WO2013008552A1 - Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component - Google Patents

Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component Download PDF

Info

Publication number
WO2013008552A1
WO2013008552A1 PCT/JP2012/063956 JP2012063956W WO2013008552A1 WO 2013008552 A1 WO2013008552 A1 WO 2013008552A1 JP 2012063956 W JP2012063956 W JP 2012063956W WO 2013008552 A1 WO2013008552 A1 WO 2013008552A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
substrate
wiring board
conductor
built
Prior art date
Application number
PCT/JP2012/063956
Other languages
French (fr)
Japanese (ja)
Inventor
清水 敬介
幸信 三門
俊輔 酒井
満広 冨川
俊樹 古谷
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011155278A external-priority patent/JP2012164952A/en
Priority claimed from JP2011220865A external-priority patent/JP2013038374A/en
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to KR1020137030068A priority Critical patent/KR101539166B1/en
Priority to KR20157002747A priority patent/KR20150024944A/en
Priority to CN201280034652.6A priority patent/CN103703874A/en
Publication of WO2013008552A1 publication Critical patent/WO2013008552A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/50Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor for integrated circuit devices, e.g. power bus, number of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0187Dielectric layers with regions of different dielectrics in the same layer, e.g. in a printed capacitor for locally changing the dielectric properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09036Recesses or grooves in insulating substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09145Edge details
    • H05K2201/09154Bevelled, chamferred or tapered edge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09827Tapered, e.g. tapered hole, via or groove
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09854Hole or via having special cross-section, e.g. elliptical
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • H05K2203/1469Circuit made after mounting or encapsulation of the components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates

