WO2013007176A1 - 具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器 - Google Patents

具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器 Download PDF

Info

Publication number
WO2013007176A1
WO2013007176A1 PCT/CN2012/078325 CN2012078325W WO2013007176A1 WO 2013007176 A1 WO2013007176 A1 WO 2013007176A1 CN 2012078325 W CN2012078325 W CN 2012078325W WO 2013007176 A1 WO2013007176 A1 WO 2013007176A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing system
rotor
fan
heat exchanger
leak
Prior art date
Application number
PCT/CN2012/078325
Other languages
English (en)
French (fr)
Inventor
程爱平
Original Assignee
Cheng Aiping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheng Aiping filed Critical Cheng Aiping
Priority to EP12812033.4A priority Critical patent/EP2730877B1/en
Priority to DK12812033.4T priority patent/DK2730877T3/en
Publication of WO2013007176A1 publication Critical patent/WO2013007176A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/041Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier with axial flow through the intermediate heat-transfer medium
    • F28D19/042Rotors; Assemblies of heat absorbing masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention relates to a heat exchanger, in particular to an improvement of a rotary gas heat exchanger sealing device.
  • Rotary gas heat exchangers are currently the most widely used flue gas heat exchangers for wet flue gas desulfurization (FGD) plants. Its working principle is that the heat storage element in the rotor compartment transfers the heat of the unpurified high-temperature flue gas to the purified cold flue gas through smooth or corrugated metal foil or other heat carrier. In operation, unpurified high temperature flue gas passes through one side of the rotor, while purified cold flue gas passes through the other side of the rotor.
  • the rotor rotates slowly so that a plurality of heat transfer elements on the rotor, the wheels circulate overheated unpurified flue gas and cold purified flue gas.
  • unpurified high temperature flue gas passes through the heat transfer element, part of the heat in the unpurified high temperature flue gas is transferred to the heat transfer element.
  • the heat transfer element is turned to the cleaned cold flue gas side, the heat it carries is transferred to the purified cold flue gas. Therefore, the temperature of the purified cold flue gas is increased, and the heat transfer element itself is cooled.
  • the two flue gases respectively flow through two portions of the rotor that are separated along the diameter, the two portions being separated by a sealing plate.
  • the original flue gas and the net flue gas have opposite flow directions.
  • the GGH consists of a cylindrical rotor, a cylindrical casing, a transmission, a seal and a soot blower system.
  • the rotor is divided into a number of fan-shaped compartments, each of which is filled with heat transfer elements consisting of corrugated plates.
  • the rotor is divided into two flow zones of raw flue gas and net flue gas along the diametrical direction of its cross section, and the two flow zones are separated by a transition zone (the transition zone is provided with a sealing system).
  • the raw flue gas flow passage area and the net flue gas flow passage area are respectively connected to the inlet flue and the outlet flue.
  • the motor drives the rotor to rotate through the transmission.
  • the heat storage heat element of the rotor alternately passes through the original flue gas zone and the net flue gas flow passage zone, and the high temperature raw flue gas transfers heat to the heat transfer element from bottom to top, and the heat transfer element is transferred to the net flue gas by the heated surface.
  • the accumulated heat is transferred to the cold flue gas flowing from the top to the bottom.
  • One revolution per revolution of the rotor completes a heat transfer process.
  • the transition zone is a sealed zone separated from the net smoke flow zone by the original flue gas zone.
  • the original smoke flow passage area is also the unpurified original smoke gas area, and the cold smoke air flow passage area is the purified net smoke gas area.
  • the GGH device Since the pressure of the original flue gas is greater than the net flue gas pressure, in order to prevent the original flue gas from leaking into the net flue gas zone through the gap between the rotor and the outer casing, the GGH device has a radial and axial seal, and the seal is installed in the so-called At the sealing area, the hoop seal is installed between the outer casing and the outer edge of the upper and lower rotating surfaces of the rotor.
  • An object of the present invention is to provide a rotary gas heat exchanger having a better sealing effect; and another object of the present invention is to provide a heat exchanger sealing structure which is simple in structure, low in cost, and excellent in effect.
  • the technical solution of the present invention is: a rotary gas heat exchanger having an axially isolated sealed compartment of a leak-free sealing system, wherein:
  • the sealing system comprises: a sealing system body, and an isolating sealing section disposed at a gap between the outer casing and an outer circumference of the rotor; the isolating sealing section has four, two pairs are arranged in pairs On both sides of each of the diametrically opposite ends of the sealing system body, the intermediate portion of each pair of isolating seal segments is in communication with a low leakage fan.
  • the rotor comprises: a mandrel located in the middle, a casing located at the periphery, and a supporting compartment located between the mandrel and the casing, and the heat storage piece is loaded in the supporting compartment a heat storage element, the outer circumference of the rotor is an outer circumference of the cylinder cover, and the raw smoke air flow passage area is between the cylinder cover corresponding to the outer periphery of the original flue gas inlet and outlet flue and the mandrel
  • the area, the net flue gas flow passage area refers to an area between the cylinder cover corresponding to the periphery of the original flue gas flue and the mandrel.
  • the sealing system body comprises two rotor-extending rotors extending from the core axial direction Radially opposed sub-fan seals.
  • a radial sealing piece is further disposed between the mandrel and the cylinder cover.
  • the fan-shaped sealing plates on the upper and lower sides of each of the sub-fan-shaped sealing bodies are provided with ventilation holes.
  • the venting holes are in communication with the low leakage fan.
  • a fan is simultaneously ventilated to the intermediate portion and the vent to form an isolation curtain.
  • the isolating sealing section is labyrinth, and comprises a longitudinal and transverse partition.
  • the isolating sealing section includes a plurality of spaced-apart rows extending from the casing toward the rotor. Sealing sheet.
  • the rotary gas exchange has an axial isolation capsule with a leak-free sealing system
  • a pressure sensor is respectively disposed on the low leakage fan outlet and the original flue gas pipeline, and two pressure sensors are communicably connected with the controller, and the controller controls the air outlet of the fan according to the values of the two pressure sensors. Valve opening or fan power.
  • the output end of the fan and the original flue gas pipeline are respectively provided with pressure sensors, and the two pressure sensors are connected.
  • the differential pressure transmitter transmits the differential pressure value between the two pressure sensors to the controller in real time, and the controller controls the air outlet opening of the fan according to the differential pressure value Or the power of the fan.
  • the heat exchanger has the advantages of good sealing effect and low air leakage rate.
