WO2013002638A1 - Method and catalyst for the alkylation of aromatic compounds with alkanes - Google Patents

Method and catalyst for the alkylation of aromatic compounds with alkanes Download PDF

Info

Publication number
WO2013002638A1
WO2013002638A1 PCT/NL2012/050455 NL2012050455W WO2013002638A1 WO 2013002638 A1 WO2013002638 A1 WO 2013002638A1 NL 2012050455 W NL2012050455 W NL 2012050455W WO 2013002638 A1 WO2013002638 A1 WO 2013002638A1
Authority
WO
WIPO (PCT)
Prior art keywords
process according
zsm
alkanes
bar
alkylation
Prior art date
Application number
PCT/NL2012/050455
Other languages
French (fr)
Inventor
Yvonne Traa
Daniel Geiss
Original Assignee
Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center
Universität Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center, Universität Stuttgart filed Critical Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center
Priority to CN201280026407.0A priority Critical patent/CN103732564B/en
Priority to CA2836998A priority patent/CA2836998C/en
Priority to EP12737905.5A priority patent/EP2726445B9/en
Priority to DK12737905.5T priority patent/DK2726445T3/en
Priority to US14/118,214 priority patent/US20140249343A1/en
Publication of WO2013002638A1 publication Critical patent/WO2013002638A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/068Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/44Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • C07C2529/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38 containing iron group metals, noble metals or copper
    • C07C2529/67Noble metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38
    • C07C2529/69Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38 containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Definitions