Definitions

  • the present invention relates to an electronic component built-in wiring board and a manufacturing method thereof.
  • Patent Document 1 discloses an electronic component built-in wiring board having a resin substrate (core substrate) in which a cavity is formed and a capacitor disposed in the cavity and positioned on the side of the resin substrate.
  • Patent Document 2 discloses that an opening (cavity) is formed in the core substrate, a capacitor is accommodated in the opening, and a gap between the core substrate and the capacitor in the opening is filled with resin. Forming an insulating layer on both sides of the core substrate and forming a via conductor connected to the electrode of the capacitor in each insulating layer, and a method of manufacturing a wiring board with a built-in electronic component, and the method An electronic component built-in wiring board is disclosed.
  • the angle between the main surface of the core substrate and the side surface facing the opening is a right-angled corner (an angle composed of two planes that intersect at substantially right angles). Yes. For this reason, it is difficult for the capacitor (electronic component) to come into contact with the corner, and the capacitor is easily lost due to the impact. In order to avoid this, if the clearance between the opening and the capacitor is increased, there is a concern that alignment of the via conductors becomes difficult due to the movement of the capacitor after the capacitor is accommodated in the opening.
  • the present invention has been made in view of such circumstances, and an object thereof is to improve the reliability of electrical connection in a wiring board. Another object of the present invention is to make it easier to put an electronic component into the opening. Another object of the present invention is to make it possible to reduce the clearance between the opening and the electronic component.
  • the electronic component built-in wiring board according to the present invention, A core substrate having a first surface, a second surface opposite to the first surface, an opening penetrating from the first surface to the second surface, and a through hole; A capacitor disposed in the opening; An electronic component built-in wiring board having The through hole is filled with a conductor, The conductor is formed of a first conductor portion that narrows from the first surface toward the second surface and a second conductor portion that narrows from the second surface toward the first surface. The first conductor part and the second conductor part are connected in the core substrate.
  • the electronic component built-in wiring board A substrate having a first surface, a second surface opposite to the first surface, and an opening; An electronic component having a third surface and a fourth surface opposite to the third surface, the electronic component being disposed in the opening so that the third surface is in the same direction as the first surface of the substrate; , An electronic component built-in wiring board having The electronic component has a curved surface at the corner between the side surface and the fourth surface, The substrate has a tapered surface at the corner between the inner wall of the opening and the first surface from the first surface toward the second surface.
  • the manufacturing method of the electronic component built-in wiring board Providing a substrate having a first surface and a second surface opposite the first surface; Preparing an electronic component having a third surface and a fourth surface opposite to the third surface, and having a curved surface at an angle between the fourth surface and the side surface; Forming an opening in the substrate; Forming a tapered surface from the first surface toward the second surface at an angle between the inner wall of the opening and the first surface; Placing the electronic component in the opening with the third surface in the same orientation as the first surface; including.
  • the order of description of each process in the said manufacturing method does not prescribe
  • the tapered surface may be formed at the same time as the opening is formed, before the opening is formed, or after the opening is formed.
  • the reliability of electrical connection in the wiring board can be improved. Further, according to the present invention, in addition to this effect or instead of this effect, there is a case where an effect that it is easy to put an electronic component into the opening may be achieved. Further, according to the present invention, in addition to or in place of these effects, there may be an effect that the clearance between the opening and the electronic component is reduced.
  • FIG. 8 is a diagram for explaining a step of preparing a substrate (core substrate) in the manufacturing method shown in FIG. 7. In the manufacturing method shown in FIG. 7, it is a figure for demonstrating the 1st process of forming a through-hole conductor and a conductor layer in a board
  • FIG. 12 is a diagram showing a first example of the shape of a conductor layer formed by the steps shown in FIGS. 9 to 11.
  • FIG. 12 is a view showing a second example of the shape of the conductor layer formed by the steps shown in FIGS. 9 to 11.
  • FIG. 8 is a diagram for explaining a process of attaching a substrate on which a cavity is formed to a carrier in the manufacturing method shown in FIG. 7.
  • FIG. 8 is a diagram for explaining a step of disposing a capacitor in the cavity in the manufacturing method shown in FIG. 7.
  • FIG. 8 is a diagram showing a state where a capacitor is arranged in the cavity in the manufacturing method shown in FIG. 7.
  • it is a figure for demonstrating the process of forming a 1st interlayer insulation layer and a 1st copper foil on an insulation board
  • it is a figure for demonstrating a press process. It is a figure which shows the state after the press of FIG. 19A.
  • FIG. 19A shows the manufacturing method shown in FIG.
  • FIG. 7 it is a figure for demonstrating the process of forming a 2nd interlayer insulation layer and a 2nd copper foil on an insulated substrate and a capacitor
  • a first step of forming a conductor layer on the first and second interlayer insulating layers and electrically connecting the conductor pattern of each conductor layer and the electrode of the capacitor to each other will be described.
  • FIG. 22A It is a figure for demonstrating the 2nd process after the process of FIG. It is a figure for demonstrating the 3rd process after the process of FIG. 22A. It is a figure for demonstrating the 4th process after the process of FIG. 22B. It is a figure for demonstrating the 5th process after the process of FIG. 22C.
  • FIG. 6 is a cross-sectional view showing a form of a tapered surface according to a second embodiment. It is sectional drawing which shows the 1st modification of the form of the taper surface which concerns on Embodiment 2.
  • FIG. 6 is a cross-sectional view showing a form of a tapered surface according to a second embodiment. It is sectional drawing which shows the 1st modification of the form of the taper surface which concerns on Embodiment 2.
  • FIG. 10 is a cross-sectional view for explaining a step of preparing an electronic component having a curved surface in the manufacturing method according to the second embodiment.
  • FIG. 36B is a cross-sectional view showing a second state after the first state shown in FIG. 36A.
  • FIG. 36B is a cross-sectional view showing a third state after the second state shown in FIG. 36B.
  • It is sectional drawing for demonstrating the effect
  • FIG. 44 is a plan view for explaining a step of laser processing the substrate after the step of FIG. 43.
  • FIG. 10 is a plan view for explaining a modification of laser processing according to the third embodiment. It is sectional drawing for demonstrating the laser processing which concerns on Embodiment 3.
  • FIG. 44 is a plan view for explaining a step of laser processing the substrate after the step of FIG. 43.
  • FIG. 10 is a plan view for explaining a modification of laser processing according to the third embodiment. It is sectional drawing for demonstrating the laser processing which concerns on Embodiment 3.
  • FIG. 47B is a diagram for explaining a second step after the step of FIG. 47A.
  • FIG. 48B is a diagram for explaining a third step after the step of FIG. 47B.
  • FIG. 47D is a diagram for explaining a fourth step after the step of FIG. 47C. It is a figure for demonstrating the 5th process after the process of FIG. 48A.
  • FIG. 50A it is a figure which shows the 2nd another example of the through-hole conductor formed in a core board
  • FIG. 57 It is a figure which shows the 1st form of the metal plate used for the wiring board shown in FIG. It is a figure which shows the 2nd form of the metal plate used for the wiring board shown in FIG.
  • the wiring board shown in FIG. 57 it is a figure which shows the 1st form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • the wiring board shown in FIG. 57 it is a figure which shows the 2nd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • FIG. 57 it is a figure which shows the 3rd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • FIG. 57 it is a figure which shows the 4th form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • FIG. 61B is a diagram for explaining a second step after the step of FIG. 61A.
  • FIG. 58 is a view showing a periphery of a boundary portion between a capacitor and a core substrate arranged in an opening formed in the core substrate in the wiring board shown in FIG. 57. It is sectional drawing which shows a preferable example of an electronic component built-in wiring board.
  • FIG. 58 is a view showing a periphery of a boundary portion between a capacitor and a core substrate arranged in an opening formed in the core substrate in the wiring board shown in FIG. 57. It is sectional drawing which shows a preferable example of an electronic component built-in wiring board.
  • FIG. 58 is a view
  • FIG. 63B is a plan view of the through-hole conductor shown in FIG. 63A. It is a top view which shows the 1st modification of the shape of an opening part. It is a top view which shows the 2nd modification of the shape of an opening part. It is sectional drawing which shows the electronic component built-in wiring board which has the via conductor electrically connected to the electrode of an electronic component on the side which has a taper surface of a core board about other embodiment. It is sectional drawing which shows the electronic component built-in wiring board which has two or more buildup layers on the one side of a core board
  • FIG. 77 is a diagram for describing a process of putting an electronic component into the opening formed in the core substrate in the wiring board manufacturing process shown in FIG. 76.
  • FIG. 77 is a diagram showing a first form of a metal plate used for the wiring board shown in FIG. 76.
  • FIG. 77 is a diagram showing a second form of the metal plate used for the wiring board shown in FIG. 76.
  • the wiring board shown in FIG. 76 it is a figure which shows the 1st form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • the wiring board shown in FIG. 76 it is a figure which shows the 2nd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • the wiring board shown in FIG. 76 it is a figure which shows the 3rd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • FIG. 76 it is a figure which shows the 4th form of the metal plate incorporated in a wiring board, and the conductor layer on a core board
  • FIG. 77 is a diagram for describing a first step for manufacturing a core substrate used for the wiring board shown in FIG. 76. It is a figure for demonstrating the 2nd process after the process of FIG. 82A.
  • the wiring board shown in FIG. 76 it is a figure which shows the periphery of the boundary part of the electronic component arrange
  • arrows Z1 and Z2 indicate the stacking direction of the wiring boards (or the thickness direction of the wiring boards) corresponding to the normal direction of the main surface (front and back surfaces) of the wiring boards.
  • arrows X1 and X2 and Y1 and Y2 respectively indicate directions orthogonal to the stacking direction (or sides of each layer).
  • the main surface of the wiring board is an XY plane.
  • the side surface of the wiring board is an XZ plane or a YZ plane.
  • the two principal surfaces facing the opposite normal directions are referred to as the first surface or the third surface (Z1 side surface), the second surface or the fourth surface (Z2 side surface).
  • the side closer to the core is referred to as the lower layer (or inner layer side)
  • the side far from the core is referred to as the upper layer (or outer layer side).
  • the Z direction Z1 side or Z2 side.
  • the planar shape means the shape of the XY plane unless otherwise specified. In the XY plane, the side away from the electronic component (capacitor or the like) built in the wiring board is referred to as the outside, and the side close to the electronic component is referred to as the inside.
  • the conductor layer is a layer composed of one or more conductor patterns.
  • the conductor layer may include a conductor pattern that constitutes an electric circuit, for example, a wiring (including a ground), a pad, a land, or the like, or a planar conductor pattern that does not constitute an electric circuit.
  • the opening includes notches and cuts in addition to holes and grooves.
  • the hole is not limited to a through hole, and includes a non-through hole.
  • the holes include via holes and through holes.
  • a conductor formed in the via hole (wall surface or bottom surface)
  • a conductor formed in the through hole (wall surface) is referred to as a through hole conductor.
  • plating includes dry plating such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition).
  • Preparing includes purchasing and using finished products in addition to purchasing materials and parts and manufacturing them themselves.
  • Arrangement of an electronic component (for example, a capacitor) in the opening includes not only that the entire electronic component is completely accommodated in the opening, but also that only a part of the electronic component is arranged in the opening. It is.
  • the “width” of a hole or column means a diameter in the case of a circle, and 2 ⁇ (cross-sectional area / ⁇ ) otherwise.
  • the wiring board 10 As shown in FIG. 1, the wiring board 10 according to the present embodiment includes a substrate 100 (insulating substrate), a first buildup unit B1, a second buildup unit B2, and an electronic component 200 (in this embodiment, Capacitor) and solder resists 11 and 12.
  • the wiring board 10 of this embodiment is a rectangular wiring board. However, the wiring board 10 may be a flexible wiring board.
  • one of the front and back surfaces (two main surfaces) of the substrate 100 is referred to as a first surface F1, and the other is referred to as a second surface F2.
  • a surface facing the same direction as the first surface F1 is referred to as a third surface F3, and the other is referred to as a fourth surface F4.
  • the first buildup portion B1 is formed on the first surface F1 side of the substrate 100, and the second buildup portion B2 is formed on the second surface F2 side of the substrate 100.
  • the first buildup part B1 is composed of an insulating layer 101 (interlayer insulating layer) and a conductor layer 110
  • the second buildup part B2 is composed of an insulating layer 102 (interlayer insulating layer), a conductor layer 120, Consists of The electronic component 200 is built in the wiring board 10.
  • Solder resists 11 and 12 are formed on the first buildup part B1 and the second buildup part B2, respectively.
  • the substrate 100 has an insulating property and becomes a core substrate of the wiring board 10.
  • a conductor layer 301 is formed on the first surface F1 of the substrate 100, and a conductor layer 302 is formed on the second surface F2 of the substrate 100.
  • a cavity R10 is formed in the substrate 100.
  • the cavity R10 corresponds to an opening in which the electronic component 200 is accommodated.
  • the cavity R ⁇ b> 10 includes a hole that penetrates the substrate 100.
  • the electronic component 200 is located in the side of the substrate 100 (X direction or Y direction) by being disposed in the cavity R10. In the present embodiment, substantially the entire electronic component 200 is completely accommodated in the cavity R10. However, the present invention is not limited to this, and only a part of the electronic component 200 may be disposed in the cavity R10.
  • the insulator 101a is filled in the gap R1 between the electronic component 200 and the substrate 100 in the cavity R10.
  • the insulator 101a is made of an insulating material (more specifically, a resin) constituting the upper insulating layer 101 (more specifically, a resin insulation layer) (see FIG. 19A).
  • the insulator 101a has a larger thermal expansion coefficient than either the substrate 100 or the electronic component 200.
  • the insulator 101a completely covers the periphery of the electronic component 200. Thereby, the electronic component 200 is protected by the insulator 101a (resin) and fixed at a predetermined position.
  • the insulating layer 101 (first insulating layer) is formed on the first surface F1 of the substrate 100 and the third surface F3 of the electronic component 200, and the insulating layer 102 (second insulating layer) is the second surface of the substrate 100. It is formed on F 2 and on the fourth surface F 4 of the electronic component 200.
  • the opening on one side (first surface F1 side) of the cavity R10 (hole) is closed by the insulating layer 101, and the opening on the other side (second surface F2 side) of the cavity R10 (hole) is closed by the insulating layer 102.
  • the conductor layers 110 and 120 are the outermost layers. However, the present invention is not limited to this, and more interlayer insulating layers and conductor layers may be stacked (see FIG. 56 described later).
  • the conductor layer 110 is the outermost conductor layer on the first surface F1 side
  • the conductor layer 120 is the outermost conductor layer on the second surface F2 side.
  • Solder resists 11 and 12 are formed on the conductor layers 110 and 120, respectively.
  • openings 11a and 12a are formed in the solder resists 11 and 12, respectively.
  • the predetermined part (part located in the opening part 11a) of the conductor layer 110 is exposed without being covered with the solder resist 11, and becomes the pad P1.
  • part (site located in the opening part 12a) of the conductor layer 120 becomes the pad P2.
  • the pad P1 becomes an external connection terminal for electrical connection with, for example, another wiring board
  • the pad P2 becomes an external connection terminal for mounting an electronic component, for example (see FIG. 24 described later).
  • the application of the pads P1 and P2 is not limited to this and is arbitrary.
  • the pads P1 and P2 have a corrosion-resistant layer made of, for example, a Ni / Au film on the surface thereof.
  • the corrosion resistant layer can be formed by electrolytic plating or sputtering.
  • OSP Organic
  • a through hole 300a is formed in the substrate 100 (core substrate), and a through hole conductor 300b is formed by filling the through hole 300a with a conductor (for example, copper plating).
  • the through-hole conductor 300b has an hourglass shape (a drum shape).
  • the through-hole conductor 300b of the present embodiment includes a first conductor portion R11 having a width that increases from the reference surface F0 in the substrate 100 (core substrate) toward the first surface F1, and a reference surface F0. And a second conductor portion R12 that increases in width toward the second surface F2.
  • the planar shape of the first conductor portion R11 and the second conductor portion R12 is, for example, a circle. That is, the shapes of the first conductor portion R11 and the second conductor portion R12 in the present embodiment are each a tapered cylinder (conical frustum) tapered so that the width becomes narrower (thinner) toward the reference plane F0.
  • the through-hole conductor 300b is formed by directly connecting the first conductor portion R11 and the second conductor portion R12 at the reference plane F0.
  • the through-hole conductor 300b has a constricted portion 300c having a minimum width, and the constricted portion 300c is located on the reference plane F0.
  • the reference plane F0 corresponds to the XY plane.
  • the planar shape of the constricted portion 300c is, for example, a circle.
  • the dimension T11 from the first surface F1 to the reference surface F0 and the dimension T12 from the second surface F2 to the reference surface F0 are substantially the same.
  • the first conductor portion R11 gradually becomes thinner from the first surface F1 toward the constricted portion 300c (reference surface F0), and the second conductor portion R12 is constricted from the second surface F2 to the constricted portion 300c (reference surface F0). It gets thinner gradually as you get closer to.
  • the taper angle ⁇ 1 of the first conductor portion R11 and the taper angle ⁇ 2 of the second conductor portion R12 are substantially the same.
  • the through-hole conductor 300b has a symmetrical shape with respect to the reference plane F0. Note that the taper angle corresponds to a rate at which the width is narrowed or a rate at which the width is widened.
  • the wall surface of the through hole 300a is a flat surface. Thereby, the taper angle of the first conductor portion R11 and the taper angle of the second conductor portion R12 are respectively substantially constant.
  • the present invention is not limited to this, and the wall surface of the through hole 300a may be a curved surface (see FIGS. 46 and 49).
  • Each of the conductor layers 301 and 302 includes a land of the through-hole conductor 300b.
  • the width D31 of the end surface on the first surface F1 side is 80 ⁇ m
  • the width D32 of the constricted portion 300c is 50 ⁇ m
  • the width D33 of the end surface on the second surface F2 side is 80 ⁇ m.
  • the insulating layer 101 has holes 311a and 312a (respectively via holes), and the insulating layer 102 has holes 321a and 322a (respectively via holes).
  • the conductors in the holes become via conductors 311b, 312b, 321b, and 322b (respectively filled conductors).
  • the hole 311a corresponds to the first via hole
  • the hole 321a corresponds to the second via hole.
  • Each of the holes 311a and 321a reaches the electrodes 210 and 220 of the electronic component 200, and the via conductors 311b and 321b are respectively connected to the electrodes 210 and 220 of the electronic component 200 from the first surface F1 side or the second surface F2 side of the substrate 100. 220 is electrically connected.
  • Each of the conductor (via conductor 311b) filled in the hole 311a (first via hole) and the conductor (via conductor 321b) filled in the hole 321a (second via hole) becomes narrower toward the electronic component 200. It is electrically connected to the electrode of the component 200.
  • the electronic component 200 is connected to the via conductors 311b and 321b from both sides.
  • this structure is referred to as a double-sided via structure.
  • the double-sided via structure brings the structure of the wiring board 10 close to vertical symmetry and suppresses the warping of the wiring board 10.
  • the electrodes 210 and 220 of the electronic component 200 and the conductor layer 110 on the insulating layer 101 are electrically connected to each other via the via conductor 311b, and the electrodes 210 and 220 of the electronic component 200 are also connected.
  • the conductor layer 120 on the insulating layer 102 are electrically connected to each other through a via conductor 321b.
  • the electronic component 200, the via conductor 311b, and the via conductor 321b constitute a power supply line.
  • the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 110 on the insulating layer 101 are electrically connected to each other via the via conductor 312b, and on the second surface F2 of the substrate 100.
  • the conductor layer 302 and the conductor layer 120 on the insulating layer 102 are electrically connected to each other through the via conductor 322b.
  • the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 302 on the second surface F2 of the substrate 100 are electrically connected to each other through the through-hole conductor 300b.
  • the via conductors 312b and 322b and the through-hole conductor 300b are all filled conductors, and a filled stack S is formed by stacking them in the Z direction. In the present embodiment, the filled stack S constitutes a signal line.
  • the electronic component 200 is, for example, a chip-type MLCC (multilayer ceramic capacitor) as shown in FIG. 3, and includes a capacitor body 201 and U-shaped electrodes 210 and 220.
  • the capacitor body 201 includes a plurality of dielectric layers 231 to 239 and a plurality of conductor layers 211 to 214 and 221 to 224 that are alternately stacked. Each of the dielectric layers 231 to 239 is made of, for example, ceramic.
  • the electrodes 210 and 220 are formed at both ends of the capacitor body 201, respectively.
  • the capacitor body 201 is covered with electrodes 210 and 220 from the lower surface (the surface on the fourth surface F4 side), the side surface, and the upper surface (the surface on the third surface F3 side).
  • a portion covering the upper surface of the capacitor body 201 is referred to as an upper portion 210a
  • a portion covering the side surface of the capacitor body 201 is referred to as a side portion 210b
  • a portion covering the lower surface of the capacitor body 201 is referred to as a lower portion 210c.
  • a portion covering the upper surface of the capacitor body 201 is referred to as an upper portion 220 a
  • a portion covering the side surface of the capacitor body 201 is referred to as a side portion 220 b
  • a portion covering the lower surface of the capacitor body 201 is referred to as a lower portion 220 c.
  • the side portions 210b and 220b each correspond to a side electrode.
  • the upper portions 210a and 220a are each electrically connected to the via conductor 311b, and the lower portions 210c and 220c are each electrically connected to the via conductor 321b.
  • the surfaces of the electrodes 210 and 220 of the electronic component 200 are not roughened.
  • the central portion of the capacitor body 201 located between the electrode 210 and the electrode 220 is not covered with the electrodes 210 and 220, and the dielectric layers 231 and 239 (ceramic) are exposed.
  • the target strength is weakened.
  • the central portion of the capacitor body 201 is covered with the insulating layers 101 and 102 or the insulator 101 a, so that the insulating material (resin or the like) is used. It is considered that the capacitor body 201 is protected.
  • FIG. 4 shows a state in which the electronic component 200 is accommodated in the cavity R10 of the substrate 100 (core substrate).
  • the cavity R10 penetrates the substrate 100.
  • the opening shapes at both ends (the first surface F1 side and the second surface F2 side) of the cavity R10 are substantially rectangular.
  • the shape of the electronic component 200 is, for example, a rectangular plate shape, and the shape of the main surface of the electronic component 200 is, for example, a substantially rectangular shape.
  • the electronic component 200 has a planar shape (for example, a similar shape having substantially the same size) corresponding to the cavity R10.
  • FIGS. 1 to 3 an example of a preferable value of each dimension shown in FIGS. 1 to 3 is shown.
  • the thickness T1 of the wiring board 10 (FIG. 1), that is, the thickness from the solder resist 11 to the solder resist 12 is 290 ⁇ m.
  • the thickness T20 (FIG. 2A) of the substrate 100 (core substrate) is 106 ⁇ m.
  • the thickness T3 (FIG. 3) of the electronic component 200 is 150 ⁇ m.
  • Each of the conductor layers 301 and 302 has a thickness T4 (FIG. 2A) of 20 ⁇ m.
  • Each of the insulating layers 101 and 102 has a thickness T5 (FIG. 1) of 39 ⁇ m.
  • Each of the conductor layers 110 and 120 has a thickness T6 (FIG. 1) of 18 ⁇ m.
  • Each of the solder resists 11 and 12 has a thickness T7 (FIG. 1) of 15 ⁇ m.
  • / T2 is in the range of 0.6 to 1.7 and T3 / T1 is in the range of 0.2 to 0.7. If it is such a dimension, it will be estimated that it becomes easy to suppress curvature.
  • the longitudinal width D1 of the cavity R10 is 1080 ⁇ m, and the lateral width D2 of the cavity R10 is 580 ⁇ m.
  • the width D11 in the longitudinal direction of the electronic component 200 is 1000 ⁇ m, and the width D12 in the short direction of the electronic component 200 is 500 ⁇ m.
  • the width D3 in the longitudinal direction of the gap between the electronic component 200 and the cavity R10 is 40 ⁇ m (the clearance is twice 80 ⁇ m), and the width D4 in the short direction of the gap between the electronic component 200 and the cavity R10 is 40 ⁇ m (clearance). Is twice 80 ⁇ m).
  • the width D13 of the upper part 210a or the lower part 210c of the electrode 210 or the upper part 220a or the lower part 220c of the electrode 220 is 230 ⁇ m.
  • the via conductor 311b and the via conductor 321b are arranged to face each other with the electronic component 200 interposed therebetween, for example.
  • the pitch D5 of the via conductor 311b or 321b is 770 ⁇ m.
  • At least one of the front and back surfaces (third surface F3 and fourth surface F4) of electronic component 200 preferably has electrodes 210 and 220 with an area occupancy of 40% to 90%.
  • the proportion of the upper surface 210a and 220a in the third surface F3 of the electrode 210 (hereinafter referred to as the first area occupation ratio) is preferably in the range of 40% to 90%.
  • the ratio of the lower portions 210c and 220c in the fourth surface F4 of the electrode 220 (hereinafter referred to as the second area occupation ratio) is preferably in the range of 40% to 90%.
  • the first or second area occupation ratio is 40% or more, alignment of electrical connection (via connection) between the electrodes 210 and 220 and the via conductors 311b and 321b becomes easy.
  • the first and second area occupation ratios (%) correspond to 100 ⁇ (width D12 ⁇ width D13 + width D12 ⁇ width D13) / (width D11 ⁇ width D12), respectively.
  • a plurality of through-hole conductors 300 b are arranged around the electronic component 200.
  • the arrangement and the number of through-hole conductors 300b are not limited to this and are arbitrary.
  • the number of through-hole conductors 300b may be one or plural.
  • the substrate 100 is made of, for example, a glass cloth (core material) impregnated with an epoxy resin (hereinafter referred to as glass epoxy).
  • the core material is a material having a smaller coefficient of thermal expansion than the main material (in the present embodiment, epoxy resin).
  • inorganic materials such as glass fiber (for example, glass cloth or a glass nonwoven fabric), an aramid fiber (for example, an aramid nonwoven fabric), or a silica filler, are preferable, for example.
  • the material of the substrate 100 is basically arbitrary.
  • polyester resin bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin.
  • the substrate 100 may be composed of a plurality of layers made of different materials.
  • each of the insulating layers 101 and 102 is formed by impregnating a core material with resin.
  • the insulating layers 101 and 102 are made of glass epoxy, for example.
  • the present invention is not limited to this.
  • the insulating layers 101 and 102 may be made of a resin that does not contain a core material.
  • the material of the insulating layers 101 and 102 is basically arbitrary.
  • polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin.
  • Each insulating layer may be composed of a plurality of layers made of different materials.
  • the conductor layer 110 is composed of a copper foil 111 (lower layer) and a copper plating 112 (upper layer), and the conductor layer 120 is composed of a copper foil 121 (lower layer) and a copper plating 122 (upper layer).
  • the conductor layers 110 and 120 include, for example, wirings and lands constituting an electric circuit (for example, an electric circuit including the electronic component 200), a solid pattern for increasing the strength of the wiring board 10, and the like.
  • each of the via conductors 312b electrically connected to the conductor layer 301 has a width narrowing toward the reference plane F0 as shown in FIG. Further, each of the via conductors 311b electrically connected to the electrodes 210 and 220 (specifically, the upper portions 210a and 220a) of the electronic component 200 becomes narrower toward the reference plane F0 as shown in FIG. ing.
  • the shape of each of the via conductors 311b and 312b is a tapered cylinder tapered so as to increase in width from, for example, the conductor layer 301 or the electrodes 210 and 220 of the electronic component 200 toward the upper layer. (Conical frustum).
  • Each of the via conductors 311b and 312b is made of, for example, copper plating.
  • each of the via conductors 322b electrically connected to the conductor layer 302 has a width narrowing toward the reference plane F0.
  • each of the via conductors 321b electrically connected to the electrodes 210 and 220 (specifically, the lower portions 210c and 220c) of the electronic component 200 becomes narrower toward the reference plane F0 as shown in FIG. ing.
  • the via conductors 321b and 322b are tapered such that the width increases from the conductor pattern of the conductor layer 302 or the electrodes 210 and 220 of the electronic component 200 toward the upper layer, for example. Taper cylinder (conical frustum).
  • Each of the via conductors 321b and 322b is made of, for example, copper plating.
  • the thermal expansion coefficient (X, Y direction) of the substrate 100 is in the range of 3 ppm to 11 ppm, for example, and the thermal expansion coefficient of the electronic component 200 is in the range of 10 ppm to 15 ppm, for example.
  • the thermal expansion coefficient of the substrate 100 (core substrate) is the same as the thermal expansion coefficient of the electronic component 200 or It is preferable to be smaller than this. Thereby, even when the board
  • each conductor layer and each via conductor is arbitrary as long as it is a conductor, and may be metal or nonmetal.
  • Each conductor layer and each via conductor may be composed of a plurality of layers made of different materials.
  • the substrate 100 includes a first conductor portion R11 that increases in width from the reference surface F0 in the substrate 100 (core substrate) toward the first surface F1, and from the reference surface F0 toward the second surface F2.
  • a through-hole conductor 300b (see FIG. 2A) having a second conductor portion R12 that is wider is formed. For this reason, for example, as shown in FIG. 6, in the case where the central portion in the thickness direction (Z direction) of the electronic component 200 swells outside the both end portions in the side portion 210 b (side surface electrode) of the electrode 210.
  • the distance D0 between 300b and the electronic component 200 (specifically, the surface of the side portion 210b) is likely to be substantially uniform in the thickness direction of the electronic component 200.
  • the amount of shrinkage due to thermal stress between the through-hole conductor 300b and the electronic component 200 becomes substantially uniform in the thickness direction of the electronic component 200, so that the wiring board 10 is less likely to be distorted.
  • warping of the wiring board 10 is suppressed.
  • the curvature of the wiring board 10 it becomes difficult to produce the delamination on the surface of the electrodes 210 and 220 of the electronic component 200, the crack in each electrical connection part, the crack of the electronic component 200, etc.
  • the reliability of electrical connection in the wiring board 10 is improved.
  • the distance D0 is uniform, it is easy to ensure the insulation reliability between the through-hole conductor 300b and the electronic component 200.
  • the distance D0 between the through-hole conductor 300b and the electronic component 200 is preferably in the range of 150 ⁇ m to 500 ⁇ m.
  • the distance D0 is 200 ⁇ m.
  • the center part of the side electrode (side part 210b) swells outward by a dimension D20 from both end parts.
  • all via conductors (via conductors 311b and 312b) formed in the insulating layer 101 (first insulating layer) become narrower toward the reference plane F0, and the insulating layer 102 (second insulating layer).
  • All via conductors (via conductors 321b and 322b) formed in the layer) become narrower toward the reference plane F0.
  • the via conductor of the wiring board 10 has a symmetrical structure with respect to the reference plane F0.
  • the via conductors (via conductors 311b and 312b) located on the first surface F1 side of the reference surface F0 and the via conductors (via conductors 321b and 322b) located on the second surface F2 side of the reference surface F0 are: They have a symmetrical arrangement and shape (see FIG. 1). Thereby, it is considered that stress is easily canceled on both sides of the reference plane F0. As a result, it is considered that the warpage of the wiring board 10 is suppressed and the reliability of electrical connection in the wiring board 10 is improved.
  • the wiring board 10 When there is an imbalance between thermal expansion and thermal contraction between the upper and lower sides (Z1 side and Z2 side) sandwiching the reference plane F0 of the wiring board 10, it is considered that the wiring board 10 is likely to warp.
  • the highly rigid electronic component 200 for example, MLCC
  • the through-hole conductor 300b are located in the vicinity of the reference plane F0, even in such a case, the wiring board 10 is hardly warped. That is, in the region where the electronic component 200 exists, the warpage is suppressed because the rigidity of the electronic component 200 is high.
  • thermal stress is propagated outward from the reference plane F0 and thus to the entire substrate 100 by the through-hole conductor 300b which has high rigidity and becomes wider as it is away from the reference plane F0. It becomes difficult. As a result, warping of the wiring board 10 is suppressed.
  • FIG. 7 is a flowchart showing a schematic content and procedure of the method for manufacturing the wiring board 10 according to the present embodiment.
  • a double-sided copper-clad laminate 1000 is prepared as a starting material.
  • the double-sided copper clad laminate 1000 includes a substrate 100 (core substrate), a copper foil 1001 formed on the first surface F1 of the substrate 100, a copper foil 1002 formed on the second surface F2 of the substrate 100, Consists of In the present embodiment, at this stage, the substrate 100 is made of a glass epoxy in a completely cured state (C stage).
  • step S12 of FIG. 7 the through-hole conductor 300b and the conductor layers 301 and 302 are formed.
  • a hole 1003 is formed by irradiating the double-sided copper-clad laminate 1000 with a laser from the first surface F1 side, and a laser is emitted from the second surface F2 side. Is formed on the double-sided copper-clad laminate 1000 to form a hole 1004.
  • the shape of the hole 1003 corresponds to the first conductor portion R11 (see FIGS. 2A and 2B), and the shape of the hole 1004 corresponds to the second conductor portion R12 (see FIGS. 2A and 2B).
  • the hole 1003 and the hole 1004 are formed at substantially the same position in the XY plane and are finally connected to form a through hole 300a penetrating the double-sided copper-clad laminate 1000.
  • the shape of the through hole 300a corresponds to the through hole conductor 300b (see FIGS. 2A and 2B), and has an hourglass shape (a drum shape).
  • the boundary between the hole 1003 and the hole 1004 corresponds to the constricted portion 300c (see FIGS. 2A and 2B).
  • the laser irradiation on the first surface F1 and the laser irradiation on the second surface F2 may be performed simultaneously or one surface at a time. After the through hole 300a is formed, it is preferable to perform desmearing on the through hole 300a.
  • Undesirable conduction is suppressed by desmear.
  • the surface of the copper foils 1001 and 1002 may be blackened prior to laser irradiation in order to increase the absorption efficiency of laser light.
  • the through hole 300a may be formed by a method other than laser, such as drilling or etching. However, fine processing is easy with laser processing. In particular, when the thermal expansion coefficient of the substrate 100 is small, drilling becomes difficult, so laser processing is effective.
  • a copper plating 1005 is formed on the copper foils 1001 and 1002 and in the through hole 300a as shown in FIG. Specifically, first, electroless plating is performed, and then plating 1005 is formed by performing electrolytic plating using the electroless plating film as a seed layer using a plating solution. Thereby, the through hole 300a is filled with the plating 1005, and the through hole conductor 300b is formed.
  • each conductor layer formed on the first surface F1 and the second surface F2 of the substrate 100 is performed using, for example, an etching resist and an etching solution.
  • each conductor layer is covered with an etching resist having a pattern corresponding to the conductor layers 301 and 302, and a portion of each conductor layer that is not covered with the etching resist (part exposed at the opening of the etching resist) Remove by etching.
  • conductor layers 301 and 302 are formed on the first surface F1 and the second surface F2 of the substrate 100, respectively.
  • the etching is not limited to wet, and may be dry.
  • the conductor layer 301 is not formed on the substrate 100 in the region R100 corresponding to the cavity R10.
  • the conductor layer 301 has such a conductor pattern, the position and shape of the cavity R10 are clarified, so that laser irradiation alignment for forming the cavity R10 is facilitated in the subsequent process (step S13 in FIG. 7). .
  • the conductor pattern of the conductor layer 301 is not limited to the pattern shown in FIG. 12A.
  • the conductor layer 301 may not be formed only on a portion (hereinafter referred to as a laser irradiation path) on the substrate 100 where the laser is irradiated in the subsequent process (step S13 in FIG. 7).
  • the conductor layer 301 exists inside the laser irradiation path. Even with such a conductor layer 301, alignment of laser irradiation for forming the cavity R10 is facilitated.
  • the conductor layer 301 has an alignment mark 301a.
  • the alignment mark 301a is a pattern that can be optically recognized in a later process (step S14 in FIG. 7), for example, and can be formed by partially removing the conductor, for example, by etching or the like.
  • alignment marks 301a are arranged around the region R100 (for example, four corners).
  • the present invention is not limited to this, and the arrangement and shape of the alignment mark 301a are arbitrary.
  • a cavity R10 is formed in the substrate 100 (core substrate).
  • the cavity R10 is formed by irradiating the substrate 100 with a laser.
  • the region R100 corresponding to the cavity R10 in the substrate 100 is cut out from the surrounding portion by irradiating the laser so as to draw a square.
  • the laser irradiation angle is set to be substantially perpendicular to the first surface F1 of the substrate 100, for example.
  • a cavity R10 is formed as shown in FIG.
  • the cavity R10 is formed by a laser, the cavity R10 can be easily obtained.
  • the cavity R10 is a space for accommodating the electronic component 200.
  • the electronic component 200 is placed in the cavity R10 of the substrate 100 in step S14 of FIG.
  • a carrier 1006 made of, for example, PET (polyethylene terephthalate) is provided on one side (for example, the second surface F2) of the substrate 100. Thereby, one opening of the cavity R10 (hole) is closed by the carrier 1006.
  • the carrier 1006 is made of an adhesive sheet (for example, a tape) and has adhesiveness on the substrate 100 side. The carrier 1006 is bonded to the substrate 100 by lamination, for example.
  • the electronic component 200 is inserted into the cavity R10 from the opposite side (Z1 side) to the opening where the cavity R10 (hole) is blocked.
  • the electronic component 200 is inserted into the cavity R10 by a component mounting machine, for example.
  • the electronic component 200 is held by a vacuum chuck or the like, conveyed to the upper side (Z1 side) of the cavity R10, and then descends along the vertical direction, and is put into the cavity R10.
  • the electronic component 200 is arrange
  • the surfaces of the electrodes 210 and 220 and the conductor layers 301 and 302 of the electronic component 200 are not roughened. However, it may be roughened by etching or the like as necessary.
  • An insulating layer 101 (first interlayer insulating layer) is disposed on F1 and the third surface F3 of the electronic component 200.
  • a copper foil 111 (first copper foil) is disposed on the insulating layer 101.
  • the insulating layer 101 is made of, for example, a glass prepreg.
  • FIG. 19A by pressing the insulating layer 101 in a semi-cured state, the resin flows out from the insulating layer 101 and flows into the cavity R10. As a result, as shown in FIG.
  • a gap R1 between the substrate 100 and the electronic component 200 in the cavity R10 is filled with the insulator 101a (resin constituting the insulating layer 101).
  • the insulator 101a resin constituting the insulating layer 101.
  • the filling resin (insulator 101a) and the electronic component 200 are temporarily welded.
  • the holding resin has such a degree that the electronic component 200 can be supported by the filling resin by heating.
  • the electronic component 200 supported by the carrier 1006 is supported by the filling resin. Thereafter, the carrier 1006 is removed.
  • the insulator 101a filling resin
  • the insulating layer 101 are only semi-cured and not completely cured.
  • the invention is not limited to this.
  • the insulator 101a and the insulating layer 101 may be completely cured at this stage.
  • an insulating layer 102 (second interlayer insulating layer) and a copper foil 121 (second copper foil) are disposed on the second surface F2 of the substrate 100.
  • the insulating layer 102 is made of, for example, a glass prepreg.
  • the insulating layer 102 is bonded to the substrate 100 and the electronic component 200 in a semi-cured state by pressing, for example, and then heated to cure each of the insulating layers 101 and 102.
  • the resin filled in the cavity R10 is cured after removing the adhesive sheet (carrier 1006), the insulating layers 101 and 102 can be cured simultaneously. Then, by simultaneously curing the insulating layers 101 and 102 on both sides, warpage of the substrate 100 is suppressed, so that the substrate 100 can be easily thinned.
  • holes 311a and 312a are formed in the insulating layer 101 and the copper foil 111 by, for example, laser, and holes 321a and 322a (respectively via holes) are formed in the insulating layer 102 and the copper foil 121.
  • Each of the holes 311 a and 312 a penetrates the insulating layer 101 and the copper foil 111, and each of the holes 321 a and 322 a penetrates the insulating layer 102 and the copper foil 121.
  • Each of the holes 311a and 321a reaches the electrode 210 or 220 of the electronic component 200, and each of the holes 312a and 322a reaches just above the through-hole conductor 300b. Then, desmear is performed as needed.
  • copper electroless plating films 1007 and 1008 are formed on the copper foils 111 and 121 and in the holes 311a, 312a, 321a and 322a by, for example, chemical plating.
  • a catalyst made of palladium or the like may be adsorbed on the surfaces of the insulating layers 101 and 102, for example, by dipping.
  • a plating resist 1009 having an opening 1009a is formed on the main surface (on the electroless plating film 1007) on the first surface F1 side by the lithography technique or printing, and the second surface.
  • a plating resist 1010 having an opening 1010a is formed on the main surface on the F2 side (on the electroless plating film 1008).
  • the openings 1009a and 1010a have patterns corresponding to the conductor layers 110 and 120 (FIG. 1), respectively.
  • copper electrolytic plating 1011 and 1012 are formed in the openings 1009a and 1010a of the plating resists 1009 and 1010, for example, by pattern plating. Specifically, copper that is a material to be plated is connected to the anode, and electroless plating films 1007 and 1008 that are materials to be plated are connected to the cathode and immersed in a plating solution. Then, a direct current voltage is applied between the two electrodes to pass a current, and copper is deposited on the surfaces of the electroless plating films 1007 and 1008.
  • the holes 311a and 312a and the holes 321a and 322a are filled with the electrolytic plating 1011 and 1012, respectively, and via conductors 311b, 312b, 321b, and 322b made of, for example, copper plating are formed.
  • the plating resists 1009 and 1010 are removed by, for example, a predetermined stripping solution, and then the unnecessary electroless plating films 1007 and 1008 and the copper foils 111 and 121 are removed, as shown in FIG. 110 and 120 are formed.
  • the seed layer for electrolytic plating is not limited to the electroless plating film, and a sputtered film or the like may be used as the seed layer instead of the electroless plating films 1007 and 1008.
  • a solder resist 11 having an opening 11a and a solder resist 12 having an opening 12a are formed on the insulating layers 101 and 102, respectively (see FIG. 1).
  • the conductor layers 110 and 120 are covered with the solder resists 11 and 12 except for predetermined portions (pads P1 and P2 and lands, etc.) located in the openings 11a and 12a, respectively.
  • the solder resists 11 and 12 can be formed by, for example, screen printing, spray coating, roll coating, or lamination.
  • the corrosion resistance made of, for example, a Ni / Au film on the conductor layers 110 and 120, specifically on the surfaces of the pads P1 and P2 (see FIG. 1) not covered with the solder resists 11 and 12, respectively.
  • the corrosion-resistant layer which consists of an organic protective film by performing OSP process.
  • the first buildup part B1 composed of the insulating layer 101 and the conductor layer 110 is formed on the first surface F1 of the substrate 100, and the insulating layer 102 and the conductor layer 120 are formed on the second surface F2 of the substrate 100.
  • a second buildup part B2 composed of As a result, the wiring board 10 (FIG. 1) of this embodiment is completed. Thereafter, if necessary, an electrical test (checking of capacitance value, insulation, etc.) of the electronic component 200 is performed.
  • the manufacturing method of the present embodiment is suitable for manufacturing the wiring board 10. With such a manufacturing method, it is considered that a good wiring board 10 can be obtained at low cost.
  • the wiring board 10 of this embodiment can be electrically connected to, for example, an electronic component or another wiring board.
  • an electronic component 400 for example, an IC chip
  • the wiring board 10 can be mounted on another wiring board 500 (for example, a mother board) by the pad P1.
  • the wiring board 10 of this embodiment can be used as a circuit board of a mobile phone, for example.
  • the wiring board 20 according to the second embodiment is a wiring board with a built-in electronic component, and includes a substrate 100, insulating layers 101 and 102, conductor layers 110 and 120, and an electronic component 200 as shown in FIG. .
  • the wiring board 20 of this embodiment is a rigid wiring board.
  • the wiring board 20 may be a flexible wiring board.
  • the substrate 100 has an insulating property and becomes a core substrate of the wiring board 20.
  • a first surface F1 one of the front and back surfaces (two main surfaces) of the substrate 100 is referred to as a first surface F1
  • a second surface F2 one of the front and back surfaces (two main surfaces) of the substrate 100.
  • the electronic component 200 is built in the wiring board 20.
  • a third surface F3 one of the front and back surfaces (two main surfaces) of the electronic component 200
  • a fourth surface F4 one of the front and back surfaces (two main surfaces) of the electronic component 200.
  • FIG. 26 shows a state where the electronic component 200 is accommodated in the cavity R10 of the substrate 100 (core substrate).
  • the cavity R10 is formed of a partially tapered hole and penetrates the substrate 100.
  • the shape of the wide side (Z1 side) opening (hereinafter referred to as the first opening) and the shape of the narrow side (Z2 side) opening (hereinafter referred to as the second opening) of the cavity R10 are substantially rectangular.
  • the shape of the second opening corresponds to the shape of the region surrounded by the side surface F10 of the substrate 100 facing the cavity R10 (the inner wall of the cavity R10).
  • the electronic component 200 is a chip having an outer shape (for example, a similar shape having substantially the same size) corresponding to the shape of the second opening of the cavity R10, for example.
  • the thickness of the electronic component 200 and the depth of the cavity R10 (hole) are: It almost agrees. Further, the thickness of the substrate 100 and the thickness of the electronic component 200 are substantially the same.
  • the width of the electronic component 200 is smaller than the width of the second opening of the cavity R10, and a predetermined size is required to accommodate the electronic component 200 in the cavity R10. Clearance is secured.
  • the clearance is obtained by subtracting the width of the electronic component 200 from the width of the second opening of the cavity R10. It is considered preferable that the clearances in the X direction and the Y direction are each in the range of about 0 ⁇ m to about 142 ⁇ m. About 142 ⁇ m is a value in consideration of mounting accuracy and component outline accuracy.
  • the electronic component 200 is arranged in the cavity R10 with the third surface F3 in the same direction as the first surface F1 of the substrate 100.
  • the electronic component 200 is located in the side (X direction or Y direction) of the substrate 100 by being disposed in the cavity R10.
  • substantially the entire electronic component 200 is completely accommodated in the cavity R10.
  • the present invention is not limited to this, and only a part of the electronic component 200 may be disposed in the cavity R10.
  • the insulator 101a is filled in the gap between the electronic component 200 and the substrate 100 in the cavity R10.
  • the insulator 101a is made of, for example, only a resin constituting the upper insulating layer 101 (resin insulating layer) (see FIG. 40A).
  • the present invention is not limited thereto, and instead of or in addition to the resin constituting the insulating layer 101, a material (for example, resin) constituting the substrate 100 or the insulating layer 102 may be filled, or a separately prepared insulating material is used. It may be filled.
  • the insulator 101a completely covers the periphery of the electronic component 200. Thereby, the electronic component 200 is protected by the insulator 101a (resin) and fixed at a predetermined position.
  • the insulating layer 101 is formed on the first surface F1 of the substrate 100 and the third surface F3 of the electronic component 200.
  • the insulating layer 102 is formed on the second surface F2 of the substrate 100 and the fourth surface F4 of the electronic component 200.
  • the cavity R10 includes a hole penetrating the substrate 100.
  • the insulating layer 101 closes one opening of the cavity R10 (hole), and the insulating layer 102 closes the other opening of the cavity R10 (hole).
  • the conductor layer 110 is formed on the insulating layer 101, and the conductor layer 120 is formed on the insulating layer 102.
  • the conductor layers 110 and 120 are the outermost layers.
  • the present invention is not limited to this, and more interlayer insulating layers and conductor layers may be stacked.
  • a hole 321 a (via hole) is formed in the insulating layer 102.
  • a conductor for example, copper plating
  • the conductor in the hole 321a becomes a via conductor 321b (filled conductor).
  • the hole 321 a reaches the electrodes 210 and 220 of the electronic component 200, and the via conductor 321 b in the hole 321 a is electrically connected to the electrodes 210 and 220.
  • the electrodes 210 and 220 of the electronic component 200 and the conductor layer 120 on the insulating layer 102 are electrically connected to each other via the via conductor 321b.
  • the shapes of the substrate 100, the insulating layers 101 and 102, and the electronic component 200 are, for example, rectangular plates.
  • the shape of the main surface of the electronic component 200 is, for example, a substantially rectangular shape. However, it is not limited to this, and these shapes are arbitrary.
  • the substrate 100 is made of, for example, a glass cloth (core material) impregnated with an epoxy resin (hereinafter referred to as glass epoxy).
  • the core material is a material having a smaller coefficient of thermal expansion than the main material (in the present embodiment, epoxy resin).
  • inorganic materials such as glass fiber (for example, glass cloth or a glass nonwoven fabric), an aramid fiber (for example, an aramid nonwoven fabric), or a silica filler, are preferable, for example.
  • the shape, thickness, material and the like of the substrate 100 are basically arbitrary.
  • polyester resin bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin.
  • the substrate 100 may be composed of a plurality of layers made of different materials.
  • the insulating layers 101 and 102 are made of, for example, an epoxy resin.
  • the substrate 100 is made of a resin containing a core material
  • the insulating layers 101 and 102 are made of a resin not containing a core material.
  • the present invention is not limited to this, and the shape, thickness, material, and the like of the insulating layers 101 and 102 are basically arbitrary.
  • polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin.
  • Each insulating layer may be composed of a plurality of layers made of different materials.
  • the via conductor 321b is made of, for example, copper plating.
  • the shape of the via conductor 321b is, for example, a tapered cylinder (conical frustum) tapered so as to increase in diameter from the substrate 100 (core substrate) toward the upper layer, and the shape of the cross section (XY plane) of the via conductor is For example, it is a substantially perfect circle. However, it is not limited to this, and the shape of the via conductor is arbitrary.
  • the conductor layer 110 is composed of a copper foil 111 (lower layer) and a copper plating 112 (upper layer), and the conductor layer 120 is composed of a copper foil 121 (lower layer) and a copper plating 122 (upper layer).
  • the conductor layers 110 and 120 have, for example, wiring that forms an electric circuit (for example, an electric circuit including the electronic component 200), a solid pattern for increasing the strength of the wiring board 20, and the like.
  • each conductor layer and each via conductor may be composed of a plurality of layers made of different materials.
  • the electronic component 200 is, for example, a chip capacitor.
  • the electronic component 200 has, for example, a rectangular plate-shaped outer shape with a thickness in the range of about 50 ⁇ m to about 300 ⁇ m and a length of each side in the range of about 0.5 mm to about 2 mm.
  • the shape of the main surface (the third surface F3 and the fourth surface F4) of the electronic component 200 is, for example, a substantially rectangular shape.
  • the present invention is not limited to this, and the type, shape, size, and the like of the electronic component 200 are arbitrary.
  • the electronic component 200 includes a capacitor main body 201 and U-shaped electrodes 210 and 220 as shown in FIG.
  • the capacitor body 201 includes a plurality of dielectric layers 231 to 239 and a plurality of conductor layers 211 to 214 and 221 to 224 that are alternately stacked.
  • Each of the dielectric layers 231 to 239 is made of, for example, ceramic.
  • the electrodes 210 and 220 are formed at both ends of the capacitor body 201, respectively.
  • both ends of the capacitor body 201 specifically, the fourth surface F4 (lower surface), the side surface, and the third surface F3 (upper surface) are covered with the electrodes 210 and 220.
  • the central portion of the capacitor body 201 located between the electrodes 210 and 220 is not covered with the electrodes 210 and 220, and the dielectric layers 231 and 239 (ceramic) are exposed. Therefore, the strength is relatively weak.
  • the central portion of the capacitor body 201 is covered with the insulator 101a (resin). As a result, it is considered that the capacitor body 201 is protected by the insulator 101a.
  • the substrate 100 is directed from the first surface F1 to the second surface F2 at the corner between the side surface F10 of the substrate 100 facing the cavity R10 (the inner wall of the cavity R10) and the first surface F1.
  • a tapered surface C11 is provided to reduce the width of the cavity R10.
  • the substrate 100 includes a first layer 100a and a second layer 100b made of different materials.
  • the first layer 100a and the second layer 100b are arranged in this order from the first surface F1 toward the second surface F2. That is, the second layer 100b is formed on the first layer 100a.
  • the first layer 100a and the second layer 100b are each composed of the same resin (for example, epoxy resin), and the second layer 100b includes an inorganic material (for example, glass cloth). 100a does not include an inorganic material.
  • the side surface F10 of the substrate 100 facing the cavity R10 corresponds to the side surface of the second layer 100b
  • the first surface F1 of the substrate 100 corresponds to the main surface of the first layer 100a
  • the side surface F10 and the first surface corresponds to the side surface of the first layer 100a.
  • the angle ⁇ 1 between the side surface F10 of the substrate 100 facing the cavity R10 and the second surface F2 is about 90 °. That is, the side surface F10 (the inner wall of the cavity R10) is a surface substantially perpendicular to the second surface F2.
  • the tapered surface C11 is a flat surface (slope) inclined with respect to the first surface F1 of the substrate 100, as shown in FIG.
  • the angle between the first surface F1 of the substrate 100 and the tapered surface C11 (hereinafter referred to as the taper angle ⁇ 2) is an angle larger than at least 90 °, preferably in the range of about 120 ° to about 150 °, It is considered particularly preferable that the angle is 135 °.
  • the tapered surface C11 is formed on the entire peripheral edge (four sides) of the cavity R10, for example, as shown in FIG. However, the present invention is not limited to this, and the tapered surface C11 may be partially formed on the peripheral edge of the cavity R10 (see FIG. 53 described later).
  • the widths D11 and D12 of the tapered surface C11 are substantially uniform. That is, the width D11 in the X direction and the width D12 in the Y direction are substantially the same, for example.
  • the present invention is not limited to this, and the width D11 in the X direction and the width D12 in the Y direction may be different sizes.
  • the dimensions and shape of the tapered surface C11 are not limited to those described above, and are arbitrary.
  • the tapered surface C11 may be anything that reduces the width of the cavity R10 from the first surface F1 toward the second surface F2.
  • the tapered surface C11 may be a curved surface that decreases in width reduction rate from the first surface F1 toward the second surface F2.
  • the tapered surface C11 may be a curved surface having a reduced width ratio that increases from the first surface F1 toward the second surface F2.
  • the width D3 indicates the maximum value of the gap in the X direction between the substrate 100 and the electronic component 200 (the larger of the gap on the X1 side and the gap on the X2 side), and the width D4 indicates the width of the substrate 100 and the electronic component.
  • the maximum value of the gap in the Y direction with respect to 200 is shown.
  • the width D3 or D4 (more preferably both) is preferably in the range of about 0 ⁇ m to about 100 ⁇ m, and in particular, it is considered particularly preferable to be in the range of about 0 ⁇ m to about 5 ⁇ m.
  • the width D3 or D4 is about 100 ⁇ m or less (particularly about 5 ⁇ m or less), the gap in which the electronic component 200 can move in the cavity R10 is reduced, and the positional accuracy of the electronic component 200 is increased. As a result, the alignment accuracy between the electronic component 200 and the via conductor 321b is also improved. Further, it becomes easy to secure a region for forming wiring (conductor layers 301 and 302 shown in FIG. 42 described later) on the substrate 100. In addition, the flatness of the insulating layers (insulating layers 101 and 102) formed over the substrate 100 can be easily increased.
  • the side surface F10 (the inner wall of the cavity R10) of the substrate 100 facing the cavity R10 is preferably formed by a laser cut surface. If it is a cut surface by a laser, it tends to be a smooth surface. Further, by cutting a predetermined portion (a portion corresponding to the cavity R10) of the substrate 100 with a laser, the tapered surface C11 can be easily formed together with the cavity R10.
  • the electronic component 200 has a curved surface C21 at the corner between the side surface F20 and the fourth surface F4.
  • Each of the corners of the capacitor body 201 is composed of two planes that intersect at right angles and does not have a curved surface, but the side surface F20 and the fourth surface of the electronic component 200 are covered by the electrode 210 or 220 that covers the surface of the capacitor body 201.
  • a curved surface C21 is formed at the corner with F4.
  • the curved surface C21 is formed by the surface of the electrode 210 or 220 of the electronic component 200. If the curved surface C21 is as strong as the electrode material, it is considered that the performance degradation of the electronic component 200 hardly occurs even when the curved surface C21 hits the tapered surface C11 when the electronic component 200 is put into the cavity R10.
  • At least the surfaces of the electrodes 210 and 220 of the electronic component 200 are each preferably made of a plating film. If the plating conditions are adjusted, it is considered that a desired curved surface C21 can be easily obtained on the surface of the capacitor body 201 even when the corner of the capacitor body 201 does not have a curved surface. Further, it becomes easy to form a smooth curved surface C21. If the smooth curved surface C21 is obtained, the electronic component 200 can easily slide on the curved surface C21.
  • the radius of curvature of the curved surface C21 is preferably in the range of about 20 ⁇ m to about 40 ⁇ m, and it is considered that about 30 ⁇ m is particularly preferable.
  • each of the corners of the capacitor body 201 is constituted by a plane that intersects at right angles. However, the present invention is not limited to this, and the corner of the capacitor body 201 may have a curved surface.
  • a curved surface C21 is formed at a portion where the electrodes 210 and 220 are provided among the corners of the four side surfaces F20 and the fourth surface F4 of the electronic component 200.
  • the form of the curved surface C21 is arbitrary.
  • the widths D21 and D22 of the curved surface C21 are substantially uniform. That is, the width D21 in the X direction and the width D22 in the Y direction are substantially the same, for example. It is believed that widths D21 and D22 are each preferably in the range of about 0 ⁇ m to about 71 ⁇ m. About 71 ⁇ m is a value in consideration of mounting accuracy and component outline accuracy.
  • the present invention is not limited to this, and the width D11 in the X direction and the width D12 in the Y direction may be different sizes.
  • the boundary P21 between the curved surface C21 and the side surface F20 of the electronic component 200 is located on the inner side of the lower surface F21 of the capacitor body 201.
  • a boundary P ⁇ b> 22 between the curved surface C ⁇ b> 21 and the fourth surface F ⁇ b> 4 (lower surface) of the electronic component 200 is positioned outside the side surface F ⁇ b> 22 of the capacitor main body 201.
  • the present invention is not limited to this, and as shown in FIG. 30B, the boundary P21 may be located outside the lower surface F21, and the boundary P22 may be located outside the side surface F22.
  • the boundary P21 may be located outside the lower surface F21, and the boundary P22 may be located inside the side surface F22.
  • the electronic component 200 of the present embodiment has a curved surface C22 at the corner between the side surface F20 and the third surface F3.
  • the curved surface C22 has the same shape as the curved surface C21, for example.
  • the present invention is not limited to this.
  • the side surface F20 and the third surface F3 may be perpendicular to each other without a curved surface.
  • the thickness D23 on the side surface F20 side of the electrodes 210 and 220 is preferably in the range of about 5 ⁇ m to about 30 ⁇ m.
  • the thickness D24 on the fourth surface F4 side of the electrodes 210 and 220 is preferably in the range of about 5 ⁇ m to about 30 ⁇ m.
  • the wiring board 20 of the present embodiment includes the substrate 100 on which the cavity R10 is formed and the electronic component 200 that is disposed in the cavity R10 with the third surface F3 in the same direction as the first surface F1 of the substrate 100. And having.
  • the electronic component 200 has a curved surface C21 at the corner between the side surface F20 and the fourth surface F4.
  • the substrate 100 has a tapered surface C11 that reduces the width of the cavity R10 from the first surface F1 toward the second surface F2 at the corner between the side surface F10 (the inner wall of the cavity R10) facing the cavity R10 and the first surface F1.
  • Such a structure makes it easy to put the electronic component 200 into the cavity R10. In addition, it is possible to easily align the electronic component 200 and the via conductor 321b. Moreover, it becomes possible to suppress the crack of the electronic component 200.
  • FIG. 31 is a flowchart showing a schematic content and procedure of the method for manufacturing the wiring board 20 according to the present embodiment.
  • a substrate 100 (starting material) is prepared as shown in FIG.
  • the substrate 100 is made of, for example, a completely cured glass epoxy.
  • a cavity R10 (FIGS. 25 and 26) is formed in the substrate 100.
  • FIG. 25 a cavity R10 (FIGS. 25 and 26) is formed in the substrate 100.
  • the region R100 corresponding to the cavity R10 in the substrate 100 is cut out from the surrounding portion by irradiating a laser so as to draw a square.
  • the laser is applied to the first surface F1 of the substrate 100 so as to penetrate the first layer 100a and reach the second layer 100b.
  • the laser irradiation angle is set to be substantially perpendicular to the first surface F1 of the substrate 100, for example.
  • the second layer 100b since the second layer 100b includes an inorganic material and the first layer 100a does not include an inorganic material, the first layer 100a is dissolved in the X direction and the Y direction by laser irradiation.
  • the tapered surface C11 is obtained, and in the second layer 100b, the dissolution in the X direction and the Y direction hardly proceeds, and the side surface F10 (the inner wall of the cavity R10) substantially along the Z direction is obtained. For this reason, the taper surface C11 can be easily formed at the corner between the side surface F10 of the substrate 100 facing the cavity R10 and the first surface F1.
  • the cavity R10 is formed in the substrate 100 by the laser processing as shown in FIG. 35A.
  • the cavity R ⁇ b> 10 is a hole that penetrates the substrate 100.
  • the tapered surface C11 is located at a corner between the first surface F1 and the side surface F10 (inner wall of the cavity R10) of the substrate 100 facing the cavity R10, and reduces the width of the cavity R10 from the first surface F1 toward the second surface F2. .
  • the cavity R10 is formed by a laser, the cavity R10 having the above-described structure (see FIG. 28) can be easily obtained.
  • the cavity R10 is a space for accommodating the electronic component 200.
  • step S23 of FIG. 31 the electronic component 200 having the curved corner (the corner having the curved surface C21) is arranged in the cavity R10 of the substrate 100.
  • a carrier 2001 made of, for example, PET (polyethylene terephthalate) is provided on one side (for example, the second surface F2) of the substrate 100. Thereby, one opening of the cavity R10 (hole) is closed by the carrier 2001.
  • the carrier 2001 is made of an adhesive sheet (for example, a tape) and has adhesiveness on the substrate 100 side. The carrier 2001 is bonded to the substrate 100 by lamination, for example.
  • an electronic component 200 having a curved surface C21 at the corner between the fourth surface F4 and the side surface F20 is prepared.
  • the curved surface C21 is composed of the surfaces of the electrodes 210 and 220 of the electronic component 200.
  • the electrodes 210 and 220 of the electronic component 200 are each made of a plating film.
  • the electronic component 200 is placed on the carrier 2001 (adhesive sheet) by inserting the electronic component 200 into the cavity R10 from the opposite side (Z1 side) to the opening where the cavity R10 (hole) is blocked.
  • the electronic component 200 is inserted into the cavity R10 by, for example, a component mounter (mounter).
  • the electronic component 200 is held by a vacuum chuck or the like and, as shown in FIG. 36A, is carried upward (Z1 side) of the cavity R10, and then descends along the vertical direction and is put into the cavity R10.
  • the curved corner (curved surface C21) of the electronic component 200 faces the substrate 100.
  • the tapered surface C11 of the substrate 100 and the curved surface C21 of the electronic component 200 come into contact with each other.
  • the electronic component 200 is guided to the cavity R10 while sliding on the tapered surface C11 while the tapered surface C11 and the curved surface C21 are in contact with each other, and is housed in the cavity R10 of the substrate 100 and stabilized as shown in FIG. 36C. .
  • the Z direction corresponds to the vertical direction.
  • the operation of inserting the electronic component 200 may be performed by a person or may be performed by an apparatus. Further, the electronic component 200 may be placed in the cavity R10 by dropping the electronic component 200 toward the cavity R10 using gravity.
  • the tapered surface C11 and the curved surface C21 are not contacted by the tapered surface C11 and the right-angled corner (an angle formed by two planes intersecting substantially at right angles). Therefore, it is considered that the impact on the electronic component 200 is suppressed and the electronic component 200 is hardly cracked.
  • the electronic component 200 is disposed in the cavity R10 while the curved surface C21 of the electronic component 200 is in contact with the tapered surface C11 of the substrate 100. For this reason, the electronic component 200 is guided to the cavity R10 by sliding on the tapered surface C11, and the electronic component 200 is arranged in the cavity R10 of the substrate 100 even if the alignment between the electronic component 200 and the cavity R10 is slightly shifted. become. In addition, even a small pressure can be accommodated while sliding.
  • the clearance between the cavity R10 and the electronic component 200, and thus the gap (width D3, D4) between the substrate 100 and the electronic component 200 can be easily reduced. It has been confirmed by the inventors that this point is significantly improved.
  • the positional accuracy of the electronic component 200 is increased.
  • the alignment accuracy between the electronic component 200 and the via conductor 321b is also improved.
  • the curved surface C21 is composed of the surfaces of the electrodes 210 and 220 (plating film), the electronic component 200 is easily slid on the curved surface C21. Thereby, it is considered that the impact on the electronic component 200 is suppressed, and the electronic component 200 is hardly cracked.
  • the taper angle ⁇ 2 is the largest in the substrate 100 shown in FIG. 37C, next the largest in the substrate 100 shown in FIG. 37A, and the smallest in the substrate 100 shown in FIG. 37B.
  • the taper angle ⁇ 2 decreases, the force for guiding the electronic component 200 to the cavity R10 increases. Further, as the taper angle ⁇ 2 increases, the width D11 or D12 of the tapered surface C11 is easily increased, and thus the electronic component 200 is more likely to fall on the tapered surface C11.
  • the taper angle ⁇ 2 is preferably in the range of about 120 ° to about 150 °, and is considered to be particularly preferably about 135 °. With such a taper angle ⁇ 2, a sufficient force is obtained to guide the electronic component 200 to the cavity R10, and a sufficient width D11 or D12 of the tapered surface C11 is required to align the electronic component 200 and the cavity R10. Is obtained.
  • the electronic component 200 is arranged in the cavity R10 with the third surface F3 in the same direction as the first surface F1 of the substrate 100 (all in the direction of Z1).
  • the electronic component 200 is placed on the carrier 2001 and fixed (temporarily fixed) by the adhesiveness of the carrier 2001. By placing the electronic component 200 on the carrier 2001, the inclination of the electronic component 200 can be easily leveled.
  • step S24 of FIG. 31 the insulating layer 101 is semi-cured and the substrate on the side opposite to the opening where the cavity R10 (hole) is blocked (Z1 side) It is formed on 100 and the electronic component 200. Further, a copper foil 2003 is formed on the insulating layer 101.
  • the insulating layer 101 is made of, for example, a prepreg of an epoxy resin having thermosetting properties.
  • FIG. 39B by pressing the insulating layer 101 in a semi-cured state, the resin flows out from the insulating layer 101 and flows into the cavity R10 as shown in FIG. 40A. Thereby, as shown in FIG.
  • the insulator 101a (resin constituting the insulating layer 101) is filled between the substrate 100 and the electronic component 200 in the cavity R10.
  • the gap (width D3, D4) between the substrate 100 and the electronic component 200 is narrow, even if the fixing of the electronic component 200 is weak, the resin flows into the cavity R10, and the displacement of the electronic component 200, Undesirable tilt is unlikely to occur.
  • the filling resin (insulator 101a) and the electronic component 200 are temporarily welded.
  • the holding resin has such a degree that the electronic component 200 can be supported by the filling resin by heating.
  • the electronic component 200 supported by the carrier 2001 is supported by the filling resin.
  • the carrier 2001 is removed.
  • the insulator 101a filling resin
  • the insulating layer 101 are only semi-cured and not completely cured.
  • the invention is not limited to this.
  • the insulator 101a and the insulating layer 101 may be completely cured at this stage.
  • step S25 of FIG. 31 each main surface is built up.
  • the insulating layer 102 and the copper foil 2004 are formed on the second surface F2 of the substrate 100.
  • the electrodes 210 and 220 of the electronic component 200 are each covered with the insulating layer 102.
  • the insulating layers 101 and 102 are cured by heating.
  • the resin filled in the cavity R10 is cured after removing the adhesive sheet (carrier 2001), the insulating layers 101 and 102 can be cured simultaneously. Then, by simultaneously curing the insulating layers 101 and 102 on both sides, warpage of the substrate 100 is suppressed, so that the substrate 100 can be easily thinned.
  • holes 321a are formed in the insulating layer 102 and the copper foil 2004 by, for example, a laser.
  • the hole 321 a passes through the insulating layer 102 and the copper foil 2004 and reaches the electrode 210 or 220 of the electronic component 200. Then, desmear is performed as needed.
  • a copper electroplating 2005 is formed on the copper foil 2003 by, for example, a panel plating method, and for example, the copper electroplating 2006 is formed on the copper foil 2004 and in the hole 321a.
  • the conductor in the hole 321a becomes the via conductor 321b.
  • an electroless plating film may be formed between the copper foil 2003 and the electrolytic plating 2005 or between the copper foil 2004 and the electrolytic plating 2006 by performing the electroless plating prior to the electrolytic plating. .
  • step S27 of FIG. 31 the electroplating 2005 and 2006 are patterned by etching, for example, to form conductor layers 110 and 120, whereby the wiring board 20 (FIG. 25) of the present embodiment is completed. Thereafter, if necessary, an electrical test (checking of capacitance value, insulation, etc.) of the electronic component 200 is performed.
  • the substrate 100 is prepared (FIG. 32), the electronic component 200 having the curved surface C21 at the corner between the fourth surface F4 and the side surface F20 (FIG. 35C), and the substrate 100 is prepared.
  • Forming a cavity R10 (FIG. 33, FIG. 34), and at the corner between the side surface F10 (inner wall of the cavity R10) of the substrate 100 facing the cavity R10 and the first surface F1, the first surface F1 to the second surface F2.
  • Forming a tapered surface C11 that reduces the width of the cavity R10 toward the surface (FIGS. 33 and 34), and disposing the electronic component 200 in the cavity R10 with the third surface F3 in the same direction as the first surface F1 (see FIG. 33). 36A to 36C).
  • the electronic component 200 can be easily placed in the cavity R10. Further, the clearance between the cavity R10 and the electronic component 200 can be reduced. In addition, it is possible to easily align the electronic component 200 and the via conductor 321b. Moreover, it becomes possible to suppress the crack of the electronic component 200.
  • the tapered surface C11 is formed by laser processing.
  • the tapered surface C11 can be obtained by other methods such as dry etching.
  • the first layer 100a and the second layer 100b of different materials can provide a good tapered surface C11 without using a special technique such as oblique laser irradiation.
  • through holes 300a are formed in the substrate 100 (core substrate), and a conductor (for example, copper plating) is filled in the through holes 300a.
  • a conductor 300b is formed.
  • the shape of the through-hole conductor 300b is, for example, a drum shape. However, the shape is not limited to this, and the shape of the through-hole conductor 300b is arbitrary, and may be, for example, a substantially cylindrical shape.
  • the conductor layer 301 is formed on the first surface F1 of the substrate 100, and the conductor layer 302 is formed on the second surface F2 of the substrate 100.
  • Each of the conductor layers 301 and 302 includes a land of the through-hole conductor 300b.
  • Holes 311a and 312a are formed in the insulating layer 101, and holes 321a and 322a (via holes) are formed in the insulating layer 102.
  • the conductors in the holes 311a, 312a, 321a, and 322a are respectively via conductors 311b, 312b, 321b, and 322b ( Filled conductor).
  • the via conductors 311b and 321b are electrically connected to the electrodes 210 and 220 of the electronic component 200 from the first surface F1 side or the second surface F2 side of the substrate 100, respectively.
  • the electronic component 200 is connected to the via conductors 311b and 321b from both sides.
  • this structure is referred to as a double-sided via structure.
  • the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 302 on the second surface F2 of the substrate 100 are electrically connected to each other through the through-hole conductor 300b.
  • the via conductors 312b and 322b and the through-hole conductor 300b are all filled conductors and are stacked in the Z direction.
  • the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 110 on the insulating layer 101 are electrically connected to each other through the via conductor 312b. Further, the conductor layer 302 on the second surface F2 of the substrate 100 and the conductor layer 120 on the insulating layer 102 are electrically connected to each other through the via conductor 322b.
  • the wiring board 30 according to the present embodiment is also manufactured in the procedure as shown in FIG. 31, for example, as in the second embodiment.
  • a wiring board 3000 (starting material) is prepared as shown in FIG.
  • the wiring board 3000 includes a substrate 100, a conductor layer 3001 formed on the first surface F1 of the substrate 100, a conductor layer 3002 formed on the second surface F2 of the substrate 100, and a through hole. And a conductor 300b.
  • the substrate 100 is made of, for example, a completely cured glass epoxy.
  • Each of the conductor layers 3001 and 3002 has a two-layer structure of, for example, copper foil (lower layer) and electrolytic copper plating (upper layer).
  • the drum-shaped through hole 300a can be formed, for example, by irradiating laser from both sides of the substrate 100 (double-sided copper-clad laminate) having copper foil formed on both sides. Then, in a state in which the copper foil is formed on the substrate 100 and the through hole 300a is formed in the substrate 100, for example, by performing copper electroplating, the conductor layers 3001, 3002 and the through hole conductor 300b are formed. Can be formed.
  • the conductor layer 3001 is not formed on the substrate 100 in the region R100 corresponding to the cavity R10.
  • the conductor layer 3001 has such a conductor pattern, the position and shape of the cavity R10 are clarified. Therefore, in the subsequent process (step S22 in FIG. 31), alignment of laser irradiation for forming the cavity R10 is facilitated. .
  • the conductor pattern of the conductor layer 3001 is not limited to the pattern shown in FIG. 44A.
  • the conductor layer 3001 may not be formed on the substrate 100 only in a portion (hereinafter referred to as a laser irradiation path) where laser irradiation is performed in a subsequent process (step S22 in FIG. 31).
  • the conductor layer 3001 exists inside the laser irradiation path. Even with such a conductor layer 3001, alignment of laser irradiation for forming the cavity R10 is facilitated.
  • the conductor layer 3001 has an alignment mark 301a.
  • the alignment mark 301a is, for example, a pattern that can be optically recognized in a later process (step S23 in FIG. 31), and can be formed by partially removing the conductor, for example, by etching or the like.
  • alignment marks 301a are arranged around the region R100 (for example, four corners).
  • the present invention is not limited to this, and the arrangement and shape of the alignment mark 301a are arbitrary.
  • the side surface F30 of the conductor layer 3001 is tapered as shown in FIG. It is considered preferable that the taper angle ⁇ 3 of the side surface F30 substantially matches the taper angle ⁇ 2 of the taper surface C11.
  • a cavity R10 is formed in the substrate 100 in step S22 of FIG. Specifically, for example, as shown in FIG. 44A, the region R100 corresponding to the cavity R10 in the substrate 100 is cut out from the surrounding portion by irradiating the laser so as to draw a square.
  • the laser is applied to the first surface F1 of the substrate 100 so as to penetrate the first layer 100a and reach the second layer 100b.
  • the laser irradiation angle is set to be substantially perpendicular to the first surface F1 of the substrate 100, for example.
  • the side surface F30 of the conductor layer 3001 is tapered, the laser beam is reflected by the side surface F30 and proceeds obliquely, so that the tapered surface C11 is easily formed.
  • the wiring board 30 (FIG. 42) of this embodiment can be manufactured through steps S23 to S27 of FIG.
  • the electronic component 200 is positioned using the alignment mark 301a in step S23 of FIG. Thereby, it is possible to increase the accuracy of alignment between the electronic component 200 and the cavity R10.
  • step S26 of FIG. 31 holes 311a, 312a, and 322a are formed in the same manner as hole 321a (see FIG. 41B), and then via conductors 311b, 312b, and 322b are formed in the same manner as via conductor 321b. Form (see FIG. 41C).
  • the manufacturing method of the present embodiment is suitable for manufacturing the wiring board 30. With such a manufacturing method, a good wiring board 30 can be obtained at low cost.
  • this embodiment can provide an effect similar to that of the second embodiment described above.
  • a preferable range of each dimension of the wiring board 30 according to the third embodiment is the same as that of the wiring board 20 according to the second embodiment.
  • the wiring board 20 according to the second embodiment having a simple structure is considered preferable to the wiring board 30 according to the third embodiment.
  • the wiring board 30 according to the third embodiment having a double-sided via structure is considered preferable to the wiring board 20 according to the second embodiment.
  • the through-hole conductor 300b has a symmetrical shape with respect to the reference plane F0, but the shape of the through-hole conductor 300b is not limited to this. As shown in FIG. 46, a through-hole conductor 300b having an asymmetric shape with respect to the reference plane F0 may be used. In the example of FIG. 46, the dimension T12 from the second surface F2 to the reference surface F0 is larger than the dimension T11 from the first surface F1 to the reference surface F0.
  • the width D31 of the first surface F1 side end surface, the width D32 of the constricted portion 300c, and the width D33 of the second surface F2 side end surface are, from the larger, the width D31 and the width D33.
  • the width D32 is in this order.
  • the side surface of the first conductor portion R11 is a curved surface, and the side surface of the second conductor portion R12 is a plane.
  • the taper angle ⁇ 1 of the first conductor portion R11 is larger than the taper angle ⁇ 2 of the second conductor portion R12.
  • a double-sided copper-clad laminate 1000 is prepared as in the above embodiment (see step S11 in FIG. 7).
  • a hole 1003 is formed by irradiating the double-sided copper-clad laminate 1000 with a laser from the first surface F1 side using, for example, a CO 2 laser.
  • the hole 1003 is a bottomed hole, and the shape of the hole 1003 is, for example, a hemispherical shape that is tapered so that the width becomes narrower as it becomes deeper.
  • the shape of the hole 1003 corresponds to the first conductor portion R11 (see FIG. 46). That is, the wall surface of the hole 1003 is a curved surface.
  • the double-sided copper-clad laminate 1000 is turned over, and a laser beam is irradiated to the double-sided copper-clad laminate 1000 from the second surface F2 side, thereby forming a hole 1004 connected to the hole 1003. .
  • the shape of the hole 1004 corresponds to the second conductor portion R12 (see FIG. 46).
  • a through hole 300a penetrating the double-sided copper-clad laminate 1000 is formed.
  • desmearing is performed on the through hole 300a as necessary.
  • the shape of the through hole 300a corresponds to the through hole conductor 300b (see FIG. 46) and has an hourglass shape (a drum shape).
  • the boundary between the hole 1003 and the hole 1004 corresponds to the constricted portion 300c (see FIG. 46).
  • the laser irradiation on the first surface F1 and the laser irradiation on the second surface F2 may be performed simultaneously.
  • electroless plating is performed to form, for example, a copper electroless plating film 1005a on the copper foils 1001 and 1002 and in the through hole 300a.
  • electrolytic plating 1005b is formed by performing electroplating using the electroless plating film 1005a as a seed layer using a plating solution.
  • the plating 1005 composed of the electroless plating film 1005a and the electrolytic plating 1005b is filled in the through hole 300a, and the through hole conductor 300b is formed.
  • each conductor layer formed on the first surface F1 and the second surface F2 of the substrate 100 is performed using, for example, an etching resist and an etching solution.
  • conductor layers 301 and 302 are formed on the first surface F1 and the second surface F2 of the substrate 100, respectively (see FIG. 46).
  • the etching is not limited to wet, and may be dry.
  • the taper angles of the first conductor portion R11 and the second conductor portion R12 in the through-hole conductor 300b are substantially constant, but the present invention is not limited to this.
  • the first conductor portion R11 has a conductor portion R21 having a taper angle ⁇ 11 and a taper angle ⁇ 12 smaller than the taper angle ⁇ 11 (that is, the ratio of the width being narrowed or the ratio of the width being increased). (Small) conductor portion R22.
  • FIG. 49 the first conductor portion R11 has a conductor portion R21 having a taper angle ⁇ 11 and a taper angle ⁇ 12 smaller than the taper angle ⁇ 11 (that is, the ratio of the width being narrowed or the ratio of the width being increased).
  • (Small) conductor portion R22 In the example of FIG.
  • the through-hole conductor 300b is formed by connecting the portion R22 and the second conductor portion R12 having a width that increases from the reference surface F0 toward the second surface F2.
  • the conductor portion R21, the conductor portion R22, and the second conductor portion R12 are formed continuously (integrally).
  • the side surface of the conductor portion R21 and the side surface of the second conductor portion R12 are curved surfaces, and the side surface of the conductor portion R22 is a flat surface.
  • the taper angle ⁇ 11 of the conductor portion R21 and the taper angle ⁇ 2 of the second conductor portion R12 are substantially the same.
  • the dimension T12 from the second surface F2 to the reference surface F0 is smaller than the dimension T11 from the first surface F1 to the reference surface F0.
  • a double-sided copper-clad laminate 1000 is prepared as in the above embodiment (see step S11 in FIG. 7).
  • a hole 1003a is formed by irradiating the double-sided copper-clad laminate 1000 with a laser from the first surface F1 side using, for example, a CO 2 laser, and a laser is emitted from the second surface F2 side. Is formed on the double-sided copper-clad laminate 1000 to form a hole 1004.
  • the hole 1003a and the hole 1004 are each a bottomed hole, and are formed at substantially the same position in the XY plane and shifted in the Z direction. Thereby, the hole 1003a and the hole 1004 are disposed so as to face each other with the substrate 100 interposed therebetween.
  • the shape of the hole 1003a corresponds to the conductor portion R21 (see FIG.
  • each of the shapes of the holes 1003a and 1004 is, for example, a hemisphere that is tapered so that the width becomes narrower as it becomes deeper.
  • Each of the wall surfaces of the holes 1003a and 1004 is, for example, a curved surface. Laser irradiation on the first surface F1 and laser irradiation on the second surface F2 may be performed one side at a time or simultaneously.
  • the double-sided copper-clad laminate 1000 (specifically, in the hole 1003a) is irradiated with laser from the first surface F1 side, whereby the hole 1003a and the hole 1004 are irradiated.
  • Hole 1003b is formed.
  • the shape of the hole 1003b corresponds to the conductor portion R22 (see FIG. 49).
  • the shape of the through hole 300a corresponds to the through hole conductor 300b (see FIG. 49) and has an hourglass shape (a drum shape).
  • the boundary between the hole 1003b and the hole 1004 corresponds to the constricted portion 300c (see FIG. 49).
  • electroless plating is performed to form, for example, a copper electroless plating film 1005a on the copper foils 1001 and 1002 and in the through hole 300a.
  • electrolytic plating 1005b is formed by performing electroplating using the electroless plating film 1005a as a seed layer using a plating solution.
  • the plating 1005 composed of the electroless plating film 1005a and the electrolytic plating 1005b is filled in the through hole 300a, and the through hole conductor 300b is formed.
  • each conductor layer formed on the first surface F1 and the second surface F2 of the substrate 100 is performed using, for example, an etching resist and an etching solution.
  • conductor layers 301 and 302 are formed on the first surface F1 and the second surface F2 of the substrate 100, respectively (see FIG. 49).
  • the etching is not limited to wet, and may be dry.
  • the first conductor portion R11 and the second conductor portion R12 in the through-hole conductor 300b may be connected so as to be shifted in the X direction or the Y direction. Further, the boundary surface between the first conductor portion R11 and the second conductor portion R12 may be inclined with respect to the main surface of the wiring board or may be a curved surface.
  • the shapes of the electronic component 200 and the cavity R10 are arbitrary.
  • the opening shape of the cavity R10 may be substantially oval.
  • the shape of the main surface of the electronic component 200 and the shape of the opening of the cavity R10 may be substantially circles (substantially perfect circles), and are substantially many other than substantially rectangular, such as substantially squares, substantially regular hexagons, and substantially regular octagons. It may be square.
  • the shape of the polygonal corner is arbitrary, and may be rounded, for example, substantially right angle, acute angle, obtuse angle.
  • the planar shape of a filled conductor such as the through-hole conductor 300b or the via conductor 311b is not limited to a circle and is arbitrary.
  • the planar shape of the filled conductor in the wiring board may be a quadrangle such as a square as shown in FIG. 54A, for example, from the center such as a cross or a regular polygonal star as shown in FIG. 54B or 54C. It may be a shape in which a straight line is drawn radially (a shape in which a plurality of blades are arranged radially), or may be an ellipse or a triangle.
  • the planar shapes of the first conductor portion R11, the second conductor portion R12, and the constricted portion 300c may be different from each other.
  • the planar shape of the first conductor portion R11 and the second conductor portion R12 may be a circle
  • the planar shape of the constricted portion 300c may be a rectangle.
  • the electronic component 200 has a double-sided via structure, but the present invention is not limited to this.
  • a wiring board having via conductors 311b electrically connected to the electrodes 210 and 220 of the electronic component 200 only on one side may be used.
  • the double-sided wiring board (wiring board 10) having the conductor layers on both sides of the core substrate is shown, but the invention is not limited to this.
  • a single-sided wiring board having a first buildup portion B1 (including the conductor layer 110) only on one side of the core substrate (substrate 100) may be used.
  • the cavity R ⁇ b> 10 (the storage space for the electronic component 200) may be a hole (concave) that does not penetrate the substrate 100. Also in this case, it is considered preferable that the thickness of the electronic component 200 and the depth of the cavity R10 (hole) substantially coincide.
  • the thickness of the substrate 100 and the thickness of the electronic component 200 are substantially the same, but the present invention is not limited to this.
  • the thickness of the substrate 100 may be larger than the thickness of the electronic component 200.
  • a wiring board having two or more build-up layers on one side of the substrate 100 may be used.
  • two insulating layers 101 and 103 and two conductor layers 110 and 130 are alternately stacked on the first surface F1 side of the substrate 100, and the second surface F2 side of the substrate 100 is formed.
  • the two insulating layers 102 and 104 and the two conductor layers 120 and 140 may be alternately stacked.
  • the conductor layer 110 on the insulating layer 101 and the conductor layer 130 on the insulating layer 103 are electrically connected to each other via the via conductor 332b in the hole 332a (via hole) formed in the insulating layer 103. Connected to.
  • the conductor layer 120 on the insulating layer 102 and the conductor layer 140 on the insulating layer 104 are electrically connected to each other via a via conductor 342b in a hole 342a (via hole) formed in the insulating layer 104.
  • the through-hole conductor 300b and the via conductors 312b, 322b, 332b, and 342b are all filled conductors, and these are stacked in the Z direction, so that a filled stack S is formed.
  • all the via conductors (via conductors 311b, 312b, and 332b) included in the first buildup portion B1 formed on the first surface F1 side of the substrate 100 (core substrate) are respectively the reference surface F0.
  • All the via conductors (via conductors 321b, 322b, and 342b) included in the second buildup portion B2 formed on the second surface F2 side of the substrate 100 (core substrate) are reduced to the reference, respectively.
  • the width decreases toward the surface F0. Thereby, it is considered that stress and the like are easily concentrated on the reference plane F0 in the substrate 100 (core substrate), and the stress distribution in the XY plane can be made uniform.
  • the number of build-up layers may be different between the first surface F1 side of the substrate 100 and the second surface F2 side of the substrate 100.
  • the substrate 100 may incorporate a metal plate 100d (for example, copper foil).
  • a metal plate 100d for example, copper foil
  • heat dissipation is improved by the metal plate 100d.
  • the via conductor 100e reaching the metal plate 100d is formed on the substrate 100, and the metal plate 100d and the ground line (conductor patterns included in the conductor layers 301 and 302) are mutually connected via the via conductor 100e. Electrically connected.
  • the metal plate 100d is preferably disposed near the reference plane F0.
  • the planar shape of the metal plate 100d is arbitrary, and may be a quadrangle as shown in FIG. 58A, for example, or a circle as shown in FIG. 58B.
  • the metal plate 100d may be formed so as to surround the cavity R10 (opening), for example, as shown in FIG.
  • through-hole conductors 300b are arranged in the four directions of the cavity R10.
  • the substrate 100 core substrate
  • the land 301b of the through-hole conductor 300b and the wiring 301c connected to the land 301b are formed.
  • the conductor layer 301 is included in the land 301b and the wiring 301c.
  • a metal plate 100d is provided on substantially the entire surface excluding the vicinity of the penetrating portion (such as the cavity R10 or the through hole 300a) of the substrate 100 (core substrate).
  • the metal plate 100d is formed so as to avoid the vicinity of the penetrating portion (for example, the range of the distance D40 from the penetrating portion).
  • the distance D40 is 120 ⁇ m, for example.
  • the conductor layer 301 on the substrate 100 (core substrate) is formed at a position farther from the cavity R10 (opening) than the metal plate 100d. That is, the conductor layer 301 and the metal plate 100d are each formed to avoid the vicinity of the cavity R10. Furthermore, a part of the metal plate 100d is disposed between the through-hole conductor 300b (or the through-hole 300a) and the cavity R10.
  • FIG. 59 shows a preferred example of dimensions in FIG.
  • a distance D41 between the electronic component 200 and the metal plate 100d is, for example, 160 ⁇ m.
  • a gap R1 (each of the widths D3 and D4) between the electronic component 200 and the substrate 100 is, for example, 40 ⁇ m.
  • the metal plate 100d is not formed, for example, in the range of 120 ⁇ m (distance D41 ⁇ width D3) from the cavity R10.
  • the conductor layer 301 on the substrate 100 (core substrate) is formed at a position farther from the cavity R10 (opening) than the metal plate 100d. That is, the conductor layer 301 and the metal plate 100d are each formed to avoid the vicinity of the cavity R10.
  • the conductor layer 301 on the substrate 100 may be formed at a position closer to the cavity R10 (opening) than the metal plate 100d, for example, as shown in FIGS. 60A to 60C.
  • the land 301b of the through-hole conductor 300b is formed at a position closer to the cavity R10 (opening) than the metal plate 100d. That is, the distance D42 between the electronic component 200 and the land 301b is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
  • the reinforcing pattern 301d included in the conductor layer 301 is formed at a position closer to the cavity R10 (opening) than the metal plate 100d. That is, the distance D43 between the electronic component 200 and the reinforcing pattern 301d is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
  • a reinforcing pattern 301d having a ring-shaped outer shape is formed so as to surround the cavity R10 (opening).
  • the wiring pattern 301e included in the conductor layer 301 is formed at a position closer to the cavity R10 (opening) than the metal plate 100d. That is, the distance D44 between the electronic component 200 and the wiring pattern 301e is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
  • FIG. 57 an example of a method for manufacturing the substrate 100 (core substrate) shown in FIG. 57 will be described with reference to FIGS. 61A and 61B.
  • insulating layers 4001 and 4002 are disposed so as to sandwich a metal plate 100d made of, for example, copper foil, copper foil 4001a is further disposed on insulating layer 4001, and copper foil is disposed on insulating layer 4002. 4001b is arranged.
  • the insulating layer 4001 (first insulating resin layer), the metal plate 100d having a predetermined pattern, and the insulating layer 4002 (second insulating resin layer) are laminated in this order.
  • Each of the insulating layers 4001 and 4002 is made of, for example, glass prepreg.
  • the metal plate 100d has a pattern (XY plane) shown in FIG.
  • the thickness D22 of the metal plate 100d is, for example, 35 ⁇ m.
  • the laminated body of the copper foil 4001a, the insulating layer 4001, the metal plate 100d, the insulating layer 4002, and the copper foil 4001b is pressed, and pressure is applied toward the metal plate 100d.
  • the resin flows out from the insulating layers 4001 and 4002, respectively.
  • the resin constituting the insulating layer 4001 or 4002 is filled into the side of the metal plate 100d (the portion without the metal plate 100d in the pattern of the metal plate 100d), and the insulating layer 4003 is formed.
  • the insulating layers 4001, 4002, and 4003 are cured by heating. Thereby, the substrate 100 (core substrate) incorporating the metal plate 100d is completed.
  • the insulator 101a (first insulator) is filled in the gap R1 between the electronic component 200 and the substrate 100 (core substrate) in the cavity R10 (opening). Then, the substrate 100 has an insulating layer 4003 (second insulator) between the metal plate 100d and the cavity R10.
  • the insulating layer 4003 is made of a material different from that of the insulator 101a.
  • the insulator 101a is made of a resin constituting the insulating layer 101 or 102 formed on the substrate 100 and the electronic component 200 across the gap R1 between the electronic component 200 and the substrate 100 in the cavity R10 ( (See FIG. 19A).
  • the insulating layer 4003 is made of a resin constituting the insulating layers 4001 and 4002 (see FIG. 61B).
  • each of the resins constituting the insulating layers 101 and 102 has a lower coefficient of thermal expansion (CTE) than the resins constituting the insulating layers 4001 and 4002. Therefore, the thermal expansion coefficient of the insulator 101a is lower than that of the insulating layer 4003. Thereby, the CTE mismatch between the capacitor and the resin is relaxed, and the adhesion between the capacitor and the resin is improved.
  • CTE coefficient of thermal expansion
  • Each of the insulating layers 101 and 102 is made of, for example, an epoxy resin film with an inorganic filler (inorganic filler content 40% or more), and each of the insulating layers 4001 and 4002 is, for example, a prepreg (an epoxy resin sheet with a glass substrate). Consists of.
  • FIG. 63A As a preferred example of the electronic component built-in wiring board, a wiring board as shown in FIG. 63A is also conceivable.
  • the wiring board shown in FIG. 63A will be described focusing on differences from the above embodiment.
  • insulating layers 101, 103, 105, and 107 are alternately arranged on the first surface F1 side of the substrate 100. These are stacked to form the first buildup part B1. Further, four insulating layers 102, 104, 106, 108 (interlayer insulating layers) and four conductor layers 120, 140, 160, 180 are alternately stacked on the second surface F2 side of the substrate 100. These constitute the second buildup part B2.
  • the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layers 110, 130, 150, and 170 higher than the conductor layer 301 are mutually connected by via conductors 312b, 332b, 352b, and 372b formed in each interlayer insulating layer. Is electrically connected.
  • the conductor layer 302 on the second surface F2 of the substrate 100 and the conductor layers 120, 140, 160, and 180 higher than the conductor layer 302 are formed by via conductors 322b, 342b, 362b, and 382b formed in each interlayer insulating layer. Are electrically connected to each other.
  • the electronic component 200 is disposed in the cavity R10 (through hole) formed in the substrate 100 and is located on the side of the substrate 100 (X direction or Y direction).
  • the electrodes 210 and 220 of the electronic component 200 are connected to the via conductor 311b only from one surface (the first surface F1 side).
  • the electrodes 210 and 220 of the electronic component 200 are electrically connected to the conductor layer 110 via via conductors 311b formed in the insulating layer 101, respectively.
  • the electronic component 200 is built (mounted) on the wiring board by a single-sided via structure.
  • the substrate 100 is made of glass epoxy
  • the insulating layers 101 and 102 are made of copper foil with resin (prepreg)
  • the insulating layers 103, 104, 105, 106, 107 and 108 are made of ABF (AjinomotoinoBuild- up Film: made by Ajinomoto Fine Techno Co., Ltd.
  • ABF is a film in which an insulating material is sandwiched between two protective sheets.
  • Each of the conductor layers 110 and 120 is made of, for example, copper foil (lower layer) and copper plating (upper layer), and is formed by, for example, a subtractive method. Further, each of the conductor layers 130, 140, 150, 160, 170, 180 is made of, for example, copper plating, and is formed by, for example, a semi-additive (SAP) method.
  • the via conductors 311b, 312b, and 322b are conformal conductors made of, for example, copper plating, and the via conductors 332b, 342b, 352b, 362b, 372b, and 382b are filled conductors made of, for example, copper plating.
  • the thickness of the substrate 100 is 600 ⁇ m
  • the thickness of the electronic component 200 (including the electrodes 210 and 220) is 550 ⁇ m
  • the thickness of the conductor layers 301 and 302 is 35 ⁇ m, respectively.
  • Each of 110, 120, 130, 140, 150, 160, 170, and 180 has a thickness of 60 ⁇ m.
  • Through-hole 300a is formed in substrate 100 (core substrate), and through-hole conductor 300d is formed by forming a conductor film (for example, copper plating) on the wall surface of through-hole 300a.
  • the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 302 on the second surface F2 of the substrate 100 are electrically connected to each other via a through-hole conductor 300d.
  • the shape of the through hole 300a is, for example, a cylinder.
  • the insulator 300e is filled inside the through-hole conductor 300d in the through-hole 300a (specifically, a space surrounded by the through-hole conductor 300d, the lands 300f, and 300g). As shown in FIG. 63B, each of the lands 300f and 300g included in the conductor layers 301 and 302 is a planar conductor (cover plating) formed on the insulator 300e by copper plating, for example. Is electrically connected.
  • the insulator 300e is made of resin, for example.
  • the conductor layer 170 is the outermost conductor layer on the first surface F1 side
  • the conductor layer 180 is the outermost conductor layer on the second surface F2 side.
  • Solder resists 11 and 12 are formed on the conductor layers 170 and 180, respectively. However, openings 11a and 12a are formed in the solder resists 11 and 12, respectively. For this reason, the predetermined part (part located in the opening part 11a) of the conductor layer 170 is exposed without being covered with the solder resist 11, and becomes the pad P1.
  • a predetermined part of the conductor layer 180 (part located in the opening 12a) is a pad P2.
  • the pads P1 and P2 respectively have corrosion resistant layers 170a and 180a made of, for example, a Ni / Au film on the surface thereof.
  • Each of the corrosion-resistant layers 170a and 180a can be formed by, for example, electrolytic plating or sputtering. Further, the corrosion resistant layers 170a and 180a made of an organic protective film may be formed by performing an OSP (Organic Solderability Preservative) process.
  • OSP Organic Solderability Preservative
  • the shape of the main surface of the electronic component 200 and the shape of the first opening and the second opening of the cavity R10 are not limited to a substantially rectangular shape, but are arbitrary.
  • the shape of the first opening and the shape of the second opening of the cavity R10 may be substantially oval.
  • the shape of the first opening and the shape of the second opening of the cavity R10 may be in a similar relationship.
  • the shape of the first opening of the cavity R10 is substantially elliptical
  • the shape of the second opening of the cavity R10 is substantially rectangular.
  • the shape of the main surface of the electronic component 200, and the shape of the first opening and the shape of the second opening of the cavity R10 may be substantially circular (substantially perfect circle). Further, it may be a substantially polygonal shape other than a substantially rectangular shape, such as a substantially square shape, a substantially regular hexagonal shape, or a substantially regular octagonal shape. In addition, the shape of the polygonal corner is arbitrary, and may be rounded, for example, substantially right angle, acute angle, obtuse angle.
  • the wiring boards 20 or 30 according to the second and third embodiments have the via conductor 321b electrically connected to the electrodes 210 and 220 of the electronic component 200 on the second surface F2 side (the side opposite to the tapered surface C11).
  • the via conductor 321b electrically connected to the electrodes 210 and 220 of the electronic component 200 on the second surface F2 side (the side opposite to the tapered surface C11).
  • via conductor 311b conductor in hole 311a formed in insulating layer 101
  • a wiring board provided on the side having the tapered surface C11 may be used.
  • the wiring board with a built-in electronic component having two or more build-up layers on one side of the core substrate may be used.
  • two insulating layers 101 and 103 and two conductor layers 110 and 130 are alternately stacked on the first surface F1 side of the substrate 100, and the second surface F2 side of the substrate 100 is formed.
  • the two insulating layers 102 and 104 and the two conductor layers 120 and 140 may be alternately stacked.
  • FIG. 66 two insulating layers 101 and 103 and two conductor layers 110 and 130 are alternately stacked on the first surface F1 side of the substrate 100, and the second surface F2 side of the substrate 100 is formed.
  • the two insulating layers 102 and 104 and the two conductor layers 120 and 140 may be alternately stacked.
  • FIG. 66 two insulating layers 101 and 103 and two conductor layers 110 and 130 are alternately stacked on the first surface F1 side of the substrate 100, and the second surface F2 side of the substrate 100 is formed.
  • a hole 331a (via hole) is formed in the insulating layer 103, and a conductor (for example, copper plating) is filled in the hole 331a, whereby the conductor in the hole 331a becomes a via conductor 331b ( Filled conductor).
  • the conductor layer 110 on the insulating layer 101 and the conductor layer 130 on the insulating layer 103 are electrically connected to each other through the via conductor 331b.
  • a hole 341a (via hole) is formed in the insulating layer 104, and a conductor (for example, copper plating) is filled in the hole 341a, whereby the conductor in the hole 341a becomes a via conductor 341b (filled conductor).
  • the conductor layer 120 on the insulating layer 102 and the conductor layer 140 on the insulating layer 104 are electrically connected to each other through the via conductor 341b.
  • the number of buildup layers may be different between the first surface F1 side of the substrate 100 and the second surface F2 side of the substrate 100. However, in order to relieve stress, it is preferable to increase the symmetry of the front and back by making the number of buildup layers the same on the first surface F1 side of the substrate 100 and the second surface F2 side of the substrate 100. Conceivable.
  • the double-sided wiring board (wiring board 20) having the conductor layers on both sides of the core substrate is shown, but the invention is not limited to this.
  • a single-sided wiring board having a conductor layer only on one side of the core substrate (substrate 100) may be used.
  • FIG. 67 shows a single-sided wiring board having the conductor layer 110 only on the first surface F1 side (side having the tapered surface C11), but is not limited thereto.
  • a single-sided wiring board having conductor layers 120 and 140 only on the second surface F2 side (the side opposite to the tapered surface C11) may be used.
  • the cavity R10 (the storage space for the electronic component 200) may be a hole (concave) that does not penetrate the substrate 100. Also in this case, it is considered preferable that the thickness of the electronic component 200 and the depth of the cavity R10 (hole) substantially coincide.
  • the thickness of the substrate 100 and the thickness of the electronic component 200 are substantially the same is shown, but the present invention is not limited to this.
  • the thickness of the substrate 100 may be larger than the thickness of the electronic component 200.
  • a wiring board having a cavity R10 on the surface may be used.
  • the gap between the electronic component 200 and the substrate 100 in the cavity R10 is filled with the insulator 101a, but the present invention is not limited to this.
  • the electronic component 200 may be partially fixed to the substrate 100 with an adhesive or the like.
  • a wiring board having tapered surfaces on both sides of the core substrate may be used. As shown in FIG. 70, a tapered surface C11 is formed at the corner between the side surface F10 (inner wall of the cavity R10) of the substrate 100 and the first surface F1, and the side surface F10 (inner wall of the cavity R10) of the substrate 100 and the second surface F2.
  • a tapered surface C12 may be formed at the corner. If the tapered surfaces C11 and C12 are formed on both sides of the substrate 100, a step of aligning the orientation (front / back) of the substrate 100 during manufacturing can be omitted.
  • the tapered surface C11 is formed on the entire periphery of the cavity R10.
  • the present invention is not limited to this.
  • the tapered surface C11 may be partially formed on the peripheral edge of the cavity R10.
  • the clearances for accommodating the electronic component 200 in the cavity R10 are different from each other in the X direction and the Y direction.
  • the tapered surface C11 is formed only on two opposing sides.
  • the first layer 100a does not contain an inorganic material, but the present invention is not limited to this.
  • the tapered surface C11 can be easily formed even when the first layer 100a contains less inorganic material than the second layer 100b.
  • the substrate 100 is formed of a first layer 100a, a second layer 100b, and a third layer 100c of different materials in this order from the first surface F1 toward the second surface F2. You may have.
  • the first layer 100a does not include an inorganic material
  • the second layer 100b includes an inorganic material
  • the third layer 100c includes more inorganic materials than the second layer 100b.
  • the side surface F10 of the substrate 100 facing the cavity R10 is composed of the side surface F12 of the second layer 100b and the side surface F11 of the third layer 100c.
  • the taper angle ⁇ 22 of the side surface F12 is smaller than the taper angle ⁇ 21 of the taper surface C11.
  • the substrate 100 may have a first layer 100a and a second layer 100b of different materials in this order from the first surface F1 toward the second surface F2. .
  • the first layer 100a does not include an inorganic material
  • the second layer 100b includes an inorganic material.
  • a wiring board having a layer containing the most inorganic material in the inner layer of the substrate 100 may be used.
  • the substrate 100 includes a first layer 100a that does not include an inorganic material, a second layer 100b that includes an inorganic material, and an inorganic material from the first surface F1 toward the second surface F2.
  • the tapered surfaces C ⁇ b> 11 and C ⁇ b> 12 can be easily formed on both sides of the substrate 100. It is considered that the first layer 100a and the third layer 100c (tapered surfaces C11 and C12) are preferably thinner than the electronic component 200, respectively.
  • the material of the first layer 100a and the material of the second layer 100b may be different except for the content of the inorganic material.
  • the first layer 100a and the second layer 100b may be made of different resins. Also in this case, if the first layer 100a is stronger than the second layer 100b with respect to the processing (for example, laser processing) of the substrate 100, it is considered that the tapered surface C11 can be easily formed.
  • the tapered surface C11 is formed by laser processing.
  • the present invention is not limited to this, and when the tapered surface C11 is formed by dry etching or the like, the first layer 100a and the second layer made of different materials are used. It is considered that the taper surface C11 can be easily formed by 100b. However, it is considered that a particularly good tapered surface C11 can be obtained by laser processing.
  • the substrate 100 may incorporate a metal plate 100d (for example, copper foil).
  • a metal plate 100d for example, copper foil
  • heat dissipation is improved by the metal plate 100d.
  • the via conductor 100e reaching the metal plate 100d is formed on the substrate 100, and the metal plate 100d and the ground line (conductor patterns included in the conductor layers 301 and 302) are mutually connected via the via conductor 100e. Electrically connected.
  • a substrate with a built-in metal plate tends to be thicker than a substrate without a built-in metal plate.
  • substrate which incorporates a metal plate tends to be thicker than the electronic component arrange
  • the thickness of the substrate is likely to increase as the thickness of the metal plate incorporated in the substrate increases. As the thickness of the substrate increases, the difference between the thickness of the substrate and the thickness of the electronic component tends to increase.
  • the mounter When the difference between the thickness of the substrate and the thickness of the electronic component becomes large, the mounter easily hits the substrate in the step of putting the electronic component into the opening formed in the substrate.
  • the wiring board shown in FIG. 76 since the tapered surface C11 is formed on the substrate 100, interference between the mounter and the substrate 100 can be suppressed.
  • this will be further described with reference to FIGS. 77A to 78.
  • FIG. 77A shows a wiring board composed of the substrate 100 (core substrate) on which the tapered surface C11 is not formed.
  • the mounter 3000a holds the electronic component 200 by, for example, a vacuum chuck. Then, after the mounter 3000a is moved above the cavity R10 (Z1 side), the mounter 3000a is gradually brought closer to the substrate 100 from there to place the electronic component 200 in the cavity R10. At this time, since the electronic component 200 is smaller than the cavity R10 and can pass through the cavity R10, the mounter 3000a is not necessarily smaller than the cavity R10. Therefore, depending on the size of the mounter 3000a, as shown in FIG. 77B The mounter 3000a may hit the substrate 100 (especially its corner).
  • the substrate 100 extends from the first surface F1 to the second surface F2 at the corner between the side surface F10 of the substrate 100 facing the cavity R10 (the inner wall of the cavity R10) and the first surface F1.
  • a tapered surface C11 is formed to reduce the width of the cavity R10.
  • Such interference between the mounter 3000a and the substrate 100 is particularly likely to occur when the difference (D51-D53) between the thickness D51 of the substrate 100 and the thickness D53 of the electronic component 200 in FIG. 78 is about 20 ⁇ m or more.
  • the wiring board in which the tapered surface C11 is formed on the substrate 100 it is possible to suppress the interference between the mounter 3000a and the substrate 100 as described above. It is possible to improve the yield when manufacturing a wiring board having a difference (D51 ⁇ D53) of 200 from the thickness D53 of about 20 ⁇ m or more.
  • the thickness D52 of the metal plate 100d is about 30 ⁇ m or more.
  • the thicker the metal plate 100d the thicker the substrate 100 becomes, so that the mounter 3000a and the substrate 100 are likely to interfere with each other in the step of inserting the electronic component 200 into the cavity R10.
  • the wiring board in which the taper surface C11 is formed on the substrate 100 it is possible to suppress the interference between the mounter 3000a and the substrate 100 as described above. Therefore, the wiring board incorporating the thick metal plate 100d. It is possible to improve the yield in the case of manufacturing.
  • the tapered surface C11 is preferably formed from the first surface F1 to a position deeper than the third surface F3 of the electronic component 200. That is, it is preferable that the depth D54 of the tapered surface C11 is larger than the difference between the thickness D51 of the substrate 100 and the thickness D53 of the electronic component 200 (D54> D51-D53).
  • the thickness D51 of the substrate 100 is about 180 ⁇ m
  • the thickness D53 of the electronic component 200 is about 140 ⁇ m
  • the depth D54 of the tapered surface C11 is about 40 ⁇ m
  • the thickness D52 of the metal plate 100d is about 35 ⁇ m.
  • the difference (D51 ⁇ D53) between the thickness D51 of the substrate 100 and the thickness D53 of the electronic component 200 is about 40 ⁇ m.
  • the planar shape of the metal plate 100d is arbitrary, and may be, for example, a square as shown in FIG. 79A, or may be a circle as shown in FIG. 79B, for example.
  • the metal plate 100d may be formed so as to surround the cavity R10, for example, as shown in FIG.
  • through-hole conductors 300b are arranged in the four directions of the cavity R10.
  • the substrate 100 core substrate
  • the land 301b of the through-hole conductor 300b and the wiring 301c connected to the land 301b are formed.
  • the conductor layer 301 is included in the land 301b and the wiring 301c.
  • a metal plate 100d is provided on substantially the entire surface excluding the vicinity of the through portion (cavity R10 or through hole 300a) of the substrate 100 (core substrate).
  • the metal plate 100d is formed so as to avoid the vicinity of the penetrating portion (for example, the range of the distance D40 from the penetrating portion).
  • the conductor layer 301 on the substrate 100 (core substrate) is formed at a position farther from the cavity R10 than the metal plate 100d. That is, the conductor layer 301 and the metal plate 100d are each formed to avoid the vicinity of the cavity R10. Furthermore, a part of the metal plate 100d is disposed between the through-hole conductor 300b (or the through-hole 300a) and the cavity R10.
  • the conductor layer 301 on the substrate 100 may be formed at a position closer to the cavity R10 than the metal plate 100d, for example, as shown in FIGS. 81A to 81C.
  • the land 301b of the through-hole conductor 300b is formed at a position closer to the cavity R10 than the metal plate 100d. That is, the distance D42 between the electronic component 200 and the land 301b is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
  • the reinforcing pattern 301d included in the conductor layer 301 is formed at a position closer to the cavity R10 than the metal plate 100d. That is, the distance D43 between the electronic component 200 and the reinforcing pattern 301d is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
  • a reinforcing pattern 301d having a ring-shaped outer shape is formed so as to surround the cavity R10.
  • the wiring pattern 301e included in the conductor layer 301 is formed at a position closer to the cavity R10 than the metal plate 100d. That is, the distance D44 between the electronic component 200 and the wiring pattern 301e is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
  • FIG. 76 an example of a method for manufacturing the substrate 100 (core substrate) shown in FIG. 76 will be described with reference to FIGS. 82A and 82B.
  • insulating layers 4001 and 4002 are disposed so as to sandwich a metal plate 100d made of, for example, copper foil, copper foil 4001a is further disposed on insulating layer 4001, and copper foil is disposed on insulating layer 4002. 4001b is arranged.
  • the insulating layer 4001 (first insulating resin layer), the metal plate 100d having a predetermined pattern, and the insulating layer 4002 (second insulating resin layer) are laminated in this order.
  • Each of the insulating layers 4001 and 4002 is made of, for example, glass prepreg.
  • the metal plate 100d has a pattern (XY plane) shown in FIG.
  • the laminated body of the copper foil 4001a, the insulating layer 4001, the metal plate 100d, the insulating layer 4002, and the copper foil 4001b is pressed, and pressure is applied toward the metal plate 100d.
  • the resin flows out from the insulating layers 4001 and 4002, respectively.
  • the resin constituting the insulating layer 4001 or 4002 is filled into the side of the metal plate 100d (the portion without the metal plate 100d in the pattern of the metal plate 100d), and the insulating layer 4003 is formed.
  • the insulating layers 4001, 4002, and 4003 are cured by heating. Thereby, the substrate 100 (core substrate) incorporating the metal plate 100d is completed.
  • a gap R1 between the electronic component 200 and the substrate 100 (core substrate) in the cavity R10 is filled with the insulator 101a (first insulator).
  • the insulating layer 4003 is made of a material different from that of the insulator 101a.
  • the insulator 101a is made of a resin that constitutes the insulating layer 101 or 102 formed on the substrate 100 and the electronic component 200 across the gap R1 between the electronic component 200 and the substrate 100 in the cavity R10.
  • the insulating layer 4003 is made of a resin that forms the insulating layers 4001 and 4002 (see FIG. 82B).
  • each of the resins constituting the insulating layers 101 and 102 has a lower coefficient of thermal expansion (CTE) than each resin constituting the insulating layers 4001 and 4002. Therefore, the thermal expansion coefficient of the insulator 101a is lower than that of the insulating layer 4003. Thereby, the CTE mismatch between the capacitor and the resin is relaxed, and the adhesion between the capacitor and the resin is improved.
  • CTE coefficient of thermal expansion
  • Each of the insulating layers 101 and 102 is made of, for example, an epoxy resin film with an inorganic filler (inorganic filler content 40% or more), and each of the insulating layers 4001 and 4002 is, for example, a prepreg (an epoxy resin sheet with a glass base material). Consists of.
  • a wiring board having only one electronic component 200 in the cavity R10 (accommodating space for the electronic component 200) is shown, but the present invention is not limited to this.
  • a wiring board having a plurality of electronic components 200 in the cavity R10 may be used.
  • the plurality of electronic components 200 may be arranged in the stacking direction (Z direction) or in the X direction or the Y direction.
  • a plurality of cavities R10 may be formed.
  • the configuration of the wiring boards 10, 20, and 30 (wiring boards with built-in electronic components), in particular, the type, performance, dimensions, material, shape, number of layers, arrangement, etc. of the constituent elements of the present invention. Any change may be made without departing from the spirit of the invention.
  • the shape of the electrodes 210 and 220 of the electronic component 200 is not limited to a U shape, and for example, the capacitor body 201 may be sandwiched between flat electrode pairs.
  • the type of electronic component 200 is not limited to MLCC and is arbitrary.
  • MLCC MLCC
  • arbitrary electronic components such as active components such as IC circuits can be employed.
  • the chip capacitor is easily cracked, it is particularly important to suppress cracking when the chip capacitor is disposed in the cavity R10.
  • the shape of the electrodes 210 and 220 of the electronic component 200 is not limited to a U shape, and for example, the capacitor body 201 may be sandwiched between flat electrode pairs.
  • the via conductor 311b is not limited to the filled conductor, and may be a conformal conductor, for example.
  • the electronic component 200 may be mounted by other methods such as wire bonding connection instead of being mounted by via connection (via conductors 311b and 321b).
  • the manufacturing process of the electronic component built-in wiring board is not limited to the order and contents shown in FIG. 7 or FIG. 31, and the order and contents can be arbitrarily changed without departing from the gist of the present invention. . Moreover, you may omit the process which is not required according to a use etc.
  • the tapered surface C11 may be formed at the same time as the formation of the cavity R10, before the formation of the cavity R10, or after the formation of the cavity R10.
  • each conductor layer is arbitrary.
  • processing may be performed by wet or dry etching.
  • processing by etching it is considered preferable to protect a portion that is not desired to be removed in advance with a resist or the like.
  • the structure shown in FIG. 46 or 49 may be applied to the structure shown in any of FIGS. 52 to 63B.
  • the structure shown in any of FIGS. 64A and 64B may be applied to the structure shown in any of FIGS.
  • the structure shown in FIG. 66 or 70 may be applied to a double-sided via structure (see Embodiment 3).
  • the electronic component built-in wiring board of the present invention is suitable for realizing a circuit board such as a mobile phone. Moreover, the method for manufacturing an electronic component built-in wiring board according to the present invention is suitable for manufacturing a circuit board such as a mobile phone.

