WO2013007017A1 - 分路单元、切换供电路径的方法和光传输系统 - Google Patents

分路单元、切换供电路径的方法和光传输系统 Download PDF

Info

Publication number
WO2013007017A1
WO2013007017A1 PCT/CN2011/077064 CN2011077064W WO2013007017A1 WO 2013007017 A1 WO2013007017 A1 WO 2013007017A1 CN 2011077064 W CN2011077064 W CN 2011077064W WO 2013007017 A1 WO2013007017 A1 WO 2013007017A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
power supply
optical
supply path
relay
Prior art date
Application number
PCT/CN2011/077064
Other languages
English (en)
French (fr)
Inventor
赵茂
孙恺
周国耀
Original Assignee
华为海洋网络有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为海洋网络有限公司 filed Critical 华为海洋网络有限公司
Priority to CN201180004695.5A priority Critical patent/CN102714547B/zh
Priority to PCT/CN2011/077064 priority patent/WO2013007017A1/zh
Publication of WO2013007017A1 publication Critical patent/WO2013007017A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/44Arrangements for feeding power to a repeater along the transmission line

Definitions

  • Shunt unit method for switching power supply path, and optical transmission system
  • the present invention relates to the field of optical communications, and more particularly to a splitting unit in the field of optical communications, a method of switching a power supply path, and an optical transmission system. Background technique
  • an optical signal carrying a service can be allocated to two ports through a branching unit (BU).
  • BUs branching unit
  • PSBU Power Switching Branching Unit
  • the BU with the electric switching function can restore part of the service by switching the power supply path in the BU.
  • the cable side can be grounded to ensure the maintenance personnel. Safety.
  • the power supply path in the BU may be necessary to switch the power supply path in the BU due to a cable breakage failure or a maintenance cable breakage.
  • complicated power-on and power-off configuration is required, that is, the power supply path reconfiguration between multiple ports of the BU is realized by configuring the power-on current magnitude, direction, and sequence of different landing points.
  • the switching state of the relay in the BU is changed by controlling the current between the ports of the BU, thereby realizing the change of the power supply path.
  • the embodiment of the present invention provides a branching unit, a method for switching a power supply path, and an optical transmission system, which can prevent the power supply path in the BU from being disturbed by current fluctuations and cause unnecessary switching, so that the power supply path in the BU can be switched when it is not needed. Stay in the current state to improve the stability of the power supply path.
  • an embodiment of the present invention provides a splitting unit, having a first port, a second port, a third port and an SE port
  • the branching unit includes a power supply module, a control module, and a switching module
  • the power supply module is configured to convert a strong current input to the branching unit into a weak current, and to the The control module outputs the weak current
  • the control module is configured to output an electrical signal to the switching module when the power supply path needs to be configured
  • the switching module includes a plurality of bistable relays, wherein, in the first a power supply path between the port, the second port, and any two of the third ports includes at least two bistable relays, and a power supply path between the first port and the SE port includes at least a bistable relay, the power supply path between the second port and the SE port includes at least two bistable relays, and the power supply path between the third port and the SE port includes at least two a bistable relay, for each bistable relay, when an electrical signal output by the control module flows through the coil
  • an embodiment of the present invention provides a method for switching a power supply path, including: receiving, by one of a first port, a second port, and a third port of a branching unit, a method sent by a remote control device for configuring the a control command of a power supply path in the branching unit, the branching unit further having an SE port; converting the control command into an electrical signal; and inputting the electrical signal to a coil of the bistable relay included in the power supply path Changing the switching state of the bistable relay, wherein the power supply path between any two of the first port, the second port, and the third port includes at least two bistable State relay, the power supply path between the first port and the SE port includes at least one bistable relay, and the power supply path between the second port and the SE port includes at least two bistable states A relay, the power supply path between the third port and the SE port includes at least two bistable relays.
  • an embodiment of the present invention provides an optical transmission system including at least one branching unit.
  • Each of the branching units has a first port, a second port, a third port, and an SE port
  • each of the branching units includes a power supply module, a control module, and a switching module, where: the power supply module is configured to input the points
  • the switching unit includes: a plurality of bistable relays, wherein a power supply path between any two of the first port, the second port, and the third port includes at least two bistable relays, A power supply path between a port and the SE port includes at least one bistable relay, and a power supply path between the second port and the SE port includes at least two bistable relays, in the third
  • the power path between the port and the SE port includes at least two pairs Steady-state relay, for each bistable relay, when the electrical signal output by the control module flows through the coil of the bistable relay, the switching state of the bistable relay changes.
  • the switching of the power supply path is controlled by using the switch of the bistable relay, so that the power supply path in the BU is prevented from being disturbed by the current fluctuation, thereby causing unnecessary switching, so that the power supply path in the BU can be switched when it is not required to be switched. Maintaining the current state improves the stability and reliability of the power supply path.
  • FIG. 1 is a block diagram showing the structure of a branching unit according to an embodiment of the present invention.
  • FIG. 2 is an implementation example of a branching unit according to an embodiment of the present invention.
  • FIG. 3 is a first implementation example of a control module in accordance with an embodiment of the present invention.
  • control module 4 is a second implementation example of a control module in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a power supply path in different states according to an embodiment of the present invention.
  • Figure 6 is a schematic illustration of a relay switch configuration corresponding to a power supply path in accordance with an embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of switching a power supply path in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic illustration of an optical transmission system in accordance with an embodiment of the present invention. detailed description
  • branching unit 100 according to an embodiment of the present invention will be described with reference to FIG.
  • the branching unit 100 has a first port, a second port, a third port, and a SE (Sea Earth) port.
  • the A port is used to indicate the first port
  • the B port is the second port
  • the C port is the third port.
  • a current path can be formed between the two ports in the A, B, and C ports, and the remaining port is connected to the SE port to form a current path.
  • the branching unit 100 can include a power supply module 110, a control module 120, and a switching module 130.
  • the power supply module 110 can be used to convert the strong current of the input shunt unit 100 into a weak current and output a weak current to the 1 control module 120.
  • Control module 120 can be used to output an electrical signal to switching module 130 when a power supply path needs to be configured.
  • the switching module 130 can include a plurality of bistable relays, wherein a power supply path between any two of the first port, the second port, and the third port includes at least two bistable relays, at the first port and
  • the power path between the SE ports includes at least one bistable relay
  • the power path between the second port and the SE port includes at least two bistable relays
  • the power path between the third port and the SE port includes at least Two bistable relays, for each bistable relay, when the electrical signal output by the control module 120 flows through the coil of the bistable relay, the switching state of the bistable relay changes.
  • the power supply module 110 outputs a weak current to the control module 120 based on the strong current input to the shunt unit 100 to cause the control module 120 to operate.
  • the current is transmitted in the solid line of Fig. 1, and the optical signal is transmitted in the broken line of Fig. 1.
  • the power supply path provided in the switching module 130 is related to the C port, that is, the strong current flowing through the branching unit 100 needs to flow in or out from the C port, and the current flowing through the C port flows into or out of the switching module 130.
  • the power supply module 110 obtains current from the switching module 130 to provide an operating voltage for operation of the control module 120.
  • the power supply module 110 can also provide a protection function to prevent the shunt unit 100 from being subjected to excessive current from the outside, as described in connection with FIG.
  • the control module 120 may output an electrical signal under the trigger of an external control command, or may output an electrical signal by detecting a change in current transmission in the shunt unit 100 by itself. Through the electrical signal, the control module 120 can control the switching of the power supply path in the branching unit 100 to reconfigure the power supply path.
  • control module 120 is operative to receive an optical command transmitted by the remote control device from one of the first port, the second port, and the third port, and convert the optical command into an electrical signal.
  • the remote control device located on the shore may The optical command is transmitted to the branching unit 100 by the optical fiber that has passed through the access splitting unit 100.
  • the remote control device may transmit the optical command carrying the control information to the control module 120 in the branching unit 100 through the optical fiber at a specific wavelength, the specific wavelength being different from the wavelength carrying the service data information, so that the control module 120 Optical commands can be distinguished from optical signals transmitted by optical fibers.
  • the control module 120 Since the control module 120 needs to receive an optical command for configuring the power supply path, the control module 120 includes an optical transmission channel, i.e., an optical fiber, in the shunt unit 100.
  • the control module 120 obtains an optical command from the optical fiber, and performs photoelectric conversion on the optical command to analyze the information of the configured power supply path demodulated from the optical command, thereby obtaining an electrical signal for controlling the switching of the power supply path, and driving the electrical signal to switch.
  • the module 130 includes a coil of a bistable relay to switch the power supply path. The manner of converting the optical command into an electrical signal for switching the power supply path can be implemented as in the prior art, and details are not described herein again.
