬化促進剤(E)と必要に応じて配合される他の成分とを、従来公知の方法で混合することにより得られる。上記白色硬化性組成物を作製する一般的な方法としては、各成分を押出機、ニーダー、ロール、エクストルーダー等によって混練した後、混練物を冷却し、粉砕する方法が挙げられる。分散性を向上する観点からは、各成分の混練は、溶融状態で行うことが好ましい。混練の条件は、各成分の種類及び配合量により適宜決定される。15~150℃で5~100分間混練することが好ましく、15~150℃で5~60分間混練することがより好ましく、5~150℃で5~40分間混練することが更に好ましく、20~100℃で10~30分間混練することが特に好ましい。 The said white curable composition for optical semiconductor devices is mix | blended with an epoxy compound (A), a hardening | curing agent (B), a titanium oxide (C), a filler (D), and a hardening accelerator (E) as needed. It can be obtained by mixing other components with a conventionally known method. A general method for producing the white curable composition includes a method in which each component is kneaded by an extruder, a kneader, a roll, an extruder, etc., and then the kneaded product is cooled and pulverized. From the viewpoint of improving dispersibility, the kneading of each component is preferably performed in a molten state. The kneading conditions are appropriately determined depending on the type and amount of each component. Kneading at 15 to 150 ° C. for 5 to 100 minutes is preferable, kneading at 15 to 150 ° C. for 5 to 60 minutes is more preferable, and kneading at 5 to 150 ° C. for 5 to 40 minutes is more preferable, and 20 to 100 is preferable. It is particularly preferable to knead at 10 ° C. for 10 to 30 minutes.
 本発明に係る光半導体装置用成形体は、上述した光半導体装置用白色硬化性組成物を硬化させることにより得られる。上記光半導体装置用白色硬化性組成物は所定の形状に成形される。上記光半導体装置用白色硬化性組成物を硬化させることにより得られる成形体は、光半導体装置において、光半導体素子から発せられた光を反射するために好適に用いられる。 The molded article for an optical semiconductor device according to the present invention is obtained by curing the above-described white curable composition for an optical semiconductor device. The white curable composition for optical semiconductor devices is formed into a predetermined shape. The molded body obtained by curing the white curable composition for optical semiconductor devices is suitably used for reflecting light emitted from the optical semiconductor element in the optical semiconductor device.
 上記光半導体装置用白色硬化性組成物を用いて上記光半導体装置用成形体を得る方法としては、圧縮成形法、トランスファー成形法、積層成形法、射出成形法、押出成形法及びブロー成形法等が挙げられる。なかでも、トランスファー成形法が好ましい。 Examples of a method for obtaining the molded article for an optical semiconductor device using the white curable composition for an optical semiconductor device include a compression molding method, a transfer molding method, a laminate molding method, an injection molding method, an extrusion molding method, and a blow molding method. Is mentioned. Of these, transfer molding is preferred.
 トランスファー成形法では、例えば、成形温度100~200℃、成形圧力5~20MPa及び成形時間60~300秒の条件で、上記光半導体装置用白色硬化性組成物をトランスファー成形することにより、成形体が得られる。 In the transfer molding method, for example, the white curable composition for optical semiconductor devices is transfer molded under the conditions of a molding temperature of 100 to 200 ° C., a molding pressure of 5 to 20 MPa, and a molding time of 60 to 300 seconds. can get.
 (光半導体装置の詳細及び光半導体装置の実施形態)
 本発明に係る光半導体装置は、リードフレームと、該リードフレーム上に搭載された光半導体素子と、上記リードフレーム上に配置された成形体とを備え、該成形体が、上記光半導体装置用白色硬化性組成物を硬化させることにより得られる。
(Details of optical semiconductor device and embodiment of optical semiconductor device)
An optical semiconductor device according to the present invention includes a lead frame, an optical semiconductor element mounted on the lead frame, and a molded body disposed on the lead frame, and the molded body is for the optical semiconductor device. It is obtained by curing a white curable composition.
 本発明に係る光半導体装置では、上記成形体は、上記光半導体素子の側方に配置されており、上記成形体の内面が上記光半導体素子から発せられた光を反射する光反射部であることが好ましい。 In the optical semiconductor device according to the present invention, the molded body is disposed on a side of the optical semiconductor element, and an inner surface of the molded body is a light reflecting portion that reflects light emitted from the optical semiconductor element. It is preferable.
 図1(a)及び(b)に、本発明の一実施形態に係る光半導体装置の一例を模式的に断面図及び斜視図で示す。 FIGS. 1A and 1B schematically show an example of an optical semiconductor device according to an embodiment of the present invention in a cross-sectional view and a perspective view.
 本実施形態の光半導体装置1は、リードフレーム2と光半導体素子3と第1の成形体4と第2の成形体5とを有する。光半導体素子3は発光ダイオード(LED)であることが好ましい。第1の成形体4と第2の成形体5とは一体的に形成されておらず、別の2つの部材である。第1の成形体4と第2の成形体5とは一体的に形成されていてもよい。第1の成形体4は、枠部である。第2の成形体5は、底部である。光半導体装置1では、成形体は、枠部(第1の成形体4)と、底部(第2の成形体5)とを有する。第1の成形体4である枠部は、外壁部である。第1の成形体4である枠部は、環状である。 The optical semiconductor device 1 of this embodiment includes a lead frame 2, an optical semiconductor element 3, a first molded body 4, and a second molded body 5. The optical semiconductor element 3 is preferably a light emitting diode (LED). The first molded body 4 and the second molded body 5 are not formed integrally, but are two other members. The first molded body 4 and the second molded body 5 may be integrally formed. The first molded body 4 is a frame portion. The 2nd molded object 5 is a bottom part. In the optical semiconductor device 1, the molded body has a frame portion (first molded body 4) and a bottom portion (second molded body 5). The frame part which is the 1st molded object 4 is an outer wall part. The frame part which is the 1st molded object 4 is cyclic | annular.
 なお、成形体は、底部を有さない成形体であってもよい。上記白色硬化性組成物を硬化させることにより得られる枠部を有する成形体と、他の底部材とを組み合わせて用いてもよい。上記成形体は、枠部のみの枠状の成形体であってもよい。上記底部材は、成形体であってもよい。 Note that the molded body may be a molded body having no bottom. You may use combining the molded object which has a frame part obtained by hardening the said white curable composition, and another bottom member. The molded body may be a frame-shaped molded body having only a frame portion. The bottom member may be a molded body.