Abstract

A wiring board (10) has: a substrate (100), which has a first surface (F1), a second surface (F2) on the reverse side of the first surface (F1), a cavity (R10) that penetrates from the first surface (F1) to the second surface (F2), and a through hole (300a); and an electronic component (200) disposed in the cavity (R10). The through hole (300a) is configured by being filled with a conductor, a through hole conductor (300b) is formed of a first conductor portion that is tapered toward the second surface (F2) from the first surface (F1), and a second conductor portion that is tapered toward the first surface (F1) from the second surface (F2), and the first conductor portion and the second conductor portion are connected to each other in the substrate (100).

Description

電子部品内蔵配線板及びその製造方法Electronic component built-in wiring board and manufacturing method thereof
 本発明は、電子部品内蔵配線板及びその製造方法に関する。 The present invention relates to an electronic component built-in wiring board and a manufacturing method thereof.
 特許文献1には、キャビティが形成された樹脂基板(コア基板)と、キャビティ内に配置され、樹脂基板の側方に位置するコンデンサと、を有する電子部品内蔵配線板が開示されている。 Patent Document 1 discloses an electronic component built-in wiring board having a resin substrate (core substrate) in which a cavity is formed and a capacitor disposed in the cavity and positioned on the side of the resin substrate.
 また、特許文献2には、コア基板に開口部(キャビティ)を形成することと、開口部にコンデンサを収容することと、開口部におけるコア基板とコンデンサとの隙間を樹脂で充填することと、コア基板の両側に絶縁層を形成することと、各絶縁層にコンデンサの電極に接続されるビア導体を形成することと、を含む電子部品内蔵配線板の製造方法、及びその方法によって製造される電子部品内蔵配線板が開示されている。 Patent Document 2 discloses that an opening (cavity) is formed in the core substrate, a capacitor is accommodated in the opening, and a gap between the core substrate and the capacitor in the opening is filled with resin. Forming an insulating layer on both sides of the core substrate and forming a via conductor connected to the electrode of the capacitor in each insulating layer, and a method of manufacturing a wiring board with a built-in electronic component, and the method An electronic component built-in wiring board is disclosed.
特開2007-266197号公報JP 2007-266197 A 特開2002-204045号公報JP 2002-204045 A
 近年、配線板の薄型化が要求されている。特許文献1に記載の配線板では、コンデンサを内蔵することにより、コンデンサ(特にセラミック材料)の熱膨張係数とコア基板(樹脂基板)の熱膨張係数との間の差異に起因して反り易くなると考えられる。そして、配線板が反った場合には、コンデンサの電極とビア導体との接続信頼性が低下し易くなり、あるいはコンデンサの電極表面で絶縁材料のデラミネーションが生じ易くなる。 In recent years, thinning of wiring boards has been required. In the wiring board described in Patent Document 1, by incorporating a capacitor, warping is likely to occur due to the difference between the thermal expansion coefficient of the capacitor (particularly ceramic material) and the thermal expansion coefficient of the core substrate (resin substrate). Conceivable. When the wiring board is warped, the connection reliability between the capacitor electrode and the via conductor is likely to be lowered, or delamination of the insulating material is likely to occur on the surface of the capacitor electrode.
 また、特許文献2に記載される電子部品内蔵配線板では、コア基板の主面と開口部に臨む側面との角が直角コーナー(略直角に交わる2つの平面から構成される角)になっている。このため、コンデンサ(電子部品)がその角に当たって入りにくい上、当たった衝撃によりコンデンサが欠損し易くなる。また、これを避けようとして、開口部とコンデンサとのクリアランスを大きめに取ると、コンデンサを開口部に収容した後に、コンデンサが動いてビア導体のアライメントが困難になる懸念がある。 In the electronic component built-in wiring board described in Patent Document 2, the angle between the main surface of the core substrate and the side surface facing the opening is a right-angled corner (an angle composed of two planes that intersect at substantially right angles). Yes. For this reason, it is difficult for the capacitor (electronic component) to come into contact with the corner, and the capacitor is easily lost due to the impact. In order to avoid this, if the clearance between the opening and the capacitor is increased, there is a concern that alignment of the via conductors becomes difficult due to the movement of the capacitor after the capacitor is accommodated in the opening.
 本発明は、こうした実情に鑑みてなされたものであり、配線板における電気的接続の信頼性を高めることを目的とする。また、本発明は、開口部に電子部品を入れ易くすることを可能にすることを他の目的とする。また、本発明は、開口部と電子部品とのクリアランスを小さくすることを可能にすることを他の目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to improve the reliability of electrical connection in a wiring board. Another object of the present invention is to make it easier to put an electronic component into the opening. Another object of the present invention is to make it possible to reduce the clearance between the opening and the electronic component.
 本発明に係る電子部品内蔵配線板は、
 第1面と、該第1面とは反対側の第2面と、該第1面から該第2面まで貫通する開口部と、スルーホールと、を有するコア基板と、
 前記開口部に配置されるコンデンサと、
 を有する電子部品内蔵配線板であって、
 前記スルーホールは、導体で充填されており、
 該導体は前記第1面から前記第2面に向かって細くなっている第1導体部と前記第2面から前記第1面に向かって細くなっている第2導体部とで形成されていて、前記第1導体部と前記第2導体部とは前記コア基板内でつながっている。
The electronic component built-in wiring board according to the present invention,
A core substrate having a first surface, a second surface opposite to the first surface, an opening penetrating from the first surface to the second surface, and a through hole;
A capacitor disposed in the opening;
An electronic component built-in wiring board having
The through hole is filled with a conductor,
The conductor is formed of a first conductor portion that narrows from the first surface toward the second surface and a second conductor portion that narrows from the second surface toward the first surface. The first conductor part and the second conductor part are connected in the core substrate.
 本発明に係る電子部品内蔵配線板は、
 第1面と、該第1面とは反対側の第2面と、開口部とを有する基板と、
 第3面と、該第3面とは反対側の第4面とを有し、該第3面が前記基板の第1面と同じ向きになるように前記開口部に配置される電子部品と、
 を有する電子部品内蔵配線板であって、
 前記電子部品は、その側面と前記第4面との角に曲面を有し、
 前記基板は、前記開口部の内壁と前記第1面との角に、前記第1面から前記第2面に向かってテーパ面を有している。
The electronic component built-in wiring board according to the present invention,
A substrate having a first surface, a second surface opposite to the first surface, and an opening;
An electronic component having a third surface and a fourth surface opposite to the third surface, the electronic component being disposed in the opening so that the third surface is in the same direction as the first surface of the substrate; ,
An electronic component built-in wiring board having
The electronic component has a curved surface at the corner between the side surface and the fourth surface,
The substrate has a tapered surface at the corner between the inner wall of the opening and the first surface from the first surface toward the second surface.
 本発明に係る電子部品内蔵配線板の製造方法は、
 第1面と、該第1面とは反対側の第2面とを有する基板を準備することと、
 第3面と、該第3面とは反対側の第4面とを有し、前記第4面と側面との角に曲面を有する電子部品を準備することと、
 前記基板に開口部を形成することと、
 前記開口部の内壁と前記第1面との角に、前記第1面から前記第2面に向かってテーパ面を形成することと、
 前記第3面を前記第1面と同じ向きにして前記電子部品を前記開口部に配置することと、
 を含む。
The manufacturing method of the electronic component built-in wiring board according to the present invention,
Providing a substrate having a first surface and a second surface opposite the first surface;
Preparing an electronic component having a third surface and a fourth surface opposite to the third surface, and having a curved surface at an angle between the fourth surface and the side surface;
Forming an opening in the substrate;
Forming a tapered surface from the first surface toward the second surface at an angle between the inner wall of the opening and the first surface;
Placing the electronic component in the opening with the third surface in the same orientation as the first surface;
including.
 なお、上記製造方法における各処理の記載順序は、処理の順序を規定するものではない。例えばテーパ面の形成は、前記開口部の形成と同時、前記開口部の形成前、前記開口部の形成後のいずれに行ってもよい。 In addition, the order of description of each process in the said manufacturing method does not prescribe | regulate the order of a process. For example, the tapered surface may be formed at the same time as the opening is formed, before the opening is formed, or after the opening is formed.
 本発明によれば、配線板における電気的接続の信頼性を高めることができる。また、本発明によれば、この効果に加えて又はこの効果に代えて、開口部に電子部品を入れ易くなるという効果が奏される場合がある。また、本発明によれば、これらの効果に加えて又はこれらの効果に代えて、開口部と電子部品とのクリアランスが小さくなるという効果が奏される場合がある。 According to the present invention, the reliability of electrical connection in the wiring board can be improved. Further, according to the present invention, in addition to this effect or instead of this effect, there is a case where an effect that it is easy to put an electronic component into the opening may be achieved. Further, according to the present invention, in addition to or in place of these effects, there may be an effect that the clearance between the opening and the electronic component is reduced.
本発明の実施形態1に係る配線板の断面図である。It is sectional drawing of the wiring board which concerns on Embodiment 1 of this invention. 図1中のコア基板に形成されるスルーホール導体の拡大図である。It is an enlarged view of the through-hole conductor formed in the core board | substrate in FIG. 図2Aに示すスルーホール導体の平面図である。It is a top view of the through-hole conductor shown to FIG. 2A. 本発明の実施形態1に係る配線板に内蔵されるコンデンサの断面図である。It is sectional drawing of the capacitor | condenser incorporated in the wiring board which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る配線板において、キャビティに収容されたコンデンサの配置及び形態を示す平面図である。It is a top view which shows the arrangement | positioning and form of the capacitor | condenser accommodated in the cavity in the wiring board which concerns on Embodiment 1 of this invention. コア基板の第1面側に形成される第1ビルドアップ部に含まれるビア導体の拡大図である。It is an enlarged view of the via conductor contained in the 1st buildup part formed in the 1st surface side of a core board | substrate. コア基板の第2面側に形成される第2ビルドアップ部に含まれるビア導体の拡大図である。It is an enlarged view of the via conductor contained in the 2nd buildup part formed in the 2nd surface side of a core board | substrate. 厚み方向における中央部が両端部よりも外側に膨らんでいる側面電極を有するコンデンサを示す図である。It is a figure which shows the capacitor | condenser which has the side electrode which the center part in the thickness direction swells outside the both ends. 本発明の実施形態1に係る配線板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the wiring board which concerns on Embodiment 1 of this invention. 図7に示す製造方法において、基板(コア基板)を準備する工程を説明するための図である。FIG. 8 is a diagram for explaining a step of preparing a substrate (core substrate) in the manufacturing method shown in FIG. 7. 図7に示す製造方法において、基板にスルーホール導体及び導体層を形成する第1の工程を説明するための図である。In the manufacturing method shown in FIG. 7, it is a figure for demonstrating the 1st process of forming a through-hole conductor and a conductor layer in a board | substrate. 図9の工程の後の第2の工程を説明するための図である。It is a figure for demonstrating the 2nd process after the process of FIG. 図10の工程の後の第3の工程を説明するための図である。It is a figure for demonstrating the 3rd process after the process of FIG. 図9~図11に示す工程により形成された導体層の形状の第1の例を示す図である。FIG. 12 is a diagram showing a first example of the shape of a conductor layer formed by the steps shown in FIGS. 9 to 11. 図9~図11に示す工程により形成された導体層の形状の第2の例を示す図である。FIG. 12 is a view showing a second example of the shape of the conductor layer formed by the steps shown in FIGS. 9 to 11. 図7に示す製造方法において、キャビティを形成する工程を説明するための図である。It is a figure for demonstrating the process of forming a cavity in the manufacturing method shown in FIG. 図7に示す製造方法において、キャビティ形成後の基板を示す図である。It is a figure which shows the board | substrate after cavity formation in the manufacturing method shown in FIG. 図7に示す製造方法において、キャビティが形成された基板をキャリアに取り付ける工程を説明するための図である。FIG. 8 is a diagram for explaining a process of attaching a substrate on which a cavity is formed to a carrier in the manufacturing method shown in FIG. 7. 図7に示す製造方法において、キャビティ内にコンデンサを配置する工程を説明するための図である。FIG. 8 is a diagram for explaining a step of disposing a capacitor in the cavity in the manufacturing method shown in FIG. 7. 図7に示す製造方法において、キャビティ内にコンデンサが配置された状態を示す図である。FIG. 8 is a diagram showing a state where a capacitor is arranged in the cavity in the manufacturing method shown in FIG. 7. 図7に示す製造方法において、絶縁基板上及びコンデンサ上に、第1の層間絶縁層及び第1の銅箔を形成する工程を説明するための図である。In the manufacturing method shown in FIG. 7, it is a figure for demonstrating the process of forming a 1st interlayer insulation layer and a 1st copper foil on an insulation board | substrate and a capacitor | condenser. 図7に示す製造方法において、プレス工程を説明するための図である。In the manufacturing method shown in FIG. 7, it is a figure for demonstrating a press process. 図19Aのプレス後の状態を示す図である。It is a figure which shows the state after the press of FIG. 19A. 図7に示す製造方法において、キャリア除去後、絶縁基板上及びコンデンサ上に、第2の層間絶縁層及び第2の銅箔を形成する工程を説明するための図である。In the manufacturing method shown in FIG. 7, it is a figure for demonstrating the process of forming a 2nd interlayer insulation layer and a 2nd copper foil on an insulated substrate and a capacitor | condenser after carrier removal. 図7に示す製造方法において、第1、第2の層間絶縁層上に導体層を形成し、各導体層の導体パターンとコンデンサの電極とを互いに電気的に接続する第1の工程を説明するための図である。In the manufacturing method shown in FIG. 7, a first step of forming a conductor layer on the first and second interlayer insulating layers and electrically connecting the conductor pattern of each conductor layer and the electrode of the capacitor to each other will be described. FIG. 図21の工程の後の第2の工程を説明するための図である。It is a figure for demonstrating the 2nd process after the process of FIG. 図22Aの工程の後の第3の工程を説明するための図である。It is a figure for demonstrating the 3rd process after the process of FIG. 22A. 図22Bの工程の後の第4の工程を説明するための図である。It is a figure for demonstrating the 4th process after the process of FIG. 22B. 図22Cの工程の後の第5の工程を説明するための図である。It is a figure for demonstrating the 5th process after the process of FIG. 22C. 本発明の実施形態1に係る配線板の表面に電子部品が実装された状態を示す図である。It is a figure which shows the state by which the electronic component was mounted on the surface of the wiring board which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る電子部品内蔵配線板を示す断面図である。It is sectional drawing which shows the electronic component built-in wiring board which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る電子部品内蔵配線板において、電子部品がコア基板の開口部に収容された状態を示す平面図である。In the electronic component built-in wiring board concerning Embodiment 2 of this invention, it is a top view which shows the state in which the electronic component was accommodated in the opening part of the core board. 配線板に内蔵される電子部品の断面図である。It is sectional drawing of the electronic component incorporated in a wiring board. 実施形態2に係るテーパ面の形態を示す断面図である。FIG. 6 is a cross-sectional view showing a form of a tapered surface according to a second embodiment. 実施形態2に係るテーパ面の形態の第1の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the form of the taper surface which concerns on Embodiment 2. FIG. 実施形態2に係るテーパ面の形態の第2の変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the form of the taper surface which concerns on Embodiment 2. FIG. 実施形態2に係る電子部品の曲面の形態を示す断面図である。It is sectional drawing which shows the form of the curved surface of the electronic component which concerns on Embodiment 2. FIG. 実施形態2に係る電子部品の曲面の形態の第1の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the form of the curved surface of the electronic component which concerns on Embodiment 2. FIG. 実施形態2に係る電子部品の曲面の形態の第2の変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the form of the curved surface of the electronic component which concerns on Embodiment 2. FIG. 本発明の実施形態2に係る電子部品内蔵配線板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electronic component built-in wiring board which concerns on Embodiment 2 of this invention. 実施形態2に係る製造方法において、基板を準備する工程を説明するための断面図である。In the manufacturing method which concerns on Embodiment 2, it is sectional drawing for demonstrating the process of preparing a board | substrate. 図32の工程の後、基板をレーザ加工する工程を説明するための平面図である。It is a top view for demonstrating the process of carrying out the laser processing of the board | substrate after the process of FIG. 実施形態2に係るレーザ加工を説明するための断面図である。6 is a cross-sectional view for explaining laser processing according to Embodiment 2. FIG. 実施形態2に係るレーザ加工により開口部が形成された基板を示す断面図である。It is sectional drawing which shows the board | substrate with which the opening part was formed by the laser processing which concerns on Embodiment 2. FIG. 実施形態2に係る製造方法において、基板の片側にキャリアを設ける工程を説明するための断面図である。In the manufacturing method which concerns on Embodiment 2, it is sectional drawing for demonstrating the process of providing a carrier in the one side of a board | substrate. 実施形態2に係る製造方法において、曲面を有する電子部品を準備する工程を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a step of preparing an electronic component having a curved surface in the manufacturing method according to the second embodiment. 実施形態2に係る製造方法において、電子部品を開口部に入れる工程における第1の状態を示す断面図である。In the manufacturing method which concerns on Embodiment 2, it is sectional drawing which shows the 1st state in the process of putting an electronic component in an opening part. 図36Aに示される第1の状態の後の第2の状態を示す断面図である。FIG. 36B is a cross-sectional view showing a second state after the first state shown in FIG. 36A. 図36Bに示される第2の状態の後の第3の状態を示す断面図である。FIG. 36B is a cross-sectional view showing a third state after the second state shown in FIG. 36B. 第1のテーパ角度に基づく作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action based on a 1st taper angle. 第2のテーパ角度に基づく作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action based on a 2nd taper angle. 第3のテーパ角度に基づく作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action based on a 3rd taper angle. 実施形態2に係る製造方法において、基板の開口部に電子部品が配置された状態を示す断面図である。In the manufacturing method concerning Embodiment 2, it is sectional drawing which shows the state by which the electronic component was arrange | positioned at the opening part of the board | substrate. 実施形態2に係る製造方法において、基板上及び開口部上に絶縁層を形成する工程を説明するための図である。In the manufacturing method which concerns on Embodiment 2, it is a figure for demonstrating the process of forming an insulating layer on a board | substrate and an opening part. 図39Aの工程の後のプレス工程を説明するための図である。It is a figure for demonstrating the press process after the process of FIG. 39A. 図39Bのプレス工程により基板の開口部に絶縁体が充填される様子を示す図である。It is a figure which shows a mode that the insulator is filled into the opening part of a board | substrate by the press process of FIG. 39B. 図39Bのプレス後の状態を示す図である。It is a figure which shows the state after the press of FIG. 39B. 実施形態2に係る製造方法において、ビルドアップの第1の工程を説明するための図である。In the manufacturing method which concerns on Embodiment 2, it is a figure for demonstrating the 1st process of buildup. 図41Aの工程の後の第2の工程を説明するための図である。It is a figure for demonstrating the 2nd process after the process of FIG. 41A. 図41Bの工程の後の第3の工程を説明するための図である。It is a figure for demonstrating the 3rd process after the process of FIG. 41B. 本発明の実施形態3に係る電子部品内蔵配線板の断面図である。It is sectional drawing of the electronic component built-in wiring board which concerns on Embodiment 3 of this invention. 実施形態3に係る製造方法において、出発材料となる配線板を準備する工程を説明するための断面図である。In the manufacturing method which concerns on Embodiment 3, it is sectional drawing for demonstrating the process of preparing the wiring board used as a starting material. 図43の工程の後、基板をレーザ加工する工程を説明するための平面図である。FIG. 44 is a plan view for explaining a step of laser processing the substrate after the step of FIG. 43. 実施形態3に係るレーザ加工の変形例を説明するための平面図である。FIG. 10 is a plan view for explaining a modification of laser processing according to the third embodiment. 実施形態3に係るレーザ加工を説明するための断面図である。It is sectional drawing for demonstrating the laser processing which concerns on Embodiment 3. FIG. 本発明の他の実施形態において、コア基板に形成されるスルーホール導体の第1の別例を示す図である。In other embodiment of this invention, it is a figure which shows the 1st another example of the through-hole conductor formed in a core board | substrate. 図46に示すスルーホール導体の製造方法の一例について、第1工程を説明するための図である。It is a figure for demonstrating a 1st process about an example of the manufacturing method of the through-hole conductor shown in FIG. 図47Aの工程の後の第2の工程を説明するための図である。FIG. 47B is a diagram for explaining a second step after the step of FIG. 47A. 図47Bの工程の後の第3の工程を説明するための図である。FIG. 48B is a diagram for explaining a third step after the step of FIG. 47B. 図47Cの工程の後の第4の工程を説明するための図である。FIG. 47D is a diagram for explaining a fourth step after the step of FIG. 47C. 図48Aの工程の後の第5の工程を説明するための図である。It is a figure for demonstrating the 5th process after the process of FIG. 48A. 本発明の他の実施形態において、コア基板に形成されるスルーホール導体の第2の別例を示す図である。In other embodiment of this invention, it is a figure which shows the 2nd another example of the through-hole conductor formed in a core board | substrate. 図49に示すスルーホール導体の製造方法の一例について、第1工程を説明するための図である。It is a figure for demonstrating a 1st process about an example of the manufacturing method of the through-hole conductor shown in FIG. 図50Aの工程の後の第2の工程を説明するための図である。It is a figure for demonstrating the 2nd process after the process of FIG. 50A. 図50Bの工程の後の第3の工程を説明するための図である。It is a figure for demonstrating the 3rd process after the process of FIG. 50B. 図50Cの工程の後の第4の工程を説明するための図である。It is a figure for demonstrating the 4th process after the process of FIG. 50C. 図51Aの工程の後の第5の工程を説明するための図である。It is a figure for demonstrating the 5th process after the process of FIG. 51A. 本発明の他の実施形態において、コア基板に形成されるスルーホール導体の第3の別例を示す図である。In other embodiment of this invention, it is a figure which shows the 3rd another example of the through-hole conductor formed in a core board | substrate. 本発明の他の実施形態に係る配線板において、キャビティの形状を示す図である。It is a figure which shows the shape of a cavity in the wiring board which concerns on other embodiment of this invention. フィルド導体の平面形状の別例としての正四角形を示す図である。It is a figure which shows the regular tetragon as another example of the planar shape of a filled conductor. フィルド導体の平面形状の別例としての十字形を示す図である。It is a figure which shows the cross shape as another example of the planar shape of a filled conductor. フィルド導体の平面形状の別例としての正多角星形を示す図である。It is a figure which shows the regular polygon star as another example of the planar shape of a filled conductor. 本発明の他の実施形態において、片面配線板を示す図である。In other embodiment of this invention, it is a figure which shows a single-sided wiring board. 本発明の他の実施形態において、より多層な構造を有する配線板を示す図である。In other embodiment of this invention, it is a figure which shows the wiring board which has a multilayer structure. 本発明の他の実施形態において、金属板を内蔵するコア基板を有する配線板を示す図である。In other embodiment of this invention, it is a figure which shows the wiring board which has a core board | substrate which incorporates a metal plate. 図57に示す配線板に用いられる金属板の第1の形態を示す図である。It is a figure which shows the 1st form of the metal plate used for the wiring board shown in FIG. 図57に示す配線板に用いられる金属板の第2の形態を示す図である。It is a figure which shows the 2nd form of the metal plate used for the wiring board shown in FIG. 図57に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第1の形態を示す図である。In the wiring board shown in FIG. 57, it is a figure which shows the 1st form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図57に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第2の形態を示す図である。In the wiring board shown in FIG. 57, it is a figure which shows the 2nd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図57に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第3の形態を示す図である。In the wiring board shown in FIG. 57, it is a figure which shows the 3rd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図57に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第4の形態を示す図である。In the wiring board shown in FIG. 57, it is a figure which shows the 4th form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図57に示す配線板に用いられるコア基板を製造する第1工程を説明するための図である。It is a figure for demonstrating the 1st process of manufacturing the core board | substrate used for the wiring board shown in FIG. 図61Aの工程の後の第2の工程を説明するための図である。FIG. 61B is a diagram for explaining a second step after the step of FIG. 61A. 図57に示す配線板において、コア基板に形成された開口部に配置されるコンデンサとコア基板との境界部周辺を示す図である。FIG. 58 is a view showing a periphery of a boundary portion between a capacitor and a core substrate arranged in an opening formed in the core substrate in the wiring board shown in FIG. 57. 電子部品内蔵配線板の好ましい一例を示す断面図である。It is sectional drawing which shows a preferable example of an electronic component built-in wiring board. 図63Aに示すスルーホール導体の平面図である。FIG. 63B is a plan view of the through-hole conductor shown in FIG. 63A. 開口部の形状の第1の変形例を示す平面図である。It is a top view which shows the 1st modification of the shape of an opening part. 開口部の形状の第2の変形例を示す平面図である。It is a top view which shows the 2nd modification of the shape of an opening part. 他の実施形態について、電子部品の電極に電気的に接続するビア導体を、コア基板のテーパ面を有する側に有する電子部品内蔵配線板を示す断面図である。It is sectional drawing which shows the electronic component built-in wiring board which has the via conductor electrically connected to the electrode of an electronic component on the side which has a taper surface of a core board about other embodiment. 他の実施形態について、コア基板の片側に2層以上のビルドアップ層を有する電子部品内蔵配線板を示す断面図である。It is sectional drawing which shows the electronic component built-in wiring board which has two or more buildup layers on the one side of a core board | substrate about other embodiment. 他の実施形態について、コア基板の片側のみに導体層を有する電子部品内蔵配線板の第1の例を示す断面図である。It is sectional drawing which shows the 1st example of the electronic component built-in wiring board which has a conductor layer only in the one side of a core board | substrate about other embodiment. 他の実施形態について、コア基板の片側のみに導体層を有する電子部品内蔵配線板の第2の例を示す断面図である。It is sectional drawing which shows the 2nd example of the electronic component built-in wiring board which has a conductor layer only in the one side of a core board | substrate about other embodiment. 表面に開口部を有する電子部品内蔵配線板を示す断面図である。It is sectional drawing which shows the electronic component built-in wiring board which has an opening part on the surface. コア基板の両側にテーパ面を有する電子部品内蔵配線板を示す断面図である。It is sectional drawing which shows the electronic component built-in wiring board which has a taper surface on both sides of a core board | substrate. 開口部の周縁部に部分的にテーパ面が形成されている電子部品内蔵配線板を示す断面図である。It is sectional drawing which shows the electronic component built-in wiring board by which the taper surface is partially formed in the peripheral part of the opening part. 材質の異なる第1層及び第2層の第1の例を示す断面図である。It is sectional drawing which shows the 1st example of the 1st layer from which a material differs, and a 2nd layer. 材質の異なる第1層及び第2層の第2の例を示す断面図である。It is sectional drawing which shows the 2nd example of the 1st layer from which a material differs, and a 2nd layer. 材質の異なる第1層及び第2層の第3の例を示す断面図である。It is sectional drawing which shows the 3rd example of the 1st layer from which a material differs, and a 2nd layer. 材質の異なる第1層及び第2層の第4の例を示す断面図である。It is sectional drawing which shows the 4th example of the 1st layer and 2nd layer from which a material differs. 本発明の他の実施形態において、金属板を内蔵するコア基板を有する電子部品内蔵配線板を示す断面図である。In other embodiment of this invention, it is sectional drawing which shows the electronic component built-in wiring board which has a core board | substrate which incorporates a metal plate. 開口部の内壁の角にテーパ面が形成されていないコア基板から構成される配線板の製造プロセスにおいて、コア基板に形成された開口部に電子部品を入れる工程を説明するための図である。It is a figure for demonstrating the process of putting an electronic component in the opening part formed in the core board | substrate in the manufacturing process of the wiring board comprised from the core board | substrate with which the taper surface is not formed in the corner of the inner wall of an opening part. 図77Aに示す工程において、マウンターとコア基板とが干渉する様子を示す図である。It is a figure which shows a mode that a mounter and a core board | substrate interfere in the process shown to FIG. 77A. 図76に示す配線板の製造プロセスにおいて、コア基板に形成された開口部に電子部品を入れる工程を説明するための図である。FIG. 77 is a diagram for describing a process of putting an electronic component into the opening formed in the core substrate in the wiring board manufacturing process shown in FIG. 76. 図76に示す配線板に用いられる金属板の第1の形態を示す図である。FIG. 77 is a diagram showing a first form of a metal plate used for the wiring board shown in FIG. 76. 図76に示す配線板に用いられる金属板の第2の形態を示す図である。FIG. 77 is a diagram showing a second form of the metal plate used for the wiring board shown in FIG. 76. 図76に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第1の形態を示す図である。In the wiring board shown in FIG. 76, it is a figure which shows the 1st form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図76に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第2の形態を示す図である。In the wiring board shown in FIG. 76, it is a figure which shows the 2nd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図76に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第3の形態を示す図である。In the wiring board shown in FIG. 76, it is a figure which shows the 3rd form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図76に示す配線板において、配線板に内蔵される金属板とコア基板上の導体層との第4の形態を示す図である。In the wiring board shown in FIG. 76, it is a figure which shows the 4th form of the metal plate incorporated in a wiring board, and the conductor layer on a core board | substrate. 図76に示す配線板に用いられるコア基板を製造する第1工程を説明するための図である。FIG. 77 is a diagram for describing a first step for manufacturing a core substrate used for the wiring board shown in FIG. 76. 図82Aの工程の後の第2の工程を説明するための図である。It is a figure for demonstrating the 2nd process after the process of FIG. 82A. 図76に示す配線板において、コア基板に形成された開口部に配置される電子部品とコア基板との境界部周辺を示す図である。In the wiring board shown in FIG. 76, it is a figure which shows the periphery of the boundary part of the electronic component arrange | positioned at the opening part formed in the core board | substrate, and a core board | substrate.
 以下、本発明の実施形態について、図面を参照しつつ詳細に説明する。なお、図中、矢印Z1、Z2は、それぞれ配線板の主面(表裏面)の法線方向に相当する配線板の積層方向(又は配線板の厚み方向)を指す。一方、矢印X1、X2及びY1、Y2は、それぞれ積層方向に直交する方向(又は各層の側方)を指す。配線板の主面は、X-Y平面となる。また、配線板の側面は、X-Z平面又はY-Z平面となる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, arrows Z1 and Z2 indicate the stacking direction of the wiring boards (or the thickness direction of the wiring boards) corresponding to the normal direction of the main surface (front and back surfaces) of the wiring boards. On the other hand, arrows X1 and X2 and Y1 and Y2 respectively indicate directions orthogonal to the stacking direction (or sides of each layer). The main surface of the wiring board is an XY plane. The side surface of the wiring board is an XZ plane or a YZ plane.
 相反する法線方向を向いた2つの主面を、第1面又は第3面(Z1側の面)、第2面又は第4面(Z2側の面)という。積層方向において、コアに近い側を下層(又は内層側)、コアから遠い側を上層(又は外層側)という。直上は、Z方向(Z1側又はZ2側)を意味する。平面形状は、特に指定がなければ、X-Y平面の形状を意味する。また、X-Y平面において、配線板に内蔵される電子部品(コンデンサなど)から離れる側を外側といい、電子部品に近づく側を内側という。 The two principal surfaces facing the opposite normal directions are referred to as the first surface or the third surface (Z1 side surface), the second surface or the fourth surface (Z2 side surface). In the stacking direction, the side closer to the core is referred to as the lower layer (or inner layer side), and the side far from the core is referred to as the upper layer (or outer layer side). Directly above means the Z direction (Z1 side or Z2 side). The planar shape means the shape of the XY plane unless otherwise specified. In the XY plane, the side away from the electronic component (capacitor or the like) built in the wiring board is referred to as the outside, and the side close to the electronic component is referred to as the inside.
 導体層は、一乃至複数の導体パターンで構成される層である。導体層は、電気回路を構成する導体パターン、例えば配線(グランドも含む)、パッド、又はランド等を含む場合もあれば、電気回路を構成しない平面状の導体パターン等を含む場合もある。 The conductor layer is a layer composed of one or more conductor patterns. The conductor layer may include a conductor pattern that constitutes an electric circuit, for example, a wiring (including a ground), a pad, a land, or the like, or a planar conductor pattern that does not constitute an electric circuit.
 開口部には、孔や溝のほか、切欠や切れ目等も含まれる。孔は貫通孔に限られず、非貫通の孔も含めて、孔という。孔には、ビアホール及びスルーホールが含まれる。以下、ビアホール内(壁面又は底面)に形成される導体をビア導体といい、スルーホール内(壁面)に形成される導体をスルーホール導体という。 The opening includes notches and cuts in addition to holes and grooves. The hole is not limited to a through hole, and includes a non-through hole. The holes include via holes and through holes. Hereinafter, a conductor formed in the via hole (wall surface or bottom surface) is referred to as a via conductor, and a conductor formed in the through hole (wall surface) is referred to as a through hole conductor.
 めっきには、電解めっき等の湿式めっきのほか、PVD(Physical Vapor Deposition)やCVD(Chemical Vapor Deposition)等の乾式めっきも含まれる。 In addition to wet plating such as electrolytic plating, plating includes dry plating such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition).
 「準備すること」には、材料や部品を購入して自ら製造することのほかに、完成品を購入して使用することなども含まれる。 “Preparing” includes purchasing and using finished products in addition to purchasing materials and parts and manufacturing them themselves.
 電子部品(例えばコンデンサ)が開口部に配置されることには、電子部品の全体が開口部に完全に収容されることのほか、電子部品の一部のみが開口部に配置されることも含まれる。 Arrangement of an electronic component (for example, a capacitor) in the opening includes not only that the entire electronic component is completely accommodated in the opening, but also that only a part of the electronic component is arranged in the opening. It is.
 孔又は柱体(突起)の「幅」は、特に指定がなければ、円の場合には直径を意味し、円以外の場合には2√(断面積/π)を意味する。 Unless otherwise specified, the “width” of a hole or column (projection) means a diameter in the case of a circle, and 2√ (cross-sectional area / π) otherwise.
 均一でない寸法(凹凸がある部分の厚み又はテーパした部分の幅など)が所定の範囲に含まれるか否かは、原則として、その寸法の平均値(異常値を除いた有効値のみの平均)がその範囲に含まれるか否かによって判断する。ただし、最大値など、平均値以外の値を用いることを明記している場合は、この限りでない。 In principle, whether or not a non-uniform dimension (such as the thickness of a part with unevenness or the width of a tapered part) is included in a given range is the average value of that dimension (average of only effective values excluding abnormal values) Is included in the range. However, this does not apply when it is clearly stated that a value other than the average value is used, such as the maximum value.
 また、含有量を比較する場合は、特に指定がなければ、単位体積あたりの重量で比較する。 In addition, when comparing the contents, unless otherwise specified, compare by weight per unit volume.
 (実施形態1)
 本実施形態に係る配線板10は、図1に示すように、基板100(絶縁基板)と、第1ビルドアップ部B1と、第2ビルドアップ部B2と、電子部品200(本実施形態では、コンデンサ)と、ソルダーレジスト11、12と、を有する。本実施形態の配線板10は、矩形板状のリジッド配線板である。ただし、配線板10は、フレキシブル配線板であってもよい。以下、基板100の表裏面(2つの主面)の一方を第1面F1、他方を第2面F2という。また、電子部品200の表裏面(2つの主面)のうち、第1面F1と同じ方向を向く面を第3面F3といい、他方を第4面F4という。
(Embodiment 1)
As shown in FIG. 1, the wiring board 10 according to the present embodiment includes a substrate 100 (insulating substrate), a first buildup unit B1, a second buildup unit B2, and an electronic component 200 (in this embodiment, Capacitor) and solder resists 11 and 12. The wiring board 10 of this embodiment is a rectangular wiring board. However, the wiring board 10 may be a flexible wiring board. Hereinafter, one of the front and back surfaces (two main surfaces) of the substrate 100 is referred to as a first surface F1, and the other is referred to as a second surface F2. Of the front and back surfaces (two main surfaces) of the electronic component 200, a surface facing the same direction as the first surface F1 is referred to as a third surface F3, and the other is referred to as a fourth surface F4.
 第1ビルドアップ部B1は、基板100の第1面F1側に形成され、第2ビルドアップ部B2は、基板100の第2面F2側に形成される。第1ビルドアップ部B1は、絶縁層101(層間絶縁層)と、導体層110と、から構成され、第2ビルドアップ部B2は、絶縁層102(層間絶縁層)と、導体層120と、から構成される。電子部品200は、配線板10に内蔵される。第1ビルドアップ部B1、第2ビルドアップ部B2上にはそれぞれ、ソルダーレジスト11、12が形成される。 The first buildup portion B1 is formed on the first surface F1 side of the substrate 100, and the second buildup portion B2 is formed on the second surface F2 side of the substrate 100. The first buildup part B1 is composed of an insulating layer 101 (interlayer insulating layer) and a conductor layer 110, and the second buildup part B2 is composed of an insulating layer 102 (interlayer insulating layer), a conductor layer 120, Consists of The electronic component 200 is built in the wiring board 10. Solder resists 11 and 12 are formed on the first buildup part B1 and the second buildup part B2, respectively.
 基板100は、絶縁性を有し、配線板10のコア基板となる。基板100の第1面F1上には導体層301が形成され、基板100の第2面F2上には導体層302が形成される。基板100にはキャビティR10が形成される。キャビティR10は、電子部品200が収容される開口部に相当する。本実施形態では、キャビティR10が、基板100を貫通する孔からなる。 The substrate 100 has an insulating property and becomes a core substrate of the wiring board 10. A conductor layer 301 is formed on the first surface F1 of the substrate 100, and a conductor layer 302 is formed on the second surface F2 of the substrate 100. A cavity R10 is formed in the substrate 100. The cavity R10 corresponds to an opening in which the electronic component 200 is accommodated. In the present embodiment, the cavity R <b> 10 includes a hole that penetrates the substrate 100.
 電子部品200は、キャビティR10に配置されることにより、基板100の側方(X方向又はY方向)に位置する。本実施形態では、電子部品200の略全体がキャビティR10に完全に収容される。しかしこれに限られず、電子部品200の一部のみがキャビティR10に配置されてもよい。本実施形態では、キャビティR10における電子部品200と基板100との隙間R1に、絶縁体101aが充填される。本実施形態では、絶縁体101aが、上層の絶縁層101(詳しくは樹脂絶縁層)を構成する絶縁材料(詳しくは樹脂)からなる(図19A参照)。絶縁体101aは、基板100及び電子部品200のいずれよりも大きな熱膨張係数を有する。絶縁体101aは、電子部品200の周りを完全に覆う。これにより、電子部品200が、絶縁体101a(樹脂)で保護されるとともに、所定の位置に固定される。 The electronic component 200 is located in the side of the substrate 100 (X direction or Y direction) by being disposed in the cavity R10. In the present embodiment, substantially the entire electronic component 200 is completely accommodated in the cavity R10. However, the present invention is not limited to this, and only a part of the electronic component 200 may be disposed in the cavity R10. In the present embodiment, the insulator 101a is filled in the gap R1 between the electronic component 200 and the substrate 100 in the cavity R10. In this embodiment, the insulator 101a is made of an insulating material (more specifically, a resin) constituting the upper insulating layer 101 (more specifically, a resin insulation layer) (see FIG. 19A). The insulator 101a has a larger thermal expansion coefficient than either the substrate 100 or the electronic component 200. The insulator 101a completely covers the periphery of the electronic component 200. Thereby, the electronic component 200 is protected by the insulator 101a (resin) and fixed at a predetermined position.
 絶縁層101(第1絶縁層)は、基板100の第1面F1上及び電子部品200の第3面F3上に形成され、絶縁層102(第2絶縁層)は、基板100の第2面F2上及び電子部品200の第4面F4上に形成される。そして、キャビティR10(孔)の一方(第1面F1側)の開口は絶縁層101によって塞がれ、キャビティR10(孔)の他方(第2面F2側)の開口は絶縁層102によって塞がれる。本実施形態では、導体層110及び120が、最外層となる。ただしこれに限られず、より多くの層間絶縁層及び導体層を積層してもよい(後述の図56参照)。 The insulating layer 101 (first insulating layer) is formed on the first surface F1 of the substrate 100 and the third surface F3 of the electronic component 200, and the insulating layer 102 (second insulating layer) is the second surface of the substrate 100. It is formed on F 2 and on the fourth surface F 4 of the electronic component 200. The opening on one side (first surface F1 side) of the cavity R10 (hole) is closed by the insulating layer 101, and the opening on the other side (second surface F2 side) of the cavity R10 (hole) is closed by the insulating layer 102. It is. In the present embodiment, the conductor layers 110 and 120 are the outermost layers. However, the present invention is not limited to this, and more interlayer insulating layers and conductor layers may be stacked (see FIG. 56 described later).
 導体層110は、第1面F1側の最外の導体層となり、導体層120は、第2面F2側の最外の導体層となる。導体層110、120上にはそれぞれ、ソルダーレジスト11、12が形成される。ただし、ソルダーレジスト11、12にはそれぞれ、開口部11a、12aが形成されている。このため、導体層110の所定の部位(開口部11aに位置する部位)は、ソルダーレジスト11に覆われず露出しており、パッドP1となる。また、導体層120の所定の部位(開口部12aに位置する部位)は、パッドP2となる。パッドP1は、例えば他の配線板と電気的に接続するための外部接続端子となり、パッドP2は、例えば電子部品を実装するための外部接続端子となる(後述の図24参照)。ただしこれに限られず、パッドP1、P2の用途は任意である。 The conductor layer 110 is the outermost conductor layer on the first surface F1 side, and the conductor layer 120 is the outermost conductor layer on the second surface F2 side. Solder resists 11 and 12 are formed on the conductor layers 110 and 120, respectively. However, openings 11a and 12a are formed in the solder resists 11 and 12, respectively. For this reason, the predetermined part (part located in the opening part 11a) of the conductor layer 110 is exposed without being covered with the solder resist 11, and becomes the pad P1. Moreover, the predetermined site | part (site located in the opening part 12a) of the conductor layer 120 becomes the pad P2. The pad P1 becomes an external connection terminal for electrical connection with, for example, another wiring board, and the pad P2 becomes an external connection terminal for mounting an electronic component, for example (see FIG. 24 described later). However, the application of the pads P1 and P2 is not limited to this and is arbitrary.
 本実施形態では、パッドP1、P2が、その表面に、例えばNi/Au膜からなる耐食層を有する。耐食層は、電解めっき又はスパッタリング等により形成することができる。また、OSP(Organic Solderability Preservative)処理を行うことにより、有機保護膜からなる耐食層を形成してもよい。なお、耐食層は必須の構成ではなく、必要がなければ割愛してもよい。 In this embodiment, the pads P1 and P2 have a corrosion-resistant layer made of, for example, a Ni / Au film on the surface thereof. The corrosion resistant layer can be formed by electrolytic plating or sputtering. Moreover, you may form the corrosion-resistant layer which consists of an organic protective film by performing OSP (Organic | Solderability | Preservative) process. The corrosion resistant layer is not an essential component and may be omitted if not necessary.
 基板100(コア基板)にはスルーホール300aが形成され、スルーホール300a内に導体(例えば銅めっき)が充填されることにより、スルーホール導体300bが形成される。本実施形態では、スルーホール導体300bの形状が、砂時計状(鼓状)である。 A through hole 300a is formed in the substrate 100 (core substrate), and a through hole conductor 300b is formed by filling the through hole 300a with a conductor (for example, copper plating). In the present embodiment, the through-hole conductor 300b has an hourglass shape (a drum shape).
 本実施形態のスルーホール導体300bは、図2Aに示すように、基板100(コア基板)中の基準面F0から第1面F1に向かって幅が広くなる第1導体部R11と、基準面F0から第2面F2に向かって幅が広くなる第2導体部R12と、を有する。図2Bに示すように、第1導体部R11及び第2導体部R12の平面形状は、例えば円である。すなわち、本実施形態における第1導体部R11及び第2導体部R12の形状はそれぞれ、基準面F0に向かって幅が狭くなる(細くなる)ようにテーパしたテーパ円柱(円錐台)である。スルーホール導体300bは、第1導体部R11と第2導体部R12とが、基準面F0で直接接続されてなる。スルーホール導体300bは、最小幅となる括れ部300cを有し、括れ部300cは基準面F0に位置する。本実施形態では、基準面F0が、X-Y平面に相当する。図2Bに示すように、括れ部300cの平面形状は、例えば円である。 As shown in FIG. 2A, the through-hole conductor 300b of the present embodiment includes a first conductor portion R11 having a width that increases from the reference surface F0 in the substrate 100 (core substrate) toward the first surface F1, and a reference surface F0. And a second conductor portion R12 that increases in width toward the second surface F2. As shown in FIG. 2B, the planar shape of the first conductor portion R11 and the second conductor portion R12 is, for example, a circle. That is, the shapes of the first conductor portion R11 and the second conductor portion R12 in the present embodiment are each a tapered cylinder (conical frustum) tapered so that the width becomes narrower (thinner) toward the reference plane F0. The through-hole conductor 300b is formed by directly connecting the first conductor portion R11 and the second conductor portion R12 at the reference plane F0. The through-hole conductor 300b has a constricted portion 300c having a minimum width, and the constricted portion 300c is located on the reference plane F0. In the present embodiment, the reference plane F0 corresponds to the XY plane. As shown in FIG. 2B, the planar shape of the constricted portion 300c is, for example, a circle.
 本実施形態では、第1面F1から基準面F0までの寸法T11と、第2面F2から基準面F0までの寸法T12とが、互いに略同一である。また、第1導体部R11は、第1面F1から括れ部300c(基準面F0)に近づくにつれて徐々に細くなり、第2導体部R12は、第2面F2から括れ部300c(基準面F0)に近づくにつれて徐々に細くなる。ここで、第1導体部R11のテーパ角度θ1と第2導体部R12のテーパ角度θ2とは、互いに略同一である。スルーホール導体300bは、基準面F0について対称的な形状を有する。なお、テーパ角度は、幅が狭くなる割合又は幅が広くなる割合に相当する。 In the present embodiment, the dimension T11 from the first surface F1 to the reference surface F0 and the dimension T12 from the second surface F2 to the reference surface F0 are substantially the same. The first conductor portion R11 gradually becomes thinner from the first surface F1 toward the constricted portion 300c (reference surface F0), and the second conductor portion R12 is constricted from the second surface F2 to the constricted portion 300c (reference surface F0). It gets thinner gradually as you get closer to. Here, the taper angle θ1 of the first conductor portion R11 and the taper angle θ2 of the second conductor portion R12 are substantially the same. The through-hole conductor 300b has a symmetrical shape with respect to the reference plane F0. Note that the taper angle corresponds to a rate at which the width is narrowed or a rate at which the width is widened.
 本実施形態では、スルーホール300aの壁面が平面である。これにより、第1導体部R11のテーパ角度及び第2導体部R12のテーパ角度がそれぞれ、略一定になる。しかしこれに限られず、スルーホール300aの壁面は曲面であってもよい(図46及び図49参照)。導体層301、302にはそれぞれ、スルーホール導体300bのランドが含まれる。 In the present embodiment, the wall surface of the through hole 300a is a flat surface. Thereby, the taper angle of the first conductor portion R11 and the taper angle of the second conductor portion R12 are respectively substantially constant. However, the present invention is not limited to this, and the wall surface of the through hole 300a may be a curved surface (see FIGS. 46 and 49). Each of the conductor layers 301 and 302 includes a land of the through-hole conductor 300b.
 ここで、スルーホール導体300bの各寸法の好ましい値の一例を示す。第1面F1側端面の幅D31は80μmであり、括れ部300cの幅D32は50μmであり、第2面F2側端面の幅D33は80μmである。 Here, an example of a preferable value of each dimension of the through-hole conductor 300b is shown. The width D31 of the end surface on the first surface F1 side is 80 μm, the width D32 of the constricted portion 300c is 50 μm, and the width D33 of the end surface on the second surface F2 side is 80 μm.
 絶縁層101には孔311a及び312a(それぞれビアホール)が形成され、絶縁層102には孔321a及び322a(それぞれビアホール)が形成されている。孔311a、312a、321a、322a内にそれぞれ導体(例えば銅のめっき)が充填されることにより、各孔内の導体がそれぞれ、ビア導体311b、312b、321b、322b(それぞれフィルド導体)となる。本実施形態では、孔311aが第1ビアホールに相当し、孔321aが第2ビアホールに相当する。 The insulating layer 101 has holes 311a and 312a (respectively via holes), and the insulating layer 102 has holes 321a and 322a (respectively via holes). By filling the holes 311a, 312a, 321a, and 322a with conductors (for example, copper plating), the conductors in the holes become via conductors 311b, 312b, 321b, and 322b (respectively filled conductors). In the present embodiment, the hole 311a corresponds to the first via hole, and the hole 321a corresponds to the second via hole.
 孔311a及び321aの各々は、電子部品200の電極210及び220に達し、ビア導体311b及び321bはそれぞれ、基板100の第1面F1側又は第2面F2側から、電子部品200の電極210、220に電気的に接続される。孔311a(第1ビアホール)に充填された導体(ビア導体311b)及び孔321a(第2ビアホール)に充填された導体(ビア導体321b)はそれぞれ、電子部品200に向かって幅が狭くなり、電子部品200の電極に電気的に接続される。このように、本実施形態では、電子部品200が両面からビア導体311b及び321bに接続されている。以下、この構造を、両面ビア構造という。本実施形態では、両面ビア構造により、配線板10の構造が上下対称に近づき、配線板10の反りが抑制されると考えられる。 Each of the holes 311a and 321a reaches the electrodes 210 and 220 of the electronic component 200, and the via conductors 311b and 321b are respectively connected to the electrodes 210 and 220 of the electronic component 200 from the first surface F1 side or the second surface F2 side of the substrate 100. 220 is electrically connected. Each of the conductor (via conductor 311b) filled in the hole 311a (first via hole) and the conductor (via conductor 321b) filled in the hole 321a (second via hole) becomes narrower toward the electronic component 200. It is electrically connected to the electrode of the component 200. Thus, in this embodiment, the electronic component 200 is connected to the via conductors 311b and 321b from both sides. Hereinafter, this structure is referred to as a double-sided via structure. In the present embodiment, it is considered that the double-sided via structure brings the structure of the wiring board 10 close to vertical symmetry and suppresses the warping of the wiring board 10.
 上記両面ビア構造により、電子部品200の電極210、220と絶縁層101上の導体層110とは、ビア導体311bを介して、互いに電気的に接続され、また、電子部品200の電極210、220と絶縁層102上の導体層120とは、ビア導体321bを介して、互いに電気的に接続される。本実施形態では、電子部品200、ビア導体311b、及びビア導体321bが、電源ラインを構成する。 Due to the double-sided via structure, the electrodes 210 and 220 of the electronic component 200 and the conductor layer 110 on the insulating layer 101 are electrically connected to each other via the via conductor 311b, and the electrodes 210 and 220 of the electronic component 200 are also connected. And the conductor layer 120 on the insulating layer 102 are electrically connected to each other through a via conductor 321b. In the present embodiment, the electronic component 200, the via conductor 311b, and the via conductor 321b constitute a power supply line.
 また、基板100の第1面F1上の導体層301と絶縁層101上の導体層110とは、ビア導体312bを介して、互いに電気的に接続され、また、基板100の第2面F2上の導体層302と絶縁層102上の導体層120とは、ビア導体322bを介して、互いに電気的に接続される。また、基板100の第1面F1上の導体層301と基板100の第2面F2上の導体層302とは、スルーホール導体300bを介して、互いに電気的に接続されている。ビア導体312b、322b及びスルーホール導体300bは、いずれもフィルド導体であり、これらがZ方向にスタックされることで、フィルドスタックSが形成される。本実施形態では、フィルドスタックSが信号ラインを構成する。 In addition, the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 110 on the insulating layer 101 are electrically connected to each other via the via conductor 312b, and on the second surface F2 of the substrate 100. The conductor layer 302 and the conductor layer 120 on the insulating layer 102 are electrically connected to each other through the via conductor 322b. Further, the conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 302 on the second surface F2 of the substrate 100 are electrically connected to each other through the through-hole conductor 300b. The via conductors 312b and 322b and the through-hole conductor 300b are all filled conductors, and a filled stack S is formed by stacking them in the Z direction. In the present embodiment, the filled stack S constitutes a signal line.
 電子部品200は、例えば図3に示すように、チップ型のMLCC(積層セラミック・コンデンサ)であり、コンデンサ本体201と、U字状の電極210及び220と、を有する。コンデンサ本体201は、複数の誘電層231~239と複数の導体層211~214及び221~224とが交互に積層されて構成される。誘電層231~239はそれぞれ、例えばセラミックからなる。電極210及び220は、コンデンサ本体201の両端部にそれぞれ形成されている。コンデンサ本体201は、下面(第4面F4側の面)から、側面、そして上面(第3面F3側の面)にかけて、電極210及び220で覆われる。以下、電極210のうち、コンデンサ本体201の上面を覆う部分を上部210aといい、コンデンサ本体201の側面を覆う部分を側部210bといい、コンデンサ本体201の下面を覆う部分を下部210cという。また、電極220のうち、コンデンサ本体201の上面を覆う部分を上部220aといい、コンデンサ本体201の側面を覆う部分を側部220bといい、コンデンサ本体201の下面を覆う部分を下部220cという。本実施形態では、側部210b及び220bがそれぞれ、側面電極に相当する。上部210a及び220aはそれぞれ、ビア導体311bに電気的に接続され、下部210c及び220cはそれぞれ、ビア導体321bに電気的に接続される。本実施形態では、電子部品200の電極210、220の表面が粗化されていない。 The electronic component 200 is, for example, a chip-type MLCC (multilayer ceramic capacitor) as shown in FIG. 3, and includes a capacitor body 201 and U-shaped electrodes 210 and 220. The capacitor body 201 includes a plurality of dielectric layers 231 to 239 and a plurality of conductor layers 211 to 214 and 221 to 224 that are alternately stacked. Each of the dielectric layers 231 to 239 is made of, for example, ceramic. The electrodes 210 and 220 are formed at both ends of the capacitor body 201, respectively. The capacitor body 201 is covered with electrodes 210 and 220 from the lower surface (the surface on the fourth surface F4 side), the side surface, and the upper surface (the surface on the third surface F3 side). Hereinafter, in the electrode 210, a portion covering the upper surface of the capacitor body 201 is referred to as an upper portion 210a, a portion covering the side surface of the capacitor body 201 is referred to as a side portion 210b, and a portion covering the lower surface of the capacitor body 201 is referred to as a lower portion 210c. Further, in the electrode 220, a portion covering the upper surface of the capacitor body 201 is referred to as an upper portion 220 a, a portion covering the side surface of the capacitor body 201 is referred to as a side portion 220 b, and a portion covering the lower surface of the capacitor body 201 is referred to as a lower portion 220 c. In the present embodiment, the side portions 210b and 220b each correspond to a side electrode. The upper portions 210a and 220a are each electrically connected to the via conductor 311b, and the lower portions 210c and 220c are each electrically connected to the via conductor 321b. In the present embodiment, the surfaces of the electrodes 210 and 220 of the electronic component 200 are not roughened.
 電極210と電極220との間に位置するコンデンサ本体201の中央部は、図3に示されるように、電極210、220に覆われず、誘電層231、239(セラミック)が露出するため、比較的強度が弱くなる。しかし、電子部品200が配線板10に実装(内蔵)された状態においては、コンデンサ本体201の中央部は絶縁層101、102又は絶縁体101aで覆われるため、それらの絶縁材料(樹脂等)により、コンデンサ本体201が保護されると考えられる。 As shown in FIG. 3, the central portion of the capacitor body 201 located between the electrode 210 and the electrode 220 is not covered with the electrodes 210 and 220, and the dielectric layers 231 and 239 (ceramic) are exposed. The target strength is weakened. However, in the state in which the electronic component 200 is mounted (built in) the wiring board 10, the central portion of the capacitor body 201 is covered with the insulating layers 101 and 102 or the insulator 101 a, so that the insulating material (resin or the like) is used. It is considered that the capacitor body 201 is protected.
 図4に、電子部品200が基板100(コア基板)のキャビティR10に収容された状態を示す。 FIG. 4 shows a state in which the electronic component 200 is accommodated in the cavity R10 of the substrate 100 (core substrate).
 キャビティR10は、基板100を貫通する。キャビティR10の両端(第1面F1側及び第2面F2側)の開口形状はそれぞれ、略長方形になっている。電子部品200の形状は、例えば矩形板状であり、電子部品200の主面の形状は、例えば略長方形である。本実施形態では、電子部品200がキャビティR10に対応した平面形状(例えば略同じ大きさの相似形)を有する。 The cavity R10 penetrates the substrate 100. The opening shapes at both ends (the first surface F1 side and the second surface F2 side) of the cavity R10 are substantially rectangular. The shape of the electronic component 200 is, for example, a rectangular plate shape, and the shape of the main surface of the electronic component 200 is, for example, a substantially rectangular shape. In the present embodiment, the electronic component 200 has a planar shape (for example, a similar shape having substantially the same size) corresponding to the cavity R10.
 ここで、図1~図3中に示す各寸法の好ましい値の一例を示す。 Here, an example of a preferable value of each dimension shown in FIGS. 1 to 3 is shown.
 配線板10の厚さT1(図1)、すなわちソルダーレジスト11からソルダーレジスト12までの厚さは、290μmである。基板100(コア基板)の厚さT20(図2A)は、106μmである。電子部品200の厚さT3(図3)、詳しくは電極210、220まで含めた厚さは、150μmである。導体層301、302の厚さT4(図2A)はそれぞれ、20μmである。絶縁層101、102の厚さT5(図1)はそれぞれ、39μmである。導体層110、120の厚さT6(図1)はそれぞれ、18μmである。ソルダーレジスト11、12の厚さT7(図1)はそれぞれ、15μmである。 The thickness T1 of the wiring board 10 (FIG. 1), that is, the thickness from the solder resist 11 to the solder resist 12 is 290 μm. The thickness T20 (FIG. 2A) of the substrate 100 (core substrate) is 106 μm. The thickness T3 (FIG. 3) of the electronic component 200, specifically the thickness including the electrodes 210 and 220, is 150 μm. Each of the conductor layers 301 and 302 has a thickness T4 (FIG. 2A) of 20 μm. Each of the insulating layers 101 and 102 has a thickness T5 (FIG. 1) of 39 μm. Each of the conductor layers 110 and 120 has a thickness T6 (FIG. 1) of 18 μm. Each of the solder resists 11 and 12 has a thickness T7 (FIG. 1) of 15 μm.
 配線板10の厚さT1と、基板100(コア基板)及びその両面の導体層301、302の厚さの合計T2(=T20+T4×2)と、電子部品200の厚さT3とについては、T3/T2が0.6~1.7の範囲にあり、且つ、T3/T1が0.2~0.7の範囲にあることが好ましい。こうした寸法であれば、反りを抑制し易くなると推測される。 Regarding the thickness T1 of the wiring board 10, the total thickness T2 (= T20 + T4 × 2) of the substrate 100 (core substrate) and the conductor layers 301 and 302 on both sides thereof, and the thickness T3 of the electronic component 200, T3 It is preferable that / T2 is in the range of 0.6 to 1.7 and T3 / T1 is in the range of 0.2 to 0.7. If it is such a dimension, it will be estimated that it becomes easy to suppress curvature.
 次に、図4中に示す各寸法の好ましい値の一例を示す。 Next, an example of preferable values for each dimension shown in FIG. 4 is shown.
 キャビティR10の長手方向の幅D1は、1080μmであり、キャビティR10の短手方向の幅D2は、580μmである。電子部品200の長手方向の幅D11は、1000μmであり、電子部品200の短手方向の幅D12は、500μmである。電子部品200とキャビティR10との隙間の長手方向の幅D3は、40μm(クリアランスは2倍の80μm)であり、電子部品200とキャビティR10との隙間の短手方向の幅D4は、40μm(クリアランスは2倍の80μm)である。電極210の上部210aもしくは下部210c、又は、電極220の上部220aもしくは下部220cの幅D13は、230μmである。 The longitudinal width D1 of the cavity R10 is 1080 μm, and the lateral width D2 of the cavity R10 is 580 μm. The width D11 in the longitudinal direction of the electronic component 200 is 1000 μm, and the width D12 in the short direction of the electronic component 200 is 500 μm. The width D3 in the longitudinal direction of the gap between the electronic component 200 and the cavity R10 is 40 μm (the clearance is twice 80 μm), and the width D4 in the short direction of the gap between the electronic component 200 and the cavity R10 is 40 μm (clearance). Is twice 80 μm). The width D13 of the upper part 210a or the lower part 210c of the electrode 210 or the upper part 220a or the lower part 220c of the electrode 220 is 230 μm.
 ビア導体311bとビア導体321bとは、例えば電子部品200を挟んで、互いに対向するように配置される。ビア導体311b又は321bのピッチD5は、770μmである。 The via conductor 311b and the via conductor 321b are arranged to face each other with the electronic component 200 interposed therebetween, for example. The pitch D5 of the via conductor 311b or 321b is 770 μm.
 電子部品200の表裏面(第3面F3及び第4面F4)の少なくとも一方は、面積占有率40%~90%で電極210、220を有していることが好ましい。すなわち、電極210の第3面F3において上部210a及び220aが占める割合(以下、第1の面積占有率という)は、40%~90%の範囲にあることが好ましい。また、電極220の第4面F4において下部210c及び220cが占める割合(以下、第2の面積占有率という)は、40%~90%の範囲にあることが好ましい。第1又は第2の面積占有率が40%以上であると、電極210、220とビア導体311b、321bとの電気的接続(ビア接続)のアライメントが容易になる。また、第1又は第2の面積占有率が90%以下であると、電極210、220の表面でのデラミネーションが生じにくくなるため、デラミネーションを抑制するための処理、例えば電極210、220表面の粗化処理等を割愛し易くなる。なお、本実施形態では、第1及び第2の面積占有率(%)がそれぞれ、100×(幅D12×幅D13+幅D12×幅D13)/(幅D11×幅D12)に相当する。 At least one of the front and back surfaces (third surface F3 and fourth surface F4) of electronic component 200 preferably has electrodes 210 and 220 with an area occupancy of 40% to 90%. In other words, the proportion of the upper surface 210a and 220a in the third surface F3 of the electrode 210 (hereinafter referred to as the first area occupation ratio) is preferably in the range of 40% to 90%. Further, the ratio of the lower portions 210c and 220c in the fourth surface F4 of the electrode 220 (hereinafter referred to as the second area occupation ratio) is preferably in the range of 40% to 90%. When the first or second area occupation ratio is 40% or more, alignment of electrical connection (via connection) between the electrodes 210 and 220 and the via conductors 311b and 321b becomes easy. In addition, when the first or second area occupancy is 90% or less, delamination is less likely to occur on the surfaces of the electrodes 210 and 220. Therefore, a treatment for suppressing delamination, for example, the surfaces of the electrodes 210 and 220 This makes it easy to omit the roughening process. In the present embodiment, the first and second area occupation ratios (%) correspond to 100 × (width D12 × width D13 + width D12 × width D13) / (width D11 × width D12), respectively.
