WO2012175797A1 - In vitro cardiovascular model - Google Patents

In vitro cardiovascular model Download PDF

Info

Publication number
WO2012175797A1
WO2012175797A1 PCT/FI2012/050611 FI2012050611W WO2012175797A1 WO 2012175797 A1 WO2012175797 A1 WO 2012175797A1 FI 2012050611 W FI2012050611 W FI 2012050611W WO 2012175797 A1 WO2012175797 A1 WO 2012175797A1
Authority
WO
WIPO (PCT)
Prior art keywords
endothelial cells
cells
human
tubule
cardiomyocytes
Prior art date
Application number
PCT/FI2012/050611
Other languages
French (fr)
Inventor
Katriina AALTO-SETÄLÄ
Tuula Heinonen
Erja KERKELÄ
Jertta-Riina Sarkanen
Hanna VUORENPÄÄ
Timo Ylikomi
Original Assignee
Tampereen Yliopisto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tampereen Yliopisto filed Critical Tampereen Yliopisto
Priority to JP2014516404A priority Critical patent/JP2014519837A/en
Priority to CA2839052A priority patent/CA2839052A1/en
Priority to KR1020147000113A priority patent/KR20140048190A/en
Priority to CN201280030909.0A priority patent/CN103814124A/en
Priority to BR112013033246A priority patent/BR112013033246A2/en
Priority to EP12803040.0A priority patent/EP2723853B1/en
Priority to DK12803040.0T priority patent/DK2723853T3/en
Priority to US14/128,766 priority patent/US20140206029A1/en
Publication of WO2012175797A1 publication Critical patent/WO2012175797A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/34Muscles; Smooth muscle cells; Heart; Cardiac stem cells; Myoblasts; Myocytes; Cardiomyocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1352Mesenchymal stem cells
    • C12N2502/1382Adipose-derived stem cells [ADSC], adipose stromal stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/28Vascular endothelial cells

Definitions

  • the present invention relates to a tubule forming platform and an in vitro cardiovascular model for use in pharmacological studies. Furthermore, the invention relates to methods for the preparation said platform and model , and to a method of determining a biological activity of a test substance in said platform and cardiovascular model. Still further, the invention relates to an implantable cardiac structure for use in the treatment of cardiac disorders.
  • a cardiovascular system together with respiratory and central nervous systems belongs to the vital organs or systems, the function of which is acutely critical for l ife . Therefore , ch em ical su bsta nces such as pharmaceuticals, industrial chemicals, biocides, food and feed preservatives and cosmetics have to be assessed for cardiac toxicity.
  • the cardiac adverse drug reactions are utmost important because they are typically serious and can be fatal, as was seen for various drugs that were removed from the market in the 1980s and 1990s. These fatalities prompted regulatory attention and the development of the ICH Guidelines S7B and E14, released in 2005. These guidelines formalized the nonclinical and cl in ical assessments of all investigative drug's proarrhythmic liability.
  • Proarrhythmias due to drug-induced QT prolongation are the second most common cause for drug withdrawal and have caused increasing concern.
  • the QT interval is affected by the heart rate.
  • US 2009/0169521 discloses an artificial 3D cardiac structure for use in the treatment of cardiac disorders.
  • the structure is obtained by co- seeding cardiomyocytes, endothelial cells, and fibroblasts on or within an artificial scaffold.
  • exogenous scaffolds may interfere with cell-to-cell interactions and cell assembly in a multi-layered tissue construct (Norotte et al. Biomaterials, 2009, 30: 5910), the disclosed cardiac structure would not be optimal for use in pharmacological toxicology studies.
  • the present invention provides an in vitro cardiovascular structure comprising an isolated tubule forming platform and cardiomyocytes.
  • the tubule forming platform comprises human adipose stem cells (hASCs), optionally, in the absence of any exogenous matrix components or added biomaterials.
  • hASCs human adipose stem cells
  • the platform further comprises tubule forming endothelial cells, such as human umbilical vein endothelial cells, human microvascular endothelial cells, human adipose stem cell derived endothelial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, endothelial progenitor cells, or endothelial cells obtained by genetic modification.