 リードフレーム2上に、光半導体素子3が搭載され、配置されている。また、リードフレーム2上に、第1の成形体4(枠部)が配置されている。また、複数のリードフレーム2間とリードフレーム2の下方とには、第2の成形体5(底部)が配置されている。なお、リードフレームの下方に、成形体又は底部材が配置されておらず、リードフレームが露出していてもよい。第1の成形体4の内側に光半導体素子3が配置されている。光半導体素子3の側方に第1の成形体4が配置されており、光半導体素子3を取り囲むように第1の成形体4が配置されている。第1,第2の成形体4,5(枠部及び底部を有する成形体)は、上述した光半導体装置用白色硬化性組成物の硬化物であり、上述した光半導体装置用白色硬化性組成物を硬化させることにより得られる。従って、第1の成形体4は、光反射性を有し、内面4aに光反射部を有する。すなわち、第1の成形体4の内面4aは光反射部である。従って、光半導体素子3の周囲は、第1の成形体4の光反射性を有する内面4aにより囲まれている。第1の成形体4のみが、上述した光半導体装置用白色硬化性組成物の硬化物であってもよい。 The optical semiconductor element 3 is mounted and arranged on the lead frame 2. A first molded body 4 (frame portion) is disposed on the lead frame 2. A second molded body 5 (bottom part) is disposed between the plurality of lead frames 2 and below the lead frames 2. Note that the molded body or the bottom member may not be disposed below the lead frame, and the lead frame may be exposed. The optical semiconductor element 3 is disposed inside the first molded body 4. A first molded body 4 is disposed on the side of the optical semiconductor element 3, and the first molded body 4 is disposed so as to surround the optical semiconductor element 3. The first and second molded bodies 4 and 5 (molded bodies having a frame portion and a bottom portion) are cured products of the above-described white curable composition for optical semiconductor devices, and the above-described white curable composition for optical semiconductor devices. It is obtained by curing the product. Therefore, the 1st molded object 4 has light reflectivity, and has a light reflection part in the inner surface 4a. That is, the inner surface 4a of the first molded body 4 is a light reflecting portion. Therefore, the periphery of the optical semiconductor element 3 is surrounded by the inner surface 4 a having the light reflectivity of the first molded body 4. Only the 1st molded object 4 may be the hardened | cured material of the white curable composition for optical semiconductor devices mentioned above.
 第1の成形体4(枠部)は、光半導体素子から発せられた光が外部に取り出される開口を有する。第1,第2の成形体4,5は、白色である。第1の成形体4の内面4aは、内面4aの径が開口端に向かうにつれて大きくなるように形成されている。従って、光半導体素子3から発せられた光のうち、内面4aに到達した矢印Bで示す光が内面4aにより反射され、光半導体素子3の前方側に進行する。 The first molded body 4 (frame portion) has an opening through which light emitted from the optical semiconductor element is extracted. The first and second molded bodies 4 and 5 are white. The inner surface 4a of the first molded body 4 is formed such that the diameter of the inner surface 4a increases as it goes toward the opening end. Therefore, of the light emitted from the optical semiconductor element 3, the light indicated by the arrow B reaching the inner surface 4 a is reflected by the inner surface 4 a and travels forward of the optical semiconductor element 3.
 光半導体素子3は、リードフレーム2上に、ダイボンド材6を用いて接続されている。ダイボンド材6は、導電性を有する。光半導体素子3に設けられたボンディングパッド(図示せず)とリードフレーム2とが、ボンディングワイヤー7により電気的に接続されている。光半導体素子3及びボンディングワイヤー7を封止するように、第1の成形体4の内面4aで囲まれた領域内には、封止剤8が充填されている。 The optical semiconductor element 3 is connected to the lead frame 2 using a die bond material 6. The die bond material 6 has conductivity. A bonding pad (not shown) provided on the optical semiconductor element 3 and the lead frame 2 are electrically connected by a bonding wire 7. A sealing agent 8 is filled in the region surrounded by the inner surface 4 a of the first molded body 4 so as to seal the optical semiconductor element 3 and the bonding wire 7.
 光半導体装置1では、光半導体素子3を駆動すると、破線Aで示すように光が発せられる。光半導体装置1では、光半導体素子3からリードフレーム2の上面とは反対側すなわち上方に照射される光だけでなく、第1の成形体4の内面4aに到達した光が矢印Bで示すように反射される光も存在する。従って、光半導体装置1から取り出される光の明るさは明るい。 In the optical semiconductor device 1, when the optical semiconductor element 3 is driven, light is emitted as indicated by a broken line A. In the optical semiconductor device 1, not only the light irradiated from the optical semiconductor element 3 to the side opposite to the upper surface of the lead frame 2, that is, the upper side, but also the light reaching the inner surface 4 a of the first molded body 4 is indicated by an arrow B. There is also light that is reflected on the surface. Therefore, the brightness of the light extracted from the optical semiconductor device 1 is bright.
 図2に、図1に示す光半導体装置1の変形例を示す。図1に示す光半導体装置1と図2に示す光半導体装置21とでは、ダイボンド材6,22及びボンディングワイヤー7,23による電気的な接続構造のみが異なる。光半導体装置1におけるダイボンド材6は導電性を有する。これに対し、光半導体装置21はダイボンド材22を有し、ダイボンド材22は導電性を有さない。光半導体装置1では、光半導体素子3に設けられたボンディングパッド(図示せず)とリードフレーム2(図1(a)において右側に位置するリードフレーム)とが、ボンディングワイヤー7により電気的に接続されている。光半導体装置21は、ボンディングワイヤー7に加えて、ボンディングワイヤー23を有する。光半導体装置21では、光半導体素子3に設けられたボンディングパッド(図示せず)とリードフレーム2(図2において右側に位置するリードフレーム)とが、ボンディングワイヤー7により電気的に接続されており、更に、光半導体素子3に設けられたボンディングパッド(図示せず)とリードフレーム2(図2において左側に位置するリードフレーム)とが、ボンディングワイヤー23により電気的に接続されている。 FIG. 2 shows a modification of the optical semiconductor device 1 shown in FIG. The optical semiconductor device 1 shown in FIG. 1 differs from the optical semiconductor device 21 shown in FIG. 2 only in the electrical connection structure using the die bonding materials 6 and 22 and the bonding wires 7 and 23. The die bond material 6 in the optical semiconductor device 1 has conductivity. On the other hand, the optical semiconductor device 21 has a die bond material 22, and the die bond material 22 does not have conductivity. In the optical semiconductor device 1, a bonding pad (not shown) provided on the optical semiconductor element 3 and a lead frame 2 (lead frame located on the right side in FIG. 1A) are electrically connected by a bonding wire 7. Has been. The optical semiconductor device 21 has a bonding wire 23 in addition to the bonding wire 7. In the optical semiconductor device 21, a bonding pad (not shown) provided on the optical semiconductor element 3 and a lead frame 2 (a lead frame located on the right side in FIG. 2) are electrically connected by a bonding wire 7. Further, a bonding pad (not shown) provided on the optical semiconductor element 3 and the lead frame 2 (lead frame located on the left side in FIG. 2) are electrically connected by a bonding wire 23.