  • the switching module 130 switches the power supply path only when receiving an electrical signal from the control module 120. At this time, when the switching module 130 receives the electrical signal, the electrical signal flows through the coil of the bistable relay, thereby changing the switching state of the bistable relay, and causing the reconfiguration of the power supply path due to the change of the switching state.
  • a bistable relay is a relay with two steady states. It has two input loops that can cause two steady states when added to the input.
  • the switching state of the bistable relay changes accordingly; when there is no current flow in the coil of the bistable relay
  • the switching state of the bistable relay remains unchanged over time. Therefore, even if the current flowing through the branching unit 100 fluctuates greatly, unnecessary external interference occurs, and as long as the coil of the bistable relay is not driven, the control module 120 does not output an electric signal, and the switching state of the bistable relay It can remain unchanged, so the state of the power path will remain the same, avoiding unnecessary switching.
  • the control module 120 can output an electrical signal when receiving the control command.
  • the bistable relay can be a magnetic hold relay.
  • the normally closed or normally open state of the magnetic holding relay is completely dependent on the action of the permanent magnet, and the switching of the switching state is accomplished by a pulse signal of a certain width.
  • the magnetic hold relay may be a Double Pole Double Throw (DPDT) magnetic hold relay, as described below in connection with the example shown in FIG.
  • DPDT Double Pole Double Throw
  • the branching unit is subjected to bistable by switching the power supply path
  • the switching state of the relay is controlled, and the switching state of the bistable relay is changed only under the control of the electrical signal sent by the control module, so that the power supply path in the BU can be prevented from being disturbed by the current and causing unnecessary switching.
  • the power supply path in the BU can be maintained in the current state when it is not required to be switched, thereby improving the stability and reliability of the power supply path.
  • the power supply path can be kept in the current state when switching is not required, thus avoiding the heat generated by the unexpected power supply path switching, saving the power consumption of the branching unit, and reducing the shunting unit. The probability of a failure.
  • branching unit 200 provided by the embodiment of the present invention will be described in detail in conjunction with a specific example of the branching unit 200 shown in FIG.
  • the branching unit 200 shown in FIG. 2 is a PSBU having four ports A, B, C, and SE, and the following three power supply path states exist: A port-B port, C port-SE port; B port-C Port, A port - SE port; A port - C port, B port - SE port.
  • the switching of these three power path states is accomplished by configuring the bistable relays 11, 12, 13, 14.
  • the switching module 31 of the branching unit 200 includes bistable relays 11, 12, 13, 14.
  • the bistable relays 11, 12, 13, and 14 are DPDT high voltage relays that can be implemented by magnetically holding relays.
  • Each bistable relay includes two switches and coils.
  • the bistable relay 11 includes switches A1 and A2 and a reset line ⁇ RLR A and a set line ⁇ RLS A.
  • the bistable relay 12 includes switches B1 and B2 and a reset. ⁇ RLR B and set line ⁇ RLS B
  • bistable relay 13 includes switches C1 and C2 and reset line ⁇ RLR C and set coil RLS C
  • bistable relay 14 includes switch D1 and reset line ⁇ RLR D and The set line ⁇ RLS D, the other switch of the bistable relay 14 is not used in the example shown in FIG. 2.
  • the bistable relays 11 to 14 can be respectively connected to the power supply path between the four ports in the manner as shown in FIG.
  • the switch C1 of the bistable relay 13 When the switch C1 of the bistable relay 13 is closed and the switch A1 of the bistable relay 11 is closed, the power supply path between the A port and the B port is turned on; when the switch C1 of the bistable relay 13 is closed and the bistable relay When the B1 switch of 12 is closed, the power supply path between the A port and the C port is turned on; when the D1 switch of the bistable relay 14 is closed, the power supply path between the A port and the SE port is turned on; when the bistable relay When the B2 switch of 12 is closed and the A2 switch of the bistable relay 11 is closed, the power supply path between the B port and the C port is turned on; when the B2 switch of the bistable relay 12 is closed and the C2 switch of the bistable relay 13 is closed When the power path between the B port and the SE port is turned on; when the A2 switch of the bistable relay
  • the power path status of the B port-C port and the A port-SE port is reflected as follows: When the B2 switch of the bistable relay 12 is closed and the A2 switch of the bistable relay 11 is closed, between the B port and the C port The power supply path is turned on; when the D1 switch of the bistable relay 14 is closed, the power supply path between the A port and the SE port is turned on.
  • the power path status of the A port-C port, the B port-SE port is reflected in the following cases: When the switch C1 of the bistable relay 13 is closed and the B1 switch of the bistable relay 12 is closed, between the A port and the C port The power supply path is turned on; when the B2 switch of the bistable relay 12 is closed and the C2 switch of the bistable relay 13 is closed, the power supply path between the B port and the SE port is turned on.
  • the electrical signal from the control module 9 flows into the coil of the bistable relay to control the switching state of the bistable relay. Only when the control module 9 receives the control command, the control module 9 outputs an electrical signal to drive the turns of the bistable relays 11 to 14, thereby changing the switching states of the bistable relays 11 to 14, thus, the power supply Switching can be achieved between the three normal working states of the path.
  • the command received by the control module 9 may be from an externally input optical or electrical command, or may be from an internally issued command.
  • the set lines ⁇ RLS A to RLS D of the respective bistable relays are controlled by the first control unit 91 in the control module 9, and the reset lines ⁇ RLR A to RLR D of the respective bistable relays are second by the control module 9.
  • Control unit 92 controls.
  • Both the first control unit 91 and the second control unit 92 can control the switching state of the bistable relay by controlling the current flowing through the respective coils.
  • the first control unit 91 and the second control unit 92 operate only one of them each time the switch state of the bistable relay needs to be configured, such that the first control unit 91 and the second control Units 92 can be backed up to each other to increase the reliability of control module 9.
  • the first control unit 91 is configured to receive an optical command sent by the remote control device from one of the first port, the second port, and the third port; convert the optical command into an electrical signal; and output the electrical signal to the bistable relay In the bit coil.
  • the second control unit 92 can be configured to receive an optical command sent by the remote control device from one of the first port, the second port, and the third port; convert the optical command into an electrical signal; and output the electrical signal to the reset of the bistable relay In the line.
  • first control unit 91 and the second control unit 92 can be referred to the examples shown in Figs. 3 and 4.
  • a first example of a specific implementation when the control module 9 includes the first control unit 91 and the second control unit 92 will first be described with reference to FIG.
  • the first control module 91 can include a photoelectric converter 911 and optical filters 912, 913, 914. Although three optical filters are shown in FIG. 3, the first control module 91 may have only one optical filter, and may have two or more than three optical filters, depending on which The light command is input to the fiber in the root fiber, and the optical filter is installed in the fiber with the optical command input.
  • Each of the optical filters may be a filter including a spectroscopic device, and the light carrying the command information is filtered out through the spectroscopic device.
  • Each optical filter can extract optical commands for configuring the power supply path from the respective fibers, for example, optical commands can be carried in optical signals having specific wavelengths.
  • the optical filter 912 receives optical commands from the optical fiber 1, and the optical filter 913 also receives optical commands from the optical fiber 1, but the optical filter 912 operates in the case where the optical signal is transmitted from left to right, and the optical filter 913 operates in the optical signal. In the case of transmission from right to left, therefore, one of the optical filter 912 and the optical filter 913 performs a filtering operation based on the difference in the optical transmission direction in the optical fiber.
  • Optical filter 914 receives the light command from fiber 3.
  • the optical fiber 1 and the optical fiber 3 may be optical fibers that are connected to the branching unit 200 from a port other than the SE port, or may be optical fibers that are respectively connected to the branching unit 200 from two ports other than the SE port.
  • the optical filter 912, 913 or 914 outputs the extracted light command to the photoelectric converter 911 after extracting the light command from the optical signal transmitted along the optical fiber.
  • the photoelectric converter 911 can photoelectrically convert the optical command, demodulate and analyze the optical command, so that the optical command can be converted into an electrical signal, and the electrical signal is sent into the set line ⁇ of the bistable relay, thereby It is possible to control the switching state of the bistable relay, that is, the closed and open states.
  • the second control module 92 can include a photoelectric converter 921 and optical filters 922, 923, 924. Although three optical filters are shown in FIG. 3, the second control module 92 may have only one optical filter, and may have two or more than three optical filters, depending on which The light command is input to the fiber in the root fiber, and the optical filter is installed in the fiber with the optical command input.
  • Each of the optical filters may be a filter including a beam splitting device that filters the light carrying the command information through the beam splitting device.
  • Each optical filter can extract optical commands for configuring the power supply path from the respective fibers, for example, optical commands can be carried in an optical signal having a particular wavelength.
  • the optical filter 922 receives optical commands from the optical fiber 2, and the optical filter 923 also receives optical commands from the optical fiber 2, but the optical filter 922 operates in the case where the optical signal is transmitted from left to right, and the optical filter 923 operates in the optical signal. In the case of transmission from right to left, therefore, one of the optical filter 922 and the optical filter 923 performs a filtering operation based on the direction of light transmission in the optical fiber.
  • Optical filter 924 receives light commands from fiber 4.
  • the optical fiber 2 and the optical fiber 4 may be optical fibers that are connected to the branching unit 200 from one port other than the SE port, or may be optical fibers that are respectively connected to the branching unit 200 from two ports other than the SE port.