  • endothelial cells such as human umbilical vein endothelial cells, human microvascular endothelial cells, human adipose stem cell derived endothelial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, endothelial progenitor cells, or endothelial cells obtained by genetic modification.
  • the present invention provides an in vitro cardiovascular structure for use in treating a cardiac disease.
  • the present invention provides an isolated tubule forming platform described above.
  • the present invention provides a method of producing a tubule forming platform.
  • the method comprises the steps of a) providing hASCs; and b) culturing said hASCs in a complete serum- free medium supplemented with VEGF and FGF-2, optionally, in the absence of any exogenous matrix components or added biomaterials.
  • the method further comprises a step of providing tubule forming endothelial cells and co-culturing them with said hASC.
  • the present invention provides a method of producing the in vitro cardiovascular structure described above.
  • the method comprises the steps of a) providing hASCs, cardiomyocytes, and, optionally, tubule forming endothelial cells; b) culturing said hASCs, optionally, with said tubule forming endothelial cells; c) culturing said cardiomyocytes on top of the culture formed in step b); and d) administering VEGF and FGF-2 to the cell culture formed in step c).
  • one aspect of the present invention relates to a method of determining a biological activity of a test substance.
  • the method comprises the steps of: a) providing a tubule forming platform or an in vitro cardiovascular structure described above; b) administering said test substance to said platform or structure; c) determining the effect of the test substance in said platform or structure; and d) comparing the effect determined in step c) to a corresponding effect determined in the absence of said test substance.
  • the biological activity to be determined is selected from the group consisting of cellular toxicity, tubule formation modulating activity, electrical properties such as rate of cardiomyocyte contraction, mechanical properties such as force of card iomyocyte contraction orand basic cell metabolism.
  • One further aspect of the present invention provides a method of treating a cardiac disease in a patient in need thereof, comprising implanting a cardiac structure described above into said patient.
  • Non-liming examples of said cardiac disease may be selected from the group consisting of coronary heart disease and dilated cardiomyopathy.
  • Figure 1 is a photograph illustrating the tubule formation of hASC monoculture and hASC+HUVEC co-culture.
  • Cells were stained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, red fluorescence shown with TRITC conjugated secondary antibody, 1 : 1 00, Sigma).
  • Figure 1 A Comparison of tubule formation of hASC monoculture and hASC+HUVEC co-culture. Cells were cultured and induced to angiogenesis for 3 or 6 days in growth factor enriched EGM-2 BulletKit medium.
  • Figure 1 B Semi-q uantitative analysis of the tu bu le formation between d ifferent treatments.
  • hASC monoculture and hASC+HUVEC co-culture were compared to each other at 3 and 6 days.
  • Figure 1 C For controls, HUVEC were plated at 4000 cells/cm 2 and grown in growth factor enriched EGM-2, and hASC+HUVEC co-culture grown without exogenous addition of growth factors
  • Figure 1 D hASC+HUVEC were cultured in the growth factor enriched EGM-2 with human serum (EGM-2, 2% HS) or without serum (EGM-2 w/o serum).
  • FIG. 2 is a photograph illustrating the expression of pericytic and smooth muscle cell differentiation markers in tubule structures after angiogenic induction with growth factor enriched EGM-2 medium.
  • cell cultures were immunostained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, red fluorescence shown with TRITC conjugated secondary antibody, 1 :100, Sigma).
  • cultures were immunostained with either anti- aSMA (1 :200, Sigma), anti-COLIV (1 :500, Sigma), anti-PDGFRp (1 :500, Sigma), anti-SMMHC (1 :800, Sigma) or anti-calponin (1 :800, Sigma), all of these green fluorescence, FITC-conjugated secondary antibody (1 :100, Sigma).
  • the images shown are merged images of double immunofluoresence at day 6, except for anti-PDGFRp, that is at day 3, and except for anti-COLIV and anti-calponin for which both merged image of staining (small image) and the FITC-conjugated secondary antibody - anti-COLIV/anti-calponin staining (large images) are shown.