 なお、図1,2に示す構造は、本発明に係る光半導体装置の一例にすぎず、成形体の構造及び光半導体素子の実装構造等には適宜変形され得る。 The structures shown in FIGS. 1 and 2 are merely examples of the optical semiconductor device according to the present invention, and can be modified as appropriate to the structure of the molded body, the mounting structure of the optical semiconductor element, and the like.
 また、図3に示すように、複数の光半導体装置用部品が連なった分割前光半導体装置用部品11を用意して、分割前光半導体装置用部品11を破線Xで示す部分で切断して、個々の光半導体装置用部品を得てもよい。分割前光半導体装置用部品11は、分割前リードフレーム2Aと、分割前第1の成形体4Aと、分割前第2の成形体5Aとを有する。個々の光半導体装置用部品得た後、光半導体素子3を搭載し、該光半導体素子3を封止剤8により封止して、光半導体装置1を得てもよい。分割前リードフレーム2Aを破線Xで示す部分で切断すると、リードフレーム2が得られる。分割前第1の成形体4Aを破線Xで示す部分で切断すると、第1の成形体4が得られる。分割前第2の成形体5Aを破線Xで示す部分で切断すると、第2の成形体5が得られる。 Further, as shown in FIG. 3, a pre-division optical semiconductor device component 11 in which a plurality of optical semiconductor device components are connected is prepared, and the pre-division optical semiconductor device component 11 is cut at a portion indicated by a broken line X. Individual optical semiconductor device components may be obtained. The pre-division optical semiconductor device component 11 includes a pre-division lead frame 2A, a pre-division first molded body 4A, and a pre-division second molded body 5A. After obtaining individual components for an optical semiconductor device, the optical semiconductor device 3 may be mounted, and the optical semiconductor device 3 may be sealed with a sealant 8 to obtain the optical semiconductor device 1. When the pre-division lead frame 2A is cut at a portion indicated by a broken line X, the lead frame 2 is obtained. When the first molded body 4A before division is cut at a portion indicated by a broken line X, the first molded body 4 is obtained. When the second molded body 5A before division is cut at a portion indicated by a broken line X, the second molded body 5 is obtained.
 さらに、図4に示すように、複数の分割前光半導体装置が連なった分割前光半導体装置12を用意して、分割前光半導体装置12を破線Xで示す部分で切断して、個々の光半導体装置を得てもよい。分割前光半導体装置12は、分割前リードフレーム2Aと、分割前第1の成形体4Aと、分割前第2の成形体5Aとを有する。また、図1,2に示す光半導体装置1と同様に、分割前光半導体装置12では、分割前リードフレーム2A上に、光半導体素子3が搭載され、配置されている。なお、図3,4では、分割前光半導体装置用部品及び分割前光半導体装置では、複数の成形体が連なって分割前成形体が形成されているが、複数の成形体が連なっていない分割前光半導体装置用部品及び分割前光半導体装置を分割して、光半導体装置用部品及び光半導体装置を得てもよい。 Further, as shown in FIG. 4, a pre-division optical semiconductor device 12 in which a plurality of pre-division optical semiconductor devices are connected is prepared, and the pre-division optical semiconductor device 12 is cut at a portion indicated by a broken line X. A semiconductor device may be obtained. The pre-division optical semiconductor device 12 includes a pre-division lead frame 2A, a pre-division first molded body 4A, and a pre-division second molded body 5A. As in the optical semiconductor device 1 shown in FIGS. 1 and 2, in the pre-division optical semiconductor device 12, the optical semiconductor element 3 is mounted and arranged on the pre-division lead frame 2A. 3 and 4, in the pre-division optical semiconductor device component and the pre-division optical semiconductor device, a plurality of molded bodies are connected to form a pre-division molded body, but a plurality of molded bodies are not connected to each other. The front optical semiconductor device component and the pre-division optical semiconductor device may be divided to obtain the optical semiconductor device component and the optical semiconductor device.
 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明を明らかにする。本発明は以下の実施例に限定されない。 Hereinafter, the present invention will be clarified by giving specific examples and comparative examples of the present invention. The present invention is not limited to the following examples.
 実施例及び比較例では、以下の材料を用いた。 In the examples and comparative examples, the following materials were used.
 (エポキシ化合物(A))
 1)YD-013(芳香族骨格を有するビスフェノールA型エポキシ樹脂、エポキシ当量850、新日鐵化学社製)
 2)YD-019(芳香族骨格を有するビスフェノールA型エポキシ樹脂、エポキシ当量2900、新日鐵化学社製)
 3)YDCN704(芳香族骨格を有するクレゾールノボラック型エポキシ樹脂、エポキシ当量210、新日鐵化学社製)
 4)EHPE3150(脂環式骨格を有するエポキシ樹脂、エポキシ当量180、ダイセル社製)
 5)セロキサイド2021P(3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート(エポキシ当量126、ダイセル社製)
 6)エポリードGT401(多官能脂環式エポキシ樹脂、エポキシ当量220、ダイセル社製)
(Epoxy compound (A))
1) YD-013 (bisphenol A type epoxy resin having an aromatic skeleton, epoxy equivalent 850, manufactured by Nippon Steel Chemical Co., Ltd.)