  • the optical filter 922, 923 or 924 outputs the extracted light command to the photoelectric converter 921 after extracting the light command from the optical signal transmitted along the optical fiber.
  • the photoelectric converter 921 can photoelectrically convert the optical command, demodulate and analyze the optical command, so that the optical command can be converted into an electrical signal, and the electrical signal is sent to the reset line of the bistable relay, thereby The switching states of the control bistable relay are closed and open.
  • the paths in which the first control unit 91 and the second control unit 92 receive the optical command are completely separated, so that the first control unit 91 and the second control unit 92 do not simultaneously receive the optical command, and the line is set. There is no current flowing through the reset line ,, and the backup of the control function in the control module 9 is realized.
  • the second example differs from the first example in that the first control unit 91 and the second control unit 92 receive the path coincidence of the optical command, and need to carry the identifier of the first control unit 91 or the second control unit 92 in the optical command. Distinguish who operates.
  • the first control unit 91 includes optical filters 931, 932, 933 and optical couplers 934, 935, 936 and a photoelectric converter 918.
  • the second control unit 92 includes optical filters 931, 932, 933 and optical couplers 934, 935, 936 and a photoelectric converter 928, wherein the optical filter and the optical coupler are in one-to-one correspondence.
  • the first control unit 91 and the second control unit 92 share the same optical filter and optical coupler, but use different photoelectric converters. Although three pairs of optical filters and optical couplers are shown in FIG.
  • the control module 9 may have only a pair of optical filters and optical couplers, and may have multiple pairs of optical filters and optical couplers, which may depend on Which optical fiber inputs the optical command, and the optical filter and the corresponding optical coupler are installed in the optical fiber with the optical command input.
  • Each of the optical filters may be a filter including a spectroscopic device, and the light carrying the command information is filtered out through the spectroscopic device.
  • Each of the optical couplers 934, 935, and 936 can be a 3 dB coupler that will have a corresponding light
  • the light containing the light command filtered by the filter and the filter is divided into two parts of the equal optical power, and output to the photoelectric converters 918 and 928, respectively.
  • Whether the operation is performed by the photoelectric converter 918 or the photoelectric converter 928 can be specified by setting an identification in the optical command.
  • the identifier set in the optical command may be the identifier of the first control unit 91 or the second control unit 92, or may be the identifier of the photoelectric converter 918 or the photoelectric converter 928.
  • the photoelectric converter 918 and the photoelectric converter 928 can determine whether or not they operate according to the identification by analyzing the light command.
  • the optoelectronic converter 918 of the first control unit 91 can be used to convert the optical command into an electrical signal that is output to the set line of the bistable relay.
  • the photoelectric converter 928 of the second control unit 92 can be used to convert the light command into an electrical signal and output the electrical signal to the reset line ⁇ of the bistable relay.
  • the optical command received by the above-described photoelectric converter 911, 912, 918 or 928 contains the action information and sequence of the bistable relay, as is the operation required to switch the power supply path described below in connection with Fig. 6.
  • the photoelectric converter can demodulate the optical command, and the demodulated information is sent to the parser included in the photoelectric converter for analysis, thereby analyzing the action information of the bistable relay, and inputting the electric signal corresponding to the action into the bistable In the coil of the state relay, the bistable relay is driven to complete the predetermined action.
  • control module 9 Two specific examples of the control module 9 are described above, and the other components of the branching unit 200 will be described below with reference to FIG.
  • the power supply module 32 of the branching unit 200 includes a transient suppression component 1, a resistor 2, a rectifier circuit 3, diodes 4, 5, 6, and a line ⁇ 7 and a switch 8 forming a monostable relay of the DPDT.
  • the power supply of the shunt unit usually operates in a constant current line. Since the system power distribution is usually as high as several thousand to tens of thousands of volts, a sudden short circuit near the shunt unit 200 may cause a large surge current to be generated, which may have a large influence on the normal operation of the shunt unit 200. To this end, as shown in Fig. 2, the transient suppression component 1 and the resistor 2 are provided as guard circuits.
  • the transient suppression component 1 can be an air discharge tube or a transient voltage suppressor (Transient Voltage)
  • the resistor 2 can also be an inductor line ⁇ which increases the transient impedance of the portion in parallel with the transient suppression component 1 so that the protection circuit absorbs the surge.
  • the rectifier circuit 3 can be constituted by a diode, and the presence of the rectifier circuit 3 allows the branching unit 200 to support power supply in both forward and negative directions.
  • Diodes 4, 5, and 6 are Zener diodes, which can be control module 9, set line ⁇ , reset line ⁇ Provides a stable voltage.
  • the Zener diode 4 provides a power supply input from the B port
  • the Zener diode 5 provides a power supply input from the C port
  • the Zener diode 6 is connected in parallel with the control module 9, and the control module 9 includes a first control unit 91 and a second control unit 92.
  • the set line ⁇ and the reset line ⁇ of the bistable relay are respectively driven.
  • Line ⁇ 7 and switch 8 form the monostable relay of the DPDT, which is a high voltage relay whose control line ⁇ 7 is connected in parallel with the Zener diode 4.
  • the line ⁇ 7 is energized, and the switch 8 operates in a closed state, that is, the COM end of the relay is connected to the NO terminal, the Zener diode 6 is connected in parallel with the control module 9, and the B port supplies power to the control module 9.
  • the control module 9 drives the set line ⁇ or reset line ⁇ of the bistable relay.
  • the coil ⁇ 7 of the monostable relay When there is no current flowing through the B port, the coil ⁇ 7 of the monostable relay is de-energized, and the switch 8 is operated in the off state, that is, the COM end of the relay is connected to the NC terminal, and the Zener diode 6 and the control module 9 are stabilized.
  • the voltage diodes 5 are connected in parallel, and the control module 9 is powered by the A port, and the power supply module 9 drives the set line ⁇ or reset line ⁇ of the bistable relay.
  • the power supply path status in (a) is the A port-B port, the C port-SE port; the power supply path status in (b) is A. Port-SE port, B port-C port; The power path status in (c) is A port-C port, B port-SE port.
  • the relay switch configurations for the three power path states are shown in (a), (b), and (c), respectively.
  • the corresponding power supply path is the A port-B port and the C port-SE port;
  • the corresponding power supply path is the A port-SE port and the B port-C port;
  • the corresponding power supply path is A port - C port and B port - SE port.
  • the B1 switch and the B2 switch of the bistable relay 12 are first closed, and the state of the three-terminal grounding is entered, that is, the state in (d) of Fig. 5. Then turn off the A1 switch and A2 switch of the bistable relay 11, that is, enter the state in (c).
  • the switching state of the power supply path is controlled by the switching state of the bistable relay, and the switching state of the bistable relay occurs only under the control of the electrical signal sent by the control module.
  • the change makes it possible to prevent the power supply path in the BU from being disturbed by the current and causing unnecessary switching, so that the power supply path in the BU can be maintained in the current state when the switching is not required, and the stability and reliability of the power supply path can be improved.
  • the method 700 includes: receiving, in S710, one of a first port, a second port, and a third port of the branching unit, configured by the remote control device, configured to configure a power supply path in the branching unit.
  • the control command, the branching unit also has an SE port; in S720, the control command is converted into an electrical signal; in S730, an electrical signal is input into the coil of the bistable relay included in the power supply path, thereby changing the silent relay a switching state, wherein a power supply path between any two of the first port, the second port, and the third port includes at least two bistable relays, and a power supply path between the first port and the SE port includes At least one bistable relay, the power path between the second port and the SE port includes at least two bistable relays, at the third port and the SE port The power path between the two contains at least two bistable relays.
  • method 700 can be performed by control module 120 in shunt unit 100.
  • the control module 120 can receive a control command sent by the remote control device on the shore from the optical fiber or cable, and include the action information and sequence of the bistable relay in the control command, and can convert the control command into an electrical signal to make the bistable relay
  • the switch state performs a corresponding action to achieve switching of the power supply path.
  • control command may be an optical command.
  • control module 120 For specific operations of the control module 120, reference may be made to the above detailed description. To avoid repetition, details are not described herein.
  • the switching state of the bistable relay is controlled by sending a control command to the branching unit, and the switching state of the bistable relay is only under the control of the electrical signal based on the control command. A change occurs, so that the power supply path in the BU is prevented from being disturbed by the current and unnecessary switching occurs.
  • the power supply path in the BU can be maintained in the current state when the switching is not required, thereby improving the stability and reliability of the power supply path.
  • Optical transmission system 800 is used to deliver optical signals. At least one branching unit is included in the optical transmission system 800. Three shunting units are shown in Fig. 8, but this is merely illustrative and does not limit the specific number of shunting units included in optical transmission system 800.
  • the branching unit included in the optical transmission system 800 may be the branching unit 100 shown in FIG.
  • the specific implementation of the splitting unit 100 can be as shown in FIG. 2, and the specific implementation of the control module in the splitting unit can be as shown in FIG. 3 or FIG. 4.
  • the switching of the power supply path is controlled by using the switch of the bistable relay, so that the power supply path in the BU is prevented from being disturbed by the current fluctuation, thereby causing unnecessary switching, so that the power supply path in the BU is It can be kept in the current state without switching, which improves the stability and reliability of the power supply path.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art. in.