  • FIG. 3 is a photograph illustrating an In vitro cardiovascular model based on hASCs, HUVECs and Neonatal Rat Cardiomyocytes, cultured for 10 days. Scale bar 100 ⁇ .
  • cell cultures were immunostained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, TRITC conjugated secondary antibody, 1 :100, Sigma).
  • TRITC conjugated secondary antibody 1 :100, Sigma.
  • cardiomyocytes the cultured were immunostained with card iac specific anti-troponin T (1 :500, Abeam) and FITC-conjugated secondary antibody (1 :100, Sigma).
  • FIG. 4 is a photograph illustrating an In vitro cardiovascular model based on hASCs, HUVECs and human embryonic stem cell derived cardiomyocytes, cultured for 10 days. Scale bar 1 00 ⁇ .
  • cell cultures were immunostained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, TRITC conjugated secondary antibody, 1 : 1 00, Sigma).
  • the cultured were immunostained with cardiac specific anti-troponin T (1 :500, Abeam) and FITC-conjugated secondary antibody (1 :100, Sigma).
  • Figure 5 is a multi-electrode array (MEA) recording showing the electrical signal from synchronously contracting cardiovascular model 4 days after constructing the model.
  • MEA multi-electrode array
  • the present invention provides an in vitro cardiovascular structure, i.e. a cardiovascular model, for use in pharmacological safety and toxicity studies.
  • the model comprises cardiomyocytes cultured on a tubule forming platform.
  • cardiomyocytes cultured on a tubule forming platform.
  • such a functional cardiovascular model may be obtained without any exogenous matrix or added biomaterials.
  • Exogenous scaffolds typically used for creating multi-layered tissue constructs may interfere with cell-to-cell interactions and cell assembly.
  • the present scaffold-free cardiovascular model is advantageous in this respect.
  • An optimal tissue construct shou ld contain no animal-derived components or unnatural scaffold materials and contain only growth factors and proteins that occur in tissues naturally.
  • the present cardiovascular model at least in some embodiments, fulfils these requirements and has features of mature vessels, i.e. in addition to the formation of tubule structures, the model is characterized by pericyte recruitment, basement membrane formation, and formation of a vessel supporting layer of smooth muscle cells.
  • tubule forming platform refers to a multilayered cell structure having the capability of self-assembling into vascular network structures.
  • the tubule forming platform may be constructed solely from adipose-derived stromal/stem cells (ASCs), such as human adipose stem cells (hASCs). This type of tubule forming platform is referred to as a monoculture model.
  • ASCs adipose-derived stromal/stem cells
  • hASCs human adipose stem cells
  • ASC anterior-derived stem cell
  • hASCs human ASCs
  • the tubule forming platform is constructed by co-culturing tubule forming endothelial cells and hASCs. This type of a tubule forming platform is referred to as a co-culture model.
  • tubule forming endothelial cell(s) refers to endothelial cells having the capability of forming vascular structures, such as a vascu lar network.
  • Non-limiting examples of tubule forming endothelial cells include human umbilical vein endothelial cells (HUVECs), human microvascular endothelial cells, human adipose stem cell derived endothelial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, endothel ial progen itor cells from other tissues, and endothelial cells obtained by genetic modification. Means and methods for inducing endothelial differentiation of the above-mentioned cells are readily known to a person skilled in the art. Tubule forming endothelial cells are also commercially available.
  • Embryonic stem cells are pluripotent cells having the ability to d ifferentiate into a wide variety of different cell types, such as endothelial cells. Methods of obtain ing embryonic stem cells are readily available in the art.
  • WO 2007/130664 discloses a promising new approach, termed blastomere biopsy, for obtaining human embryonic stem cells without damaging the donor embryo.
  • iPSCs induced pluripotent stem cells
  • hiPSCs Human induced pluripotent stem cells
  • transdifferentiation or “lineage reprogramming” refers to a conversion of one mature cell type into another without undergoing an intermediate pluripotent state or progenitor cell type.
  • the tubule forming platform may be obtained by a method, wherein i) ASCs, or ii) ASCs and tubule forming endothelial cells, are plated on a cell culture or tissue culture plate, such as a 24-well, 48-well, 96-well plate or microplate in a cell culture medium supporting endothelial cell growth.