2) YD-019 (bisphenol A type epoxy resin having an aromatic skeleton, epoxy equivalent 2900, manufactured by Nippon Steel Chemical Co., Ltd.)
3) YDCN704 (Cresol novolac type epoxy resin having an aromatic skeleton, epoxy equivalent 210, manufactured by Nippon Steel Chemical Co., Ltd.)
4) EHPE3150 (epoxy resin having an alicyclic skeleton, epoxy equivalent 180, manufactured by Daicel)
5) Celoxide 2021P (3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate (epoxy equivalent 126, manufactured by Daicel)
6) Epolide GT401 (polyfunctional alicyclic epoxy resin, epoxy equivalent 220, manufactured by Daicel)
 (硬化剤(B))
 1)リカシッドHH(ヘキサヒドロ無水フタル酸、新日本理化社製)
 2)HF-3M(フェノールノボラック硬化剤、明和化成社製)
 3)SI-100(熱酸発生剤、三新化学社製)
 4)DICY7(ジシアンジアミド、三菱化学社製)
 5)2MZ-A(2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、四国化成社製)
 6)リカシッドMH-700(ヘキサヒドロ無水フタル酸とメチルヘキサヒドロ無水フタル酸との混合物、新日本理化社製)
(Curing agent (B))
1) Ricacid HH (hexahydrophthalic anhydride, manufactured by Shin Nippon Chemical Co., Ltd.)
2) HF-3M (phenol novolac curing agent, manufactured by Meiwa Kasei Co., Ltd.)
3) SI-100 (thermal acid generator, manufactured by Sanshin Chemical Co., Ltd.)
4) DICY7 (dicyandiamide, manufactured by Mitsubishi Chemical Corporation)
5) 2MZ-A (2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, manufactured by Shikoku Kasei Co., Ltd.)
6) Ricacid MH-700 (mixture of hexahydrophthalic anhydride and methylhexahydrophthalic anhydride, manufactured by Shin Nippon Rika Co., Ltd.)
 (酸化チタン(C))
 1)CR-58(ルチル型酸化チタン、Alにより表面処理されている、石原産業社製)
 2)CR-90(ルチル型酸化チタン、Al,Siにより表面処理されている、石原産業社製)
 3)CR-90-2(ルチル型酸化チタン、Al,Siにより表面処理されている、有機処理されている、石原産業社製)
 4)UT771(ルチル型酸化チタン、Al、Zrにより表面処理されている、有機処理されている、石原産業社製)
(Titanium oxide (C))
1) CR-58 (rutile titanium oxide, surface-treated with Al, manufactured by Ishihara Sangyo Co., Ltd.)
2) CR-90 (rutile titanium oxide, surface treated with Al, Si, manufactured by Ishihara Sangyo Co., Ltd.)
3) CR-90-2 (rutile titanium oxide, surface-treated with Al, Si, organically treated, manufactured by Ishihara Sangyo Co., Ltd.)
4) UT771 (surface-treated with rutile titanium oxide, Al, Zr, organically treated, manufactured by Ishihara Sangyo Co., Ltd.)
 (充填材(D))
 1)MSR-3512(球状シリカ、平均粒径30μm、龍森社製)
 2)HSP-2000(球状シリカ、平均粒径2μm、東亜合成社製)
 3)A-1(破砕シリカ、平均粒径11μm、龍森社製)
 4)5X(破砕シリカ、平均粒径1.4μm、龍森社製)
 5)R-900(破砕充填材である微粉シリコーン樹脂、平均粒径20μm、東レダウコーニング社製)
 6)AA(破砕シリカ、平均粒径6μm、龍森社製)
(Filler (D))
1) MSR-3512 (spherical silica, average particle size 30 μm, manufactured by Tatsumori)
2) HSP-2000 (spherical silica, average particle size 2 μm, manufactured by Toa Gosei Co., Ltd.)
3) A-1 (crushed silica, average particle size 11 μm, manufactured by Tatsumori)
4) 5X (crushed silica, average particle size 1.4 μm, manufactured by Tatsumori)
5) R-900 (fine powder silicone resin as a crushing filler, average particle size 20 μm, manufactured by Toray Dow Corning)
6) AA (crushed silica, average particle size 6 μm, manufactured by Tatsumori)
 (硬化促進剤(E))
 1)SA102(DBU-オクチル酸塩、サンアプロ社製)
 2)PX-4ET(テトラ-n-ブチルホスホニウム-o,o-ジエチルホスホロジチオネート、日本化学工業社製)
(Curing accelerator (E))
1) SA102 (DBU-octylate, manufactured by San Apro)
2) PX-4ET (tetra-n-butylphosphonium-o, o-diethyl phosphorodithionate, manufactured by Nippon Chemical Industry Co., Ltd.)
 (カップリング剤(F))
 1)S510(3-グリシドキシプロピルトリメトキシシラン、チッソ社製)
 2)KBM-9103(N-(1,3-ジメチルブチリデン)-3-トリメトキシシリル)-1-プロパンアミン、信越化学工業社製)
(Coupling agent (F))
1) S510 (3-glycidoxypropyltrimethoxysilane, manufactured by Chisso Corporation)
2) KBM-9103 (N- (1,3-dimethylbutylidene) -3-trimethoxysilyl) -1-propanamine, manufactured by Shin-Etsu Chemical Co., Ltd.)
 (実施例1~6,9,11,14~16,20~35、参考例7,8,10,12,13,17~19及び比較例1~6)
 下記表1~3に示す各成分を下記表1~3に示す配合量(配合単位は重量部)で配合し、混合機(ラボプラストミルR-60、東洋精機製作所社製)にて15分間混合し、溶融混練物を得た。溶融混練物が常温(23℃)で液状である場合、溶融混練物を白色硬化性組成物として用いた。溶融混練物が常温(23℃)で固体である場合、常温で粉砕した後、タブレット化して、白色硬化性組成物を得た。
(Examples 1 to 6, 9, 11, 14 to 16, 20 to 35, Reference Examples 7, 8, 10, 12, 13, 17 to 19 and Comparative Examples 1 to 6)
The components shown in Tables 1 to 3 below were blended in the blending amounts shown in Tables 1 to 3 below (blending units are parts by weight), and 15 minutes in a mixer (Laboroplast Mill R-60, manufactured by Toyo Seiki Seisakusho). Mixing was performed to obtain a melt-kneaded product. When the melt-kneaded product was liquid at ordinary temperature (23 ° C.), the melt-kneaded product was used as a white curable composition. When the melt-kneaded material was solid at ordinary temperature (23 ° C.), it was pulverized at ordinary temperature and then tableted to obtain a white curable composition.
