WO2013005222A2 - A system and a process to produce low ash clean coal from high ash coal - Google Patents

A system and a process to produce low ash clean coal from high ash coal Download PDF

Info

Publication number
WO2013005222A2
WO2013005222A2 PCT/IN2011/000593 IN2011000593W WO2013005222A2 WO 2013005222 A2 WO2013005222 A2 WO 2013005222A2 IN 2011000593 W IN2011000593 W IN 2011000593W WO 2013005222 A2 WO2013005222 A2 WO 2013005222A2
Authority
WO
WIPO (PCT)
Prior art keywords
coal
ash content
storage tank
slurry
thermic fluid
Prior art date
Application number
PCT/IN2011/000593
Other languages
French (fr)
Other versions
WO2013005222A3 (en
Inventor
Kr. Chandaliya Vinod
Pani Biswas Pinak
Banerjee Pk
Original Assignee
Tata Steel Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tata Steel Limited filed Critical Tata Steel Limited
Priority to US14/130,818 priority Critical patent/US20140245659A1/en
Priority to CN201180072802.8A priority patent/CN103797099B/en
Priority to NZ620692A priority patent/NZ620692A/en
Priority to AU2011372675A priority patent/AU2011372675B2/en
Priority to JP2014518068A priority patent/JP5840292B2/en
Publication of WO2013005222A2 publication Critical patent/WO2013005222A2/en
Publication of WO2013005222A3 publication Critical patent/WO2013005222A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/04Raw material of mineral origin to be used; Pretreatment thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/326Coal-water suspensions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives

Definitions

  • the present invention generally relates to cleaning of coal with mineral matter finely disseminated in the organic-mass. More particularly, the invention relates to a system and a process to produce low ash clean coal from high ash coal.
  • Main advantages of this process are i) ease of recovery of solvent in the main process stream, ii) solvolytic efficiency of recovered solvents as that of fresh solvent, iii) 95-98% recovery of the solvent, iv) improved coking properties of clean coal, and v) availability of industrial organic solvents.
  • the operating cost of this process is high because of high cost of solvents and energy requirement in the process.
  • the inventors made an effort to make this process techno-economic initially through lab-scale process by improving the yield upto 50-60% with less than 8% ash content, including reduction in the cost of solvent recovery.
  • coal, solvent N-Methyl-2- Pyrrolidone, NMP
  • co-solvent Ethylenediamine, EDA
  • the coal slurry is extracted in a known manner which includes coal-solvent mixture.
  • the mixture is separated in a separation unit to produce a coarser fraction and a finer fraction.
  • the finer fraction is fed to an evaporator unit to allow 70 to 80% off solvent recovery.
  • coal-solvent mixture is then flushed in a precipitation tank to precipitate the coal.
  • water as an anti-solvent is used.
  • Water separates the solvent from coal and a water- solvent mixture is obtained, which is fed to a distillation unit to separate solvent and anti- solvent.
  • the precipitated coal is separated in a filter.
  • coal, solvent and co- solvent are taken in a pre defined ratio.
  • Coal to solvent ratio is varied from 1:6 to 1:17 (wt/vol, g mL, coal to solvent ratios being wtvol, and solvent to co-solvent ratio are vol/vol).
  • Coal to co-solvent as well as co-solvent ratio is maintained as 1 :1 (g/mL).
  • Another object of this invention is to propose a single reactor-based system to produce low ash clean coal from high ash coal.
  • a further object of this invention is to propose a validation process to establish the efficiency of the inventive system and process to produce low ash clean coal from high ash coal, as compared to the output from the laboratory scale unit.
  • a process flow diagram for an industrial plant with a single reactor is proposed.
  • the important equipments constituting the inventive system are a thermic fluid heater, a reactor, a heat exchanger, a thermic fluid pump, and an inert gas (N 2 ) cylinder.
  • Some of the associated equipments or vessels comprise a water storage tank, a diesel storage tank, a thermic fluid storage tank, and an expansion tank.
  • a reflux condenser (12) is used to maintain pressure at a specified condition.
  • the system also consists of about eighteen gate and ball valves, two pressure gauges, at least one temperature gauge, and four temperature transmitters,
  • Solvents and coal are loaded into the reactor (10) with the help of opening on the reactor top.
  • Sampling system has been provided at the bottom of the reactor (10) to draw the sample as and when required.
  • an industrial process for treating coal to lower ash content in a system comprising a first water storage tank, a second water storage tank, a diesel storage thank, a thermic fluid heater, a thermic fluid storage tank, a thermic fluid pump, a heat exchanger, a thermic fluid expansion tank, a N 2 gas cylinder, a reactor, a water pump, and a reflux condenser, the method comprising (i) forming a slurry of coal fines in a N-Methyl-2-pyrrolidone (NMP) with Ethylenediamine (EDA), the NMP and EDA ratio varying between 5:1 to 25:1 solution, said slurry containing about 6 to 18 ml of solution per g of coal, (ii) maintaining said slurry in the reactor at a temperature range of 150°C to 220°C and at a pressure range of 1 to 4 gauge (kg/cm 2 ) for a period of about
  • NMP N-Methyl
  • Figure 1 - shows a block diagram of a system to produce low-ash clean coal from high- ash coal.
  • the inventive system comprises a first water storage tank (1), a second water storage tank (2), a diesel storage tank (3), a thermic fluid heater (4), a thermic fluid storage tank (5), a thermic fluid pump (6), a heat exchanger (7), a toxic fluid expansion tank (8)m a N 2 gas cylinder (9), a reactor (10), a water pump (11), and a reflux condenser (12).
  • Coal and solvent in a predetermined ratio are loaded into the reactor (10).
  • Nitrogen gas is supplied through the N 2 cylinder (9) for maintaining inert environment.
  • Diesel is supplied to a burner from the diesel storage tank (3).
  • Thermic fluid is supplied into the system from the thermic fluid storage tank (5).
  • Thermic fluid is heated in the thermic fluid heater (4). On heating, the volume of the thermic fluid increases.
  • the expansion tank (8) is used to store extra thermic fluid.
  • the reactor (10) is heated by the hot thermic fluid, which is pumped by the thermic fluid pump (6).
  • a sample is withdrawn through a sample port with the help of valves (V9, V10).
  • the burner is switched off.
  • thermic fluid is passed through the heat exchanger (7).
  • Water is pumped in the heat exchanger (7) through the water pump (11) from one of the first and second water storage tank (1 or 2).
  • the reflux condenser (12) maintains pressure and temperature at a desired level.
  • the reactor (10) is configured with desired dimension and capacity for example, diameter-630mm, height-850mm, conical height-175, capacity about 425 lit.
  • Coal and solvents are loaded into the reactor (10) through valve V7 in a predetermined ratio.
  • Coal to total solvent ratio is varied from 1:6 to 1:18 (wt/vol, g/mL, coal to solvent ratios are wt/vol and solvent: co-solvent ratios are vol/vol wherever mentioned).
  • Co-solvent to solvent ratio is varied from 1:25 to 1:5.
  • Nitrogen gas is purged into the system for maintaining inert environment.
  • Thermic fluid is pumped into the system from the thermic fluid storage tank (5).
  • Thermic fluid is heated in the thermic fluid heater (4) by the diesel fired burner.
  • the reactor (10) is heated by hot thermic fluid through limpet coils.
  • Reactor pressure is being varied from 1 to 4 gauge (kg/cm 2 ).
  • Reactor temperature is varied from 150°C to 220°C. Extraction is being done for 1 to 3 hr in the reactor.
  • the sample is withdrawn from the reactor (10) through the sample port at predetermined time intervals. This sample is filtered through a mesh. Filtration step separates the refluxed mix in two parts (i) residue and (ii) filtrate (extracted

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

An industrial process for treating coal to lower ash content in a system, the system comprising a first water storage tank (1), a second water storage tank (2), a diesel storage tank (3), a thermic fluid heater (4), a thermic fluid storage tank (5), a thermic fluid pump (6), a heat exchanger (7), a thermic fluid expansion tank (8), a N2 gas cylinder (9), a reactor (10), a water pump (11), and a reflux condenser (12), the method comprising (i) forming a slurry of coal fines in a N-Methyl-2-pyrrolidone (NMP) with Ethylenediamine (EDA), the NMP and EDA ratio varying between 5:1 to 25:1 solution, said slurry containing about 6 to 18 ml of solution per g of coal, (ii) maintaining said slurry in the reactor at a temperature range of 150°C to 220°C and at a pressure range of 1 to 4 gauge (kg/cm ) for a period of about 1 to 3 hours, (iii) separating a sample of the slurry by coarse filtration in a filter cloth, (separation cut size being variable depending on the particle size to be treated and the end produce), to obtain a filtrate or extract and a residue, (iv) precipitating the coal in water by adding concentrated extract, and (vi) separating the coal by filtration, said coal having a reduced ash content.