Abstract

本发明提供了分路单元、切换供电路径的方法和光传输系统。该分路单元具有第一端口、第二端口、第三端口和SE端口,该分路单元包括供电模块、控制模块和切换模块。本发明使用双稳态继电器和开关控制供电路径的切换,使得分路单元内供电路径避免受到电流波动的干扰而引起不必要的切换,从而分路单元内供电路径在不需要进行切换时可以保持在当前状态,提高了供电路径的稳定性和可靠性。

Description

分路单元、 切换供电路径的方法和光传输系统 技术领域
本发明涉及光通信领域,并且更具体地,涉及光通信领域中的分路单元、 切换供电路径的方法和光传输系统。 背景技术
在海底光通信系统中, 通常, 可以通过分路单元(Branching Unit, BU ) 来完成承载有业务的光信号到两个端口的分配。 早期的 BU没有电气特性, 只能用来分离 7 载有业务的光纤和波长。 随着网络趋于复杂, 在加上业务恢 复和断缆维修等方面的需要, 带有电切换功能的 BU 即电切换分路单元 ( Power Switching Branching Unit, PSBU )逐渐成为主流。 带有电切换功能 的 BU在出现断缆时, 可以通过对 BU内供电路径的切换, 恢复部分业务; 在需要对断缆进行维修时, 可将断缆侧进行接地处理, 以保证维修人员的安 全。
因此, 可能因为断缆故障或者维修断缆故障等原因, 需要对 BU内的供 电路径进行切换。 在现有技术中, 为了对供电路径进行切换, 需要进行复杂 的上下电配置, 即通过配置不同登陆点的上电电流大小、 方向和顺序, 实现 BU多个端口之间的供电路径重配。每当需要切换供电路径时,通过控制 BU 的各端口之间的电流, 改变 BU内继电器的开关状态, 从而实现供电路径的 改变。
此外, 在现有技术中, 由于流经 BU的电流波动较大, 可能使 BU内继 电器的开关状态改变, 导致 BU内供电路径的重配, 严重影响了业务的正常 传输。 发明内容
本发明实施例提供了分路单元、 切换供电路径的方法和光传输系统, 可 以避免 BU内供电路径受到电流波动的千扰而引起不必要的切换, 使得 BU 内供电路径在不需要进行切换时可以保持在当前状态,从而提高供电路径的 稳定性。
一方面,本发明实施例提供了一种分路单元,具有第一端口、第二端口、 第三端口和 SE端口, 所述分路单元包括供电模块、 控制模块和切换模块, 其中: 所述供电模块, 用于将输入所述分路单元的强电流转换为弱电流, 并 向所述控制模块输出所述弱电流; 所述控制模块, 用于当需要配置供电路径 时向所述切换模块输出电信号; 所述切换模块, 包括多个双稳态继电器, 其 中, 在所述第一端口、 所述第二端口和所述第三端口中任两个端口之间的供 电路径包含至少两个双稳态继电器, 在所述第一端口和所述 SE端口之间的 供电路径包含至少一个双稳态继电器, 在所述第二端口和所述 SE端口之间 的供电路径包含至少两个双稳态继电器, 在所述第三端口和所述 SE端口之 间的供电路径包含至少两个双稳态继电器, 对于每个双稳态继电器, 当所述 控制模块输出的电信号流经该双稳态继电器的线圏时, 该双稳态继电器的开 关状态发生改变。
另一方面, 本发明实施例提供了一种切换供电路径的方法, 包括: 从分 路单元的第一端口、 第二端口和第三端口之一接收远端控制设备发送的用于 配置所述分路单元内的供电路径的控制命令,所述分路单元还具有 SE端口; 将所述控制命令转换为电信号; 将所述电信号输入所述供电路径包含的双稳 态继电器的线圏中, 从而改变所述双稳态继电器的开关状态, 其中, 在所述 第一端口、 所述第二端口和所述第三端口中任两个端口之间的供电路径包含 至少两个双稳态继电器, 在所述第一端口和所述 SE端口之间的供电路径包 含至少一个双稳态继电器, 在所述第二端口和所述 SE端口之间的供电路径 包含至少两个双稳态继电器, 在所述第三端口和所述 SE端口之间的供电路 径包含至少两个双稳态继电器。
再一方面, 本发明实施例提供了一种光传输系统, 包括至少一个分路单 元。 每个分路单元具有第一端口、 第二端口、 第三端口和 SE端口, 每个分 路单元包括供电模块、 控制模块和切换模块, 其中: 所述供电模块, 用于将 输入所述分路单元的强电流转换为弱电流, 并向所述控制模块输出所述弱电 流;所述控制模块,用于当需要配置供电路径时向所述切换模块输出电信号; 所述切换模块, 包括多个双稳态继电器, 其中, 在所述第一端口、 所述第二 端口和所述第三端口中任两个端口之间的供电路径包含至少两个双稳态继 电器, 在所述第一端口和所述 SE端口之间的供电路径包含至少一个双稳态 继电器, 在所述第二端口和所述 SE端口之间的供电路径包含至少两个双稳 态继电器, 在所述第三端口和所述 SE端口之间的供电路径包含至少两个双 稳态继电器, 对于每个双稳态继电器, 当所述控制模块输出的电信号流经该 双稳态继电器的线圏时, 该双稳态继电器的开关状态发生改变。
基于上述技术方案, 通过使用双稳态继电器的开关控制供电路径的切 换, 使得 BU内供电路径避免受到电流波动的干扰而引起不必要的切换, 从 而使得 BU内供电路径在不需要进行切换时可以保持在当前状态, 提高了供 电路径的稳定性和可靠性。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的分路单元的结构框图。
图 2是根据本发明实施例的分路单元的实现例子。
图 3是根据本发明实施例的控制模块的第一实现例子。
图 4是根据本发明实施例的控制模块的第二实现例子。
图 5是根据本发明实施例的在不同状态下供电路径的示意图。
图 6 是根据本发明实施例的与供电路径对应的继电器开关配置的示意 图。
图 7是根据本发明实施例的切换供电路径的方法的流程图。
图 8是根据本发明实施例的光传输系统的示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不是 全部实施例。 基于本发明中的所述实施例, 本领域技术人 在没有做出创造 性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
首先, 结合图 1描述根据本发明实施例的分路单元 100。
分路单元 100具有第一端口、 第二端口、 第三端口和 SE ( Sea Earth, 海 洋地) 端口。
如果用 A端口表示第一端口, B端口表示第二端口, C端口表示第三端 口, 那么可以在 A、 B和 C端口中的两个端口之间形成电流通路, 剩下的一 个端口与 SE端口连接形成电流通路。 这样, 在分路单元 100中一共存在如 下三种供电路径状态: A端口 -B端口、 C端口 -SE端口; B端口 -C端口、 A 端口 -SE端口; A端口 -C端口、 B端口 -SE端口。
分路单元 100可以包括供电模块 110、 控制模块 120和切换模块 130。 供电模块 110可用于将输入分路单元 100的强电流转换为弱电流, 并向 1控 制模块 120输出弱电流。控制模块 120可用于当需要配置供电路径时向切换 模块 130输出电信号。 切换模块 130可包括多个双稳态继电器, 其中, 在第 一端口、 第二端口和第三端口中任两个端口之间的供电路径包含至少两个双 稳态继电器, 在第一端口和 SE端口之间的供电路径包含至少一个双稳态继 电器, 在第二端口和 SE端口之间的供电路径包含至少两个双稳态继电器, 在第三端口和 SE端口之间的供电路径包含至少两个双稳态继电器, 对于每 个双稳态继电器, 当控制模块 120输出的电信号流经该双稳态继电器的线圏 时, 该双稳态继电器的开关状态发生改变。
由于分路单元 100正常操作的需要以及光通信系统中线缆上电流传递的 需要, 将有强电流输入到分路单元 100。 供电模块 110基于输入到分路单元 100的强电流, 向控制模块 120输出弱电流, 以使控制模块 120工作。
在图 1的实线中传输电流, 在图 1的虚线中传输光信号。 例如, 当在切 换模块 130中提供的供电路径与 C端口有关时,即流经分路单元 100的强电 流需要从 C端口流入或流出 , 流经 C端口的电流流入或流出切换模块 130。