 (評価)
 (1)第1の抽出法でのpH
 熱硬化前の得られた白色硬化性組成物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して、第1の抽出液を得た。得られた第1の抽出液のpH(第1の抽出法でのpH)を測定した。
(Evaluation)
(1) pH in the first extraction method
1 g of the obtained white curable composition before thermosetting is put into 10 g of a liquid containing 5 g of acetone and 5 g of pure water, heated at 80 ° C. with stirring for 1 hour, and then insoluble components in the liquid after heating. Was removed by filtration to obtain a first extract. The pH of the obtained first extract (pH in the first extraction method) was measured.
 (2)第2の抽出法でのpH
 得られた白色硬化性組成物を、170℃で3分間加熱した後、170℃で2時間更に加熱して、縦50mm、横50mm、高さ1mmの硬化物を得た。得られた硬化物を1gとなるように切断した。この硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して、第2の抽出液を得た。得られた第2の抽出液のpH(第2の抽出法でのpH)を測定した。
(2) pH in the second extraction method
The obtained white curable composition was heated at 170 ° C. for 3 minutes and then further heated at 170 ° C. for 2 hours to obtain a cured product having a length of 50 mm, a width of 50 mm, and a height of 1 mm. The obtained cured product was cut to 1 g. 1 g of this cured product is put into 10 g of a liquid containing 5 g of acetone and 5 g of pure water, heated with stirring at 80 ° C. for 1 hour, and then insoluble components in the liquid after heating are removed by filtration, An extract was obtained. The pH of the obtained second extract (pH in the second extraction method) was measured.
 (3)第3の抽出法でのpH
 得られた白色硬化性組成物を、170℃で3分間加熱した後、170℃で2時間更に加熱して、縦50mm、横50mm、高さ1mmの硬化物を得た。得られた硬化物を121℃、湿度100%及び2気圧の条件で24時間放置した。放置後の硬化物を1gとなるように切断した。この放置後の硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して、第3の抽出液を得た。得られた第3の抽出液のpH(第3の抽出法でのpH)を測定した。
(3) pH in the third extraction method
The obtained white curable composition was heated at 170 ° C. for 3 minutes and then further heated at 170 ° C. for 2 hours to obtain a cured product having a length of 50 mm, a width of 50 mm, and a height of 1 mm. The obtained cured product was allowed to stand for 24 hours under the conditions of 121 ° C., humidity 100% and 2 atm. The cured product after standing was cut to 1 g. 1 g of the cured product after standing is put into 10 g of a solution containing 5 g of acetone and 5 g of pure water, heated with stirring at 80 ° C. for 1 hour, and then insoluble components in the heated solution are removed by filtration. A third extract was obtained. The pH of the obtained third extract (pH in the third extraction method) was measured.
 (4)成形性
 銅素材(TAMAC 194)にエッチングにより回路を形成した後、銀メッキを施し、厚み0.2mmのリードフレームを得た。トランスファー成形(成形温度170℃、成形時間3分)でMAP成形法により上記リードフレーム上に、成形体を備えた光半導体装置搭載用基板を作製した。金型としては、縦15個×横10個のマトリックス状に配置された150個の凹部(光半導体素子搭載部)を有する一括成形用金型を用いた。キャビティサイズは、1個当たり6mm×3mm、深さ5mmとした。得られた光半導体装置搭載用基板を目視により検査し、成形性を下記の基準で判定した。
(4) Formability After forming a circuit on the copper material (TAMAC 194) by etching, silver plating was applied to obtain a lead frame having a thickness of 0.2 mm. A substrate for mounting an optical semiconductor device provided with a molded body was produced on the lead frame by transfer molding (molding temperature: 170 ° C., molding time: 3 minutes) by the MAP molding method. As the mold, a batch molding mold having 150 concave portions (optical semiconductor element mounting portions) arranged in a matrix of 15 vertical × 10 horizontal was used. The cavity size was 6 mm × 3 mm per piece and the depth was 5 mm. The obtained substrate for mounting an optical semiconductor device was visually inspected, and formability was determined according to the following criteria.
 [成形性の判定基準]
 ○○:外観に全く異常がない
 ○:リードフレームの変形、成形体の変形、成形体の欠け、成形体におけるボイド及び成形体の充填不良が合計で1箇所見られた
 ×:リードフレームの変形、成形体の変形、成形体の欠け、成形体におけるボイド及び成形体の充填不良が合計で2箇所以上見られた
[Criteria for moldability]
◯: No abnormality in appearance ○: Deformation of lead frame, deformation of molded body, chipping of molded body, voids in molded body and poor filling of molded body were observed in one place in total X: Deformation of lead frame , Deformation of the molded body, chipping of the molded body, voids in the molded body and poor filling of the molded body were observed in two or more places in total.
 (5)加工性
 上記成形性の評価で得られた成形体を170℃で2時間アフターキュアした。複数の成形体がマトリックス状に連なった分割前成形体を、ダイシング装置(ディスコ社製「DAD3350」)を用いて、個々の成形体に分割し、光半導体素子搭載部を1つ有する光半導体搭載用基板を150個得た。
(5) Workability The molded body obtained by the evaluation of the above moldability was after-cured at 170 ° C. for 2 hours. An optical semiconductor mounting having a single optical semiconductor element mounting portion by dividing a pre-division molded body in which a plurality of molded bodies are arranged in a matrix form into individual molded bodies using a dicing apparatus ("DAD3350" manufactured by DISCO). 150 substrates were obtained.
 上記150個の光半導体搭載用基板における成形体のダイシング面を観察し、加工性を下記の基準で判定した。 The dicing surfaces of the molded bodies on the 150 optical semiconductor mounting substrates were observed, and the workability was determined according to the following criteria.
