WO2013003641A2 - Serpin fusion polypeptides and methods of use thereof - Google Patents

Serpin fusion polypeptides and methods of use thereof Download PDF

Info

Publication number
WO2013003641A2
WO2013003641A2 PCT/US2012/044730 US2012044730W WO2013003641A2 WO 2013003641 A2 WO2013003641 A2 WO 2013003641A2 US 2012044730 W US2012044730 W US 2012044730W WO 2013003641 A2 WO2013003641 A2 WO 2013003641A2
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
fusion protein
aat
human
seq
Prior art date
Application number
PCT/US2012/044730
Other languages
French (fr)
Other versions
WO2013003641A3 (en
Inventor
Brendan P. ECKELMAN
John C. TIMMER
Peter L. NGUY
Grant B. GUENTHER
Quinn Deveraux
Original Assignee
Inhibrx Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2013015323A priority Critical patent/MX356517B/en
Priority to KR1020237024532A priority patent/KR20230114318A/en
Priority to EP12804863.4A priority patent/EP2726092B1/en
Priority to CN201280041956.5A priority patent/CN103917563A/en
Priority to RSP20191200 priority patent/RS59368B1/en
Priority to LTEP12804863.4T priority patent/LT2726092T/en
Priority to NZ619023A priority patent/NZ619023B2/en
Priority to RU2014102583A priority patent/RU2642310C2/en
Priority to PL12804863T priority patent/PL2726092T3/en
Priority to KR1020217007901A priority patent/KR20210032558A/en
Priority to UAA201400709A priority patent/UA124083C2/en
Priority to KR1020147002346A priority patent/KR102084944B1/en
Priority to KR1020207005907A priority patent/KR102231139B1/en
Priority to IN2441MUN2013 priority patent/IN2013MN02441A/en
Priority to EP19181040.7A priority patent/EP3569243A1/en
Priority to CA2839619A priority patent/CA2839619C/en
Application filed by Inhibrx Llc filed Critical Inhibrx Llc
Priority to JP2014519049A priority patent/JP2014523900A/en
Priority to DK12804863.4T priority patent/DK2726092T3/en
Priority to AU2012275287A priority patent/AU2012275287B2/en
Priority to BR112013033799A priority patent/BR112013033799A2/en
Priority to MEP-2019-253A priority patent/ME03473B/en
Priority to ES12804863T priority patent/ES2746052T3/en
Priority to SI201231670T priority patent/SI2726092T1/en
Priority to CN201910132137.5A priority patent/CN110066340B/en
Priority to KR1020217043197A priority patent/KR20220003656A/en
Publication of WO2013003641A2 publication Critical patent/WO2013003641A2/en
Publication of WO2013003641A3 publication Critical patent/WO2013003641A3/en
Priority to IL230209A priority patent/IL230209B/en
Priority to AU2017279724A priority patent/AU2017279724B2/en
Priority to AU2019202904A priority patent/AU2019202904B2/en
Priority to HRP20191652 priority patent/HRP20191652T1/en
Priority to CY20191100993T priority patent/CY1122195T1/en
Priority to IL276534A priority patent/IL276534A/en
Priority to AU2021202131A priority patent/AU2021202131B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/525Tumour necrosis factor [TNF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7151Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for tumor necrosis factor [TNF], for lymphotoxin [LT]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • C07K14/8121Serpins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • C07K14/8121Serpins
    • C07K14/8125Alpha-1-antitrypsin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1275Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Streptococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • C07K16/241Tumor Necrosis Factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/524CH2 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/526CH3 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/53Hinge
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/31Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction

Definitions

  • This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptides and a second polypeptide. Additionally, the invention relates to fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from serpin polypeptides, a second polypeptide, and a third polypeptide.
  • this invention relates to fusion proteins that include at least one serpin polypeptide and a second polypeptide or fusion proteins that include at least one serpin polypeptide, a second polypeptide, and a third polypeptide, where the second and third polypeptides of the fusion proteins of the invention can be at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a WAP domain containing polypeptide or a sequence derived from a WAP containing polypeptide; or an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide.
  • This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.
  • the fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide (Polypeptide 1) and second polypeptide (Polypeptide 2). Additionally, the fusion proteins described herein include a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide (Polypeptide 1), a second polypeptide (Polypeptide 2), and a third polypeptide (Polypeptide 3).
  • fusion protein and “fusion polypeptide” refer to a serpin polypeptide or an amino acid sequence derived from a serpin polypeptide operably linked to at least a second polypeptide or an amino acid sequence derived from at least a second polypeptide.
  • the individualized elements of the fusion protein can be linked in any of a variety of ways, including for example, direct attachment, the use of an intermediate or a spacer peptide, the use of a linker region, the use of a hinge region or the use of both a linker and a hinge region.
  • the linker region may fall within the sequence of the hinge region, or alternatively, the hinge region may fall within the sequence of the linker region.
  • the linker region is a peptide sequence.
  • the linker peptide includes anywhere from zero to 40 amino acids, e.g., from zero to 35 amino acids, from zero to 30 amino acids, from zero to 25 amino acids, or from zero to 20 amino acids.
  • the hinge region is a peptide sequence.
  • the hinge peptide includes anywhere from zero to 75 amino acids, e.g. , from zero to 70 amino acids, from zero to 65 amino acids or from zero to 62 amino acids.
  • each of the linker region and the hinge region is a peptide sequence.
  • the hinge peptide and the linker peptide together include anywhere from zero to 90 amino acids, e.g., from zero to 85 amino acids or from zero to 82 amino acids.
  • the serpin polypeptide and the second polypeptide can be linked through an intermediate binding protein.
  • the serpin-based portion and second polypeptide portion of the fusion protein may be non-covalently linked.
  • fusion proteins according to the invention can have one of the following formulae, in an N-terminus to C-terminus direction or in a C-terminus to N-terminus direction:
  • polypeptides in the formulae also includes Polypeptide 3 (C) - Polypeptide l (a) - Polypeptide 2(b), Polypeptide 2 (b) - Polypeptide 3 (C) - Polypeptide l (a), or any variation or combination thereof.
  • the Polypeptide 1 sequence includes a serpin polypeptide.
  • Serpins are a group of proteins with similar structures that were first identified as a set of proteins able to inhibit proteases.
  • Serpin proteins suitable for use in the fusion proteins provided herein include, by way of non-limiting example, alpha- 1 antitrypsin (AAT), antitrypsin-related protein (SERPINA2), alpha 1 -antichymotrypsin (SERPINA3), kallistatin (SERPINA4), monocyte neutrophil elastase inhibitor (SERPINB1), PI-6
  • SERPINB6 antithrombin
  • SEPINC1 antithrombin
  • SEPINF2 plasminogen activator inhibitor 1
  • SEPINF2 alpha 2-antiplasmin
  • SEPIING1 complement 1 -inhibitor
  • SERPINI1 neuroserpin
  • the Polypeptide 1 sequence includes an alpha- 1 antitrypsin (AAT) polypeptide sequence or an amino acid sequence that is derived from AAT.
  • AAT alpha- 1 antitrypsin
  • the Polypeptide 1 sequence includes a portion of the AAT protein. In some embodiments, the Polypeptide 1 sequence includes at least the reactive site loop portion of the AAT protein. In some embodiments, the reactive site loop portion of the AAT protein includes at least the amino acid sequence:
  • the AAT polypeptide sequence or an amino acid sequence that is derived from AAT is or is derived from a human AAT polypeptide sequence.
  • the fusion protein includes a full-length human AAT polypeptide sequence having the following amino acid sequence:
  • the fusion protein includes a human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2.
  • the AAT polypeptide sequence is, or the amino acid sequence derived from an AAT polypeptide is derived from, one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1,
  • NP_001121172.1 NP_001121172.1
  • AAA51547.1 NP_001121172.1
  • the fusion proteins contain one or more mutations.
  • the fusion protein contains at least one mutation at a methionine (Met) residue in the serpin portion of the fusion protein.
  • the Met residue can be substituted with any amino acid.
  • the Met residue can be substituted with an amino acid with a hydrophobic side chain, such as, for example, leucine (Leu, L).
  • the Met mutation(s) prevent oxidation and subsequent inactivation of the inhibitory activity of the fusion proteins of the invention.
  • the Met residue can be substituted with a charged residue, such as, for example, glutamate (Glu, E).
  • the Met mutation is at position 358 of an AAT polypeptide.
  • the Met mutation is Met358Leu (M358L).
  • the Met mutation is at position 351 of an AAT polypeptide.
  • the Met mutation is Met35 lGlu (M35 IE).
  • the Met mutation is at position 351 and at position 358 of an AAT polypeptide, for example, the Met mutation is Met351Glu (M351E) and Met358Leu (M358L).
  • the reactive site loop of this variant of the fusion AAT polypeptide has the following sequence:
  • the Met mutation is at position 351 and at position 358 of an AAT polypeptide, for example, the Met mutation is Met351Leu (M351L) and Met358Leu (M358L).
  • the reactive site loop of this variant of the fusion AAT polypeptide has the following sequence:
  • GTEAAGALFLEAI PLS I PPEVKFNK (SEQ ID NO: 33).
  • the second polypetide (Polypeptide 2) of the serpin fusion protein is an Fc polypeptide or derived from an Fc polypeptide.
  • These embodiments are referred to collectively herein as "serpin-Fc fusion proteins.”
  • the serpin-Fc fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide.
  • the serpin-Fc fusion protein includes a single serpin polypeptide.
  • the serpin-Fc fusion proteins includes more than one serpin polypeptide, and these embodiments are collectively referred to herein as "serpin (a') -Fc fusion protein," wherein (a') is an integer of at least 2.
  • each serpin polypeptides in a serpin (a') -Fc fusion protein includes the same amino acid sequence.
  • each serpin polypeptide in a serpin (a ' ) -Fc fusion protein includes serpin polypeptides with distinct amino acid sequences.
  • the serpin polypeptides of serpin (a ' ) -Fc fusion proteins can be located at any position within the fusion protein.
  • the serpin polypeptide of the serpin-Fc fusion protein includes at least the amino acid sequence of the reactive site loop portion of the AAT protein.
  • the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1.
  • the serpin polypeptide of the serpin-Fc fusion protein includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein.
  • the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33.
  • the serpin polypeptide of the serpin-Fc fusion protein includes at least the full-length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-Fc fusion protein includes human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
  • the serpin polypeptide of the serpin-Fc fusion protein includes the AAT polypeptide sequence is or the amino acid sequence derived from an AAT polypeptide is derived from one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1 , CAJ 15161.1 , P01009.3 , AAB59375.1 ,
  • NP_000286.3 NP_001121179.1, NP_001121178.1, NP_001121177.1, NP_001121176.16, NP_001121175.1, NP_001121174.1, NP_001121172.1, and/or AAA51547.1.
  • the Fc polypeptide of the fusion protein is a human Fc polypeptide, for example, a human IgG Fc polypeptide sequence or an amino acid sequence that is derived from a human IgG Fc polypeptide sequence.
  • the Fc polypeptide is a human IgGl Fc polypeptide or an amino acid sequence that is derived from a human IgGl Fc polypeptide sequence.
  • the Fc polypeptide is a human IgG2 Fc polypeptide or an amino acid sequence that is derived from a human IgG2 Fc polypeptide sequence.
  • the Fc polypeptide is a human IgG3 Fc polypeptide or an amino acid sequence that is derived from a human IgG3 Fc polypeptide sequence.
  • the Fc polypeptide is a human IgG4 Fc polypeptide or an amino acid sequence that is derived from a human IgG4 Fc polypeptide sequence.
  • the Fc polypeptide is a human IgM Fc polypeptide or an amino acid sequence that is derived from a human IgM Fc polypeptide sequence.
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgGl Fc polypeptide sequence having the following amino acid sequence:
  • the Fc polypeptide of the fusion protein includes a human IgGl Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 3.
  • the fusion protein of the invention includes an
  • the Fc polypeptide is mutated or modified to enhance FcRn binding.
  • the mutated or modified Fc polypeptide includes the following mutations: Met252Tyr, Ser254Thr, Thr256Glu (M252Y, S256T, T256E) or Met428Leu and Asn434Ser (M428L, N434S) using the Kabat numbering system.
  • the Fc polypeptide portion is mutated or otherwise modified so as to disrupt Fc-mediated dimerization.
  • the fusion protein is monomeric in nature.
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgG2 Fc polypeptide sequence having the following amino acid sequence:
  • VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK SEQ ID NO: 4
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgG2 Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 4.
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgG3 Fc polypeptide sequence having the following amino acid sequence:
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgG3 Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 5.
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgG4 Fc polypeptide sequence having the following amino acid sequence:
  • VDKSRWQEGN VFSCSVMHEA LHNHYTQKSL SLSLGK (SEQ ID NO: 6)
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgG4 Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 6.
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgM Fc polypeptide sequence having the following amino acid sequence:
  • the fusion protein of the invention includes an
  • the Fc polypeptide of the fusion protein includes a human IgM Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 7.
  • the second polypeptide (Polypeptide 2) of the serpin fusion protein is a cytokine targeting polypeptide or derived from a cytokine targeting polypeptide.
  • the serpin- cytokine targeting polypeptide fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide and a cytokine targeting polypeptide, or derivation thereof.
  • the serpin- cytokine targeting polypeptide fusion protein includes a single serpin polypeptide.
  • the serpin-cytokine targeting polypeptide fusion protein includes more than one serpin polypeptide, and these embodiments are collectively referred to herein as "serpin (a') -cytokine targeting polypeptide fusion proteins," wherein (a') is an integer of at least 2.
  • each serpin polypeptide in a serpin (a ' ) -cytokine targeting polypeptide fusion protein includes the same amino acid sequence.
  • each serpin polypeptide of a serpin (a) -cytokine targeting polypeptide fusion protein includes serpin polypeptides with distinct amino acid sequences.
  • the cytokine targeting polypeptide of the serpin- cytokine targeting polypeptide fusion protein is a cytokine receptor or derived from a cytokine receptor.
  • the cytokine targeting polypeptide or an amino acid sequence that is derived from the cytokine receptor is or is derived from a human cytokine receptor sequence.
  • the cytokine targeting polypeptide is an antibody or an antibody fragment, for example an anti-cytokine antibody or anti-cytokine antibody fragment.
  • the cytokine targeting polypeptide or an amino acid sequence that is derived from the antibody or antibody fragment is derived from a chimeric, humanized, or fully human antibody sequence.
  • the term antibody fragment includes single chain, Fab fragment, a F(ab') 2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody.
  • the cytokine targeting polypeptide binds a cytokine receptor and prevents binding of a cytokine to the receptor.
  • the cytokine targeting polypeptide is an antibody or an antibody fragment, for example an anti- cytokine receptor antibody or anti-cytokine receptor antibody fragment.
  • the serpin polypeptide of the serpin-cytokine targeting polypeptide fusion proteins includes at least the amino acid sequence of the reactive site loop portion of the AAT protein.
  • the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1.
  • the serpin polypeptide of the serpin-cytokine targeting fusion proteins includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein.
  • the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33.
  • the serpin polypeptide of the serpin-cytokine targeting fusion protein includes or is derived from at least the full-length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-cytokine targeting fusion protein includes human AAT
  • polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
  • the serpin polypeptide of the serpin-cytokine targeting fusion protein includes an AAT polypeptide sequence or an amino acid sequence derived from an AAT polypeptide that is or is derived from one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos.
  • the serpin-cytokine targeting polypeptide fusion protein can incorporate a portion of the serpin-Fc fusion protein.
  • an antibody contains an Fc
  • the serpin-cytokine targeting polypeptide fusion protein will incorporate a portion of the serpin-Fc fusion protein.
  • most receptor fusion proteins that are of therapeutic utility are Fc fusion proteins.
  • the serpin-cytokine targeting polypeptide fusion protein may incorporate an Fc polypeptide in addition to the serpin portion and the cytokine receptor portion.
  • the serpin-cytokine targeting polypeptide fusion protein includes an Fc polypeptide sequence
  • the Fc polypeptide sequence includes or is derived from the amino acid sequence of any one of SEQ ID NO: 3, 4, 5, 6, or 7.
  • the serpin-cytokine targeting fusion protein includes an Fc polypeptide sequence
  • the Fc polypeptide sequence has at least 50%>, 60%>, 65%>, 70%>, 75%>, 80%>, 85%>,
  • the serpin polypeptide and the cytokine targeting polypeptide are operably linked via a linker region, for example, a glycine-serine linker or glycine-serine based linker. In some embodiments, the serpin polypeptide and the cytokine targeting polypeptide are operably linked via a hinge region.
  • the serpin polypeptide and the cytokine targeting polypeptide are operably linked via a linker region and a hinge region. In other embodiments, the serpin polypeptide and the cytokine targeting polypeptide are directly attached.
  • the second polypeptide (Polypeptide 2) of the serpin fusion protein is a whey acidic protein (WAP) domain containing polypeptide, or an amino acid sequence that is derived from a WAP domain containing polypeptide.
  • WAP whey acidic protein
  • the serpin-WAP domain fusion proteins include at least a serpin polypeptide or at least an amino acid sequence that is derived from a serpin, a WAP domain-containing polypeptide or an amino acid sequence that is derived from a WAP domain-containing polypeptide.
  • the serpin-WAP domain fusion protein includes a single serpin polypeptide. In other embodiments, the serpin-WAP targeting polypeptide fusion protein includes more than one serpin polypeptide. These embodiments are collectively referred to herein as "serpin (a') -WAP domain fusion proteins," wherein (a') is an integer of at least 2. In some embodiments, serpin polypeptides of the serpin(a ') -WAP domain fusion protein includes the same amino acid sequence. In other embodiments, the serpin polypeptides of the serpin (a ' ) -cytokine targeting polypeptide fusion protein, includes serpin polypeptides with distinct amino acid sequences.
  • These serpin-WAP domain fusion proteins include a WAP domain containing polypeptide or polypeptide sequence that is or is derived from a WAP domain containing polypeptide.
  • the WAP domain is an evolutionarily conserved sequence motif of 50 amino acids containing eight cysteines found in a characteristic 4-disulfide core arrangement (also called a four-disulfide core motif).
  • the WAP domain sequence motif is a functional motif characterized by serine protease inhibition activity in a number of proteins.
  • WAP domain-containing polypeptides suitable for use in the fusion proteins provided herein include, by way of non-limiting example, secretory leukocyte protease inhibitor (SLPI), Elafin, and Eppin.
  • SLPI secretory leukocyte protease inhibitor
  • Elafin Elafin
  • Eppin Eppin
  • the WAP domain-containing polypeptide sequence of the fusion protein includes a secretory leukocyte protease inhibitor (SLPI) polypeptide sequence or an amino acid sequence that is derived from SLPI.
  • SLPI secretory leukocyte protease inhibitor
  • these embodiments are referred to herein as "serpin-SLPI-derived fusion proteins.”
  • the SLPI polypeptide sequence comprises a portion of the SLPI protein, such as for example, the WAP2 domain or a sub-portion thereof.
  • the SLPI polypeptide sequence or an amino acid sequence that is derived from SLPI is or is derived from a human SLPI polypeptide sequence.
  • SLPI sequence or a SLPI-derived sequence of the fusion protein includes a full-length human SLPI polypeptide sequence having the following amino acid sequence:
  • SLPI sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 8.
  • SLPI sequence or a SLPI-derived sequence of the fusion protein includes a portion of the full-length human SLPI polypeptide sequence, where the portion has the following amino acid sequence:
  • SLPI sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 9.
  • SLPI sequence or a SLPI-derived sequence of the fusion protein includes the WAP2 domain of the full-length human SLPI polypeptide sequence, where the WAP2 domain has the following amino acid sequence:
  • SLPI sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 10.
  • the SLPI polypeptide sequence or the amino acid sequence derived from an SLPI polypeptide is or is derived from, one or more of the human SLPI polypeptide sequences shown in GenBank Accession Nos. CAA28187.1, NP_003055.1, EAW75869.1, P03973.2, AAH20708.1, CAB64235.1, CAA28188.1, AAD19661.1, and/or BAG35125.1.
  • the SLPI polypeptide sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is modified at a Methoine (Met) residue.
  • Met residue can be substituted with any amino acid.
  • the Met residue can be substituted with an amino acid with a hydrophobic side chain, such as, for example, leucine (Leu, L) or valine (Val, V).
  • the Met mutation(s) prevent oxidation and subsequent inactivation of the inhibitory activity of the fusion proteins of the invention.
  • the Met mutation is at position 98 of an SLPI polypeptide.
  • the modified SLPI polypeptide sequence of the serpin-SLPI includes mutations M98L or M98V in SEQ ID NO: 8.
  • the WAP domain-containing polypeptide sequence of the fusion protein includes an elafin polypeptide sequence or an amino acid sequence that is derived from elafin. These embodiments are referred to herein as "serpin-elafm fusion proteins.
  • the elafin polypeptide sequence includes a portion of the elafin protein, such as for example, the WAP domain or a sub-portion thereof.
  • the elafin polypeptide sequence or an amino acid sequence that is derived from elafin is or is derived from a human elafin polypeptide sequence.
  • the fusion protein includes a full-length human elafin polypeptide sequence having the following amino acid sequence:
  • the fusion protein includes a human elafin polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 11.
  • the fusion protein includes a portion of the full-length human elafin polypeptide sequence, where the portion has the following amino acid sequence:
  • the fusion protein includes a human elafin polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 12.
  • the fusion protein includes the WAP domain of the full-length human elafin polypeptide sequence, where the WAP domain has the following amino acid sequence:
  • the fusion protein includes a human elafin polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 13.
  • the elafin polypeptide sequence or the amino acid sequence derived from an elafin polypeptide is derived from one or more of the human elafin polypeptide sequences shown in GenBank Accession Nos. P19957.3, NP 002629.1, BAA02441.1, EAW75814.1, EAW75813.1, Q8IUB2.1 , and/or NP_542181.1.
  • the WAP domain-containing polypeptide sequence of the fusion protein includes an Eppin polypeptide sequence or an amino acid sequence that is derived from Eppin. These embodiments are referred to herein as "serpin (a') -Eppin fusion proteins.
  • the Eppin polypeptide sequence of the serpin-Eppin fusion protein includes a portion of the Eppin protein, such as for example, the WAP domain or a sub-portion thereof.
  • the Eppin polypeptide sequence or an amino acid sequence that is derived from Eppin is or is derived from a human Eppin polypeptide sequence.
  • the Eppin polypeptide sequence or amino acid sequence derived from an Eppin polypeptide is or is derived from one or more of the human Eppin polypeptide sequences shown in GenBank Accession Nos. 095925.1, NP_065131.1, AAH44829.2, AAH53369.1, AAG00548.1, AAG00547.1, and/or AAG00546.1.
  • the serpin polypeptide of the serpin-WAP domain fusion protein includes at least the amino acid sequence of the reactive site loop portion of the AAT protein.
  • the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1.
  • the serpin polypeptide of the serpin-WAP fusion protein includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein.
  • the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33.
  • the serpin polypeptide of the serpin-WAP domain fusion protein includes at least the full- length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-WAP domain fusion protein includes human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
  • the serpin polypeptide of the serpin-WAP domain fusion protein includes the AAT polypeptide sequence is, or the amino acid sequence derived from an AAT polypeptide is derived from, one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos.
  • the serpin-WAP domain fusion protein can also include an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide. These embodiments are referred to collectively herein as "serpin-Fc-WAP domain fusion proteins.” In these embodiments, no particular order is to be construed by this terminology. For example, the order of the fusion protein can be serpin-Fc-WAP domain, serpin-WAP domain-Fc, or any variation combination thereof.
  • the serpin-Fc-WAP domain fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin, WAP domain-containing polypeptide or an amino acid sequence that is derived from a WAP domain-containing polypeptide, and an
  • Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide.
  • the Fc polypeptide sequence can have the amino acid sequence of SEQ ID NO: 3-7.
  • the serpin-WAP domain fusion protein includes an Fc polypeptide sequence
  • the Fc polypeptide sequence can have at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NOs. 3-7.
  • the serpin-WAP domain fusion protein can also include an albumin polypeptide, or an amino acid sequence that is derived from an albumin polypeptide. These embodiments are referred to collectively herein as "serpin-albumin-WAP domain fusion proteins.” In these embodiments, no particular order is to be construed by this terminology. For example, the order of the fusion protein can be serpin-albumin-WAP domain, serpin-WAP domain- albumin, or any variation combination thereof.
  • the serpin-albumin-WAP domain fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin, WAP domain-containing polypeptide, or an amino acid sequence that is derived from a WAP domain-containing polypeptide, and an albumin polypeptide, or an amino acid sequence that is derived from an albumin polypeptide.
  • the albumin polypeptide sequence includes the amino acid sequence of SEQ ID NO: 14-15, described herein.
  • the albumin polypeptide sequence has at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the any one of the amino acid sequences having SEQ ID NO: 14 or 15.
  • the second polypeptide (Polypeptide 2) of the serpin fusion protein is an albumin polypeptide or is derived from an albumin polypeptide.
  • serpin (a') -albumin fusion proteins include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and an albumin polypeptide or an amino acid sequence that is derived from an albumin polypeptide.
  • this invention relates to serpin albumin binding polypeptide fusion proteins, wherein the albumin is operably linked to the serpin via an intermediate binding molecule.
  • the serpin is non- covalently or covalently bound to human serum albumin.
  • the albumin polypeptide sequence of the fusion protein is a human serum albumin (HSA) polypeptide or an amino acid sequence derived from HSA.
  • HSA human serum albumin
  • the fusion protein includes a HSA polypeptide sequence having the following amino acid sequence:
  • the albumin polypeptide sequence of the fusion protein includes a human serum albumin polypeptide sequence that is at least 50%, 60%>, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 14.
  • the albumin polypeptide sequence of the fusion protein fusion protein includes a domain 3 of human serum albumin polypeptide sequence having the following amino acid sequence: EEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCK HPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVP KEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCC KADDKETCFAEEGKKLVA (SEQ ID NO: 15)
  • the albumin polypeptide sequence of the fusion protein includes a human serum albumin polypeptide sequence that is at least 50%, 60%>, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 15.
  • the fusion protein of the invention includes an albumin polypeptide sequence
  • the fusion protein is linked to the human serum albumin via an intermediate albumin binding polypeptide.
  • the albumin binding polypeptide can be an antibody or an antibody fragment or derived from an antibody or antibody fragment.
  • the albumin binding polypeptide or an amino acid sequence that is derived from the antibody or antibody fragment is derived from a chimeric, humanized, or fully human antibody sequence.
  • the term antibody fragment includes single chain, Fab fragment, a F(ab') 2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody.
  • albumin binding polypeptide can be an albumin binding peptide.
  • Another embodiment of the invention is a serpin albumin binding polypeptide fusion, wherein the albumin binding polypeptide is domain 3 of Streptococcal protein G or a sequence derived from domain 3 of Streptococcal protein G.
  • the serpin polypeptide of the serpin (a') -albumin fusion proteins includes at least the amino acid sequence of the reactive site loop portion of the AAT protein.
  • the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1.
  • the serpin polypeptide of the serpin-albumin fusion protein includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein.
  • the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33.
  • the serpin polypeptide of the serpin-albumin fusion proteins includes at least the full-length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-albumin fusion proteins includes human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
  • the serpin polypeptide of the serpin-albumin fusion proteins includes the AAT polypeptide sequence or the amino acid sequence derived from an AAT polypeptide is or is derived from one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1, CAJ15161.1, P01009.3, AAB59375.1, AAA51546.1, CAA25838.1, NP 001002235.1, CAA34982.1,
  • the fusion proteins are modified to increase or otherwise inhibit proteolytic cleavage, for example, by mutating one or more proteolytic cleavage sites. In some embodiments, the fusion proteins are modified to alter or otherwise modulate an Fc effector function of the fusion protein, while simultaneously retaining binding and inhibitory function as compared to an unaltered fusion protein.
  • Fc effector functions include, by way of non-limiting examples, Fc receptor binding, prevention of proinflammatory mediator release upon binding to the Fc receptor, phagocytosis, modified antibody-dependent cell-mediated cytotoxicity (ADCC), modified complement-dependent cytotoxicity (CDC), modified glycosylation at Asn297 residue (EU index of Kabat numbering, Kabat et al 1991 Sequences of Proteins of Immunological Interest) of the Fc polypeptide.
  • the fusion proteins are mutated or otherwise modified to influence Fc receptor binding.
  • the Fc polypeptide is modified to enhance FcRn binding.
  • Fc polypeptide mutations that enhance binding to FcRn are Met252Tyr, Ser254Thr, Thr256Glu (M252Y, S256T, T256E) (Kabat numbering, Dall'Acqua et al 2006, J. Biol Chem Vol 281(33) 23514-23524), or Met428Leu and Asn434Ser (M428L, N434S) (Zalevsky et al 2010 Nature Biotech, Vol. 28(2) 157-159). (EU index of Kabat et al 1991 Sequences of Proteins of Immunological Interest).
  • the Fc polypeptide portion is mutated or otherwise modified so as to disrupt Fc-mediated dimerization (Ying et al 2012 J. Biol Chem 287(23): 19399-19408).
  • the fusion protein is monomeric in nature.
  • the fusion proteins and variants thereof provided herein exhibit inhibitory activity, for example by inhibiting a serine protease such as human neutrophil elastase (NE), a chemotrypsin-fold serine protease that is secreted by neutrophils during an inflammatory response.
  • a serine protease such as human neutrophil elastase (NE)
  • NE neutrophil elastase
  • the fusion proteins provided herein completely or partially reduce or otherwise modulate serine protease expression or activity upon binding to, or otherwise interacting with, a serine protease, e.g., a human serine protease.
  • a serine protease e.g., a human serine protease.
  • the reduction or modulation of a biological function of a serine protease is complete or partial upon interaction between the fusion proteins and the human serine protease protein, polypeptide and/or peptide.
  • the fusion proteins are considered to completely inhibit serine protease expression or activity when the level of serine protease expression or activity in the presence of the fusion protein is decreased by at least 95%, e.g., by 96%, 97%, 98%, 99% or 100% as compared to the level of serine protease expression or activity in the absence of interaction, e.g., binding, with a fusion protein described herein.
  • the fusion proteins are considered to partially inhibit serine protease expression or activity when the level of serine protease expression or activity in the presence of the fusion protein is decreased by less than 95%, e.g., 10%, 20%, 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85% or 90% as compared to the level of serine protease expression or activity in the absence of interaction, e.g., binding, with a fusion protein described herein.
  • the fusion proteins described herein are useful in a variety of therapeutic, diagnostic and prophylactic indications.
  • the fusion proteins are useful in treating a variety of diseases and disorders in a subject.
  • the serpin fusion proteins including, fusion proteins described herein, are useful in treating, alleviating a symptom of, ameliorating and/or delaying the progression of a disease or disorder in a subject suffering from or identified as being at risk for a disease or disorder selected from alpha- 1 -antitrypsin (AAT) deficiency, emphysema, chronic obstructive pulmonary disease (COPD), acute respiratory distress sydrome (ARDS), allergic asthma, cystic fibrosis, cancers of the lung, ischemia-reperfusion injury, including, e.g.
  • AAT alpha- 1 -antitrypsin
  • COPD chronic obstructive pulmonary disease
  • ARDS acute respiratory distress sydrome
  • allergic asthma cystic fibrosis
  • compositions according to the invention include a fusion protein of the invention, including modified fusion proteins and other variants, along with a suitable carrier. These pharmaceutical compositions can be included in kits, such as, for example, diagnostic kits.
  • Figure 1 A is a schematic representation of some embodiments of serpin-Fc fusion proteins according to the invention.
  • the serpin can be located at any position within the fusion protein.
  • Serpin-Fc fusion protein incorporating more than one serpin polypeptide are also represented.
  • Figure IB is a photograph of a SDS-PAGE gel showing serum derived AAT (lane 1), AAT-Fc 1 (lane 2, human IgGl Fc), and AAT-EL-Fcl (lane 3, Met351Glu, Met358Leu mutations within AAT, human IgGl Fc).
  • Figure 1C is a graph showing the inhibition of neutrophil elastase activity by AAT-Fc fusion proteins.
  • Figure ID is a photograph of a SDS-PAGE gel showing tetravalent AAT-Fc-AAT, having two AAT polypeptides per Fc polypeptide.
  • Figure IE is a graph showing the inhibition of neutrophil elastase activity by a tetravalent AAT-Fc-AAT fusion protein.
  • Figure IF is a graphing demonstrating the effect of low pH elution from protein A resin, wherein the NE inhibiting capacity of the AAT-Fc fusion protein eluted at low pH is drastically reduced.
  • Figure 1G is a graph showing that the double mutant, AAT-EL-Fc (Met351Glu, Met358Leu mutations) is resistant to ⁇ 2 0 2 inactivation (cone), compared to wild type AAT and the single mutant AAT-EM-Fc (Met351Glu).
  • Figure 1H is a graph depicting the serum clearance rates of serum derived AAT (sdAAT) compared to AAT-Fc in rats dosed with lOmg/kg protein (3 rats/test protein). The half life of AAT-Fc is substantially longer than that of sdAAT.
  • FIG. 2A is a schematic representation of some embodiments of the serpin- cytokine targeting fusion proteins of the invention.
  • the serpin can be fused to either the heavy chain, the light chain, or both of an antibody.
  • Serpin-cytokine receptor fusion proteins are also depicted.
  • Figure 2B is a photograph of a SDS-PAGE gel showing the D2E7 antibody (lane 1), and the D2E7 antibody with- AAT fused to heavy chain (lane 2).
  • Figure 2C is a graph showing the inhibition of neutrophil elastase activity by a D2E7 antibody fused to AAT. Serum derived AAT is shown as a positive control, whereas the D2E7 antibody alone is shown as a negative control for NE inhibition.
  • Figure 3A is a schematic representation of some embodiments of the serpin-
  • FIG. 3B is a photograph of a SDS-PAGE gel showing AAT-Fc- ELAFIN (lane 1) and AAT-Fc-SLPI (lane 2).
  • Figure 3C is a graph showing the inhibition of neutrophil elastase activity by an AAT-Fc-ELAFIN fusion protein and an AAT-Fc-SLPI fusion protein. An AAT-Fc fusion protein and serum derived AAT are included for comparison.
  • Figure 4A is a schematic representation of some embodiments of the AAT-
  • Figure 4B is a photograph of a SDS-PAGE gel showing an AAT- HSA fusion.
  • Figure 4C is a graph showing the inhibition of neutrophil elastase activity by an AAT-HSA compared to serum derived AAT.
  • NE Human neutrophil elastase
  • AAT alpha 1 -antitrypsin
  • AAT a deficiency of AAT, usually as a result of a point mutation that causes ATT to aggregate and accumulate in the liver, leaves the lungs exposed to unchecked NE activity.
  • Individuals with AAT deficiencies are at increased the risk of emphysema, COPD, liver disease, and numerous other conditions.
  • AAT deficiency affects approximately 100,000 Americans (according to estimates from the Alpha-1 Foundation), and many of the afflicted people die in their 30's and 40's.
  • There are currently only a few FDA-approved drugs for treatment of ATT deficiency Prolastin®, AralastTM, Zemaira®, GlassiaTM.
  • Each drug is the natural AAT derived from pooled human plasma, which appears to be insufficient to meet the anticipated clinical demand.
  • these products have short serum half lives (T 2 of approximately 5 days) and require high dose (60 mg/kg body weight) weekly infusions.
  • the current market for these drugs is estimated at approximately $400 million.
  • AAT-like drugs are likely substantially larger, based on the estimation that as many as 95% of individuals with AAT-deficiencies go undiagnosed, and the fact that these drugs have the potential to be effective therapies for pathologies characterized by enhanced NE activity in individuals that are not AAT-deficient (e.g., cystic fibrosis (CF), acute respiratory distress syndrome (ARDS), smoking-induced emphysema and/or COPD).
  • CF cystic fibrosis
  • ARDS acute respiratory distress syndrome
  • COPD smoking-induced emphysema and/or COPD
  • AAT has been suggested to have broad spectrum anti-inflammatory activity
  • AAT may be useful in treating numerous human pathologies, outside of the commonly suggested inflammatory pulmonary conditions.
  • Human AAT has shown to protect mice from clinical and histopathological signs of experimental
  • Serum AAT has shown activity in rodent models of Graft Versus Host Disease (GVHD) (Tawara et al 2011 Proc. Natl. Acad. Sci. USA 109: 564-569, Marcondes et a/ 2011 5W Nov 3; 118(18):5031-9), which has lead to a human clinical trial using AAT to treat individuals with Steroid Non-responsive Acute GVHD (NCT01523821).
  • GVHD Graft Versus Host Disease
  • AAT has been effective in animal models of type I and type II diabetes, dampening inflammation, protecting islet cells from apoptosis and enabling durable islet cell allograft (Zhang et al 2007 Diabetes 56: 1316-1323, Lewis et al 2005 Proc Natl Acad Sci USA 102: 12153-12158, Lewis et al 2008 Proc Natl Acad Sci USA 105: 16236 -16241, Kalis et al 2010 Islets 2:185 - 189).
  • serum derived AAT products There are numerous early human clinical trials of type I diabetes using serum derived AAT products
  • the fusion proteins of the present invention have enhanced functionalities compared to the unmodified AAT molecule.
  • the fusion of an AAT polypeptide with a second polypeptide that interacts with the neonatal Fc receptor (FcRn), serves to increase the serum half life, providing a much needed dosing benefit for patients.
  • FcRn interacting polypeptides of the fusion protein include immunoglobulin (Ig) Fc polypeptides derived from human IgGl, IgG2, IgG3, IgG4, or IgM, and derivatives of human albumin.
  • the fusion protein incorporates mutations with the AAT portion that render the molecule more resistant to inactivation by oxidation.
  • AAT is a natural anti-inflammatory protein
  • some embodiments of the invention provide enhanced inflammation dampening capacity through the fusion of an AAT polypeptide and a cytokine targeting polypeptide.
  • the coupling of dual antiinflammatory functionalities from AAT and a second polypeptide will provide more a potent therapeutic protein than either polypeptide on their own. Additionally, the coupling the anti-infective activity of AAT will mitigate the infection risk of most cytokine targeting biologies.
  • Some embodiments provide for more potent anti-inflammatory and anti-infective proteins through the fusion an AAT-polypeptide and WAP domain contain polypeptide.
  • the fusion proteins of the present invention are expected to be a great therapeutic utility and be superior to the current serum derived AAT products.
  • IgG4, IgM, or HSA such that the expected protein product would be AAT followed by an
  • Fc domain ((AAT-Fc (IgGl), AAT-Fc (IgG2), AAT-Fc (IgG3), AAT-Fc (IgG4), AAT-Fc
  • fusion proteins of the present invention are shown to be potent inhibitors of NE, have extended serum half lives, and in some embodiments resistant to oxidation. In other embodiments, the fusion proteins described herein have distinct properties by the incorporation of other functional polypeptides, including cytokine targeting polypeptides, and WAP domain containing polypeptides.
  • the fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and a second polypeptide.
  • the invention provides a serpin polypeptide fused to human IgGl-Fc, IgG2-Fc, IgG3-Fc, IgG4-Fc, IgM-Fc, or HSA derivatives.
  • the serpin-fusion described herein are expected to be useful in treating a variety of indications, including, by way of non- limiting example, alpha- 1 -antitrypsin (AAT) deficiency, emphysema, chronic obstructive pulmonary disease (COPD), acute respiratory distress sydrome (ARDS), allergic asthma, cystic fibrosis, cancers of the lung, ischemia-reperfusion injury, including, e.g., ischemia/reperfusion injury following cardiac transplantation, myocardial infarction, rheumatoid arthritis, septic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, psoriasis, type I and/or type II diabetes, bacterial infections, fungal infections, viral infections, pneumonia, sepsis, graft versus host disease (GVHD), wound healing, Systemic lupus erythematosis, and Multiple sclerosis.
  • AAT alpha
  • the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and second polypeptide.
  • AAT alpha- 1 -antitrypsin
  • the invention provides alpha- 1 -antitrypsin (AAT) fused to human IgGl-Fc, IgG2-Fc, IgG3-Fc, IgG4-Fc, IgM-Fc, or HSA derivatives.
  • the fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide and a cytokine targeting polypeptide or an amino acid sequence that is derived from a cytokine targeting polypeptide.
  • the invention provides serpin polypeptide or a sequence derived from a serpin polypeptide fused to a human cytokine receptor or derivative thereof.
  • Another embodiment of the invention provides serpin polypeptide or a sequence derived from a serpin polypeptide fused to a cytokine targeting antibody, e.g., an anti-cytokine antibody, or a sequence derived from of a cytokine targeting antibody, e.g.
  • an anti-cytokine antibody or sequence derived from a fragment of cytokine targeting antibody, e.g., a fragment of an anti-cytokine antibody.
  • the invention provides a serpin polypeptide or a sequence derived from a serpin polypeptide fused to a cytokine targeting polypeptide in which the cytokine targeting polypeptide binds any of the following human cytokines: TNFa, IgE, IL-12, IL-23, IL-6, IL-la, IL- ⁇ , IL-17, IL-13, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
  • the cytokine targeting polypeptide targets TNFa and includes any of the following TNFa-targeting polypeptide or sequences derived from the following TNFa-targeting polypeptides: Remicade®, Humira®,
  • the cytokine targeting polypeptide targets IgE and includes any of the following IgE-targeting polypeptide or sequences derived from the following IgE-targeting polypeptides: Xolair or FcsRI.
  • the cytokine targeting polypeptide targets the shared p40 subunit of IL-12 and IL-23 and includes the Stelara® polypeptide or sequences derived from the Stelara® polypeptide.
  • the cytokine targeting polypeptide targets IL-13 and includes the CDP7766 polypeptide or sequences derived from the CDP7766 polypeptide.
  • the fusion proteins described herein include at least a alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a cytokine targeting polypeptide or an amino acid sequence that is derived from a cytokine targeting polypeptide.
  • AAT alpha- 1 -antitrypsin
  • the invention provides alpha- 1 -antitrypsin inhibitor (AAT) fused a cytokine targeting polypeptide in which the cytokine targeting polypeptide binds any of the following human cytokines: TNFa, IgE, IL-6, IL-la, IL- ⁇ , IL-12, IL-17, IL-13, IL-23, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
  • AAT alpha- 1 -antitrypsin inhibitor
  • the cytokine targeting polypeptide binds a cytokine receptor and prevents binding of the cytokine.
  • the present invention includes a serpin fused to a cytokine receptor targeting antibody.
  • the invention provides alpha- 1 -antitrypsin inhibitor (AAT) fused a cytokine targeting polypeptide in which the cytokine targeting polypeptide binds the receptor of any of the following human cytokines: TNFa, IgE, IL-6, IL-la, IL- ⁇ , IL-12, IL-17, IL-13, IL-23, the p40 subunit of IL-12 and IL-23, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
  • AAT alpha- 1 -antitrypsin inhibitor
  • the cytokine targeting polypeptide targets the IL-6 receptor and includes the Actemra® polypeptide (as described in patent publication EP0628639), or the ALX-0061 polypeptide (as described in WO2010/115998), or sequences derived from the Actemra® polypeptide, or ALX-0061 polypeptide.
  • Actemra® the cytokine targeting polypeptide targets the IL-6 receptor and includes the tocilizumab polypeptide or sequences derived from the tocilizumab polypeptide.
  • cytokine targeting agents The most common proteins used as cytokine targeting agents are the soluble cytokine receptors and monoclonal antibodies and fragments thereof.
  • a significant drawback with targeting cytokines is the increased risk of infection in these patients, as evidenced by the TNFa targeting biologies, Remicade®, Humira®, Simponi®, Cimiza®, and Enbrel®, and the IL- 12/23 p40 targeting antibody, Stelara®. This is likely to be a common problem of targeting inflammatory cytokines leading to immune suppression in patients.
  • AAT and other serpin proteins are interesting in that they demonstrate both anti- infective and anti-inflammatory activities.
  • the serpin-cytokine targeting polypeptide fusion proteins of this invention can dampen aberrant cytokine activities while alleviating the risk of infections.
  • the fusion proteins described herein include a serpin polypeptide or an amino acid sequence that is derived from a serpin, a WAP domain- containing polypeptide or an amino acid sequence that is derived from a WAP domain- containing polypeptide, and an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide.
  • the invention provides a serpin polypeptide, a WAP domain-containing polypeptide and human IgGl-Fc, IgG2-Fc, IgG3-Fc, IgG4-Fc or IgM-Fc derivatives operably linked together in any functional combination.
  • the WAP domain containing protein is human SLPI or derived from human SLPI. In other embodiments, the WAP domain containing protein is human ELAFIN or derived from human ELAFIN.
  • the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a SLPI polypeptide or an amino acid sequence that is derived from SLPI. In some embodiments, the fusion proteins described herein include at least an AAT
  • SPLI and Elafin are WAP domain containing proteins that display serine protease inhibitory activity. Both of these proteins are anti-inflammatory in function. In addition these proteins possess broad anti-infective capacities toward numerous strains of bacteria, viruses, and fungi.
  • the fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and a human serum albumin (HSA) polypeptide or an amino acid sequence that is derived from a HSA polypeptide.
  • HSA human serum albumin
  • Further embodiments of invention include serpin-albumin binding polypeptide fusion proteins, wherein the albumin binding polypeptide is responsible for the association of the serpin and HSA.
  • the invention includes both covalent and non-covalent linkages of the serpin polypeptide and the HSA polypeptide or sequences derived from the serpin polypeptide or a HSA polypeptide.
  • the invention provides a serpin polypeptide fused to human HSA, or HSA derivatives, or HSA binding peptide or polypeptides.
  • the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a HSA polypeptide or an amino acid sequence that is derived from a HSA polypeptide.
  • AAT alpha- 1 -antitrypsin
  • the fusion proteins described herein include a serpin polypeptide or an amino acid sequence that is derived from a serpin, a HSA polypeptide or or an amino acid sequence that is derived from a HSA polypeptide, and a WAP domain- containing polypeptide or an amino acid sequence that is derived from a WAP domain- containing polypeptide.
  • the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a HSA polypeptide or an amino acid sequence that is derived from a HSA polypeptide, and a SLPI polypeptide or amino acid sequence derived from SLPI.
  • AAT alpha- 1 -antitrypsin
  • the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a HSA polypeptide or an amino acid sequence that is derived from a HSA polypeptide, and an Elafin polypeptide or amino acid sequence derived from Elafin.
  • AAT alpha- 1 -antitrypsin
  • HSA HSA polypeptide
  • Elafin polypeptide or amino acid sequence derived from Elafin an Elafin polypeptide or amino acid sequence derived from Elafin.
  • the fusion proteins of the present invention can be readily produced in mammalian cell expression systems.
  • mammalian cell expression systems For example Chinese Hamster Ovary (CHO) cells, Human Embryonic Kidney (HEK) 293 cells, COS cells, PER.C6®, NS0 cells, SP2/0, YB2/0 can readily be used for the expression of the serpin fusion proteins described herein.
  • mammalian cell expression systems produce proteins that are generally more optimal for therapeutic use.
  • mammalian cell expression systems yield proteins with glycosylation patterns that are similar or the same as those found in natural human proteins.
  • Proper gylcosylation of a protein can greatly influence serum stability, pharmacokinetics, biodistribution, protein folding, and functionality. Therefore, the ability to produce therapeutic proteins in mammalian expression systems has distinct advantages over other systems. Furthermore, most of the mammalian cell expression systems (e.g., CHO, NSO, PER.C6® cells) can be readily scaled in commercial manufacturing facilities to produce therapeutic proteins to meet clinical demands.
  • the fusion proteins described herein have enhanced functionalities over the natural form of AAT and can be produced in mammalian expression systems for clinical and commercial supply.
  • Some embodiments of the invention include a purification system that enables the isolation of serpin fusion proteins that retain their ability to inhibit NE. Importantly, the purification process of the present invention can be readily incorporated into today's commercial mammalian cell-based manufacturing processes.
  • patient includes human and veterinary subjects.
  • LipofectinTM DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semisolid gels, and semi-solid mixtures containing carbowax.
  • Any of the foregoing mixtures may be appropriate in treatments and therapies in accordance with the present invention, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration. See also Baldrick P. "Pharmaceutical excipient development: the need for preclinical guidance.” Regul. Toxicol Pharmacol. 32(2):210-8 (2000), Wang W.
  • Therapeutic formulations of the invention which include a fusion protein of the invention, are used to treat or alleviate a symptom associated with a disease or disorder associated with aberrant serine protease activity in a subject.
  • the present invention also provides methods of treating or alleviating a symptom associated with a disease or disorder associated with aberrant serine protease activity in a subject.
  • a therapeutic regimen is carried out by identifying a subject, e.g., a human patient suffering from (or at risk of developing) a disease or disorder associated with aberrant serine protease activity, using standard methods, including any of a variety of clinical and/or laboratory procedures.
  • patient includes human and veterinary subjects.
  • subject includes humans and other mammals.
  • Efficaciousness of treatment is determined in association with any known method for diagnosing or treating the particular disease or disorder associated with aberrant serine protease activity. Alleviation of one or more symptoms of the disease or disorder associated with aberrant serine protease activity indicates that the fusion protein confers a clinical benefit.
  • Methods for the screening of fusion proteins that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA), enzymatic assays, flow cytometry, and other immunologically mediated techniques known within the art.
  • ELISA enzyme linked immunosorbent assay
  • enzymatic assays enzyme linked immunosorbent assays
  • flow cytometry flow cytometry
  • other immunologically mediated techniques known within the art.
  • the fusion proteins described herein may be used in methods known within the art relating to the localization and/or quantitation of a target such as a serine protease, e.g., for use in measuring levels of these targets within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like).
  • a target such as a serine protease
  • the terms "physiological sample” and “biological sample,” used interchangeably, herein are intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the terms "physiological sample” and “biological sample”, therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph.
  • fusion proteins specific for a given target, or derivative, fragment, analog or homolog thereof, that contain the target-binding domain are utilized as pharmacologically active compounds (referred to hereinafter as "Therapeutics").
  • a fusion protein of the invention can be used to isolate a particular target using standard techniques, such as immunoaffinity, chromatography or
  • Detection can be facilitated by coupling (i.e., physically linking) the fusion protein to a detectable substance.
  • detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, ⁇ -galactosidase, or acetylcholinesterase;
  • suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin;
  • suitable fluorescent materials include umbelliferone, fluorescein, fluorescein
  • luminescent material includes luminol
  • bioluminescent materials include luciferase, luciferin, and aequorin
  • suitable radioactive material include I, I, S or H.
  • a therapeutically effective amount of a fusion protein of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the fusion protein and its target that, in certain cases, interferes with the functioning of the target.
  • the amount required to be administered will furthermore depend on the binding affinity of the fusion protein for its specific target, and will also depend on the rate at which an administered fusion protein is depleted from the free volume other subject to which it is administered.
  • Common ranges for therapeutically effective dosing of an fusion protein or fragment thereof invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 250 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a month.
  • fusion protein fragments are used, the smallest inhibitory fragment that specifically binds to the target is preferred.
  • peptide molecules can be designed that retain the ability to bind the target.
  • Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. (See, e.g., Marasco et al, Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993)).
  • the formulation can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
  • the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, growth-inhibitory agent, an anti-inflammatory agent or anti-infective agent.
  • an agent that enhances its function such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, growth-inhibitory agent, an anti-inflammatory agent or anti-infective agent.
  • the active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in
  • the formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
  • sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the fusion protein, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No.
  • copolymers of L-glutamic acid and ⁇ ethyl-L- glutamate non-degradable ethylene-vinyl acetate
  • degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOTTM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate)
  • poly-D-(-)-3-hydroxybutyric acid While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
  • fusion proteins of the invention also referred to herein as "active compounds"
  • derivatives, fragments, analogs and homologs thereof can be
  • compositions typically comprise the fusion rotein and a pharmaceutically acceptable carrier.
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, ringer's solutions, dextrose solution, and 5% human serum albumin. Liposomes and nonaqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
  • routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediammetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose.
  • the pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • the parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
  • compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water,
  • Cremophor EL TM (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS).
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile- filtered solution thereof.
  • Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition.
  • the tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a binder such as microcrystalline cellulose, gum tragacanth or gelatin
  • an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
  • a lubricant such as magnesium stearate or Sterotes
  • a glidant such as colloidal silicon dioxide
  • the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
  • a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
  • Systemic administration can also be by transmucosal or transdermal means.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
  • the compounds can also be prepared in the form of suppositories ⁇ e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova
  • Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
  • compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • Exemplary, but non-limiting examples of AAT-Fc fusion proteins according to the invention include the following sequences. While these examples include a hinge sequence and/or a linker sequence, fusion proteins of the invention can be made using any hinge sequence and/or a linker sequence suitable in length and/or flexibility. Alternatively fusion proteins can be made without using a hinge and/or a linker sequence. For example, the polypeptide components can be directly attached.
  • An exemplary AAT-Fc fusion protein is the AAT-hFcl (human IgGl Fc) described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2) and the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3).
  • AAT-hFcl human IgGl Fc
  • An exemplary AAT-Fc fusion protein is the AAT-hFc2 (human IgG2 Fc), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2) and the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 4).
  • AAT-hFc2 human IgG2 Fc
  • An exemplary AAT-Fc fusion protein is the AAT-MM-EL-hFcl (human IgGl Fc, Met351Glu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 34), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3), and the Met351Glu mutation is boxed, and the Met358Leu mutation is shaded in grey.
  • AAT-MM-EL-hFcl human IgGl Fc, Met351Glu/Met358Leu
  • An exemplary AAT-Fc fusion protein is the AAT-MM-EL-hFc2 (human IgG2 Fc, Met351Glu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 34), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 4), the Met351Glu mutation is boxed, and the Met358Leu mutation is shaded in grey.
  • AAT-MM-EL-hFc2 human IgG2 Fc, Met351Glu/Met358Leu
  • An exemplary AAT-Fc fusion protein is the AAT-MM-LL-hFcl (human IgGl Fc, Met351Leu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 35), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3), the Met351Leu mutation is shaded in black, and the Met358Leu mutation is shaded in grey.
  • AAT-MM-LL-hFcl human IgGl Fc, Met351Leu/Met358Leu
  • An exemplary AAT-Fc fusion protein is the AAT-MM:LL-hFc2(human IgG2 Fc, Met351Leu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 35), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 4), the Met351Leu mutation is shaded in black, and the Met358Leu mutation is shaded in grey.
  • AAT-MM: LL-hFc2 human IgG2 Fc, Met351Leu/Met358Leu
  • An exemplary AAT-Fc fusion protein is the AAT-hFcl-AAT (human IgGl), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3).
  • AAT-hFcl-AAT human IgGl
  • the gene encoding human AAT was PCR amplified from human liver cDNA (Zyagen). Specific point mutations within the gene encoding AAT or the Fc region were generated by overlapping PCR.
  • the AAT encoding gene was cloned in frame with a gene encoding the hinge region, followed by a CH2 domain, and a CH3 domain of human IgGl, IgG2, IgG3, IgG4, or IgM into a mammalian expression vector, containing a mammalian secretion signal sequence up stream of the AAT gene insertion site.
  • AAT-Fc fusion proteins were transfected into mammalian cells (specifically HEK293 or CHO cells) and grown for several days in 8% C0 2 at 37° C.
  • the recombinant AAT-Fc fusion proteins were purified from the expression cell supernatant by protein A chromatography.
  • a near neutral pH buffer was used (Gentle Ag/Ab Elution Buffer, Thermo Scientific) to elute the AAT-Fc fusion protein from the protein A resin.
  • the AAT-Fc fusion protein can not be eluted from protein A resin using a standard low pH elution, as the ability of AAT to inhibit NE is compromised following low pH treatment, likely due to a low pH mediated oligomerization of AAT.
  • Figure IF shows the effects of low pH elution on the ability of AAT to inhibit neutrophil elastase.
  • AAT-Fc fusion protein can be purified either by protein A and a near neutral pH elution buffer, by CaptureSelect® Alpha- 1 Antitrypsin affinity matrix (BAC BV).
  • BAC BV CaptureSelect® Alpha- 1 Antitrypsin affinity matrix
  • FIG. 1B and ID show a reducing SDS- PAGE gel of purified serum derived AAT (sdAAT) and AAT-Fc fusion proteins (Fig 1B- lane 1 : sdAAT, lane 2: AAT-Fc (SEQ ID NO: 16), lane 3: AAT-EL-Fc (SEQ ID NO: 18), Fig ID AAT-Fc-AAT (SEQ ID NO: 20).
  • the proteins were visualized by staining with coomassie blue.
  • NE neutrophil elastase
  • Inhibitory activity was measured by a concomitant decrease in the residual NE activity using the following assay.
  • This assay buffer is composed of 100 mM Tris pH 7.4, 500 mM NaCl, and 0.0005% Triton X-100.
  • Human NE is used at a final concentration of 5 nM (but can also be used from 1-20 nM).
  • the fluorescent peptide substrate AAVP- AMC is used at a final concentration of 100 ⁇ in the assay.
  • the Gemini EM plate reader from Molecular Devices is used to read the assay kinetics using excitation and emission wavelengths of 370 nm and 440 nm respectively, and a cutoff of 420 nm. The assay is read for 10 min at room temperature scanning every 5 to 10 seconds.
  • the Vmax per second corresponds to the residual NE activity, which is plotted for each concentration of inhibitor.
  • the intercept with the x-axis indicates the concentration of inhibitor needed to fully inactivate the starting concentration of NE in the assay.
  • Human serum derived AAT sdAAT
  • the AAT-Fc fusion proteins display potent NE inhibitory activity as shown in Figure 1C.
  • the fusion wherein there are two AAT polypeptides fused to single Fc polypetide (AAT-Fc-AAT) displays enhanced potency over both sdAAT and the AAT-Fc fusion protein comprising a single AAT polypeptide (Figure IE).
  • Figure IF demonstrates the resistance of the AAT-EL-Fc (M35 IE, M358L) fusion protein to inactivation by oxidation.
  • AAT fusion proteins, AAT-Fc (wt), AAT-EL- Fc (M351E, M358L), and AAT-EM-Fc (M351E) were treated with 33mM H 2 0 2 and compared to untreated fusion proteins in the NE inhibition assays.
  • the inhibition of NE by AAT-EL-Fc was not comprised by oxidation, converse to the other proteins tested.
  • AAT-Fc fusion protein displayed a longer serum half life in rats compared to serum derived AAT ( Figure 1H).
  • 3 rats per each test protein were injected I.V. with lOmg/kg of sdAAT or AAT-Fc.
  • Serum sample were taken at various time points over a 48 period.
  • the serum ATT concentration was using an ELISA.
  • the fusion proteins below include cytokine targeting polypeptide sequences that are from or are derived from (i) the anti-TNFa antibody D2E7 (also known as
  • Adalimumab or Humira® Adalimumab or Humira®
  • TNFR2-ECD Type 2 TNFa Receptor
  • the AAT polypeptide portion of the fusion protein is underlined, the antibody constant regions (CHl-hinge-CH2-CH3, or CL) are italicized, and D2E7-VH, D2E7-VK, and TNFR2-ECD are denoted in bold text. While these examples include a hinge sequence and/or a linker sequence, fusion proteins of the invention can be made using any hinge sequence and/or a linker sequence suitable in length and/or flexibility. Alternatively fusion proteins can be made without using a hinge and/or a linker sequence.
  • An exemplary AAT-TNFa fusion protein is D2E7-Light Chain-AAT (G 3 S) 2 Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VK is denoted in bold text (SEQ ID NO: 37), and the antibody constant regions are italicized (SEQ ID NO: 38)
  • VNPTQK (SEQ ID NO:22)
  • An exemplary AAT-TNFa fusion protein is D2E7-Light Chain-AAT
  • ASTGS Linker described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VK is denoted in bold text (SEQ ID NO: 37), and the antibody constant regions is italicized (SEQ ID NO: 38)
  • An exemplary AAT-TNFa fusion protein is D2E7-Heavy Chain-AAT (G 3 S) 2 Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VH is denoted in bold text (SEQ ID NO: 39), and the antibody constant regions is italicized (SEQ ID NO: 40)
  • An exemplary AAT-TNFa fusion protein is D2E7-Heavy Chain-AAT ASTGS Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VH is denoted in bold text (SEQ ID NO: 39), and the antibody constant regions is italicized (SEQ ID NO: 40)
  • An exemplary AAT-TNFa fusion protein is TNFR2-ECD-Fcl-AAT(G 3 S) 2
  • An exemplary AAT-TNFa fusion protein is TNFR2-ECD-Fc 1 -AAT ASTGS
  • variable heavy (VH) and variable kappa (VK) regions of the anti-TNFa antibody, D2E7 were generated by gene synthesis.
  • the D2E7- VH gene was cloned in frame with a gene encoding a human IgGl antibody heavy chain constant region, consisting of a CHI domain, a hinge domain, a CH2 domain, and a CH3 domain, into a mammalian expression vector, containing a mammalian secretion signal sequence up stream of the VH domain insertion site (D2E7-HC).
  • the D2E7-VK gene was cloned in frame with a human antibody kappa light chain constant (CL) domain, into a mammalian expression vector, containing a mammalian secretion signal sequence up stream of the VK domain insertion site (D2E7-LC).
  • the AAT encoding gene and the adjacent 5' linker sequence were cloned in frame into the 3 ' end of either, the CH3 domain of the D2E7 heavy chain gene (D2E7-HC-AAT), or the CL domain of the D2E7 light chain gene (D2E7- LC-AAT) coding sequences in the above described mammalian expression vectors.
  • the extracellular domain of the TNFa Receptor 2 was generated by gene synthesis and cloned in frame with a gene encoding the hinge region, followed by a CH2 domain and a CH3 domain of human IgGl (hFcl) into a mammalian expression, containing a mammalian secretion signal sequence up stream of the TNFR2-ECD insertion site.
  • the AAT encoding gene and the adjacent 5' linker sequence were cloned in frame into the 3' end of the gene encoding TNFR2-ECD-hFcl into a mammalian expression vector (TNFR2- ECD-hFcl-AAT).
  • the D2E7-HC-AAT expression vector was co-trans fected with either the D2E7-LC or the D2E7-LC-AAT expression vector into mammalian cells (specifically HEK293 or CHO cells) to generate the D2E7 antibody with AAT fused to the C-terminus of the heavy chain or to the C-terminus of both the heavy chain and light chain, respectively.
  • the D2E7-LC-AAT was co-transfected with the D2E7-HC expression vector into mammalian cells to generate the D2E7 antibody with AAT fused to the C-terminus of the light chain.
  • the TNFR2-hFcl-AAT expression vector was transfected into mammalian cells. Transfected cells were grown for several days in 8% C0 2 at 37° C.
  • the recombinant AAT-TNFa targeting fusion proteins were purified from the expression cell supernatant by protein A chromatography.
  • a near neutral pH buffer was used (Gentle Ag/Ab Elution Buffer, Thermo Scientific) to elute the AAT-TNFa targeting fusion proteins from the protein A resin.
  • Figure 2B shows an SDS-PAGE gel of the D2E7 antibody alone (lane 1) and variant wherein AAT is fused to the heavy chain of D2E7 (lane 2).
  • the proteins were visualized by staining with coomassie blue.
  • AAT-TNFa targeting molecule fusion proteins were tested for activity by determining their ability to inhibit neutrophil elastase.
  • Human serum derived AAT (sdAAT) was used as a positive control in these assays.
  • NE inhibitory assay were conducted as described above.
  • Figure 2C demonstrates relative to sdAAT, the AAT-TNFa targeting molecule fusion protein shows similar inhibition of neutrophil elastase, indicating that the inhibitory capacity of AAT has not been compromised by its fusion to an antibody.
  • AAT derivatives comprising human AAT fused a WAP domain containing protein. These examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention.
  • the AAT polypeptide portion of the fusion protein is underlined, the Fc portion is italicized, and the WAP domain containing polypeptide is in bold font. While these examples include a hinge sequence and/or a linker sequence, fusion proteins of the invention can be made using any hinge sequence and/or a linker sequence suitable in length and/or flexibility. Alternatively fusion proteins can be made without using a hinge and/or a linker sequence. For example, the polypeptide components can be directly attached.
  • AAT-Fc-SLPI fusion protein is AAT-hFcl -SLPI (human IgGl Fc), described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), the Fc portion is italicized (SEQ ID NO: 3), and the WAP domain containing polypeptide is in bold font (SEQ ID NO: 9)
  • AAT-hFcl-SLPI human IgGl Fc
  • AAT-Fc-SLPI fusion protein is AAT-hFcl -SLPI (human IgGl Fc), described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), the Fc portion is italicized (SEQ ID NO: 3), and the WAP domain containing polypeptide is in bold font (SEQ ID NO: 12)
  • the genes encoding the SLPI and Elafin were PCR amplified from human spleen cDNA (Zyagen). These genes were cloned into the mammalian expression vectors of example 1, wherein the SLPI or Elafin gene was inserted in frame with the AAT-Fc gene. These expression vectors were transfected into mammalian cells (specifically HEK293 or CHO cells) and grown for several days in 8% C0 2 at 37° C. The recombinant AAT-Fc- WAP domain fusion proteins were purified from the expression cell supernatant by protein A chromatography. A near neutral pH buffer was used (Gentle Ag/Ab Elution Buffer, Thermo Scientific) to elute the AAT-Fc- WAP domain fusion protein from the protein A resin.
  • Figure 3B shows an SDS-PAGE gel of the AAT-Fc- WAP fusion proteins (lane 1 AAT-Fc-Elafin, lane 2 AAT-Fc-SLPI). The proteins were visualized by staining with coomassie blue. The purified AAT-Fc-WAP domain fusion proteins were tested for activity by determining their ability to inhibit neutrophil elastase. NE inhibitory assays were conducted as described above. Human serum derived AAT (sdAAT) and the AAT-Fc fusion protein were used as a positive control in these assays. Relative to sdAAT, the AAT- Fc-WAP targeting molecule fusion proteins display enhanced potency of NE inhibition of neutrophil elastase (Figure 3C).
  • sdAAT Human serum derived AAT
  • AAT-Fc-WAP targeting molecule fusion proteins display enhanced potency of NE inhibition of neutrophil elastase
  • the examples also illustrate useful methodology for practicing the invention. These examples do not and are not intended to limit the claimed invention.
  • the AAT portion is underlined and the albumin portion is italicized.
  • the polypeptide components can be directly attached.
  • AAT-HSA An exemplary AAT- Albumin fusion protein is AAT-HSA, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), and the albumin polypeptide is italicized (SEQ ID NO: 14)
  • AAT- Albumin fusion protein is AAT-HSA Domain 3, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), and the albumin polypeptide is italicized (SEQ ID NO: 15)
  • HSA human serum albumin
  • Figure 4B shows an SDS-PAGE gel of the AAT-HSA fusion protein
  • the proteins were visualized by staining with coomassie blue.
  • the purified AAT-HSA fusion proteins were tested for activity by determining their ability to inhibit neutrophil elastase.
  • NE inhibitory assays were conducted as described above. Human serum derived AAT (sdAAT) was used as a positive control in these assays. Relative to sdAAT, the AAT-HS fusion protein displays similar potency of NE inhibition, demonstrating that the fusion to albumin does not dampen the capacity of AAT to inhibit NE ( Figure 4C.)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Diabetes (AREA)
  • Cell Biology (AREA)
  • Pulmonology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Endocrinology (AREA)
  • Rheumatology (AREA)
  • Dermatology (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Epidemiology (AREA)