  • a cell culture or tissue culture plate such as a 24-well, 48-well, 96-well plate or microplate in a cell culture medium supporting endothelial cell growth.
  • a non- limiting example of such a culture medium is EGM-2 BulletKitTM obtainable from Lonza.
  • the tubule formation may be induced in any endothelial growth medium (suppl ied by e.g .
  • DMEM Lonza, Provitro, Promocell, BD
  • DMEM/F12 or Knock-Out (KO) DMEM supplied e.g . by Gibco Invitrogen, Sigma, BD, Lonza
  • bFGF vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • hydrocortisone as supplements.
  • optional factors are insulin, IGF-I, hEGF, transferrin and/or hormones such as trijodotyronine.
  • the bottom surface of a cell culture plate may be grooved or scratched in order to align the tubules to be formed towards a desired orientation.
  • cel l s are typically but not necessarily plated in a density of about 24 x 10 4 cells/cm 2 or more.
  • ASCs and endothelial cells are typically but not necessarily plated in a ratio of 2:1 to 8:1 , preferably 5:1 , respectively.
  • ASCs are plated in a density of about 20 x 10 4 cells/cm 2 and tubule forming endothelial cells in a density of about 4 x 10 4 cells/cm 2 .
  • the tubule forming cells such as HUVECs, are plated 1 to 3 hours later that the ASCs, such as hASCs.
  • the present cardiovascular model is obtained by a method, wherein cardiomyocytes are seeded or plated on top of on a tubule forming platform thus modelling a human or animal heart.
  • ca rd iomyocytes su ita bl e for u se i n th e mod el i n cl ude neonatal rat cardiomyocytes, human embryonic stem cell (hESC) derived cardiomyocytes, human induced pluripotent stem cell (hiPSC) derived cardiomyocytes, adult stem cel l derived ca rd iomyocytes, human transdifferentiation-derived cardiomyocytes, and human cardiac myocytes.
  • hESC human embryonic stem cell
  • hiPSC human induced pluripotent stem cell
  • Means and methods for inducing cardiomyocyte differentiation include, but are not limited to, endodermal cell induced differentiation developed by Mummery et al. (Circulation, 2003, 107:2733), Activin A and BMP4 induced differentiation developed by Laflamme et al . (Nat Biotechnol, 2007, 25(9): 1015), and embryoid body technique developed by Kehat et al. (Circ. Res. 2002, 91 : 659).
  • cardiomyocytes are plated on top of a tubule forming platform in a complete serum-free medium (CSFM).
  • CSFM serum-free medium
  • a non-lim iting exam ple of a commercially available cell culture medium suitable for use as a basal medium for CSFM is DMEMTM or DMEM/F12 or Knock-Out (KO) DMEM available from Gibco.
  • the culture medium may be serum-free or contain up to about 10% of bovine or human serum.
  • DMEM/F12 may be used as a basal medium in such cases.
  • cardiomyocytes are plated in a density of about 1 x10 5 or about 2x10 5 cells/cm 2 , but the seeding density is not limited to these values.
  • cardiomyocytes are seeded on top of a tubule forming platform one day later than the cells forming the tubule forming platform. It is not a prerequisite for the cardiovascular model that the tubules be completely formed prior to seeding the cardiomyocytes.
  • tubule formation and cardiomyocyte alignment with the tubules, tubule forming endothelial cells and/or cardiomyocytes may be fluorescently labelled with e.g . lentivirus infection by inserting e.g . Green or Yellow Fluorescent Protein into the endothelial cell genome.
  • the cells could also be genetically modified (including insertion of reporter genes, disease specific genes, differentiation related genes).
  • VEGF vascular endothelial growth factor
  • FGF-2 basic fibroblast growth factor
  • Optional agents for increasing angiogenic induction in the model include, but are not limited to, ascorbic acid, heparin, hydrocortisone, insulin-like growth factor 1 (IGF-1 ), epidermal growth factor (EGF), preferably human EGF, and any combinations thereof.