Description

FIELD OF THE INVENTION
The present invention generally relates to cleaning of coal with mineral matter finely disseminated in the organic-mass. More particularly, the invention relates to a system and a process to produce low ash clean coal from high ash coal.
BACKGROUND OF THE INVENTION
As coal is a heterogenous mixture of organic and inorganic constituents, solvolysis of coal varies with its constituents. Maturity, and structural characteristics. Since the mineral matter (non-combustible) in Indian coals is very finely disseminated in the organic mass, it is really very difficult to remove this by conventional physical coal washing techniques. Presence of high percentage of near gravity material in coal makes the scope of gravity process limited. Concept of chemical beneficiation comes from the limitation of physical beneficiation processes. Broadly, chemical beneficiation is possible by chemical leaching of mineral matter present in coal or, dissolving organic matter of coal in various organic solvents. This indicates that chemical treatment may be the right approach to overcome the limitation of physical beneficiation methods. A lot of literature is available on chemical beneficiation techniques that employ highly corrosive chemicals (mostly acids and alkalis). Recovery or regeneration of these chemicals is very important to make this technology viable. A parallel approach towards lowering ash could be recovering the premium organic matter from coal by solvent refining. Literature reveals that most of the research work on this subject was carried out with an objective to produce ultra clean coal or super clean coal with ash content less than 0.2% for various high tech end uses. This conventional solvent refining process does not serve the objective of low ash coal requirement of steel industries because of mainly low recovery which makes the process uneconomic especially when such an ultra coal is not absolutely desired at the cost of restricting to low yields.
By way of reference, Indian patent application numbers 1292/KOL/06, 1088/KOL/07, 1336/KOL/20078, 950/KOL/09, 1195/KOL/09, 611/KOL/09 and 1581/KOL/08 are incorporated herein being related to the similar field of technology.
Main advantages of this process are i) ease of recovery of solvent in the main process stream, ii) solvolytic efficiency of recovered solvents as that of fresh solvent, iii) 95-98% recovery of the solvent, iv) improved coking properties of clean coal, and v) availability of industrial organic solvents. However, the operating cost of this process is high because of high cost of solvents and energy requirement in the process. The inventors made an effort to make this process techno-economic initially through lab-scale process by improving the yield upto 50-60% with less than 8% ash content, including reduction in the cost of solvent recovery.
According to the established process in the laboratory, coal, solvent (N-Methyl-2- Pyrrolidone, NMP) and co-solvent (Ethylenediamine, EDA) are mixed thoroughly to produce a coal slurry. The coal slurry is extracted in a known manner which includes coal-solvent mixture. The mixture is separated in a separation unit to produce a coarser fraction and a finer fraction. The finer fraction is fed to an evaporator unit to allow 70 to 80% off solvent recovery. The hot concentrated
coal-solvent mixture is then flushed in a precipitation tank to precipitate the coal. In this case, water as an anti-solvent is used. Water separates the solvent from coal and a water- solvent mixture is obtained, which is fed to a distillation unit to separate solvent and anti- solvent. The precipitated coal is separated in a filter. In the process, coal, solvent and co- solvent are taken in a pre defined ratio. Coal to solvent ratio is varied from 1:6 to 1:17 (wt/vol, g mL, coal to solvent ratios being wtvol, and solvent to co-solvent ratio are vol/vol). Coal to co-solvent as well as co-solvent ratio is maintained as 1 :1 (g/mL).
OBJECTS OF THE INVENTION
It is therefore an object of this invention to propose an industrial process to produce low ash clean coal from high ash coal.
Another object of this invention is to propose a single reactor-based system to produce low ash clean coal from high ash coal.
A further object of this invention is to propose a validation process to establish the efficiency of the inventive system and process to produce low ash clean coal from high ash coal, as compared to the output from the laboratory scale unit.
SUMMARY OF THE INVENTION
According to the invention, a process flow diagram for an industrial plant with a single reactor is proposed. The important equipments constituting the inventive system, are a thermic fluid heater, a reactor, a heat exchanger, a thermic fluid pump, and an inert gas (N2) cylinder. Some of the associated equipments or vessels comprise a water storage tank, a diesel storage tank, a thermic fluid storage tank, and an expansion tank.
A reflux condenser (12) is used to maintain pressure at a specified condition. The system also consists of about eighteen gate and ball valves, two pressure gauges, at least one temperature gauge, and four temperature transmitters,
Solvents and coal are loaded into the reactor (10) with the help of opening on the reactor top. Sampling system has been provided at the bottom of the reactor (10) to draw the sample as and when required.