Abstract

This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin and second polypeptide comprising of at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a WAP domain containing polypeptide or a sequence derived from a WAP containing polypeptide; and an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide. This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.

Description

SERPIN FUSION POLYPEPTIDES AND METHODS OF USE THEREOF
Related Applications
[0001] This application claims the benefit of U.S. Provisional Application No.
61/502055, filed June 28, 2011; U.S. Provisional Application No. 61/570394, filed
December 14, 2011; and U.S. Provisional Application No. 61/577204, filed December 19, 2011; and U.S. Provisional Application No. 61/638168, filed April 25, 2012. The contents of each of these applications are hereby incorporated by reference in their entirety.
Field of the Invention
[0002] This invention relates to molecules, particularly polypeptides, more particularly fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptides and a second polypeptide. Additionally, the invention relates to fusion proteins that include a serpin polypeptide or an amino acid sequence that is derived from serpin polypeptides, a second polypeptide, and a third polypeptide.
Specifically, this invention relates to fusion proteins that include at least one serpin polypeptide and a second polypeptide or fusion proteins that include at least one serpin polypeptide, a second polypeptide, and a third polypeptide, where the second and third polypeptides of the fusion proteins of the invention can be at least one the following: an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide; a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide; a WAP domain containing polypeptide or a sequence derived from a WAP containing polypeptide; or an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide. This invention also relates to methods of using such molecules in a variety of therapeutic and diagnostic indications, as well as methods of producing such molecules.
Background of the Invention
[0003] Aberrant serine protease activity or an imbalance of protease-to-protease inhibitor can lead to protease-mediated tissue destruction and inflammatory responses. Accordingly, there exists a need for therapeutics and therapies that target aberrant serine protease activity and/or imbalance of protease-to-protease inhibitor. Furthermore, enhanced therapeutic effects may be gained through the attenuation of aberrant cytokine signaling and serine protease activity. In addition, serpin proteins have demonstrated anti-infective activities while targeting inflammatory cytokines has been shown to increase the risk of infection. The fusion proteins of this invention have the potential to dampen inflammatory cytokine activity and limit the risk of infection.
Summary of the Invention
[0004] The fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide (Polypeptide 1) and second polypeptide (Polypeptide 2). Additionally, the fusion proteins described herein include a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide (Polypeptide 1), a second polypeptide (Polypeptide 2), and a third polypeptide (Polypeptide 3). As used interchangeably herein, the terms "fusion protein" and "fusion polypeptide" refer to a serpin polypeptide or an amino acid sequence derived from a serpin polypeptide operably linked to at least a second polypeptide or an amino acid sequence derived from at least a second polypeptide. The individualized elements of the fusion protein can be linked in any of a variety of ways, including for example, direct attachment, the use of an intermediate or a spacer peptide, the use of a linker region, the use of a hinge region or the use of both a linker and a hinge region. In some embodiments, the linker region may fall within the sequence of the hinge region, or alternatively, the hinge region may fall within the sequence of the linker region. Preferably, the linker region is a peptide sequence. For example, the linker peptide includes anywhere from zero to 40 amino acids, e.g., from zero to 35 amino acids, from zero to 30 amino acids, from zero to 25 amino acids, or from zero to 20 amino acids. Preferably, the hinge region is a peptide sequence. For example, the hinge peptide includes anywhere from zero to 75 amino acids, e.g. , from zero to 70 amino acids, from zero to 65 amino acids or from zero to 62 amino acids. In embodiments where the fusion protein includes both a linker region and hinge region, preferably each of the linker region and the hinge region is a peptide sequence. In these embodiments, the hinge peptide and the linker peptide together include anywhere from zero to 90 amino acids, e.g., from zero to 85 amino acids or from zero to 82 amino acids.
[0005] In some embodiments, the serpin polypeptide and the second polypeptide can be linked through an intermediate binding protein. In some embodiments, the serpin-based portion and second polypeptide portion of the fusion protein may be non-covalently linked. [0006] In some embodiments, fusion proteins according to the invention can have one of the following formulae, in an N-terminus to C-terminus direction or in a C-terminus to N-terminus direction:
Polypeptide l(a) - hingem - Polypeptide 2<¾)
Polypeptide l(a) - linker„ - Polypeptide 2<¾)
Polypeptide l(a) - linker„ - hingem - Polypeptide 2(b)
Polypeptide l(a) - hingem - linker„ - Polypeptide 2(b)
Polypeptide l(a) - Polypeptide 2(b)- Polypeptide 3(C)
Polypeptide l(a) - hingem - Polypeptide 2(b)- hingem - Polypeptide 3(C)
Polypeptide l(a) - linker„ - Polypeptide 2(b)- linker„ - Polypeptide 3(C)
Polypeptide l(a) - hingem - linker„ - Polypeptide 2(b)-hingem - linker„ - Polypeptide
3(c) Polypeptide l(a) - linker„ - hingem - Polypeptide 2(b)- linker„ - hingem-
Polypeptide 3(C)
where n is an integer from zero to 20, where m is an integer from 1 to 62 and where a, b, and c integers of at least 1. These embodiments include the above formulations and any variation or combination thereof. For example, the order of polypeptides in the formulae also includes Polypeptide 3(C) - Polypeptide l(a)- Polypeptide 2(b), Polypeptide 2(b) - Polypeptide 3(C)- Polypeptide l(a), or any variation or combination thereof.
[0007] In some embodiments, the Polypeptide 1 sequence includes a serpin polypeptide. Serpins are a group of proteins with similar structures that were first identified as a set of proteins able to inhibit proteases. Serpin proteins suitable for use in the fusion proteins provided herein include, by way of non-limiting example, alpha- 1 antitrypsin (AAT), antitrypsin-related protein (SERPINA2), alpha 1 -antichymotrypsin (SERPINA3), kallistatin (SERPINA4), monocyte neutrophil elastase inhibitor (SERPINB1), PI-6
(SERPINB6), antithrombin (SERPINC1), plasminogen activator inhibitor 1 (SERPINE1), alpha 2-antiplasmin (SERPINF2), complement 1 -inhibitor (SERPING1), and neuroserpin (SERPINI1).
[0008] In some embodiments, the Polypeptide 1 sequence includes an alpha- 1 antitrypsin (AAT) polypeptide sequence or an amino acid sequence that is derived from
AAT. In some embodiments, the Polypeptide 1 sequence includes a portion of the AAT protein. In some embodiments, the Polypeptide 1 sequence includes at least the reactive site loop portion of the AAT protein. In some embodiments, the reactive site loop portion of the AAT protein includes at least the amino acid sequence:
GTEAAGAMFLEAI PMS I PPEVKFNK SEQ ID NO : 1 ) .
[0009] In a preferred embodiment, the AAT polypeptide sequence or an amino acid sequence that is derived from AAT is or is derived from a human AAT polypeptide sequence.
[00010] In some embodiments, the fusion protein includes a full-length human AAT polypeptide sequence having the following amino acid sequence:
1 EDPQGDAAQK TDTSHHDQDH PTFNKITPNL AEFAFSLYRQ LAHQSNSTNI FFSPVSIATA
61 FAMLSLGTKA DTHDEILEGL NFNLTEIPEA QIHEGFQELL RTLNQPDSQL QLTTGNGLFL
121 SEGLKLVDKF LEDVKKLYHS EAFTVNFGDT EEAKKQINDY VEKGTQGKIV DLVKELDRDT
181 VFALVNYIFF KGKWERPFEV KDTEEEDFHV DQVTTVKVPM MKRLGMFNIQ HCKKLSSWVL
241 LMKYLGNATA IFFLPDEGKL QHLENELTHD I ITKFLENED RRSASLHLPK LSITGTYDLK
301 SVLGQLGITK VFSNGADLSG VTEEAPLKLS KAVHKAVLTI DEKGTEAAGA MFLEAI PMS I
361 PPEVKFNKPF VFLMIEQNTK SPLFMGKVVN PTQK (SEQ ID NO: 2)
[00011] In some embodiments, the fusion protein includes a human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2.
[00012] In some embodiments, the AAT polypeptide sequence is, or the amino acid sequence derived from an AAT polypeptide is derived from, one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1,
CAJ15161.1, P01009.3, AAB59375.1, AAA51546.1, CAA25838.1, NP 001002235.1, CAA34982.1, NP_001002236.1, NP_000286.3, NP_001121179.1, NP_001121178.1, NP_001121177.1, NP_001121176.16, NP_001121175.1, NP_001121174.1,
NP_001121172.1, and/or AAA51547.1.
[00013] In some embodiments, the fusion proteins contain one or more mutations.
For example, the fusion protein contains at least one mutation at a methionine (Met) residue in the serpin portion of the fusion protein. In these Met mutations, the Met residue can be substituted with any amino acid. For example, the Met residue can be substituted with an amino acid with a hydrophobic side chain, such as, for example, leucine (Leu, L). Without wishing to be bound by theory, the Met mutation(s) prevent oxidation and subsequent inactivation of the inhibitory activity of the fusion proteins of the invention. In some embodiments, the Met residue can be substituted with a charged residue, such as, for example, glutamate (Glu, E). In some embodiments, the Met mutation is at position 358 of an AAT polypeptide. For example, the Met mutation is Met358Leu (M358L). In some embodiments, the Met mutation is at position 351 of an AAT polypeptide. For example, the Met mutation is Met35 lGlu (M35 IE). In some embodiments, the Met mutation is at position 351 and at position 358 of an AAT polypeptide, for example, the Met mutation is Met351Glu (M351E) and Met358Leu (M358L). For example, the reactive site loop of this variant of the fusion AAT polypeptide has the following sequence:
GTEAAGAEFLEAI PLS I PPEVKFNK (SEQ ID NO: 32) . In some embodiments, the Met mutation is at position 351 and at position 358 of an AAT polypeptide, for example, the Met mutation is Met351Leu (M351L) and Met358Leu (M358L). For example, the reactive site loop of this variant of the fusion AAT polypeptide has the following sequence:
GTEAAGALFLEAI PLS I PPEVKFNK (SEQ ID NO: 33).
[00014] In some embodiments, the second polypetide (Polypeptide 2) of the serpin fusion protein is an Fc polypeptide or derived from an Fc polypeptide. These embodiments are referred to collectively herein as "serpin-Fc fusion proteins." The serpin-Fc fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide. In some embodiments, the serpin-Fc fusion protein includes a single serpin polypeptide. In other embodiments, the serpin-Fc fusion proteins includes more than one serpin polypeptide, and these embodiments are collectively referred to herein as "serpin(a')-Fc fusion protein," wherein (a') is an integer of at least 2. In some embodiments, each serpin polypeptides in a serpin(a')-Fc fusion protein includes the same amino acid sequence. In other embodiments, each serpin polypeptide in a serpin(a')-Fc fusion protein includes serpin polypeptides with distinct amino acid sequences. The serpin polypeptides of serpin(a')-Fc fusion proteins can be located at any position within the fusion protein.
[00015] In some embodiments, the serpin polypeptide of the serpin-Fc fusion protein includes at least the amino acid sequence of the reactive site loop portion of the AAT protein. In some embodiments, the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1. In some embodiments, the serpin polypeptide of the serpin-Fc fusion protein includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein. In some embodiments, the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33. In some embodiments, the serpin polypeptide of the serpin-Fc fusion protein includes at least the full-length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-Fc fusion protein includes human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
[00016] In some embodiments, the serpin polypeptide of the serpin-Fc fusion protein includes the AAT polypeptide sequence is or the amino acid sequence derived from an AAT polypeptide is derived from one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1 , CAJ 15161.1 , P01009.3 , AAB59375.1 ,
AAA51546.1, CAA25838.1, NP 001002235.1, CAA34982.1, NP 001002236.1,
NP_000286.3, NP_001121179.1, NP_001121178.1, NP_001121177.1, NP_001121176.16, NP_001121175.1, NP_001121174.1, NP_001121172.1, and/or AAA51547.1.
[00017] In some embodiments, the Fc polypeptide of the fusion protein is a human Fc polypeptide, for example, a human IgG Fc polypeptide sequence or an amino acid sequence that is derived from a human IgG Fc polypeptide sequence. For example, in some embodiments, the Fc polypeptide is a human IgGl Fc polypeptide or an amino acid sequence that is derived from a human IgGl Fc polypeptide sequence. In some
embodiments, the Fc polypeptide is a human IgG2 Fc polypeptide or an amino acid sequence that is derived from a human IgG2 Fc polypeptide sequence. In some
embodiments, the Fc polypeptide is a human IgG3 Fc polypeptide or an amino acid sequence that is derived from a human IgG3 Fc polypeptide sequence. In some
embodiments, the Fc polypeptide is a human IgG4 Fc polypeptide or an amino acid sequence that is derived from a human IgG4 Fc polypeptide sequence. In some
embodiments, the Fc polypeptide is a human IgM Fc polypeptide or an amino acid sequence that is derived from a human IgM Fc polypeptide sequence.
[00018] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgGl Fc polypeptide sequence having the following amino acid sequence:
1 APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVKFNWYVD GVEVHNAKTK 61 PREEQYNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKAK GQPREPQVYT 121 LPPSRDELTK NQVSLTCLVK GFYPSDIAVE WESNGQPENN YKTTPPVLDS DGSFFLYSKL 181 TVDKSRWQQG NVFSCSVMHE ALHNHYTQKS LSLSPGK (SEQ ID NO: 3) [00019] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgGl Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 3.
[00020] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide is mutated or modified to enhance FcRn binding. In these embodiments the mutated or modified Fc polypeptide includes the following mutations: Met252Tyr, Ser254Thr, Thr256Glu (M252Y, S256T, T256E) or Met428Leu and Asn434Ser (M428L, N434S) using the Kabat numbering system. In some
embodiments the Fc polypeptide portion is mutated or otherwise modified so as to disrupt Fc-mediated dimerization. In these embodiments, the fusion protein is monomeric in nature.
[00021] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgG2 Fc polypeptide sequence having the following amino acid sequence:
1 APPVAGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSHEDP EVQFNWYVDG VEVHNAKTKP
61 REEQFNSTFR VVSVLTVVHQ DWLNGKEYKC KVSNKGLPAP IEKTISKTKG QPREPQVYTL
121 PPSREEMTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPMLDSD GSFFLYSKLT
181 VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK (SEQ ID NO: 4)
[00022] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgG2 Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 4.
[00023] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgG3 Fc polypeptide sequence having the following amino acid sequence:
1 APELLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSHED PEVQFKWYVD GVEVHNAKTK
61 PREEQYNSTF RVVSVLTVLH QDWLNGKEYK CKVSNKALPA PIEKTISKTK GQPREPQVYT
121 LPPSREEMTK NQVSLTCLVK GFYPSDIAVE WESSGQPENN YNTTPPMLDS DGSFFLYSKL
181 TVDKSRWQQG NIFSCSVMHE ALHNRFTQKS LSLSPGK (SEQ ID NO: 5)
[00024] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgG3 Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 5.
[00025] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgG4 Fc polypeptide sequence having the following amino acid sequence:
1 APEFLGGPSV FLFPPKPKDT LMISRTPEVT CVVVDVSQED PEVQFNWYVD GVEVHNAKTK
61 PREEQFNSTY RVVSVLTVLH QDWLNGKEYK CKVSNKGLPS SIEKTISKAK GQPREPQVYT
121 LPPSQEEMTK NQVSLTCLVK GFYPDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSRLT
181 VDKSRWQEGN VFSCSVMHEA LHNHYTQKSL SLSLGK (SEQ ID NO: 6)
[00026] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgG4 Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 6.
[00027] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgM Fc polypeptide sequence having the following amino acid sequence:
1 IAELPPKVSV FVPPRDGFFG NPRKSKLICQ ATGFSPRQIQ VSWLREGKQV GSGVTTDQVQ
61 AEAKESGPTT YKVTSTLTIK ESDWLGQSMF TCRVDHRGLT FQQNASSMCV PDQDTAIRVF
121 AIPPSFASIF LTKSTKLTCL VTDLTTYDSV TISWTRQNGE AVKTHTNISE SHPNATFSAV
181 GEASICEDDW NSGERFTCTV THTDLPSPLK QTISRPKG (SEQ ID NO: 7)
[00028] In some embodiments where the fusion protein of the invention includes an
Fc polypeptide, the Fc polypeptide of the fusion protein includes a human IgM Fc polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 7.
[00029] In some embodiments of the fusion proteins provided herein, the second polypeptide (Polypeptide 2) of the serpin fusion protein is a cytokine targeting polypeptide or derived from a cytokine targeting polypeptide. These embodiments are referred to collectively herein as "serpin-cytokine targeting polypeptide fusion proteins." The serpin- cytokine targeting polypeptide fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide and a cytokine targeting polypeptide, or derivation thereof. In some embodiments, the serpin- cytokine targeting polypeptide fusion protein includes a single serpin polypeptide. In other embodiments, the serpin-cytokine targeting polypeptide fusion protein includes more than one serpin polypeptide, and these embodiments are collectively referred to herein as "serpin(a')-cytokine targeting polypeptide fusion proteins," wherein (a') is an integer of at least 2. In some embodiments, each serpin polypeptide in a serpin(a')-cytokine targeting polypeptide fusion protein includes the same amino acid sequence. In other embodiments, each serpin polypeptide of a serpin(a)-cytokine targeting polypeptide fusion protein includes serpin polypeptides with distinct amino acid sequences.
[00030] In some embodiments, the cytokine targeting polypeptide of the serpin- cytokine targeting polypeptide fusion protein is a cytokine receptor or derived from a cytokine receptor. In a preferred embodiment, the cytokine targeting polypeptide or an amino acid sequence that is derived from the cytokine receptor is or is derived from a human cytokine receptor sequence. In other embodiments, the cytokine targeting polypeptide is an antibody or an antibody fragment, for example an anti-cytokine antibody or anti-cytokine antibody fragment. In a preferred embodiment, the cytokine targeting polypeptide or an amino acid sequence that is derived from the antibody or antibody fragment is derived from a chimeric, humanized, or fully human antibody sequence. The term antibody fragment includes single chain, Fab fragment, a F(ab')2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody.
[00031] In other embodiments, the cytokine targeting polypeptide binds a cytokine receptor and prevents binding of a cytokine to the receptor. In other embodiments, the cytokine targeting polypeptide is an antibody or an antibody fragment, for example an anti- cytokine receptor antibody or anti-cytokine receptor antibody fragment.
[00032] In some embodiments, the serpin polypeptide of the serpin-cytokine targeting polypeptide fusion proteins includes at least the amino acid sequence of the reactive site loop portion of the AAT protein. In some embodiments, the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1. In some embodiments, the serpin polypeptide of the serpin-cytokine targeting fusion proteins includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein. In some embodiments, the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33. In some embodiments, the serpin polypeptide of the serpin-cytokine targeting fusion protein includes or is derived from at least the full-length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-cytokine targeting fusion protein includes human AAT
polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
[00033] In some embodiments, the serpin polypeptide of the serpin-cytokine targeting fusion protein includes an AAT polypeptide sequence or an amino acid sequence derived from an AAT polypeptide that is or is derived from one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1, CAJ15161.1, P01009.3, AAB59375.1, AAA51546.1, CAA25838.1, NP 001002235.1, CAA34982.1, NP_001002236.1, NP_000286.3, NP_001121179.1, NP 001121178.1, ΝΡ ΟΟΙ 121177.1, NP_001121176.16, NP_001121175.1, NP_001121174.1, NP_001121172.1, and/or
AAA51547.1.
[00034] The serpin-cytokine targeting polypeptide fusion protein can incorporate a portion of the serpin-Fc fusion protein. For example, an antibody contains an Fc
polypeptide. Therefore, in some embodiments where the cytokine targeting polypeptide is a cytokine -targeting antibody, the serpin-cytokine targeting polypeptide fusion protein will incorporate a portion of the serpin-Fc fusion protein. Furthermore, most receptor fusion proteins that are of therapeutic utility are Fc fusion proteins. Thus, in some embodiments, wherein the serpin-cytokine targeting polypeptide fusion protein is a serpin-cytokine receptor fusion protein, the serpin-cytokine targeting polypeptide fusion protein may incorporate an Fc polypeptide in addition to the serpin portion and the cytokine receptor portion.
[00035] In some embodiments, where the serpin-cytokine targeting polypeptide fusion protein includes an Fc polypeptide sequence, the Fc polypeptide sequence includes or is derived from the amino acid sequence of any one of SEQ ID NO: 3, 4, 5, 6, or 7. In some embodiments where the serpin-cytokine targeting fusion protein includes an Fc polypeptide sequence, the Fc polypeptide sequence has at least 50%>, 60%>, 65%>, 70%>, 75%>, 80%>, 85%>,
90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to any one of the amino acid sequence of SEQ ID NO: 3, 4, 5, 6, or 7. In some embodiments, the serpin polypeptide and the cytokine targeting polypeptide are operably linked via a linker region, for example, a glycine-serine linker or glycine-serine based linker. In some embodiments, the serpin polypeptide and the cytokine targeting polypeptide are operably linked via a hinge region.
In some embodiments, the serpin polypeptide and the cytokine targeting polypeptide are operably linked via a linker region and a hinge region. In other embodiments, the serpin polypeptide and the cytokine targeting polypeptide are directly attached.
[00036] In some embodiments of the fusion proteins provided herein, the second polypeptide (Polypeptide 2) of the serpin fusion protein is a whey acidic protein (WAP) domain containing polypeptide, or an amino acid sequence that is derived from a WAP domain containing polypeptide. These embodiments are referred to collectively herein as "serpin- WAP domain fusion proteins." The serpin-WAP domain fusion proteins include at least a serpin polypeptide or at least an amino acid sequence that is derived from a serpin, a WAP domain-containing polypeptide or an amino acid sequence that is derived from a WAP domain-containing polypeptide. In some embodiments, the serpin-WAP domain fusion protein includes a single serpin polypeptide. In other embodiments, the serpin-WAP targeting polypeptide fusion protein includes more than one serpin polypeptide. These embodiments are collectively referred to herein as "serpin(a')-WAP domain fusion proteins," wherein (a') is an integer of at least 2. In some embodiments, serpin polypeptides of the serpin(a')-WAP domain fusion protein includes the same amino acid sequence. In other embodiments, the serpin polypeptides of the serpin(a')-cytokine targeting polypeptide fusion protein, includes serpin polypeptides with distinct amino acid sequences.
[00037] These serpin-WAP domain fusion proteins include a WAP domain containing polypeptide or polypeptide sequence that is or is derived from a WAP domain containing polypeptide. The WAP domain is an evolutionarily conserved sequence motif of 50 amino acids containing eight cysteines found in a characteristic 4-disulfide core arrangement (also called a four-disulfide core motif). The WAP domain sequence motif is a functional motif characterized by serine protease inhibition activity in a number of proteins.
[00038] WAP domain-containing polypeptides suitable for use in the fusion proteins provided herein include, by way of non-limiting example, secretory leukocyte protease inhibitor (SLPI), Elafin, and Eppin.
[00039] In some embodiments, the WAP domain-containing polypeptide sequence of the fusion protein includes a secretory leukocyte protease inhibitor (SLPI) polypeptide sequence or an amino acid sequence that is derived from SLPI. These embodiments are referred to herein as "serpin-SLPI-derived fusion proteins." In some embodiments, the SLPI polypeptide sequence comprises a portion of the SLPI protein, such as for example, the WAP2 domain or a sub-portion thereof. In a preferred embodiment, the SLPI polypeptide sequence or an amino acid sequence that is derived from SLPI is or is derived from a human SLPI polypeptide sequence.
[00040] In some embodiments of the serpin-SLPI fusion proteins of the invention, the
SLPI sequence or a SLPI-derived sequence of the fusion protein includes a full-length human SLPI polypeptide sequence having the following amino acid sequence:
1 MKSSGLFPFL VLLALGTLAP WAVEGSGKSF KAGVCPPKKS AQCLRYKKPE CQSDWQCPGK 61 KRCCPDTCGI KCLDPVDTPN PTRRKPGKCP VTYGQCLMLN PPNFCEMDGQ CKRDLKCCMG 121 MCGKSCVSPV KA (SEQ ID NO : 8 )
[00041] In some embodiments of the serpin-SLPI fusion protein of the invention, the
SLPI sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 8.
[00042] In some embodiments of the serpin-SLPI fusion protein of the invention, the
SLPI sequence or a SLPI-derived sequence of the fusion protein includes a portion of the full-length human SLPI polypeptide sequence, where the portion has the following amino acid sequence:
1 SGKSFKAGVC PPKKSAQCLR YKKPECQSDW QCPGKKRCCP DTCGIKCLDP VDTPNPTRRK 61 PGKCPVTYGQ CLMLNPPNFC EMDGQCKRDL KCCMGMCGKS CVSPVKA (SEQ ID NO: 9)
[00043] In some embodiments of the serpin-SLPI fusion protein of the invention, the
SLPI sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 9.
[00044] In some embodiments of the serpin-SLPI fusion protein of the invention, the
SLPI sequence or a SLPI-derived sequence of the fusion protein includes the WAP2 domain of the full-length human SLPI polypeptide sequence, where the WAP2 domain has the following amino acid sequence:
1 TRRKPGKCPV TYGQCLMLNP PNFCEMDGQC KRDLKCCMGM CGKSCVSPVK A
(SEQ ID NO: 10)
[00045] In some embodiments of the serpin-SLPI fusion protein of the invention, the
SLPI sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 10.
[00046] In some embodiments of the serpin-SLPI fusion proteins of the invention, the SLPI polypeptide sequence or the amino acid sequence derived from an SLPI polypeptide is or is derived from, one or more of the human SLPI polypeptide sequences shown in GenBank Accession Nos. CAA28187.1, NP_003055.1, EAW75869.1, P03973.2, AAH20708.1, CAB64235.1, CAA28188.1, AAD19661.1, and/or BAG35125.1.
[00047] In some embodiments of the serpin-SLPI fusion proteins of the invention, the SLPI polypeptide sequence or a SLPI-derived sequence of the fusion protein includes a human SLPI polypeptide sequence that is modified at a Methoine (Met) residue. In these Met mutations, the Met residue can be substituted with any amino acid. For example, the Met residue can be substituted with an amino acid with a hydrophobic side chain, such as, for example, leucine (Leu, L) or valine (Val, V). Without wishing to be bound by theory, the Met mutation(s) prevent oxidation and subsequent inactivation of the inhibitory activity of the fusion proteins of the invention. In some embodiments, the Met mutation is at position 98 of an SLPI polypeptide. For example, the modified SLPI polypeptide sequence of the serpin-SLPI includes mutations M98L or M98V in SEQ ID NO: 8.
[00048] In other embodiments, the WAP domain-containing polypeptide sequence of the fusion protein includes an elafin polypeptide sequence or an amino acid sequence that is derived from elafin. These embodiments are referred to herein as "serpin-elafm fusion proteins. In some embodiments, the elafin polypeptide sequence includes a portion of the elafin protein, such as for example, the WAP domain or a sub-portion thereof. In a preferred embodiment, the elafin polypeptide sequence or an amino acid sequence that is derived from elafin is or is derived from a human elafin polypeptide sequence.
[00049] In some embodiments of the serpin-elafm fusion proteins, the fusion protein includes a full-length human elafin polypeptide sequence having the following amino acid sequence:
1 MRASSFLIVV VFLIAGTLVL EAAVTGVPVK GQDTVKGRVP FNGQDPVKGQ VSVKGQDKVK 61 AQEPVKGPVS TKPGSCPIIL IRCAMLNPPN RCLKDTDCPG IKKCCEGSCG MACFVPQ
(SEQ ID NO: 11) [00050] In some embodiments of the serpin-elafm fusion proteins, the fusion protein includes a human elafin polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 11.
[00051] In some embodiments of the serpin-elafm fusion proteins, the fusion protein includes a portion of the full-length human elafin polypeptide sequence, where the portion has the following amino acid sequence:
1 AVTGVPVKGQ DTVKGRVPFN GQDPVKGQVS VKGQDKVKAQ EPVKGPVSTK PGSCPIILIR 61 CAMLNPPNRC LKDTDCPGIK KCCEGSCGMA CFVPQ
(SEQ ID NO: 12)
[00052] In some embodiments of the serpin-elafm fusion proteins, the fusion protein includes a human elafin polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 12.
[00053] In some embodiments of the serpin-elafm fusion proteins, the fusion protein includes the WAP domain of the full-length human elafin polypeptide sequence, where the WAP domain has the following amino acid sequence:
1 VSTKPGSCPI ILIRCAMLNP PNRCLKDTDC PGIKKCCEGS CGMACFVPQ
(SEQ ID NO: 13)
[00054] In some embodiments of the serpin-elafm fusion proteins, the fusion protein includes a human elafin polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 13.
[00055] In some embodiments of the serpin-elafm fusion proteins, the elafin polypeptide sequence or the amino acid sequence derived from an elafin polypeptide is derived from one or more of the human elafin polypeptide sequences shown in GenBank Accession Nos. P19957.3, NP 002629.1, BAA02441.1, EAW75814.1, EAW75813.1, Q8IUB2.1 , and/or NP_542181.1.
[00056] In other embodiments, the WAP domain-containing polypeptide sequence of the fusion protein includes an Eppin polypeptide sequence or an amino acid sequence that is derived from Eppin. These embodiments are referred to herein as "serpin(a')-Eppin fusion proteins. In some embodiments, the Eppin polypeptide sequence of the serpin-Eppin fusion protein includes a portion of the Eppin protein, such as for example, the WAP domain or a sub-portion thereof. In a preferred embodiment, the Eppin polypeptide sequence or an amino acid sequence that is derived from Eppin is or is derived from a human Eppin polypeptide sequence.
[00057] In some embodiments of the serpin-Eppin fusion proteins, the Eppin polypeptide sequence or amino acid sequence derived from an Eppin polypeptide is or is derived from one or more of the human Eppin polypeptide sequences shown in GenBank Accession Nos. 095925.1, NP_065131.1, AAH44829.2, AAH53369.1, AAG00548.1, AAG00547.1, and/or AAG00546.1.
[00058] In some embodiments, the serpin polypeptide of the serpin-WAP domain fusion protein includes at least the amino acid sequence of the reactive site loop portion of the AAT protein. In some embodiments, the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1. In some embodiments, the serpin polypeptide of the serpin-WAP fusion protein includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein. In some embodiments, the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33. In some embodiments, the serpin polypeptide of the serpin-WAP domain fusion protein includes at least the full- length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-WAP domain fusion protein includes human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
[00059] In some embodiments, the serpin polypeptide of the serpin-WAP domain fusion protein includes the AAT polypeptide sequence is, or the amino acid sequence derived from an AAT polypeptide is derived from, one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1, CAJ15161.1, P01009.3, AAB59375.1, AAA51546.1, CAA25838.1, NP 001002235.1, CAA34982.1, NP_001002236.1, NP_000286.3, NP_001121179.1, NP 001121178.1, ΝΡ ΟΟΙ 121177.1, NP_001121176.16, NP_001121175.1, NP_001121174.1, NP_001121172.1, and/or
AAA51547.1.
[00060] In some embodiments, the serpin-WAP domain fusion protein can also include an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide. These embodiments are referred to collectively herein as "serpin-Fc-WAP domain fusion proteins." In these embodiments, no particular order is to be construed by this terminology. For example, the order of the fusion protein can be serpin-Fc-WAP domain, serpin-WAP domain-Fc, or any variation combination thereof. The serpin-Fc-WAP domain fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin, WAP domain-containing polypeptide or an amino acid sequence that is derived from a WAP domain-containing polypeptide, and an
Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide.
[00061] In some embodiments, where the serpin-WAP domain fusion protein includes an Fc polypeptide sequence, the Fc polypeptide sequence can have the amino acid sequence of SEQ ID NO: 3-7. In other embodiments, where the serpin-WAP domain fusion protein includes an Fc polypeptide sequence, the Fc polypeptide sequence can have at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NOs. 3-7. In some embodiments, the serpin-WAP domain fusion protein can also include an albumin polypeptide, or an amino acid sequence that is derived from an albumin polypeptide. These embodiments are referred to collectively herein as "serpin-albumin-WAP domain fusion proteins." In these embodiments, no particular order is to be construed by this terminology. For example, the order of the fusion protein can be serpin-albumin-WAP domain, serpin-WAP domain- albumin, or any variation combination thereof. The serpin-albumin-WAP domain fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin, WAP domain-containing polypeptide, or an amino acid sequence that is derived from a WAP domain-containing polypeptide, and an albumin polypeptide, or an amino acid sequence that is derived from an albumin polypeptide.