  • the invention pertains to a method for the alkylation of aromatic compounds with alkanes.
  • the invention relates to the direct alkylation of aromatic hydrocarbons with short-chain alkanes, having a chain length of from 1 to 12 carbon atoms.
  • Alkylated aromatics e.g. ethylbenzene and ethyltoluene
  • an aromatic hydrocarbon is alkylated with a reactive agent such as olefin, alkyl halide or alkyl alcohol.
  • a reactive agent such as olefin, alkyl halide or alkyl alcohol.
  • Processes for the direct alkylation of aromatics with alkanes are virtually non-existent. Yet, this would be desired since regular alkylation agents, such as alkenes, are expensive.
  • alkylation of aromatics to be possible with alkanes instead of alkenes because alkanes directly occur in nature in the form of natural gas, whereas alkenes have to be made from alkanes.
  • alkanes are cheaper than alkenes, and a process step can be saved.
  • a very active and selective catalyst is needed since the reaction is severely limited by thermodynamics.
  • the main alkylation products are not direct alkylation products but products formed from cracked propane. Since cracking of propane produces methane and ethene, it is likely that ethene acted as alkylating agent.
  • a reference on the direct alkylation of aromatics with alkanes is WO 99/59942.
  • the reaction is catalyzed by a molecular sieve catalyst comprising incorporated metal.
  • a hydrocarbon feed containing an aromatic hydrocarbon is contacted with an alkane of at least 15 carbon atoms.
  • Reactions conditions for the conversion of such longer alkanes are not normally suitable for light alkanes.
  • the problem with longer alkanes is their high reactivity, particularly towards cracking.
  • the problem with light alkanes, such as those having chain lengths of from 1 to 12 carbon atoms, and more particularly from 1 to 8 carbon atoms, is that they are difficult to activate.
  • the invention presents, in one aspect, a process for the alkylation of an aromatic compound, comprising contacting the aromatic compound with an alkane under elevated temperature, in the presence of a catalyst composition comprising a catalytically active metal and a promoter metal on a support selected from the group consisting of synthetic zeolites, metal organic frameworks, silico alumino phosphate molecular sieves, and mixtures thereof, wherein the catalytically active metal is palladium, and the promoter is zinc.
  • a catalyst composition comprising a catalytically active metal and a promoter metal on a support selected from the group consisting of synthetic zeolites, metal organic frameworks, silico alumino phosphate molecular sieves, and mixtures thereof, wherein the catalytically active metal is palladium, and the promoter is zinc.
  • the invention provides the use of a catalyst composition as defined above, for the activation of an alkane towards the direct alkylation of an aromatic compound.
  • Fig. 1 is a graph representing the yield of ethyltoluenes over time, upon direct alkylation of toluene with ethane. Depicted is the result of a process under the influence of three catalyst compositions of the invention. The measurement points hereof are represented by black, white and gray bullets. The graph includes a comparison with a catalyst composition not according to the invention. The measurement points hereof are indicated with black and white triangles.
  • the invention is based on the judicious insight that a palladium catalyst in combination with zinc as a promoter, is able to achieve the activation of alkanes towards the direct alkylation of aromatic compounds.
  • the combination of the catalyst and the promoter is presented on a porous support, which is a synthetic zeolite or a recognized alternative having a similar molecular sieve characteristic, such as a metal organic framework (MOF) or a silico alumino phosphate molecular sieve (SAPO).
  • MOF metal organic framework
  • SAPO silico alumino phosphate molecular sieve
  • the zeolite-type support is desired for the presence of acidic sites.
  • ZSM-5 and the like are suitable to prevent coking and to suppress thermodynamically favored reactions.
  • preferred zeolites include ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, and combinations thereof.
  • alternatives exist that can be formed into molecular sieves having characteristics similar to those of zeolites. These alternatives include so-called metal organic frameworks (MOFs) and silico alumino phosphates.
  • Preferred supports for use in the present invention are selected from the group of synthetic zeolites and similar materials, such as SAPOs, MOFs or the like, having the characteristics of, e.g., ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, and having a spaciousness index less than or equal to 20 and a modified constraint index of 1 to 14.
  • the spaciousness index and the modified constraint index are known methods to characterize zeolites and zeolite-type materials. These terms are well-defined in the art. Reference can be made, inter alia, to the "Handbook of Porous Solids", F. Schiith, K.S.W. Sing, J.
  • weitkamp (eds.), Wiley- VCH, 2002.
  • zeolites see, e.g., pages 699, for SAPOs, e.g., pp. 815, for MOFs, e.g., pp. 1190, and for spaciousness index and modified constraint index e.g., pp. 1015.
  • the support material desirably has acidic sites. On this basis, good results can be obtained with medium Si/Al molar ratios. However, for the optimal working of the promoter, it is believed that reasonable ion exchange capacities are desired, which would imply reasonably low Si/Al molar ratios. All in all, it is preferred for the zeolites to have Si/Al molar ratios between 2 and 100, preferably between 5 and 50, more preferably between 10 and 35, most preferably between 15 and 30.
  • the molar ratio of zinc to palladium generally is between 0.01 and 5, preferably between 0.1 and 1.5, most preferably between 0.1 and 0.5.