  • the prior art considers the seal at the heat-conductive compartment, and the seal at the gap between the rotor can and the casing is neglected.
  • the annular space between the rotor core shaft and the rotor cylinder cover is divided by the sealing system into the original smoke flow passage area and the net smoke flow passage area, which is actually the original smoke flow through the gas exchange. The flow through the pipeline during the heat exchanger, and the flow through the gas stream when the net flue gas flows through the gas heat exchanger.
  • the four black areas in Figure 3 represent the isolation seal segments, while the two sector regions in Figure 4 represent the seal system body. Isolation seal segments are placed on either side of each sector. It is not enough to rely solely on the isolation seal section for isolation.
  • the present invention vents the intermediate portion of the two isolating seal segments, i.e., forms an isolation curtain within the gap between the canister and the outer casing, further blocking the possibility of leakage.
  • the present invention may further comprise two pairs of sector-shaped sealing plates, and the two pairs of sector-shaped sealing plates are provided with opposite pairs of holes. In this way, when the low leakage fan is activated, the opposite pairs of holes are positioned from the upper and the lower sides.
  • a wind curtain is formed in the middle, which blocks the leakage between the original flue gas and the net flue gas, and only allows the heat of the high temperature flue gas to be conducted to the cold flue gas through the rotor heat transfer element.
  • the scalloped sealing plate of the present invention can also form a wind curtain to provide a more stringent seal to the sealing area between the mandrel and the canopy. The world's most stringent sealing effect is achieved by a reinforced seal between the mandrel and the shroud and a complementary seal between the shroud and the casing.
  • the isolating sealing section is labyrinth, which can better block the smoke.
  • the low-leakage fan outlet and the original flue gas inlet flue are respectively provided with two pressure measuring points of the differential pressure transmitter, and the differential pressure transmitter is communicably connected with the controller, and the controller is according to the The value of the differential pressure transmitter controls the opening of the fan outlet or the power of the fan.
  • the controller can adjust the air outlet rate of the fan at any time according to the detection result of the differential pressure transmitter.
  • the low-leakage fan outlet air pressure is 300 ⁇ 500Pa larger than the air pressure on the original flue gas pipeline. It is an empirical choice that does not waste energy and has a good sealing effect.
  • FIG. 1 is a schematic structural view of a gas-gas heat exchanger with a leak-free sealing system according to the present invention
  • FIG. 2 is a schematic cross-sectional view of a gas-gas heat exchanger with a leak-free sealing system taken along AA of FIG.
  • Figure 3 is a cross-sectional view of the gas-to-air heat exchanger with a leak-free sealing system taken along line B-B of Figure 1, in which only the housing, the rotor and a partial sealing member are shown;
  • Figure 4 is a schematic cross-sectional view of the gas-to-air heat exchanger with the leak-free sealing system installed along CC of Figure 1, showing only the casing, the mandrel, the sector seal plate and the holes thereon, the rotor not shown Outer contour
  • FIG. 5 is a schematic view showing the structure of a sealing section used in the gap between the rotor and the casing of the sealing system
  • Figure 6 is a schematic view showing the structure of another sealing section employed in the gap between the rotor and the casing of the sealing system.
  • DETAILED DESCRIPTION OF THE INVENTION As shown in Figures 1 to 4, the heat exchanger of the present invention comprises a rotor 1, a casing 2, a sealing system and a transmission.
  • the outer casing 2 is provided with two pairs of sector-shaped sealing plates 3 at both ends of the rotor 1, respectively.
  • the fan-shaped sealing plate 3 is provided with a long hole 4 and is provided with an isolation air duct connected with a low leakage fan.
  • the annular chamber surrounded by the outer casing 2 and the rotor 1 is provided with a labyrinth-type insulating sealing section 5 near the sides of the sector-shaped sealing plate 3.
  • the portion of the outer casing 2 between the adjacent two insulating seal segments 5 is provided with an isolated air duct connected to the low leakage fan.
  • the pipeline connected to the output end of the low leakage fan and the original flue gas side pipeline are respectively provided with a pressure sensor, and the differential pressure transmitter 6 is connected between the two pressure sensors, the differential pressure transmitter 6 and the controllable low leakage fan The opening of the outlet line valve or the controller connection of the low leakage motor frequency.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the differential pressure transmitter 6 sends the differential pressure signal to a DCS (that is, a controller) of a dedicated PLC or a centralized control room, and precisely adjusts the opening of the valve of the low leakage fan outlet line or the low leakage motor by using the change of the differential pressure signal.
  • the frequency of the seal achieves the effect of precise adjustment of the seal and energy saving operation.
  • the most central circular body in Fig. 4 is a mandrel, and the two pairs of sector-shaped sealing plates 3 extend outward from the core axis.
  • the circular line immediately adjacent to the inside of the casing 2 does not represent the rotor 1, but is used to indicate the edge of the annular seal outside the outer circumference of the rotor. That is, the sector seal plate 3 extends from the mandrel to the annular seal with only a slight gap between the casing 2.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the labyrinth type insulating sealing section is constituted by a sealing plate 7 and an outer circumference of the rotor 1.
  • the inner wall of the sealing plate 7 is an arcuate surface adapted to the outer circumference of the rotor 1, and the sealing plate 7 is fixed to the inner wall of the outer casing 2.
  • Such a structure is suitable for the case where the axial sealing piece 8 is fixed on the outer circumference of the rotor 1, and two arc-shaped sealing plates 7 are attached to the ring-shaped sealing plate 3 in the ring chamber surrounded by the rotor 1 and the outer casing 2, respectively.
  • the four sealing plates 7 each form an axially isolated sealing chamber 9 at the driving end and the non-driving end.
  • the sealing section on each side of the axial isolation capsule 9 is formed by a GGH rotor 1 axial sealing piece 8 and a curved sealing plate 7 to form a multi-stage sealing small space, which constitutes a labyrinth sealing structure and enhances the sealing effect.
  • the axially isolated and sealed compartments at the drive and non-drive ends are connected to isolate the low-leakage wind, and the original flue gas and net flue gas in the enclosure drive ring chamber are isolated to form an isolation seal inside the enclosure drive ring to prevent leakage.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the labyrinth type insulating sealing section is constituted by a plurality of axial sealing sheets fixed to the inner wall of the outer casing 2 and the outer circumference of the rotor 1.
  • This structure is suitable for a smooth circumferential surface of the outer circumference of the rotor 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air Supply (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器,包括外壳(2)、转子(1)及密封系统;密封系统设置在外壳(2)与转子(1)的芯轴之间,并将外壳(2)与转子(1)的芯轴之间的空间分隔为原烟气流通区和净烟气流通区;密封系统包括密封系统本体和设置在外壳(2)与转子(1)外周缘之间的间隙处的隔离密封段(5),密封系统本体的沿着转子(1)径向相对的两端中的每一端的两侧分别设置有隔离密封段(5),每一端的一对隔离密封段(5)间的中间区域与低泄漏风机连通。该回转式气气换热器具有密封效果好,漏风率低的优点。