[00062] In some embodiments where the serpin-WAP domain fusion protein includes an albumin polypeptide sequence, the albumin polypeptide sequence includes the amino acid sequence of SEQ ID NO: 14-15, described herein. In other embodiments, where the serpin-WAP domain fusion protein includes an albumin polypeptide sequence, the albumin polypeptide sequence has at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to the any one of the amino acid sequences having SEQ ID NO: 14 or 15.
[00063] In some embodiments, the second polypeptide (Polypeptide 2) of the serpin fusion protein is an albumin polypeptide or is derived from an albumin polypeptide. These embodiments are referred to collectively herein as "serpin(a')-albumin fusion proteins." The serpin-albumin fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and an albumin polypeptide or an amino acid sequence that is derived from an albumin polypeptide. In addition this invention relates to serpin albumin binding polypeptide fusion proteins, wherein the albumin is operably linked to the serpin via an intermediate binding molecule. Herein, the serpin is non- covalently or covalently bound to human serum albumin.
[00064] In embodiments where the fusion protein of the invention includes an albumin polypeptide sequence, the albumin polypeptide sequence of the fusion protein is a human serum albumin (HSA) polypeptide or an amino acid sequence derived from HSA. In some embodiments, the fusion protein includes a HSA polypeptide sequence having the following amino acid sequence:
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAEN CDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDV MCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLPKLD ELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTE CCHGDLLECADDRADLAKYICENQDS I SSKLKECCEKPLLEKSHCIAEVENDEMPADLPSL AADFVESKDVCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADP HECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVS RNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCF SALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMD DFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL (SEQ ID NO: 14)
[00065] In embodiments where the fusion protein of the invention includes an albumin polypeptide sequence, the albumin polypeptide sequence of the fusion protein includes a human serum albumin polypeptide sequence that is at least 50%, 60%>, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 14.
[00066] In embodiments where the fusion protein of the invention includes an albumin polypeptide sequence, the albumin polypeptide sequence of the fusion protein fusion protein includes a domain 3 of human serum albumin polypeptide sequence having the following amino acid sequence: EEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCK HPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVP KEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCC KADDKETCFAEEGKKLVA (SEQ ID NO: 15)
[00067] In embodiments where the fusion protein of the invention includes an albumin polypeptide sequence, the albumin polypeptide sequence of the fusion protein includes a human serum albumin polypeptide sequence that is at least 50%, 60%>, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 15.
[00068] In some embodiments where the fusion protein of the invention includes an albumin polypeptide sequence, the fusion protein is linked to the human serum albumin via an intermediate albumin binding polypeptide. The albumin binding polypeptide can be an antibody or an antibody fragment or derived from an antibody or antibody fragment. In a preferred embodiment, the albumin binding polypeptide or an amino acid sequence that is derived from the antibody or antibody fragment is derived from a chimeric, humanized, or fully human antibody sequence. The term antibody fragment includes single chain, Fab fragment, a F(ab')2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody. In addition, the albumin binding polypeptide can be an albumin binding peptide. Another embodiment of the invention is a serpin albumin binding polypeptide fusion, wherein the albumin binding polypeptide is domain 3 of Streptococcal protein G or a sequence derived from domain 3 of Streptococcal protein G.
[00069] In some embodiments, the serpin polypeptide of the serpin(a')-albumin fusion proteins includes at least the amino acid sequence of the reactive site loop portion of the AAT protein. In some embodiments, the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO: 1. In some embodiments, the serpin polypeptide of the serpin-albumin fusion protein includes at least the amino acid sequence of a variant of the reactive site loop portion of the AAT protein. In some embodiments, the variant of the reactive site loop portion of the AAT protein includes at least the amino acid sequence of SEQ ID NO:32 or SEQ ID NO:33. In some embodiments, the serpin polypeptide of the serpin-albumin fusion proteins includes at least the full-length human AAT polypeptide sequence having amino acid sequence of SEQ ID NO: 2. In some embodiments the serpin polypeptide of the serpin-albumin fusion proteins includes human AAT polypeptide sequence that is at least 50%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 or 32 or 33.
[00070] In some embodiments, the serpin polypeptide of the serpin-albumin fusion proteins includes the AAT polypeptide sequence or the amino acid sequence derived from an AAT polypeptide is or is derived from one or more of the human AAT polypeptide sequences shown in GenBank Accession Nos. AAB59495.1, CAJ15161.1, P01009.3, AAB59375.1, AAA51546.1, CAA25838.1, NP 001002235.1, CAA34982.1,
NP_001002236.1, NP_000286.3, NP_001121179.1, NP 001121178.1, ΝΡ ΟΟΙ 121177.1, NP_001121176.16, NP_001121175.1, NP_001121174.1, NP_001121172.1, and/or AAA51547.1.
[00071] In some embodiments, the fusion proteins are modified to increase or otherwise inhibit proteolytic cleavage, for example, by mutating one or more proteolytic cleavage sites. In some embodiments, the fusion proteins are modified to alter or otherwise modulate an Fc effector function of the fusion protein, while simultaneously retaining binding and inhibitory function as compared to an unaltered fusion protein. Fc effector functions include, by way of non-limiting examples, Fc receptor binding, prevention of proinflammatory mediator release upon binding to the Fc receptor, phagocytosis, modified antibody-dependent cell-mediated cytotoxicity (ADCC), modified complement-dependent cytotoxicity (CDC), modified glycosylation at Asn297 residue (EU index of Kabat numbering, Kabat et al 1991 Sequences of Proteins of Immunological Interest) of the Fc polypeptide. In some embodiments, the fusion proteins are mutated or otherwise modified to influence Fc receptor binding. In some embodiments, the Fc polypeptide is modified to enhance FcRn binding. Examples of Fc polypeptide mutations that enhance binding to FcRn are Met252Tyr, Ser254Thr, Thr256Glu (M252Y, S256T, T256E) (Kabat numbering, Dall'Acqua et al 2006, J. Biol Chem Vol 281(33) 23514-23524), or Met428Leu and Asn434Ser (M428L, N434S) (Zalevsky et al 2010 Nature Biotech, Vol. 28(2) 157-159). (EU index of Kabat et al 1991 Sequences of Proteins of Immunological Interest). In some embodiments the Fc polypeptide portion is mutated or otherwise modified so as to disrupt Fc-mediated dimerization (Ying et al 2012 J. Biol Chem 287(23): 19399-19408). In these embodiments, the fusion protein is monomeric in nature. [00072] The fusion proteins and variants thereof provided herein exhibit inhibitory activity, for example by inhibiting a serine protease such as human neutrophil elastase (NE), a chemotrypsin-fold serine protease that is secreted by neutrophils during an inflammatory response. The fusion proteins provided herein completely or partially reduce or otherwise modulate serine protease expression or activity upon binding to, or otherwise interacting with, a serine protease, e.g., a human serine protease. The reduction or modulation of a biological function of a serine protease is complete or partial upon interaction between the fusion proteins and the human serine protease protein, polypeptide and/or peptide. The fusion proteins are considered to completely inhibit serine protease expression or activity when the level of serine protease expression or activity in the presence of the fusion protein is decreased by at least 95%, e.g., by 96%, 97%, 98%, 99% or 100% as compared to the level of serine protease expression or activity in the absence of interaction, e.g., binding, with a fusion protein described herein. The fusion proteins are considered to partially inhibit serine protease expression or activity when the level of serine protease expression or activity in the presence of the fusion protein is decreased by less than 95%, e.g., 10%, 20%, 25%, 30%, 40%, 50%, 60%, 75%, 80%, 85% or 90% as compared to the level of serine protease expression or activity in the absence of interaction, e.g., binding, with a fusion protein described herein.
[00073] The fusion proteins described herein are useful in a variety of therapeutic, diagnostic and prophylactic indications. For example, the fusion proteins are useful in treating a variety of diseases and disorders in a subject. In some embodiments, the serpin fusion proteins, including, fusion proteins described herein, are useful in treating, alleviating a symptom of, ameliorating and/or delaying the progression of a disease or disorder in a subject suffering from or identified as being at risk for a disease or disorder selected from alpha- 1 -antitrypsin (AAT) deficiency, emphysema, chronic obstructive pulmonary disease (COPD), acute respiratory distress sydrome (ARDS), allergic asthma, cystic fibrosis, cancers of the lung, ischemia-reperfusion injury, including, e.g. , ischemia/reperfusion injury following cardiac transplantation, myocardial infarction, rheumatoid arthritis, septic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, psoriasis, type I and/or type II diabetes, bacterial infections, fungal infections, viral infections, pneumonia, sepsis, graft versus host disease (GVHD), wound healing, Systemic lupus erythematosis, and Multiple sclerosis. [00074] Pharmaceutical compositions according to the invention include a fusion protein of the invention, including modified fusion proteins and other variants, along with a suitable carrier. These pharmaceutical compositions can be included in kits, such as, for example, diagnostic kits.
Brief Description of the Drawings
[00075] Figure 1 A is a schematic representation of some embodiments of serpin-Fc fusion proteins according to the invention. The serpin can be located at any position within the fusion protein. Serpin-Fc fusion protein incorporating more than one serpin polypeptide are also represented. Figure IB is a photograph of a SDS-PAGE gel showing serum derived AAT (lane 1), AAT-Fc 1 (lane 2, human IgGl Fc), and AAT-EL-Fcl (lane 3, Met351Glu, Met358Leu mutations within AAT, human IgGl Fc). Figure 1C is a graph showing the inhibition of neutrophil elastase activity by AAT-Fc fusion proteins. Figure ID is a photograph of a SDS-PAGE gel showing tetravalent AAT-Fc-AAT, having two AAT polypeptides per Fc polypeptide. Figure IE is a graph showing the inhibition of neutrophil elastase activity by a tetravalent AAT-Fc-AAT fusion protein. Figure IF is a graphing demonstrating the effect of low pH elution from protein A resin, wherein the NE inhibiting capacity of the AAT-Fc fusion protein eluted at low pH is drastically reduced. Figure 1G is a graph showing that the double mutant, AAT-EL-Fc (Met351Glu, Met358Leu mutations) is resistant to Η202 inactivation (cone), compared to wild type AAT and the single mutant AAT-EM-Fc (Met351Glu). Figure 1H is a graph depicting the serum clearance rates of serum derived AAT (sdAAT) compared to AAT-Fc in rats dosed with lOmg/kg protein (3 rats/test protein). The half life of AAT-Fc is substantially longer than that of sdAAT.
[00076] Figure 2A is a schematic representation of some embodiments of the serpin- cytokine targeting fusion proteins of the invention. The serpin can be fused to either the heavy chain, the light chain, or both of an antibody. Serpin-cytokine receptor fusion proteins are also depicted. Figure 2B is a photograph of a SDS-PAGE gel showing the D2E7 antibody (lane 1), and the D2E7 antibody with- AAT fused to heavy chain (lane 2). Figure 2C is a graph showing the inhibition of neutrophil elastase activity by a D2E7 antibody fused to AAT. Serum derived AAT is shown as a positive control, whereas the D2E7 antibody alone is shown as a negative control for NE inhibition. [00077] Figure 3A is a schematic representation of some embodiments of the serpin-
Fc-WAP fusion proteins. Figure 3B is a photograph of a SDS-PAGE gel showing AAT-Fc- ELAFIN (lane 1) and AAT-Fc-SLPI (lane 2). Figure 3C is a graph showing the inhibition of neutrophil elastase activity by an AAT-Fc-ELAFIN fusion protein and an AAT-Fc-SLPI fusion protein. An AAT-Fc fusion protein and serum derived AAT are included for comparison.
[00078] Figure 4A is a schematic representation of some embodiments of the AAT-
HSA fusion proteins. Figure 4B is a photograph of a SDS-PAGE gel showing an AAT- HSA fusion. Figure 4C is a graph showing the inhibition of neutrophil elastase activity by an AAT-HSA compared to serum derived AAT.
Detailed Description of the Invention
[00079] Human neutrophil elastase (NE) is a chymotrypsin-fold serine protease, secreted by neutrophils during inflammation. Aberrant activity of NE results in a progressive degradation of elastin tissues and the slow destruction of the alveolar structures of the lungs leading to emphysema and lung fibrosis (Lungarella et al 2008 Int. J. Biochem Cell Biol 40: 1287). Often, misguided NE activity is due to an imbalance of the protease with its natural inhibitor, alpha 1 -antitrypsin (AAT). This imbalance can result from enhanced neutrophil infiltration into the lungs, as observed in the lungs of smokers and patients with Cystic Fibrosis (CF), or Acute Respiratory Distress Syndrome (ARDS).
Conversely, a deficiency of AAT, usually as a result of a point mutation that causes ATT to aggregate and accumulate in the liver, leaves the lungs exposed to unchecked NE activity. Individuals with AAT deficiencies are at increased the risk of emphysema, COPD, liver disease, and numerous other conditions.
[00080] AAT deficiency affects approximately 100,000 Americans (according to estimates from the Alpha-1 Foundation), and many of the afflicted people die in their 30's and 40's. There are currently only a few FDA-approved drugs for treatment of ATT deficiency (Prolastin®, Aralast™, Zemaira®, Glassia™). Each drug is the natural AAT derived from pooled human plasma, which appears to be insufficient to meet the anticipated clinical demand. Furthermore, these products have short serum half lives (T 2 of approximately 5 days) and require high dose (60 mg/kg body weight) weekly infusions. The current market for these drugs is estimated at approximately $400 million. The market for AAT-like drugs is likely substantially larger, based on the estimation that as many as 95% of individuals with AAT-deficiencies go undiagnosed, and the fact that these drugs have the potential to be effective therapies for pathologies characterized by enhanced NE activity in individuals that are not AAT-deficient (e.g., cystic fibrosis (CF), acute respiratory distress syndrome (ARDS), smoking-induced emphysema and/or COPD).
[00081] AAT has been suggested to have broad spectrum anti-inflammatory activity
(Tilg et al 1993 J Exp Med 178: 1629 - 1636, Libert et al 1996 Immunol 157:5126 -5129, Pott et al, Journal of Leukocyte Biology 85 2009, Janciauskiene et al 2007 J. Biol Chem
282(12): 8573-8582, Nita et al 2007 Int J Biochem Cell Biol 39: 1 165 -1176). Recently, evidence has mounted that AAT may be useful in treating numerous human pathologies, outside of the commonly suggested inflammatory pulmonary conditions. Human AAT has shown to protect mice from clinical and histopathological signs of experimental
autoimmune encephalomyelitis (E AE), suggesting it could be a potential treatment of autoimmune diseases, such as multiple sclerosis or systemic lupus erythematosus (SLE) ( Subramanian et al 201 1 Metab Brain Dis 26: 107-113). Serum AAT has shown activity in rodent models of Graft Versus Host Disease (GVHD) (Tawara et al 2011 Proc. Natl. Acad. Sci. USA 109: 564-569, Marcondes et a/ 2011 5W Nov 3; 118(18):5031-9), which has lead to a human clinical trial using AAT to treat individuals with Steroid Non-responsive Acute GVHD (NCT01523821). Additionally, AAT has been effective in animal models of type I and type II diabetes, dampening inflammation, protecting islet cells from apoptosis and enabling durable islet cell allograft (Zhang et al 2007 Diabetes 56: 1316-1323, Lewis et al 2005 Proc Natl Acad Sci USA 102: 12153-12158, Lewis et al 2008 Proc Natl Acad Sci USA 105: 16236 -16241, Kalis et al 2010 Islets 2:185 - 189). Currently, there are numerous early human clinical trials of type I diabetes using serum derived AAT products
(NCT01183468, NCT01319331, NCT01304537).
[00082] The current serum-derived AAT products undergo extensive purification and testing to ensure the removal of pathogenic viruses, however, the risk of transmission of infectious agents cannot be completely eliminated. Moreover, serum is limited, which limits the production capacity of serum derived AAT. Attempts to address the concerns of serum derived products and production issues have been aimed at the expression of recombinant AAT. However, after 20 years of work, the generation of a therapeutically viable recombinant AAT has yet to reach the market (Kamaukhova et al 2006 Amino Acids 30: 317). Like the plasma-derived products, recombinant versions of AAT suffer from short serum half-lives, low production yields, and poor lung distribution.
[00083] The fusion proteins of the present invention have enhanced functionalities compared to the unmodified AAT molecule. The fusion of an AAT polypeptide with a second polypeptide that interacts with the neonatal Fc receptor (FcRn), serves to increase the serum half life, providing a much needed dosing benefit for patients. These FcRn interacting polypeptides of the fusion protein include immunoglobulin (Ig) Fc polypeptides derived from human IgGl, IgG2, IgG3, IgG4, or IgM, and derivatives of human albumin. In some embodiments, the fusion protein incorporates mutations with the AAT portion that render the molecule more resistant to inactivation by oxidation. For example Met35 lGlu, Met358Leu (AAT-EL-Fc), demonstrates resistance inactivation by Η202 oxidation (Figure 1G). While AAT is a natural anti-inflammatory protein, some embodiments of the invention provide enhanced inflammation dampening capacity through the fusion of an AAT polypeptide and a cytokine targeting polypeptide. The coupling of dual antiinflammatory functionalities from AAT and a second polypeptide, will provide more a potent therapeutic protein than either polypeptide on their own. Additionally, the coupling the anti-infective activity of AAT will mitigate the infection risk of most cytokine targeting biologies. Some embodiments provide for more potent anti-inflammatory and anti-infective proteins through the fusion an AAT-polypeptide and WAP domain contain polypeptide. The fusion proteins of the present invention are expected to be a great therapeutic utility and be superior to the current serum derived AAT products.
[00084] To extend the half life of recombinant AAT, recombinant DNA technology was used to create a AAT gene fusion with the Fc domain of human IgGl , IgG2, IgG3,
IgG4, IgM, or HSA, such that the expected protein product would be AAT followed by an
Fc domain ((AAT-Fc (IgGl), AAT-Fc (IgG2), AAT-Fc (IgG3), AAT-Fc (IgG4), AAT-Fc
(IgM)) or AAT followed by HSA. While it was known that fusion of Fc domains of HSA to some proteins, protein domains or peptides could extend their half-lives (see e.g.,
Jazayeri et al. BioDrugs 22, 11-26, Huang et al. (2009) Curr Opin Biotechnol 20, 692-699,
Kontermann et al. (2009) BioDrugs 23, 93-109, Schmidt et al. (2009) Curr Opin Drug
Discov Devel 12, 284-295), it was unknown if an Fc domain or HSA fused to AAT would allow for proper folding and maintenance of NE inhibitory activity, or could extend the half-life of recombinant AAT. The fusion proteins of the present invention are shown to be potent inhibitors of NE, have extended serum half lives, and in some embodiments resistant to oxidation. In other embodiments, the fusion proteins described herein have distinct properties by the incorporation of other functional polypeptides, including cytokine targeting polypeptides, and WAP domain containing polypeptides.
[00085] The fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and a second polypeptide. In some embodiments, for example, the invention provides a serpin polypeptide fused to human IgGl-Fc, IgG2-Fc, IgG3-Fc, IgG4-Fc, IgM-Fc, or HSA derivatives. The serpin-fusion described herein are expected to be useful in treating a variety of indications, including, by way of non- limiting example, alpha- 1 -antitrypsin (AAT) deficiency, emphysema, chronic obstructive pulmonary disease (COPD), acute respiratory distress sydrome (ARDS), allergic asthma, cystic fibrosis, cancers of the lung, ischemia-reperfusion injury, including, e.g., ischemia/reperfusion injury following cardiac transplantation, myocardial infarction, rheumatoid arthritis, septic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, psoriasis, type I and/or type II diabetes, bacterial infections, fungal infections, viral infections, pneumonia, sepsis, graft versus host disease (GVHD), wound healing, Systemic lupus erythematosis, and Multiple sclerosis.
[00086] In some embodiments, the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and second polypeptide. For example, the invention provides alpha- 1 -antitrypsin (AAT) fused to human IgGl-Fc, IgG2-Fc, IgG3-Fc, IgG4-Fc, IgM-Fc, or HSA derivatives.
[00087] In some embodiments, the fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin polypeptide and a cytokine targeting polypeptide or an amino acid sequence that is derived from a cytokine targeting polypeptide. For example, the invention provides serpin polypeptide or a sequence derived from a serpin polypeptide fused to a human cytokine receptor or derivative thereof. Another embodiment of the invention provides serpin polypeptide or a sequence derived from a serpin polypeptide fused to a cytokine targeting antibody, e.g., an anti-cytokine antibody, or a sequence derived from of a cytokine targeting antibody, e.g. , an anti-cytokine antibody, or sequence derived from a fragment of cytokine targeting antibody, e.g., a fragment of an anti-cytokine antibody. For example, the invention provides a serpin polypeptide or a sequence derived from a serpin polypeptide fused to a cytokine targeting polypeptide in which the cytokine targeting polypeptide binds any of the following human cytokines: TNFa, IgE, IL-12, IL-23, IL-6, IL-la, IL-Ιβ, IL-17, IL-13, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
[00088] For example, in some embodiments, the cytokine targeting polypeptide targets TNFa and includes any of the following TNFa-targeting polypeptide or sequences derived from the following TNFa-targeting polypeptides: Remicade®, Humira®,
Simponi®, Cimiza®, Enbrel® or ATN-103 and ATN-192.
[00089] For example, in some embodiments, the cytokine targeting polypeptide targets IgE and includes any of the following IgE-targeting polypeptide or sequences derived from the following IgE-targeting polypeptides: Xolair or FcsRI.
[00090] For example, in some embodiments, the cytokine targeting polypeptide targets the shared p40 subunit of IL-12 and IL-23 and includes the Stelara® polypeptide or sequences derived from the Stelara® polypeptide.
[00091] For example Stelara® the cytokine targeting polypeptide targets IL-13 and includes the CDP7766 polypeptide or sequences derived from the CDP7766 polypeptide.
[00092] In some embodiments, the fusion proteins described herein include at least a alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a cytokine targeting polypeptide or an amino acid sequence that is derived from a cytokine targeting polypeptide. For example, the invention provides alpha- 1 -antitrypsin inhibitor (AAT) fused a cytokine targeting polypeptide in which the cytokine targeting polypeptide binds any of the following human cytokines: TNFa, IgE, IL-6, IL-la, IL-Ιβ, IL-12, IL-17, IL-13, IL-23, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
[00093] In some embodiments the cytokine targeting polypeptide binds a cytokine receptor and prevents binding of the cytokine. For example, the present invention includes a serpin fused to a cytokine receptor targeting antibody. For example, the invention provides alpha- 1 -antitrypsin inhibitor (AAT) fused a cytokine targeting polypeptide in which the cytokine targeting polypeptide binds the receptor of any of the following human cytokines: TNFa, IgE, IL-6, IL-la, IL-Ιβ, IL-12, IL-17, IL-13, IL-23, the p40 subunit of IL-12 and IL-23, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
[00094] For example, in some embodiments, the cytokine targeting polypeptide targets the IL-6 receptor and includes the Actemra® polypeptide (as described in patent publication EP0628639), or the ALX-0061 polypeptide (as described in WO2010/115998), or sequences derived from the Actemra® polypeptide, or ALX-0061 polypeptide. [00095] For example, Actemra® the cytokine targeting polypeptide targets the IL-6 receptor and includes the tocilizumab polypeptide or sequences derived from the tocilizumab polypeptide.
[00096] The targeting of inflammatory cytokines and immune-stimulating agents by protein therapeutics has demonstrated clinical success in numerous inflammatory conditions. The most common proteins used as cytokine targeting agents are the soluble cytokine receptors and monoclonal antibodies and fragments thereof. A significant drawback with targeting cytokines is the increased risk of infection in these patients, as evidenced by the TNFa targeting biologies, Remicade®, Humira®, Simponi®, Cimiza®, and Enbrel®, and the IL- 12/23 p40 targeting antibody, Stelara®. This is likely to be a common problem of targeting inflammatory cytokines leading to immune suppression in patients. AAT and other serpin proteins are interesting in that they demonstrate both anti- infective and anti-inflammatory activities. Thus, the serpin-cytokine targeting polypeptide fusion proteins of this invention can dampen aberrant cytokine activities while alleviating the risk of infections.
[00097] In some embodiments, the fusion proteins described herein include a serpin polypeptide or an amino acid sequence that is derived from a serpin, a WAP domain- containing polypeptide or an amino acid sequence that is derived from a WAP domain- containing polypeptide, and an Fc polypeptide or an amino acid sequence that is derived from an Fc polypeptide. For example, the invention provides a serpin polypeptide, a WAP domain-containing polypeptide and human IgGl-Fc, IgG2-Fc, IgG3-Fc, IgG4-Fc or IgM-Fc derivatives operably linked together in any functional combination. In some embodiments, the WAP domain containing protein is human SLPI or derived from human SLPI. In other embodiments, the WAP domain containing protein is human ELAFIN or derived from human ELAFIN. In some embodiments, the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a SLPI polypeptide or an amino acid sequence that is derived from SLPI. In some embodiments, the fusion proteins described herein include at least an AAT
polypeptide or an amino acid sequence that is derived from AAT and an ELAFIN polypeptide or an amino acid sequence that is derived from Elafin.
[00098] SPLI and Elafin are WAP domain containing proteins that display serine protease inhibitory activity. Both of these proteins are anti-inflammatory in function. In addition these proteins possess broad anti-infective capacities toward numerous strains of bacteria, viruses, and fungi.
[00099] In some embodiments, the fusion proteins described herein include at least a serpin polypeptide or an amino acid sequence that is derived from a serpin and a human serum albumin (HSA) polypeptide or an amino acid sequence that is derived from a HSA polypeptide. Further embodiments of invention include serpin-albumin binding polypeptide fusion proteins, wherein the albumin binding polypeptide is responsible for the association of the serpin and HSA. Thereby the invention includes both covalent and non-covalent linkages of the serpin polypeptide and the HSA polypeptide or sequences derived from the serpin polypeptide or a HSA polypeptide. For example, the invention provides a serpin polypeptide fused to human HSA, or HSA derivatives, or HSA binding peptide or polypeptides.
[000100] In some embodiments, the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a HSA polypeptide or an amino acid sequence that is derived from a HSA polypeptide. For example, the invention provides alpha- 1 -antitrypsin (AAT) fused to HSA or a fragment derived from HSA, or an albumin binding polypeptide.
[000101] In some embodiments, the fusion proteins described herein include a serpin polypeptide or an amino acid sequence that is derived from a serpin, a HSA polypeptide or or an amino acid sequence that is derived from a HSA polypeptide, and a WAP domain- containing polypeptide or an amino acid sequence that is derived from a WAP domain- containing polypeptide. In some embodiments, the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a HSA polypeptide or an amino acid sequence that is derived from a HSA polypeptide, and a SLPI polypeptide or amino acid sequence derived from SLPI. In other embodiments, the fusion proteins described herein include at least an alpha- 1 -antitrypsin (AAT) polypeptide or an amino acid sequence that is derived from AAT and a HSA polypeptide or an amino acid sequence that is derived from a HSA polypeptide, and an Elafin polypeptide or amino acid sequence derived from Elafin.
[000102] The fusion proteins of the present invention can be readily produced in mammalian cell expression systems. For example Chinese Hamster Ovary (CHO) cells, Human Embryonic Kidney (HEK) 293 cells, COS cells, PER.C6®, NS0 cells, SP2/0, YB2/0 can readily be used for the expression of the serpin fusion proteins described herein. Importantly, mammalian cell expression systems produce proteins that are generally more optimal for therapeutic use. In contrast to bacterial, insect, or yeast-based expression systems, mammalian cell expression systems yield proteins with glycosylation patterns that are similar or the same as those found in natural human proteins. Proper gylcosylation of a protein can greatly influence serum stability, pharmacokinetics, biodistribution, protein folding, and functionality. Therefore, the ability to produce therapeutic proteins in mammalian expression systems has distinct advantages over other systems. Furthermore, most of the mammalian cell expression systems (e.g., CHO, NSO, PER.C6® cells) can be readily scaled in commercial manufacturing facilities to produce therapeutic proteins to meet clinical demands. The fusion proteins described herein have enhanced functionalities over the natural form of AAT and can be produced in mammalian expression systems for clinical and commercial supply. Some embodiments of the invention include a purification system that enables the isolation of serpin fusion proteins that retain their ability to inhibit NE. Importantly, the purification process of the present invention can be readily incorporated into today's commercial mammalian cell-based manufacturing processes.
[000103] Unless otherwise defined, scientific and technical terms used in connection with the present invention shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Generally,
nomenclatures utilized in connection with, and techniques of, cell and tissue culture, molecular biology, and protein and oligo- or polynucleotide chemistry and hybridization described herein are those well known and commonly used in the art. Standard techniques are used for recombinant DNA, oligonucleotide synthesis, and tissue culture and
transformation (e.g., electroporation, lipofection). Enzymatic reactions and purification techniques are performed according to manufacturer's specifications or as commonly accomplished in the art or as described herein. The foregoing techniques and procedures are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. See e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989)). The nomenclatures utilized in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques are used for chemical syntheses, chemical analyses,
pharmaceutical preparation, formulation, and delivery, and treatment of patients. The term patient includes human and veterinary subjects.
[000104] It will be appreciated that administration of therapeutic entities in accordance with the invention will be administered with suitable carriers, buffers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like. A multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences (15th ed, Mack Publishing Company, Easton, PA (1975)), particularly Chapter 87 by Blaug, Seymour, therein. These formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as
Lipofectin™), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semisolid gels, and semi-solid mixtures containing carbowax. Any of the foregoing mixtures may be appropriate in treatments and therapies in accordance with the present invention, provided that the active ingredient in the formulation is not inactivated by the formulation and the formulation is physiologically compatible and tolerable with the route of administration. See also Baldrick P. "Pharmaceutical excipient development: the need for preclinical guidance." Regul. Toxicol Pharmacol. 32(2):210-8 (2000), Wang W.