  • the catalyst composition of the invention generally comprise 0.1 wt.% to 5 wt.% of palladium, preferably 0.2 wt.% to 1 wt. %, most preferably between 0.4 wt.% and 0.9 wt.%.
  • the content of the mainly active metal can be reduced.
  • the catalyst composition of the invention serves to activate alkanes towards the direct alkylation of aromatic compounds.
  • Light alkanes are aliphatic hydrocarbons having chain lengths of 1 to 12 carbon atoms, preferably and more particularly from 1 to 8 carbon atoms, more preferably from 1 to 6 carbon atoms. These alkanes can be linear or branched, with n-alkanes being preferred. Still more preferred alkanes have chain lengths of 2 to 4 carbon atoms. Ethane and propane are the most preferred. With light alkanes, and particularly with ethane and propane, a particular challenge has been overcome by presenting a catalyst composition that is actually suitable to support a direct alkylation reaction of aromatic compounds.
  • the source of the alkanes used in the alkylation reaction is not of particular relevance.
  • the process of the invention can also be carried out using light alkanes that are formed from prior cracking of higher alkanes.
  • the catalyst comprising palladium and zinc not only presents the aforementioned advantages in the alkylation of aromatic with light alkanes, but also is advantageous for use in the alkylation of aromatics with higher alkanes, i.e. of more than 12 carbon atoms, particularly 15 or more.
  • These alkanes may range from a linear or very slightly branched paraffin having from 15 to 22 carbon atoms, to light, medium or heavy slack wax, paraffinic FCC bottoms, deasphalted hydrocracked bottoms, Fischer-Tropsch synthetic distillate and wax, deoiled wax or polyethylene wax, light or heavy cycle oil.
  • Other sources include waxy shale oil, tar sands and synthetic fuels.
  • Aromatic compounds to be alkylated by the process of the present invention preferably comprise one to three phenyl rings. Other rings, such as five-membered or seven-membered rings fused into an aromatic ring system are conceivably also alkylated by the process of the invention.
  • the aromatic compounds can comprise full carbon rings, but also heterocyclic aromatic compounds are included.
  • Preferred aromatic compounds are selected from the group consisting of benzene, toluene, other alkyl aromatics, phenol, anthracene, phenanthrene, and pyridine. .
  • temperature and preferably also pressure, will be elevated as compared to room temperature.
  • the reaction is conducted at a temperature of 200°C to 500 °C, more preferably 320°C to 400°C.
  • the pressure employed will generally depend on the type of reactor used. Preferred pressures are within a range of from 1 bar to 200 bar, more preferably 5 bar to 50 bar, and most preferably 7 bar to 20 bar.
  • zinc serves to dilute the palladium, and thus modifies the activity and selectivity of the catalyst into the direction desired for the direct alkylation of aromatic compounds.
  • Palladium ion exchange was carried out by adding drop wise under stirring an aqueous solution of 0.304 g Pd(NH 3 )4Cl 2 (40.62 wt.-% Pd, ChemPur) in 250 ml demineralized water to a suspension of 9.446 g (dry mass) zeolite (Si/Al molar ratio of the zeolite is between 10 and 35) in 250 ml demineralized water. The mixture was stirred at room temperature for 24 hours, filtered and dried at 353 K for another 24 h. It will be understood that the amounts of Pd salt, water and zeolite can be varied. It is also possible to save Pd salt by not filtering the solution but carefully evaporating the water.
  • the catalyst was then calcined at 823 K in nitrogen for another 24 h and cooled to room temperature. 2.613 g (dry mass) zeolite were suspended in 25 ml demineralized water and 0.013 g of zinc acetate (C4H6O4 ⁇ ⁇ 2 ⁇ 2 ⁇ , Fluka 99.0%) were added. Then the water was carefully removed in a rotary evaporator, thereby impregnating the catalyst with the zinc salt. Afterwards, the catalyst was dried again at 353 K for 24 h.
  • the zeolite powder was pressed without a binder, crushed and sieved to get a particle size between 0.2 and 0.3 mm.
  • the catalyst was activated in situ, prior to starting the experiment.
  • 0.5 g of the catalyst were first heated in flowing synthetic air (150 cm 3 mnr 1 ) at a rate of 0.25 K min 1 to a final temperature of 573 K, then it was switched to nitrogen (150 cm 3 mnr 1 ) and heated with a rate of 1.7 K min- 1 to a final temperature of 623 K.
  • the reaction was carried out at a total pressure of 24 bar and a reaction temperature of (350 ⁇ 2) °C.
  • the WHSV (toluene and ethane) was 1.0 h" 1 .
  • Product analysis was achieved using an on-line sampling system, a capillary gas chromatograph and a CP-PoraPLOT Q column (length: 30 m, inner diameter: 0.32 mm, film thickness: 20 pm, Chrompack).
  • Two detectors in series were employed, namely, a thermal conductivity detector followed by a flame ionization detector. Correction factors for the two detectors were determined separately. With ethane as tie substance, the results from both detectors were combined. From the mass and molar flows, the selectivities of all products were calculated in mol%. The yields were determined from the selectivities and the toluene conversion.
  • Fig.1 a graphic representation is given of the yield of ethyltoluenes during the alkylation of toluene with ethane on zeolite catalysts in a fixed-bed reactor (pressure: 24 bar; reaction temperature: 350 °C).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a process for the direct alkylation of aromatic compounds with alkanes. To this end a judicious catalyst combination is provided. The composition comprises palladium as a catalytically active metal, and zinc as a promoter, or a metal such as tin having a comparable promoting action. The metals are contained in a zeolite support, or a similar support of a metal organic framework type or a silico alumino phosphate type.