  • a culture medium suitable for inducing angiogenesis i.e. tubule formation
  • ingredients in a culture medium suitable for inducing angiogenesis (i.e. tubule formation) in the present model include bovine and human serum in a concentration up to 10%, as well as bovine and human albumin.
  • any of the culture media used for producing and/or utilizing the present tubule forming platform and/or cardiovascular model may contain any ingredients typically used in cell culture media, such as antibiotics, L-glutamine and sodium pyruvate.
  • Card iomyocytes remain viable and functional in the cardiovascular model longer than previously possible.
  • contractility of the new born rat cardiomyocytes can be maintained three weeks compared to hiPSC and hESC derived cardiomyocytes which m ay be maintained for months.
  • the viability and contractility of the cardiomyocytes is more important in the cardiovascular model than completely formed tubule structures.
  • cardiovascular models with moderate tubule formation may be used for testing test substances according to various embodiments of the present invention.
  • substances to be tested in the present card iovascu l ar model a re added to the cel ls one day after administration of VEGF and FGF-2.
  • a prerequisite is that the cardiomyocytes need to have functional properties before the chemical substances are added.
  • the effects of said substances may be followed for e.g. two to three weeks, or even for months, if needed, depending on the application and source of cardiomyocytes.
  • biological effects to be determined include, but are not limited to, toxic effects as determined e.g. by assessing increase or decrease in the expression of different genes; viability of the cells by different means (e.g. MTT test, Neutral Red Uptake (NRU) assay, or LiveDead assay available from Invitrogen); electrical properties such as changes in the cardiomyocyte contraction rate and repolarization time or arrhythmic events as determined e.g. by measuring QT interval; mechanical properties such as changes in the contraction force as measured by different planar biosensors or distraction; immunostainings of card iac markers such as connexin-43 for detecting GAP-junctions or markers such as cardiac specific troponin T; and changes in cell metabolism (e.g. lactic acid formation, calcium flux, changes in ion channels, glucose consumption, oxygen consumption, and carbon dioxide release). These effects may be assessed in any desired com bination separately, sequentially, concomitantly, or simultaneously.
  • toxic effects as determined e.g. by assessing increase or decrease
  • the cardiovascular model may contain one or more sensors, such as planar biosensors, for assessing any of the above-mentioned cellular effects.
  • sensors include, but are not l im ited to, electrochemical, electrical and/or optical sensors.
  • Fu rther sensors may be incl uded for monitoring and, if desired, adjusting physico-chemical properties of the culture medium.
  • the tubule forming platform per se may be used for assessing angiogenic properties of a test substance.
  • angiogenic properties to be assessed include tubule forming capability (e.g . by measuring tubule lengths and/or branches, or determining the presence of endothelial tight junctions) and tubule maturation capability (e.g. by determining the basement membrane formation, presence of pericytes and smooth muscle cells lining the mature tubule structures). In such cases, no cardiomyocytes are added to cell culture.
  • the test substance may be appl ied to the tubule form ing platform , for instance, one day after angiogenesis induction by VEGF and FGF-2 with or without above-mentioned optional angiogenesis inducing agents.
  • the angiogenic properties may be followed for e.g. few days or two weeks.
  • the test substance may be applied to the model even prior to the tubules being completely formed.
  • test substances to be screened in the present cardiovascular and angiogenesis models include chemical and biolog ical substances such as small molecule chemical compounds, nanoparticles, polypeptides, antibodies, and growth factors.
  • the cardiovascular structure and the tubule forming platform in the absence of any exogenous matrix components and added biomaterials functions well for the purposes of pharmacological safety and toxicity tests and m im ics a card iac tissue without interfering non-native components, it may, however, in some cases be advantageous to include such components in the model and/or the platform. Such embodiments may be used, for instance, to test safety and toxicity of test substances in an artificial cardiac construct.
  • suitable exogenous matrix components or biomaterials to be provided in the cardiovascular model and/or the tubule forming platform include, but are not restricted to, synthetic or natural polymers such as collagen I or IV, hyaluronic acid, gelatin or other extracellular matrix components.