"Lyophilization and development of solid protein pharmaceuticals." Int. J. Pharm. 203(1- 2): 1-60 (2000), Charman WN "Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts." J Pharm Sci. 89(8):967-78 (2000), Powell et al. "Compendium of excipients for parenteral formulations" PDA J Pharm Sci Technol. 52:238-311 (1998) and the citations therein for additional information related to formulations, excipients and carriers well known to pharmaceutical chemists.
[000105] Therapeutic formulations of the invention, which include a fusion protein of the invention, are used to treat or alleviate a symptom associated with a disease or disorder associated with aberrant serine protease activity in a subject. The present invention also provides methods of treating or alleviating a symptom associated with a disease or disorder associated with aberrant serine protease activity in a subject. A therapeutic regimen is carried out by identifying a subject, e.g., a human patient suffering from (or at risk of developing) a disease or disorder associated with aberrant serine protease activity, using standard methods, including any of a variety of clinical and/or laboratory procedures. The term patient includes human and veterinary subjects. The term subject includes humans and other mammals.
[000106] Efficaciousness of treatment is determined in association with any known method for diagnosing or treating the particular disease or disorder associated with aberrant serine protease activity. Alleviation of one or more symptoms of the disease or disorder associated with aberrant serine protease activity indicates that the fusion protein confers a clinical benefit.
[000107] Methods for the screening of fusion proteins that possess the desired specificity include, but are not limited to, enzyme linked immunosorbent assay (ELISA), enzymatic assays, flow cytometry, and other immunologically mediated techniques known within the art.
[000108] The fusion proteins described herein may be used in methods known within the art relating to the localization and/or quantitation of a target such as a serine protease, e.g., for use in measuring levels of these targets within appropriate physiological samples, for use in diagnostic methods, for use in imaging the protein, and the like). The terms "physiological sample" and "biological sample," used interchangeably, herein are intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. Included within the usage of the terms "physiological sample" and "biological sample", therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph.
[000109] In a given embodiment, fusion proteins specific for a given target, or derivative, fragment, analog or homolog thereof, that contain the target-binding domain, are utilized as pharmacologically active compounds (referred to hereinafter as "Therapeutics").
[000110] A fusion protein of the invention can be used to isolate a particular target using standard techniques, such as immunoaffinity, chromatography or
immunoprecipitation. Detection can be facilitated by coupling (i.e., physically linking) the fusion protein to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein
isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of
125 131 35 3
suitable radioactive material include I, I, S or H.
[000111] A therapeutically effective amount of a fusion protein of the invention relates generally to the amount needed to achieve a therapeutic objective. As noted above, this may be a binding interaction between the fusion protein and its target that, in certain cases, interferes with the functioning of the target. The amount required to be administered will furthermore depend on the binding affinity of the fusion protein for its specific target, and will also depend on the rate at which an administered fusion protein is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an fusion protein or fragment thereof invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 250 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a month.
[000112] Where fusion protein fragments are used, the smallest inhibitory fragment that specifically binds to the target is preferred. For example, peptide molecules can be designed that retain the ability to bind the target. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology. (See, e.g., Marasco et al, Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993)). The formulation can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, growth-inhibitory agent, an anti-inflammatory agent or anti-infective agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
[000113] The active ingredients can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in
macroemulsions. [000114] The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
[000115] Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the fusion protein, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and γ ethyl-L- glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
Pharmaceutical compositions
[000116] The fusion proteins of the invention (also referred to herein as "active compounds"), and derivatives, fragments, analogs and homologs thereof, can be
incorporated into pharmaceutical compositions suitable for administration. Such
compositions typically comprise the fusion rotein and a pharmaceutically acceptable carrier. As used herein, the term "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, ringer's solutions, dextrose solution, and 5% human serum albumin. Liposomes and nonaqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
[000117] A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (i.e., topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediammetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates, and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
[000118] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water,
Cremophor EL (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
[000119] Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile- filtered solution thereof.
[000120] Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
[000121] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
[000122] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
[000123] The compounds can also be prepared in the form of suppositories {e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery. [000124] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova
Pharmaceuticals, Inc. Liposomal suspensions can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.
[000125] It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
[000126] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
[000127] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
EXAMPLES
Example 1: AAT-Fc Fusion Proteins and Variants
[000128] Exemplary, but non-limiting examples of AAT-Fc fusion proteins according to the invention include the following sequences. While these examples include a hinge sequence and/or a linker sequence, fusion proteins of the invention can be made using any hinge sequence and/or a linker sequence suitable in length and/or flexibility. Alternatively fusion proteins can be made without using a hinge and/or a linker sequence. For example, the polypeptide components can be directly attached. [000129] An exemplary AAT-Fc fusion protein is the AAT-hFcl (human IgGl Fc) described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2) and the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3).
AAT-hFcl (human IgGl Fc)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQ LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKF NKPFVFLMIEQNTKSPLFMGKVVNPTQKEPKSCDKTHTCPPCPAPFLLGGPSyFLFPP PK DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK (SEQ ID NO: 16)
[000130] An exemplary AAT-Fc fusion protein is the AAT-hFc2 (human IgG2 Fc), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2) and the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 4).
AAT-hFc2 (human IgG2 Fc)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQ LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKF NKPFVFLMIEQNTKSPLFMGKVVNPTQKFPXCCVFCPPCPAPPVAGPSVFLFPPKPKDTLM ISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK (SEQ ID NO: 17)
[000131] An exemplary AAT-Fc fusion protein is the AAT-MM-EL-hFcl (human IgGl Fc, Met351Glu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 34), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3), and the Met351Glu mutation is boxed, and the Met358Leu mutation is shaded in grey.
AAT-MM-EL-hFcl (human IgGl Fc, Met351Glu/Met358Leu)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQ LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGA|E|FLEAIP1SIPPEVKF NKPFVF MIEQMKSP FMGKVVNPTQKEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPK DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK (SEQ ID NO: 18)
[000132] An exemplary AAT-Fc fusion protein is the AAT-MM-EL-hFc2 (human IgG2 Fc, Met351Glu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 34), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 4), the Met351Glu mutation is boxed, and the Met358Leu mutation is shaded in grey.
AAT-MM-EL-hFc2 (human IgG2 Fc, Met351Glu/Met358Leu)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQ
LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGA|E|FLEAIP1SIPPEVKF NKPFVFLMIEQNTKSPLFMGKVVNPTQK-E--FCCVE PP PAPPVAGPSVFLFPPKPKDTLM ISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK (SEQ ID NO: 19)
[000133] An exemplary AAT-Fc fusion protein is the AAT-MM-LL-hFcl (human IgGl Fc, Met351Leu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 35), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3), the Met351Leu mutation is shaded in black, and the Met358Leu mutation is shaded in grey.
AAT-MM-LL-hFcl (human IgGl Fc, Met351Leu/Met358Leu)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQ
LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGABFLEAIP||SIPPEVKF
NKPFVFLMIEQNTKSPLFMGKVVNPTQKEPXSCDXrHrCPPCPAPELLGGPSVFLFPPXPX DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LHNHYTQKSLSLSPGK(SEQ ID NO: 36)
[000134] An exemplary AAT-Fc fusion protein is the AAT-MM:LL-hFc2(human IgG2 Fc, Met351Leu/Met358Leu), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 35), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 4), the Met351Leu mutation is shaded in black, and the Met358Leu mutation is shaded in grey. AAT-MM: LL-hFc2 (human IgG2 Fc, Met351Leu/Met358Leu)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQ
LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGABFLEAIP||SIPPEVKF
NKPFVFLMIEQNTKSPLFMGKVVNPTQKERKCCVECPPCPAPPVAGPSVFLFPPXPXDrL ISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYP SDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNH YTQKSLSLSPGK (SEQ ID NO: 20)
[000135] An exemplary AAT-Fc fusion protein is the AAT-hFcl-AAT (human IgGl), described herein. As shown below, AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), the IgG-Fc polypeptide portion of the fusion protein is italicized (SEQ ID NO: 3).
AAT-hFcl-AAT (human IgGl)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASLHLPKLSITGTYDLKSVLGQ LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAIPMSIPPEVKF NKPFVFLMIEQNTKSPLFMGKVVNPTQKEPKSCDKTHTCPPCPAPFLLGGPSVFLFPPXPX DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LH HY!TQXSLSLSPG-KASTGSEDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQ LAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEILEGLNFNLTEIPEAQIHEGFQELLR TLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVE KGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKR
LGMF IQHCKKLSSWVLLMKYLGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSA SLHLPKLS ITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGT EAAGAMFLEAI PMS I PPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK (SEQ ID NO: 21)
[000136] These exemplary AAT-Fc fusion proteins were made using the following techniques.
[000137] The gene encoding human AAT was PCR amplified from human liver cDNA (Zyagen). Specific point mutations within the gene encoding AAT or the Fc region were generated by overlapping PCR. The AAT encoding gene was cloned in frame with a gene encoding the hinge region, followed by a CH2 domain, and a CH3 domain of human IgGl, IgG2, IgG3, IgG4, or IgM into a mammalian expression vector, containing a mammalian secretion signal sequence up stream of the AAT gene insertion site. These expression vectors were transfected into mammalian cells (specifically HEK293 or CHO cells) and grown for several days in 8% C02 at 37° C. The recombinant AAT-Fc fusion proteins were purified from the expression cell supernatant by protein A chromatography. Importantly, a near neutral pH buffer was used (Gentle Ag/Ab Elution Buffer, Thermo Scientific) to elute the AAT-Fc fusion protein from the protein A resin. The AAT-Fc fusion protein can not be eluted from protein A resin using a standard low pH elution, as the ability of AAT to inhibit NE is compromised following low pH treatment, likely due to a low pH mediated oligomerization of AAT. Figure IF shows the effects of low pH elution on the ability of AAT to inhibit neutrophil elastase. AAT-Fc fusion protein can be purified either by protein A and a near neutral pH elution buffer, by CaptureSelect® Alpha- 1 Antitrypsin affinity matrix (BAC BV).
[000138] The purified AAT-Fc fusion proteins were tested for activity by determining their ability to inhibit neutrophil elastase (NE). Figure IB and ID show a reducing SDS- PAGE gel of purified serum derived AAT (sdAAT) and AAT-Fc fusion proteins (Fig 1B- lane 1 : sdAAT, lane 2: AAT-Fc (SEQ ID NO: 16), lane 3: AAT-EL-Fc (SEQ ID NO: 18), Fig ID AAT-Fc-AAT (SEQ ID NO: 20). The proteins were visualized by staining with coomassie blue. [000139] To monitor human Neutrophil Elastase (NE) activity a fluorescent microplate assay was used. Inhibitory activity was measured by a concomitant decrease in the residual NE activity using the following assay. This assay buffer is composed of 100 mM Tris pH 7.4, 500 mM NaCl, and 0.0005% Triton X-100. Human NE is used at a final concentration of 5 nM (but can also be used from 1-20 nM). The fluorescent peptide substrate AAVP- AMC is used at a final concentration of 100 μΜ in the assay. The Gemini EM plate reader from Molecular Devices is used to read the assay kinetics using excitation and emission wavelengths of 370 nm and 440 nm respectively, and a cutoff of 420 nm. The assay is read for 10 min at room temperature scanning every 5 to 10 seconds. The Vmax per second corresponds to the residual NE activity, which is plotted for each concentration of inhibitor. The intercept with the x-axis indicates the concentration of inhibitor needed to fully inactivate the starting concentration of NE in the assay. Human serum derived AAT (sdAAT) was used as a positive control in these assays. The AAT-Fc fusion proteins display potent NE inhibitory activity as shown in Figure 1C. The fusion wherein there are two AAT polypeptides fused to single Fc polypetide (AAT-Fc-AAT) displays enhanced potency over both sdAAT and the AAT-Fc fusion protein comprising a single AAT polypeptide (Figure IE). These findings presented here demonstrate for the first time the AAT can be fused to an Fc region and maintain its ability to inhibit NE. Of particular interest, the AAT-Fc-AAT fusion protein was found to be a more potent NE inhibitor.
[000140] Figure IF demonstrates the resistance of the AAT-EL-Fc (M35 IE, M358L) fusion protein to inactivation by oxidation. AAT fusion proteins, AAT-Fc (wt), AAT-EL- Fc (M351E, M358L), and AAT-EM-Fc (M351E), were treated with 33mM H202 and compared to untreated fusion proteins in the NE inhibition assays. The inhibition of NE by AAT-EL-Fc was not comprised by oxidation, converse to the other proteins tested.
[000141] Furthermore, AAT-Fc fusion protein displayed a longer serum half life in rats compared to serum derived AAT (Figure 1H). In these studies 3 rats per each test protein were injected I.V. with lOmg/kg of sdAAT or AAT-Fc. Serum sample were taken at various time points over a 48 period. The serum ATT concentration was using an ELISA. These findings demonstrate that the fusion proteins of the invention have improved pharmacokinetic properties and are a superior therapeutic format over serum derived AAT, for treating numerous human inflammatory conditions and infectious diseases. Example 2: AAT-TNFa Targeting Molecule Fusion Proteins
[000142] The studies presented herein describe several, non-limiting examples of recombinant AAT derivatives comprising human AAT fused to an anti-TNFa antibody or a derivative of a TNFa receptor. These examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. These examples do not and are not intended to limit the claimed invention.
[000143] The fusion proteins below include cytokine targeting polypeptide sequences that are from or are derived from (i) the anti-TNFa antibody D2E7 (also known as
Adalimumab or Humira®), or (ii) the extracellular domain of Type 2 TNFa Receptor (TNFR2-ECD). The AAT polypeptide portion of the fusion protein is underlined, the antibody constant regions (CHl-hinge-CH2-CH3, or CL) are italicized, and D2E7-VH, D2E7-VK, and TNFR2-ECD are denoted in bold text. While these examples include a hinge sequence and/or a linker sequence, fusion proteins of the invention can be made using any hinge sequence and/or a linker sequence suitable in length and/or flexibility. Alternatively fusion proteins can be made without using a hinge and/or a linker sequence.
[000144] An exemplary AAT-TNFa fusion protein is D2E7-Light Chain-AAT (G3S)2 Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VK is denoted in bold text (SEQ ID NO: 37), and the antibody constant regions are italicized (SEQ ID NO: 38)
D2E7-Light Chain-AAT (G3S)2 Linker
DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSR
FSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIKi?!TV¾AP5yFIFPP5D
EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGECGGGSGGGSEOFQGOAAQKTOTSRROQORFT FNKITPNLAEFAFSLYRQLAHQSNST IFFSPVS IATAFAMLSLGTKADTHDEILEGLNFN LTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFT VNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFEVKDTEE EDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGKLQHLENE LTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPL KLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKFNKPFVFLMIEQNTKSPLFMGKV
VNPTQK (SEQ ID NO:22)
[000145] An exemplary AAT-TNFa fusion protein is D2E7-Light Chain-AAT
ASTGS Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VK is denoted in bold text (SEQ ID NO: 37), and the antibody constant regions is italicized (SEQ ID NO: 38)
D2E7-Light Chain-AAT ASTGS Linker
DIQMTQSPSSLSASVGDRVTITCRASQGIRNYLAWYQQKPGKAPKLLIYAASTLQSGVPSR FSGSGSGTDFTLTISSLQPEDVATYYCQRYNRAPYTFGQGTKVEIKPTVAAPSV IFPPSD
EQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSK ADYEKHKVYACEVTHQGLSSPVTKSFNRGECAS GSEDPQGDAAQKTDTSHHDQDHPTFNK ITPNLAEFAFSLYRQLAHQSNST IFFSPVS IATAFAMLSLGTKADTHDEILEGLNFNLTE IPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNF GDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFEVKDTEEEDF HVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGKLQHLENELTH PI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLS KAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKFNKPFVFLMIEQNTKSPLFMGKVVNP TQK (SEQ ID NO:23)
[000146] An exemplary AAT-TNFa fusion protein is D2E7-Heavy Chain-AAT (G3S)2 Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VH is denoted in bold text (SEQ ID NO: 39), and the antibody constant regions is italicized (SEQ ID NO: 40)
D2E7-Heavy Chain-AAT (G3S)2 Linker
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITW SGHIDYA DSVEGRFTISRDNAKNSLYLQM SLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVrV55A
STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSV HEALH HY!TQXSLSLSPGXGGGSGGGSEDPQGDAAQKTDTSHHDQDHPTFNKITPN LAEFAFSLYRQLAHQSNST IFFSPVS IATAFAMLSLGTKADTHDEILEGLNFNLTEI PEA QIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTE EAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFEVKDTEEEDFHVDQ VTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGKLQHLENELTHDI IT KFLENEDRRSASLHLPKLS ITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSKAVH KAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK
(SEQ ID NO:24)
[000147] An exemplary AAT-TNFa fusion protein is D2E7-Heavy Chain-AAT ASTGS Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), D2E7-VH is denoted in bold text (SEQ ID NO: 39), and the antibody constant regions is italicized (SEQ ID NO: 40)
D2E7-Heavy Chain-AAT ASTGS Linker
EVQLVESGGGLVQPGRSLRLSCAASGFTFDDYAMHWVRQAPGKGLEWVSAITW SGHIDYA DSVEGRFTISRDNAKNSLYLQM SLRAEDTAVYYCAKVSYLSTASSLDYWGQGTLVrV55A
STKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL YSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSV FLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQ VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSV HEALH HY!TQXSLSLSPG-KASTGSEDPQGDAAQKTDTSHHDQDHPTFNKITPNLAE FAFSLYRQLAHQSNST IFFSPVS IATAFAMLSLGTKADTHDEILEGLNFNLTEI PEAQIH EGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAK KQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFEVKDTEEEDFHVDQVTT VKVPMMKRLGMF IQHCKKLSSWVLLMKYLGNATAIFFLPDEGKLQHLENELTHDI ITKFL ENEDRRSASLHLPKLS ITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSKAVHKAV LTIDEKGTEAAGAMFLEAI PMS I PPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK
(SEQ ID NO:25) [00149] An exemplary AAT-TNFa fusion protein is TNFR2-ECD-Fcl-AAT(G3S)2
Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), TNFR2-ECD is denoted in bold text (SEQ ID NO: 41), and the antibody constant regions is italicized (SEQ ID NO: 42)
TNFR2-ECD-Fcl-AAT(G3S)2 Linker
LPAQVAFTPYAPEPGSTCRLREYYDQTAQMCCSKCSPGQHAKVFCTKTSDTVCDSCEDSTY TQLW WVPECLSCGSRCSSDQVETQACTREQNRICTCRPGWYCALSKQEGCRLCAPLRKCR PGFGVARPGTETSDWCKPCAPGTFSNTTSSTDICRPHQIC WAIPGNASMDAVCTSTSP TRSMAPGAVHLPQPVSTRSQHTQPTPEPSTAPSTSFLLPMGPSPPAEGSTGDEPKSCDKTJi
TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVH NAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKGGGSGGGSEDPQGDAAQKTDT SHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNST IFFSPVS IATAFAMLSLGTKADTHD EILEGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVK KLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWER PFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDE GKLQHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQLGITKVFSNGADL SGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKFNKPFVFLMIEQNT KSPLFMGKVV PTQK (SEQ ID NO:26)
[00150] An exemplary AAT-TNFa fusion protein is TNFR2-ECD-Fc 1 -AAT ASTGS
Linker, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), TNFR2-ECD is denoted in bold text (SEQ ID NO: 41), and the antibody constant regions is italicized (SEQ ID NO: 42)
TNFR2-ECD-Fc1-AAT ASTGS Linker
LPAQVAFTPYAPEPGSTCRLREYYDQTAQMCCSKCSPGQHAKVFCTKTSDTVCDSCEDSTY TQLW WVPECLSCGSRCSSDQVETQACTREQNRICTCRPGWYCALSKQEGCRLCAPLRKCR PGFGVARPGTETSDWCKPCAPGTFSNTTSSTDICRPHQIC WAIPGNASMDAVCTSTSP TRSMAPGAVHLPQPVSTRSQHTQPTPEPSTAPSTSFLLPMGPSPPAEGSTGDEPKSCDKTJi
TCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVH NAKTKPREQQYNSTYRVVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGQPREP QVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKAS GSEDPQGDAAQKTDTSHH DQDHPTFNKITPNLAEFAFSLYRQLAHQSNST IFFSPVS IATAFAMLSLGTKADTHDEIL EGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVDKFLEDVKKLY HSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFALVNYIFFKGKWERPFE VKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKYLGNATAIFFLPDEGKL QHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQLGITKVFSNGADLSGV TEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKFNKPFVFLMIEQNTKSP LFMGKVVNPTQK (SEQ ID NO:27)
[000148] These exemplary AAT-TNFa targeting molecule fusion proteins were made using the following techniques.
[000149] The genes encoding the variable heavy (VH) and variable kappa (VK) regions of the anti-TNFa antibody, D2E7, were generated by gene synthesis. The D2E7- VH gene was cloned in frame with a gene encoding a human IgGl antibody heavy chain constant region, consisting of a CHI domain, a hinge domain, a CH2 domain, and a CH3 domain, into a mammalian expression vector, containing a mammalian secretion signal sequence up stream of the VH domain insertion site (D2E7-HC). The D2E7-VK gene was cloned in frame with a human antibody kappa light chain constant (CL) domain, into a mammalian expression vector, containing a mammalian secretion signal sequence up stream of the VK domain insertion site (D2E7-LC). The AAT encoding gene and the adjacent 5' linker sequence were cloned in frame into the 3 ' end of either, the CH3 domain of the D2E7 heavy chain gene (D2E7-HC-AAT), or the CL domain of the D2E7 light chain gene (D2E7- LC-AAT) coding sequences in the above described mammalian expression vectors. The extracellular domain of the TNFa Receptor 2 (TNFR2-ECD) was generated by gene synthesis and cloned in frame with a gene encoding the hinge region, followed by a CH2 domain and a CH3 domain of human IgGl (hFcl) into a mammalian expression, containing a mammalian secretion signal sequence up stream of the TNFR2-ECD insertion site. The AAT encoding gene and the adjacent 5' linker sequence were cloned in frame into the 3' end of the gene encoding TNFR2-ECD-hFcl into a mammalian expression vector (TNFR2- ECD-hFcl-AAT). [000150] The D2E7-HC-AAT expression vector was co-trans fected with either the D2E7-LC or the D2E7-LC-AAT expression vector into mammalian cells (specifically HEK293 or CHO cells) to generate the D2E7 antibody with AAT fused to the C-terminus of the heavy chain or to the C-terminus of both the heavy chain and light chain, respectively. The D2E7-LC-AAT was co-transfected with the D2E7-HC expression vector into mammalian cells to generate the D2E7 antibody with AAT fused to the C-terminus of the light chain. The TNFR2-hFcl-AAT expression vector was transfected into mammalian cells. Transfected cells were grown for several days in 8% C02 at 37° C.
[000151] The recombinant AAT-TNFa targeting fusion proteins were purified from the expression cell supernatant by protein A chromatography. A near neutral pH buffer was used (Gentle Ag/Ab Elution Buffer, Thermo Scientific) to elute the AAT-TNFa targeting fusion proteins from the protein A resin.
[000152] Figure 2B shows an SDS-PAGE gel of the D2E7 antibody alone (lane 1) and variant wherein AAT is fused to the heavy chain of D2E7 (lane 2). The proteins were visualized by staining with coomassie blue.
[000153] The purified AAT-TNFa targeting molecule fusion proteins were tested for activity by determining their ability to inhibit neutrophil elastase. Human serum derived AAT (sdAAT) was used as a positive control in these assays. NE inhibitory assay were conducted as described above. Figure 2C demonstrates relative to sdAAT, the AAT-TNFa targeting molecule fusion protein shows similar inhibition of neutrophil elastase, indicating that the inhibitory capacity of AAT has not been compromised by its fusion to an antibody.
Example 3 AAT-Fc-SLPI and AAT-Fc-Elafin
[000154] The studies presented herein describe several, non- limiting examples of recombinant AAT derivatives comprising human AAT fused a WAP domain containing protein. These examples are provided below to further illustrate different features of the present invention. The examples also illustrate useful methodology for practicing the invention. The AAT polypeptide portion of the fusion protein is underlined, the Fc portion is italicized, and the WAP domain containing polypeptide is in bold font. While these examples include a hinge sequence and/or a linker sequence, fusion proteins of the invention can be made using any hinge sequence and/or a linker sequence suitable in length and/or flexibility. Alternatively fusion proteins can be made without using a hinge and/or a linker sequence. For example, the polypeptide components can be directly attached.
[000155] An exemplary AAT-Fc-SLPI fusion protein is AAT-hFcl -SLPI (human IgGl Fc), described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), the Fc portion is italicized (SEQ ID NO: 3), and the WAP domain containing polypeptide is in bold font (SEQ ID NO: 9)
AAT-hFcl-SLPI (human IgGl Fc)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQ LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKF NKPFVF MIEQmKSP FMGKVVNPTQKEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPK DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEA LH HYrQX5L5L5PGiA5rG5SGKSFKAGVCPPKKSAQCLRYKKPECQSDWQCPGKKRCCP DTCGIKCLDPVDTPNPTRRKPGKCPVTYGQCLMLNPPNFCEMDGQCKRDLKCCMGMCGKSC VSPVKA (SEQ ID NO: 28)
[000156] An exemplary AAT-Fc-SLPI fusion protein is AAT-hFcl -SLPI (human IgGl Fc), described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), the Fc portion is italicized (SEQ ID NO: 3), and the WAP domain containing polypeptide is in bold font (SEQ ID NO: 12)
AAT-hFcl-Elafin (human IgGl Fc)
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQ LGI KVFSNGADLSGVTEEAPLKLSKAVHKAVL IDEKGTEAAGAMFLEAI PMS I PPEVKF
NKPFVF MIEQmKS P FMGKVVNPTQKEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPK DTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVK GFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFL YSKL TVDKSR WQQGNVFS CSVMHEA LH HYTQX5L5L5PGi¾5rG5AV GVPVKGQDTVKGRVPFNGQDPVKGQVSVKGQDKVKAQ EPVKGPVSTKPGSCPIILIRCAMLNPPNRCLKDTDCPGIKKCCEGSCGMACFVPQ ( SEQ ID NO:29)
[000157] The genes encoding the SLPI and Elafin were PCR amplified from human spleen cDNA (Zyagen). These genes were cloned into the mammalian expression vectors of example 1, wherein the SLPI or Elafin gene was inserted in frame with the AAT-Fc gene. These expression vectors were transfected into mammalian cells (specifically HEK293 or CHO cells) and grown for several days in 8% C02 at 37° C. The recombinant AAT-Fc- WAP domain fusion proteins were purified from the expression cell supernatant by protein A chromatography. A near neutral pH buffer was used (Gentle Ag/Ab Elution Buffer, Thermo Scientific) to elute the AAT-Fc- WAP domain fusion protein from the protein A resin.
[000158] Figure 3B shows an SDS-PAGE gel of the AAT-Fc- WAP fusion proteins (lane 1 AAT-Fc-Elafin, lane 2 AAT-Fc-SLPI). The proteins were visualized by staining with coomassie blue. The purified AAT-Fc-WAP domain fusion proteins were tested for activity by determining their ability to inhibit neutrophil elastase. NE inhibitory assays were conducted as described above. Human serum derived AAT (sdAAT) and the AAT-Fc fusion protein were used as a positive control in these assays. Relative to sdAAT, the AAT- Fc-WAP targeting molecule fusion proteins display enhanced potency of NE inhibition of neutrophil elastase (Figure 3C).
Example 4 AAT-Albumin
[000159] The studies presented herein describe several, non- limiting examples of recombinant AAT derivatives comprising human AAT fused an albumin polypeptide. These examples are provided below to further illustrate different features of the present invention.
The examples also illustrate useful methodology for practicing the invention. These examples do not and are not intended to limit the claimed invention. The AAT portion is underlined and the albumin portion is italicized. For example, the polypeptide components can be directly attached.
[000160] An exemplary AAT- Albumin fusion protein is AAT-HSA, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), and the albumin polypeptide is italicized (SEQ ID NO: 14)
AAT-HSA
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQ LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKF NKPFVFLMIEQNTKSPLFMGKVVNPTQKASTGSDAHXS.EVAH^FXDLG.E.E FJ¾LVLIAFA QYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVATLRETYGEMAD CCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFY APELLFFAKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAF KAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSIS SKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYE YARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEPQNLIKQNCEL FEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSV VLNQLCVLHEKTPVSDRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTL SEKERQIKKQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVA ASQAALGL (SEQ ID NO: 30)
[000161] An exemplary AAT- Albumin fusion protein is AAT-HSA Domain 3, described herein. As shown below, the AAT polypeptide portion of the fusion protein is underlined (SEQ ID NO: 2), and the albumin polypeptide is italicized (SEQ ID NO: 15)
AAT-HSA Domain 3
EDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAF AMLSLGTKADTHDEILEGLNFNLTEI PEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSE GLKLVDKFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTVFA
LVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCKKLSSWVLLMKY LGNATAIFFLPDEGKLQHLENELTHDI ITKFLENEDRRSASLHLPKLS ITGTYDLKSVLGQ LGITKVFSNGADLSGVTEEAPLKLSKAVHKAVLTIDEKGTEAAGAMFLEAI PMS I PPEVKF NKPFVFLMIEQNTKSPLFMGKVVNPTQKAS GSEEPQNLIKQNCELFEQLGEYKFQNALLV RYTKKVPQVSTPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVS DRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVE LVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVA (SEQ ID NO: 31)
[000162] The gene encoding human serum albumin (HSA) was PCR amplified from human liver cDNA (Zyagen). A mammalian expression vector was generated, wherein gene encoding HSA or the domain 3 of HSA, was cloned in frame to the 3' end of the AAT encoding gene, containing a mammalian secretion signal sequence up stream of AAT.
[000163] These expression vectors were transfected into mammalian cells (specifically HEK293 or CHO cells) and grown for several days in 8% C02 at 37° C. The recombinant AAT-HSA fusion proteins were purified from the expression cell supernatant using the CaptureSelect® Alpha- 1 Antitrypsin affinity matrix (BAC BV), wherein the binding buffer consisted of 20mM Tris, 150mM NaCl, pH 7.4 and the elution buffer consisted of 20mM Tris, 2M MgCl2 pH 7.4.
[000164] Figure 4B shows an SDS-PAGE gel of the AAT-HSA fusion protein The proteins were visualized by staining with coomassie blue. The purified AAT-HSA fusion proteins were tested for activity by determining their ability to inhibit neutrophil elastase. NE inhibitory assays were conducted as described above. Human serum derived AAT (sdAAT) was used as a positive control in these assays. Relative to sdAAT, the AAT-HS fusion protein displays similar potency of NE inhibition, demonstrating that the fusion to albumin does not dampen the capacity of AAT to inhibit NE (Figure 4C.)
Other Embodiments
[000165] While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims

What is claimed is:
1. An isolated fusion protein comprising at least one human serpin polypeptide operably linked to a second polypeptide wherein the second polypeptide comprises at least one the following:
an immunoglobulin Fc polypeptide or an amino acid sequence that is derived from an immunoglobulin Fc polypeptide;
a cytokine targeting polypeptide or a sequence derived from a cytokine targeting polypeptide;
a WAP domain containing polypeptide or a sequence derived from a WAP domain containing polypeptide; or
an albumin polypeptide or an amino acid sequence that is derived from a serum albumin polypeptide.
2. An isolated fusion protein comprising at least one alpha- 1 antitrypsin (AAT) polypeptide operably linked to a second polypeptide of at least one of the following:
an immunoglobulin Fc polypeptide;
a cytokine targeting peptide;
a human secretory leukocyte proteinase inhibitor (SLPI) polypeptide; and an immunoglobulin Fc polypeptide and a human SLPI polypeptide, wherein the SLPI polypeptide comprises the WAP2 domain of human SLPI; or
a human serum albumin (HSA) polypeptide.
3. An isolated fusion protein comprising at least one alpha- 1 antitrypsin (AAT) polypeptide operably linked to a second polypeptide of at least one of the following:
an immunoglobulin Fc polypeptide;
a cytokine targeting peptide;
a human Elafin polypeptide;
a human Elafin polypeptide and an immunoglobulin Fc polypeptide, wherein the Elafin polypeptide comprises the WAP domain of human Elafin; or
a human serum albumin (HSA) polypeptide.
4. The fusion protein of claim 1 wherein the human serpin polypeptide is a human alpha- 1 antitrypsin (AAT) polypeptide or is derived from a human AAT polypeptide.
5. The isolated fusion protein of any one of claims 2-4, wherein AAT polypeptide comprises the amino acid sequence of SEQ ID NO: 2.
6. The isolated fusion protein of any one of claims 2-4, wherein the AAT polypeptide comprises the reactive site loop of AAT comprising the amino acid sequence of SEQ ID NO: 1 or a mutated reactive site loop of AAT comprising the amino acid sequence of SEQ ID NO: 32 or 33.
7. The isolated fusion protein of any one of claims 2-4, wherein the immunoglobulin Fc polypeptide is a human Fc polypeptide.
8. The isolated fusion protein of claim 7, wherein human Fc polypeptide is a human IgM polypeptide or a human IgG Fc polypeptide.
9. The isolated fusion protein of claim 8, wherein the human IgG Fc polypeptide is a human IgGl polypeptide, a human IgG2 Fc polypeptide, human IgG3 Fc polypeptide, or human IgG4 Fc polypeptide.
10. The isolated fusion protein of any one of claims 1-3, wherein the immunoglobulin Fc polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 3, 4, 5, 6, and 7.
11. The isolated fusion protein of claim 1 , wherein the serpin polypeptide and the immunoglobulin Fc polypeptide are operably linked via a hinge region, a linker region, or both a hinge region and linker region.
12. The isolated fusion protein of any one of claims 2-4, wherein the AAT polypeptide and the immunoglobulin Fc polypeptide are operably linked via a hinge region, a linker region, or both a hinge region and linker region.
13. The isolated fusion protein of claim 11 or claim 12, wherein the hinge region, the linker region or both the hinge region and the linker region comprise a peptide sequence.
14. The isolated fusion protein of any one of claims 1-3, wherein the fusion protein comprises an amino acid sequence selected from SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, and SEQ ID NO: 21.
15. The isolated fusion protein of any one of claims 1-6, wherein the cytokine targeting polypeptide is a human cytokine receptor polypeptide or a derivative of a human cytokine receptor polypeptide, a cytokine targeting polypeptide that binds a cytokine receptor or a cytokine targeting polypeptide binds a human cytokine.
16. The isolated fusion protein of claim 15, wherein the human cytokine receptor polypeptide comprises multiple subunits.
17. The isolated fusion protein of claim 15 or claim 16, wherein the human cytokine receptor is a receptor for TNFa, IgE, IL-12, IL-23, IL-6, IL-la, IL-Ι β, IL-17, IL-13, the p40 subunit of IL-12 and IL-23, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
18. The isolated fusion protein of claim 17, wherein the cytokine receptor is a receptor for human TNFa.
19. The isolated fusion protein of claim 15, wherein the human cytokine is TNFa, IgE, IL-12, IL-23, IL-6, IL-la, IL-Ι β, IL-17, IL-13, the p40 subunit of IL-12 and IL-23, IL-4, IL-10, IL-2, IL-18, IL-27, or IL-32.
20. The isolated fusion protein of claim 19, wherein the cytokine is human TNFa.
21. The isolated fusion protein of claim 15, wherein the cytokine targeting polypeptide is an antibody or an antibody fragment.
22. The isolated fusion protein of claim 21, wherein the antibody or antibody fragment is chimeric, humanized, or fully human.
23. The isolated fusion protein of claim 1-6, where the fusion protein comprises an amino acid sequence selected from SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, and SEQ ID NO: 27.
24. The isolated fusion protein of claim 1, wherein the WAP domain containing polypeptide sequence comprises a SLPI polypeptide sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 8, 9 and 10.
25. The isolated fusion protein of claims 1, wherein the WAP domain containing polypeptide sequence comprises an elafin polypeptide sequence comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 11, 12 and 13.
26. The isolated fusion protein of claim 1, wherein the fusion protein comprises a serpin polypeptide, a WAP domain-containing polypeptide and an immunoglobulin Fc polypeptide such that at least two of the serpin polypeptide, the WAP domain-containing polypeptide and the immunoglobulin Fc polypeptide are operably linked via a hinge region, a linker region, or both a hinge region and linker region.
27. The isolated fusion protein of claim 2, wherein the fusion protein comprises an AAT polypeptide, a SLPI polypeptide and an immunoglobulin Fc polypeptide such that at least two of the AAT polypeptide, the SLPI polypeptide and the immunoglobulin Fc polypeptide are operably linked via a hinge region, a linker region, or both a hinge region and linker region.
28. The isolated fusion protein of claim 3, wherein the fusion protein comprises an AAT polypeptide, an Elafin polypeptide and an immunoglobulin Fc polypeptide such that at least two of the AAT polypeptide, the Elafin polypeptide and the immunoglobulin Fc
polypeptide are operably linked via a hinge region, a linker region, or both a hinge region and linker region.
29. The isolated fusion protein of any one of claims 2-4, wherein the fusion protein comprises two AAT polypeptides and an immunoglobulin Fc polypeptide.
30. The isolated fusion protein of claim 29, wherein each of the two AAT polypeptides are operably linked to the immunoglobulin Fc polypeptide via a hinge region, a linker region, or both a hinge region and linker region such that the fusion protein has the structural arrangement from N-terminus to C-terminus as follows: AAT polypeptide- immunoglobulin Fc polypeptide-AAT polypeptide.
31. The isolated fusion protein of any one of claims 26-30, wherein the hinge region, the linker region or both the hinge region and the linker region comprise a peptide sequence.
32. The isolated fusion protein of claim 2, wherein the fusion protein comprises the amino acid sequence of SEQ ID NO: 28.
33. The isolated fusion protein of claim 2, where the fusion protein comprises the amino acid sequence of SEQ ID NO: 29.
34. The fusion protein of claim 1, wherein the albumin polypeptide is a human serum albumin (HSA) polypeptide or is derived from a HSA polypeptide.
35. The isolated fusion protein of any one of claims 2, 3 or 34, wherein HSA
polypeptide comprises the amino acid sequence of SEQ ID NO: 14 or the amino acid sequence of SEQ ID NO: 15.
36. The isolated fusion protein of any one of claims 2, 3 or 34, wherein the HSA polypeptide comprises domain 3 of HSA.
37. The isolated fusion protein of claim 34, wherein the serpin is operably linked to HSA via an albumin binding polypeptide.
38. The isolated fusion protein of claim 2 or claim 3, wherein the AAT polypeptide is operably linked to HSA via an albumin binding polypeptide.
39. The isolated fusion protein of claim 37 or 38, wherein the albumin binding polypeptide is an antibody or antibody fragment or derived from an antibody or antibody fragment.
40. The isolated fusion protein of claim 39, wherein the antibody or antibody fragment or chimeric, humanized, or fully human.
41. The isolated fusion protein of claims 37 or 38, wherein the albumin binding polypeptide is a peptide.
42. The isolated fusion protein of claims 47, wherein the albumin binding polypeptide is Domain 3 of Streptococcal Protein G or a sequence derived from Domain 3 of
Streptococcal Protein G.
43. The isolated fusion protein of claim 1, wherein the serpin is covalently linked to a HSA polypeptide.
44. The isolated fusion protein of claim 1, wherein the serpin is non-covalently linked to a HSA polypeptide.
45. The isolated fusion protein any one of claims 1-3, where the fusion protein comprises the amino acid sequence of SEQ ID NO: 30 or 31.
46. The isolated fusion protein of any one of claims 1-3, wherein the immunoglobulin Fc polypeptide is modified to enhance FcRn binding.
47. The isolated fusion protein of any one of claims 1-3, wherein the immunoglobulin Fc polypeptide comprising at least one of the following mutations: Met252Tyr, Ser254Thr, Thr256Glu, Met428Leu or Asn434Ser
48. A method of treating or alleviating a symptom of a disease or disorder associated with aberrant serine protease expression or activity in a subject in need thereof, the method comprising administering a fusion protein according to any one of the previous claims.
49. A method of treating or alleviating inflammation or a symptom of an inflammatory disease or disorder while reducing the risk of infection, in a subject in need thereof, the method comprising administering a fusion protein according to any one of the previous claims.
50. A method of reducing the risk of infection in a subject in need thereof, the method comprising administering a fusion protein according to any one of the previous claims.
51. The method of any one of claims 48-51 , wherein the subject is a human.
52. The method of 49, wherein the inflammatory disease or disorder is selected from the following: emphysema, chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), allergic asthma, cystic fibrosis, cancers of the lung, ischemia- reperfusion injury, ischemia/reperfusion injury following cardiac transplantation, myocardial infarction, rheumatoid arthritis, septic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn's disease, psoriasis, type I and/or type II diabetes, pneumonia, sepsis, graft versus host disease (GVHD), wound healing, Systemic lupus erythematosus, and Multiple sclerosis.
53. The method of 50, wherein the infection is selected from bacterial infections, fungal infections, or viral infections.
PCT/US2012/044730 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof WO2013003641A2 (en)