由于在切换模块 130中提供有供电路径, 因此供电模块 110从切换模块 130获得电流, 从而为控制模块 120的操作提供工作电压。 此外, 供电模块 110还可以提供防护功能, 以防止分路单元 100受到外界过大的电流影响, 如结合图 2所述。
控制模块 120可以在外部控制命令的触发下输出电信号, 也可以通过自 身检测出分路单元 100中电流传输的变化而输出电信号。 通过电信号, 控制 模块 120可以控制分路单元 100中供电路径的切换, 对供电路径进行重配。
根据本发明的一个实施例, 控制模块 120可用于从第一端口、 第二端口 和第三端口之一接收远端控制设备发送的光命令, 并将光命令转换为电信 号。
当需要重配分路单元 100内的供电路径时,位于岸上的远端控制设备可 以通过接入分路单元 100的光纤向分路单元 100发送光命令。
例如, 远端控制设备可以将携带有控制信息的光命令承载在特定波长上 通过光纤发送给分路单元 100中的控制模块 120, 该特定波长不同于携带业 务数据信息的波长,从而控制模块 120可以从光纤传输的光信号中区分出光 命令。
由于控制模块 120需要接收用于配置供电路径的光命令, 因此控制模块 120包括分路单元 100中的光传输通道即光纤。 控制模块 120从光纤中获取 光命令, 通过对光命令进行光电转换, 对从光命令上解调得到的配置供电路 径的信息进行解析, 可以得到控制供电路径切换的电信号, 通过电信号驱动 切换模块 130包含的双稳态继电器的线圏来对供电路径进行切换。 将光命令 转换为用于对供电路径进行切换的电信号的方式可以如现有技术那样实现, 在此不再赘述。
切换模块 130只有在收到控制模块 120发出的电信号时才进行供电路径 的切换。 此时, 当切换模块 130收到电信号时, 电信号流经双稳态继电器的 线圏, 从而改变双稳态继电器的开关状态, 由于开关状态的改变, 引起供电 路径的重配。
双稳态继电器是有两个稳定状态的继电器, 它有两个输入回路, 按规定 加入输入量时可以造成两种稳定状态。 对于双稳态继电器而言, 当双稳态继 电器的线圏中有特定方向的电流流经时, 双稳态继电器的开关状态发生相应 的变化; 当双稳态继电器的线圏中没有电流流经时, 双稳态继电器的开关状 态保持不变。 因此, 即便流经分路单元 100的电流波动较大, 出现了不必要 的外界干扰, 只要双稳态继电器的线圏没被驱动即控制模块 120没输出电信 号, 双稳态继电器的开关状态就可以保持不变, 从而供电路径的状态就会保 持不变, 避免出现不必要的切换。 其中, 控制模块 120可以在收到控制命令 时才输出电信号。
例如, 双稳态继电器可以是磁保持继电器。 磁保持继电器的常闭或常开 状态完全依赖永久磁钢的作用, 其开关状态的转换是靠一定宽度的脉冲电信 号触发而完成的。 在本发明的实施例中, 磁保持继电器可以是双刀双掷 ( Double Pole Double Throw, DPDT )磁保持继电器, 如下文结合图 2所示 例子进行的描述。
根据本发明实施例提供的分路单元, 通过使供电路径的切换受到双稳态 继电器的开关状态的控制, 而双稳态继电器的开关状态只在控制模块发出的 电信号的控制下才发生改变, 使得可以避免 BU内供电路径受到电流的千扰 而引起不必要的切换, 从而 BU内供电路径在不需要进行切换时可以保持在 当前状态, 由此可以提高供电路径的稳定性和可靠性。
此外, 由于使用双稳态继电器, 使得供电路径在不需要切换时可以保持 在当前状态, 这样, 可以避免非预期的供电路径切换产生的热量, 节省分路 单元的功耗, 减小分路单元出现故障的几率。
接下来, 结合图 2所示的分路单元 200的具体例子来详细描述本发明实 施例提供的分路单元。
图 2所示的分路单元 200是具有 A、 B、 C和 SE四个端口的 PSBU, — 共存在如下三种供电路径状态: A端口 -B端口、 C端口 -SE端口; B端口 -C 端口、 A端口 -SE端口; A端口 -C端口、 B端口 -SE端口。 这三种供电路径 状态的切换通过配置双稳态继电器 11、 12、 13、 14来完成。
分路单元 200的切换模块 31包括双稳态继电器 11、 12、 13、 14。 双稳 态继电器 11、 12、 13、 14都是 DPDT的高压继电器, 可以通过磁保持继电 器来实现。 每个双稳态继电器包括两个开关和线圏, 双稳态继电器 11 包括 开关 A1和 A2以及复位线圏 RLR A和置位线圏 RLS A, 双稳态继电器 12 包括开关 B1和 B2以及复位线圏 RLR B和置位线圏 RLS B, 双稳态继电器 13包括开关 C1和 C2以及复位线圏 RLR C和置位线圈 RLS C, 双稳态继电 器 14包括开关 D1以及复位线圏 RLR D和置位线圏 RLS D, 双稳态继电器 14的另一开关在图 2所示的例子中没有使用。
双稳态继电器 11至 14可以釆用如图 2所示的方式分别连接在四个端口 之间的供电路径上。 当双稳态继电器 13的开关 C1 闭合且双稳态继电器 11 的开关 A1闭合时, A端口与 B端口之间的供电路径导通; 当双稳态继电器 13的开关 C1闭合且双稳态继电器 12的 B1开关闭合时, A端口与 C端口之 间的供电路径导通; 当双稳态继电器 14的 D1开关闭合时, A端口与 SE端 口之间的供电路径导通; 当双稳态继电器 12的 B2开关闭合且双稳态继电器 11的 A2开关闭合时, B端口与 C端口之间的供电路径导通; 当双稳态继电 器 12的 B2开关闭合且双稳态继电器 13的 C2开关闭合时, B端口与 SE端 口之间的供电路径导通;当双稳态继电器 11的 A2开关闭合且双稳态继电器 13的 C2开关闭合时, C端口与 SE端口之间的供电路径导通。 其中,如下情况体现了 A端口 -B端口、 C端口 -SE端口的供电路径状态: 当双稳态继电器 13的开关 C1闭合且双稳态继电器 11的开关 A1闭合时, A 端口与 B端口之间的供电路径导通; 当双稳态继电器 11 的 A2开关闭合且 双稳态继电器 13的 C2开关闭合时, C端口与 SE端口之间的供电路径导通。
如下情况体现了 B端口 -C端口、 A端口 -SE端口的供电路径状态: 当双 稳态继电器 12的 B2开关闭合且双稳态继电器 11的 A2开关闭合时, B端口 与 C端口之间的供电路径导通; 当双稳态继电器 14的 D1开关闭合时, A 端口与 SE端口之间的供电路径导通。
如下情况体现了 A端口 -C端口、 B端口 -SE端口的供电路径状态: 当双 稳态继电器 13的开关 C1闭合且双稳态继电器 12的 B1开关闭合时, A端 口与 C端口之间的供电路径导通; 当双稳态继电器 12的 B2开关闭合且双 稳态继电器 13的 C2开关闭合时, B端口与 SE端口之间的供电路径导通。
控制模块 9发出的电信号流入双稳态继电器的线圏中, 从而控制双稳态 继电器的开关状态。 只有当控制模块 9接收到控制命令时, 控制模块 9才会 输出电信号, 驱动双稳态继电器 11至 14的线圏, 从而使双稳态继电器 11 至 14的开关状态发生改变, 这样, 供电路径的三个正常工作状态之间可以 实现切换。 控制模块 9接收到的命令可以来自外界输入的光命令或电命令, 也可以来自内部发出的命令。
各双稳态继电器的置位线圏 RLS A至 RLS D由控制模块 9中的第一控 制单元 91控制,各双稳态继电器的复位线圏 RLR A至 RLR D由控制模块 9 中的第二控制单元 92控制。
第一控制单元 91和第二控制单元 92都可以通过控制流经相应线圈中的 电流来控制双稳态继电器的开关状态。 根据本发明的实施例, 第一控制单元 91和第二控制单元 92在每次需要配置双稳态继电器的开关状态时, 只有其 中之一进行工作,这样,第一控制单元 91和第二控制单元 92可以相互备份, 增加控制模块 9的可靠性。