  • the cardiovascular structure wh ich contains exogenous matrix components and/or added biomaterials may be constructed as an implantable 3D cardiac structure for use in the treatment of cardiac diseases including, but not limited to coronary heart disease and dilated cardiomyopathy.
  • treatment refers not only to complete cure of a disease, but also to prevention, alleviation, and amelioration of a disease or symptoms related thereto.
  • the cardiac structure is xeno-free, i.e. it does not contain any components obtained from a foreign source or is not prepared under conditions containing foreign agents. Furthermore, it may be advantageous to use of autologous cells for therapeutic purposes.
  • EXAMPLE 1 Construction and characterization of co-culture based tubule forming platform
  • HUVECs cells were derived from umbilical cords obtained from scheduled cesarean sections with informed consent from Tampere University Hospital (permission No. R08028 from the Ethics Committee of the Pirkanmaa Hospital District, Tampere, Finland).
  • the isolation of umbilical vein endothelial cells (HUVEC) from human umbilical cord veins was performed as described by Jaffe et al. (J Clin Invest, 1973, 52: 2745) but the process was further optimized.
  • the umbilical cord was separated from the placenta and the umbilical vein was cannulated with a 20G needle. The needle was secured by clamping the cord over the needle with a surgical clamp.
  • the vein was perfused with Umbilical cord buffer solution (UBS; 0.1 M phosphate buffer solution containing 0.14 M NaCI, 0.004 M KCI, and 0.01 1 M glucose) to wash out blood after which the other end of the umbilical vein was clamped with a surgical clamp.
  • UBS Umbilical cord buffer solution
  • the vein was infused with 0.05% collagenase I.
  • the umbilical cord was incubated in a water bath at 37°C for up to 20 min. After incubation, the collagenase I solution containing HUVEC was flushed from the cord by perfusion with PBS into a 50 ml polypropylene tube (Sarstedt).
  • the cells were centrifuged at 200 x g for 10 min, washed once with medium, centrifuged again and resuspended in EGM-2 BulletKit medium (Lonza Group Ltd, Basel , Switzerland) and seeded into 75 cm 2 flasks.
  • the cells were cultured at 37°C in 5% CO2 incubator. Medium was changed every two to three days and cells were divided when confluent.
  • HUVEC were plated at 4000 cells/cm 2 and cultured in EGM-2 BulletKit medium.
  • the isolated HUVEC were daily observed microscopically for their morphology, cell culture purity, and cell proliferation. The medium was changed every 2-3 days. When confluent, the cells were detached with Tryple Express . Pu re H UVEC cu ltures with good prol iferation capacity were subcultured at primary culture (pO) in the ratio of 1 :2-1 :4 and at passages 1 (p1 ) upward in a ratio of 1 :3-1 :5.
  • Lentiviral construct pLKO-MISSION-Bright-GFP was purchased from Biomedicum Genom ics (BMGen, Biomed icum Helsinki , Helsinki, Finland). The infection was carried out with HUVEC at low passages with 300 ⁇ of pLKO-MISSION-Bright-GFP in 1 ml EGM-2 Bullet Kit medium (1 U/ml). Virus infection was accelerated with 8 g/ml hexadimethrine bromide (Sigma). After 24 hours of incubation, medium was replaced with fresh EGM-2 medium. Highly fluorescent clones were selected with cloning rings and further selected with d il ution clon ing to obtain pu re G FP-HUVEC-culture. After expanding the infected HUVEC, they were used for hASC and HUVEC co- culture assay as described below.
  • hASCs human adipose stem cells
  • hu man ad ipose tissue specimens were cut into small pieces, enzymatically digested with 0,05% collagenase I (Invitrogen, Paisley, Scotland, U K ) i n D ulbecco's Modified Eagle's Medium Nutrient Mixture F-12 (DMEM/F12, Gibco, Invitrogen, Carlsbad, CA, USA) for 60 min at 37°C in a gyratory water bath. The digested tissue was centrifuged at 600 x g for 10 min in room temperature (RT).