Description

Title: METHOD AND CATALYST FOR THE ALKYLATION OF
AROMATIC COMPOUNDS WITH ALKANES
Field of the invention
The invention pertains to a method for the alkylation of aromatic compounds with alkanes. Particularly, the invention relates to the direct alkylation of aromatic hydrocarbons with short-chain alkanes, having a chain length of from 1 to 12 carbon atoms.
Background of the invention Alkylated aromatics, e.g. ethylbenzene and ethyltoluene, find widespread usage. In conventional processes to produce such alkyl aromatics, an aromatic hydrocarbon is alkylated with a reactive agent such as olefin, alkyl halide or alkyl alcohol. Processes for the direct alkylation of aromatics with alkanes are virtually non-existent. Yet, this would be desired since regular alkylation agents, such as alkenes, are expensive. It would be desired for the alkylation of aromatics to be possible with alkanes instead of alkenes because alkanes directly occur in nature in the form of natural gas, whereas alkenes have to be made from alkanes. Thus, alkanes are cheaper than alkenes, and a process step can be saved. However, to be able to use alkanes as alkylating agents, a very active and selective catalyst is needed since the reaction is severely limited by thermodynamics.
An existing process is the "M-Forming" process. This starts with longer alkanes, cracks them and uses then the olefinic fragments again as alkylating agents for aromatics alkylation. Similarly, US 4,899,008 refers to a direct catalytic alkylation of mononuclear aromatics with lower alkanes.
Therein an acid H-ZSM-5 catalyst is used. The main alkylation products are not direct alkylation products but products formed from cracked propane. Since cracking of propane produces methane and ethene, it is likely that ethene acted as alkylating agent.
A reference on the direct alkylation of aromatics with alkanes is WO 99/59942. The reaction is catalyzed by a molecular sieve catalyst comprising incorporated metal. Herein a hydrocarbon feed containing an aromatic hydrocarbon is contacted with an alkane of at least 15 carbon atoms.
Reactions conditions for the conversion of such longer alkanes, however, are not normally suitable for light alkanes. The problem with longer alkanes is their high reactivity, particularly towards cracking. The problem with light alkanes, such as those having chain lengths of from 1 to 12 carbon atoms, and more particularly from 1 to 8 carbon atoms, is that they are difficult to activate.
Hence, a demand exists in the art to provide a more versatile process for the direct alkylation of aromatic compounds, which would enable both light and heavy alkanes to be employed. Also, it is desired to improve yield.
Summary of the invention In order to better address one or more of the foregoing desires, the invention presents, in one aspect, a process for the alkylation of an aromatic compound, comprising contacting the aromatic compound with an alkane under elevated temperature, in the presence of a catalyst composition comprising a catalytically active metal and a promoter metal on a support selected from the group consisting of synthetic zeolites, metal organic frameworks, silico alumino phosphate molecular sieves, and mixtures thereof, wherein the catalytically active metal is palladium, and the promoter is zinc.
In another aspect, the invention provides the use of a catalyst composition as defined above, for the activation of an alkane towards the direct alkylation of an aromatic compound. Brief description of the drawings
Fig. 1 is a graph representing the yield of ethyltoluenes over time, upon direct alkylation of toluene with ethane. Depicted is the result of a process under the influence of three catalyst compositions of the invention. The measurement points hereof are represented by black, white and gray bullets. The graph includes a comparison with a catalyst composition not according to the invention. The measurement points hereof are indicated with black and white triangles.
Detailed description of the invention
In a broad sense, the invention is based on the judicious insight that a palladium catalyst in combination with zinc as a promoter, is able to achieve the activation of alkanes towards the direct alkylation of aromatic compounds. The combination of the catalyst and the promoter is presented on a porous support, which is a synthetic zeolite or a recognized alternative having a similar molecular sieve characteristic, such as a metal organic framework (MOF) or a silico alumino phosphate molecular sieve (SAPO).