Description

具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器 技术领域
本发明涉及换热器, 具体涉及一种回转式气气换热器密封装置的改进。 背景技术 回转式气气换热器 (GGH)是目前湿法烟气脱硫 (FGD) 装置应用得最为 广泛的烟气换热器。 它的工作原理是在转子格仓内的蓄热元件是通过表面平 滑的或带波紋的金属薄片或其它载热体, 将未净化的高温烟气的热量传递给 净化后的冷烟气。 工作中, 未净化的高温烟气通过转子的一侧, 而净化后的 冷烟气通过转子的另一侧。 转子缓慢地旋转, 这样转子上的多个传热元件, 轮流通过热的未净化烟气和冷的净化后烟气。 在未净化的高温烟气通过传热 元件时, 未净化的高温烟气中部分热量传给了传热元件。 在传热元件转到净 化后的冷烟气侧时, 它所携带的热量又传给了净化后的冷烟气。 因此将净化 后的冷烟气的温度提高, 而传热元件本身被冷却。 这两股烟气分别从转子沿 直径分开的两个部分流过, 这两个部分由密封板分开。 原烟气与净烟气两股 烟气的流通方向相反。
GGH由圆柱形转子、 圆筒形外壳、 传动装置、 密封装置和吹灰系统几部 分组成。 转子被分成许多扇形仓格, 每个扇形仓格中装满了由波形板组成的 传热元件。 转子被沿着其横截面上的直径方向, 分隔成原烟气和净烟气两个 流通区, 两个流通区之间由过渡区隔开(过渡区装有密封系统)。 原烟气流通 区和净烟气流通区分别与进口烟道和出口烟道相连。 电动机通过传动装置带 动转子旋转。 转子的蓄热热元件交替通过原烟气区和净烟气流通区, 高温原 烟气自下而上地将热量传递给传热元件, 这部分传热元件受热面转到净烟气 流通区时, 又将蓄积的热量传递给自上而下流通的冷净烟气。转子每转一周, 即完成一个传热过程。 过渡区是原烟气区与净烟气流通区隔开的密封区。 原 烟气流通区也就是未净化的原烟气区, 而冷烟气流通区就是净化后的净烟气 区。 由于原烟气的压力比净烟气压力大, 为了防止原烟气通过转子与外壳之 间的间隙泄漏入净烟气区, GGH装置了径向、 轴向密封, 这种密封就安装在 所谓的密封区处, 环向密封加装在外壳与转子上下回转面外缘之间。
目前国内脱硫系统使用的回转式 GGH多数都是引进国外的技术 (美国、 德国、 法国、 英国等), 在引进的多种回转式 GGH中, 都存在着密封效果不 够好, 漏风率偏高的缺陷。 这些进口的回转式 GGH 设备漏风率保证值为 0.5-1%, 而实际应用时漏风率经常无法达到保证值。 统计测试结果: 较好的 GGH在初装后短时间内漏风率能达到 0.8%, 平均达到 1.5%, 漏风率最低的 达到 0.6%, 最严重的超过 10%, 严重影响脱硫系统的总效率。 例如, 华电莱 芜电厂所使用的回转式 GGH设备。 发明内容 本发明的目的是解决现有技术中的缺陷。
本发明的一个目的是提供一种密封效果更好的回转式气气换热器; 本发明的又一个目的是提供一种结构简单, 成本低廉, 效果优秀的换热 器密封结构。
本发明的技术解决方案是: 具有无泄漏密封系统轴向隔离密封舱的回转 式气气换热器, 其中, 包括:
夕卜壳;
转子, 其设置在所述外壳内, 并受到驱动相对于所述外壳旋转; 密封系统, 其设置在所述外壳与所述转子的芯轴之间, 所述密封系统将 所述外壳与所述转子的芯轴之间的空间分隔成原烟气流通区和净烟气流通 区; 其中, 所述密封系统包括: 密封系统本体, 和设置在所述外壳与所述转 子的外周缘之间的间隙处的隔离密封段; 所述隔离密封段有四个, 两两成对 地设置在所述密封系统本体的沿转子径向相对的两端中的每一端的两侧, 每 对隔离密封段的中间区域与低泄漏风机连通。
优选的是, 其中, 所述转子包括: 位于中间的芯轴, 位于外围的筒罩, 和位于所述芯轴和所述筒罩之间的支撑格仓, 支撑格仓内装入由蓄热片组成 的蓄热元件, 所述转子的外周缘为所述筒罩的外周, 所述原烟气流通区是指 对应原烟气进出口烟道的外围的筒罩与所述芯轴之间的区域, 所述净烟气流 通区是指对应原烟气烟道的外围的筒罩与所述芯轴之间的区域。
优选的是, 所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换 热器中, 所述密封系统本体包括从所述芯轴向所述壳体延伸的两个沿转子的 径向相对的子扇形密封体。