Priority Applications (32)

Application Number Priority Date Filing Date Title
JP2014519049A JP2014523900A (en) 2011-06-28 2012-06-28 Serpin fusion polypeptide and method of use thereof
EP12804863.4A EP2726092B1 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
KR1020237024532A KR20230114318A (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
RSP20191200 RS59368B1 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
DK12804863.4T DK2726092T3 (en) 2011-06-28 2012-06-28 SERPIN FUSION POLYPEPTIDES AND PROCEDURES FOR USE THEREOF
NZ619023A NZ619023B2 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
RU2014102583A RU2642310C2 (en) 2011-06-28 2012-06-28 Fusion serpine polypeptides and methods for their application
PL12804863T PL2726092T3 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
KR1020217007901A KR20210032558A (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
UAA201400709A UA124083C2 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
KR1020147002346A KR102084944B1 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
KR1020207005907A KR102231139B1 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
IN2441MUN2013 IN2013MN02441A (en) 2011-06-28 2012-06-28
EP19181040.7A EP3569243A1 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
CA2839619A CA2839619C (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
MX2013015323A MX356517B (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof.
CN201280041956.5A CN103917563A (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
LTEP12804863.4T LT2726092T (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
AU2012275287A AU2012275287B2 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
BR112013033799A BR112013033799A2 (en) 2011-06-28 2012-06-28 isolated fusion protein, and methods for treating or alleviating inflammation or a symptom and reducing the risk of infection
MEP-2019-253A ME03473B (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
ES12804863T ES2746052T3 (en) 2011-06-28 2012-06-28 Serpine fusion polypeptides and methods of use thereof
SI201231670T SI2726092T1 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
CN201910132137.5A CN110066340B (en) 2011-06-28 2012-06-28 Serine protease inhibitor protein fusion polypeptides and methods of use thereof
KR1020217043197A KR20220003656A (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof
IL230209A IL230209B (en) 2011-06-28 2013-12-26 Serpin fusion polypeptides and methods of use thereof
AU2017279724A AU2017279724B2 (en) 2011-06-28 2017-12-21 Serpin fusion polypeptides and methods of use thereof
AU2019202904A AU2019202904B2 (en) 2011-06-28 2019-04-24 Serpin fusion polypeptides and methods of use thereof
HRP20191652 HRP20191652T1 (en) 2011-06-28 2019-09-13 Serpin fusion polypeptides and methods of use thereof
CY20191100993T CY1122195T1 (en) 2011-06-28 2019-09-18 SERPIN FUSION POLYPEPTIDES AND METHODS OF USING THEM
IL276534A IL276534A (en) 2011-06-28 2020-08-05 Methods for purifying serpin containing fusion proteins
AU2021202131A AU2021202131B2 (en) 2011-06-28 2021-04-07 Serpin fusion polypeptides and methods of use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201161502055P 2011-06-28 2011-06-28
US61/502,055 2011-06-28
US201161570394P 2011-12-14 2011-12-14
US61/570,394 2011-12-14
US201161577204P 2011-12-19 2011-12-19
US61/577,204 2011-12-19
US201261638168P 2012-04-25 2012-04-25
US61/638,168 2012-04-25

Publications (2)

Publication Number Publication Date
WO2013003641A2 true WO2013003641A2 (en) 2013-01-03
WO2013003641A3 WO2013003641A3 (en) 2013-03-21

Family

ID=47424806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/044730 WO2013003641A2 (en) 2011-06-28 2012-06-28 Serpin fusion polypeptides and methods of use thereof

Country Status (27)