According to the invention, there is provided an industrial process for treating coal to lower ash content in a system, the system comprising a first water storage tank, a second water storage tank, a diesel storage thank, a thermic fluid heater, a thermic fluid storage tank, a thermic fluid pump, a heat exchanger, a thermic fluid expansion tank, a N2 gas cylinder, a reactor, a water pump, and a reflux condenser, the method comprising (i) forming a slurry of coal fines in a N-Methyl-2-pyrrolidone (NMP) with Ethylenediamine (EDA), the NMP and EDA ratio varying between 5:1 to 25:1 solution, said slurry containing about 6 to 18 ml of solution per g of coal, (ii) maintaining said slurry in the reactor at a temperature range of 150°C to 220°C and at a pressure range of 1 to 4 gauge (kg/cm2) for a period of about 1 to 3 hours, (iii) separating a sample of the slurry by coarse filtration in a filter cloth, (separation cut size being variable depending on the particle size to be treated and the end produce), to obtain a filtrate or extract and a residue, (iv) precipitating the coal in water by adding concentrated extract, and (vi) separating the coal by filtration, said coal having a reduced ash content.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWING
Figure 1 - shows a block diagram of a system to produce low-ash clean coal from high- ash coal.
DETAILED DESCRIPTION OF THE INVENTION
As shown in figure Γ, the inventive system comprises a first water storage tank (1), a second water storage tank (2), a diesel storage tank (3), a thermic fluid heater (4), a thermic fluid storage tank (5), a thermic fluid pump (6),a heat exchanger (7), a termic fluid expansion tank (8)m a N2 gas cylinder (9), a reactor (10), a water pump (11), and a reflux condenser (12).
Coal and solvent in a predetermined ratio are loaded into the reactor (10). Nitrogen gas is supplied through the N2 cylinder (9) for maintaining inert environment. Diesel is supplied to a burner from the diesel storage tank (3). Thermic fluid is supplied into the system from the thermic fluid storage tank (5). Thermic fluid is heated in the thermic fluid heater (4). On heating, the volume of the thermic fluid increases. Thus, the expansion tank (8) is used to store extra thermic fluid. The reactor (10) is heated by the hot thermic fluid, which is pumped by the thermic fluid pump (6). During extraction, a sample is withdrawn through a sample port with the help of valves (V9, V10). On completion of the extraction step, the burner is switched off. To cool down the thermic fluid heater (4), the thermic fluid is passed through the heat exchanger (7). Water is pumped in the heat exchanger (7) through the water pump (11) from one of the first and second water storage tank (1 or 2). The reflux condenser (12) maintains pressure and temperature at a desired level.
7
The reactor (10) is configured with desired dimension and capacity for example, diameter-630mm, height-850mm, conical height-175, capacity about 425 lit. Coal and solvents are loaded into the reactor (10) through valve V7 in a predetermined ratio. Coal to total solvent ratio is varied from 1:6 to 1:18 (wt/vol, g/mL, coal to solvent ratios are wt/vol and solvent: co-solvent ratios are vol/vol wherever mentioned). Co-solvent to solvent ratio is varied from 1:25 to 1:5. Nitrogen gas is purged into the system for maintaining inert environment. Thermic fluid is pumped into the system from the thermic fluid storage tank (5). Thermic fluid is heated in the thermic fluid heater (4) by the diesel fired burner. The reactor (10) is heated by hot thermic fluid through limpet coils. Reactor pressure is being varied from 1 to 4 gauge (kg/cm2). Reactor temperature is varied from 150°C to 220°C. Extraction is being done for 1 to 3 hr in the reactor.
The sample is withdrawn from the reactor (10) through the sample port at predetermined time intervals. This sample is filtered through a mesh. Filtration step separates the refluxed mix in two parts (i) residue and (ii) filtrate (extracted
8
material with solvents. Residue is washed thoroughly with an anti-solvent (water) for removal of the solvents from the residue. After drying and weighing, these residues are subjected to ash analysis. The filtrate is actually the extract containing very low ash coal. For precipitation, an anti solvent (water) is taken in a container. Concentrated extract is then added in to the water. As these solvents are soluble in water, solvents move to water phase. It resulted in precipitation of solid coal particles. Thus, precipitated coal is then separated from the solvent-water solution through filtration. This step is carried out in a conical flask-funnel arrangement with standard mesh. The residue of this filtration is the low ash clean coal; filtrate consists of water and the solvents. After drying and weighing, the clean coals are subjected to chemical and petro graphical analysis.
The Experimental results are shown in table 1.
Table 1:
Figure imgf000012_0001
Some of the experimental results are shown in table 1. The feed coal is run-of-mines (ROM) coal having about 26% ash. The feed particle size is -0.5 mm and extraction is done at 2.5 and 1 kg/cm2 pressure. Results are shown at two different coal to solvent ratio, 1:6 and 1:10. Clean coal ash is about 7% when pressure is 2.5 kg cm and it is about 4% when pressure is 1 kg/cm . Clean coal yield is about 48% and 50% for 1 : 10 and 1:6 coal to solvent ratio respectively. It is possible to produce less than 8% ash clean coal in the inventive step. With the help of fine filtration even less than 1% ash clean coal can be obtained. This proves that the results contained in the system, are similar to that obtained at laboratory scale.