 [加工性の判定基準]
 ○○○:成形体にクラック又は欠けが発生した光半導体搭載用基板が、150個中3個以下
 ○○:成形体にクラック又は欠けが発生した光半導体搭載用基板が、150個中4個又は5個
 ○:成形体にクラック又は欠けが発生した光半導体搭載用基板が、150個中6個以上、10個以下
 ×:成形体にクラック又は欠けが発生した光半導体搭載用基板が、150個中11個以上
[Criteria for workability]
OO: Three or less of 150 optical semiconductor mounting substrates with cracks or chips in the molded body XX: Four of 150 optical semiconductor mounting substrates with cracks or chips in the molded body Or 5 ○: The optical semiconductor mounting substrate in which cracks or chipping occurred in the molded body was 6 or more out of 150, and 10 or less ×: The optical semiconductor mounting substrate in which cracking or chipping occurred in the molded body was 150 11 or more pieces
 (6)リードフレームと成形体との密着性
 銅素材(TAMAC 194)に、銀メッキを施し、幅10mm、長さ50mm及び厚み0.2mmのリードフレームを得た。トランスファー成形(成形温度170℃、成形時間3分)で上記リードフレーム上に、幅8mm、長さ30mm及び厚み1mmの成形体を形成し、170℃で2時間アフターキュアを行った。
(6) Adhesion between Lead Frame and Molded Body A copper material (TAMAC 194) was subjected to silver plating to obtain a lead frame having a width of 10 mm, a length of 50 mm, and a thickness of 0.2 mm. A molded body having a width of 8 mm, a length of 30 mm and a thickness of 1 mm was formed on the lead frame by transfer molding (molding temperature: 170 ° C., molding time: 3 minutes), and after-curing was performed at 170 ° C. for 2 hours.
 上記リードフレーム上に形成された成形体を、成形体側を凸側となるようにリードフレームごと折り曲げた。リードフレームと成形体の剥離又は成形体の破壊が起こる折り曲げ角度を評価し、リードフレームと成形体との密着性を下記の基準で判定した。 The molded body formed on the lead frame was bent together with the lead frame so that the molded body side was a convex side. The bending angle at which the lead frame and the molded body were peeled or the molded body was broken was evaluated, and the adhesion between the lead frame and the molded body was determined according to the following criteria.
 [リードフレームと成形体との密着性の判定基準]
 ○○:リードフレームと成形体の剥離又は成形体の破壊が起こる折り曲げ角度が20度を超える
 ○:リードフレームと成形体の剥離又は成形体の破壊が起こる折り曲げ角度が10度を超え、20度以下
 ×:リードフレームと成形体の剥離又は成形体の破壊が起こる折り曲げ角度が10度以下
[Judgment criteria for adhesion between lead frame and molded body]
◯: The bending angle at which peeling of the lead frame and the molded body or destruction of the molded body exceeds 20 degrees O: The bending angle at which peeling of the lead frame and the molded body or destruction of the molded body exceeds 10 degrees, 20 degrees X: The bending angle at which peeling of the lead frame and the molded body or destruction of the molded body occurs is 10 degrees or less.
 結果を下記の表1~3に示す。下記表1~3において、含有量比(球状充填材(D1)/破砕充填材(D2))は、白色硬化性組成物中での球状充填材(D1)の含有量に対する破砕充填材(D2)の含有量の比を示す。 The results are shown in Tables 1 to 3 below. In Tables 1 to 3 below, the content ratio (spherical filler (D1) / crushed filler (D2)) is crushed filler (D2) relative to the content of spherical filler (D1) in the white curable composition. ) Content ratio.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
  1…光半導体装置
  2…リードフレーム
  2A…分割前リードフレーム
  3…光半導体素子
  4…第1の成形体
  4A…分割前第1の成形体
  4a…内面
  5…第2の成形体
  5A…分割前第2の成形体
  6…ダイボンド材
  7…ボンディングワイヤー
  8…封止剤
  11…分割前光半導体装置用部品
  12…分割前光半導体装置
  21…光半導体装置
  22…ダイボンド材
  23…ボンディングワイヤー
DESCRIPTION OF SYMBOLS 1 ... Optical semiconductor device 2 ... Lead frame 2A ... Lead frame before division 3 ... Optical semiconductor element 4 ... 1st molded object 4A ... 1st molded object 4a before division | segmentation 5 ... 2nd molded object 5A ... Before division | segmentation 2nd molded object 6 ... Die bond material 7 ... Bonding wire 8 ... Sealing agent 11 ... Parts for optical semiconductor devices before division 12 ... Optical semiconductor device before division 21 ... Optical semiconductor device 22 ... Die bonding material 23 ... Bonding wire

Claims (11)

  1.  白色の光半導体装置用白色硬化性組成物であって、
     エポキシ化合物と、硬化剤と、酸化チタンと、酸化チタンとは異なる充填材と、硬化促進剤とを含み、前記酸化チタンとは異なる充填材が、シリカであり、
     熱硬化前の光半導体装置用白色硬化性組成物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第1の抽出液を得たときに、該第1の抽出液のpHが3以上、6以下であり、
     170℃で3分間加熱した後、170℃で2時間更に加熱することにより硬化された後の硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第2の抽出液を得たときに、該第2の抽出液のpHが6以上、7以下であり、
     170℃で3分間加熱した後、170℃で2時間更に加熱することにより硬化された後の硬化物を、121℃、湿度100%及び2気圧の条件で24時間放置した後、放置後の硬化物1gをアセトン5gと純水5gとを含む液10g中に入れ、80℃で1時間撹拌しながら加熱し、次に加熱後の液中の不溶成分をろ過によって除去して第3の抽出液を得たときに、該第3の抽出液のpHが4以上、6以下であり、
     前記エポキシ化合物全体のエポキシ当量が500以上、20000以下であり、
     前記硬化剤が酸無水物硬化剤であり、
     前記エポキシ化合物全体のエポキシ当量と前記硬化剤全体の硬化剤当量との当量比が、0.3:1~2:1であり、
     前記充填材が、球状充填材と破砕充填材との双方を含み、前記球状充填材の含有量の前記破砕充填材の含有量に対する重量比が0.3以上、30以下である、光半導体装置用白色硬化性組成物。
    A white curable composition for a white optical semiconductor device,
    An epoxy compound, a curing agent, titanium oxide, a filler different from titanium oxide, and a curing accelerator, and the filler different from titanium oxide is silica,
    1 g of the white curable composition for optical semiconductor devices before thermosetting is put into 10 g of a liquid containing 5 g of acetone and 5 g of pure water, heated at 80 ° C. with stirring for 1 hour, and then insoluble in the liquid after heating. When the component is removed by filtration to obtain the first extract, the pH of the first extract is 3 or more and 6 or less,
    After heating at 170 ° C. for 3 minutes, 1 g of a cured product cured by further heating at 170 ° C. for 2 hours is placed in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, and stirred at 80 ° C. for 1 hour. Then, when the second extract is obtained by removing insoluble components in the solution after heating by filtration, the pH of the second extract is 6 or more and 7 or less,
    After curing at 170 ° C. for 3 minutes and further curing at 170 ° C. for 2 hours, the cured product is allowed to stand for 24 hours under the conditions of 121 ° C., 100% humidity and 2 atmospheres, and then cured after standing. 1 g of the product is put in 10 g of a liquid containing 5 g of acetone and 5 g of pure water, heated with stirring at 80 ° C. for 1 hour, and then insoluble components in the heated liquid are removed by filtration to remove the third extract. The pH of the third extract is 4 or more and 6 or less,
    The epoxy equivalent of the whole epoxy compound is 500 or more and 20000 or less,
    The curing agent is an acid anhydride curing agent;
    The equivalent ratio of the epoxy equivalent of the whole epoxy compound and the curing agent equivalent of the whole curing agent is 0.3: 1 to 2: 1,
    The optical semiconductor device, wherein the filler includes both a spherical filler and a crushed filler, and a weight ratio of a content of the spherical filler to a content of the crushed filler is 0.3 or more and 30 or less. White curable composition.