The zeolite-type support is desired for the presence of acidic sites. Amongst known zeolites, ZSM-5 and the like are suitable to prevent coking and to suppress thermodynamically favored reactions. Thus, preferred zeolites include ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, and combinations thereof. As is known to the skilled person, in current times alternatives exist that can be formed into molecular sieves having characteristics similar to those of zeolites. These alternatives include so-called metal organic frameworks (MOFs) and silico alumino phosphates.
Preferred supports for use in the present invention are selected from the group of synthetic zeolites and similar materials, such as SAPOs, MOFs or the like, having the characteristics of, e.g., ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, and having a spaciousness index less than or equal to 20 and a modified constraint index of 1 to 14. The spaciousness index and the modified constraint index are known methods to characterize zeolites and zeolite-type materials. These terms are well-defined in the art. Reference can be made, inter alia, to the "Handbook of Porous Solids", F. Schiith, K.S.W. Sing, J.
Weitkamp (eds.), Wiley- VCH, 2002. Particularly for zeolites, see, e.g., pages 699, for SAPOs, e.g., pp. 815, for MOFs, e.g., pp. 1190, and for spaciousness index and modified constraint index e.g., pp. 1015.
The support material desirably has acidic sites. On this basis, good results can be obtained with medium Si/Al molar ratios. However, for the optimal working of the promoter, it is believed that reasonable ion exchange capacities are desired, which would imply reasonably low Si/Al molar ratios. All in all, it is preferred for the zeolites to have Si/Al molar ratios between 2 and 100, preferably between 5 and 50, more preferably between 10 and 35, most preferably between 15 and 30.
The molar ratio of zinc to palladium generally is between 0.01 and 5, preferably between 0.1 and 1.5, most preferably between 0.1 and 0.5.
The catalyst composition of the invention generally comprise 0.1 wt.% to 5 wt.% of palladium, preferably 0.2 wt.% to 1 wt. %, most preferably between 0.4 wt.% and 0.9 wt.%. With the addition of zinc as a promoter, the content of the mainly active metal can be reduced.
The catalyst composition of the invention serves to activate alkanes towards the direct alkylation of aromatic compounds.
Light alkanes, as used in the present invention, are aliphatic hydrocarbons having chain lengths of 1 to 12 carbon atoms, preferably and more particularly from 1 to 8 carbon atoms, more preferably from 1 to 6 carbon atoms. These alkanes can be linear or branched, with n-alkanes being preferred. Still more preferred alkanes have chain lengths of 2 to 4 carbon atoms. Ethane and propane are the most preferred. With light alkanes, and particularly with ethane and propane, a particular challenge has been overcome by presenting a catalyst composition that is actually suitable to support a direct alkylation reaction of aromatic compounds.
The source of the alkanes used in the alkylation reaction is not of particular relevance. E.g., the process of the invention can also be carried out using light alkanes that are formed from prior cracking of higher alkanes. However, it will be understood that in order to fully enjoy the benefits of the invention, it is preferred to employ light alkanes provided from direct, existing sources of such alkanes.
The catalyst comprising palladium and zinc not only presents the aforementioned advantages in the alkylation of aromatic with light alkanes, but also is advantageous for use in the alkylation of aromatics with higher alkanes, i.e. of more than 12 carbon atoms, particularly 15 or more. These alkanes may range from a linear or very slightly branched paraffin having from 15 to 22 carbon atoms, to light, medium or heavy slack wax, paraffinic FCC bottoms, deasphalted hydrocracked bottoms, Fischer-Tropsch synthetic distillate and wax, deoiled wax or polyethylene wax, light or heavy cycle oil. Other sources include waxy shale oil, tar sands and synthetic fuels.
Aromatic compounds to be alkylated by the process of the present invention preferably comprise one to three phenyl rings. Other rings, such as five-membered or seven-membered rings fused into an aromatic ring system are conceivably also alkylated by the process of the invention. The aromatic compounds can comprise full carbon rings, but also heterocyclic aromatic compounds are included. Preferred aromatic compounds are selected from the group consisting of benzene, toluene, other alkyl aromatics, phenol, anthracene, phenanthrene, and pyridine. .