 本実施形態では、例えば図4に示すように、複数のスルーホール導体300b(及びフィルドスタックS)が、電子部品200の周辺に配置される。ただしこれに限られず、スルーホール導体300bの配置及び数は任意である。スルーホール導体300bの数は1つであっても複数であってもよい。 In the present embodiment, for example, as shown in FIG. 4, a plurality of through-hole conductors 300 b (and filled stacks S) are arranged around the electronic component 200. However, the arrangement and the number of through-hole conductors 300b are not limited to this and are arbitrary. The number of through-hole conductors 300b may be one or plural.
 基板100は、例えばガラスクロス(心材)にエポキシ樹脂を含浸させたもの(以下、ガラエポという)からなる。心材は、主材料(本実施形態ではエポキシ樹脂)よりも熱膨張率の小さい材料である。心材としては、例えばガラス繊維(例えばガラス布又はガラス不織布)、アラミド繊維(例えばアラミド不織布)、又はシリカフィラー等の無機材料が好ましいと考えられる。ただし、基板100の材料は、基本的に任意である。例えばエポキシ樹脂に代えて、ポリエステル樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、イミド樹脂(ポリイミド)、フェノール樹脂、又はアリル化フェニレンエーテル樹脂(A-PPE樹脂)等を用いてもよい。基板100は、異種材料からなる複数の層から構成されていてもよい。 The substrate 100 is made of, for example, a glass cloth (core material) impregnated with an epoxy resin (hereinafter referred to as glass epoxy). The core material is a material having a smaller coefficient of thermal expansion than the main material (in the present embodiment, epoxy resin). As a core material, it is thought that inorganic materials, such as glass fiber (for example, glass cloth or a glass nonwoven fabric), an aramid fiber (for example, an aramid nonwoven fabric), or a silica filler, are preferable, for example. However, the material of the substrate 100 is basically arbitrary. For example, polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin. The substrate 100 may be composed of a plurality of layers made of different materials.
 本実施形態では、絶縁層101、102の各々が、心材を樹脂に含浸してなる。絶縁層101、102は、例えばガラエポからなる。ただしこれに限定されず、例えば絶縁層101、102は心材を含まない樹脂からなってもよい。また、絶縁層101、102の材料は、基本的に任意である。例えばエポキシ樹脂に代えて、ポリエステル樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、イミド樹脂(ポリイミド)、フェノール樹脂、又はアリル化フェニレンエーテル樹脂(A-PPE樹脂)等を用いてもよい。各絶縁層は、異種材料からなる複数の層から構成されていてもよい。 In this embodiment, each of the insulating layers 101 and 102 is formed by impregnating a core material with resin. The insulating layers 101 and 102 are made of glass epoxy, for example. However, the present invention is not limited to this. For example, the insulating layers 101 and 102 may be made of a resin that does not contain a core material. In addition, the material of the insulating layers 101 and 102 is basically arbitrary. For example, polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin. Each insulating layer may be composed of a plurality of layers made of different materials.
 導体層110は、銅箔111(下層)と、銅めっき112(上層)と、から構成され、導体層120は、銅箔121(下層)と、銅めっき122(上層)と、から構成される。導体層110、120は、例えば電気回路(例えば電子部品200を含む電気回路)を構成する配線、ランド、及び配線板10の強度を高めるためのベタパターンなどを有する。 The conductor layer 110 is composed of a copper foil 111 (lower layer) and a copper plating 112 (upper layer), and the conductor layer 120 is composed of a copper foil 121 (lower layer) and a copper plating 122 (upper layer). . The conductor layers 110 and 120 include, for example, wirings and lands constituting an electric circuit (for example, an electric circuit including the electronic component 200), a solid pattern for increasing the strength of the wiring board 10, and the like.
 導体層301に電気的に接続されるビア導体312bの各々は、図1に示すように、基準面F0に向かって幅が狭くなっている。また、電子部品200の電極210、220(詳しくは、上部210a、220a)に電気的に接続されるビア導体311bの各々は、図1に示すように、基準面F0に向かって幅が狭くなっている。本実施形態では、図5Aに示すように、ビア導体311b及び312bの形状がそれぞれ、例えば導体層301又は電子部品200の電極210、220から上層に向かって幅が広くなるようにテーパしたテーパ円柱(円錐台)である。ビア導体311b、312bの各々は、例えば銅めっきからなる。 Each of the via conductors 312b electrically connected to the conductor layer 301 has a width narrowing toward the reference plane F0 as shown in FIG. Further, each of the via conductors 311b electrically connected to the electrodes 210 and 220 (specifically, the upper portions 210a and 220a) of the electronic component 200 becomes narrower toward the reference plane F0 as shown in FIG. ing. In the present embodiment, as shown in FIG. 5A, the shape of each of the via conductors 311b and 312b is a tapered cylinder tapered so as to increase in width from, for example, the conductor layer 301 or the electrodes 210 and 220 of the electronic component 200 toward the upper layer. (Conical frustum). Each of the via conductors 311b and 312b is made of, for example, copper plating.
 一方、導体層302に電気的に接続されるビア導体322bの各々は、図1に示すように、基準面F0に向かって幅が狭くなっている。また、電子部品200の電極210、220(詳しくは、下部210c、220c)に電気的に接続されるビア導体321bの各々は、図1に示すように、基準面F0に向かって幅が狭くなっている。本実施形態では、図5Bに示すように、ビア導体321b及び322bの形状がそれぞれ、例えば導体層302の導体パターン又は電子部品200の電極210、220から上層に向かって幅が広くなるようにテーパしたテーパ円柱(円錐台)である。ビア導体321b、322bの各々は、例えば銅めっきからなる。 On the other hand, as shown in FIG. 1, each of the via conductors 322b electrically connected to the conductor layer 302 has a width narrowing toward the reference plane F0. Further, each of the via conductors 321b electrically connected to the electrodes 210 and 220 (specifically, the lower portions 210c and 220c) of the electronic component 200 becomes narrower toward the reference plane F0 as shown in FIG. ing. In this embodiment, as shown in FIG. 5B, the via conductors 321b and 322b are tapered such that the width increases from the conductor pattern of the conductor layer 302 or the electrodes 210 and 220 of the electronic component 200 toward the upper layer, for example. Taper cylinder (conical frustum). Each of the via conductors 321b and 322b is made of, for example, copper plating.
 基板100の熱膨張係数(X、Y方向)は、例えば3ppm~11ppmの範囲にあり、電子部品200の熱膨張係数は、例えば10ppm~15ppmの範囲にある。ただし、基板100の厚さT20(図2A)が0.06mm~1.0mmの範囲にある場合には、基板100(コア基板)の熱膨張係数が、電子部品200の熱膨張係数と同様もしくはこれよりも小さいことが好ましい。これにより、基板100(コア基板)が薄い場合でも、反りを抑制し易くなる。 The thermal expansion coefficient (X, Y direction) of the substrate 100 is in the range of 3 ppm to 11 ppm, for example, and the thermal expansion coefficient of the electronic component 200 is in the range of 10 ppm to 15 ppm, for example. However, when the thickness T20 of the substrate 100 (FIG. 2A) is in the range of 0.06 mm to 1.0 mm, the thermal expansion coefficient of the substrate 100 (core substrate) is the same as the thermal expansion coefficient of the electronic component 200 or It is preferable to be smaller than this. Thereby, even when the board | substrate 100 (core board | substrate) is thin, it becomes easy to suppress curvature.
 各導体層及び各ビア導体の材料は、導体であれば任意であり、金属でも非金属でもよい。各導体層及び各ビア導体は、異種材料からなる複数の層から構成されていてもよい。 The material of each conductor layer and each via conductor is arbitrary as long as it is a conductor, and may be metal or nonmetal. Each conductor layer and each via conductor may be composed of a plurality of layers made of different materials.
 本実施形態の基板100には、基板100(コア基板)中の基準面F0から第1面F1に向かって幅が広くなる第1導体部R11と、基準面F0から第2面F2に向かって幅が広くなる第2導体部R12と、を有するスルーホール導体300b(図2A参照)が形成されている。このため、例えば図6に示すように、電極210の側部210b(側面電極)において電子部品200の厚み方向(Z方向)における中央部が両端部よりも外側に膨らんでいる場合、スルーホール導体300bと電子部品200(詳しくは、側部210bの表面)との距離D0が、電子部品200の厚み方向において略均一になり易くなる。これにより、スルーホール導体300bと電子部品200との間での熱応力による収縮量が電子部品200の厚み方向において略均一になるため、配線板10に歪みが生じにくくなる。その結果、配線板10の反りが抑制される。そして、配線板10の反りが抑制されることにより、電子部品200の電極210、220表面でのデラミネーション、各電気的接続部位における亀裂、又は電子部品200のクラック等が生じにくくなる。その結果、配線板10における電気的接続の信頼性が向上する。また、距離D0が均一になることで、スルーホール導体300bと電子部品200との間における絶縁信頼性を確保し易くなる。その結果、スルーホール導体300bと電子部品200とを互いに近づけることが可能になり、電子部品200の近傍にスルーホール導体300bを配置し易くなる。スルーホール導体300bと電子部品200との距離D0は150μm~500μmの範囲にあることが好ましい。距離D0がこうした範囲にあれば、スルーホール導体300bと電子部品200との間における絶縁信頼性を確保しつつ、配線板10の小型化を図り易くなる。特に好ましい一例では、距離D0は200μmである。 The substrate 100 according to the present embodiment includes a first conductor portion R11 that increases in width from the reference surface F0 in the substrate 100 (core substrate) toward the first surface F1, and from the reference surface F0 toward the second surface F2. A through-hole conductor 300b (see FIG. 2A) having a second conductor portion R12 that is wider is formed. For this reason, for example, as shown in FIG. 6, in the case where the central portion in the thickness direction (Z direction) of the electronic component 200 swells outside the both end portions in the side portion 210 b (side surface electrode) of the electrode 210. The distance D0 between 300b and the electronic component 200 (specifically, the surface of the side portion 210b) is likely to be substantially uniform in the thickness direction of the electronic component 200. As a result, the amount of shrinkage due to thermal stress between the through-hole conductor 300b and the electronic component 200 becomes substantially uniform in the thickness direction of the electronic component 200, so that the wiring board 10 is less likely to be distorted. As a result, warping of the wiring board 10 is suppressed. And by suppressing the curvature of the wiring board 10, it becomes difficult to produce the delamination on the surface of the electrodes 210 and 220 of the electronic component 200, the crack in each electrical connection part, the crack of the electronic component 200, etc. As a result, the reliability of electrical connection in the wiring board 10 is improved. In addition, since the distance D0 is uniform, it is easy to ensure the insulation reliability between the through-hole conductor 300b and the electronic component 200. As a result, the through-hole conductor 300b and the electronic component 200 can be brought close to each other, and the through-hole conductor 300b can be easily disposed in the vicinity of the electronic component 200. The distance D0 between the through-hole conductor 300b and the electronic component 200 is preferably in the range of 150 μm to 500 μm. When the distance D0 is within such a range, it is easy to reduce the size of the wiring board 10 while ensuring the insulation reliability between the through-hole conductor 300b and the electronic component 200. In a particularly preferred example, the distance D0 is 200 μm.
 なお、図6の例では、側面電極(側部210b)の中央部が、その両端部よりも寸法D20だけ外側に膨らんでいる。 In the example of FIG. 6, the center part of the side electrode (side part 210b) swells outward by a dimension D20 from both end parts.
 本実施形態では、絶縁層101(第1絶縁層)に形成される全てのビア導体(ビア導体311b及び312b)が基準面F0に向かって幅が狭くなり、且つ、絶縁層102(第2絶縁層)に形成される全てのビア導体(ビア導体321b及び322b)が基準面F0に向かって幅が狭くなる。これにより、応力等が、基板100(コア基板)中の基準面F0に集中し易くなり、X-Y平面における応力分布の均一化が図られると考えられる。またその結果、配線板10の反りが抑制され、配線板10における電気的接続の信頼性が向上すると考えられる。 In the present embodiment, all via conductors (via conductors 311b and 312b) formed in the insulating layer 101 (first insulating layer) become narrower toward the reference plane F0, and the insulating layer 102 (second insulating layer). All via conductors (via conductors 321b and 322b) formed in the layer) become narrower toward the reference plane F0. Thereby, it is considered that stress and the like are easily concentrated on the reference plane F0 in the substrate 100 (core substrate), and the stress distribution in the XY plane can be made uniform. As a result, it is considered that the warpage of the wiring board 10 is suppressed and the reliability of electrical connection in the wiring board 10 is improved.
 配線板10のビア導体は、基準面F0について対称的な構造を有する。詳しくは、基準面F0の第1面F1側に位置するビア導体(ビア導体311b及び312b)と、基準面F0の第2面F2側に位置するビア導体(ビア導体321b及び322b)とは、互いに対称的な配置及び形状を有する(図1参照)。これにより、基準面F0の両側で応力が相殺され易くなると考えられる。またその結果、配線板10の反りが抑制され、配線板10における電気的接続の信頼性が向上すると考えられる。 The via conductor of the wiring board 10 has a symmetrical structure with respect to the reference plane F0. Specifically, the via conductors (via conductors 311b and 312b) located on the first surface F1 side of the reference surface F0 and the via conductors (via conductors 321b and 322b) located on the second surface F2 side of the reference surface F0 are: They have a symmetrical arrangement and shape (see FIG. 1). Thereby, it is considered that stress is easily canceled on both sides of the reference plane F0. As a result, it is considered that the warpage of the wiring board 10 is suppressed and the reliability of electrical connection in the wiring board 10 is improved.
 配線板10の基準面F0を挟む上下(Z1側及びZ2側)間で熱膨張・熱収縮のアンバランスがある場合、配線板10に反りが生じ易くなると考えられる。しかし、本実施形態では、剛性の高い電子部品200(例えばMLCC)及びスルーホール導体300bが、基準面F0付近に位置するため、このような場合でも配線板10に反りが生じにくい。すなわち、電子部品200が存在する領域では、電子部品200の剛性が高いことから、反りが抑制される。また、電子部品200が存在しない領域でも、高い剛性を有し基準面F0から離れるに従って幅が広くなるスルーホール導体300bにより、熱応力が、基準面F0から外側へ、ひいては基板100全体に伝播されにくくなる。その結果、配線板10の反りは抑制される。 When there is an imbalance between thermal expansion and thermal contraction between the upper and lower sides (Z1 side and Z2 side) sandwiching the reference plane F0 of the wiring board 10, it is considered that the wiring board 10 is likely to warp. However, in the present embodiment, since the highly rigid electronic component 200 (for example, MLCC) and the through-hole conductor 300b are located in the vicinity of the reference plane F0, even in such a case, the wiring board 10 is hardly warped. That is, in the region where the electronic component 200 exists, the warpage is suppressed because the rigidity of the electronic component 200 is high. Further, even in a region where the electronic component 200 does not exist, thermal stress is propagated outward from the reference plane F0 and thus to the entire substrate 100 by the through-hole conductor 300b which has high rigidity and becomes wider as it is away from the reference plane F0. It becomes difficult. As a result, warping of the wiring board 10 is suppressed.
 以下、図7等を参照して、配線板10の製造方法について説明する。図7は、本実施形態に係る配線板10の製造方法の概略的な内容及び手順を示すフローチャートである。 Hereinafter, a method for manufacturing the wiring board 10 will be described with reference to FIG. FIG. 7 is a flowchart showing a schematic content and procedure of the method for manufacturing the wiring board 10 according to the present embodiment.
 ステップS11では、図8に示すように、出発材料として両面銅張積層板1000を準備する。両面銅張積層板1000は、基板100(コア基板)と、基板100の第1面F1上に形成された銅箔1001と、基板100の第2面F2上に形成された銅箔1002と、から構成される。本実施形態では、この段階において、基板100が、完全に硬化した状態(Cステージ)のガラエポからなる。 In step S11, as shown in FIG. 8, a double-sided copper-clad laminate 1000 is prepared as a starting material. The double-sided copper clad laminate 1000 includes a substrate 100 (core substrate), a copper foil 1001 formed on the first surface F1 of the substrate 100, a copper foil 1002 formed on the second surface F2 of the substrate 100, Consists of In the present embodiment, at this stage, the substrate 100 is made of a glass epoxy in a completely cured state (C stage).
 続けて、図7のステップS12で、スルーホール導体300b及び導体層301、302を形成する。 Subsequently, in step S12 of FIG. 7, the through-hole conductor 300b and the conductor layers 301 and 302 are formed.
 詳しくは、図9に示すように、例えばCOレーザを用いて、第1面F1側からレーザを両面銅張積層板1000に照射することにより孔1003を形成し、第2面F2側からレーザを両面銅張積層板1000に照射することにより孔1004を形成する。孔1003の形状は第1導体部R11(図2A及び図2B参照)に対応し、孔1004の形状は第2導体部R12(図2A及び図2B参照)に対応する。孔1003と孔1004とは、X-Y平面において略同じ位置に形成され、最終的にはつながって、両面銅張積層板1000を貫通するスルーホール300aとなる。スルーホール300aの形状は、スルーホール導体300b(図2A及び図2B参照)に対応し、砂時計状(鼓状)である。孔1003と孔1004との境界は括れ部300c(図2A及び図2B参照)に相当する。第1面F1に対するレーザ照射と第2面F2に対するレーザ照射とは、同時に行っても、片面ずつ行ってもよい。スルーホール300aを形成した後には、スルーホール300aについてデスミアを行うことが好ましい。デスミアにより、不要な導通(ショート)が抑制される。また、レーザ光の吸収効率を高めるため、レーザ照射に先立って銅箔1001、1002の表面を黒化処理してもよい。なお、スルーホール300aの形成は、ドリル又はエッチングなど、レーザ以外の方法で行ってもよい。ただし、レーザ加工であれば、微細な加工をし易い。特に、基板100の熱膨張係数が小さい場合には、ドリル加工が困難になるため、レーザ加工が有効である。 Specifically, as shown in FIG. 9, for example, using a CO 2 laser, a hole 1003 is formed by irradiating the double-sided copper-clad laminate 1000 with a laser from the first surface F1 side, and a laser is emitted from the second surface F2 side. Is formed on the double-sided copper-clad laminate 1000 to form a hole 1004. The shape of the hole 1003 corresponds to the first conductor portion R11 (see FIGS. 2A and 2B), and the shape of the hole 1004 corresponds to the second conductor portion R12 (see FIGS. 2A and 2B). The hole 1003 and the hole 1004 are formed at substantially the same position in the XY plane and are finally connected to form a through hole 300a penetrating the double-sided copper-clad laminate 1000. The shape of the through hole 300a corresponds to the through hole conductor 300b (see FIGS. 2A and 2B), and has an hourglass shape (a drum shape). The boundary between the hole 1003 and the hole 1004 corresponds to the constricted portion 300c (see FIGS. 2A and 2B). The laser irradiation on the first surface F1 and the laser irradiation on the second surface F2 may be performed simultaneously or one surface at a time. After the through hole 300a is formed, it is preferable to perform desmearing on the through hole 300a. Undesirable conduction (short circuit) is suppressed by desmear. Further, the surface of the copper foils 1001 and 1002 may be blackened prior to laser irradiation in order to increase the absorption efficiency of laser light. The through hole 300a may be formed by a method other than laser, such as drilling or etching. However, fine processing is easy with laser processing. In particular, when the thermal expansion coefficient of the substrate 100 is small, drilling becomes difficult, so laser processing is effective.
 続けて、例えばパネルめっき法により、図10に示すように、銅箔1001、1002上及びスルーホール300a内に、例えば銅のめっき1005を形成する。具体的には、まず無電解めっきを行い、続けてめっき液を用いて、その無電解めっき膜をシード層として電解めっきを行うことにより、めっき1005を形成する。これにより、スルーホール300aにめっき1005が充填され、スルーホール導体300bが形成される。 Subsequently, for example, a copper plating 1005 is formed on the copper foils 1001 and 1002 and in the through hole 300a as shown in FIG. Specifically, first, electroless plating is performed, and then plating 1005 is formed by performing electrolytic plating using the electroless plating film as a seed layer using a plating solution. Thereby, the through hole 300a is filled with the plating 1005, and the through hole conductor 300b is formed.
 続けて、例えばエッチングレジスト及びエッチング液を用いて、基板100の第1面F1及び第2面F2に形成された各導体層のパターニングを行う。具体的には、導体層301、302に対応したパターンを有するエッチングレジストで各導体層を覆い、各導体層の、エッチングレジストで覆われない部分(エッチングレジストの開口部で露出する部位)を、エッチングで除去する。これにより、図11に示すように、基板100の第1面F1、第2面F2上にそれぞれ、導体層301、302が形成される。なお、エッチングは、湿式に限られず、乾式であってもよい。 Subsequently, patterning of each conductor layer formed on the first surface F1 and the second surface F2 of the substrate 100 is performed using, for example, an etching resist and an etching solution. Specifically, each conductor layer is covered with an etching resist having a pattern corresponding to the conductor layers 301 and 302, and a portion of each conductor layer that is not covered with the etching resist (part exposed at the opening of the etching resist) Remove by etching. Thus, as shown in FIG. 11, conductor layers 301 and 302 are formed on the first surface F1 and the second surface F2 of the substrate 100, respectively. Note that the etching is not limited to wet, and may be dry.
 本実施形態では、図12Aに示すように、基板100上、キャビティR10に対応した領域R100には、導体層301が形成されない。導体層301がこうした導体パターンを有すると、キャビティR10の位置及び形状が明確になるため、後の工程(図7のステップS13)において、キャビティR10を形成するためのレーザ照射のアライメントが容易になる。 In this embodiment, as shown in FIG. 12A, the conductor layer 301 is not formed on the substrate 100 in the region R100 corresponding to the cavity R10. When the conductor layer 301 has such a conductor pattern, the position and shape of the cavity R10 are clarified, so that laser irradiation alignment for forming the cavity R10 is facilitated in the subsequent process (step S13 in FIG. 7). .
 ただし、導体層301の導体パターンは、図12Aに示すパターンに限られない。例えば図12Bに示すように、基板100上の、後の工程(図7のステップS13)においてレーザを照射する部分(以下、レーザ照射路という)のみ、導体層301が形成されていなくてもよい。この場合、レーザ照射路の内側には、導体層301が存在する。こうした導体層301であっても、キャビティR10を形成するためのレーザ照射のアライメントが容易になる。 However, the conductor pattern of the conductor layer 301 is not limited to the pattern shown in FIG. 12A. For example, as shown in FIG. 12B, the conductor layer 301 may not be formed only on a portion (hereinafter referred to as a laser irradiation path) on the substrate 100 where the laser is irradiated in the subsequent process (step S13 in FIG. 7). . In this case, the conductor layer 301 exists inside the laser irradiation path. Even with such a conductor layer 301, alignment of laser irradiation for forming the cavity R10 is facilitated.
 また、本実施形態では、図12Aに示すように、導体層301がアライメントマーク301aを有する。アライメントマーク301aは、例えば後の工程(図7のステップS14)において光学的に認識できるパターンであり、例えばエッチング等により、部分的に導体を除去することによって形成することができる。本実施形態では、アライメントマーク301aが、領域R100の周囲(例えば4隅)に配置される。ただしこれに限られず、アライメントマーク301aの配置及び形状は任意である。 In this embodiment, as shown in FIG. 12A, the conductor layer 301 has an alignment mark 301a. The alignment mark 301a is a pattern that can be optically recognized in a later process (step S14 in FIG. 7), for example, and can be formed by partially removing the conductor, for example, by etching or the like. In the present embodiment, alignment marks 301a are arranged around the region R100 (for example, four corners). However, the present invention is not limited to this, and the arrangement and shape of the alignment mark 301a are arbitrary.
 続けて、図7のステップS13で、基板100(コア基板)にキャビティR10を形成する。本実施形態では、図13に示すように、基板100にレーザを照射することにより、キャビティR10を形成する。具体的には、例えば図12Aに示すように、四角形を描くようにレーザを照射することにより、基板100における、キャビティR10に対応した領域R100を、その周りの部分から切り取る。レーザの照射角度は、例えば基板100の第1面F1に対して略垂直の角度とする。これにより、図14に示すように、キャビティR10が形成される。本実施形態では、キャビティR10をレーザにより形成するため、キャビティR10が容易に得られる。キャビティR10は、電子部品200の収容スペースとなる。 Subsequently, in step S13 of FIG. 7, a cavity R10 is formed in the substrate 100 (core substrate). In the present embodiment, as shown in FIG. 13, the cavity R10 is formed by irradiating the substrate 100 with a laser. Specifically, for example, as shown in FIG. 12A, the region R100 corresponding to the cavity R10 in the substrate 100 is cut out from the surrounding portion by irradiating the laser so as to draw a square. The laser irradiation angle is set to be substantially perpendicular to the first surface F1 of the substrate 100, for example. As a result, a cavity R10 is formed as shown in FIG. In this embodiment, since the cavity R10 is formed by a laser, the cavity R10 can be easily obtained. The cavity R10 is a space for accommodating the electronic component 200.
 続けて、図7のステップS14で、電子部品200を、基板100のキャビティR10に配置する。 Subsequently, the electronic component 200 is placed in the cavity R10 of the substrate 100 in step S14 of FIG.
 具体的には、図15に示すように、例えばPET(ポリ・エチレン・テレフタレート)からなるキャリア1006を、基板100の片側(例えば第2面F2)に設ける。これにより、キャビティR10(孔)の一方の開口がキャリア1006で塞がれる。本実施形態では、キャリア1006が、粘着シート(例えばテープ)からなり、基板100側に粘着性を有する。キャリア1006は、例えばラミネートにより、基板100と接着される。 Specifically, as shown in FIG. 15, a carrier 1006 made of, for example, PET (polyethylene terephthalate) is provided on one side (for example, the second surface F2) of the substrate 100. Thereby, one opening of the cavity R10 (hole) is closed by the carrier 1006. In this embodiment, the carrier 1006 is made of an adhesive sheet (for example, a tape) and has adhesiveness on the substrate 100 side. The carrier 1006 is bonded to the substrate 100 by lamination, for example.
 続けて、図16に示すように、キャビティR10(孔)の塞がれた開口とは反対側(Z1側)から、キャビティR10に電子部品200を入れる。電子部品200は、例えば部品実装機によりキャビティR10に入れ込まれる。例えば電子部品200は、真空チャック等により保持され、キャビティR10の上方(Z1側)に運ばれた後、そこから鉛直方向に沿って下降し、キャビティR10に入れられる。これにより、図17に示すように、キャリア1006(粘着シート)上に、電子部品200が配置される。なお、電子部品200の位置決めをする際には、アライメントマーク301a(図12A、図12B参照)を用いることが好ましい。そうすることで、電子部品200とキャビティR10との位置合わせの精度を高めることが可能になると考えられる。 Subsequently, as shown in FIG. 16, the electronic component 200 is inserted into the cavity R10 from the opposite side (Z1 side) to the opening where the cavity R10 (hole) is blocked. The electronic component 200 is inserted into the cavity R10 by a component mounting machine, for example. For example, the electronic component 200 is held by a vacuum chuck or the like, conveyed to the upper side (Z1 side) of the cavity R10, and then descends along the vertical direction, and is put into the cavity R10. Thereby, as shown in FIG. 17, the electronic component 200 is arrange | positioned on the carrier 1006 (adhesive sheet). When positioning the electronic component 200, it is preferable to use an alignment mark 301a (see FIGS. 12A and 12B). By doing so, it is considered possible to increase the accuracy of alignment between the electronic component 200 and the cavity R10.
 本実施形態では、電子部品200の電極210、220及び導体層301、302の表面を粗化しない。しかし、必要に応じて、エッチング等により粗化してもよい。 In the present embodiment, the surfaces of the electrodes 210 and 220 and the conductor layers 301 and 302 of the electronic component 200 are not roughened. However, it may be roughened by etching or the like as necessary.
 続けて、図7のステップS15で、図18に示すように、半硬化の状態で、キャビティR10(孔)の塞がれた開口とは反対側(Z1側)の、基板100の第1面F1上及び電子部品200の第3面F3上に、絶縁層101(第1の層間絶縁層)を配置する。さらに、絶縁層101上に、銅箔111(第1の銅箔)を配置する。絶縁層101は、例えばガラエポのプリプレグからなる。続けて、図19Aに示すように、絶縁層101を半硬化の状態でプレスすることにより、絶縁層101から樹脂を流出させてキャビティR10へ流し込む。これにより、図19Bに示すように、キャビティR10における基板100と電子部品200との隙間R1に絶縁体101a(絶縁層101を構成する樹脂)が充填される。この際、基板100と電子部品200との隙間が狭ければ、電子部品200の固定が弱くても、樹脂がキャビティR10へ流れ込む勢いで、電子部品200の位置ずれや、好ましくない傾きは生じにくい。なお、絶縁体101aは、基板100及び電子部品200のいずれよりも大きな熱膨張係数を有する。 Subsequently, in step S15 of FIG. 7, as shown in FIG. 18, in the semi-cured state, the first surface of the substrate 100 opposite to the opening where the cavity R10 (hole) is blocked (Z1 side). An insulating layer 101 (first interlayer insulating layer) is disposed on F1 and the third surface F3 of the electronic component 200. Further, a copper foil 111 (first copper foil) is disposed on the insulating layer 101. The insulating layer 101 is made of, for example, a glass prepreg. Subsequently, as shown in FIG. 19A, by pressing the insulating layer 101 in a semi-cured state, the resin flows out from the insulating layer 101 and flows into the cavity R10. As a result, as shown in FIG. 19B, a gap R1 between the substrate 100 and the electronic component 200 in the cavity R10 is filled with the insulator 101a (resin constituting the insulating layer 101). At this time, if the gap between the substrate 100 and the electronic component 200 is narrow, even if the fixing of the electronic component 200 is weak, the resin flows into the cavity R10 and the electronic component 200 is less likely to be displaced or undesirably tilted. . Note that the insulator 101 a has a larger thermal expansion coefficient than both the substrate 100 and the electronic component 200.
 キャビティR10に絶縁体101aが充填されたら、その充填樹脂(絶縁体101a)と電子部品200との仮溶着を行う。具体的には、加熱により充填樹脂に電子部品200を支持できる程度の保持力を発現させる。これにより、キャリア1006に支持されていた電子部品200が、充填樹脂によって支持されるようになる。その後、キャリア1006を除去する。 Once the cavity R10 is filled with the insulator 101a, the filling resin (insulator 101a) and the electronic component 200 are temporarily welded. Specifically, the holding resin has such a degree that the electronic component 200 can be supported by the filling resin by heating. As a result, the electronic component 200 supported by the carrier 1006 is supported by the filling resin. Thereafter, the carrier 1006 is removed.
 なお、この段階では、絶縁体101a(充填樹脂)及び絶縁層101は半硬化しているにすぎず、完全には硬化していない。ただしこれに限られず、例えば、この段階で絶縁体101a及び絶縁層101を完全に硬化させてもよい。 At this stage, the insulator 101a (filling resin) and the insulating layer 101 are only semi-cured and not completely cured. However, the invention is not limited to this. For example, the insulator 101a and the insulating layer 101 may be completely cured at this stage.
 続けて、図7のステップS16で、基板100の第2面F2側にビルドアップを行う。 Subsequently, build-up is performed on the second surface F2 side of the substrate 100 in step S16 of FIG.
 具体的には、図20に示すように、基板100の第2面F2上に、絶縁層102(第2の層間絶縁層)及び銅箔121(第2の銅箔)を配置する。絶縁層102は、例えばガラエポのプリプレグからなる。続けて、例えばプレスにより、絶縁層102を半硬化の状態で基板100及び電子部品200に接着させた後、加熱して絶縁層101、102の各々を硬化させる。本実施形態では、粘着シート(キャリア1006)を除去した後に、キャビティR10に充填した樹脂を硬化させるため、絶縁層101、102の硬化を同時に行うことが可能になる。そして、両面の絶縁層101、102の硬化を同時に行うことにより、基板100の反りが抑制されるため、基板100を薄くし易くなる。 Specifically, as shown in FIG. 20, an insulating layer 102 (second interlayer insulating layer) and a copper foil 121 (second copper foil) are disposed on the second surface F2 of the substrate 100. The insulating layer 102 is made of, for example, a glass prepreg. Subsequently, the insulating layer 102 is bonded to the substrate 100 and the electronic component 200 in a semi-cured state by pressing, for example, and then heated to cure each of the insulating layers 101 and 102. In this embodiment, since the resin filled in the cavity R10 is cured after removing the adhesive sheet (carrier 1006), the insulating layers 101 and 102 can be cured simultaneously. Then, by simultaneously curing the insulating layers 101 and 102 on both sides, warpage of the substrate 100 is suppressed, so that the substrate 100 can be easily thinned.
 続く図7のステップS17では、ビア導体及び導体層を形成する。 In subsequent step S17 of FIG. 7, via conductors and conductor layers are formed.
 詳しくは、図21に示すように、例えばレーザにより、絶縁層101及び銅箔111に孔311a及び312a(それぞれビアホール)を形成し、絶縁層102及び銅箔121に孔321a及び322a(それぞれビアホール)を形成する。孔311a及び312aの各々は絶縁層101及び銅箔111を貫通し、孔321a及び322aの各々は絶縁層102及び銅箔121を貫通する。そして、孔311a及び321aの各々は、電子部品200の電極210又は220に至り、孔312a及び322aの各々は、スルーホール導体300bの直上に至る。その後、必要に応じて、デスミアを行う。 Specifically, as shown in FIG. 21, holes 311a and 312a (respectively via holes) are formed in the insulating layer 101 and the copper foil 111 by, for example, laser, and holes 321a and 322a (respectively via holes) are formed in the insulating layer 102 and the copper foil 121. Form. Each of the holes 311 a and 312 a penetrates the insulating layer 101 and the copper foil 111, and each of the holes 321 a and 322 a penetrates the insulating layer 102 and the copper foil 121. Each of the holes 311a and 321a reaches the electrode 210 or 220 of the electronic component 200, and each of the holes 312a and 322a reaches just above the through-hole conductor 300b. Then, desmear is performed as needed.
 続けて、図22Aに示すように、例えば化学めっき法により、銅箔111、121上及び孔311a、312a、321a、322a内に、例えば銅の無電解めっき膜1007、1008を形成する。なお、無電解めっきに先立って、例えば浸漬により、パラジウム等からなる触媒を、絶縁層101、102の表面に吸着させてもよい。 Subsequently, as shown in FIG. 22A, for example, copper electroless plating films 1007 and 1008 are formed on the copper foils 111 and 121 and in the holes 311a, 312a, 321a and 322a by, for example, chemical plating. Prior to electroless plating, a catalyst made of palladium or the like may be adsorbed on the surfaces of the insulating layers 101 and 102, for example, by dipping.
 続けて、図22Bに示すように、リソグラフィ技術又は印刷等により、第1面F1側の主面(無電解めっき膜1007上)に、開口部1009aを有するめっきレジスト1009を、また、第2面F2側の主面(無電解めっき膜1008上)に、開口部1010aを有するめっきレジスト1010を、それぞれ形成する。開口部1009a、1010aはそれぞれ、導体層110、120(図1)に対応したパターンを有する。 Subsequently, as shown in FIG. 22B, a plating resist 1009 having an opening 1009a is formed on the main surface (on the electroless plating film 1007) on the first surface F1 side by the lithography technique or printing, and the second surface. A plating resist 1010 having an opening 1010a is formed on the main surface on the F2 side (on the electroless plating film 1008). The openings 1009a and 1010a have patterns corresponding to the conductor layers 110 and 120 (FIG. 1), respectively.
 続けて、図22Cに示すように、例えばパターンめっき法により、めっきレジスト1009、1010の開口部1009a、1010aに、それぞれ例えば銅の電解めっき1011、1012を形成する。具体的には、陽極にめっきする材料である銅を接続し、陰極に被めっき材である無電解めっき膜1007、1008を接続して、めっき液に浸漬する。そして、両極間に直流の電圧を印加して電流を流し、無電解めっき膜1007、1008の表面に銅を析出させる。これにより、孔311a及び312a、孔321a及び322aに、それぞれ電解めっき1011、1012が充填され、例えば銅のめっきからなるビア導体311b、312b、321b、322bが形成される。 Subsequently, as shown in FIG. 22C, for example, copper electrolytic plating 1011 and 1012 are formed in the openings 1009a and 1010a of the plating resists 1009 and 1010, for example, by pattern plating. Specifically, copper that is a material to be plated is connected to the anode, and electroless plating films 1007 and 1008 that are materials to be plated are connected to the cathode and immersed in a plating solution. Then, a direct current voltage is applied between the two electrodes to pass a current, and copper is deposited on the surfaces of the electroless plating films 1007 and 1008. As a result, the holes 311a and 312a and the holes 321a and 322a are filled with the electrolytic plating 1011 and 1012, respectively, and via conductors 311b, 312b, 321b, and 322b made of, for example, copper plating are formed.
 その後、例えば所定の剥離液により、めっきレジスト1009及び1010を除去し、続けて不要な無電解めっき膜1007、1008及び銅箔111、121を除去することにより、図23に示すように、導体層110及び120が形成される。 Thereafter, the plating resists 1009 and 1010 are removed by, for example, a predetermined stripping solution, and then the unnecessary electroless plating films 1007 and 1008 and the copper foils 111 and 121 are removed, as shown in FIG. 110 and 120 are formed.
 なお、電解めっきのためのシード層は無電解めっき膜に限られず、無電解めっき膜1007、1008に代えて、スパッタ膜等をシード層として用いてもよい。 Note that the seed layer for electrolytic plating is not limited to the electroless plating film, and a sputtered film or the like may be used as the seed layer instead of the electroless plating films 1007 and 1008.
 続けて、図7のステップS18で、絶縁層101、102上にそれぞれ、開口部11aを有するソルダーレジスト11、開口部12aを有するソルダーレジスト12を形成する(図1参照)。導体層110、120はそれぞれ、開口部11a、12aに位置する所定の部位(パッドP1、P2及びランド等)を除いて、ソルダーレジスト11、12で覆われる。ソルダーレジスト11及び12は、例えばスクリーン印刷、スプレーコーティング、ロールコーティング、又はラミネート等により、形成することができる。 Subsequently, in step S18 of FIG. 7, a solder resist 11 having an opening 11a and a solder resist 12 having an opening 12a are formed on the insulating layers 101 and 102, respectively (see FIG. 1). The conductor layers 110 and 120 are covered with the solder resists 11 and 12 except for predetermined portions (pads P1 and P2 and lands, etc.) located in the openings 11a and 12a, respectively. The solder resists 11 and 12 can be formed by, for example, screen printing, spray coating, roll coating, or lamination.
 続けて、電解めっき又はスパッタリング等により、導体層110、120上、詳しくはソルダーレジスト11、12に覆われないパッドP1、P2(図1参照)の表面にそれぞれ、例えばNi/Au膜からなる耐食層を形成する。また、OSP処理を行うことにより、有機保護膜からなる耐食層を形成してもよい。 Subsequently, by electrolytic plating or sputtering, the corrosion resistance made of, for example, a Ni / Au film on the conductor layers 110 and 120, specifically on the surfaces of the pads P1 and P2 (see FIG. 1) not covered with the solder resists 11 and 12, respectively. Form a layer. Moreover, you may form the corrosion-resistant layer which consists of an organic protective film by performing OSP process.
 こうして、基板100の第1面F1上に、絶縁層101及び導体層110から構成される第1ビルドアップ部B1が形成され、基板100の第2面F2上に、絶縁層102及び導体層120から構成される第2ビルドアップ部B2が形成される。その結果、本実施形態の配線板10(図1)が完成する。その後、必要があれば、電子部品200の電気テスト(容量値及び絶縁性などのチェック)を行う。 Thus, the first buildup part B1 composed of the insulating layer 101 and the conductor layer 110 is formed on the first surface F1 of the substrate 100, and the insulating layer 102 and the conductor layer 120 are formed on the second surface F2 of the substrate 100. A second buildup part B2 composed of As a result, the wiring board 10 (FIG. 1) of this embodiment is completed. Thereafter, if necessary, an electrical test (checking of capacitance value, insulation, etc.) of the electronic component 200 is performed.
 本実施形態の製造方法は、配線板10の製造に適している。こうした製造方法であれば、低コストで、良好な配線板10が得られると考えられる。 The manufacturing method of the present embodiment is suitable for manufacturing the wiring board 10. With such a manufacturing method, it is considered that a good wiring board 10 can be obtained at low cost.
 本実施形態の配線板10は、例えば電子部品又は他の配線板と電気的に接続することができる。例えば図24に示すように、半田等により、配線板10のパッドP2に電子部品400(例えばICチップ)を実装することができる。また、パッドP1により、配線板10を他の配線板500(例えばマザーボード)に実装することができる。本実施形態の配線板10は、例えば携帯電話の回路基板として用いることができる。 The wiring board 10 of this embodiment can be electrically connected to, for example, an electronic component or another wiring board. For example, as shown in FIG. 24, an electronic component 400 (for example, an IC chip) can be mounted on the pad P2 of the wiring board 10 by solder or the like. Further, the wiring board 10 can be mounted on another wiring board 500 (for example, a mother board) by the pad P1. The wiring board 10 of this embodiment can be used as a circuit board of a mobile phone, for example.
 (実施形態2)
 実施形態2に係る配線板20は、電子部品内蔵配線板であり、図25に示すように、基板100と、絶縁層101及び102と、導体層110及び120と、電子部品200と、を有する。なお、本実施形態の配線板20は、リジッド配線板である。ただし、配線板20は、フレキシブル配線板であってもよい。
(Embodiment 2)
The wiring board 20 according to the second embodiment is a wiring board with a built-in electronic component, and includes a substrate 100, insulating layers 101 and 102, conductor layers 110 and 120, and an electronic component 200 as shown in FIG. . In addition, the wiring board 20 of this embodiment is a rigid wiring board. However, the wiring board 20 may be a flexible wiring board.
 基板100は、絶縁性を有し、配線板20のコア基板となる。以下、基板100の表裏面(2つの主面)の一方を第1面F1、他方を第2面F2という。 The substrate 100 has an insulating property and becomes a core substrate of the wiring board 20. Hereinafter, one of the front and back surfaces (two main surfaces) of the substrate 100 is referred to as a first surface F1, and the other is referred to as a second surface F2.
 電子部品200は、配線板20に内蔵される。以下、電子部品200の表裏面(2つの主面)の一方を第3面F3、他方を第4面F4という。 The electronic component 200 is built in the wiring board 20. Hereinafter, one of the front and back surfaces (two main surfaces) of the electronic component 200 is referred to as a third surface F3, and the other is referred to as a fourth surface F4.
 基板100にはキャビティR10(開口部)が形成され、キャビティR10には電子部品200が収容される。図26に、電子部品200が基板100(コア基板)のキャビティR10に収容された状態を示す。 A cavity R10 (opening) is formed in the substrate 100, and the electronic component 200 is accommodated in the cavity R10. FIG. 26 shows a state where the electronic component 200 is accommodated in the cavity R10 of the substrate 100 (core substrate).
 キャビティR10は、部分的にテーパした孔からなり、基板100を貫通する。キャビティR10の幅広側(Z1側)開口(以下、第1開口という)の形状及び幅狭側(Z2側)開口(以下、第2開口という)の形状はそれぞれ、略長方形になっている。ここで、第2開口の形状は、キャビティR10に臨む基板100の側面F10(キャビティR10の内壁)で囲まれる領域の形状に相当する。電子部品200は、例えばキャビティR10の第2開口の形状に対応した外形(例えば略同じ大きさの相似形)を有するチップであり、電子部品200の厚さとキャビティR10(孔)の深さとは、略一致する。また、基板100の厚さと電子部品200の厚さも、略一致する。 The cavity R10 is formed of a partially tapered hole and penetrates the substrate 100. The shape of the wide side (Z1 side) opening (hereinafter referred to as the first opening) and the shape of the narrow side (Z2 side) opening (hereinafter referred to as the second opening) of the cavity R10 are substantially rectangular. Here, the shape of the second opening corresponds to the shape of the region surrounded by the side surface F10 of the substrate 100 facing the cavity R10 (the inner wall of the cavity R10). The electronic component 200 is a chip having an outer shape (for example, a similar shape having substantially the same size) corresponding to the shape of the second opening of the cavity R10, for example. The thickness of the electronic component 200 and the depth of the cavity R10 (hole) are: It almost agrees. Further, the thickness of the substrate 100 and the thickness of the electronic component 200 are substantially the same.
 図26に示されるように、X方向もY方向も、電子部品200の幅は、キャビティR10の第2開口の幅よりも小さくなっており、電子部品200をキャビティR10に収容するために所定のクリアランスが確保されている。クリアランスは、キャビティR10の第2開口の幅から電子部品200の幅を引いたものである。X方向及びY方向のクリアランスはそれぞれ、約0μm~約142μmの範囲にあることが好ましいと考えられる。約142μmは、実装精度及び部品外形精度を考慮した値である。 As shown in FIG. 26, in both the X direction and the Y direction, the width of the electronic component 200 is smaller than the width of the second opening of the cavity R10, and a predetermined size is required to accommodate the electronic component 200 in the cavity R10. Clearance is secured. The clearance is obtained by subtracting the width of the electronic component 200 from the width of the second opening of the cavity R10. It is considered preferable that the clearances in the X direction and the Y direction are each in the range of about 0 μm to about 142 μm. About 142 μm is a value in consideration of mounting accuracy and component outline accuracy.
 電子部品200は、第3面F3を基板100の第1面F1と同じ向きにしてキャビティR10に配置される。電子部品200は、キャビティR10に配置されることにより、基板100の側方(X方向又はY方向)に位置する。本実施形態では、電子部品200の略全体がキャビティR10に完全に収容される。しかしこれに限られず、電子部品200の一部のみがキャビティR10に配置されてもよい。本実施形態では、キャビティR10における電子部品200と基板100との隙間に、絶縁体101aが充填される。絶縁体101aは、例えば上層の絶縁層101(樹脂絶縁層)を構成する樹脂のみからなる(図40A参照)。しかしこれに限られず、絶縁層101を構成する樹脂に代えて又はそれに加えて、基板100又は絶縁層102を構成する材料(例えば樹脂)を充填してもよく、また、別途用意した絶縁材料を充填してもよい。本実施形態では、絶縁体101aが、電子部品200の周りを完全に覆う。これにより、電子部品200が、絶縁体101a(樹脂)で保護されるとともに、所定の位置に固定される。 The electronic component 200 is arranged in the cavity R10 with the third surface F3 in the same direction as the first surface F1 of the substrate 100. The electronic component 200 is located in the side (X direction or Y direction) of the substrate 100 by being disposed in the cavity R10. In the present embodiment, substantially the entire electronic component 200 is completely accommodated in the cavity R10. However, the present invention is not limited to this, and only a part of the electronic component 200 may be disposed in the cavity R10. In the present embodiment, the insulator 101a is filled in the gap between the electronic component 200 and the substrate 100 in the cavity R10. The insulator 101a is made of, for example, only a resin constituting the upper insulating layer 101 (resin insulating layer) (see FIG. 40A). However, the present invention is not limited thereto, and instead of or in addition to the resin constituting the insulating layer 101, a material (for example, resin) constituting the substrate 100 or the insulating layer 102 may be filled, or a separately prepared insulating material is used. It may be filled. In the present embodiment, the insulator 101a completely covers the periphery of the electronic component 200. Thereby, the electronic component 200 is protected by the insulator 101a (resin) and fixed at a predetermined position.
 絶縁層101は、基板100の第1面F1上及び電子部品200の第3面F3上に形成される。絶縁層102は、基板100の第2面F2上及び電子部品200の第4面F4上に形成される。キャビティR10は、基板100を貫通する孔からなり、絶縁層101がキャビティR10(孔)の一方の開口を塞ぎ、絶縁層102がキャビティR10(孔)の他方の開口を塞いでいる。導体層110は、絶縁層101上に形成され、導体層120は、絶縁層102上に形成される。本実施形態では、導体層110及び120が、最外層となる。ただしこれに限られず、より多くの層間絶縁層及び導体層を積層してもよい。 The insulating layer 101 is formed on the first surface F1 of the substrate 100 and the third surface F3 of the electronic component 200. The insulating layer 102 is formed on the second surface F2 of the substrate 100 and the fourth surface F4 of the electronic component 200. The cavity R10 includes a hole penetrating the substrate 100. The insulating layer 101 closes one opening of the cavity R10 (hole), and the insulating layer 102 closes the other opening of the cavity R10 (hole). The conductor layer 110 is formed on the insulating layer 101, and the conductor layer 120 is formed on the insulating layer 102. In the present embodiment, the conductor layers 110 and 120 are the outermost layers. However, the present invention is not limited to this, and more interlayer insulating layers and conductor layers may be stacked.
 絶縁層102には孔321a(ビアホール)が形成されている。孔321a内に導体(例えば銅のめっき)が充填されることにより、その孔321a内の導体が、ビア導体321b(フィルド導体)となる。孔321aは、電子部品200の電極210、220に達し、孔321a内のビア導体321bは、電極210、220と電気的に接続される。そして、電子部品200の電極210、220と絶縁層102上の導体層120とは、ビア導体321bを介して、互いに電気的に接続される。 A hole 321 a (via hole) is formed in the insulating layer 102. By filling the hole 321a with a conductor (for example, copper plating), the conductor in the hole 321a becomes a via conductor 321b (filled conductor). The hole 321 a reaches the electrodes 210 and 220 of the electronic component 200, and the via conductor 321 b in the hole 321 a is electrically connected to the electrodes 210 and 220. The electrodes 210 and 220 of the electronic component 200 and the conductor layer 120 on the insulating layer 102 are electrically connected to each other via the via conductor 321b.
 基板100、絶縁層101、102、及び電子部品200の形状は、例えば矩形板状である。電子部品200の主面の形状は、例えば略長方形である。ただしこれに限られず、これらの形状は任意である。 The shapes of the substrate 100, the insulating layers 101 and 102, and the electronic component 200 are, for example, rectangular plates. The shape of the main surface of the electronic component 200 is, for example, a substantially rectangular shape. However, it is not limited to this, and these shapes are arbitrary.
 基板100は、例えばガラスクロス(心材)にエポキシ樹脂を含浸させたもの(以下、ガラエポという)からなる。心材は、主材料(本実施形態ではエポキシ樹脂)よりも熱膨張率の小さい材料である。心材としては、例えばガラス繊維(例えばガラス布又はガラス不織布)、アラミド繊維(例えばアラミド不織布)、又はシリカフィラー等の無機材料が好ましいと考えられる。ただし、基板100の形状や、厚さ、材料等は、基本的に任意である。例えばエポキシ樹脂に代えて、ポリエステル樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、イミド樹脂(ポリイミド)、フェノール樹脂、又はアリル化フェニレンエーテル樹脂(A-PPE樹脂)等を用いてもよい。基板100は、異種材料からなる複数の層から構成されていてもよい。 The substrate 100 is made of, for example, a glass cloth (core material) impregnated with an epoxy resin (hereinafter referred to as glass epoxy). The core material is a material having a smaller coefficient of thermal expansion than the main material (in the present embodiment, epoxy resin). As a core material, it is thought that inorganic materials, such as glass fiber (for example, glass cloth or a glass nonwoven fabric), an aramid fiber (for example, an aramid nonwoven fabric), or a silica filler, are preferable, for example. However, the shape, thickness, material and the like of the substrate 100 are basically arbitrary. For example, polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin. The substrate 100 may be composed of a plurality of layers made of different materials.
 絶縁層101、102は、例えばエポキシ樹脂からなる。本実施形態では、基板100が心材を含む樹脂からなり、絶縁層101、102が心材を含まない樹脂からなる。ただしこれに限定されず、絶縁層101、102の形状や、厚さ、材料等は、基本的に任意である。例えばエポキシ樹脂に代えて、ポリエステル樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、イミド樹脂(ポリイミド)、フェノール樹脂、又はアリル化フェニレンエーテル樹脂(A-PPE樹脂)等を用いてもよい。各絶縁層は、異種材料からなる複数の層から構成されていてもよい。 The insulating layers 101 and 102 are made of, for example, an epoxy resin. In the present embodiment, the substrate 100 is made of a resin containing a core material, and the insulating layers 101 and 102 are made of a resin not containing a core material. However, the present invention is not limited to this, and the shape, thickness, material, and the like of the insulating layers 101 and 102 are basically arbitrary. For example, polyester resin, bismaleimide triazine resin (BT resin), imide resin (polyimide), phenol resin, or allylated phenylene ether resin (A-PPE resin) may be used instead of epoxy resin. Each insulating layer may be composed of a plurality of layers made of different materials.
 ビア導体321bは、例えば銅めっきからなる。ビア導体321bの形状は、例えば基板100(コア基板)から上層に向かって拡径されるようにテーパしたテーパ円柱(円錐台)であり、ビア導体の横断面(X-Y平面)の形状は例えば略真円である。しかしこれに限定されず、ビア導体の形状は任意である。 The via conductor 321b is made of, for example, copper plating. The shape of the via conductor 321b is, for example, a tapered cylinder (conical frustum) tapered so as to increase in diameter from the substrate 100 (core substrate) toward the upper layer, and the shape of the cross section (XY plane) of the via conductor is For example, it is a substantially perfect circle. However, it is not limited to this, and the shape of the via conductor is arbitrary.
 導体層110は、銅箔111(下層)と、銅めっき112(上層)と、から構成され、導体層120は、銅箔121(下層)と、銅めっき122(上層)と、から構成される。導体層110、120は、例えば電気回路(例えば電子部品200を含む電気回路)を構成する配線、及び配線板20の強度を高めるためのベタパターンなどを有する。 The conductor layer 110 is composed of a copper foil 111 (lower layer) and a copper plating 112 (upper layer), and the conductor layer 120 is composed of a copper foil 121 (lower layer) and a copper plating 122 (upper layer). . The conductor layers 110 and 120 have, for example, wiring that forms an electric circuit (for example, an electric circuit including the electronic component 200), a solid pattern for increasing the strength of the wiring board 20, and the like.
 ただしこれに限定されず、導体層及びビア導体の材料は任意である。各導体層及び各ビア導体は、異種材料からなる複数の層から構成されていてもよい。 (However, the material of the conductor layer and the via conductor is not limited to this, and is arbitrary. Each conductor layer and each via conductor may be composed of a plurality of layers made of different materials.
 電子部品200は、例えばチップコンデンサである。電子部品200は、例えば厚さが約50μm~約300μmの範囲にあり、各辺の長さが約0.5mm~約2mmの範囲にある矩形板状の外形を有する。電子部品200の主面(第3面F3及び第4面F4)の形状は、例えば略長方形である。しかしこれに限定されず、電子部品200の種類、形状、及び寸法等は任意である。 The electronic component 200 is, for example, a chip capacitor. The electronic component 200 has, for example, a rectangular plate-shaped outer shape with a thickness in the range of about 50 μm to about 300 μm and a length of each side in the range of about 0.5 mm to about 2 mm. The shape of the main surface (the third surface F3 and the fourth surface F4) of the electronic component 200 is, for example, a substantially rectangular shape. However, the present invention is not limited to this, and the type, shape, size, and the like of the electronic component 200 are arbitrary.
 電子部品200は、図27に示すように、コンデンサ本体201と、U字状の電極210及び220と、を有する。コンデンサ本体201は、複数の誘電層231~239と複数の導体層211~214及び221~224とが交互に積層されて構成される。誘電層231~239はそれぞれ、例えばセラミックからなる。電極210及び220は、コンデンサ本体201の両端部にそれぞれ形成されている。こうして、コンデンサ本体201の両端部、詳しくは第4面F4(下面)から、側面、そして第3面F3(上面)にかけては、電極210及び220で覆われる。 The electronic component 200 includes a capacitor main body 201 and U-shaped electrodes 210 and 220 as shown in FIG. The capacitor body 201 includes a plurality of dielectric layers 231 to 239 and a plurality of conductor layers 211 to 214 and 221 to 224 that are alternately stacked. Each of the dielectric layers 231 to 239 is made of, for example, ceramic. The electrodes 210 and 220 are formed at both ends of the capacitor body 201, respectively. Thus, both ends of the capacitor body 201, specifically, the fourth surface F4 (lower surface), the side surface, and the third surface F3 (upper surface) are covered with the electrodes 210 and 220.
 ここで、電極210と電極220との間に位置するコンデンサ本体201の中央部は、図26に示されるように、電極210、220に覆われず、誘電層231、239(セラミック)が露出するため、比較的強度が弱くなる。しかし、電子部品200が配線板20に実装(内蔵)された状態においては、コンデンサ本体201の中央部は絶縁体101a(樹脂)で覆われる。その結果、絶縁体101aにより、コンデンサ本体201が保護されると考えられる。 Here, as shown in FIG. 26, the central portion of the capacitor body 201 located between the electrodes 210 and 220 is not covered with the electrodes 210 and 220, and the dielectric layers 231 and 239 (ceramic) are exposed. Therefore, the strength is relatively weak. However, in a state where the electronic component 200 is mounted (built in) the wiring board 20, the central portion of the capacitor body 201 is covered with the insulator 101a (resin). As a result, it is considered that the capacitor body 201 is protected by the insulator 101a.
 本実施形態の配線板20において、基板100は、キャビティR10に臨む基板100の側面F10(キャビティR10の内壁)と第1面F1との角に、第1面F1から第2面F2に向かってキャビティR10を縮幅するテーパ面C11を有する。 In the wiring board 20 of the present embodiment, the substrate 100 is directed from the first surface F1 to the second surface F2 at the corner between the side surface F10 of the substrate 100 facing the cavity R10 (the inner wall of the cavity R10) and the first surface F1. A tapered surface C11 is provided to reduce the width of the cavity R10.
 基板100は、図28に示すように、材質の異なる第1層100a及び第2層100bから構成される。第1層100a及び第2層100bは、第1面F1から第2面F2に向かって、この順で配置される。すなわち、第2層100bは、第1層100a上に形成されている。本実施形態では、第1層100aと第2層100bとがそれぞれ、同一の樹脂(例えばエポキシ樹脂)から構成され、第2層100bは、無機材料(例えばガラスクロス)を含むが、第1層100aは、無機材料を含まない。 As shown in FIG. 28, the substrate 100 includes a first layer 100a and a second layer 100b made of different materials. The first layer 100a and the second layer 100b are arranged in this order from the first surface F1 toward the second surface F2. That is, the second layer 100b is formed on the first layer 100a. In the present embodiment, the first layer 100a and the second layer 100b are each composed of the same resin (for example, epoxy resin), and the second layer 100b includes an inorganic material (for example, glass cloth). 100a does not include an inorganic material.
 ここで、キャビティR10に臨む基板100の側面F10は、第2層100bの側面に相当し、基板100の第1面F1は、第1層100aの主面に相当し、側面F10と第1面F1との角に位置するテーパ面C11は、第1層100aの側面に相当する。 Here, the side surface F10 of the substrate 100 facing the cavity R10 corresponds to the side surface of the second layer 100b, the first surface F1 of the substrate 100 corresponds to the main surface of the first layer 100a, and the side surface F10 and the first surface. The tapered surface C11 located at the corner with F1 corresponds to the side surface of the first layer 100a.
 本実施形態において、図28中、キャビティR10に臨む基板100の側面F10と第2面F2との角度θ1は、約90°である。すなわち、側面F10(キャビティR10の内壁)は、第2面F2に対して略垂直な面からなる。 In this embodiment, in FIG. 28, the angle θ1 between the side surface F10 of the substrate 100 facing the cavity R10 and the second surface F2 is about 90 °. That is, the side surface F10 (the inner wall of the cavity R10) is a surface substantially perpendicular to the second surface F2.
 テーパ面C11は、図28に示されるように、基板100の第1面F1に対して傾斜した平面(斜面)になっている。基板100の第1面F1とテーパ面C11との角度(以下、テーパ角度θ2という)は、少なくとも90°よりは大きな角度であり、約120°~約150°の範囲にあることが好ましく、約135°であることが特に好ましいと考えられる。なお、テーパ角度θ2が大きいほどキャビティR10の縮幅率は大きくなる。 The tapered surface C11 is a flat surface (slope) inclined with respect to the first surface F1 of the substrate 100, as shown in FIG. The angle between the first surface F1 of the substrate 100 and the tapered surface C11 (hereinafter referred to as the taper angle θ2) is an angle larger than at least 90 °, preferably in the range of about 120 ° to about 150 °, It is considered particularly preferable that the angle is 135 °. The larger the taper angle θ2, the greater the reduction ratio of the cavity R10.
 テーパ面C11は、例えば図26に示すように、キャビティR10の全周縁部(4辺)に形成されている。しかしこれに限られず、テーパ面C11は、キャビティR10の周縁部に部分的に形成されていてもよい(後述の図53参照)。本実施形態では、テーパ面C11の幅D11、D12が略均一である。すなわち、X方向の幅D11とY方向の幅D12とは、例えば略同一である。ただしこれに限られず、X方向の幅D11とY方向の幅D12とは、異なる大きさであってもよい。 The tapered surface C11 is formed on the entire peripheral edge (four sides) of the cavity R10, for example, as shown in FIG. However, the present invention is not limited to this, and the tapered surface C11 may be partially formed on the peripheral edge of the cavity R10 (see FIG. 53 described later). In the present embodiment, the widths D11 and D12 of the tapered surface C11 are substantially uniform. That is, the width D11 in the X direction and the width D12 in the Y direction are substantially the same, for example. However, the present invention is not limited to this, and the width D11 in the X direction and the width D12 in the Y direction may be different sizes.
 テーパ面C11の寸法や形状等は、上記のものに限られず、任意である。テーパ面C11は、第1面F1から第2面F2に向かってキャビティR10を縮幅するものであればよい。例えば図29Aに示すように、テーパ面C11は、第1面F1から第2面F2に向かうほど縮幅率が小さくなる曲面であってもよい。また、例えば図29Bに示すように、テーパ面C11は、第1面F1から第2面F2に向かうほど縮幅率が大きくなる曲面であってもよい。 The dimensions and shape of the tapered surface C11 are not limited to those described above, and are arbitrary. The tapered surface C11 may be anything that reduces the width of the cavity R10 from the first surface F1 toward the second surface F2. For example, as illustrated in FIG. 29A, the tapered surface C11 may be a curved surface that decreases in width reduction rate from the first surface F1 toward the second surface F2. For example, as illustrated in FIG. 29B, the tapered surface C11 may be a curved surface having a reduced width ratio that increases from the first surface F1 toward the second surface F2.
 図26中、幅D3は、基板100と電子部品200とのX方向の隙間の最大値(X1側の隙間及びX2側の隙間のうち大きい方)を示し、幅D4は、基板100と電子部品200とのY方向の隙間の最大値(Y1側の隙間及びY2側の隙間のうち大きい方)を示す。幅D3又はD4(より好ましくは両方)は、約0μm~約100μmの範囲にあることが好ましく、中でも、約0μm~約5μmの範囲にあることが特に好ましいと考えられる。幅D3又はD4が約100μm以下(特に約5μm以下)であると、キャビティR10において電子部品200が動くことのできる空隙が少なくなるため、電子部品200の位置精度が高くなる。その結果、電子部品200とビア導体321bとの位置合わせの精度も高くなる。また、基板100上に、配線(後述の図42に示す導体層301、302など)を形成するための領域を確保し易くなる。また、基板100上に形成される絶縁層(絶縁層101、102)の平坦度を高め易くなる。 In FIG. 26, the width D3 indicates the maximum value of the gap in the X direction between the substrate 100 and the electronic component 200 (the larger of the gap on the X1 side and the gap on the X2 side), and the width D4 indicates the width of the substrate 100 and the electronic component. The maximum value of the gap in the Y direction with respect to 200 (the larger of the gap on the Y1 side and the gap on the Y2 side) is shown. The width D3 or D4 (more preferably both) is preferably in the range of about 0 μm to about 100 μm, and in particular, it is considered particularly preferable to be in the range of about 0 μm to about 5 μm. When the width D3 or D4 is about 100 μm or less (particularly about 5 μm or less), the gap in which the electronic component 200 can move in the cavity R10 is reduced, and the positional accuracy of the electronic component 200 is increased. As a result, the alignment accuracy between the electronic component 200 and the via conductor 321b is also improved. Further, it becomes easy to secure a region for forming wiring (conductor layers 301 and 302 shown in FIG. 42 described later) on the substrate 100. In addition, the flatness of the insulating layers (insulating layers 101 and 102) formed over the substrate 100 can be easily increased.
 キャビティR10に臨む基板100の側面F10(キャビティR10の内壁)は、レーザによる切断面からなることが好ましいと考えられる。レーザによる切断面であれば、平滑な面になり易い。また、レーザで基板100の所定の部位(キャビティR10に相当する部位)を切り取ることにより、キャビティR10と一緒にテーパ面C11を形成し易くなる。 It is considered that the side surface F10 (the inner wall of the cavity R10) of the substrate 100 facing the cavity R10 is preferably formed by a laser cut surface. If it is a cut surface by a laser, it tends to be a smooth surface. Further, by cutting a predetermined portion (a portion corresponding to the cavity R10) of the substrate 100 with a laser, the tapered surface C11 can be easily formed together with the cavity R10.
 電子部品200は、図27及び図30Aに示すように、その側面F20と第4面F4との角に曲面C21を有する。コンデンサ本体201の角の各々は、直角に交わる2つの平面から構成され、曲面を有していないが、コンデンサ本体201の表面を覆う電極210又は220によって、電子部品200の側面F20と第4面F4との角には、曲面C21が形成される。 27. As shown in FIGS. 27 and 30A, the electronic component 200 has a curved surface C21 at the corner between the side surface F20 and the fourth surface F4. Each of the corners of the capacitor body 201 is composed of two planes that intersect at right angles and does not have a curved surface, but the side surface F20 and the fourth surface of the electronic component 200 are covered by the electrode 210 or 220 that covers the surface of the capacitor body 201. A curved surface C21 is formed at the corner with F4.
 曲面C21は、電子部品200の電極210又は220の表面からなる。曲面C21に電極材料ほどの強度があれば、電子部品200をキャビティR10に入れる際、曲面C21がテーパ面C11に当たった場合でも、電子部品200の性能低下は生じにくいと考えられる。 The curved surface C21 is formed by the surface of the electrode 210 or 220 of the electronic component 200. If the curved surface C21 is as strong as the electrode material, it is considered that the performance degradation of the electronic component 200 hardly occurs even when the curved surface C21 hits the tapered surface C11 when the electronic component 200 is put into the cavity R10.