  2.  前記エポキシ化合物が、芳香族骨格を有するエポキシ化合物及び脂環式骨格を有するエポキシ化合物の内の少なくとも1種を含む、請求項1に記載の光半導体装置用白色硬化性組成物。 The white curable composition for optical semiconductor devices according to claim 1, wherein the epoxy compound contains at least one of an epoxy compound having an aromatic skeleton and an epoxy compound having an alicyclic skeleton.
  3.  前記エポキシ化合物が、芳香族骨格を有するエポキシ化合物を含む、請求項2に記載の光半導体装置用白色硬化性組成物。 The white curable composition for optical semiconductor devices according to claim 2, wherein the epoxy compound includes an epoxy compound having an aromatic skeleton.
  4.  前記芳香族骨格を有するエポキシ化合物のエポキシ当量が、400以上、3000以下である、請求項2又は3に記載の光半導体装置用白色硬化性組成物。 The white curable composition for optical semiconductor devices according to claim 2 or 3, wherein an epoxy equivalent of the epoxy compound having an aromatic skeleton is 400 or more and 3000 or less.
  5.  前記エポキシ化合物が、脂環式骨格を有するエポキシ化合物を含む、請求項2~4のいずれか1項に記載の光半導体装置用白色硬化性組成物。 The white curable composition for optical semiconductor devices according to any one of claims 2 to 4, wherein the epoxy compound comprises an epoxy compound having an alicyclic skeleton.
  6.  前記球状充填材の含有量の前記破砕充填材の含有量に対する重量比が、1以上、15以下である、請求項1~5のいずれか1項に記載の光半導体装置用白色硬化性組成物。 6. The white curable composition for an optical semiconductor device according to claim 1, wherein a weight ratio of the content of the spherical filler to the content of the crushed filler is 1 or more and 15 or less. .
  7.  光半導体装置において、光半導体素子が搭載されるリードフレーム上に配置される成形体を得るために用いられる白色の光半導体装置用白色硬化性組成物である、請求項1~6のいずれか1項に記載の光半導体装置用白色硬化性組成物。 7. The white curable composition for an optical semiconductor device, which is used for obtaining a molded body disposed on a lead frame on which an optical semiconductor element is mounted in an optical semiconductor device. Item 2. A white curable composition for an optical semiconductor device according to the item.
  8.  光半導体装置において、光半導体素子が搭載されるリードフレーム上に配置される成形体を得るために用いられる白色の光半導体装置用白色硬化性組成物であって、
     複数の成形体が連なった分割前成形体を得た後に、該分割前成形体を分割して個々の成形体を得るために用いられる、請求項1~7のいずれか1項に記載の光半導体装置用白色硬化性組成物。
    In the optical semiconductor device, a white curable composition for a white optical semiconductor device used to obtain a molded body disposed on a lead frame on which an optical semiconductor element is mounted,
    The light according to any one of claims 1 to 7, which is used for obtaining individual molded bodies by dividing the pre-divided molded bodies after obtaining the pre-divided molded bodies in which a plurality of molded bodies are connected. White curable composition for semiconductor devices.
  9.  光半導体装置において、光半導体素子が搭載されるリードフレーム上にかつ上記光半導体素子の側方に配置され、前記光半導体素子から発せられた光を反射する光反射部を有する成形体を得るために用いられる光半導体装置用白色硬化性組成物である、請求項1~8のいずれか1項に記載の光半導体装置用白色硬化性組成物。 In an optical semiconductor device, a molded body having a light reflecting portion that is disposed on a side of a lead frame on which an optical semiconductor element is mounted and that is disposed on a side of the optical semiconductor element and reflects light emitted from the optical semiconductor element. The white curable composition for an optical semiconductor device according to any one of claims 1 to 8, which is a white curable composition for an optical semiconductor device used for an optical semiconductor device.
  10.  請求項1~9のいずれか1項に記載の光半導体装置用白色硬化性組成物を硬化させることにより得られる、光半導体装置用成形体。 A molded body for an optical semiconductor device, obtained by curing the white curable composition for an optical semiconductor device according to any one of claims 1 to 9.
  11.  リードフレームと、
     前記リードフレーム上に搭載された光半導体素子と、
     前記リードフレーム上に配置された成形体とを備え、
     前記成形体が、請求項1~9のいずれか1項に記載の光半導体装置用白色硬化性組成物を硬化させることにより得られる、光半導体装置。
    A lead frame;
    An optical semiconductor element mounted on the lead frame;
    A molded body disposed on the lead frame,
    An optical semiconductor device obtained by curing the white curable composition for an optical semiconductor device according to any one of claims 1 to 9, wherein the molded body is cured.