优选的是, 所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换 热器中, 所述芯轴和所述筒罩之间还设置有径向密封片。
优选的是, 所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换 热器中, 所述各子扇形密封体的上下两侧的扇形密封板上均设置有通风孔, 所述通风孔与低泄漏风机连通。
优选的是, 所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换 热器中, 由一个风机向所述中间区域和所述通风孔同时通风, 以形成隔离风 幕。
优选的是, 所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换 热器中, 所述隔离密封段为迷宫式的, 其中包括纵横相间的隔板。
优选的是,所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换热 器中, 所述隔离密封段包括从所述壳体向所述转子方向延伸的多个间隔排列 的密封片。
优选的是, 所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换 热器中, 低泄漏风机出口与原烟气管路上分别设有压力传感器, 两个压力传 感器均与控制器通讯连接, 所述控制器根据所述两个压力传感器的数值, 控 制风机的出风口阀门开度或风机的功率。
优选的是, 所述的具有无泄漏密封系统轴向隔离密封舱的回转式气气换 热器中, 风机的输出端与原烟气管路上分别设有压力传感器, 两个压力传感 器之间连接有差压变送器, 所述差压变送器将两个压力传感器之间的差压值 实时传送至控制器, 所述控制器根据所述差压值, 控制风机的出风口阀门开 度或风机的功率。
本发明的技术效果是: 这种换热器具有密封效果好, 漏风率低的优点。 具体而言, 在气气换热器中, 现有技术中考虑的都是导热仓格处的密封, 而 转子筒罩与壳体之间的间隙处的密封却被忽略了。 在气气换热器中, 转子芯 轴和转子筒罩之间的环形空间被密封系统分割成了原烟气流通区和净烟气流 通区, 实际上也就是原烟气流过气气换热器时的流经管路, 和净烟气流过气 气换热器时的流经管路。 在气气换热器的工作过程中, 原烟气压力较大, 会 在筒罩内泄漏至净烟气侧。 这种泄漏是主要要防范的泄漏, 现在已经有利用 在芯轴和筒罩之间的密封区域内设置径向、 轴向、 环向密封的方式来最大可 能地较小泄漏的技术存在。 但是显然, 工作时, 原烟气和净烟气均会泄漏到 筒罩外侧, 也就是筒罩与外壳之间的间隙内。 原烟气也会通过这个间隙泄漏 至净烟气侧。 而如何避免间隙处的泄漏? 本发明提出了在间隙中设置隔离密 封段的方式。 如图 3所示, 图 3中的四块黑色区域就表示隔离密封段, 而图 4 中的两个扇形区域就表示密封系统本体。 隔离密封段设置在每个扇形区域 的两侧。 仅仅依靠隔离密封段进行隔离, 还是不够的。 本发明在为两个隔离 密封段的中间区域通风, 也就是在筒罩与外壳之间的间隙内形成隔离风幕, 进一步阻断了泄漏的可能性。
本发明还可以包括两对扇形密封板, 并且两对扇形密封板上开设有位置 相对的成对孔。 这样, 当开动低泄漏风机时, 位置相对的成对孔从上下双向 向中间形成风幕, 该风幕阻隔原烟气与净烟气之间的泄漏, 而仅仅让高温烟 气的热量通过转子传热元件传导給冷烟气。 本发明的扇形密封板也可以形成 风幕, 以对芯轴和筒罩之间的密封区域进行更加严格的密封。 通过芯轴和筒 罩之间的加强密封和筒罩与外壳之间的间隙的补充密封, 能够达到世界上最 严格的密封效果。
本发明中, 隔离密封段为迷宫式的, 能够对烟气起到更好的阻挡作用。 本发明中, 所述低泄漏风机出口与原烟气入口烟道上分别设有差压变送 器的两个压力测点, 差压变送器与控制器通讯连接, 所述控制器根据所述差 压变送器的数值, 控制风机的出风口阀门开度或风机的功率。 控制器根据差 压变送器的检测结果, 可以随时对风机的出风率进行调整。 通常, 低泄漏风 机出口气压比原烟气管路上的气压大 300~500Pa是既不浪费能源又能起到良 好密封效果的经验选择。 如果气压差大于 500Pa, 则减小风机的出风口阀门 开度或降低风机的功率, 反之如果气压差小于 300Pa, 则增大风机的出风口 阀门开度或提高风机的功率。 附图说明 图 1为本发明的安装了无泄漏密封系统的气气换热器结构示意图; 图 2为沿图 1的 A-A剖开的安装了无泄漏密封系统的气气换热器断面示 意图;