 電子部品200の電極210及び220の少なくとも表面はそれぞれ、めっき膜からなることが好ましいと考えられる。めっきの条件を調整すれば、コンデンサ本体201の角が曲面を有していない場合でも、容易にコンデンサ本体201の表面に所望の曲面C21を得ることができると考えられる。また、平滑な曲面C21を形成し易くなる。平滑な曲面C21が得られれば、その上を電子部品200が滑り易くなる。曲面C21の曲率半径は、約20μm~約40μmの範囲にあることが好ましく、中でも約30μmであることが特に好ましいと考えられる。なお、本実施形態では、コンデンサ本体201の角の各々が直角に交わる平面から構成されるが、これに限られず、コンデンサ本体201の角が曲面を有していてもよい。 It is considered that at least the surfaces of the electrodes 210 and 220 of the electronic component 200 are each preferably made of a plating film. If the plating conditions are adjusted, it is considered that a desired curved surface C21 can be easily obtained on the surface of the capacitor body 201 even when the corner of the capacitor body 201 does not have a curved surface. Further, it becomes easy to form a smooth curved surface C21. If the smooth curved surface C21 is obtained, the electronic component 200 can easily slide on the curved surface C21. The radius of curvature of the curved surface C21 is preferably in the range of about 20 μm to about 40 μm, and it is considered that about 30 μm is particularly preferable. In the present embodiment, each of the corners of the capacitor body 201 is constituted by a plane that intersects at right angles. However, the present invention is not limited to this, and the corner of the capacitor body 201 may have a curved surface.
 本実施形態では、図26に示すように、電子部品200の4つの側面F20と第4面F4との角のうち、電極210及び220が設けられている部分には、曲面C21が形成される。しかしこれに限られず、曲面C21の形成態様は任意である。本実施形態では、曲面C21の幅D21、D22が略均一である。すなわち、X方向の幅D21とY方向の幅D22とは、例えば略同一である。幅D21及びD22はそれぞれ、約0μm~約71μmの範囲にあることが好ましいと考えられる。約71μmは、実装精度及び部品外形精度を考慮した値である。ただしこれに限られず、X方向の幅D11とY方向の幅D12とは、異なる大きさであってもよい。 In the present embodiment, as shown in FIG. 26, a curved surface C21 is formed at a portion where the electrodes 210 and 220 are provided among the corners of the four side surfaces F20 and the fourth surface F4 of the electronic component 200. . However, it is not limited to this, and the form of the curved surface C21 is arbitrary. In the present embodiment, the widths D21 and D22 of the curved surface C21 are substantially uniform. That is, the width D21 in the X direction and the width D22 in the Y direction are substantially the same, for example. It is believed that widths D21 and D22 are each preferably in the range of about 0 μm to about 71 μm. About 71 μm is a value in consideration of mounting accuracy and component outline accuracy. However, the present invention is not limited to this, and the width D11 in the X direction and the width D12 in the Y direction may be different sizes.
 図30Aに示されるように、本実施形態では、曲面C21と電子部品200の側面F20との境界P21が、コンデンサ本体201の下面F21よりも内側に位置する。また、曲面C21と電子部品200の第4面F4(下面)との境界P22が、コンデンサ本体201の側面F22よりも外側に位置する。ただしこれに限られず、図30Bに示すように、境界P21が下面F21よりも外側に位置し、且つ、境界P22が側面F22よりも外側に位置してもよい。また、図30Cに示すように、境界P21が下面F21よりも外側に位置し、且つ、境界P22が側面F22よりも内側に位置してもよい。 30A, in this embodiment, the boundary P21 between the curved surface C21 and the side surface F20 of the electronic component 200 is located on the inner side of the lower surface F21 of the capacitor body 201. In addition, a boundary P <b> 22 between the curved surface C <b> 21 and the fourth surface F <b> 4 (lower surface) of the electronic component 200 is positioned outside the side surface F <b> 22 of the capacitor main body 201. However, the present invention is not limited to this, and as shown in FIG. 30B, the boundary P21 may be located outside the lower surface F21, and the boundary P22 may be located outside the side surface F22. In addition, as illustrated in FIG. 30C, the boundary P21 may be located outside the lower surface F21, and the boundary P22 may be located inside the side surface F22.
 本実施形態の電子部品200は、図27に示すように、その側面F20と第3面F3との角に、曲面C22を有する。曲面C22は、例えば曲面C21と同様の形状を有する。しかしこれに限られず、例えば側面F20と第3面F3との角では、側面F20と第3面F3と(平面同士)が曲面を介さず直交していてもよい。 27. As shown in FIG. 27, the electronic component 200 of the present embodiment has a curved surface C22 at the corner between the side surface F20 and the third surface F3. The curved surface C22 has the same shape as the curved surface C21, for example. However, the present invention is not limited to this. For example, at the corner between the side surface F20 and the third surface F3, the side surface F20 and the third surface F3 (planes) may be perpendicular to each other without a curved surface.
 図30A中、電極210、220の側面F20側の厚さD23は、約5μm~約30μmの範囲にあることが好ましいと考えられる。また、電極210、220の第4面F4側の厚さD24は、約5μm~約30μmの範囲にあることが好ましいと考えられる。 In FIG. 30A, it is considered that the thickness D23 on the side surface F20 side of the electrodes 210 and 220 is preferably in the range of about 5 μm to about 30 μm. In addition, it is considered that the thickness D24 on the fourth surface F4 side of the electrodes 210 and 220 is preferably in the range of about 5 μm to about 30 μm.
 上記のように、本実施形態の配線板20は、キャビティR10が形成された基板100と、第3面F3を基板100の第1面F1と同じ向きにしてキャビティR10に配置される電子部品200と、を有する。そして、電子部品200は、その側面F20と第4面F4との角に曲面C21を有する。また、基板100は、キャビティR10に臨む側面F10(キャビティR10の内壁)と第1面F1との角に、第1面F1から第2面F2に向かってキャビティR10を縮幅するテーパ面C11を有する。こうした構造により、キャビティR10に電子部品200を入れ易くなる。また、電子部品200とビア導体321bとの位置合わせを容易にすることが可能になる。また、電子部品200の割れを抑制することが可能になる。 As described above, the wiring board 20 of the present embodiment includes the substrate 100 on which the cavity R10 is formed and the electronic component 200 that is disposed in the cavity R10 with the third surface F3 in the same direction as the first surface F1 of the substrate 100. And having. The electronic component 200 has a curved surface C21 at the corner between the side surface F20 and the fourth surface F4. Further, the substrate 100 has a tapered surface C11 that reduces the width of the cavity R10 from the first surface F1 toward the second surface F2 at the corner between the side surface F10 (the inner wall of the cavity R10) facing the cavity R10 and the first surface F1. Have. Such a structure makes it easy to put the electronic component 200 into the cavity R10. In addition, it is possible to easily align the electronic component 200 and the via conductor 321b. Moreover, it becomes possible to suppress the crack of the electronic component 200.
 以下、図31等を参照して、配線板20の製造方法について説明する。図31は、本実施形態に係る配線板20の製造方法の概略的な内容及び手順を示すフローチャートである。 Hereinafter, a method for manufacturing the wiring board 20 will be described with reference to FIG. FIG. 31 is a flowchart showing a schematic content and procedure of the method for manufacturing the wiring board 20 according to the present embodiment.
 ステップS21では、図32に示すように、基板100(出発材料)を準備する。基板100は、例えば完全に硬化したガラエポからなる。 In step S21, a substrate 100 (starting material) is prepared as shown in FIG. The substrate 100 is made of, for example, a completely cured glass epoxy.
 続けて、図31のステップS22では、基板100にキャビティR10(図25、図26)を形成する。 Subsequently, in step S22 of FIG. 31, a cavity R10 (FIGS. 25 and 26) is formed in the substrate 100. FIG.
 具体的には、例えば図33に示すように、四角形を描くようにレーザを照射することにより、基板100における、キャビティR10に対応した領域R100を、その周りの部分から切り取る。この際、レーザは、図34に示すように、第1層100aを貫通して第2層100bに届くように、基板100の第1面F1に照射される。レーザの照射角度は、例えば基板100の第1面F1に対して略垂直の角度とする。本実施形態では、第2層100bが無機材料を含み、第1層100aが無機材料を含んでいないことから、レーザの照射により、第1層100aでは、X方向及びY方向への溶解が進んでテーパ面C11が得られ、第2層100bでは、X方向及びY方向への溶解がほとんど進まず、略Z方向に沿った側面F10(キャビティR10の内壁)が得られる。このため、キャビティR10に臨む基板100の側面F10と第1面F1との角にテーパ面C11を、容易に形成することができる。 Specifically, for example, as shown in FIG. 33, the region R100 corresponding to the cavity R10 in the substrate 100 is cut out from the surrounding portion by irradiating a laser so as to draw a square. At this time, as shown in FIG. 34, the laser is applied to the first surface F1 of the substrate 100 so as to penetrate the first layer 100a and reach the second layer 100b. The laser irradiation angle is set to be substantially perpendicular to the first surface F1 of the substrate 100, for example. In the present embodiment, since the second layer 100b includes an inorganic material and the first layer 100a does not include an inorganic material, the first layer 100a is dissolved in the X direction and the Y direction by laser irradiation. Thus, the tapered surface C11 is obtained, and in the second layer 100b, the dissolution in the X direction and the Y direction hardly proceeds, and the side surface F10 (the inner wall of the cavity R10) substantially along the Z direction is obtained. For this reason, the taper surface C11 can be easily formed at the corner between the side surface F10 of the substrate 100 facing the cavity R10 and the first surface F1.
 上記レーザ加工により、図35Aに示すように、基板100にキャビティR10が形成される。キャビティR10は、基板100を貫通する孔からなる。テーパ面C11は、キャビティR10に臨む基板100の側面F10(キャビティR10の内壁)と第1面F1との角に位置し、第1面F1から第2面F2に向かってキャビティR10を縮幅する。本実施形態では、キャビティR10をレーザにより形成するため、前述した構造(図28参照)を有するキャビティR10が容易に得られる。キャビティR10は、電子部品200の収容スペースとなる。 The cavity R10 is formed in the substrate 100 by the laser processing as shown in FIG. 35A. The cavity R <b> 10 is a hole that penetrates the substrate 100. The tapered surface C11 is located at a corner between the first surface F1 and the side surface F10 (inner wall of the cavity R10) of the substrate 100 facing the cavity R10, and reduces the width of the cavity R10 from the first surface F1 toward the second surface F2. . In this embodiment, since the cavity R10 is formed by a laser, the cavity R10 having the above-described structure (see FIG. 28) can be easily obtained. The cavity R10 is a space for accommodating the electronic component 200.
 続けて、図31のステップS23で、曲面コーナー(曲面C21を有する角)を有する電子部品200を、基板100のキャビティR10に配置する。 Subsequently, in step S23 of FIG. 31, the electronic component 200 having the curved corner (the corner having the curved surface C21) is arranged in the cavity R10 of the substrate 100.
 具体的には、図35Bに示すように、例えばPET(ポリ・エチレン・テレフタレート)からなるキャリア2001を、基板100の片側(例えば第2面F2)に設ける。これにより、キャビティR10(孔)の一方の開口がキャリア2001で塞がれる。本実施形態では、キャリア2001が、粘着シート(例えばテープ)からなり、基板100側に粘着性を有する。キャリア2001は、例えばラミネートにより、基板100と接着される。 Specifically, as shown in FIG. 35B, a carrier 2001 made of, for example, PET (polyethylene terephthalate) is provided on one side (for example, the second surface F2) of the substrate 100. Thereby, one opening of the cavity R10 (hole) is closed by the carrier 2001. In the present embodiment, the carrier 2001 is made of an adhesive sheet (for example, a tape) and has adhesiveness on the substrate 100 side. The carrier 2001 is bonded to the substrate 100 by lamination, for example.
 続けて、図35Cに示すように、第4面F4と側面F20との角に曲面C21を有する電子部品200を準備する。曲面C21は、電子部品200の電極210、220の表面からなる。電子部品200の電極210及び220はそれぞれ、めっき膜からなる。 Subsequently, as shown in FIG. 35C, an electronic component 200 having a curved surface C21 at the corner between the fourth surface F4 and the side surface F20 is prepared. The curved surface C21 is composed of the surfaces of the electrodes 210 and 220 of the electronic component 200. The electrodes 210 and 220 of the electronic component 200 are each made of a plating film.
 続けて、キャビティR10(孔)の塞がれた開口とは反対側(Z1側)から、キャビティR10に電子部品200を入れることにより、キャリア2001(粘着シート)上に電子部品200を配置する。 Subsequently, the electronic component 200 is placed on the carrier 2001 (adhesive sheet) by inserting the electronic component 200 into the cavity R10 from the opposite side (Z1 side) to the opening where the cavity R10 (hole) is blocked.
 電子部品200は、例えば部品実装機(マウンター)によりキャビティR10に入れ込まれる。例えば電子部品200は、真空チャック等により保持され、図36Aに示すように、キャビティR10の上方(Z1側)に運ばれた後、そこから鉛直方向に沿って下降し、キャビティR10に入れられる。電子部品200をキャビティR10に入れる際には、電子部品200の曲面コーナー(曲面C21)が基板100に向くようにする。部品実装精度のばらつきなどにより、電子部品200とキャビティR10との位置合わせが少しずれていると、図36Bに示すように、基板100のテーパ面C11と電子部品200の曲面C21とが接触する。そして、テーパ面C11と曲面C21とが接触したまま、電子部品200は、テーパ面C11上を滑りながらキャビティR10へ導かれ、図36Cに示すように、基板100のキャビティR10に収容されて安定する。なお、図36A~図36C中、Z方向は鉛直方向に相当する。電子部品200を入れる作業は、人が行っても、装置に行わせてもよい。また、重力を利用して、電子部品200をキャビティR10に向けて落下させることにより、電子部品200をキャビティR10に入れてもよい。 The electronic component 200 is inserted into the cavity R10 by, for example, a component mounter (mounter). For example, the electronic component 200 is held by a vacuum chuck or the like and, as shown in FIG. 36A, is carried upward (Z1 side) of the cavity R10, and then descends along the vertical direction and is put into the cavity R10. When the electronic component 200 is placed in the cavity R10, the curved corner (curved surface C21) of the electronic component 200 faces the substrate 100. When the alignment between the electronic component 200 and the cavity R10 is slightly shifted due to variations in component mounting accuracy, etc., as shown in FIG. 36B, the tapered surface C11 of the substrate 100 and the curved surface C21 of the electronic component 200 come into contact with each other. The electronic component 200 is guided to the cavity R10 while sliding on the tapered surface C11 while the tapered surface C11 and the curved surface C21 are in contact with each other, and is housed in the cavity R10 of the substrate 100 and stabilized as shown in FIG. 36C. . In FIGS. 36A to 36C, the Z direction corresponds to the vertical direction. The operation of inserting the electronic component 200 may be performed by a person or may be performed by an apparatus. Further, the electronic component 200 may be placed in the cavity R10 by dropping the electronic component 200 toward the cavity R10 using gravity.
 本実施形態では、電子部品200と基板100とがぶつかるとき、テーパ面C11と直角コーナー(略直角に交わる2つの平面から構成される角)とが当たるのではなく、テーパ面C11と曲面C21とが当たるため、電子部品200への衝撃が抑制され、電子部品200に割れなどが生じにくくなると考えられる。 In the present embodiment, when the electronic component 200 and the substrate 100 collide with each other, the tapered surface C11 and the curved surface C21 are not contacted by the tapered surface C11 and the right-angled corner (an angle formed by two planes intersecting substantially at right angles). Therefore, it is considered that the impact on the electronic component 200 is suppressed and the electronic component 200 is hardly cracked.
 本実施形態では、電子部品200の曲面C21を基板100のテーパ面C11に接触させながら、電子部品200をキャビティR10に配置する。このため、電子部品200がテーパ面C11上を滑ってキャビティR10へ導かれ、電子部品200とキャビティR10との位置合わせが少しずれても、電子部品200が基板100のキャビティR10に配置されるようになる。また、小さな押圧でも滑りながら収容されるようになる。 In this embodiment, the electronic component 200 is disposed in the cavity R10 while the curved surface C21 of the electronic component 200 is in contact with the tapered surface C11 of the substrate 100. For this reason, the electronic component 200 is guided to the cavity R10 by sliding on the tapered surface C11, and the electronic component 200 is arranged in the cavity R10 of the substrate 100 even if the alignment between the electronic component 200 and the cavity R10 is slightly shifted. become. In addition, even a small pressure can be accommodated while sliding.
 また、電子部品200とキャビティR10との位置合わせが容易になるため、キャビティR10と電子部品200とのクリアランス、ひいては基板100と電子部品200との隙間(幅D3、D4)を狭くし易くなる。この点については、格段に向上することが発明者によって確認されている。 Also, since the alignment between the electronic component 200 and the cavity R10 is facilitated, the clearance between the cavity R10 and the electronic component 200, and thus the gap (width D3, D4) between the substrate 100 and the electronic component 200 can be easily reduced. It has been confirmed by the inventors that this point is significantly improved.
 また、基板100と電子部品200との隙間(幅D3、D4)を狭くすることで、電子部品200の位置精度が高くなる。その結果、電子部品200とビア導体321bとの位置合わせの精度も高くなる。 Further, by narrowing the gap (width D3, D4) between the substrate 100 and the electronic component 200, the positional accuracy of the electronic component 200 is increased. As a result, the alignment accuracy between the electronic component 200 and the via conductor 321b is also improved.
 また、曲面C21が、電極210及び220(めっき膜)の表面からなることで、電子部品200が曲面C21上を滑り易くなる。これにより、電子部品200への衝撃が抑制され、電子部品200に割れなどが生じにくくなると考えられる。 In addition, since the curved surface C21 is composed of the surfaces of the electrodes 210 and 220 (plating film), the electronic component 200 is easily slid on the curved surface C21. Thereby, it is considered that the impact on the electronic component 200 is suppressed, and the electronic component 200 is hardly cracked.
 以下、図37A~図37Cを参照して、テーパ角度θ2の差異に基づく、テーパ面C11の作用の違いについて説明する。なお、テーパ角度θ2は、図37Cに示す基板100で最も大きく、次に図37Aに示す基板100で大きく、図37Bに示す基板100で最も小さい。 Hereinafter, with reference to FIGS. 37A to 37C, the difference in the action of the tapered surface C11 based on the difference in the taper angle θ2 will be described. The taper angle θ2 is the largest in the substrate 100 shown in FIG. 37C, next the largest in the substrate 100 shown in FIG. 37A, and the smallest in the substrate 100 shown in FIG. 37B.
 図37A~図37Cに示されるように、テーパ角度θ2が小さくなるほど、電子部品200をキャビティR10へ導く力は強くなる。また、テーパ角度θ2が大きくなるほど、テーパ面C11の幅D11又はD12を大きくし易くなるため、電子部品200がテーパ面C11上に落ちる可能性が高くなる。 As shown in FIGS. 37A to 37C, as the taper angle θ2 decreases, the force for guiding the electronic component 200 to the cavity R10 increases. Further, as the taper angle θ2 increases, the width D11 or D12 of the tapered surface C11 is easily increased, and thus the electronic component 200 is more likely to fall on the tapered surface C11.
 こうした点に鑑みて、テーパ角度θ2は、約120°~約150°の範囲にあることが好ましく、約135°であることが特に好ましいと考えられる。こうしたテーパ角度θ2であれば、電子部品200をキャビティR10へ導くために十分な力が得られるとともに、電子部品200とキャビティR10との位置合わせをするために十分なテーパ面C11の幅D11又はD12が得られる。 In view of these points, the taper angle θ2 is preferably in the range of about 120 ° to about 150 °, and is considered to be particularly preferably about 135 °. With such a taper angle θ2, a sufficient force is obtained to guide the electronic component 200 to the cavity R10, and a sufficient width D11 or D12 of the tapered surface C11 is required to align the electronic component 200 and the cavity R10. Is obtained.
 電子部品200は、図38に示すように、第3面F3を基板100の第1面F1と同じ向き(いずれもZ1の向き)にしてキャビティR10に配置される。電子部品200は、キャリア2001上に載置され、キャリア2001の粘着性によって固定(仮固定)される。電子部品200をキャリア2001上に載置することで、電子部品200の傾きを水平にし易くなる。 38, the electronic component 200 is arranged in the cavity R10 with the third surface F3 in the same direction as the first surface F1 of the substrate 100 (all in the direction of Z1). The electronic component 200 is placed on the carrier 2001 and fixed (temporarily fixed) by the adhesiveness of the carrier 2001. By placing the electronic component 200 on the carrier 2001, the inclination of the electronic component 200 can be easily leveled.
 続けて、図31のステップS24で、図39Aに示すように、絶縁層101を、半硬化の状態で、キャビティR10(孔)の塞がれた開口とは反対側(Z1側)の、基板100上及び電子部品200上に形成する。さらに、絶縁層101上に、銅箔2003を形成する。絶縁層101は、例えば熱硬化性を有するエポキシ樹脂のプリプレグからなる。続けて、図39Bに示すように、絶縁層101を半硬化の状態でプレスすることにより、図40Aに示すように、絶縁層101から樹脂を流出させてキャビティR10へ流し込む。これにより、図40Bに示すように、キャビティR10における基板100と電子部品200との間に絶縁体101a(絶縁層101を構成する樹脂)が充填される。この際、基板100と電子部品200との隙間(幅D3、D4)が狭ければ、電子部品200の固定が弱くても、樹脂がキャビティR10へ流れ込む勢いで、電子部品200の位置ずれや、好ましくない傾きは生じにくい。そして、キャビティR10に絶縁体101aが充填されたら、その充填樹脂(絶縁体101a)と電子部品200との仮溶着を行う。具体的には、加熱により充填樹脂に電子部品200を支持できる程度の保持力を発現させる。これにより、キャリア2001に支持されていた電子部品200が、充填樹脂によって支持されるようになる。その後、キャリア2001を除去する。 Subsequently, in step S24 of FIG. 31, as shown in FIG. 39A, the insulating layer 101 is semi-cured and the substrate on the side opposite to the opening where the cavity R10 (hole) is blocked (Z1 side) It is formed on 100 and the electronic component 200. Further, a copper foil 2003 is formed on the insulating layer 101. The insulating layer 101 is made of, for example, a prepreg of an epoxy resin having thermosetting properties. Subsequently, as shown in FIG. 39B, by pressing the insulating layer 101 in a semi-cured state, the resin flows out from the insulating layer 101 and flows into the cavity R10 as shown in FIG. 40A. Thereby, as shown in FIG. 40B, the insulator 101a (resin constituting the insulating layer 101) is filled between the substrate 100 and the electronic component 200 in the cavity R10. At this time, if the gap (width D3, D4) between the substrate 100 and the electronic component 200 is narrow, even if the fixing of the electronic component 200 is weak, the resin flows into the cavity R10, and the displacement of the electronic component 200, Undesirable tilt is unlikely to occur. Then, after the cavity 101 is filled with the insulator 101a, the filling resin (insulator 101a) and the electronic component 200 are temporarily welded. Specifically, the holding resin has such a degree that the electronic component 200 can be supported by the filling resin by heating. As a result, the electronic component 200 supported by the carrier 2001 is supported by the filling resin. Thereafter, the carrier 2001 is removed.
 なお、この段階では、絶縁体101a(充填樹脂)及び絶縁層101は半硬化しているにすぎず、完全には硬化していない。ただしこれに限られず、例えば、この段階で絶縁体101a及び絶縁層101を完全に硬化させてもよい。 At this stage, the insulator 101a (filling resin) and the insulating layer 101 are only semi-cured and not completely cured. However, the invention is not limited to this. For example, the insulator 101a and the insulating layer 101 may be completely cured at this stage.
 続けて、図31のステップS25で、各主面に対してそれぞれビルドアップを行う。 Subsequently, in step S25 of FIG. 31, each main surface is built up.
 具体的には、図41Aに示すように、基板100の第2面F2上に、絶縁層102及び銅箔2004を形成する。電子部品200の電極210及び220はそれぞれ、絶縁層102で覆われる。例えばプレスにより、絶縁層102をプリプレグの状態で基板100に接着させた後、加熱して絶縁層101、102の各々を硬化させる。本実施形態では、粘着シート(キャリア2001)を除去した後に、キャビティR10に充填した樹脂を硬化させるため、絶縁層101、102の硬化を同時に行うことが可能になる。そして、両面の絶縁層101、102の硬化を同時に行うことにより、基板100の反りが抑制されるため、基板100を薄くし易くなる。 Specifically, as shown in FIG. 41A, the insulating layer 102 and the copper foil 2004 are formed on the second surface F2 of the substrate 100. The electrodes 210 and 220 of the electronic component 200 are each covered with the insulating layer 102. For example, after the insulating layer 102 is bonded to the substrate 100 in a prepreg state by pressing, the insulating layers 101 and 102 are cured by heating. In this embodiment, since the resin filled in the cavity R10 is cured after removing the adhesive sheet (carrier 2001), the insulating layers 101 and 102 can be cured simultaneously. Then, by simultaneously curing the insulating layers 101 and 102 on both sides, warpage of the substrate 100 is suppressed, so that the substrate 100 can be easily thinned.
 続く図31のステップS26では、図41Bに示すように、例えばレーザにより、絶縁層102及び銅箔2004に孔321a(ビアホール)を形成する。孔321aは、絶縁層102及び銅箔2004を貫通して、電子部品200の電極210又は220に至る。その後、必要に応じて、デスミアを行う。 In the subsequent step S26 of FIG. 31, as shown in FIG. 41B, holes 321a (via holes) are formed in the insulating layer 102 and the copper foil 2004 by, for example, a laser. The hole 321 a passes through the insulating layer 102 and the copper foil 2004 and reaches the electrode 210 or 220 of the electronic component 200. Then, desmear is performed as needed.
 続けて、図41Cに示すように、例えばパネルめっき法により、銅箔2003上に、例えば銅の電解めっき2005を形成するとともに、銅箔2004上及び孔321a内にそれぞれ、例えば銅の電解めっき2006を形成する。孔321a内の導体は、ビア導体321bとなる。なお、この電解めっきに先立って無電解めっきを行うことにより、銅箔2003と電解めっき2005との間、又は銅箔2004と電解めっき2006との間に、無電解めっき膜を形成してもよい。 Subsequently, as shown in FIG. 41C, for example, a copper electroplating 2005 is formed on the copper foil 2003 by, for example, a panel plating method, and for example, the copper electroplating 2006 is formed on the copper foil 2004 and in the hole 321a. Form. The conductor in the hole 321a becomes the via conductor 321b. In addition, an electroless plating film may be formed between the copper foil 2003 and the electrolytic plating 2005 or between the copper foil 2004 and the electrolytic plating 2006 by performing the electroless plating prior to the electrolytic plating. .
 その後、図31のステップS27で、例えばエッチングにより、電解めっき2005、2006をそれぞれパターニングして、導体層110、120とすることで、本実施形態の配線板20(図25)が完成する。その後、必要があれば、電子部品200の電気テスト(容量値及び絶縁性などのチェック)を行う。 Thereafter, in step S27 of FIG. 31, the electroplating 2005 and 2006 are patterned by etching, for example, to form conductor layers 110 and 120, whereby the wiring board 20 (FIG. 25) of the present embodiment is completed. Thereafter, if necessary, an electrical test (checking of capacitance value, insulation, etc.) of the electronic component 200 is performed.
 本実施形態の製造方法は、基板100を準備すること(図32)と、第4面F4と側面F20との角に曲面C21を有する電子部品200を準備すること(図35C)と、基板100にキャビティR10を形成すること(図33、図34)と、キャビティR10に臨む基板100の側面F10(キャビティR10の内壁)と第1面F1との角に、第1面F1から第2面F2に向かってキャビティR10を縮幅するテーパ面C11を形成すること(図33、図34)と、第3面F3を第1面F1と同じ向きにして電子部品200をキャビティR10に配置すること(図36A~図36C)と、を含む。こうした製造方法によれば、キャビティR10に電子部品200を入れ易くなる。また、キャビティR10と電子部品200とのクリアランスを小さくすることが可能になる。また、電子部品200とビア導体321bとの位置合わせを容易にすることが可能になる。また、電子部品200の割れを抑制することが可能になる。 In the manufacturing method of the present embodiment, the substrate 100 is prepared (FIG. 32), the electronic component 200 having the curved surface C21 at the corner between the fourth surface F4 and the side surface F20 (FIG. 35C), and the substrate 100 is prepared. Forming a cavity R10 (FIG. 33, FIG. 34), and at the corner between the side surface F10 (inner wall of the cavity R10) of the substrate 100 facing the cavity R10 and the first surface F1, the first surface F1 to the second surface F2. Forming a tapered surface C11 that reduces the width of the cavity R10 toward the surface (FIGS. 33 and 34), and disposing the electronic component 200 in the cavity R10 with the third surface F3 in the same direction as the first surface F1 (see FIG. 33). 36A to 36C). According to such a manufacturing method, the electronic component 200 can be easily placed in the cavity R10. Further, the clearance between the cavity R10 and the electronic component 200 can be reduced. In addition, it is possible to easily align the electronic component 200 and the via conductor 321b. Moreover, it becomes possible to suppress the crack of the electronic component 200.
 なお、上記実施形態2では、レーザ加工によりテーパ面C11を形成しているが、ドライエッチング等、他の方法でもテーパ面C11を得ることは可能である。しかし、レーザ加工によれば、特に良好なテーパ面C11を得ることができると考えられる。しかも、材質の異なる第1層100a及び第2層100bにより、斜め方向のレーザ照射等、特別な技術を用いずに、良好なテーパ面C11が得られる。 In the second embodiment, the tapered surface C11 is formed by laser processing. However, the tapered surface C11 can be obtained by other methods such as dry etching. However, it is considered that a particularly good tapered surface C11 can be obtained by laser processing. In addition, the first layer 100a and the second layer 100b of different materials can provide a good tapered surface C11 without using a special technique such as oblique laser irradiation.
 (実施形態3)
 本発明の実施形態3について、上記実施形態2との相違点を中心に説明する。なおここでは、上記図25等に示した要素と同一の要素には各々同一の符号を付し、既に説明した共通の部分、すなわち説明が重複する部分については、便宜上、その説明を省略又は簡略化することとする。
(Embodiment 3)
The third embodiment of the present invention will be described focusing on the differences from the second embodiment. Here, the same elements as those shown in FIG. 25 and the like are denoted by the same reference numerals, and the description of common parts that have already been described, that is, parts that are duplicated, is omitted or simplified for convenience. We will make it.
 本実施形態の配線板30では、図42に示すように、基板100(コア基板)にスルーホール300aが形成され、スルーホール300a内に導体(例えば銅めっき)が充填されることにより、スルーホール導体300bが形成されている。スルーホール導体300bの形状は、例えば鼓状である。しかしこれに限られず、スルーホール導体300bの形状は任意であり、例えば略円柱であってもよい。 In the wiring board 30 of the present embodiment, as shown in FIG. 42, through holes 300a are formed in the substrate 100 (core substrate), and a conductor (for example, copper plating) is filled in the through holes 300a. A conductor 300b is formed. The shape of the through-hole conductor 300b is, for example, a drum shape. However, the shape is not limited to this, and the shape of the through-hole conductor 300b is arbitrary, and may be, for example, a substantially cylindrical shape.
 基板100の第1面F1上には導体層301が形成され、基板100の第2面F2上には導体層302が形成される。導体層301、302にはそれぞれ、スルーホール導体300bのランドが含まれる。 The conductor layer 301 is formed on the first surface F1 of the substrate 100, and the conductor layer 302 is formed on the second surface F2 of the substrate 100. Each of the conductor layers 301 and 302 includes a land of the through-hole conductor 300b.
 絶縁層101に孔311a及び312a(ビアホール)が形成され、絶縁層102に孔321a及び322a(ビアホール)が形成されている。孔311a、312a、321a、322a内にそれぞれ導体(例えば銅のめっき)が充填されることにより、その孔311a、312a、321a、322a内の導体がそれぞれ、ビア導体311b、312b、321b、322b(フィルド導体)となっている。ビア導体311b及び321bはそれぞれ、基板100の第1面F1側又は第2面F2側から、電子部品200の電極210、220に電気的に接続されている。このように、本実施形態では、電子部品200が両面からビア導体311b及び321bに接続されている。以下、この構造を、両面ビア構造という。 Holes 311a and 312a (via holes) are formed in the insulating layer 101, and holes 321a and 322a (via holes) are formed in the insulating layer 102. By filling the holes 311a, 312a, 321a, and 322a with conductors (for example, copper plating), the conductors in the holes 311a, 312a, 321a, and 322a are respectively via conductors 311b, 312b, 321b, and 322b ( Filled conductor). The via conductors 311b and 321b are electrically connected to the electrodes 210 and 220 of the electronic component 200 from the first surface F1 side or the second surface F2 side of the substrate 100, respectively. Thus, in this embodiment, the electronic component 200 is connected to the via conductors 311b and 321b from both sides. Hereinafter, this structure is referred to as a double-sided via structure.
 基板100の第1面F1上の導体層301と基板100の第2面F2上の導体層302とは、スルーホール導体300bを介して、互いに電気的に接続されている。ビア導体312b、322b及びスルーホール導体300bは、いずれもフィルド導体であり、これらはZ方向にスタックされている。 The conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 302 on the second surface F2 of the substrate 100 are electrically connected to each other through the through-hole conductor 300b. The via conductors 312b and 322b and the through-hole conductor 300b are all filled conductors and are stacked in the Z direction.
 基板100の第1面F1上の導体層301と絶縁層101上の導体層110とは、ビア導体312bを介して、互いに電気的に接続される。また、基板100の第2面F2上の導体層302と絶縁層102上の導体層120とは、ビア導体322bを介して、互いに電気的に接続される。 The conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 110 on the insulating layer 101 are electrically connected to each other through the via conductor 312b. Further, the conductor layer 302 on the second surface F2 of the substrate 100 and the conductor layer 120 on the insulating layer 102 are electrically connected to each other through the via conductor 322b.
 本実施形態に係る配線板30も、実施形態2と同様、例えば図31に示すような手順で製造される。 The wiring board 30 according to the present embodiment is also manufactured in the procedure as shown in FIG. 31, for example, as in the second embodiment.
 図31のステップS21では、図43に示すように、配線板3000(出発材料)を準備する。本実施形態では、配線板3000が、基板100と、基板100の第1面F1上に形成された導体層3001と、基板100の第2面F2上に形成された導体層3002と、スルーホール導体300bと、から構成される。基板100は、例えば完全に硬化したガラエポからなる。導体層3001及び3002はそれぞれ、例えば銅箔(下層)及び電解銅めっき(上層)の2層構造からなる。 In step S21 of FIG. 31, a wiring board 3000 (starting material) is prepared as shown in FIG. In the present embodiment, the wiring board 3000 includes a substrate 100, a conductor layer 3001 formed on the first surface F1 of the substrate 100, a conductor layer 3002 formed on the second surface F2 of the substrate 100, and a through hole. And a conductor 300b. The substrate 100 is made of, for example, a completely cured glass epoxy. Each of the conductor layers 3001 and 3002 has a two-layer structure of, for example, copper foil (lower layer) and electrolytic copper plating (upper layer).
 鼓状のスルーホール300aは、例えば両面に銅箔が形成された基板100(両面銅張積層板)の両側からレーザを照射することにより、形成することができる。そして、基板100上に銅箔が、また、基板100内にスルーホール300aが、それぞれ形成された状態で、例えば銅の電解めっきを行うことにより、導体層3001、3002、及びスルーホール導体300bを形成することができる。 The drum-shaped through hole 300a can be formed, for example, by irradiating laser from both sides of the substrate 100 (double-sided copper-clad laminate) having copper foil formed on both sides. Then, in a state in which the copper foil is formed on the substrate 100 and the through hole 300a is formed in the substrate 100, for example, by performing copper electroplating, the conductor layers 3001, 3002 and the through hole conductor 300b are formed. Can be formed.
 上記レーザ照射の後、スルーホール300aにデスミアを行うことが好ましいと考えられる。デスミアにより、不要な導通(ショート)が抑制される。また、必要に応じて、エッチング等により、導体層3001及び3002の表面を粗化することが好ましいと考えられる。 It is considered preferable to perform desmearing on the through hole 300a after the laser irradiation. Undesirable conduction (short circuit) is suppressed by desmear. In addition, it is considered preferable to roughen the surfaces of the conductor layers 3001 and 3002 by etching or the like as necessary.
 本実施形態では、図44Aに示すように、基板100上、キャビティR10に対応した領域R100には、導体層3001が形成されない。導体層3001がこうした導体パターンを有すると、キャビティR10の位置及び形状が明確になるため、後の工程(図31のステップS22)において、キャビティR10を形成するためのレーザ照射のアライメントが容易になる。 In this embodiment, as shown in FIG. 44A, the conductor layer 3001 is not formed on the substrate 100 in the region R100 corresponding to the cavity R10. When the conductor layer 3001 has such a conductor pattern, the position and shape of the cavity R10 are clarified. Therefore, in the subsequent process (step S22 in FIG. 31), alignment of laser irradiation for forming the cavity R10 is facilitated. .
 ただし、導体層3001の導体パターンは、図44Aに示すパターンに限られない。例えば図44Bに示すように、基板100上、後の工程(図31のステップS22)においてレーザを照射する部分(以下、レーザ照射路という)のみ、導体層3001が形成されていなくてもよい。この場合、レーザ照射路の内側には、導体層3001が存在する。こうした導体層3001であっても、キャビティR10を形成するためのレーザ照射のアライメントが容易になる。 However, the conductor pattern of the conductor layer 3001 is not limited to the pattern shown in FIG. 44A. For example, as shown in FIG. 44B, the conductor layer 3001 may not be formed on the substrate 100 only in a portion (hereinafter referred to as a laser irradiation path) where laser irradiation is performed in a subsequent process (step S22 in FIG. 31). In this case, the conductor layer 3001 exists inside the laser irradiation path. Even with such a conductor layer 3001, alignment of laser irradiation for forming the cavity R10 is facilitated.
 また、本実施形態では、図44Aに示すように、導体層3001がアライメントマーク301aを有する。アライメントマーク301aは、例えば後の工程(図31のステップS23)において光学的に認識できるパターンであり、例えばエッチング等により、部分的に導体を除去することによって形成することができる。本実施形態では、アライメントマーク301aが、領域R100の周囲(例えば4隅)に配置される。ただしこれに限られず、アライメントマーク301aの配置及び形状等は任意である。 In this embodiment, as shown in FIG. 44A, the conductor layer 3001 has an alignment mark 301a. The alignment mark 301a is, for example, a pattern that can be optically recognized in a later process (step S23 in FIG. 31), and can be formed by partially removing the conductor, for example, by etching or the like. In the present embodiment, alignment marks 301a are arranged around the region R100 (for example, four corners). However, the present invention is not limited to this, and the arrangement and shape of the alignment mark 301a are arbitrary.
 また、本実施形態では、導体層3001の側面F30が、図45に示すように、テーパしている。側面F30のテーパ角度θ3は、テーパ面C11のテーパ角度θ2と略一致していることが好ましいと考えられる。 In this embodiment, the side surface F30 of the conductor layer 3001 is tapered as shown in FIG. It is considered preferable that the taper angle θ3 of the side surface F30 substantially matches the taper angle θ2 of the taper surface C11.
 続けて、図31のステップS22で、基板100にキャビティR10を形成する。具体的には、例えば図44Aに示すように、四角形を描くようにレーザを照射することにより、基板100における、キャビティR10に対応した領域R100を、その周りの部分から切り取る。この際、レーザは、図45に示すように、第1層100aを貫通して第2層100bに届くように、基板100の第1面F1に照射される。レーザの照射角度は、例えば基板100の第1面F1に対して略垂直の角度とする。導体層3001の側面F30がテーパしていると、レーザが側面F30で反射されて斜めに進み、テーパ面C11が形成され易くなる。 Subsequently, a cavity R10 is formed in the substrate 100 in step S22 of FIG. Specifically, for example, as shown in FIG. 44A, the region R100 corresponding to the cavity R10 in the substrate 100 is cut out from the surrounding portion by irradiating the laser so as to draw a square. At this time, as shown in FIG. 45, the laser is applied to the first surface F1 of the substrate 100 so as to penetrate the first layer 100a and reach the second layer 100b. The laser irradiation angle is set to be substantially perpendicular to the first surface F1 of the substrate 100, for example. When the side surface F30 of the conductor layer 3001 is tapered, the laser beam is reflected by the side surface F30 and proceeds obliquely, so that the tapered surface C11 is easily formed.
 その後、図31のステップS23~S27を経ることにより、本実施形態の配線板30(図42)を製造することができる。 Thereafter, the wiring board 30 (FIG. 42) of this embodiment can be manufactured through steps S23 to S27 of FIG.
 ただし、本実施形態では、図31のステップS23で、アライメントマーク301aを用いて、電子部品200の位置決めをする。これにより、電子部品200とキャビティR10との位置合わせの精度を高めることが可能になる。 However, in this embodiment, the electronic component 200 is positioned using the alignment mark 301a in step S23 of FIG. Thereby, it is possible to increase the accuracy of alignment between the electronic component 200 and the cavity R10.
 また、図31のステップS26では、孔311a、312a、及び322aを、孔321aと同様に形成し(図41B参照)、続けて、ビア導体311b、312b、及び322bを、ビア導体321bと同様に形成する(図41C参照)。 In step S26 of FIG. 31, holes 311a, 312a, and 322a are formed in the same manner as hole 321a (see FIG. 41B), and then via conductors 311b, 312b, and 322b are formed in the same manner as via conductor 321b. Form (see FIG. 41C).
 本実施形態の製造方法は、配線板30の製造に適している。こうした製造方法であれば、低コストで、良好な配線板30が得られる。 The manufacturing method of the present embodiment is suitable for manufacturing the wiring board 30. With such a manufacturing method, a good wiring board 30 can be obtained at low cost.
 実施形態2と同様の構成及び処理については、本実施形態でも、前述した実施形態2の効果に準ずる効果が得られる。例えば実施形態3に係る配線板30の各寸法の好ましい範囲は、実施形態2に係る配線板20と同様である。なお、低コスト化や製造容易化等の面では、簡素な構造を有する実施形態2に係る配線板20の方が、実施形態3に係る配線板30よりも好ましいと考えられ、高機能化や高性能化等の面では、両面ビア構造を有する実施形態3に係る配線板30の方が、実施形態2に係る配線板20よりも好ましいと考えられる。 With regard to the same configuration and processing as in the second embodiment, this embodiment can provide an effect similar to that of the second embodiment described above. For example, a preferable range of each dimension of the wiring board 30 according to the third embodiment is the same as that of the wiring board 20 according to the second embodiment. In addition, in terms of cost reduction and ease of manufacture, the wiring board 20 according to the second embodiment having a simple structure is considered preferable to the wiring board 30 according to the third embodiment. In terms of performance enhancement, the wiring board 30 according to the third embodiment having a double-sided via structure is considered preferable to the wiring board 20 according to the second embodiment.
 (他の実施形態)
 上記実施形態では、スルーホール導体300bは、基準面F0について対称的な形状を有していたが、スルーホール導体300bの形状はこれに限定されない。図46に示すように、基準面F0について非対称的な形状を有するスルーホール導体300bであってもよい。図46の例では、第2面F2から基準面F0までの寸法T12が、第1面F1から基準面F0までの寸法T11よりも大きい。また、スルーホール導体300bの寸法について、第1面F1側端面の幅D31と、括れ部300cの幅D32と、第2面F2側端面の幅D33とは、大きい方から、幅D31、幅D33、幅D32の順になっている。第1導体部R11の側面は曲面であり、第2導体部R12の側面は平面である。第1導体部R11のテーパ角度θ1は、第2導体部R12のテーパ角度θ2よりも大きい。
(Other embodiments)
In the above embodiment, the through-hole conductor 300b has a symmetrical shape with respect to the reference plane F0, but the shape of the through-hole conductor 300b is not limited to this. As shown in FIG. 46, a through-hole conductor 300b having an asymmetric shape with respect to the reference plane F0 may be used. In the example of FIG. 46, the dimension T12 from the second surface F2 to the reference surface F0 is larger than the dimension T11 from the first surface F1 to the reference surface F0. In addition, regarding the dimensions of the through-hole conductor 300b, the width D31 of the first surface F1 side end surface, the width D32 of the constricted portion 300c, and the width D33 of the second surface F2 side end surface are, from the larger, the width D31 and the width D33. The width D32 is in this order. The side surface of the first conductor portion R11 is a curved surface, and the side surface of the second conductor portion R12 is a plane. The taper angle θ1 of the first conductor portion R11 is larger than the taper angle θ2 of the second conductor portion R12.
 以下、図47A~図48Bを参照して、図46に示すスルーホール導体300bの製造方法の一例について説明する。 Hereinafter, an example of a method for manufacturing the through-hole conductor 300b shown in FIG. 46 will be described with reference to FIGS. 47A to 48B.
 まず、図47Aに示すように、上記実施形態と同様、両面銅張積層板1000を準備する(図7のステップS11参照)。 First, as shown in FIG. 47A, a double-sided copper-clad laminate 1000 is prepared as in the above embodiment (see step S11 in FIG. 7).
 続けて、図47Bに示すように、例えばCOレーザを用いて、第1面F1側からレーザを両面銅張積層板1000に照射することにより孔1003を形成する。孔1003は有底孔であり、孔1003の形状は、例えば深くなるにつれ幅が狭くなるようにテーパした半球状である。孔1003の形状は第1導体部R11(図46参照)に対応する。すなわち、孔1003の壁面は曲面になる。 Subsequently, as shown in FIG. 47B, a hole 1003 is formed by irradiating the double-sided copper-clad laminate 1000 with a laser from the first surface F1 side using, for example, a CO 2 laser. The hole 1003 is a bottomed hole, and the shape of the hole 1003 is, for example, a hemispherical shape that is tapered so that the width becomes narrower as it becomes deeper. The shape of the hole 1003 corresponds to the first conductor portion R11 (see FIG. 46). That is, the wall surface of the hole 1003 is a curved surface.
 続けて、図47Cに示すように、例えば両面銅張積層板1000を裏返して、第2面F2側からレーザを両面銅張積層板1000に照射することにより、孔1003につながる孔1004を形成する。孔1004の形状は第2導体部R12(図46参照)に対応する。孔1003と孔1004とがつながることで、両面銅張積層板1000を貫通するスルーホール300aが形成される。その後、必要に応じて、スルーホール300aについてデスミアを行う。スルーホール300aの形状は、スルーホール導体300b(図46参照)に対応し、砂時計状(鼓状)となる。孔1003と孔1004との境界は括れ部300c(図46参照)に相当する。なお、第1面F1に対するレーザ照射と第2面F2に対するレーザ照射とは、同時に行ってもよい。 Subsequently, as shown in FIG. 47C, for example, the double-sided copper-clad laminate 1000 is turned over, and a laser beam is irradiated to the double-sided copper-clad laminate 1000 from the second surface F2 side, thereby forming a hole 1004 connected to the hole 1003. . The shape of the hole 1004 corresponds to the second conductor portion R12 (see FIG. 46). By connecting the hole 1003 and the hole 1004, a through hole 300a penetrating the double-sided copper-clad laminate 1000 is formed. Thereafter, desmearing is performed on the through hole 300a as necessary. The shape of the through hole 300a corresponds to the through hole conductor 300b (see FIG. 46) and has an hourglass shape (a drum shape). The boundary between the hole 1003 and the hole 1004 corresponds to the constricted portion 300c (see FIG. 46). The laser irradiation on the first surface F1 and the laser irradiation on the second surface F2 may be performed simultaneously.
 続けて、図48Aに示すように、無電解めっきを行い、銅箔1001、1002上及びスルーホール300a内に、例えば銅の無電解めっき膜1005aを形成する。 Subsequently, as shown in FIG. 48A, electroless plating is performed to form, for example, a copper electroless plating film 1005a on the copper foils 1001 and 1002 and in the through hole 300a.
 続けて、図48Bに示すように、めっき液を用いて、無電解めっき膜1005aをシード層として電解めっきを行うことにより、電解めっき1005bを形成する。これにより、無電解めっき膜1005a及び電解めっき1005bからなるめっき1005がスルーホール300aに充填され、スルーホール導体300bが形成される。 Subsequently, as shown in FIG. 48B, electrolytic plating 1005b is formed by performing electroplating using the electroless plating film 1005a as a seed layer using a plating solution. As a result, the plating 1005 composed of the electroless plating film 1005a and the electrolytic plating 1005b is filled in the through hole 300a, and the through hole conductor 300b is formed.
 続けて、例えばエッチングレジスト及びエッチング液を用いて、基板100の第1面F1及び第2面F2に形成された各導体層のパターニングを行う。これにより、基板100の第1面F1、第2面F2上にそれぞれ、導体層301、302が形成される(図46参照)。なお、エッチングは、湿式に限られず、乾式であってもよい。 Subsequently, patterning of each conductor layer formed on the first surface F1 and the second surface F2 of the substrate 100 is performed using, for example, an etching resist and an etching solution. Thereby, conductor layers 301 and 302 are formed on the first surface F1 and the second surface F2 of the substrate 100, respectively (see FIG. 46). Note that the etching is not limited to wet, and may be dry.
 上記実施形態では、スルーホール導体300bにおける第1導体部R11及び第2導体部R12のテーパ角度がそれぞれ略一定であったが、これに限定されない。例えば図49に示すように、第1導体部R11が、テーパ角度θ11の導体部R21と、テーパ角度θ11よりも小さなテーパ角度θ12を有する(すなわち、幅が狭くなる割合又は幅が広くなる割合が小さい)導体部R22と、から構成されていてもよい。図49の例では、第1面F1から導体部R21と導体部R22との境界面F100に向かって幅が狭くなる導体部R21と、境界面F100から基準面F0に向かって幅が狭くなる導体部R22と、基準面F0から第2面F2に向かって幅が広くなる第2導体部R12とが、互いに接続されることで、スルーホール導体300bが形成されている。導体部R21と導体部R22と第2導体部R12とは、連続的(一体的)に形成されている。導体部R21の側面及び第2導体部R12の側面はそれぞれ曲面であり、導体部R22の側面は平面である。導体部R21のテーパ角度θ11と第2導体部R12のテーパ角度θ2とは、互いに略同一である。 In the above embodiment, the taper angles of the first conductor portion R11 and the second conductor portion R12 in the through-hole conductor 300b are substantially constant, but the present invention is not limited to this. For example, as shown in FIG. 49, the first conductor portion R11 has a conductor portion R21 having a taper angle θ11 and a taper angle θ12 smaller than the taper angle θ11 (that is, the ratio of the width being narrowed or the ratio of the width being increased). (Small) conductor portion R22. In the example of FIG. 49, the conductor portion R21 whose width decreases from the first surface F1 toward the boundary surface F100 between the conductor portion R21 and the conductor portion R22, and the conductor whose width decreases from the boundary surface F100 toward the reference surface F0. The through-hole conductor 300b is formed by connecting the portion R22 and the second conductor portion R12 having a width that increases from the reference surface F0 toward the second surface F2. The conductor portion R21, the conductor portion R22, and the second conductor portion R12 are formed continuously (integrally). The side surface of the conductor portion R21 and the side surface of the second conductor portion R12 are curved surfaces, and the side surface of the conductor portion R22 is a flat surface. The taper angle θ11 of the conductor portion R21 and the taper angle θ2 of the second conductor portion R12 are substantially the same.
 また、第2面F2から基準面F0までの寸法T12は、第1面F1から基準面F0までの寸法T11よりも小さい。スルーホール導体300bの寸法については、第1面F1側端面の幅D31と、括れ部300cの幅D32と、第2面F2側端面の幅D33と、導体部R21と導体部R22との境界部の幅D34とが、大きい方から、幅D31(=幅D33)、幅D34、幅D32の順になっている。 Further, the dimension T12 from the second surface F2 to the reference surface F0 is smaller than the dimension T11 from the first surface F1 to the reference surface F0. Regarding the dimensions of the through-hole conductor 300b, the width D31 of the first surface F1 side end surface, the width D32 of the constricted portion 300c, the width D33 of the second surface F2 side end surface, and the boundary portion between the conductor portion R21 and the conductor portion R22 The width D34 is in the order of the width D31 (= width D33), the width D34, and the width D32 from the larger one.
 以下、図50A~図51Bを参照して、図49に示すスルーホール導体300bの製造方法の一例について説明する。 Hereinafter, an example of a method for manufacturing the through-hole conductor 300b shown in FIG. 49 will be described with reference to FIGS. 50A to 51B.
 まず、図50Aに示すように、上記実施形態と同様、両面銅張積層板1000を準備する(図7のステップS11参照)。 First, as shown in FIG. 50A, a double-sided copper-clad laminate 1000 is prepared as in the above embodiment (see step S11 in FIG. 7).
 続けて、図50Bに示すように、例えばCOレーザを用いて、第1面F1側からレーザを両面銅張積層板1000に照射することにより孔1003aを形成し、第2面F2側からレーザを両面銅張積層板1000に照射することにより孔1004を形成する。孔1003aと孔1004とは、それぞれ有底孔であり、X-Y平面において略同じ位置に、Z方向にずれて形成される。これにより、孔1003aと孔1004とは、基板100を挟んで、互いに対向するように配置される。孔1003aの形状は導体部R21(図49参照)に対応し、孔1004の形状は第2導体部R12(図49参照)に対応する。孔1003a及び1004の形状はそれぞれ、例えば深くなるにつれ幅が狭くなるようにテーパした半球状である。孔1003a及び1004の壁面はそれぞれ、例えば曲面になる。第1面F1に対するレーザ照射と第2面F2に対するレーザ照射とは、片面ずつ行っても、同時に行ってもよい。 Subsequently, as shown in FIG. 50B, a hole 1003a is formed by irradiating the double-sided copper-clad laminate 1000 with a laser from the first surface F1 side using, for example, a CO 2 laser, and a laser is emitted from the second surface F2 side. Is formed on the double-sided copper-clad laminate 1000 to form a hole 1004. The hole 1003a and the hole 1004 are each a bottomed hole, and are formed at substantially the same position in the XY plane and shifted in the Z direction. Thereby, the hole 1003a and the hole 1004 are disposed so as to face each other with the substrate 100 interposed therebetween. The shape of the hole 1003a corresponds to the conductor portion R21 (see FIG. 49), and the shape of the hole 1004 corresponds to the second conductor portion R12 (see FIG. 49). Each of the shapes of the holes 1003a and 1004 is, for example, a hemisphere that is tapered so that the width becomes narrower as it becomes deeper. Each of the wall surfaces of the holes 1003a and 1004 is, for example, a curved surface. Laser irradiation on the first surface F1 and laser irradiation on the second surface F2 may be performed one side at a time or simultaneously.
 続けて、図50Cに示すように、例えばCOレーザを用いて、第1面F1側からレーザを両面銅張積層板1000(詳しくは孔1003a内)に照射することにより、孔1003aと孔1004とを連通させる孔1003bを形成する。孔1003bの形状は導体部R22(図49参照)に対応する。孔1003aと孔1003bと孔1004とがつながることで、両面銅張積層板1000を貫通するスルーホール300aが形成される。その後、必要に応じて、スルーホール300aについてデスミアを行う。スルーホール300aの形状は、スルーホール導体300b(図49参照)に対応し、砂時計状(鼓状)となる。孔1003bと孔1004との境界は括れ部300c(図49参照)に相当する。 Subsequently, as shown in FIG. 50C, by using, for example, a CO 2 laser, the double-sided copper-clad laminate 1000 (specifically, in the hole 1003a) is irradiated with laser from the first surface F1 side, whereby the hole 1003a and the hole 1004 are irradiated. Hole 1003b is formed. The shape of the hole 1003b corresponds to the conductor portion R22 (see FIG. 49). By connecting the hole 1003a, the hole 1003b, and the hole 1004, a through hole 300a penetrating the double-sided copper-clad laminate 1000 is formed. Thereafter, desmearing is performed on the through hole 300a as necessary. The shape of the through hole 300a corresponds to the through hole conductor 300b (see FIG. 49) and has an hourglass shape (a drum shape). The boundary between the hole 1003b and the hole 1004 corresponds to the constricted portion 300c (see FIG. 49).
 続けて、図51Aに示すように、無電解めっきを行い、銅箔1001、1002上及びスルーホール300a内に、例えば銅の無電解めっき膜1005aを形成する。 Subsequently, as shown in FIG. 51A, electroless plating is performed to form, for example, a copper electroless plating film 1005a on the copper foils 1001 and 1002 and in the through hole 300a.
 続けて、図51Bに示すように、めっき液を用いて、無電解めっき膜1005aをシード層として電解めっきを行うことにより、電解めっき1005bを形成する。これにより、無電解めっき膜1005a及び電解めっき1005bからなるめっき1005がスルーホール300aに充填され、スルーホール導体300bが形成される。 Subsequently, as shown in FIG. 51B, electrolytic plating 1005b is formed by performing electroplating using the electroless plating film 1005a as a seed layer using a plating solution. As a result, the plating 1005 composed of the electroless plating film 1005a and the electrolytic plating 1005b is filled in the through hole 300a, and the through hole conductor 300b is formed.
 続けて、例えばエッチングレジスト及びエッチング液を用いて、基板100の第1面F1及び第2面F2に形成された各導体層のパターニングを行う。これにより、基板100の第1面F1、第2面F2上にそれぞれ、導体層301、302が形成される(図49参照)。なお、エッチングは、湿式に限られず、乾式であってもよい。 Subsequently, patterning of each conductor layer formed on the first surface F1 and the second surface F2 of the substrate 100 is performed using, for example, an etching resist and an etching solution. Thereby, conductor layers 301 and 302 are formed on the first surface F1 and the second surface F2 of the substrate 100, respectively (see FIG. 49). Note that the etching is not limited to wet, and may be dry.
 図52に示すように、スルーホール導体300bにおける第1導体部R11と第2導体部R12とは、X方向又はY方向にずれて連結されていてもよい。また、第1導体部R11と第2導体部R12との境界面は、配線板の主面に対して傾いていてもよく、曲面であってもよい。 As shown in FIG. 52, the first conductor portion R11 and the second conductor portion R12 in the through-hole conductor 300b may be connected so as to be shifted in the X direction or the Y direction. Further, the boundary surface between the first conductor portion R11 and the second conductor portion R12 may be inclined with respect to the main surface of the wiring board or may be a curved surface.
 電子部品200及びキャビティR10の形状は任意である。例えば図53に示すように、キャビティR10の開口形状が略楕円であってもよい。電子部品200の主面の形状、及びキャビティR10の開口形状は、略円(略真円)であってもよく、また、略正方形、略正六角形、略正八角形など、略長方形以外の略多角形であってもよい。なお、多角形の角の形状は任意であり、例えば略直角でも、鋭角でも、鈍角でも、丸みを帯びていてもよい。 The shapes of the electronic component 200 and the cavity R10 are arbitrary. For example, as shown in FIG. 53, the opening shape of the cavity R10 may be substantially oval. The shape of the main surface of the electronic component 200 and the shape of the opening of the cavity R10 may be substantially circles (substantially perfect circles), and are substantially many other than substantially rectangular, such as substantially squares, substantially regular hexagons, and substantially regular octagons. It may be square. In addition, the shape of the polygonal corner is arbitrary, and may be rounded, for example, substantially right angle, acute angle, obtuse angle.
 スルーホール導体300b又はビア導体311b等のフィルド導体の平面形状は、円に限られず任意である。配線板におけるフィルド導体の平面形状は、例えば図54Aに示すように、正方形等の四角形であってもよく、例えば図54B又は図54Cに示すように、十字形又は正多角星形など、中心から放射状に直線を引いた形(複数の羽根を放射状に配置した形)であってもよく、その他、楕円又は三角形等であってもよい。また、第1導体部R11、第2導体部R12、及び括れ部300cの平面形状が、互いに異なる形状であってもよい。例えば第1導体部R11及び第2導体部R12の平面形状がそれぞれ円であって、括れ部300cの平面形状が四角形であってもよい。 The planar shape of a filled conductor such as the through-hole conductor 300b or the via conductor 311b is not limited to a circle and is arbitrary. The planar shape of the filled conductor in the wiring board may be a quadrangle such as a square as shown in FIG. 54A, for example, from the center such as a cross or a regular polygonal star as shown in FIG. 54B or 54C. It may be a shape in which a straight line is drawn radially (a shape in which a plurality of blades are arranged radially), or may be an ellipse or a triangle. In addition, the planar shapes of the first conductor portion R11, the second conductor portion R12, and the constricted portion 300c may be different from each other. For example, the planar shape of the first conductor portion R11 and the second conductor portion R12 may be a circle, and the planar shape of the constricted portion 300c may be a rectangle.
 上記実施形態では、電子部品200について両面ビア構造を有していたが、これに限定されない。例えば図55に示すように、電子部品200の電極210、220に電気的に接続するビア導体311bを片側のみに有する配線板であってもよい。 In the above embodiment, the electronic component 200 has a double-sided via structure, but the present invention is not limited to this. For example, as shown in FIG. 55, a wiring board having via conductors 311b electrically connected to the electrodes 210 and 220 of the electronic component 200 only on one side may be used.
 上記実施形態1では、コア基板の両側に導体層を有する両面配線板(配線板10)を示したが、これに限られない。例えば図55に示すように、コア基板(基板100)の片側のみに第1ビルドアップ部B1(導体層110を含む)を有する片面配線板であってもよい。 In the first embodiment, the double-sided wiring board (wiring board 10) having the conductor layers on both sides of the core substrate is shown, but the invention is not limited to this. For example, as shown in FIG. 55, a single-sided wiring board having a first buildup portion B1 (including the conductor layer 110) only on one side of the core substrate (substrate 100) may be used.
 また、例えば図55に示されるように、キャビティR10(電子部品200の収容スペース)は、基板100を貫通しない孔(凹部)であってもよい。この場合も、電子部品200の厚さとキャビティR10(孔)の深さとは、略一致することが好ましいと考えられる。 For example, as shown in FIG. 55, the cavity R <b> 10 (the storage space for the electronic component 200) may be a hole (concave) that does not penetrate the substrate 100. Also in this case, it is considered preferable that the thickness of the electronic component 200 and the depth of the cavity R10 (hole) substantially coincide.
 上記実施形態では、基板100の厚さと電子部品200の厚さとが略一致している例を示したが、これに限られない。例えば図55に示されるように、電子部品200の厚さよりも基板100の厚さの方が大きくてもよい。 In the above embodiment, an example is shown in which the thickness of the substrate 100 and the thickness of the electronic component 200 are substantially the same, but the present invention is not limited to this. For example, as shown in FIG. 55, the thickness of the substrate 100 may be larger than the thickness of the electronic component 200.
 基板100(コア基板)の片側に2層以上のビルドアップ層を有する配線板であってもよい。例えば図56に示すように、基板100の第1面F1側に、2層の絶縁層101、103と2層の導体層110、130とが交互に積層され、基板100の第2面F2側に、2層の絶縁層102、104と2層の導体層120、140とが交互に積層されてもよい。図56の例では、絶縁層101上の導体層110と絶縁層103上の導体層130とが、絶縁層103に形成された孔332a(ビアホール)内のビア導体332bを介して、互いに電気的に接続される。また、絶縁層102上の導体層120と絶縁層104上の導体層140とが、絶縁層104に形成された孔342a(ビアホール)内のビア導体342bを介して、互いに電気的に接続される。スルーホール導体300b及びビア導体312b、322b、332b、342bは、いずれもフィルド導体であり、これらがZ方向にスタックされることで、フィルドスタックSが形成されている。 A wiring board having two or more build-up layers on one side of the substrate 100 (core substrate) may be used. For example, as shown in FIG. 56, two insulating layers 101 and 103 and two conductor layers 110 and 130 are alternately stacked on the first surface F1 side of the substrate 100, and the second surface F2 side of the substrate 100 is formed. In addition, the two insulating layers 102 and 104 and the two conductor layers 120 and 140 may be alternately stacked. In the example of FIG. 56, the conductor layer 110 on the insulating layer 101 and the conductor layer 130 on the insulating layer 103 are electrically connected to each other via the via conductor 332b in the hole 332a (via hole) formed in the insulating layer 103. Connected to. In addition, the conductor layer 120 on the insulating layer 102 and the conductor layer 140 on the insulating layer 104 are electrically connected to each other via a via conductor 342b in a hole 342a (via hole) formed in the insulating layer 104. . The through-hole conductor 300b and the via conductors 312b, 322b, 332b, and 342b are all filled conductors, and these are stacked in the Z direction, so that a filled stack S is formed.
 図56の例では、基板100(コア基板)の第1面F1側に形成される第1ビルドアップ部B1に含まれる全てのビア導体(ビア導体311b及び312b及び332b)がそれぞれ、基準面F0に向かって幅が狭くなり、基板100(コア基板)の第2面F2側に形成される第2ビルドアップ部B2に含まれる全てのビア導体(ビア導体321b及び322b及び342b)がそれぞれ、基準面F0に向かって幅が狭くなる。これにより、応力等が、基板100(コア基板)中の基準面F0に集中し易くなり、X-Y平面における応力分布の均一化が図られると考えられる。またその結果、配線板の反りが抑制され、配線板における電気的接続の信頼性が向上すると考えられる。そして、特に、絶縁層101(第1絶縁層)に形成される全てのビア導体(ビア導体311b及び312b)が基準面F0に向かって幅が狭くなり、且つ、絶縁層102(第2絶縁層)に形成される全てのビア導体(ビア導体321b及び322b)が基準面F0に向かって幅が狭くなる構成が、上述の配線板の反りを抑制する効果に寄与すると考えられる。 In the example of FIG. 56, all the via conductors (via conductors 311b, 312b, and 332b) included in the first buildup portion B1 formed on the first surface F1 side of the substrate 100 (core substrate) are respectively the reference surface F0. All the via conductors (via conductors 321b, 322b, and 342b) included in the second buildup portion B2 formed on the second surface F2 side of the substrate 100 (core substrate) are reduced to the reference, respectively. The width decreases toward the surface F0. Thereby, it is considered that stress and the like are easily concentrated on the reference plane F0 in the substrate 100 (core substrate), and the stress distribution in the XY plane can be made uniform. As a result, it is considered that the warpage of the wiring board is suppressed and the reliability of electrical connection in the wiring board is improved. In particular, all the via conductors (via conductors 311b and 312b) formed in the insulating layer 101 (first insulating layer) become narrower toward the reference plane F0, and the insulating layer 102 (second insulating layer). It is considered that the structure in which all the via conductors (via conductors 321b and 322b) formed in () are narrowed toward the reference plane F0 contributes to the effect of suppressing the warping of the wiring board described above.