第一控制单元 91 可用于从第一端口、 第二端口和第三端口之一接收远 端控制设备发送的光命令; 将光命令转换为电信号; 将电信号输出到双稳态 继电器的置位线圈中。 第二控制单 92可用于从第一端口、 第二端口和第三 端口之一接收远端控制设备发送的光命令; 将光命令转换为电信号; 将电信 号输出到双稳态继电器的复位线圏中。 通过利用光命令来控制供电路径的切换, 相比于复杂的上下电配置而 言, 实现筒便。
第一控制单元 91和第二控制单元 92的具体实现可以参照图 3和图 4所 示的例子。 首先结合图 3描述当控制模块 9包括第一控制单元 91和第二控 制单元 92时的具体实现的第一例子。
第一控制模块 91可以包括光电转换器 911和光滤波器 912、 913、 914。 虽然在图 3中示出了三个光滤波器, 但是第一控制模块 91也可以只有一个 光滤波器, 还可以有两个或多于三个的光滤波器, 这可以取决于从哪几根光 纤中输入光命令, 在有光命令输入的光纤中安装光滤波器。 每个光滤波器可 以是包含分光器件的滤波器, 将携带命令信息的光通过分光器件滤出。 每个 光滤波器可以从相应光纤中提取出用于配置供电路径的光命令, 例如可以将 光命令承载在具有特定波长的光信号中传输。
光滤波器 912从光纤 1接收光命令, 光滤波器 913也从光纤 1接收光命 令,但是光滤波器 912工作在光信号从左到右传输的情况下,而光滤波器 913 工作在光信号从右到左传输的情况下,因此,基于光纤中光传输方向的不同, 光滤波器 912和光滤波器 913之一进行滤波操作。 光滤波器 914从光纤 3接 收光命令。 光纤 1和光纤 3可以是从除了 SE端口之外的一个端口接入分路 单元 200的光纤, 也可以是从除了 SE端口之外的两个端口分别接入分路单 元 200的光纤。
光滤波器 912、 913或 914从沿着光纤传输的光信号中提取出光命令之 后, 将提取出的光命令输出到光电转换器 911。 光电转换器 911可以对光命 令进行光电转换, 对光命令进行解调和分析, 这样, 可以将光命令转换为电 信号, 并将电信号送入双稳态继电器的置位线圏中, 从而可以控制双稳态继 电器的开关状态即闭合与断开状态。
第二控制模块 92可以包括光电转换器 921和光滤波器 922、 923、 924。 虽然在图 3中示出了三个光滤波器, 但是第二控制模块 92也可以只有一个 光滤波器, 还可以有两个或多于三个的光滤波器, 这可以取决于从哪几根光 纤中输入光命令, 在有光命令输入的光纤中安装光滤波器。 每个光滤波器可 以是包含分光器件的滤波器, 将携带命令信息的光通过分光器件滤出。 每个 光滤波器可以从相应光纤中提取出用于配置供电路径的光命令, 例如可以将 光命令承载在具有特定波长的光信号中传输。 光滤波器 922从光纤 2接收光命令, 光滤波器 923也从光纤 2接收光命 令,但是光滤波器 922工作在光信号从左到右传输的情况下,而光滤波器 923 工作在光信号从右到左传输的情况下,因此,基于光纤中光传输方向的不同, 光滤波器 922和光滤波器 923之一进行滤波操作。 光滤波器 924从光纤 4接 收光命令。 光纤 2和光纤 4可以是从除了 SE端口之外的一个端口接入分路 单元 200的光纤, 也可以是从除了 SE端口之外的两个端口分别接入分路单 元 200的光纤。
光滤波器 922、 923或 924从沿着光纤传输的光信号中提取出光命令之 后, 将提取出的光命令输出到光电转换器 921。 光电转换器 921可以对光命 令进行光电转换, 对光命令进行解调和分析, 这样, 可以将光命令转换为电 信号, 并将电信号送入双稳态继电器的复位线圏中, 从而可以控制双稳态继 电器的开关状态即闭合与端开状态。
从图 3可以看到, 第一控制单元 91和第二控制单元 92接收光命令的路 径完全分离, 因此第一控制单元 91和第二控制单元 92不会同时接收到光命 令, 置位线圏和复位线圏中不会同时有电流流过, 实现了控制模块 9中控制 功能的备份。
接下来, 结合图 4描述当控制模块 9包括第一控制单元 91和第二控制 单元 92 时的具体实现的第二例子。 第二例子与第一例子的区别在于, 第一 控制单元 91和第二控制单元 92接收光命令的路径重合, 需要通过在光命令 中携带第一控制单元 91或第二控制单元 92的标识来区分由谁进行操作。
在第二例子中, 第一控制单元 91 包括光滤波器 931、 932、 933和光耦 合器 934、 935、 936 以及光电转换器 918。 第二控制单元 92包括光滤波器 931、 932、 933和光耦合器 934、 935、 936以及光电转换器 928, 其中光滤 波器和光耦合器一一对应。 从图 4可以看到, 第一控制单元 91和第二控制 单元 92共用相同的光滤波器和光耦合器, 但使用不同的光电转换器。 虽然 在图 4中示出了三对光滤波器和光耦合器,但是控制模块 9也可以只有一对 光滤波器和光耦合器, 还可以有多对光滤波器和光耦合器, 这可以取决于从 哪几根光纤中输入光命令, 在有光命令输入的光纤中安装光滤波器及相应的 光耦合器。 每个光滤波器可以是包含分光器件的滤波器, 将携带命令信息的 光通过分光器件滤出。
光耦合器 934、 935和 936中的每一个可以是 3dB的耦合器, 将相应光 滤、波器滤出的含有光命令的光分成等光功率的两部分, 分别输出到光电转换 器 918和 928中。 可以通过在光命令中设置标识来指定由光电转换器 918还 是由光电转换器 928工作。 光命令中设置的标识可以是第一控制单元 91或 第二控制单元 92的标识, 也可以是光电转换器 918或光电转换器 928的标 识。 光电转换器 918和光电转换器 928通过解析光命令, 可以根据标识确定 自己是否工作。
第一控制单元 91的光电转换器 918可用于将光命令转换为电信号, 将 电信号输出到双稳态继电器的置位线圏中。 第二控制单元 92的光电转换器 928可用于将光命令转换为电信号, 将电信号输出到双稳态继电器的复位线 圏中。
上述的光电转换器 911、 912、 918或 928接收到的光命令中包含双稳态 继电器的动作信息和顺序,如下面结合图 6描述的切换供电路径所需的操作。 光电转换器可以对光命令进行解调, 将解调信息交给在光电转换器中包含的 解析器进行解析, 从而解析出双稳态继电器的动作信息, 将产生相应动作的 电信号输入双稳态继电器的线圏中, 驱动双稳态继电器完成预定动作。
上面描述了控制模块 9的两个具体例子, 下面返回图 2继续描述分路单 元 200的其他组成部分。
分路单元 200的供电模块 32包括瞬态抑制部件 1、 电阻 2、整流电路 3、 二极管 4、 5、 6以及线圏 7和开关 8构成 DPDT的单稳态继电器。
由于分路单元通常用于长距离传输系统 , 而直流长距离传输系统常采用 单端供电方式, 分路单元的供电通常工作在恒流的线路之中。 由于系统配电 通常高达几千至上万伏, 在分路单元 200附近突然的短路可能造成较大的浪 涌电流产生, 从而可能对分路单元 200的正常工作造成较大影响。 为此, 如 图 2所示, 设置了瞬态抑制部件 1和电阻 2作为防护电路。
瞬态抑制部件 1可以是空气放电管、 瞬态电压抑制器( Transient Voltage
Suppressor, TVS ) 等, 用来吸收浪涌产生时的能量, 避免浪涌进入内部电 路损伤控制模块 9。 电阻 2还可以是电感线圏, 可以增大与瞬态抑制部件 1 并联的部分的瞬态阻抗, 从而让防护电路吸收过浪涌。
整流电路 3可以由二极管构成, 整流电路 3的存在可以使分路单元 200 支持正向或负向两方向的供电。
二极管 4、 5、 6为稳压二极管, 可以为控制模块 9、 置位线圏、 复位线 圏提供稳定的电压。稳压二极管 4提供来自 B端口的供电输入, 稳压二极管 5提供来自 C端口的供电输入, 稳压二极管 6与控制模块 9并联, 控制模块 9包含的第一控制单元 91和第二控制单元 92分别驱动双稳态继电器的置位 线圏和复位线圏。