图 3为沿图 1的 B-B剖开的安装了无泄漏密封系统的气气换热器断面示 意图, 其中仅示出了壳体、 转子和部分密封构件;
图 4为沿图 1的 C-C剖开的安装了无泄漏密封系统的气气换热器断面示 意图, 其中仅示出了壳体、 芯轴、 扇形密封板以及其上的孔, 未示出转子的 外轮廓;
图 5为密封系统在转子和壳体之间的间隙内, 采用的一种密封段的结构 示意图; 图 6为密封系统在转子和壳体之间的间隙内, 采用的另一种密封段的结 构示意图。 具体实施方式 如图 1至图 4所示, 本发明的换热器包括转子 1、 外壳 2、 密封系统及传 动装置。 外壳 2于转子 1的两端分别设有两对扇形密封板 3。 所述扇形密封 板 3上开有长孔 4并设有隔离风管路与低泄漏风机连接。
所述外壳 2和转子 1围成的环室靠近扇形密封板 3两侧的地方分别设有 迷宫式隔离密封段 5。 外壳 2于相邻两隔离密封段 5间的部分设有隔离风管 路与低泄漏风机连接。
所述与低泄漏风机输出端连接的管路和原烟气侧管路上分别设有压力传 感器, 两压力传感器间连接有差压变送器 6, 差压变送器 6与可控制低泄漏 风机出口管路阀门的开度或者低泄漏电机频率的控制器连接。
在隔离低泄漏风的配风箱 (或者管路) 上安装压力测点, 在与之对应的 原烟气侧管路上加装压力测点, 在压力测点之间安装差压变送器 6, 将差压 信号送至专用的可编程逻辑控制器 PLC或者集控室的分布式控制系统 DCS , 利用差压信号的变化精确调整控制低泄漏风机出口管路阀门的开度或者低泄 漏电机的频率, 达到密封精确调整、 节能运行的效果。
合理调整吹扫风流量, 要求达到 1. 5-2倍回转携带漏泄量。
采用本系列技术可以将回转式 GGH漏风率降至 0. 1-0. 4%, 超过目前国际 领先水平。 每月每台 600MW机组可节约成本几十万元。
实施方式一:
如图 4所示, 在转子 1的驱动端和非驱动端上下扇形密封板 3对称轴线 处, 开长孔 4并加装密封风管路, 通入隔离低泄漏风。 通入低泄漏风后上下 两对扇形密封板 3与转子 1之间形成有效的隔离风幕。 在吹扫风的配风箱或 者管路上安装压力测点, 在与之对应的原烟气侧管路上加装压力测点, 在压 力测点之间安装差压变送器 6。 差压变送器 6将差压信号送至专用的 PLC或 者集控室的 DCS (也就是控制器) , 利用差压信号的变化精确调整控制低泄 漏风机出口管路阀门的开度或者低泄漏电机的频率, 达到密封精确调整、 节 能运行的效果。
图 4中最中心的圆形体为芯轴, 两对扇形密封板 3从芯轴向外延伸。 紧 邻壳体 2 内侧的圆环线并非表示转子 1, 而是用来表示转子外周缘外侧的环 形密封件的边缘。也就是说, 扇形密封板 3从芯轴一直延伸到环形密封件处, 而与壳体 2之间仅存微小的缝隙。
实施方式二:
如图 5所示, 所述迷宫式隔离密封段由密封板 7与转子 1外周构成。 密 封板 7其内壁为与转子 1外周相适应的弧形面,密封板 7固定在外壳 2内壁。 此种结构适合于转子 1外周上固定有轴向密封片 8的情况, 在由转子 1和外 壳 2围成的环室内靠近扇形密封板 3的地方各加装两块弧形密封板 7, 共四 块密封板 7, 在驱动端和非驱动端各形成一个轴向隔离密封舱 9。每个轴向隔 离密封舱 9两侧的密封段由 GGH转子 1轴向密封片 8与弧形密封板 7形成多 级密封小空间, 构成迷宫密封结构, 加强密封效果。 在驱动端和非驱动端的 轴向隔离密封舱 9接入隔离低泄漏风, 隔离围带驱动环室内的原烟气与净烟 气, 形成围带驱动环室内的隔离密封, 阻止泄漏。
实施方式三:
如图 6所示, 所述迷宫式隔离密封段由固定在外壳 2内壁上的若干轴向 密封片与转子 1外周构成。 此种结构适合于转子 1外周为光滑的圆周面。
上面显示和描述了本发明的基本原理和主要特征和本发明的优点。 本行 业的技术人员应该了解, 本发明不受上述实施例的限制, 上述实施例和说明 书中描述的只是说明本发明的原理, 在不脱离本发明精神和范围的前提下, 本发明还会有各种变化和改进, 这些变化和改进都落入要求保护的本发明范 围内。 本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims

1、 具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器, 其中, 包 括:
夕卜壳;
转子, 其设置在所述外壳内, 并受到驱动相对于所述外壳旋转; 密封系统, 其设置在所述外壳与所述转子的芯轴之间, 所述密封系统将 所述外壳与所述转子的芯轴之间的空间分隔成原烟气流通区和净烟气流通 区;
其中, 所述密封系统包括: 密封系统本体, 和设置在所述外壳与所述转 子的外周缘之间的间隙处的隔离密封段; 所述隔离密封段有四个, 两两成对 地设置在所述密封系统本体的沿转子径向相对的两端中的每一端的两侧, 每 对隔离密封段的中间区域与风机连通。
2、如权利要求 1所述的具有无泄漏密封系统轴向隔离密封舱的回转式气 气换热器, 其中, 所述转子包括: 位于中间的芯轴, 位于外围的筒罩, 和位 于所述芯轴和所述筒罩之间的支撑格仓, 支撑格仓内装入由蓄热片组成的蓄 热元件, 所述转子的外周缘为所述筒罩的外周, 所述原烟气流通区是指对应 原烟气进出口烟道的外围的筒罩与所述芯轴之间的区域, 所述净烟气流通区 是指对应原烟气烟道的外围的筒罩与所述芯轴之间的区域。
3、如权利要求 2所述的具有无泄漏密封系统轴向隔离密封舱的回转式气 气换热器, 其中, 所述密封系统本体包括从所述芯轴向所述壳体延伸的两个 沿转子的径向相对的子扇形密封体。
4、如权利要求 3所述的具有无泄漏密封系统轴向隔离密封舱的回转式气 气换热器, 其中, 所述芯轴和所述筒罩之间还设置有径向密封片。
5、如权利要求 4所述的具有无泄漏密封系统轴向隔离密封舱的回转式气 气换热器, 其中, 所述各子扇形密封体的上下两侧的扇形密封板上均设置有 通风孔, 所述通风孔与风机连通。
6、如权利要求 5所述的具有无泄漏密封系统轴向隔离密封舱的回转式气 气换热器, 其中, 由低泄漏风机向所述中间区域和所述通风孔同时通入低泄 漏风, 以形成隔离风幕。
7.如权利要求 1或 6所述的具有无泄漏密封系统轴向隔离密封舱的回转 式气气换热器, 其中, 所述隔离密封段为迷宫式的, 其中包括纵横相间的隔 板。
8. 如权利要求 1或 6所述的具有无泄漏密封系统轴向隔离密封舱的回转 式气气换热器, 其中, 所述隔离密封段包括从所述壳体向所述转子方向延伸 的多个间隔排列的轴向密封片。
9、如权利要求 1所述的具有无泄漏密封系统轴向隔离密封舱的回转式气 气换热器, 其中, 风机出口与原烟气管路上分别设有压力传感器, 两个压力 传感器均与控制器通讯连接, 所述控制器根据所述两个压力传感器的数值, 控制低泄漏风机的出风口阀门开度或风机的功率。
10、 如权利要求 1所述的具有无泄漏密封系统轴向隔离密封舱的回转式 气气换热器, 其中, 风机的输出端与原烟气管路上分别设有压力传感器, 两 个压力传感器之间连接有差压变送器, 所述差压变送器将两个压力传感器之 间的差压值实时传送至控制器, 所述控制器根据所述差压值, 控制风机的出 风口阀门开度或风机的功率。
PCT/CN2012/078325 2011-07-09 2012-07-08 具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器 WO2013007176A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12812033.4A EP2730877B1 (en) 2011-07-09 2012-07-08 Rotary gas-gas heater with axially isolated and sealed compartments in leaktight sealing system
DK12812033.4T DK2730877T3 (en) 2011-07-09 2012-07-08 ROTATING GAS GAS HEATER with axially ISOLATED AND sealed chambers IN A leak SEAL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110191350.7 2011-07-09
CN2011101913507A CN102200407B (zh) 2011-07-09 2011-07-09 回转式气气换热器无泄漏密封系统轴向隔离密封舱