In the process of the invention, as in largely any catalytic alkylation process, temperature, and preferably also pressure, will be elevated as compared to room temperature. Preferably, the reaction is conducted at a temperature of 200°C to 500 °C, more preferably 320°C to 400°C. The pressure employed will generally depend on the type of reactor used. Preferred pressures are within a range of from 1 bar to 200 bar, more preferably 5 bar to 50 bar, and most preferably 7 bar to 20 bar.
In the preferred embodiment of a combination of palladium and zinc, it is believed that zinc serves to dilute the palladium, and thus modifies the activity and selectivity of the catalyst into the direction desired for the direct alkylation of aromatic compounds.
Whilst similar catalysts may already have been used for other applications, e.g., the dehydrogenation of alkanes, this is not the case for the alkylation of aromatics with alkanes, particularly with light alkanes. The use of zinc allows considerably higher yields of the desired alkyl aromatics, i.e., about 12% instead of 5% during the alkylation of toluene with ethane in a fixed-bed reactor at 24 bar and 350°C (see Fig. 1).
The invention will further be described with respect to non-limiting examples and with reference to a figure. The invention is not limited thereto but only by the claims. Where the term "comprising" is used in the present description and claims, it does not exclude other elements or steps. Where an indefinite or definite article is used when referring to a singular noun, e.g., "a" or "an", "the", this includes a plural of that noun unless something else is specifically stated.
Example 1
Preparation of the catalyst
Palladium ion exchange was carried out by adding drop wise under stirring an aqueous solution of 0.304 g Pd(NH3)4Cl2 (40.62 wt.-% Pd, ChemPur) in 250 ml demineralized water to a suspension of 9.446 g (dry mass) zeolite (Si/Al molar ratio of the zeolite is between 10 and 35) in 250 ml demineralized water. The mixture was stirred at room temperature for 24 hours, filtered and dried at 353 K for another 24 h. It will be understood that the amounts of Pd salt, water and zeolite can be varied. It is also possible to save Pd salt by not filtering the solution but carefully evaporating the water.
The catalyst was then calcined at 823 K in nitrogen for another 24 h and cooled to room temperature. 2.613 g (dry mass) zeolite were suspended in 25 ml demineralized water and 0.013 g of zinc acetate (C4H6O4 Ζη ·2Η2θ, Fluka 99.0%) were added. Then the water was carefully removed in a rotary evaporator, thereby impregnating the catalyst with the zinc salt. Afterwards, the catalyst was dried again at 353 K for 24 h.
Example 2
Catalytic Experiments
For the catalytic experiments, the zeolite powder was pressed without a binder, crushed and sieved to get a particle size between 0.2 and 0.3 mm. The catalyst was activated in situ, prior to starting the experiment. To achieve a high dispersion of the noble metal, 0.5 g of the catalyst were first heated in flowing synthetic air (150 cm3 mnr1) at a rate of 0.25 K min 1 to a final temperature of 573 K, then it was switched to nitrogen (150 cm3 mnr1) and heated with a rate of 1.7 K min-1 to a final temperature of 623 K.
Afterwards the catalyst was reduced under a constant stream of hydrogen (150 cm3 min-1) at 623 K for 4 h.
Catalytic experiments were performed in a flow-type apparatus with a fixed-bed reactor from stainless steel. Ethane (99.95 vol.-%, Westfalen AG) and nitrogen (99.999 vol.-%, Westfalen AG) were fed with an Error! Objects cannot be created from editing field codes, ratio of approximately 4 through a toluene (> 99.9 %, Merck) saturator containing Chromosorb P-NAW (Macherey-Nagel). Nitrogen was used as an internal standard but also to ensure that a relatively low Error! Objects cannot be created from editing field codes, feed ratio of 5±1 could be achieved at the high pressure applied. The reaction was carried out at a total pressure of 24 bar and a reaction temperature of (350±2) °C. The WHSV (toluene and ethane) was 1.0 h"1. Product analysis was achieved using an on-line sampling system, a capillary gas chromatograph and a CP-PoraPLOT Q column (length: 30 m, inner diameter: 0.32 mm, film thickness: 20 pm, Chrompack). Two detectors in series were employed, namely, a thermal conductivity detector followed by a flame ionization detector. Correction factors for the two detectors were determined separately. With ethane as tie substance, the results from both detectors were combined. From the mass and molar flows, the selectivities of all products were calculated in mol%. The yields were determined from the selectivities and the toluene conversion.
In Fig.1 a graphic representation is given of the yield of ethyltoluenes during the alkylation of toluene with ethane on zeolite catalysts in a fixed-bed reactor (pressure: 24 bar; reaction temperature: 350 °C).