Country Link
US (7) US8980266B2 (en)
EP (2) EP2726092B1 (en)
JP (4) JP2014523900A (en)
KR (5) KR20210032558A (en)
CN (3) CN103917563A (en)
AU (4) AU2012275287B2 (en)
BR (1) BR112013033799A2 (en)
CA (2) CA2839619C (en)
CY (1) CY1122195T1 (en)
DK (1) DK2726092T3 (en)
ES (1) ES2746052T3 (en)
HR (1) HRP20191652T1 (en)
HU (1) HUE046156T2 (en)
IL (2) IL230209B (en)
IN (1) IN2013MN02441A (en)
LT (1) LT2726092T (en)
ME (1) ME03473B (en)
MX (1) MX356517B (en)
NZ (1) NZ744257A (en)
PL (1) PL2726092T3 (en)
PT (1) PT2726092T (en)
RS (1) RS59368B1 (en)
RU (5) RU2642310C2 (en)
SG (2) SG10201811256QA (en)
SI (1) SI2726092T1 (en)
UA (1) UA124083C2 (en)
WO (1) WO2013003641A2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504675A (en) * 2012-01-10 2015-02-16 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Compositions, methods, and uses of alpha-1 antitrypsin fusion molecules
WO2015191892A2 (en) 2014-06-11 2015-12-17 Beth Israel Deaconess Medical Center, Inc. α1-ANTITRYPSIN COMPOSITIONS AND METHODS OF TREATING AUTOIMMUNE DISEASES
WO2016070156A3 (en) * 2014-10-31 2016-06-23 Shire Human Genetic Therapies, Inc. C1 esterase inhibitor fusion proteins and uses thereof
US9938353B2 (en) 2011-06-24 2018-04-10 The Regents Of The University Of Colorado, A Body Corporate Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
EP3212290A4 (en) * 2014-10-27 2019-01-23 Inhibrx LP Serpin fusion polypeptides and methods of use thereof
WO2019108865A1 (en) 2017-12-01 2019-06-06 Csl Behring Llc Methods for reducing risk of onset of acute graft versus host disease after hematopoeitic cell transplantation
US10400029B2 (en) 2011-06-28 2019-09-03 Inhibrx, Lp Serpin fusion polypeptides and methods of use thereof
WO2020092448A1 (en) * 2018-10-29 2020-05-07 Spin Therapeutics, Llc Compositions and methods for alpha-1-antitrypsin disorders
US10723785B2 (en) 2011-06-28 2020-07-28 Inhibrx, Inc. Serpin fusion polypeptides and methods of use thereof
EP3600345A4 (en) * 2017-03-29 2021-01-06 Cornell University Oxidation-resistant aat gene therapy
WO2022178175A1 (en) 2021-02-17 2022-08-25 Arecor Limited Aqueous solution compositions for increasing stability of engineered dimeric proteins
WO2023225513A1 (en) 2022-05-16 2023-11-23 Inhibrx, Inc. Effective dosage of recombinant serpin-fc fusion protein for use in a method of treating aat deficiency in a subject
US12030958B2 (en) 2021-09-10 2024-07-09 The Regents Of The University Of Colorado Compositions and methods of use of alpha-1 antitrypsin fusion polypeptides

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2839622A1 (en) * 2011-06-28 2013-01-03 Inhibrx Llc Wap domain fusion polypeptides and methods of use thereof
WO2013156054A1 (en) 2012-04-16 2013-10-24 Universität Stuttgart The igm and ige heavy chain domain 2 as covalently linked homodimerization modules for the generation of fusion proteins with dual specificity
KR101509020B1 (en) * 2013-05-22 2015-04-14 (주)입디 Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
CA2926231C (en) 2014-07-23 2022-10-04 Inova Diagnostics, Inc. Compositions and methods for the diagnosis of rheumatoid arthritis
US11422719B2 (en) * 2016-09-15 2022-08-23 Pure Storage, Inc. Distributed file deletion and truncation
WO2019023526A1 (en) 2017-07-27 2019-01-31 The Regents Of The University Of Michigan Plasminogen activator inhibitor-1 (pai-1) inhibitor and method of use
US20220267412A1 (en) * 2019-08-01 2022-08-25 Serplus Technology Llc Oxidation-resistant serpins
CN110964094B (en) * 2019-12-20 2021-11-02 华中科技大学 Human leukocyte protease inhibitor and its recombinant preparation and application
CN112341538A (en) * 2020-10-27 2021-02-09 苏州复融生物技术有限公司 Fc monomer polypeptide and application thereof
KR20230136628A (en) * 2021-01-26 2023-09-26 내셔날 리서치 카운실 오브 캐나다 ACE2-receptor ectodomain fusion molecule and uses thereof
WO2023122120A1 (en) * 2021-12-22 2023-06-29 The Regents Of The University Of California Compositionsand methods for wound healing

Family Cites Families (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US7253264B1 (en) 1990-06-28 2007-08-07 Sanofi-Arentideutschland GmbH Immunoglobulin fusion proteins, their production and use
ES2134212T3 (en) 1991-04-25 1999-10-01 Chugai Pharmaceutical Co Ltd HUMAN ANTIBODY RECONSTITUTED AGAINST THE RECEIVER OF INTERLEUKIN 6 HUMAN.
US5734014A (en) * 1992-08-11 1998-03-31 Tsumura & Co. Elafin derivative
US5595756A (en) 1993-12-22 1997-01-21 Inex Pharmaceuticals Corporation Liposomal compositions for enhanced retention of bioactive agents
GB9526733D0 (en) 1995-12-30 1996-02-28 Delta Biotechnology Ltd Fusion proteins
TW575567B (en) * 1998-10-23 2004-02-11 Akzo Nobel Nv Serine protease inhibitor
US6737056B1 (en) * 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
CA2364471A1 (en) * 1999-03-01 2000-09-08 Human Genome Sciences, Inc. Human serpin proteins
US6849605B1 (en) * 1999-03-05 2005-02-01 The Trustees Of University Technology Corporation Inhibitors of serine protease activity, methods and compositions for treatment of viral infections
CA2373721C (en) 1999-07-02 2013-10-15 Genentech, Inc. Compounds that bind her2
WO2001040249A1 (en) 1999-12-01 2001-06-07 Human Genome Sciences, Inc. Four disulfide core domain-containing (fdcd) polynucleotides, polypeptides, and antibodies
CA2405701A1 (en) 2000-04-12 2001-10-25 Human Genome Sciences, Inc. Albumin fusion proteins
FR2814957B1 (en) 2000-10-06 2002-12-20 Aventis Pasteur VACCINE COMPOSITION AND STABILIZATION METHOD
EP1333839A1 (en) * 2000-11-08 2003-08-13 Prometic Biosciences Inc. Method for the treatment of inflammation
PL393178A1 (en) 2000-12-07 2011-02-14 Eli Lilly And Company Heterogeneous fusion protein, pharmaceutical composition for the treatment of diabetic patients with insulin-independent diabetes and pharmaceutical composition for the treatment of obese patients
ES2727425T3 (en) * 2000-12-12 2019-10-16 Medimmune Llc Molecules with prolonged half-lives, compositions and uses thereof
AU2002241661B2 (en) * 2000-12-18 2007-05-31 Arriva Pharmaceuticals, Inc Multifunctional protease inhibitors and their use in treatment of disease
US7247704B2 (en) * 2000-12-18 2007-07-24 Arriva Pharmaceuticals, Inc. Multifunctional protease inhibitors and their use in treatment of disease
US7211395B2 (en) * 2001-03-09 2007-05-01 Dyax Corp. Serum albumin binding moieties
US7270960B2 (en) * 2001-08-29 2007-09-18 Pacific Northwest Research Institute Diagnosis of ovarian carcinomas
US6797493B2 (en) 2001-10-01 2004-09-28 Lee-Hwei K. Sun Fc fusion proteins of human granulocyte colony-stimulating factor with increased biological activities
US20080194481A1 (en) * 2001-12-21 2008-08-14 Human Genome Sciences, Inc. Albumin Fusion Proteins
US7317091B2 (en) 2002-03-01 2008-01-08 Xencor, Inc. Optimized Fc variants
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US7365168B2 (en) 2002-10-15 2008-04-29 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
EP1415664A1 (en) * 2002-10-30 2004-05-06 Switch Biotech Aktiengesellschaft Use of alpha 1-antichymotrypsin in combination with alpha-1-antitrypsin for treating/preventing diabetes associated or poorly healing arterial wounds
US7427595B1 (en) * 2002-12-12 2008-09-23 Cornell Research Foundation, Inc. Use of proepithelin to promote wound repair and reduce inflammation
DE10303664A1 (en) * 2003-01-23 2004-08-12 Nemod Immuntherapie Ag Detection molecules for the treatment and detection of tumors
US20090010920A1 (en) 2003-03-03 2009-01-08 Xencor, Inc. Fc Variants Having Decreased Affinity for FcyRIIb
SI1641483T1 (en) 2003-06-12 2008-08-31 Lilly Co Eli Fusion proteins
ES2622522T3 (en) 2003-08-26 2017-07-06 The Regents Of The University Of Colorado, A Body Corporate Inhibitors of serine protease activity and its use in methods and compositions for the treatment of bacterial infections
DK2256134T3 (en) * 2003-11-13 2014-02-24 Hanmi Science Co Ltd IgG Fc fragment to a drug carrier and process for preparation thereof
US8110665B2 (en) 2003-11-13 2012-02-07 Hanmi Holdings Co., Ltd. Pharmaceutical composition comprising an immunoglobulin FC region as a carrier
WO2005086915A2 (en) * 2004-03-09 2005-09-22 Arriva Pharmaceuticals, Inc. Treatment of chronic obstructive pulmonary disease by low dose inhalation of protease inhibitor
WO2005100402A1 (en) 2004-04-13 2005-10-27 F.Hoffmann-La Roche Ag Anti-p-selectin antibodies
PL1751184T3 (en) 2004-05-13 2010-02-26 Lilly Co Eli Fgf-21 fusion proteins
UA93356C2 (en) 2004-08-03 2011-02-10 Tpahctek Фарма, Инк. Rage fusion proteins and methods of use
RU2007108538A (en) 2004-08-11 2008-09-20 Трабьон Фармасьютикалз, Инк. (Us) LINKED PROTEIN DOMAIN
US7399746B2 (en) 2004-10-06 2008-07-15 Mcgill University Agents for wound healing
US8802820B2 (en) 2004-11-12 2014-08-12 Xencor, Inc. Fc variants with altered binding to FcRn
JP4652414B2 (en) 2004-11-12 2011-03-16 ゼンコー・インコーポレイテッド Fc variants with altered binding to FcRn
ES2707152T3 (en) * 2005-04-15 2019-04-02 Macrogenics Inc Covalent diabodies and uses thereof
ES2523666T3 (en) 2005-05-31 2014-11-28 Board Of Regents, The University Of Texas System IgG1 antibodies with the mutated Fc part for increased binding to the FcRn receptor and uses thereof
CA2609262A1 (en) 2005-06-03 2006-12-07 Mochida Pharmaceutical Co., Ltd. Anti-cd14 antibody fusion protein
DE602006010874D1 (en) 2005-07-22 2010-01-14 Five Prime Therapeutics Inc COMPOSITIONS AND METHODS OF TREATING DISEASES WITH FGFR FUSION PROTEINS
MX2008002101A (en) 2005-08-12 2008-04-19 Schering Corp Mcp1 fusions.
RS58231B1 (en) * 2005-11-23 2019-03-29 Acceleron Pharma Inc Activin-actriia antagonists and uses for promoting bone growth
US7625564B2 (en) 2006-01-27 2009-12-01 Novagen Holding Corporation Recombinant human EPO-Fc fusion proteins with prolonged half-life and enhanced erythropoietic activity in vivo
EP2012819A2 (en) 2006-03-30 2009-01-14 The Research Foundation Of the City university of New York Stimulation of neuron regeneration by secretory leukocyte protease inhibitor
GB0614780D0 (en) * 2006-07-25 2006-09-06 Ucb Sa Biological products
UA99263C2 (en) 2006-08-28 2012-08-10 Арес Трейдинг С.А. Process for the purification of fc-fusion protein
US20110020269A1 (en) 2007-05-08 2011-01-27 Beth Israel Deaconess Medical Center, Inc. Methods and compositions for modifying t cell immune responses and inflammation
EP2162472B1 (en) * 2007-05-30 2013-02-27 Postech Academy-Industry- Foundation Immunoglobulin fusion proteins
MX2009013137A (en) 2007-06-06 2010-04-30 Domantis Ltd Methods for selecting protease resistant polypeptides.
US8598315B2 (en) * 2007-10-02 2013-12-03 Research Foundation Of City University Of New York Protein transduction domains derived from secretory leukocyte protease inhibitor
AR064713A1 (en) 2007-12-28 2009-04-22 Consejo Nac Invest Cient Tec FUSION PROTEIN THAT JOINS TRANSGLUTAMINASES, COMPOSITIONS THAT UNDERSTAND IT, MICRO-SPHERES THAT UNDERSTAND IT, USES AND METHODS
WO2009158432A2 (en) 2008-06-27 2009-12-30 Amgen Inc. Ang-2 inhibition to treat multiple sclerosis
RU2483081C2 (en) * 2008-07-23 2013-05-27 Ханми Сайенс Ко.,Лтд.,Kr Polypeptide complex containing non-peptidyl polymer, having three functional ends
US8338569B2 (en) 2008-08-04 2012-12-25 Five Prime Therapeutics, Inc. FGFR extracellular domain acidic region muteins
EP2376109B1 (en) 2008-12-19 2019-01-23 MacroGenics, Inc. Covalent diabodies and uses thereof
NZ595461A (en) 2009-04-10 2013-01-25 Ablynx Nv Improved amino acid sequences directed against il-6r and polypeptides comprising the same for the treatment of il-6r related diseases and disorders
RU2503688C2 (en) 2009-04-22 2014-01-10 Алтеоген, Инк Fused protein or peptide with increased half lifetime in vivo, which is maintained due to slow release in vivo, and method for increasing half lifetime in vivo using it
SE533763C2 (en) 2009-05-04 2010-12-28 Lars Hammar Suspension device
US9035129B2 (en) 2009-07-08 2015-05-19 The Curators Of The University Of Missouri Method to develop high oleic acid soybeans using conventional soybean breeding techniques
AU2010319327B2 (en) 2009-11-13 2015-08-13 Five Prime Therapeutics, Inc. Use of FGFR1 extra cellular domain proteins to treat cancers characterized by ligand-dependent activating mutations in FGFR2
GB201003559D0 (en) 2010-03-03 2010-04-21 Proteo Biotech Ag Novel use of elafin
EP2588140A4 (en) 2010-06-30 2015-07-15 Univ Maryland Dental composites comprising nanoparticles of amorphous calcium phosphate
MY162489A (en) 2010-12-23 2017-06-15 Janssen Biotech Inc ACTIVE PROTEASE-RESISTANT ANTIBODY Fc MUTANTS
CN103476795B (en) 2011-03-29 2016-07-06 罗切格利卡特公司 Antibody Fc variant
US9938353B2 (en) * 2011-06-24 2018-04-10 The Regents Of The University Of Colorado, A Body Corporate Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
EP2537864B1 (en) 2011-06-24 2019-08-07 Laboratoire Français du Fractionnement et des Biotechnologies Fc variants with reduced effector functions
ES2746052T3 (en) 2011-06-28 2020-03-04 Inhibrx Lp Serpine fusion polypeptides and methods of use thereof
US10400029B2 (en) 2011-06-28 2019-09-03 Inhibrx, Lp Serpin fusion polypeptides and methods of use thereof
CA2839622A1 (en) 2011-06-28 2013-01-03 Inhibrx Llc Wap domain fusion polypeptides and methods of use thereof
DK2726090T3 (en) * 2011-07-01 2020-01-20 Biogen Ma Inc ARGIN-FREE TNFR: FC-FUSION POLYPEPTIME COMPOSITIONS
AU2013202648B2 (en) 2012-01-10 2016-05-19 Konkuk University Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
WO2013192131A1 (en) 2012-06-21 2013-12-27 Indiana University Research And Technology Corporation Incretin receptor ligand polypeptide fc-region fusion polypeptides and conjugates with altered fc-effector function
CA2871882A1 (en) 2012-06-27 2014-01-03 F. Hoffmann-La Roche Ag Method for making antibody fc-region conjugates comprising at least one binding entity that specifically binds to a target and uses thereof
CA2876096A1 (en) 2012-08-02 2014-02-06 Petra Rueger Method for producing soluble fcr as fc-fusion with inert immunoglobulin fc-region and uses thereof
CA2893359C (en) 2012-12-05 2021-12-28 Strategia Therapeutics, Inc. Protein expression enhancing polypeptides
CN203917563U (en) 2014-03-27 2014-11-05 陈广煌 A kind of angle cutting mold
US20170190762A1 (en) * 2014-06-11 2017-07-06 Beth Israel Deaconess Medical Center, Inc. Alpha1 -antitrypsin compositions and methods of treating autoimmune diseases

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938353B2 (en) 2011-06-24 2018-04-10 The Regents Of The University Of Colorado, A Body Corporate Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
EP3628327A1 (en) * 2011-06-24 2020-04-01 The Regents of the University of Colorado, A Body Corporate Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
US11046752B2 (en) 2011-06-28 2021-06-29 Inhibrx, Inc. Serpin fusion polypeptides and methods of use thereof
US10400029B2 (en) 2011-06-28 2019-09-03 Inhibrx, Lp Serpin fusion polypeptides and methods of use thereof
US10723785B2 (en) 2011-06-28 2020-07-28 Inhibrx, Inc. Serpin fusion polypeptides and methods of use thereof
US11827691B2 (en) 2011-06-28 2023-11-28 Inhibrx, Inc. Serpin fusion polypeptides and methods of use thereof
US10730929B2 (en) 2011-06-28 2020-08-04 Inhibrx Lp Serpin fusion polypeptides and methods of use thereof
US11965017B2 (en) 2011-06-28 2024-04-23 Inhibrx, Inc. Serpin fusion polypeptides and methods of use thereof
KR20200010589A (en) * 2012-01-10 2020-01-30 더 리젠츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코포레이트 Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
JP2018100277A (en) * 2012-01-10 2018-06-28 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
KR102348985B1 (en) 2012-01-10 2022-01-12 더 리젠츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코포레이트 Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
AU2016216677B2 (en) * 2012-01-10 2018-07-26 Konkuk University Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
US10478508B2 (en) 2012-01-10 2019-11-19 The Regents Of The University Of Colorado, A Body Corporate Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
JP2015504675A (en) * 2012-01-10 2015-02-16 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate Compositions, methods, and uses of alpha-1 antitrypsin fusion molecules
EP2802653A4 (en) * 2012-01-10 2015-09-02 Univ Colorado Regents Compositions, methods and uses for alpha-1 antitrypsin fusion molecules
WO2015191892A2 (en) 2014-06-11 2015-12-17 Beth Israel Deaconess Medical Center, Inc. α1-ANTITRYPSIN COMPOSITIONS AND METHODS OF TREATING AUTOIMMUNE DISEASES
EP3155117A4 (en) * 2014-06-11 2017-11-22 Beth Israel Deaconess Medical Center, Inc. Alpha1-antitrypsin compositions and methods of treating autoimmune diseases
US10781248B2 (en) 2014-06-11 2020-09-22 Beth Israel Deaconess Medical Center, Inc. α1-antitrypsin compositions and methods of treating autoimmune diseases
WO2015191892A3 (en) * 2014-06-11 2016-05-06 Beth Israel Deaconess Medical Center, Inc. α1-ANTITRYPSIN COMPOSITIONS AND METHODS OF TREATING AUTOIMMUNE DISEASES
EP3212290A4 (en) * 2014-10-27 2019-01-23 Inhibrx LP Serpin fusion polypeptides and methods of use thereof
RU2746550C2 (en) * 2014-10-27 2021-04-15 Инхибркс, Инк. Fused serpine polypeptides and methods of their application
WO2016070156A3 (en) * 2014-10-31 2016-06-23 Shire Human Genetic Therapies, Inc. C1 esterase inhibitor fusion proteins and uses thereof
EP3600345A4 (en) * 2017-03-29 2021-01-06 Cornell University Oxidation-resistant aat gene therapy
WO2019108865A1 (en) 2017-12-01 2019-06-06 Csl Behring Llc Methods for reducing risk of onset of acute graft versus host disease after hematopoeitic cell transplantation
US11857610B2 (en) 2017-12-01 2024-01-02 Csl Behring Llc Methods for reducing risk of onset of acute graft versus host disease after hematopoietic cell transplantation
EP4321220A2 (en) 2017-12-01 2024-02-14 CSL Behring LLC A1at for reducing risk of onset of acute graft versus host disease after hematopoeitic cell transplantation
US12031144B2 (en) 2018-03-29 2024-07-09 Cornell University Oxidation-resistant AAT gene therapy
WO2020092448A1 (en) * 2018-10-29 2020-05-07 Spin Therapeutics, Llc Compositions and methods for alpha-1-antitrypsin disorders
WO2022178175A1 (en) 2021-02-17 2022-08-25 Arecor Limited Aqueous solution compositions for increasing stability of engineered dimeric proteins
US12030958B2 (en) 2021-09-10 2024-07-09 The Regents Of The University Of Colorado Compositions and methods of use of alpha-1 antitrypsin fusion polypeptides
WO2023225513A1 (en) 2022-05-16 2023-11-23 Inhibrx, Inc. Effective dosage of recombinant serpin-fc fusion protein for use in a method of treating aat deficiency in a subject

Also Published As

Publication number Publication date
RU2642310C2 (en) 2018-01-24
RU2017145308A (en) 2019-02-18
US11965017B2 (en) 2024-04-23
LT2726092T (en) 2019-10-10
CA3132298A1 (en) 2013-01-03
IL276534A (en) 2020-09-30
RU2728861C1 (en) 2020-07-31
CA2839619A1 (en) 2013-01-03
US9920109B2 (en) 2018-03-20
BR112013033799A2 (en) 2017-02-14
SG10201811256QA (en) 2019-01-30
RU2698655C2 (en) 2019-08-28
US20130330769A1 (en) 2013-12-12
SI2726092T1 (en) 2019-11-29
CN110066340B (en) 2024-06-25
US20150147325A1 (en) 2015-05-28
MX2013015323A (en) 2014-06-23
ES2746052T3 (en) 2020-03-04
CN110066340A (en) 2019-07-30
EP2726092A2 (en) 2014-05-07
RU2014102583A (en) 2015-08-10
US20210002352A1 (en) 2021-01-07
JP2022109968A (en) 2022-07-28
JP2014523900A (en) 2014-09-18
US20200102371A1 (en) 2020-04-02
SG10201601621PA (en) 2016-04-28
AU2019202904B2 (en) 2021-01-07
KR102084944B1 (en) 2020-04-17
AU2012275287A1 (en) 2014-01-16
US20180179264A1 (en) 2018-06-28
EP3569243A1 (en) 2019-11-20
DK2726092T3 (en) 2019-09-30
US20130011398A1 (en) 2013-01-10
AU2021202131B2 (en) 2023-01-12
PT2726092T (en) 2019-10-08
AU2019202904A1 (en) 2019-05-16
IL230209B (en) 2020-08-31
KR20220003656A (en) 2022-01-10
AU2017279724B2 (en) 2019-03-14
AU2021202131A1 (en) 2021-05-06
CY1122195T1 (en) 2020-11-25
KR20210032558A (en) 2021-03-24
EP2726092B1 (en) 2019-06-19
UA124083C2 (en) 2021-07-21
US10730929B2 (en) 2020-08-04
KR20230114318A (en) 2023-08-01
US10723785B2 (en) 2020-07-28
WO2013003641A3 (en) 2013-03-21
JP2020078325A (en) 2020-05-28
HRP20191652T1 (en) 2019-12-13
PL2726092T3 (en) 2019-11-29
RU2727452C1 (en) 2020-07-21
KR102231139B1 (en) 2021-03-24
EP2726092A4 (en) 2015-08-19
RU2017145308A3 (en) 2019-02-18
RU2020124172A (en) 2022-01-21
US11827691B2 (en) 2023-11-28
CN110551223A (en) 2019-12-10
IN2013MN02441A (en) 2015-06-12
HUE046156T2 (en) 2020-02-28
JP6674604B2 (en) 2020-04-01
KR20200027041A (en) 2020-03-11
MX356517B (en) 2018-06-01
JP2018008956A (en) 2018-01-18
US8980266B2 (en) 2015-03-17
CN103917563A (en) 2014-07-09
US20210024613A1 (en) 2021-01-28
NZ744257A (en) 2022-10-28
AU2017279724A1 (en) 2018-01-25
ME03473B (en) 2020-01-20
KR20140054000A (en) 2014-05-08
RS59368B1 (en) 2019-11-29
NZ619023A (en) 2015-07-31
AU2012275287B2 (en) 2017-10-05
CA2839619C (en) 2021-11-16

Similar Documents

Publication Publication Date Title
AU2021202131B2 (en) Serpin fusion polypeptides and methods of use thereof
AU2012275295B2 (en) WAP domain fusion polypeptides and methods of use thereof
AU2015339507B2 (en) Serpin fusion polypeptides and methods of use thereof
US11046752B2 (en) Serpin fusion polypeptides and methods of use thereof
NZ619023B2 (en) Serpin fusion polypeptides and methods of use thereof
NZ727846B2 (en) Serpin fusion polypeptides and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804863

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2839619

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/015323

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2014519049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012804863

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012275287

Country of ref document: AU

Date of ref document: 20120628

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147002346

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014102583

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033799

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033799

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131227