 また、基板100の第1面F1側と基板100の第2面F2側とで、ビルドアップ層の数が異なっていてもよい。ただし、応力を緩和するためには、基板100の第1面F1側と基板100の第2面F2側とで、ビルドアップ層の数を同じにして、表裏の対称性を高めることが好ましいと考えられる。 Further, the number of build-up layers may be different between the first surface F1 side of the substrate 100 and the second surface F2 side of the substrate 100. However, in order to relieve stress, it is preferable to increase the symmetry of the front and back by making the number of buildup layers the same on the first surface F1 side of the substrate 100 and the second surface F2 side of the substrate 100. Conceivable.
 図57に示すように、基板100(コア基板)が金属板100d(例えば銅箔)を内蔵していてもよい。こうした基板100では、金属板100dにより放熱性が向上する。図57の例では、金属板100dに至るビア導体100eが基板100に形成され、金属板100dとグランドライン(導体層301、302に含まれる導体パターン)とが、ビア導体100eを介して、互いに電気的に接続されている。金属板100dは、図57に示すように、基準面F0付近に配置されることが好ましい。金属板100dの平面形状は任意であり、例えば図58Aに示すように四角形であってもよく、例えば図58Bに示すように円であってもよい。 As shown in FIG. 57, the substrate 100 (core substrate) may incorporate a metal plate 100d (for example, copper foil). In such a substrate 100, heat dissipation is improved by the metal plate 100d. In the example of FIG. 57, the via conductor 100e reaching the metal plate 100d is formed on the substrate 100, and the metal plate 100d and the ground line (conductor patterns included in the conductor layers 301 and 302) are mutually connected via the via conductor 100e. Electrically connected. As shown in FIG. 57, the metal plate 100d is preferably disposed near the reference plane F0. The planar shape of the metal plate 100d is arbitrary, and may be a quadrangle as shown in FIG. 58A, for example, or a circle as shown in FIG. 58B.
 金属板100dは、例えば図59に示すように、キャビティR10(開口部)を囲むように形成されてもよい。図59の例では、キャビティR10の四方に、スルーホール導体300bが配置される。基板100(コア基板)上には、スルーホール導体300bのランド301bと、ランド301bに接続される配線301cと、が形成される。導体層301には、ランド301b及び配線301cに含まれる。 The metal plate 100d may be formed so as to surround the cavity R10 (opening), for example, as shown in FIG. In the example of FIG. 59, through-hole conductors 300b are arranged in the four directions of the cavity R10. On the substrate 100 (core substrate), the land 301b of the through-hole conductor 300b and the wiring 301c connected to the land 301b are formed. The conductor layer 301 is included in the land 301b and the wiring 301c.
 図59の例では、基板100(コア基板)の貫通部(キャビティR10又はスルーホール300a等)近傍を除く略全面に、金属板100dが設けられている。金属板100dは、貫通部近傍(例えば貫通部から距離D40の範囲)を避けて形成されている。距離D40は、例えば120μmである。また、基板100(コア基板)上の導体層301は、金属板100dよりもキャビティR10(開口部)から離れた位置に形成されている。すなわち、導体層301及び金属板100dはそれぞれ、キャビティR10近傍を避けて形成されている。さらに、金属板100dの一部は、スルーホール導体300b(又はスルーホール300a)とキャビティR10との間に配置されている。 In the example of FIG. 59, a metal plate 100d is provided on substantially the entire surface excluding the vicinity of the penetrating portion (such as the cavity R10 or the through hole 300a) of the substrate 100 (core substrate). The metal plate 100d is formed so as to avoid the vicinity of the penetrating portion (for example, the range of the distance D40 from the penetrating portion). The distance D40 is 120 μm, for example. The conductor layer 301 on the substrate 100 (core substrate) is formed at a position farther from the cavity R10 (opening) than the metal plate 100d. That is, the conductor layer 301 and the metal plate 100d are each formed to avoid the vicinity of the cavity R10. Furthermore, a part of the metal plate 100d is disposed between the through-hole conductor 300b (or the through-hole 300a) and the cavity R10.
 図59中の寸法の好ましい一例を示す。電子部品200と金属板100dとの距離D41は、例えば160μmである。電子部品200と基板100との隙間R1(幅D3及びD4の各々)は、例えば40μmである。 FIG. 59 shows a preferred example of dimensions in FIG. A distance D41 between the electronic component 200 and the metal plate 100d is, for example, 160 μm. A gap R1 (each of the widths D3 and D4) between the electronic component 200 and the substrate 100 is, for example, 40 μm.
 金属板100dは、例えばキャビティR10から120μm(距離D41-幅D3)の範囲には形成されていない。また、基板100(コア基板)上の導体層301は、金属板100dよりもキャビティR10(開口部)から離れた位置に形成されている。すなわち、導体層301及び金属板100dはそれぞれ、キャビティR10近傍を避けて形成されている。 The metal plate 100d is not formed, for example, in the range of 120 μm (distance D41−width D3) from the cavity R10. The conductor layer 301 on the substrate 100 (core substrate) is formed at a position farther from the cavity R10 (opening) than the metal plate 100d. That is, the conductor layer 301 and the metal plate 100d are each formed to avoid the vicinity of the cavity R10.
 基板100(コア基板)上の導体層301は、例えば図60A~図60Cに示すように、金属板100dよりもキャビティR10(開口部)に近い位置に形成されてもよい。 The conductor layer 301 on the substrate 100 (core substrate) may be formed at a position closer to the cavity R10 (opening) than the metal plate 100d, for example, as shown in FIGS. 60A to 60C.
 図60Aの例では、スルーホール導体300bのランド301bが、金属板100dよりもキャビティR10(開口部)に近い位置に形成されている。すなわち、電子部品200とランド301bとの距離D42は、電子部品200と金属板100dとの距離D41よりも小さい。 In the example of FIG. 60A, the land 301b of the through-hole conductor 300b is formed at a position closer to the cavity R10 (opening) than the metal plate 100d. That is, the distance D42 between the electronic component 200 and the land 301b is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
 図60Bの例では、導体層301に含まれる補強パターン301dが、金属板100dよりもキャビティR10(開口部)に近い位置に形成されている。すなわち、電子部品200と補強パターン301dとの距離D43は、電子部品200と金属板100dとの距離D41よりも小さい。図60Bの例では、リング状の外形を有する補強パターン301dが、キャビティR10(開口部)を囲むように形成されている。 In the example of FIG. 60B, the reinforcing pattern 301d included in the conductor layer 301 is formed at a position closer to the cavity R10 (opening) than the metal plate 100d. That is, the distance D43 between the electronic component 200 and the reinforcing pattern 301d is smaller than the distance D41 between the electronic component 200 and the metal plate 100d. In the example of FIG. 60B, a reinforcing pattern 301d having a ring-shaped outer shape is formed so as to surround the cavity R10 (opening).
 図60Cの例では、導体層301に含まれる配線パターン301eが、金属板100dよりもキャビティR10(開口部)に近い位置に形成されている。すなわち、電子部品200と配線パターン301eとの距離D44は、電子部品200と金属板100dとの距離D41よりも小さい。 In the example of FIG. 60C, the wiring pattern 301e included in the conductor layer 301 is formed at a position closer to the cavity R10 (opening) than the metal plate 100d. That is, the distance D44 between the electronic component 200 and the wiring pattern 301e is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
 以下、図61A及び図61Bを参照して、図57に示す基板100(コア基板)の製造方法の一例について説明する。 Hereinafter, an example of a method for manufacturing the substrate 100 (core substrate) shown in FIG. 57 will be described with reference to FIGS. 61A and 61B.
 まず、図61Aに示すように、例えば銅箔からなる金属板100dを挟むように絶縁層4001、4002を配置し、さらに絶縁層4001上に銅箔4001aを配置し、絶縁層4002上に銅箔4001bを配置する。これにより、絶縁層4001(第1絶縁樹脂層)と、所定のパターンを有する金属板100dと、絶縁層4002(第2絶縁樹脂層)とが、この順で積層される。絶縁層4001、4002はそれぞれ、例えばガラエポのプリプレグからなる。金属板100dは、例えば図59に示すパターン(X-Y平面)を有する。金属板100dの厚さD22は、例えば35μmである。 First, as shown in FIG. 61A, insulating layers 4001 and 4002 are disposed so as to sandwich a metal plate 100d made of, for example, copper foil, copper foil 4001a is further disposed on insulating layer 4001, and copper foil is disposed on insulating layer 4002. 4001b is arranged. Thereby, the insulating layer 4001 (first insulating resin layer), the metal plate 100d having a predetermined pattern, and the insulating layer 4002 (second insulating resin layer) are laminated in this order. Each of the insulating layers 4001 and 4002 is made of, for example, glass prepreg. For example, the metal plate 100d has a pattern (XY plane) shown in FIG. The thickness D22 of the metal plate 100d is, for example, 35 μm.
 続けて、銅箔4001a、絶縁層4001、金属板100d、絶縁層4002、及び銅箔4001bの積層体をプレスして、金属板100dに向けて圧力を加える。絶縁層4001、4002を半硬化の状態でプレスすることにより、図61Bに示すように、絶縁層4001、4002からそれぞれ樹脂を流出させる。これにより、金属板100dの側方(金属板100dのパターンにおける金属板100dが無い部分)に絶縁層4001又は4002を構成する樹脂を充填され、絶縁層4003が形成される。その後、加熱して絶縁層4001、4002、4003の各々を硬化させる。これにより、金属板100dを内蔵する基板100(コア基板)が完成する。 Subsequently, the laminated body of the copper foil 4001a, the insulating layer 4001, the metal plate 100d, the insulating layer 4002, and the copper foil 4001b is pressed, and pressure is applied toward the metal plate 100d. By pressing the insulating layers 4001 and 4002 in a semi-cured state, as shown in FIG. 61B, the resin flows out from the insulating layers 4001 and 4002, respectively. As a result, the resin constituting the insulating layer 4001 or 4002 is filled into the side of the metal plate 100d (the portion without the metal plate 100d in the pattern of the metal plate 100d), and the insulating layer 4003 is formed. Thereafter, the insulating layers 4001, 4002, and 4003 are cured by heating. Thereby, the substrate 100 (core substrate) incorporating the metal plate 100d is completed.
 こうした方法により製造された配線板では、図62に示すように、キャビティR10(開口部)における電子部品200と基板100(コア基板)との隙間R1に絶縁体101a(第1絶縁体)が充填され、基板100は、金属板100dとキャビティR10との間に、絶縁層4003(第2絶縁体)を有する。絶縁層4003は、絶縁体101aとは異なる材料からなる。具体的には、絶縁体101aは、キャビティR10における電子部品200と基板100との隙間R1を跨いで基板100上及び電子部品200上に形成される絶縁層101又は102を構成する樹脂からなる(図19A参照)。一方、絶縁層4003は、絶縁層4001、4002を構成する樹脂からなる(図61B参照)。ここで、絶縁層101、102を構成する樹脂の各々は、絶縁層4001、4002を構成する各樹脂よりも、熱膨張率(CTE)が低い。このため、絶縁体101aの熱膨張率は、絶縁層4003よりも低くなっている。これにより、コンデンサと樹脂とのCTEミスマッチが緩和され、コンデンサと樹脂との間の密着性が向上する。絶縁層101、102の各々は、例えば無機フィラー入りエポキシ系樹脂フィルム(無機フィラー含有率40%以上)からなり、絶縁層4001、4002の各々は、例えばプリプレグ(ガラス基材入りエポキシ系樹脂シート)からなる。 In the wiring board manufactured by such a method, as shown in FIG. 62, the insulator 101a (first insulator) is filled in the gap R1 between the electronic component 200 and the substrate 100 (core substrate) in the cavity R10 (opening). Then, the substrate 100 has an insulating layer 4003 (second insulator) between the metal plate 100d and the cavity R10. The insulating layer 4003 is made of a material different from that of the insulator 101a. Specifically, the insulator 101a is made of a resin constituting the insulating layer 101 or 102 formed on the substrate 100 and the electronic component 200 across the gap R1 between the electronic component 200 and the substrate 100 in the cavity R10 ( (See FIG. 19A). On the other hand, the insulating layer 4003 is made of a resin constituting the insulating layers 4001 and 4002 (see FIG. 61B). Here, each of the resins constituting the insulating layers 101 and 102 has a lower coefficient of thermal expansion (CTE) than the resins constituting the insulating layers 4001 and 4002. Therefore, the thermal expansion coefficient of the insulator 101a is lower than that of the insulating layer 4003. Thereby, the CTE mismatch between the capacitor and the resin is relaxed, and the adhesion between the capacitor and the resin is improved. Each of the insulating layers 101 and 102 is made of, for example, an epoxy resin film with an inorganic filler (inorganic filler content 40% or more), and each of the insulating layers 4001 and 4002 is, for example, a prepreg (an epoxy resin sheet with a glass substrate). Consists of.
 電子部品内蔵配線板の好ましい一例としては、図63Aに示すような配線板も考えられる。以下、図63Aに示す配線板について、上記実施形態との相違点を中心に説明する。 As a preferred example of the electronic component built-in wiring board, a wiring board as shown in FIG. 63A is also conceivable. Hereinafter, the wiring board shown in FIG. 63A will be described focusing on differences from the above embodiment.
 図63Aの例では、基板100の第1面F1側に、4層の絶縁層101、103、105、107(それぞれ層間絶縁層)と4層の導体層110、130、150、170とが交互に積層されて、これらが第1ビルドアップ部B1を構成している。また、基板100の第2面F2側に、4層の絶縁層102、104、106、108(それぞれ層間絶縁層)と4層の導体層120、140、160、180とが交互に積層されて、これらが第2ビルドアップ部B2を構成している。基板100の第1面F1上の導体層301、及びそれよりも上層の導体層110、130、150、170は、各層間絶縁層に形成されたビア導体312b、332b、352b、372bにより、相互に電気的に接続されている。また、基板100の第2面F2上の導体層302、及びそれよりも上層の導体層120、140、160、180は、各層間絶縁層に形成されたビア導体322b、342b、362b、382bにより、相互に電気的に接続されている。 In the example of FIG. 63A, four insulating layers 101, 103, 105, and 107 (interlayer insulating layers, respectively) and four conductor layers 110, 130, 150, and 170 are alternately arranged on the first surface F1 side of the substrate 100. These are stacked to form the first buildup part B1. Further, four insulating layers 102, 104, 106, 108 (interlayer insulating layers) and four conductor layers 120, 140, 160, 180 are alternately stacked on the second surface F2 side of the substrate 100. These constitute the second buildup part B2. The conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layers 110, 130, 150, and 170 higher than the conductor layer 301 are mutually connected by via conductors 312b, 332b, 352b, and 372b formed in each interlayer insulating layer. Is electrically connected. In addition, the conductor layer 302 on the second surface F2 of the substrate 100 and the conductor layers 120, 140, 160, and 180 higher than the conductor layer 302 are formed by via conductors 322b, 342b, 362b, and 382b formed in each interlayer insulating layer. Are electrically connected to each other.
 図63Aの例でも、上記実施形態と同様、電子部品200が、基板100に形成されたキャビティR10(貫通孔)に配置されて、基板100の側方(X方向又はY方向)に位置する。ただし、電子部品200の電極210、220は、片面(第1面F1側)からのみ、ビア導体311bに接続されている。電子部品200の電極210、220はそれぞれ、絶縁層101に形成されたビア導体311bを介して、導体層110に電気的に接続される。電子部品200は、片面ビア構造によって、配線板に内蔵(実装)される。 In the example of FIG. 63A, as in the above embodiment, the electronic component 200 is disposed in the cavity R10 (through hole) formed in the substrate 100 and is located on the side of the substrate 100 (X direction or Y direction). However, the electrodes 210 and 220 of the electronic component 200 are connected to the via conductor 311b only from one surface (the first surface F1 side). The electrodes 210 and 220 of the electronic component 200 are electrically connected to the conductor layer 110 via via conductors 311b formed in the insulating layer 101, respectively. The electronic component 200 is built (mounted) on the wiring board by a single-sided via structure.
 好ましい一例では、基板100はガラエポからなり、絶縁層101、102はそれぞれ、樹脂(プリプレグ)付き銅箔からなり、絶縁層103、104、105、106、107、108はそれぞれ、ABF(Ajinomoto Build-up Film:味の素ファインテクノ株式会社製)からなる。ABFは、絶縁材料を2枚の保護シートで挟んだフィルムである。 In a preferred example, the substrate 100 is made of glass epoxy, the insulating layers 101 and 102 are made of copper foil with resin (prepreg), and the insulating layers 103, 104, 105, 106, 107 and 108 are made of ABF (AjinomotoinoBuild- up Film: made by Ajinomoto Fine Techno Co., Ltd. ABF is a film in which an insulating material is sandwiched between two protective sheets.
 導体層110、120はそれぞれ、例えば銅箔(下層)及び銅めっき(上層)からなり、例えばサブトラクティブ法により形成される。また、導体層130、140、150、160、170、180はそれぞれ、例えば銅めっきからなり、例えばセミアディティブ(SAP)法により形成される。ビア導体311b、312b、322bはそれぞれ、例えば銅めっきからなるコンフォーマル導体であり、ビア導体332b、342b、352b、362b、372b、382bはそれぞれ、例えば銅めっきからなるフィルド導体である。 Each of the conductor layers 110 and 120 is made of, for example, copper foil (lower layer) and copper plating (upper layer), and is formed by, for example, a subtractive method. Further, each of the conductor layers 130, 140, 150, 160, 170, 180 is made of, for example, copper plating, and is formed by, for example, a semi-additive (SAP) method. The via conductors 311b, 312b, and 322b are conformal conductors made of, for example, copper plating, and the via conductors 332b, 342b, 352b, 362b, 372b, and 382b are filled conductors made of, for example, copper plating.
 好ましい一例では、基板100の厚さは600μmであり、電子部品200の厚さ(電極210、220を含む)は550μmであり、導体層301、302の厚さはそれぞれ、35μmであり、導体層110、120、130、140、150、160、170、180の厚さはそれぞれ、60μmである。 In a preferred example, the thickness of the substrate 100 is 600 μm, the thickness of the electronic component 200 (including the electrodes 210 and 220) is 550 μm, the thickness of the conductor layers 301 and 302 is 35 μm, respectively. Each of 110, 120, 130, 140, 150, 160, 170, and 180 has a thickness of 60 μm.
 基板100(コア基板)にはスルーホール300aが形成され、スルーホール300aの壁面に導体膜(例えば銅めっき)が形成されることにより、スルーホール導体300dが形成される。基板100の第1面F1上の導体層301と基板100の第2面F2上の導体層302とは、互いにスルーホール導体300dを介して電気的に接続される。スルーホール300aの形状は、例えば円柱である。 Through-hole 300a is formed in substrate 100 (core substrate), and through-hole conductor 300d is formed by forming a conductor film (for example, copper plating) on the wall surface of through-hole 300a. The conductor layer 301 on the first surface F1 of the substrate 100 and the conductor layer 302 on the second surface F2 of the substrate 100 are electrically connected to each other via a through-hole conductor 300d. The shape of the through hole 300a is, for example, a cylinder.
 スルーホール300aにおけるスルーホール導体300dの内側(詳しくは、スルーホール導体300d、ランド300f、300gで囲まれる空隙)には、絶縁体300eが充填される。導体層301、302に含まれるランド300f、300gはそれぞれ、図63Bに示すように、例えば銅のめっきにより絶縁体300e上に形成される面状の導体(蓋めっき)であり、スルーホール導体300dに電気的に接続される。絶縁体300eは、例えば樹脂からなる。 The insulator 300e is filled inside the through-hole conductor 300d in the through-hole 300a (specifically, a space surrounded by the through-hole conductor 300d, the lands 300f, and 300g). As shown in FIG. 63B, each of the lands 300f and 300g included in the conductor layers 301 and 302 is a planar conductor (cover plating) formed on the insulator 300e by copper plating, for example. Is electrically connected. The insulator 300e is made of resin, for example.
 導体層170は、第1面F1側の最外の導体層となり、導体層180は、第2面F2側の最外の導体層となる。導体層170、180上にはそれぞれ、ソルダーレジスト11、12が形成される。ただし、ソルダーレジスト11、12にはそれぞれ、開口部11a、12aが形成されている。このため、導体層170の所定の部位(開口部11aに位置する部位)は、ソルダーレジスト11に覆われず露出しており、パッドP1となる。また、導体層180の所定の部位(開口部12aに位置する部位)は、パッドP2となる。パッドP1、P2はそれぞれ、その表面に、例えばNi/Au膜からなる耐食層170a、180aを有する。耐食層170a、180aはそれぞれ、例えば電解めっき又はスパッタリングにより形成することができる。また、OSP(Organic Solderability Preservative)処理を行うことにより、有機保護膜からなる耐食層170a、180aを形成してもよい。 The conductor layer 170 is the outermost conductor layer on the first surface F1 side, and the conductor layer 180 is the outermost conductor layer on the second surface F2 side. Solder resists 11 and 12 are formed on the conductor layers 170 and 180, respectively. However, openings 11a and 12a are formed in the solder resists 11 and 12, respectively. For this reason, the predetermined part (part located in the opening part 11a) of the conductor layer 170 is exposed without being covered with the solder resist 11, and becomes the pad P1. In addition, a predetermined part of the conductor layer 180 (part located in the opening 12a) is a pad P2. The pads P1 and P2 respectively have corrosion resistant layers 170a and 180a made of, for example, a Ni / Au film on the surface thereof. Each of the corrosion- resistant layers 170a and 180a can be formed by, for example, electrolytic plating or sputtering. Further, the corrosion resistant layers 170a and 180a made of an organic protective film may be formed by performing an OSP (Organic Solderability Preservative) process.
 上記図63Aに示す配線板において、スルーホール導体300d(コンフォーマル導体)に代えて、上記実施形態(図1等を参照)に係る砂時計状(鼓状)のスルーホール導体300b(フィルド導体)を適用してもよい。この場合も、上記実施形態と同様、配線板における電気的接続の信頼性を高めることが可能になる。 In the wiring board shown in FIG. 63A, instead of the through-hole conductor 300d (conformal conductor), an hourglass-shaped (drum-shaped) through-hole conductor 300b (filled conductor) according to the above-described embodiment (see FIG. 1 and the like) is used. You may apply. In this case as well, the reliability of the electrical connection in the wiring board can be increased as in the above embodiment.
 電子部品200の主面の形状、並びにキャビティR10の第1開口の形状及び第2開口の形状は、略長方形に限られず任意である。例えば図64Aに示されるように、キャビティR10の第1開口の形状及び第2開口の形状が略楕円であってもよい。また、図64Bに示されるように、キャビティR10の第1開口の形状及び第2開口の形状が非相似の関係であってもよい。なお、図64Bの例では、キャビティR10の第1開口の形状が略楕円であり、キャビティR10の第2開口の形状が略長方形である。 The shape of the main surface of the electronic component 200 and the shape of the first opening and the second opening of the cavity R10 are not limited to a substantially rectangular shape, but are arbitrary. For example, as shown in FIG. 64A, the shape of the first opening and the shape of the second opening of the cavity R10 may be substantially oval. Further, as shown in FIG. 64B, the shape of the first opening and the shape of the second opening of the cavity R10 may be in a similar relationship. In the example of FIG. 64B, the shape of the first opening of the cavity R10 is substantially elliptical, and the shape of the second opening of the cavity R10 is substantially rectangular.
 また、電子部品200の主面の形状、並びにキャビティR10の第1開口の形状及び第2開口の形状は、略円(略真円)であってもよい。また、略正方形、略正六角形、略正八角形など、略長方形以外の略多角形であってもよい。なお、多角形の角の形状は任意であり、例えば略直角でも、鋭角でも、鈍角でも、丸みを帯びていてもよい。 Further, the shape of the main surface of the electronic component 200, and the shape of the first opening and the shape of the second opening of the cavity R10 may be substantially circular (substantially perfect circle). Further, it may be a substantially polygonal shape other than a substantially rectangular shape, such as a substantially square shape, a substantially regular hexagonal shape, or a substantially regular octagonal shape. In addition, the shape of the polygonal corner is arbitrary, and may be rounded, for example, substantially right angle, acute angle, obtuse angle.
 上記実施形態2、3に係る配線板20又は30は、電子部品200の電極210、220に電気的に接続するビア導体321bを、第2面F2側(テーパ面C11とは反対側)に有していたが、これに限定されない。例えば図65に示すように、電子部品200の電極210、220に電気的に接続するビア導体311b(絶縁層101に形成された孔311a内の導体)を、基板100の第1面F1側(テーパ面C11を有する側)に有する配線板であってもよい。 The wiring boards 20 or 30 according to the second and third embodiments have the via conductor 321b electrically connected to the electrodes 210 and 220 of the electronic component 200 on the second surface F2 side (the side opposite to the tapered surface C11). However, it is not limited to this. For example, as shown in FIG. 65, via conductor 311b (conductor in hole 311a formed in insulating layer 101) electrically connected to electrodes 210 and 220 of electronic component 200 is connected to first surface F1 side of substrate 100 ( A wiring board provided on the side having the tapered surface C11 may be used.
 コア基板の片側に2層以上のビルドアップ層を有する電子部品内蔵配線板であってもよい。例えば図66に示すように、基板100の第1面F1側に、2層の絶縁層101、103と2層の導体層110、130とが交互に積層され、基板100の第2面F2側に、2層の絶縁層102、104と2層の導体層120、140とが交互に積層されていてもよい。図66の例では、絶縁層103に孔331a(ビアホール)が形成されており、孔331a内に導体(例えば銅のめっき)が充填されることにより、その孔331a内の導体がビア導体331b(フィルド導体)となる。絶縁層101上の導体層110と絶縁層103上の導体層130とは、ビア導体331bを介して、互いに電気的に接続される。また、絶縁層104に孔341a(ビアホール)が形成されており、孔341a内に導体(例えば銅のめっき)が充填されることにより、その孔341a内の導体がビア導体341b(フィルド導体)となる。絶縁層102上の導体層120と絶縁層104上の導体層140とは、ビア導体341bを介して、互いに電気的に接続される。 The wiring board with a built-in electronic component having two or more build-up layers on one side of the core substrate may be used. For example, as shown in FIG. 66, two insulating layers 101 and 103 and two conductor layers 110 and 130 are alternately stacked on the first surface F1 side of the substrate 100, and the second surface F2 side of the substrate 100 is formed. In addition, the two insulating layers 102 and 104 and the two conductor layers 120 and 140 may be alternately stacked. In the example of FIG. 66, a hole 331a (via hole) is formed in the insulating layer 103, and a conductor (for example, copper plating) is filled in the hole 331a, whereby the conductor in the hole 331a becomes a via conductor 331b ( Filled conductor). The conductor layer 110 on the insulating layer 101 and the conductor layer 130 on the insulating layer 103 are electrically connected to each other through the via conductor 331b. In addition, a hole 341a (via hole) is formed in the insulating layer 104, and a conductor (for example, copper plating) is filled in the hole 341a, whereby the conductor in the hole 341a becomes a via conductor 341b (filled conductor). Become. The conductor layer 120 on the insulating layer 102 and the conductor layer 140 on the insulating layer 104 are electrically connected to each other through the via conductor 341b.
 基板100の第1面F1側と基板100の第2面F2側とで、ビルドアップ層の数が異なっていてもよい。ただし、応力を緩和するためには、基板100の第1面F1側と基板100の第2面F2側とで、ビルドアップ層の数を同じにして、表裏の対称性を高めることが好ましいと考えられる。 The number of buildup layers may be different between the first surface F1 side of the substrate 100 and the second surface F2 side of the substrate 100. However, in order to relieve stress, it is preferable to increase the symmetry of the front and back by making the number of buildup layers the same on the first surface F1 side of the substrate 100 and the second surface F2 side of the substrate 100. Conceivable.
 上記実施形態2では、コア基板の両側に導体層を有する両面配線板(配線板20)を示したが、これに限られない。例えば図67に示すように、コア基板(基板100)の片側のみに導体層を有する片面配線板であってもよい。また、図67には、第1面F1側(テーパ面C11を有する側)のみに導体層110を有する片面配線板を示しているが、これに限定されない。例えば図68に示すように、第2面F2側(テーパ面C11とは反対側)のみに導体層120、140を有する片面配線板であってもよい。 In the second embodiment, the double-sided wiring board (wiring board 20) having the conductor layers on both sides of the core substrate is shown, but the invention is not limited to this. For example, as shown in FIG. 67, a single-sided wiring board having a conductor layer only on one side of the core substrate (substrate 100) may be used. FIG. 67 shows a single-sided wiring board having the conductor layer 110 only on the first surface F1 side (side having the tapered surface C11), but is not limited thereto. For example, as shown in FIG. 68, a single-sided wiring board having conductor layers 120 and 140 only on the second surface F2 side (the side opposite to the tapered surface C11) may be used.
 また、例えば図67に示されるように、キャビティR10(電子部品200の収容スペース)は、基板100を貫通しない孔(凹部)であってもよい。この場合も、電子部品200の厚さとキャビティR10(孔)の深さとは、略一致することが好ましいと考えられる。 Further, for example, as shown in FIG. 67, the cavity R10 (the storage space for the electronic component 200) may be a hole (concave) that does not penetrate the substrate 100. Also in this case, it is considered preferable that the thickness of the electronic component 200 and the depth of the cavity R10 (hole) substantially coincide.
 上記各実施形態では、基板100の厚さと電子部品200の厚さとが略一致している例を示したが、これに限られない。例えば図67に示されるように、電子部品200の厚さよりも基板100の厚さの方が大きくてもよい。 In each of the above embodiments, the example in which the thickness of the substrate 100 and the thickness of the electronic component 200 are substantially the same is shown, but the present invention is not limited to this. For example, as shown in FIG. 67, the thickness of the substrate 100 may be larger than the thickness of the electronic component 200.
 図69に示すように、表面にキャビティR10を有する配線板であってもよい。図69の例では、キャビティR10における電子部品200と基板100との隙間に、絶縁体101aが充填されているが、これに限定されない。例えば接着剤などで、電子部品200を部分的に基板100に固定してもよい。 69, a wiring board having a cavity R10 on the surface may be used. In the example of FIG. 69, the gap between the electronic component 200 and the substrate 100 in the cavity R10 is filled with the insulator 101a, but the present invention is not limited to this. For example, the electronic component 200 may be partially fixed to the substrate 100 with an adhesive or the like.
 コア基板の両側にテーパ面を有する配線板であってもよい。図70に示すように、基板100の側面F10(キャビティR10の内壁)と第1面F1との角にテーパ面C11が形成され、基板100の側面F10(キャビティR10の内壁)と第2面F2との角にテーパ面C12が形成されていてもよい。基板100の両側にテーパ面C11、C12を形成すれば、製造時に基板100の向き(表/裏)を合わせる工程などを省略することが可能になる。 A wiring board having tapered surfaces on both sides of the core substrate may be used. As shown in FIG. 70, a tapered surface C11 is formed at the corner between the side surface F10 (inner wall of the cavity R10) of the substrate 100 and the first surface F1, and the side surface F10 (inner wall of the cavity R10) of the substrate 100 and the second surface F2. A tapered surface C12 may be formed at the corner. If the tapered surfaces C11 and C12 are formed on both sides of the substrate 100, a step of aligning the orientation (front / back) of the substrate 100 during manufacturing can be omitted.
 上記各実施形態では、テーパ面C11が、キャビティR10の全周縁部に形成されていた。しかしこれに限られず、例えば図71に示すように、テーパ面C11は、キャビティR10の周縁部に部分的に形成されていてもよい。図71の例では、電子部品200をキャビティR10に収容するためのクリアランスが、X方向とY方向とで互いに異なっており、キャビティR10の全周縁部(4辺)のうち、クリアランスが小さい部分(例えば対向する2辺)にのみ、テーパ面C11が形成されている。 In each of the above embodiments, the tapered surface C11 is formed on the entire periphery of the cavity R10. However, the present invention is not limited to this. For example, as shown in FIG. 71, the tapered surface C11 may be partially formed on the peripheral edge of the cavity R10. In the example of FIG. 71, the clearances for accommodating the electronic component 200 in the cavity R10 are different from each other in the X direction and the Y direction. For example, the tapered surface C11 is formed only on two opposing sides.
 上記各実施形態では、第1層100aが無機材料を含まなかったが、これに限定されない。例えば図72に示すように、第1層100aが第2層100bよりも少ない無機材料を含んでいる場合も、テーパ面C11の形成が容易になると考えられる。 In each of the above embodiments, the first layer 100a does not contain an inorganic material, but the present invention is not limited to this. For example, as shown in FIG. 72, it is considered that the tapered surface C11 can be easily formed even when the first layer 100a contains less inorganic material than the second layer 100b.
 また、基板100は、例えば図73に示すように、第1面F1から第2面F2に向かって、材質の異なる第1層100a、第2層100b、及び第3層100cを、この順で有していてもよい。図73の例では、第1層100aが無機材料を含まず、第2層100bが無機材料を含み、第3層100cが第2層100bよりも多い無機材料を含む。そして、キャビティR10に臨む基板100の側面F10は、第2層100bの側面F12及び第3層100cの側面F11から構成される。この例では、図73中、側面F12のテーパ角度θ22が、テーパ面C11のテーパ角度θ21よりも小さい。 In addition, as shown in FIG. 73, for example, the substrate 100 is formed of a first layer 100a, a second layer 100b, and a third layer 100c of different materials in this order from the first surface F1 toward the second surface F2. You may have. In the example of FIG. 73, the first layer 100a does not include an inorganic material, the second layer 100b includes an inorganic material, and the third layer 100c includes more inorganic materials than the second layer 100b. The side surface F10 of the substrate 100 facing the cavity R10 is composed of the side surface F12 of the second layer 100b and the side surface F11 of the third layer 100c. In this example, in FIG. 73, the taper angle θ22 of the side surface F12 is smaller than the taper angle θ21 of the taper surface C11.
 また、基板100は、例えば図74に示すように、第1面F1から第2面F2に向かって、材質の異なる第1層100a及び第2層100bを、この順で有していてもよい。図74の例では、第1層100aが無機材料を含まず、第2層100bが無機材料を含む。 Further, for example, as shown in FIG. 74, the substrate 100 may have a first layer 100a and a second layer 100b of different materials in this order from the first surface F1 toward the second surface F2. . In the example of FIG. 74, the first layer 100a does not include an inorganic material, and the second layer 100b includes an inorganic material.
 基板100の内層に最も無機材料が多い層を有する配線板であってもよい。例えば図75に示すように、基板100が、第1面F1から第2面F2に向かって、無機材料を含まない第1層100aと、無機材料を含む第2層100bと、無機材料を含まない第3層100cと、を有していてもよい。こうした構造であれば、基板100の両側にテーパ面C11、C12を形成し易くなる。第1層100a及び第3層100c(テーパ面C11及びC12)はそれぞれ、電子部品200よりも薄くすることが好ましいと考えられる。 A wiring board having a layer containing the most inorganic material in the inner layer of the substrate 100 may be used. For example, as shown in FIG. 75, the substrate 100 includes a first layer 100a that does not include an inorganic material, a second layer 100b that includes an inorganic material, and an inorganic material from the first surface F1 toward the second surface F2. A third layer 100c that is not present. With such a structure, the tapered surfaces C <b> 11 and C <b> 12 can be easily formed on both sides of the substrate 100. It is considered that the first layer 100a and the third layer 100c (tapered surfaces C11 and C12) are preferably thinner than the electronic component 200, respectively.
 第1層100aの材質と第2層100bの材質とは、無機材料の含有量以外の点で異なっていてもよい。例えば第1層100aと第2層100bとが、異なる樹脂から構成されていてもよい。この場合も、第2層100bよりも第1層100aの方が、基板100の加工(例えばレーザ加工)に対して強ければ、テーパ面C11の形成が容易になると考えられる。 The material of the first layer 100a and the material of the second layer 100b may be different except for the content of the inorganic material. For example, the first layer 100a and the second layer 100b may be made of different resins. Also in this case, if the first layer 100a is stronger than the second layer 100b with respect to the processing (for example, laser processing) of the substrate 100, it is considered that the tapered surface C11 can be easily formed.
 上記各実施形態では、レーザ加工でテーパ面C11を形成するようにしたが、これに限定されず、ドライエッチング等でテーパ面C11を形成する場合も、材質の異なる第1層100a及び第2層100bによって、テーパ面C11の形成が容易になると考えられる。ただし、レーザ加工によれば、特に良好なテーパ面C11を得ることができると考えられる。 In each of the above embodiments, the tapered surface C11 is formed by laser processing. However, the present invention is not limited to this, and when the tapered surface C11 is formed by dry etching or the like, the first layer 100a and the second layer made of different materials are used. It is considered that the taper surface C11 can be easily formed by 100b. However, it is considered that a particularly good tapered surface C11 can be obtained by laser processing.
 図76に示すように、基板100(コア基板)が金属板100d(例えば銅箔)を内蔵していてもよい。こうした基板100では、金属板100dにより放熱性が向上する。図76の例では、金属板100dに至るビア導体100eが基板100に形成され、金属板100dとグランドライン(導体層301、302に含まれる導体パターン)とが、ビア導体100eを介して、互いに電気的に接続されている。 As shown in FIG. 76, the substrate 100 (core substrate) may incorporate a metal plate 100d (for example, copper foil). In such a substrate 100, heat dissipation is improved by the metal plate 100d. In the example of FIG. 76, the via conductor 100e reaching the metal plate 100d is formed on the substrate 100, and the metal plate 100d and the ground line (conductor patterns included in the conductor layers 301 and 302) are mutually connected via the via conductor 100e. Electrically connected.
 金属板を内蔵する基板は、金属板を内蔵しない基板に比べて、厚くなり易い。このため、金属板を内蔵する基板は、基板の開口部に配置される電子部品よりも厚くなり易い。また、基板に内蔵される金属板の厚さが大きいほど、基板の厚さは大きくなり易くなる。そして、基板の厚さが大きくなるほど、基板の厚さと電子部品の厚さとの差が大きくなり易くなる。 A substrate with a built-in metal plate tends to be thicker than a substrate without a built-in metal plate. For this reason, the board | substrate which incorporates a metal plate tends to be thicker than the electronic component arrange | positioned at the opening part of a board | substrate. Moreover, the thickness of the substrate is likely to increase as the thickness of the metal plate incorporated in the substrate increases. As the thickness of the substrate increases, the difference between the thickness of the substrate and the thickness of the electronic component tends to increase.
 基板の厚さと電子部品の厚さとの差が大きくなると、基板に形成された開口部に電子部品を入れる工程において、マウンターが基板にぶつかり易くなる。しかし、図76に示す配線板では、基板100にテーパ面C11が形成されていることで、こうしたマウンターと基板100との干渉を抑制することが可能になる。以下、図77A~図78を参照して、このことについてさらに説明する。 When the difference between the thickness of the substrate and the thickness of the electronic component becomes large, the mounter easily hits the substrate in the step of putting the electronic component into the opening formed in the substrate. However, in the wiring board shown in FIG. 76, since the tapered surface C11 is formed on the substrate 100, interference between the mounter and the substrate 100 can be suppressed. Hereinafter, this will be further described with reference to FIGS. 77A to 78.
 図77Aに、テーパ面C11が形成されていない基板100(コア基板)から構成される配線板を示す。こうした配線板の製造プロセスにおいて、基板100に形成されたキャビティR10に電子部品200を入れる場合には、例えば真空チャックによりマウンター3000aに電子部品200を保持させる。そして、そのマウンター3000aをキャビティR10の上方(Z1側)に移動させた後、キャビティR10に電子部品200を入れるべく、そこから徐々にマウンター3000aを基板100に近づけていく。この際、電子部品200は、キャビティR10よりも小さいため、キャビティR10を通過できるものの、マウンター3000aは、必ずしもキャビティR10よりも小さくないため、マウンター3000aの大きさによっては、図77Bに示されるように、マウンター3000aが基板100(特にその角)にぶつかることが起こり得る。 FIG. 77A shows a wiring board composed of the substrate 100 (core substrate) on which the tapered surface C11 is not formed. In such a wiring board manufacturing process, when the electronic component 200 is put into the cavity R10 formed in the substrate 100, the mounter 3000a holds the electronic component 200 by, for example, a vacuum chuck. Then, after the mounter 3000a is moved above the cavity R10 (Z1 side), the mounter 3000a is gradually brought closer to the substrate 100 from there to place the electronic component 200 in the cavity R10. At this time, since the electronic component 200 is smaller than the cavity R10 and can pass through the cavity R10, the mounter 3000a is not necessarily smaller than the cavity R10. Therefore, depending on the size of the mounter 3000a, as shown in FIG. 77B The mounter 3000a may hit the substrate 100 (especially its corner).
 この点、図76に示す配線板では、基板100が、キャビティR10に臨む基板100の側面F10(キャビティR10の内壁)と第1面F1との角に、第1面F1から第2面F2に向かってキャビティR10を縮幅するテーパ面C11を有する。基板100にテーパ面C11が形成されることで、基板100の側面F10と第1面F1との角が面取りされ、マウンター3000aが干渉し易い基板100の第1面F1側においてキャビティR10の幅が広くなる。その結果、図78に示すように、マウンター3000aと基板100とが干渉(接触)しにくくなる。 In this regard, in the wiring board shown in FIG. 76, the substrate 100 extends from the first surface F1 to the second surface F2 at the corner between the side surface F10 of the substrate 100 facing the cavity R10 (the inner wall of the cavity R10) and the first surface F1. A tapered surface C11 is formed to reduce the width of the cavity R10. By forming the taper surface C11 on the substrate 100, the corners of the side surface F10 and the first surface F1 of the substrate 100 are chamfered, and the width of the cavity R10 is increased on the first surface F1 side of the substrate 100 where the mounter 3000a easily interferes. Become wider. As a result, as shown in FIG. 78, the mounter 3000a and the substrate 100 are less likely to interfere (contact).
 こうしたマウンター3000aと基板100との干渉は、図78中、基板100の厚さD51と電子部品200の厚さD53との差(D51-D53)が、約20μm以上である場合に特に生じ易い。この点、基板100にテーパ面C11が形成された配線板によれば、上記のようにマウンター3000aと基板100との干渉を抑制することが可能になるため、基板100の厚さD51と電子部品200の厚さD53との差(D51-D53)が約20μm以上である配線板を製造する場合の歩留まりを向上させることが可能になる。 Such interference between the mounter 3000a and the substrate 100 is particularly likely to occur when the difference (D51-D53) between the thickness D51 of the substrate 100 and the thickness D53 of the electronic component 200 in FIG. 78 is about 20 μm or more. In this regard, according to the wiring board in which the tapered surface C11 is formed on the substrate 100, it is possible to suppress the interference between the mounter 3000a and the substrate 100 as described above. It is possible to improve the yield when manufacturing a wiring board having a difference (D51−D53) of 200 from the thickness D53 of about 20 μm or more.
 また、放熱性又は強度を確保するためには、金属板100dの厚さD52が約30μm以上であることが好ましい。しかし、金属板100dが厚くなるほど基板100が厚くなり易いため、キャビティR10に電子部品200を入れる工程において、マウンター3000aと基板100との干渉が生じ易くなる。この点、基板100にテーパ面C11が形成された配線板によれば、上記のようにマウンター3000aと基板100との干渉を抑制することが可能になるため、厚い金属板100dを内蔵する配線板を製造する場合の歩留まりを向上させることが可能になる。 Moreover, in order to ensure heat dissipation or strength, it is preferable that the thickness D52 of the metal plate 100d is about 30 μm or more. However, the thicker the metal plate 100d, the thicker the substrate 100 becomes, so that the mounter 3000a and the substrate 100 are likely to interfere with each other in the step of inserting the electronic component 200 into the cavity R10. In this respect, according to the wiring board in which the taper surface C11 is formed on the substrate 100, it is possible to suppress the interference between the mounter 3000a and the substrate 100 as described above. Therefore, the wiring board incorporating the thick metal plate 100d. It is possible to improve the yield in the case of manufacturing.
 図78に示すように、テーパ面C11は、第1面F1から、電子部品200の第3面F3よりも深い位置まで形成されていることが好ましい。すなわち、テーパ面C11の深さD54が、基板100の厚さD51と電子部品200の厚さD53との差よりも大きいこと(D54>D51-D53)が好ましい。これにより、マウンター3000aがテーパ面C11よりも深く進む前に、電子部品200の配置(収容)が完了し易くなる。その結果、マウンター3000aと基板100(特にその角)とが干渉しにくくなる。 78, the tapered surface C11 is preferably formed from the first surface F1 to a position deeper than the third surface F3 of the electronic component 200. That is, it is preferable that the depth D54 of the tapered surface C11 is larger than the difference between the thickness D51 of the substrate 100 and the thickness D53 of the electronic component 200 (D54> D51-D53). Thereby, before the mounter 3000a advances deeper than the taper surface C11, the arrangement (accommodation) of the electronic component 200 is easily completed. As a result, the mounter 3000a and the substrate 100 (especially the corner) are less likely to interfere with each other.
 好ましい一例では、基板100の厚さD51が約180μmであり、電子部品200の厚さD53が約140μmであり、テーパ面C11の深さD54が約40μmであり、金属板100dの厚さD52が約35μmである。基板100の厚さD51と電子部品200の厚さD53との差(D51-D53)は、約40μmである。 In a preferred example, the thickness D51 of the substrate 100 is about 180 μm, the thickness D53 of the electronic component 200 is about 140 μm, the depth D54 of the tapered surface C11 is about 40 μm, and the thickness D52 of the metal plate 100d is About 35 μm. The difference (D51−D53) between the thickness D51 of the substrate 100 and the thickness D53 of the electronic component 200 is about 40 μm.
 金属板100dの平面形状は任意であり、例えば図79Aに示すように四角形であってもよく、例えば図79Bに示すように円であってもよい。 The planar shape of the metal plate 100d is arbitrary, and may be, for example, a square as shown in FIG. 79A, or may be a circle as shown in FIG. 79B, for example.
 金属板100dは、例えば図80に示すように、キャビティR10を囲むように形成されてもよい。図80の例では、キャビティR10の四方に、スルーホール導体300bが配置される。基板100(コア基板)上には、スルーホール導体300bのランド301bと、ランド301bに接続される配線301cと、が形成される。導体層301には、ランド301b及び配線301cに含まれる。 The metal plate 100d may be formed so as to surround the cavity R10, for example, as shown in FIG. In the example of FIG. 80, through-hole conductors 300b are arranged in the four directions of the cavity R10. On the substrate 100 (core substrate), the land 301b of the through-hole conductor 300b and the wiring 301c connected to the land 301b are formed. The conductor layer 301 is included in the land 301b and the wiring 301c.
 図80の例では、基板100(コア基板)の貫通部(キャビティR10又はスルーホール300a等)近傍を除く略全面に、金属板100dが設けられている。金属板100dは、貫通部近傍(例えば貫通部から距離D40の範囲)を避けて形成されている。また、基板100(コア基板)上の導体層301は、金属板100dよりもキャビティR10から離れた位置に形成されている。すなわち、導体層301及び金属板100dはそれぞれ、キャビティR10近傍を避けて形成されている。さらに、金属板100dの一部は、スルーホール導体300b(又はスルーホール300a)とキャビティR10との間に配置されている。 In the example of FIG. 80, a metal plate 100d is provided on substantially the entire surface excluding the vicinity of the through portion (cavity R10 or through hole 300a) of the substrate 100 (core substrate). The metal plate 100d is formed so as to avoid the vicinity of the penetrating portion (for example, the range of the distance D40 from the penetrating portion). The conductor layer 301 on the substrate 100 (core substrate) is formed at a position farther from the cavity R10 than the metal plate 100d. That is, the conductor layer 301 and the metal plate 100d are each formed to avoid the vicinity of the cavity R10. Furthermore, a part of the metal plate 100d is disposed between the through-hole conductor 300b (or the through-hole 300a) and the cavity R10.
 基板100(コア基板)上の導体層301は、例えば図81A~図81Cに示すように、金属板100dよりもキャビティR10に近い位置に形成されてもよい。 The conductor layer 301 on the substrate 100 (core substrate) may be formed at a position closer to the cavity R10 than the metal plate 100d, for example, as shown in FIGS. 81A to 81C.
 図81Aの例では、スルーホール導体300bのランド301bが、金属板100dよりもキャビティR10に近い位置に形成されている。すなわち、電子部品200とランド301bとの距離D42は、電子部品200と金属板100dとの距離D41よりも小さい。 In the example of FIG. 81A, the land 301b of the through-hole conductor 300b is formed at a position closer to the cavity R10 than the metal plate 100d. That is, the distance D42 between the electronic component 200 and the land 301b is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
 図81Bの例では、導体層301に含まれる補強パターン301dが、金属板100dよりもキャビティR10に近い位置に形成されている。すなわち、電子部品200と補強パターン301dとの距離D43は、電子部品200と金属板100dとの距離D41よりも小さい。図81Bの例では、リング状の外形を有する補強パターン301dが、キャビティR10を囲むように形成されている。 81B, the reinforcing pattern 301d included in the conductor layer 301 is formed at a position closer to the cavity R10 than the metal plate 100d. That is, the distance D43 between the electronic component 200 and the reinforcing pattern 301d is smaller than the distance D41 between the electronic component 200 and the metal plate 100d. In the example of FIG. 81B, a reinforcing pattern 301d having a ring-shaped outer shape is formed so as to surround the cavity R10.
 図81Cの例では、導体層301に含まれる配線パターン301eが、金属板100dよりもキャビティR10に近い位置に形成されている。すなわち、電子部品200と配線パターン301eとの距離D44は、電子部品200と金属板100dとの距離D41よりも小さい。 In the example of FIG. 81C, the wiring pattern 301e included in the conductor layer 301 is formed at a position closer to the cavity R10 than the metal plate 100d. That is, the distance D44 between the electronic component 200 and the wiring pattern 301e is smaller than the distance D41 between the electronic component 200 and the metal plate 100d.
 以下、図82A及び図82Bを参照して、図76に示す基板100(コア基板)の製造方法の一例について説明する。 Hereinafter, an example of a method for manufacturing the substrate 100 (core substrate) shown in FIG. 76 will be described with reference to FIGS. 82A and 82B.
 まず、図82Aに示すように、例えば銅箔からなる金属板100dを挟むように絶縁層4001、4002を配置し、さらに絶縁層4001上に銅箔4001aを配置し、絶縁層4002上に銅箔4001bを配置する。これにより、絶縁層4001(第1絶縁樹脂層)と、所定のパターンを有する金属板100dと、絶縁層4002(第2絶縁樹脂層)とが、この順で積層される。絶縁層4001、4002はそれぞれ、例えばガラエポのプリプレグからなる。金属板100dは、例えば図80に示すパターン(X-Y平面)を有する。 First, as shown in FIG. 82A, insulating layers 4001 and 4002 are disposed so as to sandwich a metal plate 100d made of, for example, copper foil, copper foil 4001a is further disposed on insulating layer 4001, and copper foil is disposed on insulating layer 4002. 4001b is arranged. Thereby, the insulating layer 4001 (first insulating resin layer), the metal plate 100d having a predetermined pattern, and the insulating layer 4002 (second insulating resin layer) are laminated in this order. Each of the insulating layers 4001 and 4002 is made of, for example, glass prepreg. For example, the metal plate 100d has a pattern (XY plane) shown in FIG.
 続けて、銅箔4001a、絶縁層4001、金属板100d、絶縁層4002、及び銅箔4001bの積層体をプレスして、金属板100dに向けて圧力を加える。絶縁層4001、4002を半硬化の状態でプレスすることにより、図82Bに示すように、絶縁層4001、4002からそれぞれ樹脂を流出させる。これにより、金属板100dの側方(金属板100dのパターンにおける金属板100dが無い部分)に絶縁層4001又は4002を構成する樹脂を充填され、絶縁層4003が形成される。その後、加熱して絶縁層4001、4002、4003の各々を硬化させる。これにより、金属板100dを内蔵する基板100(コア基板)が完成する。 Subsequently, the laminated body of the copper foil 4001a, the insulating layer 4001, the metal plate 100d, the insulating layer 4002, and the copper foil 4001b is pressed, and pressure is applied toward the metal plate 100d. By pressing the insulating layers 4001 and 4002 in a semi-cured state, as shown in FIG. 82B, the resin flows out from the insulating layers 4001 and 4002, respectively. As a result, the resin constituting the insulating layer 4001 or 4002 is filled into the side of the metal plate 100d (the portion without the metal plate 100d in the pattern of the metal plate 100d), and the insulating layer 4003 is formed. Thereafter, the insulating layers 4001, 4002, and 4003 are cured by heating. Thereby, the substrate 100 (core substrate) incorporating the metal plate 100d is completed.
 こうした方法により製造された配線板では、図83に示すように、キャビティR10における電子部品200と基板100(コア基板)との隙間R1に絶縁体101a(第1絶縁体)が充填され、基板100は、金属板100dとキャビティR10との間に、絶縁層4003(第2絶縁体)を有する。絶縁層4003は、絶縁体101aとは異なる材料からなる。具体的には、絶縁体101aは、キャビティR10における電子部品200と基板100との隙間R1を跨いで基板100上及び電子部品200上に形成される絶縁層101又は102を構成する樹脂からなる。一方、絶縁層4003は、絶縁層4001、4002を構成する樹脂からなる(図82B参照)。ここで、絶縁層101、102を構成する樹脂の各々は、絶縁層4001、4002を構成する各樹脂よりも、熱膨張率(CTE)が低い。このため、絶縁体101aの熱膨張率は、絶縁層4003よりも低くなっている。これにより、コンデンサと樹脂とのCTEミスマッチが緩和され、コンデンサと樹脂との間の密着性が向上する。絶縁層101、102の各々は、例えば無機フィラー入りエポキシ系樹脂フィルム(無機フィラー含有率40%以上)からなり、絶縁層4001、4002の各々は、例えばプリプレグ(ガラス基材入りエポキシ系樹脂シート)からなる。 In the wiring board manufactured by such a method, as shown in FIG. 83, a gap R1 between the electronic component 200 and the substrate 100 (core substrate) in the cavity R10 is filled with the insulator 101a (first insulator). Has an insulating layer 4003 (second insulator) between the metal plate 100d and the cavity R10. The insulating layer 4003 is made of a material different from that of the insulator 101a. Specifically, the insulator 101a is made of a resin that constitutes the insulating layer 101 or 102 formed on the substrate 100 and the electronic component 200 across the gap R1 between the electronic component 200 and the substrate 100 in the cavity R10. On the other hand, the insulating layer 4003 is made of a resin that forms the insulating layers 4001 and 4002 (see FIG. 82B). Here, each of the resins constituting the insulating layers 101 and 102 has a lower coefficient of thermal expansion (CTE) than each resin constituting the insulating layers 4001 and 4002. Therefore, the thermal expansion coefficient of the insulator 101a is lower than that of the insulating layer 4003. Thereby, the CTE mismatch between the capacitor and the resin is relaxed, and the adhesion between the capacitor and the resin is improved. Each of the insulating layers 101 and 102 is made of, for example, an epoxy resin film with an inorganic filler (inorganic filler content 40% or more), and each of the insulating layers 4001 and 4002 is, for example, a prepreg (an epoxy resin sheet with a glass base material). Consists of.
 上記各実施形態では、キャビティR10(電子部品200の収容スペース)に電子部品200を1つのみ有する配線板を示したが、これに限られない。例えばキャビティR10に複数の電子部品200を有する配線板であってもよい。複数の電子部品200は、積層方向(Z方向)に並べて配置しても、X方向又はY方向に並べて配置してもよい。また、複数のキャビティR10を形成してもよい。 In each of the above embodiments, a wiring board having only one electronic component 200 in the cavity R10 (accommodating space for the electronic component 200) is shown, but the present invention is not limited to this. For example, a wiring board having a plurality of electronic components 200 in the cavity R10 may be used. The plurality of electronic components 200 may be arranged in the stacking direction (Z direction) or in the X direction or the Y direction. A plurality of cavities R10 may be formed.
 その他の点についても、上記配線板10、20、30(電子部品内蔵配線板)の構成、特に、構成要素の種類、性能、寸法、材質、形状、層数、又は配置等は、本発明の趣旨を逸脱しない範囲において任意に変更することができる。 Regarding the other points, the configuration of the wiring boards 10, 20, and 30 (wiring boards with built-in electronic components), in particular, the type, performance, dimensions, material, shape, number of layers, arrangement, etc. of the constituent elements of the present invention. Any change may be made without departing from the spirit of the invention.
 電子部品200の電極210及び220の形状は、U字形状に限定されず、例えば平板状の電極対でコンデンサ本体201を挟むものであってもよい。 The shape of the electrodes 210 and 220 of the electronic component 200 is not limited to a U shape, and for example, the capacitor body 201 may be sandwiched between flat electrode pairs.
 電子部品200の種類は、MLCCに限られず任意である。例えばコンデンサ、抵抗、コイル等の受動部品のほか、IC回路等の能動部品など、任意の電子部品を採用することができる。ただし、チップコンデンサは割れ易いため、キャビティR10に配置する際の割れを抑制することの重要性が特に高い。 The type of electronic component 200 is not limited to MLCC and is arbitrary. For example, in addition to passive components such as capacitors, resistors, and coils, arbitrary electronic components such as active components such as IC circuits can be employed. However, since the chip capacitor is easily cracked, it is particularly important to suppress cracking when the chip capacitor is disposed in the cavity R10.
 電子部品200の電極210及び220の形状は、U字形状に限定されず、例えば平板状の電極対でコンデンサ本体201を挟むものであってもよい。 The shape of the electrodes 210 and 220 of the electronic component 200 is not limited to a U shape, and for example, the capacitor body 201 may be sandwiched between flat electrode pairs.
 例えばビア導体311b等は、フィルド導体に限られず、例えばコンフォーマル導体であってもよい。 For example, the via conductor 311b is not limited to the filled conductor, and may be a conformal conductor, for example.
 電子部品200をビア接続(ビア導体311b、321b)で実装せず、ワイヤボンディング接続など、他の手法で実装してもよい。 The electronic component 200 may be mounted by other methods such as wire bonding connection instead of being mounted by via connection (via conductors 311b and 321b).
 電子部品内蔵配線板の製造工程は、上記図7又は図31に示した順序や内容に限定されるものではなく、本発明の趣旨を逸脱しない範囲において任意に順序や内容を変更することができる。また、用途等に応じて、必要ない工程を割愛してもよい。 The manufacturing process of the electronic component built-in wiring board is not limited to the order and contents shown in FIG. 7 or FIG. 31, and the order and contents can be arbitrarily changed without departing from the gist of the present invention. . Moreover, you may omit the process which is not required according to a use etc.
 例えばテーパ面C11の形成は、キャビティR10の形成と同時、キャビティR10の形成前、キャビティR10の形成後のいずれに行ってもよい。 For example, the tapered surface C11 may be formed at the same time as the formation of the cavity R10, before the formation of the cavity R10, or after the formation of the cavity R10.
 例えば各導体層の形成方法は任意である。例えばパネルめっき法、パターンめっき法、フルアディティブ法、セミアディティブ(SAP)法、サブトラクティブ法、転写法、及びテンティング法のいずれか1つ、又はこれらの2以上を任意に組み合わせた方法で、導体層を形成してもよい。 For example, the formation method of each conductor layer is arbitrary. For example, any one of a panel plating method, a pattern plating method, a full additive method, a semi-additive (SAP) method, a subtractive method, a transfer method, and a tenting method, or a method in which two or more of these are arbitrarily combined, A conductor layer may be formed.
 また、レーザに代えて、湿式又は乾式のエッチングで加工してもよい。エッチングで加工する場合には、予め除去したくない部分をレジスト等で保護しておくことが好ましいと考えられる。 Further, instead of laser, processing may be performed by wet or dry etching. In the case of processing by etching, it is considered preferable to protect a portion that is not desired to be removed in advance with a resist or the like.
 上記各実施形態や変形例等は、任意に組み合わせることができる。用途等に応じて適切な組み合わせを選ぶことが好ましいと考えられる。例えば図46又は図49に示した構造を、図52~図63Bのいずれかに示した構造に適用してもよい。また、例えば図64A、図64Bのいずれかに示した構造を、図65~図83のいずれかに示した構造に適用してもよい。また、例えば図66又は図70などに示した構造を、両面ビア構造(実施形態3参照)に適用してもよい。 The above embodiments and modifications can be arbitrarily combined. It is considered preferable to select an appropriate combination according to the application. For example, the structure shown in FIG. 46 or 49 may be applied to the structure shown in any of FIGS. 52 to 63B. For example, the structure shown in any of FIGS. 64A and 64B may be applied to the structure shown in any of FIGS. For example, the structure shown in FIG. 66 or 70 may be applied to a double-sided via structure (see Embodiment 3).
 以上、本発明の実施形態について説明したが、設計上の都合やその他の要因によって必要となる様々な修正や組み合わせは、「請求項」に記載されている発明や「発明を実施するための形態」に記載されている具体例に対応する発明の範囲に含まれると理解されるべきである。 The embodiment of the present invention has been described above. However, various modifications and combinations required for design reasons and other factors are not limited to the invention described in the “claims” or the “mode for carrying out the invention”. It should be understood that it is included in the scope of the invention corresponding to the specific examples described in the above.
 本明細書中には、特開2007-266197号公報、及び特開2002-204045号公報の内容が取り込まれる。 In this specification, the contents of Japanese Patent Application Laid-Open Nos. 2007-266197 and 2002-204045 are incorporated.
 本出願は、2011年7月13日に出願された日本国特許出願第2011-155277号、2011年7月13日に出願された日本国特許出願第2011-155278号、及び2011年10月5日に出願された日本国特許出願第2011-220865号に基づいて優先権を主張し、本出願の明細書中には、日本国特許出願第2011-155277号、日本国特許出願第2011-155278号、及び日本国特許出願第2011-220865号の明細書、特許請求の範囲、及び図面の内容が取り込まれる。 This application includes Japanese Patent Application No. 2011-155277 filed on July 13, 2011, Japanese Patent Application No. 2011-155278 filed on July 13, 2011, and October 5, 2011. Priority is claimed based on Japanese Patent Application No. 2011-220865 filed on the day, and in the specification of this application, Japanese Patent Application No. 2011-155277, Japanese Patent Application No. 2011-155278 And the contents of Japanese Patent Application No. 2011-220865, claims, and drawings.
 本発明の電子部品内蔵配線板は、携帯電話などの回路基板を実現するのに適している。また、本発明に係る電子部品内蔵配線板の製造方法は、携帯電話などの回路基板の製造に適している。 The electronic component built-in wiring board of the present invention is suitable for realizing a circuit board such as a mobile phone. Moreover, the method for manufacturing an electronic component built-in wiring board according to the present invention is suitable for manufacturing a circuit board such as a mobile phone.
 10、20、30 配線板
 11、12 ソルダーレジスト
 11a、12a 開口部
 100 基板
 100a 第1層
 100b 第2層
 100c 第3層
 100d 金属板
 100e ビア導体
 101~108 絶縁層
 101a 絶縁体
 110、120、130、140、150、160、170、180 導体層
 111、121 銅箔
 112、122 銅めっき
 170a、180a 耐食層
 200 電子部品
 201 コンデンサ本体
 210、220 電極
 210a、220a 上部
 210b、220b 側部
 210c、220c 下部
 211~214 導体層
 221~224 導体層
 231~239 誘電層
 300a スルーホール
 300b スルーホール導体
 300c 括れ部
 300d スルーホール導体
 300e 絶縁体
 300f、300g ランド
 301、302 導体層
 301a アライメントマーク
 301b ランド
 301c 配線
 301d 補強パターン
 301e 配線パターン
 311a、312a、321a、322a 孔
 311b、312b、321b、322b ビア導体
 331a、332a、341a、342a 孔
 331b、332b、341b、342b ビア導体
 352b、362b、372b、382b ビア導体
 400 電子部品
 500 配線板
 1000 両面銅張積層板
 1001、1002 銅箔
 1003、1003a、1003b、1004 孔
 1005 めっき
 1005a 無電解めっき膜
 1005b 電解めっき
 1006 キャリア
 1007、1008 無電解めっき膜
 1009、1010 めっきレジスト
 1009a、1010a 開口部
 2001 キャリア
 2003、2004 銅箔
 3000 配線板
 3000a マウンター
 3001、3002 導体層
 4001~4003 絶縁層
 4001a、4001b 銅箔
 B1 第1ビルドアップ部
 B2 第2ビルドアップ部
 C11、C12 テーパ面
 C21、C22 曲面
 F0 基準面
 F1 第1面
 F2 第2面
 F3 第3面
 F4 第4面
 F10 側面
 F11 側面
 F12 側面
 F20 側面
 F21 下面
 F22 側面
 F30 側面
 F100 境界面
 P1、P2 パッド
 R1 隙間
 R10 キャビティ
 R11 第1導体部
 R12 第2導体部
 R21、R22 導体部
 R100 領域
 S フィルドスタック
10, 20, 30 Wiring board 11, 12 Solder resist 11a, 12a Opening 100 Substrate 100a First layer 100b Second layer 100c Third layer 100d Metal plate 100e Via conductor 101-108 Insulating layer 101a Insulator 110, 120, 130 , 140, 150, 160, 170, 180 Conductor layer 111, 121 Copper foil 112, 122 Copper plating 170a, 180a Corrosion resistant layer 200 Electronic component 201 Capacitor body 210, 220 Electrode 210a, 220a Upper part 210b, 220b Side part 210c, 220c Lower part 211 to 214 Conductor layers 221 to 224 Conductor layers 231 to 239 Dielectric layer 300a Through hole 300b Through hole conductor 300c Constricted portion 300d Through hole conductor 300e Insulator 300f, 300g Land 301, 30 Conductor layer 301a Alignment mark 301b Land 301c Wiring 301d Reinforcement pattern 301e Wiring pattern 311a, 312a, 321a, 322a Hole 311b, 312b, 321b, 322b Via conductor 331a, 332a, 341a, 342a Hole 331b, 332b, 341b, 342b , 362b, 372b, 382b Via conductor 400 Electronic component 500 Wiring board 1000 Double-sided copper-clad laminate 1001, 1002 Copper foil 1003, 1003a, 1003b, 1004 Hole 1005 Plating 1005a Electroless plating film 1005b Electrolytic plating 1006 Carrier 1007, 1008 Electroless Plating film 1009, 1010 Plating resist 1009a, 1010a Opening 2001 Carrier 2003, 2004 Copper 3000 Wiring board 3000a Mounter 3001, 3002 Conductor layer 4001 to 4003 Insulating layer 4001a, 4001b Copper foil B1 First buildup part B2 Second buildup part C11, C12 Tapered surface C21, C22 Curved surface F0 Reference surface F1 First surface F2 First 2nd surface F3 3rd surface F4 4th surface F10 side surface F11 side surface F12 side surface F20 side surface F21 bottom surface F22 side surface F30 side surface F100 boundary surface P1, P2 pad R1 clearance R10 cavity R11 first conductor portion R12 second conductor portion R21, R22 conductor portion R100 area S filled stack