Claims

Claims
1. A process for the alkylation of an aromatic compound, comprising contacting the aromatic compound with an alkane under elevated
temperature, in the presence of a catalyst composition comprising a
catalytically active metal and a promoter metal on a support selected from the group consisting of synthetic zeolites, metal organic frameworks, silico alumino phosphate molecular sieves, and mixtures thereof, wherein the catalytically active metal is palladium, and the promoter is zinc.
2. A process according to claim 1, wherein the support is selected from the group of synthetic zeolites and similar materials, such as SAPOs, MOFs or the like, having the characteristics of ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM- 35, and having a spaciousness index less than or equal to 20 and a modified constraint index of 1 to 14.
3. A process according to claim 2, wherein the support is selected from the group consisting of ZSM-5, ZSM-11, ZSM-12, ZSM-23, ZSM-35, and combinations thereof.
4. A process according to any one of the preceding claims, wherein the support is a zeolite having an Si/Al molar ratio between 2 and 100, preferably between 5 and 50.
5. A process according to claim 4, wherein the support is a zeolite having an Si/Al molar ratio between 10 and 35, preferably between 15 and 30.
6. A process according to any one of the preceding claims, wherein the molar ratio of zinc to palladium is between 0.01 and 5.
7. A process according to claim 6, wherein the molar ratio is between 0.1 and 1.5, preferably between 0.1 and 0.5.
8. A process according to any one of the preceding claims, wherein the catalyst composition comprises 0.1 wt.% to 5 wt.% of palladium.
9. A process according to claim 8, wherein the catalyst composition comprises 0.2 wt.% to 1 wt.% of palladium, preferably between 0.4 wt.% and 0.9 wt.%.
10. A process according to any one of the preceding claims, wherein the alkane is a light alkane having 1 to 12 carbon atoms, preferably 2 to 4 carbon atoms.
11. A process according to any one of the claims 1-9, wherein the alkane has more than 15 carbon atoms, preferably more than 22 carbon atoms.
12. A process according to any one of the preceding claims, wherein the aromatic compound is selected from the group consisting of benzene, toluene, phenol, anthracene, phenanthrene, and pyridine.
13. A process according to any one of the preceding claims, wherein the reaction is conducted at a temperature of 200°C to 500 °C, preferably 320°C to 400°C.
14. A process according to any one of the preceding claims, wherein the reaction is conducted under a pressures within a range of from 1 bar to 200 bar.
15. A process according to claim 14, wherein the pressure is 5 bar to 50 bar, preferably 7 bar to 20 bar.
16. The use of a catalyst composition as defined in any one of the claims
1 to 9, for the activation of an alkane towards the direct alkylation of an aromatic compound.
PCT/NL2012/050455 2011-06-29 2012-06-28 Method and catalyst for the alkylation of aromatic compounds with alkanes WO2013002638A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280026407.0A CN103732564B (en) 2011-06-29 2012-06-28 Process and catalyst for alkylation of aromatic compounds with alkanes
CA2836998A CA2836998C (en) 2011-06-29 2012-06-28 Method and catalyst for the alkylation of aromatic compounds with alkanes
EP12737905.5A EP2726445B9 (en) 2011-06-29 2012-06-28 Method and catalyst for the alkylation of aromatic compounds with alkanes
DK12737905.5T DK2726445T3 (en) 2011-06-29 2012-06-28 METHOD AND CATALYST FOR ALKYLING OF AROMATIC COMPOUNDS WITH ALKANES
US14/118,214 US20140249343A1 (en) 2011-06-29 2012-06-28 Method and catalyst for the alkylation of aromatic compounds with alkanes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11171909.2 2011-06-29
EP11171909 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013002638A1 true WO2013002638A1 (en) 2013-01-03

Family

ID=44839445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2012/050455 WO2013002638A1 (en) 2011-06-29 2012-06-28 Method and catalyst for the alkylation of aromatic compounds with alkanes

Country Status (6)

Country Link
US (1) US20140249343A1 (en)
EP (1) EP2726445B9 (en)
CN (1) CN103732564B (en)
CA (1) CA2836998C (en)
DK (1) DK2726445T3 (en)
WO (1) WO2013002638A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107649170B (en) * 2017-09-30 2020-02-21 宝鸡文理学院 Supported molecular sieve catalyst for synthesizing 4-methyl-2, 6-di-tert-butylphenol and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250879A1 (en) * 1986-06-27 1988-01-07 Mobil Oil Corporation Direct catalytic alkylation of mononuclear aromatics with lower alkanes
US4899008A (en) 1986-06-27 1990-02-06 Mobil Oil Corporation Direct catalytic alkylation of mononuclear aromatics with lower alkanes
WO1999059942A1 (en) 1998-05-18 1999-11-25 Mobil Oil Corporation Direct paraffin and aromatic alkylation and paraffin isomerization
DE102006059800A1 (en) * 2006-02-02 2007-11-22 Basf Ag Preparing alkyl-aromatic compound comprises reacting aromatic compound with alkane in presence of activated catalyst, which is crystalline solid containing silicon, and catalytic active metal contains platinum and element, e.g. zinc

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4061592A (en) * 1972-03-09 1977-12-06 Chevron Research Company Hydrocarbon conversion catalyst
US4774379A (en) * 1987-06-09 1988-09-27 Cosden Technology, Inc. Aromatic alkylation process
CN101623636B (en) * 2009-08-11 2011-11-16 沙隆达集团公司 Catalyst for synthesizing pyridine and alkyl pyridine and preparation method thereof
CN102030605B (en) * 2009-09-28 2013-07-24 中国石油化工股份有限公司 Low carbon hydrocarbon aromatization method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0250879A1 (en) * 1986-06-27 1988-01-07 Mobil Oil Corporation Direct catalytic alkylation of mononuclear aromatics with lower alkanes
US4899008A (en) 1986-06-27 1990-02-06 Mobil Oil Corporation Direct catalytic alkylation of mononuclear aromatics with lower alkanes
WO1999059942A1 (en) 1998-05-18 1999-11-25 Mobil Oil Corporation Direct paraffin and aromatic alkylation and paraffin isomerization
DE102006059800A1 (en) * 2006-02-02 2007-11-22 Basf Ag Preparing alkyl-aromatic compound comprises reacting aromatic compound with alkane in presence of activated catalyst, which is crystalline solid containing silicon, and catalytic active metal contains platinum and element, e.g. zinc