线圏 7和开关 8构成 DPDT的单稳态继电器, 该继电器是高压继电器, 其控制线圏 7与稳压二极管 4并联。 当 B端口有电流输入时, 线圏 7得电, 开关 8工作在闭合状态, 即继电器的 COM端与 NO端相连, 稳压二极管 6 与控制模块 9并联, 由 B端口向控制模块 9供电, 控制模块 9驱动双稳态继 电器的置位线圏或复位线圏。 当 B端口没有电流通过时, 单稳态继电器的线 圏 7失电, 继开关 8工作在断开状态, 即继电器的 COM端与 NC端相连, 此时稳压二极管 6、 控制模块 9与稳压二极管 5并联, 由 A端口向控制模块 9供电, 供电模块 9驱动双稳态继电器的置位线圏或复位线圏。
接下来, 参考图 5描述图 2所示的分路单元 200的三种供电路径状态。 如图 5中的 (a)、 (b) 和(c) 所示, (a) 中的供电路径状态为 A端口 -B端口、 C端口 -SE端口; (b) 中的供电路径状态为 A端口 -SE端口、 B端 口 -C端口; (c) 中的供电路径状态为 A端口 -C端口、 B端口 -SE端口。
在三种状态之间进行切换时, 首先需要切换到 (d), 在 )中 A端口、 B端口和 C端口都与 SE端口相连, 然后再切换到目标状态。 例如, 当需要 将供电路径状态从 )切换到 (c) 时, 则首先将供电路径状态从(a)切 换到 (d), 再从(d)切换到 (c)。
在图 6 中, 分别在 (a)、 (b)和 (c) 中示出了三种供电路径状态下的 继电器开关配置。 其中, (a)对应的供电路径为 A端口 -B端口以及 C端口 -SE端口; (b)对应的供电路径为 A端口 -SE端口以及 B端口 -C端口; ( c ) 对应的供电路径为 A端口 -C端口以及 B端口 -SE端口。
当将 ) 中的状态切换为 (c) 中的状态时, 先闭合双稳态继电器 12 的 B1开关和 B2开关, 进入三端接地的状态, 即图 5的 (d) 中的状态。 再 断开双稳态继电器 11的 A1开关和 A2开关, 即进入(c) 中的状态。
当将(a) 中的状态切换到 (b) 中的状态时, 先闭合双稳态继电器 12 的 B1开关和 B2开关, 再闭合双稳态继电器 14的 D1开关, 进入三端接地 的状态。 然后, 断开双稳态继电器 13的 C1开关和 C2开关, 即进入 (b) 中的状态。 当将 (b ) 中的状态切换到 (c ) 中的状态时, 先闭合双稳态继电器 13 的 C1开关和 C2开关, 进入三端接地的状态。 然后, 断开默稳态继电器 14 的 D1开关, 再断开双稳态继电器 11的 A1开关和 A2开关, 即进入(c ) 中 的状态。
当将 (b ) 中的状态切换到 (a ) 中的状态时, 先闭合双稳态继电器 13 的 C1开关和 C2开关, 进入三端接地的状态。 然后, 断开双稳态继电器 14 的 D1开关, 再断开双稳态继电器 12的 B1开关和 B2开关, 即进入(a ) 中 的状态。
当将(c ) 中的状态切换到 ) 中的状态时, 闭合双稳态继电器 11 的 A1开关和 A2开关, 进入三端接地的状态。 然后, 断开双稳态继电器 12的 B1开关和 B2开关, 即进入(a ) 中的状态。
当将(c ) 中的状态切换到 (b ) 中的状态时, 闭合双稳态继电器 11 的 A1开关和 A2开关, 进入三端接地的状态。 然后, 闭合双稳态继电器 14的 D1开关, 再断开双稳态继电器 13的 C1开关和 C2开关, 即进入(b ) 中的 状态。
图 2所示的分路单元 200的内部具体实现只是根据本发明的发明构思的 一个例子, 本领域技术人员在本说明书的教导之下, 还可以想到其他实现分 路单元的例子。 在本发明实施例提供的分路单元中, 通过使供电路径的切换 受到双稳态继电器的开关状态的控制, 而双稳态继电器的开关状态只在控制 模块发出的电信号的控制下才发生改变, 使得可以避免 BU内供电路径受到 电流的干扰而引起不必要的切换, 从而 BU内供电路径在不需要进行切换时 可以保持在当前状态, 可以提高供电路径的稳定性和可靠性。
接下来, 结合图 7描述根据本发明实施例的切换供电路径的方法 700。 如图 7所示, 方法 700包括: 在 S710中, 从分路单元的第一端口、 第 二端口和第三端口之一接收远端控制设备发送的用于配置分路单元内的供 电路径的控制命令, 分路单元还具有 SE端口; 在 S720中, 将控制命令转换 为电信号; 在 S730 中, 将电信号输入供电路径包含的双稳态继电器的线圏 中, 从而改变默稳态继电器的开关状态, 其中, 在第一端口、 第二端口和第 三端口中任两个端口之间的供电路径包含至少两个双稳态继电器, 在第一端 口和 SE端口之间的供电路径包含至少一个双稳态继电器,在第二端口和 SE 端口之间的供电路径包含至少两个双稳态继电器, 在第三端口和 SE端口之 间的供电路径包含至少两个双稳态继电器。
例如, 方法 700可以由分路单元 100中的控制模块 120执行。 控制模块 120可以从光纤或电缆接收岸上的远程控制设备发送的控制命令, 在控制命 令中包含有双稳态继电器的动作信息和顺序, 可以通过将控制命令转换为电 信号来使得双稳态继电器的开关状态执行相应的动作,从而实现供电路径的 切换。
根据本发明的一个实施例, 控制命令可以是光命令。 通过将光命令承载 在预定波长上发送给分路单元以切换供电路径,相比于通过复杂的上下电配 置来切换供电路径而言, 实现简便。
控制模块 120的具体操作可以参考上文中的具体描述, 为了避免重复, 在此不再赘述。
根据本发明实施例提供的切换供电路径的方法, 通过向分路单元发送控 制命令来控制双稳态继电器的开关状态, 并且双稳态继电器的开关状态只在 基于控制命令的电信号的控制下发生改变, 从而可以避免 BU内供电路径受 到电流的干扰而引起不必要的切换, 这样, BU 内供电路径在不需要进行切 换时可以保持在当前状态, 提高了供电路径的稳定性和可靠性。
接下来, 参考图 8描述根据本发明实施例的光传输系统 800。
光传输系统 800用于传递光信号。 在光传输系统 800中包括至少一个分 路单元。 在图 8中示出了三个分路单元, 但这只是示意性的, 并不对光传输 系统 800包括的分路单元的具体个数构成限制。
光传输系统 800包括的分路单元可以是图 1所示的分路单元 100。 分路 单元 100的具体实现可以如图 2所示, 分路单元中的控制模块的具体实现可 以如图 3或图 4所示。
根据本发明实施例提供的光传输系统, 通过使用双稳态继电器的开关控 制供电路径的切换, 使得 BU内供电路径避免受到电流波动的干扰而引起不 必要的切换, 从而使得 BU内供电路径在不需要进行切换时可以保持在当前 状态, 提高了供电路径的稳定性和可靠性。
本领域技术人员可以意识到, 结合本文中所公开的实施例中描述的各方 法步骤和单元, 能够以电子硬件、 计算机软件或者二者的结合来实现, 为了 清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一般性地描 述了各实施例的步骤及组成。 这些功能究竟以硬件还是软件方式来执行, 取 决于技术方案的特定应用和设计约束条件。 本领域技术人 可以对每个特定 的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发 明的范围。
结合本文中所公开的实施例描述的方法步骤可以用硬件、处理器执行的 软件程序、 或者二者的结合来实施。 软件程序可以置于随机存取存储器
( RAM )、 内存、 只读存储器 (ROM )、 电可编程 ROM、 电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM 或技术领域内所公知的任意 其它形式的存储介质中。
尽管已示出和描述了本发明的一些实施例, 但本领域技术人员应该理 解, 在不脱离本发明原理的情况下, 可对这些实施例进行各种修改, 这样的 修改应落入本发明的范围内。