Claims (39)

  1.  第1面と、該第1面とは反対側の第2面と、該第1面から該第2面まで貫通する開口部と、スルーホールと、を有するコア基板と、
     前記開口部に配置されるコンデンサと、
     を有する電子部品内蔵配線板において、
     前記スルーホールは、導体で充填されており、
     該導体は前記第1面から前記第2面に向かって細くなっている第1導体部と前記第2面から前記第1面に向かって細くなっている第2導体部とで形成されていて、前記第1導体部と前記第2導体部とは前記コア基板内でつながっている、
     ことを特徴とする電子部品内蔵配線板。
    A core substrate having a first surface, a second surface opposite to the first surface, an opening penetrating from the first surface to the second surface, and a through hole;
    A capacitor disposed in the opening;
    In the electronic component built-in wiring board having
    The through hole is filled with a conductor,
    The conductor is formed of a first conductor portion that narrows from the first surface toward the second surface and a second conductor portion that narrows from the second surface toward the first surface. The first conductor portion and the second conductor portion are connected in the core substrate.
    An electronic component built-in wiring board.
  2.  前記コア基板の前記第1面上に形成される第1絶縁層と、
     前記コア基板の前記第2面上に形成される第2絶縁層と、
     前記第1絶縁層に形成される第1ビアホールと、
     前記第2絶縁層に形成される第2ビアホールと、
     をさらに有し、
     前記第1ビアホール及び前記第2ビアホールは、導体で充填されており、
     前記第1ビアホールに充填された導体及び前記第2ビアホールに充填された導体はそれぞれ、前記コンデンサに向かって細くなり、前記コンデンサの電極に電気的に接続される、
     ことを特徴とする請求項1に記載の電子部品内蔵配線板。
    A first insulating layer formed on the first surface of the core substrate;
    A second insulating layer formed on the second surface of the core substrate;
    A first via hole formed in the first insulating layer;
    A second via hole formed in the second insulating layer;
    Further comprising
    The first via hole and the second via hole are filled with a conductor;
    The conductor filled in the first via hole and the conductor filled in the second via hole are each narrowed toward the capacitor and electrically connected to the electrode of the capacitor.
    The wiring board with a built-in electronic component according to claim 1.
  3.  前記第1絶縁層の全てのビアホールは導体で充填されており、該導体は、前記第1面に向かって細くなり、
     前記第2絶縁層の全てのビアホールは導体で充填されており、該導体は、前記第2面に向かって細くなる、
     ことを特徴とする請求項2に記載の電子部品内蔵配線板。
    All the via holes of the first insulating layer are filled with a conductor, and the conductor becomes thinner toward the first surface,
    All the via holes of the second insulating layer are filled with a conductor, and the conductor becomes narrower toward the second surface.
    The wiring board with a built-in electronic component according to claim 2.
  4.  前記コア基板の前記第1面側に形成される第1ビルドアップ部の全てのビアホールは導体で充填されており、該導体は、前記第1面に向かって細くなり、
     前記コア基板の前記第2面側に形成される第2ビルドアップ部の全てのビアホールは導体で充填されており、該導体は、前記第2面に向かって細くなる、
     ことを特徴とする請求項3に記載の電子部品内蔵配線板。
    All via holes of the first buildup portion formed on the first surface side of the core substrate are filled with a conductor, and the conductor becomes thinner toward the first surface,
    All via holes of the second build-up part formed on the second surface side of the core substrate are filled with a conductor, and the conductor becomes thinner toward the second surface.
    The wiring board with a built-in electronic component according to claim 3.
  5.  前記コア基板の前記第1面側に位置するビアホールと、前記コア基板の前記第2面側に位置するビアホールとは、互いに対称的な配置及び形状を有する、
     ことを特徴とする請求項4に記載の電子部品内蔵配線板。
    The via hole located on the first surface side of the core substrate and the via hole located on the second surface side of the core substrate have a symmetrical arrangement and shape.
    The wiring board with a built-in electronic component according to claim 4.
  6.  前記スルーホール内の導体は、前記第1導体部と前記第2導体部とが直接接続されてなる、
     ことを特徴とする請求項1乃至5のいずれか一項に記載の電子部品内蔵配線板。
    The conductor in the through hole is formed by directly connecting the first conductor portion and the second conductor portion.
    The wiring board with a built-in electronic component according to any one of claims 1 to 5.
  7.  前記コア基板の厚さは、0.06mm~1.0mmの範囲にあり、
     前記コア基板の熱膨張係数は、前記コンデンサの熱膨張係数と同様又はこれよりも小さい、
     ことを特徴とする請求項1乃至6のいずれか一項に記載の電子部品内蔵配線板。
    The core substrate has a thickness in the range of 0.06 mm to 1.0 mm,
    The thermal expansion coefficient of the core substrate is the same as or smaller than the thermal expansion coefficient of the capacitor,
    The wiring board with a built-in electronic component according to any one of claims 1 to 6.
  8.  当該電子部品内蔵配線板の厚さをT1、前記コア基板及びその両面の導体層の厚さの合計をT2、前記コンデンサの厚さをT3とするとき、
     T3/T2は0.6~1.7の範囲にあり、且つ、T3/T1は0.2~0.7の範囲にある、
     ことを特徴とする請求項1乃至7のいずれか一項に記載の電子部品内蔵配線板。
    When the thickness of the electronic component built-in wiring board is T1, the total thickness of the core substrate and the conductor layers on both sides thereof is T2, and the thickness of the capacitor is T3,
    T3 / T2 is in the range of 0.6 to 1.7, and T3 / T1 is in the range of 0.2 to 0.7.
    The wiring board with a built-in electronic component according to claim 1, wherein the wiring board has a built-in electronic component.
  9.  前記コンデンサの表裏面の少なくとも一方は、面積占有率40%~90%で電極を有する、
     ことを特徴とする請求項1乃至8のいずれか一項に記載の電子部品内蔵配線板。
    At least one of the front and back surfaces of the capacitor has an electrode with an area occupation ratio of 40% to 90%.
    The wiring board with a built-in electronic component according to claim 1, wherein the wiring board has a built-in electronic component.
  10.  前記コンデンサは側面電極を有し、
     前記側面電極においては、前記コンデンサの厚み方向における中央部が両端部よりも外側に膨らんでいる、
     ことを特徴とする請求項1乃至9のいずれか一項に記載の電子部品内蔵配線板。
    The capacitor has side electrodes;
    In the side electrode, the central portion in the thickness direction of the capacitor swells outside the both end portions,
    The wiring board with a built-in electronic component according to any one of claims 1 to 9.
  11.  第1面と、該第1面とは反対側の第2面と、開口部とを有する基板と、
     第3面と、該第3面とは反対側の第4面とを有し、該第3面が前記基板の第1面と同じ向きになるように前記開口部に配置される電子部品と、
     を有する電子部品内蔵配線板において、
     前記電子部品は、その側面と前記第4面との角に曲面を有し、
     前記基板は、前記開口部の内壁と前記第1面との角に、前記第1面から前記第2面に向かってテーパ面を有している、
     ことを特徴とする電子部品内蔵配線板。
    A substrate having a first surface, a second surface opposite to the first surface, and an opening;
    An electronic component having a third surface and a fourth surface opposite to the third surface, the electronic component being disposed in the opening so that the third surface is in the same direction as the first surface of the substrate; ,
    In the electronic component built-in wiring board having
    The electronic component has a curved surface at the corner between the side surface and the fourth surface,
    The substrate has a tapered surface at the corner between the inner wall of the opening and the first surface from the first surface toward the second surface.
    An electronic component built-in wiring board.
  12.  前記開口部における前記基板と前記電子部品との間には、絶縁体が充填されている、
     ことを特徴とする請求項11に記載の電子部品内蔵配線板。
    An insulator is filled between the substrate and the electronic component in the opening,
    The wiring board with a built-in electronic component according to claim 11.
  13.  前記基板上及び前記開口部上に、樹脂から構成される絶縁層を有し、
     前記絶縁体は、前記絶縁層を構成する樹脂からなる、
     ことを特徴とする請求項12に記載の電子部品内蔵配線板。
    On the substrate and the opening, an insulating layer made of resin is provided,
    The insulator is made of a resin constituting the insulating layer.
    The wiring board with a built-in electronic component according to claim 12.
  14.  前記電子部品は、受動部品である、
     ことを特徴とする請求項11乃至13のいずれか一項に記載の電子部品内蔵配線板。
    The electronic component is a passive component.
    The wiring board with a built-in electronic component according to any one of claims 11 to 13.
  15.  前記電子部品は、チップコンデンサである、
     ことを特徴とする請求項14に記載の電子部品内蔵配線板。
    The electronic component is a chip capacitor.
    The electronic component built-in wiring board according to claim 14.
  16.  前記開口部の内壁は、レーザによる切断面からなる、
     ことを特徴とする請求項11乃至15のいずれか一項に記載の電子部品内蔵配線板。
    The inner wall of the opening is made of a laser cut surface.
    The wiring board with a built-in electronic component according to any one of claims 11 to 15, wherein the wiring board has a built-in electronic component.
  17.  前記基板は、前記第1面から前記第2面に向かって、材質の異なる第1層及び第2層を、この順で有している、
     ことを特徴とする請求項11乃至16のいずれか一項に記載の電子部品内蔵配線板。
    The substrate has a first layer and a second layer of different materials in this order from the first surface to the second surface.
    The wiring board with a built-in electronic component according to any one of claims 11 to 16.
  18.  前記第1層と前記第2層とはそれぞれ、樹脂から構成され、
     前記第2層は、無機材料を含み、
     前記第1層は、前記第2層よりも少ない無機材料を含むか、無機材料を含まない、
     ことを特徴とする請求項17に記載の電子部品内蔵配線板。
    Each of the first layer and the second layer is made of resin,
    The second layer includes an inorganic material,
    The first layer includes less inorganic material than the second layer or does not include an inorganic material.
    The wiring board with a built-in electronic component according to claim 17.
  19.  前記曲面は、前記電子部品の電極の表面からなる、
     ことを特徴とする請求項11乃至18のいずれか一項に記載の電子部品内蔵配線板。
    The curved surface consists of the surface of the electrode of the electronic component,
    The wiring board with a built-in electronic component according to any one of claims 11 to 18.
  20.  前記電子部品の電極の少なくとも前記表面は、めっき膜からなる、
     ことを特徴とする請求項19に記載の電子部品内蔵配線板。
    At least the surface of the electrode of the electronic component is made of a plating film,
    20. The electronic component built-in wiring board according to claim 19.
  21.  前記基板上及び前記電子部品上に絶縁層を有し、
     前記絶縁層には、前記電子部品の電極と電気的に接続されるビア導体が形成される、
     ことを特徴とする請求項11乃至20のいずれか一項に記載の電子部品内蔵配線板。
    An insulating layer on the substrate and the electronic component;
    In the insulating layer, a via conductor that is electrically connected to the electrode of the electronic component is formed.
    The wiring board with a built-in electronic component according to any one of claims 11 to 20, wherein the wiring board has a built-in electronic component.
  22.  前記開口部の内壁は、前記第2面に対して略垂直な面からなる、
     ことを特徴とする請求項11乃至21のいずれか一項に記載の電子部品内蔵配線板。
    The inner wall of the opening is a surface substantially perpendicular to the second surface.
    The wiring board with a built-in electronic component according to any one of claims 11 to 21, wherein the wiring board has a built-in electronic component.
  23.  前記開口部は、前記基板を貫通する孔からなり、
     前記基板の前記第2面上に絶縁層を有し、
     前記絶縁層は、前記孔の一方の開口を塞いでいる、
     ことを特徴とする請求項11乃至22のいずれか一項に記載の電子部品内蔵配線板。
    The opening comprises a hole penetrating the substrate,
    Having an insulating layer on the second surface of the substrate;
    The insulating layer blocks one opening of the hole;
    The wiring board with a built-in electronic component according to any one of claims 11 to 22.
  24.  前記基板と前記電子部品との隙間の最大値は、約0μm~約100μmの範囲にある、
     ことを特徴とする請求項11乃至23のいずれか一項に記載の電子部品内蔵配線板。
    The maximum value of the gap between the substrate and the electronic component is in the range of about 0 μm to about 100 μm.
    The wiring board with a built-in electronic component according to any one of claims 11 to 23.
  25.  前記曲面の曲率半径は、約20μm~約40μmの範囲にある、
     ことを特徴とする請求項11乃至24のいずれか一項に記載の電子部品内蔵配線板。
    The radius of curvature of the curved surface is in the range of about 20 μm to about 40 μm.
    The wiring board with a built-in electronic component according to any one of claims 11 to 24.
  26.  前記基板は前記電子部品よりも厚く、
     前記テーパ面は、前記第1面から、前記電子部品の前記第3面よりも深い位置まで形成されている、
     ことを特徴とする請求項11乃至25のいずれか一項に記載の電子部品内蔵配線板。
    The substrate is thicker than the electronic component,
    The tapered surface is formed from the first surface to a position deeper than the third surface of the electronic component.
    The wiring board with a built-in electronic component according to any one of claims 11 to 25.
  27.  前記基板は前記電子部品よりも厚く、
     前記基板の厚さと前記電子部品の厚さとの差は、約20μm以上である、
     ことを特徴とする請求項11乃至26のいずれか一項に記載の電子部品内蔵配線板。
    The substrate is thicker than the electronic component,
    The difference between the thickness of the substrate and the thickness of the electronic component is about 20 μm or more.
    The wiring board with a built-in electronic component according to any one of claims 11 to 26, wherein:
  28.  第1面と、該第1面とは反対側の第2面とを有する基板を準備することと、
     第3面と、該第3面とは反対側の第4面とを有し、前記第4面と側面との角に曲面を有する電子部品を準備することと、
     前記基板に開口部を形成することと、
     前記開口部の内壁と前記第1面との角に、前記第1面から前記第2面に向かってテーパ面を形成することと、
     前記第3面を前記第1面と同じ向きにして前記電子部品を前記開口部に配置することと、
     を含む、
     ことを特徴とする電子部品内蔵配線板の製造方法。
    Providing a substrate having a first surface and a second surface opposite the first surface;
    Preparing an electronic component having a third surface and a fourth surface opposite to the third surface, and having a curved surface at an angle between the fourth surface and the side surface;
    Forming an opening in the substrate;
    Forming a tapered surface from the first surface toward the second surface at an angle between the inner wall of the opening and the first surface;
    Placing the electronic component in the opening with the third surface in the same orientation as the first surface;
    including,
    A method of manufacturing an electronic component built-in wiring board.
  29.  前記開口部は、レーザにより形成される、
     ことを特徴とする請求項28に記載の電子部品内蔵配線板の製造方法。
    The opening is formed by a laser;
    The method of manufacturing an electronic component built-in wiring board according to claim 28.
  30.  前記基板は、前記第1面から前記第2面に向かって、材質の異なる第1層及び第2層を、この順で有し、
     前記レーザは、少なくとも前記第1層を貫通して前記第2層に届くように、前記基板の前記第1面に照射される、
     ことを特徴とする請求項29に記載の電子部品内蔵配線板の製造方法。
    The substrate has a first layer and a second layer of different materials in this order from the first surface to the second surface,
    The laser is applied to the first surface of the substrate so as to penetrate at least the first layer and reach the second layer;
    30. The method of manufacturing an electronic component built-in wiring board according to claim 29.
  31.  前記第1層と前記第2層とはそれぞれ、樹脂から構成され、
     前記第2層は、無機材料を含み、
     前記第1層は、前記第2層よりも少ない無機材料を含むか、無機材料を含まない、
     ことを特徴とする請求項30に記載の電子部品内蔵配線板の製造方法。
    Each of the first layer and the second layer is made of resin,
    The second layer includes an inorganic material,
    The first layer includes less inorganic material than the second layer or does not include an inorganic material.
    The method for manufacturing an electronic component built-in wiring board according to claim 30.
  32.  前記電子部品の前記曲面を前記テーパ面に接触させながら、前記電子部品を前記開口部に配置する、
     ことを特徴とする請求項28乃至31のいずれか一項に記載の電子部品内蔵配線板の製造方法。
    Placing the electronic component in the opening while contacting the curved surface of the electronic component to the tapered surface;
    32. The method of manufacturing an electronic component built-in wiring board according to any one of claims 28 to 31.
  33.  前記基板上及び前記開口部上に、樹脂から構成される絶縁層を形成することと、
     前記開口部における前記基板と前記電子部品との間に、前記絶縁層を構成する樹脂を充填することと、
     前記充填した樹脂を硬化させることと、
     を含む、
     ことを特徴とする請求項28乃至32のいずれか一項に記載の電子部品内蔵配線板の製造方法。
    Forming an insulating layer made of a resin on the substrate and the opening;
    Filling the resin constituting the insulating layer between the substrate and the electronic component in the opening;
    Curing the filled resin;
    including,
    33. A method of manufacturing an electronic component built-in wiring board according to any one of claims 28 to 32.
  34.  前記絶縁層は、半硬化の状態で、前記基板上及び前記開口部上に形成し、
     前記樹脂の充填では、前記絶縁層を半硬化の状態でプレスすることにより、前記絶縁層から前記樹脂を流出させて前記開口部へ流し込む、
     ことを特徴とする請求項33に記載の電子部品内蔵配線板の製造方法。
    The insulating layer is formed on the substrate and the opening in a semi-cured state,
    In filling the resin, by pressing the insulating layer in a semi-cured state, the resin flows out from the insulating layer and flows into the opening.
    34. A method of manufacturing an electronic component built-in wiring board according to claim 33.
  35.  前記開口部は、前記基板を貫通する孔からなり、
     前記電子部品を前記開口部に配置する前に、前記孔の一方の開口を粘着シートで塞ぐことを含む、
     ことを特徴とする請求項28乃至34のいずれか一項に記載の電子部品内蔵配線板の製造方法。
    The opening comprises a hole penetrating the substrate,
    Before placing the electronic component in the opening, including closing one opening of the hole with an adhesive sheet,
    35. The method of manufacturing an electronic component built-in wiring board according to any one of claims 28 to 34.
  36.  前記電子部品の配置では、前記塞がれた開口とは反対側から前記開口部に前記電子部品を入れることにより、前記粘着シート上に前記電子部品を配置し、
     前記塞がれた開口とは反対側の、前記基板上及び前記開口部上に、樹脂から構成される絶縁層を形成することと、
     前記開口部における前記基板と前記電子部品との間に、前記絶縁層を構成する樹脂を充填することと、
     前記粘着シートを除去することと、
     前記粘着シートを除去した後、前記充填した樹脂を硬化させることと、
     を含む、
     ことを特徴とする請求項35に記載の電子部品内蔵配線板の製造方法。
    In the arrangement of the electronic component, by placing the electronic component into the opening from the side opposite to the closed opening, the electronic component is disposed on the adhesive sheet,
    Forming an insulating layer made of a resin on the substrate and the opening on the opposite side of the blocked opening;
    Filling the resin constituting the insulating layer between the substrate and the electronic component in the opening;
    Removing the adhesive sheet;
    After removing the adhesive sheet, curing the filled resin;
    including,
    36. A method of manufacturing an electronic component built-in wiring board according to claim 35.
  37.  前記電子部品を前記開口部に配置する前に、アライメントマークを有する導体層を前記基板上に形成することを含み、
     前記電子部品の配置では、前記アライメントマークを用いて、前記電子部品の位置決めをする、
     ことを特徴とする請求項28乃至36のいずれか一項に記載の電子部品内蔵配線板の製造方法。
    Forming a conductor layer having an alignment mark on the substrate before placing the electronic component in the opening;
    In the arrangement of the electronic component, the alignment mark is used to position the electronic component.
    37. The method of manufacturing an electronic component built-in wiring board according to any one of claims 28 to 36.
  38.  前記曲面は、前記電子部品の電極の表面からなる、
     ことを特徴とする請求項28乃至37のいずれか一項に記載の電子部品内蔵配線板の製造方法。
    The curved surface consists of the surface of the electrode of the electronic component,
    38. A method of manufacturing an electronic component built-in wiring board according to any one of claims 28 to 37.
  39.  前記電子部品の電極の少なくとも前記表面は、めっき膜からなる、
     ことを特徴とする請求項38に記載の電子部品内蔵配線板の製造方法。
    At least the surface of the electrode of the electronic component is made of a plating film,
    The method for manufacturing a wiring board with a built-in electronic component according to claim 38.
PCT/JP2012/063956 2011-07-13 2012-05-30 Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component WO2013008552A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137030068A KR101539166B1 (en) 2011-07-13 2012-05-30 Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component
KR20157002747A KR20150024944A (en) 2011-07-13 2012-05-30 Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component
CN201280034652.6A CN103703874A (en) 2011-07-13 2012-05-30 Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-155277 2011-07-13
JP2011155277 2011-07-13
JP2011155278A JP2012164952A (en) 2011-01-20 2011-07-13 Wiring board with built-in electronic component and method of manufacturing the same
JP2011-155278 2011-07-13
JP2011-220865 2011-10-05
JP2011220865A JP2013038374A (en) 2011-01-20 2011-10-05 Wiring board and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2013008552A1 true WO2013008552A1 (en) 2013-01-17