Claims

WE CLAIM:
1. An industrial process for treating coal to lower ash content in a system, the system comprising a first water storage tank (1), a second water storage tank (2), a diesel storage tank (3), a thermic fluid heater (4) , a thermic fluid storage tank (5), a thermic fluid pump (6), a heat exchanger (7), a thermic fluid expansion tank (8), a N2 gas cylinder (9), a reactor (10), a water pump (11), and a reflux condenser (12), the method comprising (i) forming a slurry of coal fines in a N-Methyl-2-pyrrolidone (NMP) with Ethylenediamine (EDA), the NMP and EDA ratio varying between 5:1 to 25:1 solution, said slurry containing about 6 to 18 ml of solution per g of coal, (ii) maintaining said slurry in the reactor at a temperature range of 150°C to 22°C and at a pressure range of 1 to 4 gauge (kg/cm ) for a period of about 1 to 3 hours, (iii) separating a sample of the slurry by coarse filtration in a filter cloth, (separation cut size being variable depending on the particle size to be treated and the end produce), to obtain a filtrate or extract and a residue, (iv) precipitating the coal in water by adding concentrated extract, and (vi) separating the coal by filtration, said coal having a reduced ash content.
2. The process as claimed in claim 1 wherein said coal comprises run of mine coal.
3. The process as claimed in claim 2 wherein said particle size is preferably, -0.5 mm or any fine size depending on the end use.
4. The process as claimed in claim 1 wherein said ultra low ash clean coal or super clean coal having ash content < 1% is produced by fine filtration of the extracted solution.
5. The process as claimed in claim 4 wherein said ultra low ash clean coal or super clean coal having ash content < 1% can be used to produce graphite, liquid fuels, aromatic polymers, specially chemicals, carbon materials such as carbon nanotubes.
6. The process as claimed in claim 1 wherein clean coal having ash content < 8% is produced by coarse filtration of the extracted solution.
7. The process as claimed in claim 6 wherein said clean coal having ash content < 8% can be used for one of coke making, blast furnace injection in iron and steel industries, and power plants.
8. The process as claimed in claim 1 wherein said clean coal having ash content < 8% is produced in said system at an yield rate of about 50% clean coal.
9. The process as claimed in claim 1 wherein said cleaning coal having ash content < 8% is produced in said system with a varying coal to solvent ratio of 1 :6 to 1:18.
10. The process as claimed in claim 1 wherein said clean coal having ash content < 8% is produced in said system at an yield rate equivalent to that of a laboratory set-up.
PCT/IN2011/000593 2011-07-05 2011-09-01 A system and a process to produce low ash clean coal from high ash coal WO2013005222A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/130,818 US20140245659A1 (en) 2011-07-05 2011-09-01 System and a Process to Produce Low Ash Clean Coal from High Ash Coal
CN201180072802.8A CN103797099B (en) 2011-07-05 2011-09-01 The system and method for low ash coal is produced by ash coal
NZ620692A NZ620692A (en) 2011-07-05 2011-09-01 A system and a process to produce low ash clean coal from high ash coal
AU2011372675A AU2011372675B2 (en) 2011-07-05 2011-09-01 A system and a process to produce low ash clean coal from high ash coal
JP2014518068A JP5840292B2 (en) 2011-07-05 2011-09-01 System and method for producing low ash refined coal from high ash coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN901/KOL/2011 2011-07-05
IN901KO2011 2011-07-05