Claims

权利要求
1. 一种分路单元, 具有第一端口、 第二端口、 第三端口和 SE端口, 其 特征在于, 所述分路单元包括供电模块、 控制模块和切换模块, 其中: 所述供电模块, 用于将输入所述分路单元的强电流转换为弱电流, 并向 所述控制模块输出所述弱电流;
所述控制模块, 用于当需要配置供电路径时向所述切换模块输出电信 号;
所述切换模块, 包括多个双稳态继电器, 其中, 在所述第一端口、 所述 第二端口和所述第三端口中任两个端口之间的供电路径包含至少两个双稳 态继电器, 在所述第一端口和所述 SE端口之间的供电路径包含至少一个双 稳态继电器, 在所述第二端口和所述 SE端口之间的供电路径包含至少两个 双稳态继电器, 在所述第三端口和所述 SE端口之间的供电路径包含至少两 个双稳态继电器, 对于每个双稳态继电器, 当所述控制模块输出的电信号流 经该双稳态继电器的线圏时, 该双稳态继电器的开关状态发生改变。
2. 根据权利要求 1所述的分路单元, 其特征在于, 所述切换模块包括 第一双稳态继电器和第三双稳态继电器, 其中:
所述第一端口与所述第二端口之间的供电路径包含所述第三双稳态继 电器和所述第一双稳态继电器, 当所述第三双稳态继电器的第一开关闭合且 所述第一双稳态继电器的第一开关闭合时, 该供电路径导通;
所述第三端口与所述 SE端口之间的供电路径包含所述第一双稳态继电 器和所述第三双稳态继电器, 当所述第一双稳态继电器的第二开关闭合且所 述第三双稳态继电器的第二开关闭合时, 该供电路径导通。
3. 根据权利要求 2所述的分路单元, 其特征在于, 所述切换模块还包 括第二双稳态继电器和第四双稳态继电器, 其中:
所述第二端口与所述第三端口之间的供电路径包含所述第二双稳态继 电器和所述第一双稳态继电器, 当所述第二双稳态继电器的第二开关闭合且 所述第一双稳态继电器的第二开关闭合时, 该供电路径导通;
所述第一端口与所述 SE端口之间的供电路径包含所述第四双稳态继电 器, 当所述第四双稳态继电器的第一开关闭合时, 该供电路径导通。
4. 根据权利要求 3所述的分路单元, 其特征在于, 所述第一端口与所述第三端口之间的供电路径包含所述第三双稳态继 电器和所述第二默稳态继电器, 当所述第三双稳态继电器的第一开关闭合且 所述第二双稳态继电器的第一开关闭合时, 该供电路径导通;
所述第二端口与所述 SE端口之间的供电路径包含所述第二双稳态继电 器和所述第三默稳态继电器, 当所述第二双稳态继电器的第二开关闭合且所 述第三双稳态继电器的第二开关闭合时, 该供电路径导通。
5. 根据权利要求 1所述的分路单元, 其特征在于, 所述控制模块还用 于从所述第一端口、所述第二端口和所述第三端口之一接收远端控制设备发 送的光命令, 并将所述光命令转换为所述电信号。
6. 根据权利要求 5所述的分路单元, 其特征在于, 所述控制模块包括 第一控制单元和第二控制单元, 其中:
所述第一控制单元, 用于从所述第一端口、 所述第二端口和所述第三端 口之一接收所述远端控制设备发送的光命令; 将所述光命令转换为所述电信 号; 将所述电信号输出到所述双稳态继电器的置位线圏中;
所述第二控制单元, 用于从所述第一端口、 所述第二端口和所述第三端 口之一接收所述远端控制设备发送的光命令; 将所述光命令转换为所述电信 号; 将所述电信号输出到所述双稳态继电器的复位线圏中。
7. 根据权利要求 6所述的分路单元, 其特征在于, 所述第一控制单元 包括第一光滤波器和第一光电转换器, 所述第二控制单元包括第二光滤波器 和第二光电转换器, 其中:
所述第一光滤波器, 用于从所述第一端口、 所述第二端口和所述第三端 口之一输入的光信号中提取所述光命令, 并向所述第一光电转换器输出所述 光命令;
所述第一光电转换器, 用于将所述光命令转换为所述电信号, 并将所述 电信号输出到所述汉稳态继电器的置位线圏中;
所述第二光滤波器, 用于从所述第一端口、 所述第二端口和所述第三端 口之一输入的光信号中提取所述光命令, 并向所述第二光电转换器输出所述 光命令;
所述第二光电转换器, 用于将所述光命令转换为所述电信号, 并将所述 电信号输出到所述默稳态继电器的复位线圏中。
8. 根据权利要求 6所述的分路单元, 其特征在于, 所述第一控制单元 和所述第二控制单元包括相同的光滤波器和光耦合器以及不同的光电转换 器, 其中:
所述光滤波器, 用于从所述第一端口、 所述第二端口和所述第三端口之 一输入的光信号中提取所述光命令, 并向所述光耦合器输出所述光命令; 所述光耦合器, 用于将所述光命令分别输出到所述第一控制单元的光电 转换器和所述第二控制单元的光电转换器;
所述第一控制单元的光电转换器, 用于将所述光命令转换为所述电信 号, 将所述电信号输出到所述双稳态继电器的置位线圏中;
所述第二控制单元的光电转换器, 用于将所述光命令转换为所述电信 号, 将所述电信号输出到所述双稳态继电器的复位线圏中。
9. 根据权利要求 8所述的分路单元, 其特征在于, 基于所述光命令指 示的进行操作的光电转换器, 所述第一控制单元的光电转换器和所述第二控 制单元的光电转换器之一进行操作。
10. 根据权利要求 1所述的分路单元, 其特征在于, 所述供电模块包括 单稳态继电器, 所述单稳态继电器在不同开关状态下都使所述弱电流输入到 所述控制模块。
11. 一种切换供电路径的方法, 其特征在于, 包括:
从分路单元的第一端口、第二端口和第三端口之一接收远端控制设备发 送的用于配置所述分路单元内的供电路径的控制命令, 所述分路单元还具有 SE端口;
将所述控制命令转换为电信号;
将所述电信号输入所述供电路径包含的默稳态继电器的线圏中,从而改 变所述双稳态继电器的开关状态, 其中, 在所述第一端口、 所述第二端口和 所述第三端口中任两个端口之间的供电路径包含至少两个双稳态继电器, 在 所述第一端口和所述 SE端口之间的供电路径包含至少一个默稳态继电器, 在所述第二端口和所述 SE 端口之间的供电路径包含至少两个双稳态继电 器, 在所述第三端口和所述 SE端口之间的供电路径包含至少两个双稳态继 电器。
12. 一种光传输系统, 其特征在于, 包括:
根据权利要求 1至 10中任一项所述的至少一个分路单元。
PCT/CN2011/077064 2011-07-12 2011-07-12 分路单元、切换供电路径的方法和光传输系统 WO2013007017A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180004695.5A CN102714547B (zh) 2011-07-12 2011-07-12 分路单元、切换供电路径的方法和光传输系统
PCT/CN2011/077064 WO2013007017A1 (zh) 2011-07-12 2011-07-12 分路单元、切换供电路径的方法和光传输系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077064 WO2013007017A1 (zh) 2011-07-12 2011-07-12 分路单元、切换供电路径的方法和光传输系统

Publications (1)

Publication Number Publication Date
WO2013007017A1 true WO2013007017A1 (zh) 2013-01-17

Family

ID=46903945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077064 WO2013007017A1 (zh) 2011-07-12 2011-07-12 分路单元、切换供电路径的方法和光传输系统

Country Status (2)

Country Link
CN (1) CN102714547B (zh)
WO (1) WO2013007017A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065385A1 (ja) * 2017-09-29 2019-04-04 日本電気株式会社 海底分岐装置及び海底分岐方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755734B1 (en) * 2016-06-09 2017-09-05 Google Inc. Subsea optical communication network
CN115296727A (zh) * 2022-07-06 2022-11-04 中航宝胜海洋工程电缆有限公司 一种可靠远程控制的分支单元

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287625A (en) * 1994-03-05 1995-09-20 Stc Submarine Systems Ltd Branching unit for underwater telecommunications systems
CN1170143A (zh) * 1996-07-09 1998-01-14 富士通株式会社 光学分路与插入装置及光学传输系统
EP0917300A2 (en) * 1997-10-24 1999-05-19 Alcatel A branching unit for an underwater communications system
CN1882862A (zh) * 2003-10-16 2006-12-20 雷德斯凯萨布斯有限公司 用于海底光传输系统的海底分路单元
CN101957476A (zh) * 2009-07-21 2011-01-26 华为海洋网络有限公司 光分插复用器水下光分路器及其对应的光传输方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2287625A (en) * 1994-03-05 1995-09-20 Stc Submarine Systems Ltd Branching unit for underwater telecommunications systems
CN1170143A (zh) * 1996-07-09 1998-01-14 富士通株式会社 光学分路与插入装置及光学传输系统
EP0917300A2 (en) * 1997-10-24 1999-05-19 Alcatel A branching unit for an underwater communications system
CN1882862A (zh) * 2003-10-16 2006-12-20 雷德斯凯萨布斯有限公司 用于海底光传输系统的海底分路单元
CN101957476A (zh) * 2009-07-21 2011-01-26 华为海洋网络有限公司 光分插复用器水下光分路器及其对应的光传输方法和系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065385A1 (ja) * 2017-09-29 2019-04-04 日本電気株式会社 海底分岐装置及び海底分岐方法
JPWO2019065385A1 (ja) * 2017-09-29 2020-07-02 日本電気株式会社 海底分岐装置及び海底分岐方法
US20200257251A1 (en) * 2017-09-29 2020-08-13 Nec Corporation Submarine branching unit and submarine branching method
US11556096B2 (en) 2017-09-29 2023-01-17 Nec Corporation Submarine branching unit and submarine branching method

Also Published As

Publication number Publication date
CN102714547A (zh) 2012-10-03
CN102714547B (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
JP7134992B2 (ja) 給電分岐ユニット(pfbu)の多ノード・ネットワークを使用して適応型電力分配を提供するための技法、およびそれを使用する海底光通信システム
US20040120259A1 (en) Passive network tap device
EP2805214B1 (en) Device and method for powering ethernet midspan device and endspan device
WO2010083397A1 (en) Intelligent fast switch-over network tap system and methods
EP3054623B1 (en) Opto-electric hybrid access device initialization method and apparatus
CN102801467A (zh) 一种基于onu实现双光纤保护倒换的装置及方法
CN103166313A (zh) 一种直流固态功率控制器
WO2013007017A1 (zh) 分路单元、切换供电路径的方法和光传输系统
CN111919402A (zh) 一种光通信装置、光线路终端和光通信的处理方法
CN104993863A (zh) 网络通讯设备测试用的光模块
US9998213B2 (en) Network tap with battery-assisted and programmable failover
CN106341180A (zh) 一种光模块及光模块控制方法、装置
RU2536370C2 (ru) Сеть и блок расширения, а также способ функционирования сети
CN202978399U (zh) 一种分支单元
CN103490907A (zh) Poe电源接收方法和poe电源接收设备
EP2811606B1 (en) System for a circuit breaker control
CN104158670A (zh) 千兆以太网旁路器
CN102265640B (zh) 光线路传输保护系统和方法
CN207995092U (zh) 实现光口冗余链路保护功能的光通信设备
CN104617654B (zh) 一种网络旁路装置及其状态设置方法
CN104135448A (zh) 包含多类型以太网传输接口的交换机
EP2929676B1 (en) A network device mounting rail for connecting removable modules
CN105282054A (zh) 一种抗干扰加固型以太网交换机
CN105356934B (zh) 一种高速电子开关型光缆保护仪的信号选择方式
EP2990893B1 (en) Power supply returning apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004695.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869251

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869251

Country of ref document: EP

Kind code of ref document: A1