Family

ID=47505850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063956 WO2013008552A1 (en) 2011-07-13 2012-05-30 Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component

Country Status (1)

Country Link
WO (1) WO2013008552A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472672B1 (en) * 2013-04-26 2014-12-12 삼성전기주식회사 A printed circuit board comprising embeded electronic component within and a method for manufacturing
TWI713428B (en) * 2015-12-11 2020-12-11 美商英特爾公司 Multi-layer flexible/stretchable electronic package for advanced wearable electronics and method for making flexible wearable circuit
TWI807022B (en) * 2018-11-06 2023-07-01 南韓商三星電子股份有限公司 Semiconductor package

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063970A1 (en) * 1999-04-16 2000-10-26 Matsushita Electric Industrial Co., Ltd. Module component and method of manufacturing the same
JP2002246757A (en) * 2000-12-15 2002-08-30 Ibiden Co Ltd Manufacturing method of multilayer printed-wiring board
JP2003218525A (en) * 2002-01-18 2003-07-31 Fujitsu Ltd Circuit board and its manufacturing method
JP2009194382A (en) * 2008-02-14 2009-08-27 Ibiden Co Ltd Production process of printed wiring board
JP2009200389A (en) * 2008-02-25 2009-09-03 Shinko Electric Ind Co Ltd Method of manufacturing electronic component built-in board
JP2010212652A (en) * 2009-03-06 2010-09-24 Ibiden Co Ltd Wiring board and method for manufacturing the same
JP2011014882A (en) * 2009-06-01 2011-01-20 Ngk Spark Plug Co Ltd Ceramic capacitor and wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000063970A1 (en) * 1999-04-16 2000-10-26 Matsushita Electric Industrial Co., Ltd. Module component and method of manufacturing the same
JP2002246757A (en) * 2000-12-15 2002-08-30 Ibiden Co Ltd Manufacturing method of multilayer printed-wiring board
JP2003218525A (en) * 2002-01-18 2003-07-31 Fujitsu Ltd Circuit board and its manufacturing method
JP2009194382A (en) * 2008-02-14 2009-08-27 Ibiden Co Ltd Production process of printed wiring board
JP2009200389A (en) * 2008-02-25 2009-09-03 Shinko Electric Ind Co Ltd Method of manufacturing electronic component built-in board
JP2010212652A (en) * 2009-03-06 2010-09-24 Ibiden Co Ltd Wiring board and method for manufacturing the same
JP2011014882A (en) * 2009-06-01 2011-01-20 Ngk Spark Plug Co Ltd Ceramic capacitor and wiring board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101472672B1 (en) * 2013-04-26 2014-12-12 삼성전기주식회사 A printed circuit board comprising embeded electronic component within and a method for manufacturing
US9526177B2 (en) 2013-04-26 2016-12-20 Samsung Electro-Mechanics Co., Ltd. Printed circuit board including electronic component embedded therein and method for manufacturing the same
TWI713428B (en) * 2015-12-11 2020-12-11 美商英特爾公司 Multi-layer flexible/stretchable electronic package for advanced wearable electronics and method for making flexible wearable circuit
TWI807022B (en) * 2018-11-06 2023-07-01 南韓商三星電子股份有限公司 Semiconductor package

Similar Documents

Publication Publication Date Title
KR101539166B1 (en) Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component
JP5600803B2 (en) Wiring board and manufacturing method thereof
JP2013038374A (en) Wiring board and manufacturing method of the same
JP2012164952A (en) Wiring board with built-in electronic component and method of manufacturing the same
US9215805B2 (en) Wiring board with built-in electronic component and method for manufacturing the same
US9883592B2 (en) Wiring board and method for manufacturing the same
JP2012151372A (en) Wiring board and manufacturing method of the same
US9119322B2 (en) Wiring board and method for manufacturing the same
US9603248B2 (en) Wiring board and method for manufacturing the same
US9113575B2 (en) Wiring board with built-in electronic component and method for manufacturing the same
CN102918939A (en) Circuit board and manufacturing method therefor
JPWO2011122245A1 (en) Wiring board and manufacturing method thereof
US20130256007A1 (en) Wiring board with built-in electronic component and method for manufacturing the same
US20130025925A1 (en) Wiring board and method for manufacturing the same
US20130025914A1 (en) Wiring board and method for manufacturing the same
JP2013183029A (en) Electronic component built-in wiring board and manufacturing method of the same
WO2013008552A1 (en) Wiring board incorporating electronic component, and method for manufacturing wiring board incorporating electronic component
JP2013183028A (en) Electronic component built-in wiring board, chip capacitor, and manufacturing method of electronic component built-in wiring board
JP2015146345A (en) Electronic component built-in multilayer wiring board and manufacturing method of the same
KR20130048161A (en) Wiring board and method for manufacturing wiring board
JP2013183027A (en) Electronic component built-in wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137030068

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811256

Country of ref document: EP

Kind code of ref document: A1