PCT/JP2012/067680 2011-07-14 2012-07-11 White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device WO2013008841A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280031556.6A CN103635532B (en) 2011-07-14 2012-07-11 Optical semiconductor device white hardening composition, optical semiconductor device molding and optical semiconductor device
KR1020137015367A KR20140034722A (en) 2011-07-14 2012-07-11 White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-155927 2011-07-14
JP2011155927 2011-07-14
JP2011174584A JP4991957B1 (en) 2011-07-14 2011-08-10 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2011-174584 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013008841A1 true WO2013008841A1 (en) 2013-01-17

Family

ID=46793855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067680 WO2013008841A1 (en) 2011-07-14 2012-07-11 White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device

Country Status (5)

Country Link
JP (1) JP4991957B1 (en)
KR (1) KR20140034722A (en)
CN (1) CN103635532B (en)
TW (1) TWI525859B (en)
WO (1) WO2013008841A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193993A (en) * 2013-02-26 2014-10-09 Sekisui Chem Co Ltd White curable composition for an optical semiconductor device, molding for an optical semiconductor device, and optical semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2014077080A (en) * 2012-10-11 2014-05-01 Sekisui Chem Co Ltd White curable composition for optical semiconductor device, molded body for optical semiconductor device, and optical semiconductor device
JP5670534B1 (en) * 2013-10-16 2015-02-18 台湾太陽油▲墨▼股▲分▼有限公司 White thermosetting resin composition, cured product thereof, and display member using the same
CN104497486A (en) * 2014-12-16 2015-04-08 浙江华正新材料股份有限公司 Anti-yellowing modified halogen-free white resin composition, laminated board and preparation method of composition
CN107033546A (en) * 2017-04-28 2017-08-11 华南理工大学 It is a kind of to be used to make epoxy molding plastic of light-reflecting components and preparation method thereof
JP2022007193A (en) * 2020-06-25 2022-01-13 パナソニックIpマネジメント株式会社 Epoxy resin composition and optical semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009519A (en) * 2009-06-26 2011-01-13 Hitachi Chem Co Ltd Optical semiconductor device and method for manufacturing the optical semiconductor device
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969816B2 (en) * 2005-08-22 2012-07-04 株式会社東芝 RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME AND ELECTRIC DEVICE USING THE SAME
JP2008143981A (en) * 2006-12-07 2008-06-26 Three M Innovative Properties Co Optically reflective resin composition, light-emitting device and optical display
JP2010074124A (en) * 2008-08-18 2010-04-02 Hitachi Chem Co Ltd Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate
JP6133004B2 (en) * 2009-03-31 2017-05-24 日立化成株式会社 Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element, method for manufacturing the same, and optical semiconductor device
JP2010254919A (en) * 2009-04-28 2010-11-11 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, substrate for mounting optical semiconductor element using the same and manufacturing method thereof, and optical semiconductor device
CN102108068A (en) * 2009-12-25 2011-06-29 台光电子材料股份有限公司 Polymer material and application thereof
CN102544334B (en) * 2011-01-19 2014-05-21 南京第壹有机光电有限公司 Highly efficiently luminescent electroluminescent device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009519A (en) * 2009-06-26 2011-01-13 Hitachi Chem Co Ltd Optical semiconductor device and method for manufacturing the optical semiconductor device
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193993A (en) * 2013-02-26 2014-10-09 Sekisui Chem Co Ltd White curable composition for an optical semiconductor device, molding for an optical semiconductor device, and optical semiconductor device

Also Published As

Publication number Publication date
CN103635532A (en) 2014-03-12
JP2013035978A (en) 2013-02-21
CN103635532B (en) 2016-01-06
TWI525859B (en) 2016-03-11
KR20140034722A (en) 2014-03-20
TW201306324A (en) 2013-02-01
JP4991957B1 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2013008841A1 (en) White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device
JP5119368B1 (en) Method for producing white curable composition for optical semiconductor device and method for producing molded body for optical semiconductor device
JP2013209479A (en) Optical semiconductor device
JP5143964B1 (en) White curable composition for optical semiconductor device, and molded article for optical semiconductor device
JP6259846B2 (en) White curable composition for optical semiconductor devices
JP5899281B2 (en) White curable composition for optical semiconductor device, method for producing white curable composition for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
JP2016089157A (en) Curable composition for optical semiconductor device, molding for optical semiconductor device, and optical semiconductor device
WO2013146404A1 (en) White curable composition for optical semiconductor device, molded article for optical semiconductor device and optical semiconductor device
JP2013053299A (en) White curable composition for optical semiconductor device, molded object for optical semiconductor device, and optical semiconductor device
JP5775408B2 (en) White curable material for optical semiconductor device, method for producing white curable material for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
JP6038236B2 (en) White curable material for optical semiconductor device and method for producing white curable material for optical semiconductor device
JP5602923B1 (en) White curable composition for optical semiconductor device, white tablet for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
JP2014077080A (en) White curable composition for optical semiconductor device, molded body for optical semiconductor device, and optical semiconductor device
JP5798839B2 (en) Optical semiconductor device
JP5735378B2 (en) White curable composition for optical semiconductor device, molded article for optical semiconductor device, method for producing molded article for optical semiconductor device, optical semiconductor device, and method for producing optical semiconductor device
JP5167424B1 (en) White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2015181200A (en) optical semiconductor device
WO2016030985A1 (en) White curable composition for photosemiconductor device, white tablet for photosemiconductor device, molding for photosemiconductor device, and photosemiconductor device
JP2014008614A (en) Method for manufacturing molded body
JP2014218575A (en) White curable composition for optical semiconductor device, molding for optical semiconductor device, and optical semiconductor device
JP2014008612A (en) Mold releasability imparting composition and method for manufacturing molded body
JP5613308B2 (en) White curable composition for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor device
JP2014008613A (en) Mold releasability imparting composition and method for manufacturing molded body
JP2015218187A (en) White curable composition for optical semiconductor device and molding for optical semiconductor device and optical semiconductor device
JP2015155496A (en) White curable composition for optical semiconductor device, molded article for optical semiconductor device, and optical semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137015367

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811041

Country of ref document: EP

Kind code of ref document: A1