  • DMEM/F12 Modified Eagle's Medium Nutrient Mixture F-12
  • the digested tissue was filtered through a 100 m filter (Sarstedt, Numbrecht, Germany), centrifuged and filtered through a 40 ⁇ filter (Sarstedt).
  • Cells were seeded into 75 cm 2 flasks (Nunc EasyFlaskTM, Nunc, Roskilde, Denmark) in DMEM/F12 supplemented with 1 % L-glutamine (L-glut, Gibco), 1 % Antibiotic-antimycotic mixture (AB/AM, Gibco) and 1 5% human serum (HS, Cambrex, East Rutherford, NJ, USA).
  • the next day cells were washed several times with PBS.
  • the cells were maintained at 37°C under a 5% CO2 air atmosphere at a constant humidity and medium was changed every two to three days. After grown to confluency, cells were divided in a ratio of 1 :2-1 :3, or further used for cell culture studies.
  • Human ASC (up to passage 7) were seeded in EGM-2 BulletKit (Lonza) culture medium into 48-well plates (NunclonTM Multidishes, Nunc, Roskilde, Denmark) at a density of 20 000 cells/cm 2 .
  • HUVEC cultured as above (up to passage 4), were immediately carefully seeded on top of hASC at a density of 4000 cells/cm 2 .
  • Cel l s were cu ltu red for e ith er 3 or 6 d ays prior to immunocytochemistry or quantitative RT-PCR. Medium was changed and the treatments applied once to cells cultured for 3 days and twice to cells cultured for 6 days.
  • Cells were washed three times with PBS, incubated 30 min with secondary antibody polyclonal anti- rabbit IgG TRITC (1 :100, Sigma) for anti-vWf and polyclonal anti- mouse IgG FITC (1 :100, Sigma) for anti-aSMA, anti-COLIV, anti- PDGFR- ⁇ and anti- SMMHC.
  • Cell nuclei were stained with Hoechst 33258 (1 ug/ml, Sigma) for 5 m inutes and washed 5 times with PBS .
  • primary antibody pair was mouse monoclonal antibody to GFP (Abeam, Cambridge, UK, 1 :100) and anti-vWf, secondary antibodies being anti- mouse IgG TRITC (Sigma, 1 :100) and polyclonal antibody to rabbit IgG FITC, (Acris Antibodies GmbH, Hiddenhausen, Germany, 1 :500), respectively. Fluorescence was visualized with Nikon Eclipse Ti-S microscope (Nikon, Tokyo, Japan) and the images were processed with Adobe Photoshop software 7.0 (Adobe Systems, San Jose, CA, USA) and Corel Draw software 1 0.0 (Corel Corporation, Ottawa, ON, Canada).
  • tubules were analyzed with Nikon Eclipse TS100 microscope (Nikon, Tokyo, Japan) from 48-well plate wells with 40x magnification .
  • the extent of tubules in different cultures was quantified visually by using semi-quantitative grading scale from 0 to 10, the grading was based on tubule formation, the length and the branches of tubules, as described in our previous study (Sarkanen et al., 201 1 ).
  • tubule formation had significantly more tubules at day 6 than at day 3 (p ⁇ 0.001 ).
  • the co-culture was also subjected to immunocytochemical staining.
  • PDGFR expression was most intense at day 3 and was seen as dotlike structures surrounding the developing tubules constantly. At day 6, PDGFR was seen in some extent.
  • COLIV showing the development of basement membrane, was remarkably widely expressed in the co-culture. The expression was co-localized with the developing tubules, covering the tubules.
  • a-SMA and SMMHC positive cells were expressed widely in the co-culture at day 6, often localized in the branching points of tubular structures and in between the tubules. SMMHC expression was increased between days 3 and 6.
  • co-culture model forms a dense multilayered vascular network with properties of mature blood vessels such as complete basement membrane formation and smooth muscle cells with contractile properties aligning the tubules.
  • This co-culture model is more mature that any of the previous developed angiogenesis models.
  • Human ASCs were obtained as described in Example 1 and seeded in EGM-2 BulletKit medium into 48-well plates (NunclonTM Multidishes, Nunc, Roskilde, Denmark) at a density of 20 000 cells/cm 2 .