Publications (1)

Publication Number Publication Date
WO2013007176A1 true WO2013007176A1 (zh) 2013-01-17

Family

ID=44661269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078325 WO2013007176A1 (zh) 2011-07-09 2012-07-08 具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器

Country Status (4)

Country Link
EP (1) EP2730877B1 (zh)
CN (1) CN102200407B (zh)
DK (1) DK2730877T3 (zh)
WO (1) WO2013007176A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757944A (zh) * 2018-08-07 2018-11-06 深圳众诚联合能源科技有限公司 一种基于气流运动姿态调整技术的回转空预器密封装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200407B (zh) * 2011-07-09 2012-12-05 程爱平 回转式气气换热器无泄漏密封系统轴向隔离密封舱
CN103206720A (zh) * 2013-04-10 2013-07-17 哈尔滨锅炉厂预热器有限责任公司 用于回转式空气预热器的正压密封方法和系统
CN108469036B (zh) * 2018-04-17 2024-04-05 杭州新际能源科技有限公司 防腐防堵自清洁立式管式空气预热器
CN108413438B (zh) * 2018-04-17 2024-04-05 杭州新际能源科技有限公司 自清洁卧式管式空气预热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1066202A (en) * 1964-03-20 1967-04-19 Svenska Rotor Maskiner Ab Rotary regenerative heat exchangers
CN2564973Y (zh) * 2002-09-17 2003-08-06 盛伟 回转式空气预热器的密封装置
CN200965242Y (zh) * 2006-09-12 2007-10-24 赵岫华 全模式三密封空气预热器
CN201731508U (zh) * 2010-07-20 2011-02-02 山东电力研究院 降低回转式空预器漏风的气密封装置
CN102200407A (zh) * 2011-07-09 2011-09-28 程爱平 回转式气气换热器无泄漏密封系统轴向隔离密封舱