Publications (2)

Publication Number Publication Date
WO2013005222A2 true WO2013005222A2 (en) 2013-01-10
WO2013005222A3 WO2013005222A3 (en) 2013-02-28

Family

ID=54192851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IN2011/000593 WO2013005222A2 (en) 2011-07-05 2011-09-01 A system and a process to produce low ash clean coal from high ash coal

Country Status (6)

Country Link
US (1) US20140245659A1 (en)
JP (1) JP5840292B2 (en)
CN (1) CN103797099B (en)
AU (1) AU2011372675B2 (en)
NZ (1) NZ620692A (en)
WO (1) WO2013005222A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111040819B (en) * 2018-10-12 2021-08-20 国家能源投资集团有限责任公司 Ash removal method for solid carbonaceous material
CN111068899A (en) * 2019-12-17 2020-04-28 兖矿水煤浆气化及煤化工国家工程研究中心有限公司 System and method for chemically washing clean and wet pulverized coal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4325707A (en) * 1980-05-12 1982-04-20 California Institute Of Technology Coal desulfurization by aqueous chlorination
US5380342A (en) * 1990-11-01 1995-01-10 Pennsylvania Electric Company Method for continuously co-firing pulverized coal and a coal-water slurry
CN101070495B (en) * 2007-04-30 2011-03-30 中国矿业大学 Mild coal-family component separation method based on extraction and back extraction
CN101177640B (en) * 2007-11-30 2010-05-19 华南理工大学 Stable ash-free method for preparing nano coal slurry
CN101235328B (en) * 2008-01-01 2011-03-09 中国矿业大学 Mild technique for separating coal whole components
WO2010020994A1 (en) * 2008-08-19 2010-02-25 Tata Steel Limited Blended frother for producing low ash content clean coal through flotation
WO2010029563A1 (en) * 2008-09-12 2010-03-18 Tata Steel Limited Development of a techno-economic process for organo refining of coal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TATA STEEL LIMITED. ORGANOREFINING PROCESS TO PRODUCE LOW ASH CLEAN COAL WITH MAXIMUM POSSIBLE YIELD INDIAN PATENT APPLICATION IN 2006KO01292 vol. 149, 03 July 2008, COLOMBUS OHIO USA, *

Also Published As

Publication number Publication date
NZ620692A (en) 2015-09-25
US20140245659A1 (en) 2014-09-04
AU2011372675B2 (en) 2017-05-25
WO2013005222A3 (en) 2013-02-28
CN103797099A (en) 2014-05-14
JP5840292B2 (en) 2016-01-06
JP2014522890A (en) 2014-09-08
AU2011372675A1 (en) 2014-02-27
CN103797099B (en) 2016-01-13

Similar Documents

Publication Publication Date Title
US7909989B2 (en) Method for obtaining bitumen from tar sands
CA2751719C (en) Extraction of oil sand bitumen with two solvents
CN102165049B (en) Method for manufacturing hyper-coal
RU2312126C2 (en) Hydraulic extraction method of kerogen in super-critical conditions (variants) and apparatus for performing the same
AU2007200890B2 (en) Supercritical Hydroextraction of Kerogen From Oil Shale Ores
KR101702256B1 (en) Ashless-coal production device, and ashless-coal production method
JP2009221340A (en) Method for producing ashless coal
AU2011372675B2 (en) A system and a process to produce low ash clean coal from high ash coal
US9441175B2 (en) Process for production of low ash clean coal from high ash coal with total solvent recovery
AU2012373685B2 (en) A process flow sheet for pre - treatment of high ash coal to produce clean coal
JP5523463B2 (en) Development of techno-economic organic refining method for coal
JP5639402B2 (en) Production method of ashless coal
CA2746987A1 (en) Treatment of bitumen froth with super critical water
AU2020202042A1 (en) Method and apparatus for preparing additive for coke
JP5521499B2 (en) Method for reforming coal, method for producing coke and sintered ore, and method for operating blast furnace
CN104395431A (en) Coke composed mainly of by-product coal
NZ623465B2 (en) A process flow sheet for pre-treatment of high ash coal to produce clean coal
NZ623472B2 (en) A process for pre-treatment of high ash coal to produce clean coal

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014518068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011372675

Country of ref document: AU

Date of ref document: 20110901

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14130818

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11868925

Country of ref document: EP

Kind code of ref document: A2