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Handbook of Porous Solids", 2002, WILEY-VCH
BISCARDI J A ET AL: "Structure and Density of Active Zn Species in Zn/H-ZSM5 Propane Aromatization Catalysts", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN, US, vol. 179, no. 1, 1 October 1998 (1998-10-01), pages 192 - 202, XP004447324, ISSN: 0021-9517, DOI: 10.1006/JCAT.1998.2177 *
BRESSEL ET AL: "Influence of aluminum content, crystallinity and crystallite size of zeolite Pd/H-ZSM-5 on the catalytic performance in the dehydroalkylation of toluene with ethane", MICROPOROUS AND MESOPOROUS MATERIALS, ELSEVIER SCIENCE PUBLISHING, NEW YORK, US, vol. 109, no. 1-3, 21 December 2007 (2007-12-21), pages 278 - 286, XP022399279, ISSN: 1387-1811, DOI: 10.1016/J.MICROMESO.2007.05.002 *
SEALY S ET AL: "Direct alkylation of toluene with ethane on bifunctional zeolite catalysts", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 294, no. 2, 10 October 2005 (2005-10-10), pages 273 - 278, XP025332924, ISSN: 0926-860X, [retrieved on 20051010], DOI: 10.1016/J.APCATA.2005.07.042 *

Also Published As

Publication number Publication date
DK2726445T3 (en) 2019-07-29
CA2836998C (en) 2017-07-25
EP2726445B9 (en) 2019-11-20
CA2836998A1 (en) 2013-01-03
EP2726445A1 (en) 2014-05-07
EP2726445B1 (en) 2019-05-22
US20140249343A1 (en) 2014-09-04
CN103732564B (en) 2016-01-20
CN103732564A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
Catizzone et al. From 1-D to 3-D zeolite structures: Performance assessment in catalysis of vapour-phase methanol dehydration to DME
US9803142B1 (en) Catalysts and methods for converting carbonaceous materials to fuels
Ghavipour et al. Methanol dehydration over alkali-modified H-ZSM-5; effect of temperature and water dilution on products distribution
Liu et al. Effect of Al distribution in MFI framework channels on the catalytic performance of ethane and ethylene aromatization
CA2620480C (en) Process for production of aromatic compound
JP5313929B2 (en) Process for producing lower olefins from methanol and / or dimethyl ether
JP2015515473A (en) Formation process of xylene and light olefins from heavy aromatics
JPS5940138B2 (en) Olefin manufacturing method
CA2327246A1 (en) Process for producing light olefins
CN108349831A (en) The method that reaction by methanol and/or DME or the reaction by methanol and/or DME and butane prepare alkene or alkylates
KR20110082600A (en) Stable shape-selective catalyst for aromatic alkylation and methods of using and preparing
EA024296B1 (en) Catalyst for producing paraxylene by co-conversion of methanol and/or dimethyl ether and cliquefied gas, method for preparing the same and method for using the same
EP2834004A1 (en) Multimetal zeolites based catalyst for transalkylation of heavy reformate to produce xylenes and petrochemical feedstocks
CN103796753A (en) Catalyst for use in production of hydrocarbons
Villegas et al. Isomerization of n-butane to isobutane over Pt-modified Beta and ZSM-5 zeolite catalysts: Catalyst deactivation and regeneration
KR101900063B1 (en) Method for preparing paraxylene and propylene by methanol and/or dimethyl ether
Mohammadrezaei et al. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst
Aguayo et al. Initiation step and reactive intermediates in the transformation of methanol into olefins over SAPO-18 catalyst
KR20050101555A (en) Process for producing para-xylene
CA2870688A1 (en) Aromatization of a methane-containing gas stream
KR20160131377A (en) Catalysts for ethanol dehydration and production method of ethylene using same
FI85463B (en) CATALYTIC CONVERSION AV C3-ALIFATER TILL HOEGRE KOLVAETEN.
CA2836998C (en) Method and catalyst for the alkylation of aromatic compounds with alkanes
Lukyanov et al. Highly selective and stable alkylation of benzene with ethane into ethylbenzene over bifunctional PtH-MFI catalysts
JP4026047B2 (en) Process for producing propylene from olefin streams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737905

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2836998

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012737905

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14118214

Country of ref document: US