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU987295A2 (ru) * 1981-10-12 1983-01-07 Предприятие П/Я Р-6193 Регенеративный вращающийс воздухоподогреватель
JPH09229577A (ja) * 1996-02-23 1997-09-05 Abb Kk 回転再生式熱交換器
CN2357312Y (zh) * 1998-11-23 2000-01-05 吴同钧 回转式空气预热器的迷宫式密封装置
DK1584869T3 (da) * 2004-04-05 2011-08-01 Balcke Duerr Gmbh Roterende regenerator
CN100356128C (zh) * 2004-09-04 2007-12-19 王卫东 用于回转式空气预热器的轮辐式密封装置
CN2867259Y (zh) * 2005-12-23 2007-02-07 燕守志 再生式空预器的漏风回收装置
CN100535573C (zh) * 2006-05-12 2009-09-02 北京化工大学 带有刷式密封装置的回转式空气预热器
DK2023070T3 (da) * 2007-07-24 2011-07-11 Balcke Duerr Gmbh Regenerativ varmeveksler og radialtætning til anvendelse i en sådan samt fremgangsmåde til adskillelse af gasformige medier i en regenerativ varmeveksler
US20100251975A1 (en) * 2009-04-01 2010-10-07 Alstom Technology Ltd Economical use of air preheat
US8627878B2 (en) * 2009-09-11 2014-01-14 Alstom Technology Ltd System and method for non-contact sensing to minimize leakage between process streams in an air preheater
CN201787595U (zh) * 2010-06-07 2011-04-06 章礼道 回转式空气预热器的曲径迷宫式可调扇形板
CN102095206B (zh) * 2011-02-14 2012-02-29 燕守志 回转式空气预热器的密封回收系统
CN202145114U (zh) * 2011-07-09 2012-02-15 程爱平 回转式气气换热器无泄漏密封系统轴向隔离密封舱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1066202A (en) * 1964-03-20 1967-04-19 Svenska Rotor Maskiner Ab Rotary regenerative heat exchangers
CN2564973Y (zh) * 2002-09-17 2003-08-06 盛伟 回转式空气预热器的密封装置
CN200965242Y (zh) * 2006-09-12 2007-10-24 赵岫华 全模式三密封空气预热器
CN201731508U (zh) * 2010-07-20 2011-02-02 山东电力研究院 降低回转式空预器漏风的气密封装置
CN102200407A (zh) * 2011-07-09 2011-09-28 程爱平 回转式气气换热器无泄漏密封系统轴向隔离密封舱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757944A (zh) * 2018-08-07 2018-11-06 深圳众诚联合能源科技有限公司 一种基于气流运动姿态调整技术的回转空预器密封装置
CN108757944B (zh) * 2018-08-07 2023-12-19 深圳众诚联合能源科技有限公司 一种基于气流运动姿态调整技术的回转空预器密封装置

Also Published As

Publication number Publication date
CN102200407A (zh) 2011-09-28
CN102200407B (zh) 2012-12-05
EP2730877B1 (en) 2016-02-10
DK2730877T3 (en) 2016-05-23
EP2730877A4 (en) 2014-12-17
EP2730877A1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
WO2013007176A1 (zh) 具有无泄漏密封系统轴向隔离密封舱的回转式气气换热器
WO2013007177A1 (zh) 具有无泄漏密封系统隔离风幕结构的回转式气气换热器
CN106949488B (zh) 具有高效密封旋转式换向阀的蓄热燃烧装置
CN108692331B (zh) 一种空气预热器
CN101929812B (zh) 空心叶片逆程换热风机
RU2119127C1 (ru) Регенеративный теплообменник и способ его эксплуатации
CN108826322A (zh) 一种蓄热焚烧炉的旋转阀
CN105674719B (zh) 气相旋转换热器
CN202166064U (zh) 蓄热式催化氧化反应器
CN107940476A (zh) 具有环式旋转阀的蓄热燃烧装置
CN110986076B (zh) 一种径向流回转蓄热式空气预热器
CN205640947U (zh) 旋转盘式气体调配阀
CN207702487U (zh) 具有环式旋转阀的蓄热燃烧装置
CN202145114U (zh) 回转式气气换热器无泄漏密封系统轴向隔离密封舱
CN202145116U (zh) 回转式气气换热器无泄漏密封系统隔离风幕结构
JP5629220B2 (ja) 切換弁及びガス処理システム
CN206739321U (zh) 具有高效密封旋转式换向阀的蓄热燃烧装置
CN113511699A (zh) 一种地热水除气装置
CN205859232U (zh) 高温烟气和空气切换用四通阀
GB2206682A (en) A rotary regenerative heat exchanger
CN107228209A (zh) 具有旋转配气阀的蓄热燃烧系统
CN218033228U (zh) 一种模块化预制大直径回转蓄热式空气预热器
CN202145109U (zh) 低泄漏回转式气气换热器
CN207701812U (zh) 环式旋转阀的高效密封装置
GB2358698A (en) Rotary regenerative heat exchanger and rotor with primary and secondary vanes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012812033

Country of ref document: EP