  • Cells were cultured for either 3 or 6 days in EGM-2 BulletKit medium, a commercially available growth factor enriched medium containing EGF, VEGF, bFGF, IGF-I, ascorbic acid, heparin, 0,1 % gentamicin/amphotericin-B and 2 % FBS, or in DMEM/F- 12 medium supplemented with 15% HS, 1 mM L-glut and 1 % AB/AM.
  • hASC were cultured in DMEM/F-12 medium supplemented with 15% HS, 1 mM L-glut and 1 % AB/AM.
  • HUVECs and hASCs used in this Example were obtained as described in Example 1 .
  • Neonatal rat cardiomyocytes were extracted from neonatal rat puppies aged two to three days.
  • Day 0 construction of a tubule forming platform
  • Co-culture model hASCs (up to passage 4) were seeded in EGM-2 BulletKit -medium into 48-well plates at a density of 20 000 cells/cm 2 . After 1 -3 hours, HUVECs (up to passage 4) in EGM-2 culture medium were carefully seeded on top of hASC at a density of 4000 cells/cm 2 .
  • Neonatal rat cardiomyocytes (100 000, 200 000, or 40000 cells) in complete serum free medium (CSFM) were seeded on top of the tubule forming platform.
  • the medium was changed to CSFM supplemented with 10 ng/ml vascular endothelial growth factor (VEGF) and 1 ng/ml basic fibroblast growth factor (FGF-2).
  • VEGF vascular endothelial growth factor
  • FGF-2 basic fibroblast growth factor
  • Neonatal rat cardiomyocytes survived viable and contractile in the monoculture model for about 7 days and for at least 14 days in the co- culture model (see Table 1 ).
  • the striated form of the cell morphology was maintained throughout the culture time.
  • the cardiomyocytes were orientated along or close to the tubule structures and were synchronously contracting throughout the culture.
  • Medium 3 CSFM supplemented with 2 % FBS (fetal bovine serum. Gibco), 10 ng/ml VEGF and 1 ng/ml FGF-2.
  • FBS fetal bovine serum. Gibco
  • Medium 4 Angiogenic stimulation medium: Endothelial cell basal medium (EBM-2, Lonza) supplemented with 10 ng/ml VEGF, 1 ng/ml FGF-2, 0,1 % gentamicin (GA-1000, Lonza), 2 % fetal bovine serum and 1 mM L-glutamine.
  • Medium 5 Angiogenic stimulation medium + human serum: Endothelial cell basal medium (EBM-2, Lonza) supplemented with 10 ng/ml vascular endothelial growth factor,and 1 ng/ml basic fibroblast growth factor (FGF-2, Sigma), 0,1 % gentamicin (GA-1000, Lonza) and 2 % human serum (Lonza) serum and 1 mM L-glutamine.
  • EBM-2 Endothelial cell basal medium
  • FGF-2 basic fibroblast growth factor
  • Medium 2 CSFM supplemented with 10 ng/ml VEGF, 1 ng/ml FGF-2, ascorbic acid (EGM-2 Single Quots supplements, Lonza), hydrocortison Medium 6: EGM-2 BulletKit -medium (Lonza) where 2 % fetal bovine serum (Lonza) is replaced by 2 % human serum (Lonza).
  • Medium 7 EGM-2 BulletKit -medium (Lonza) without fetal bovine serum.
  • HUVECs and hASCs used in this Example were obtained as described in Example 1 .
  • Human embryonic stem cell derived cardiomyocytes were differentiated for 2 weeks as described by Mummery et a ⁇ .(ibid)..
  • the beating cl usters were cut out, dissociated and cultured in DMEM/F12 supplemented with 10% FBS, 1 % NEAA and 1 % Glutamax (EB medium).
  • Co-culture model hASCs (up to passage 4) were seeded in EGM-2 BulletKit -medium into 48-well plates at a density of 20 000 cells/cm 2 . After 1 -3 hours, HUVECs (up to passage 4) in EGM-2 culture medium were carefully seeded on top of hASC at a density of 4000 cells/cm 2 .
  • Day 2 Induction of differentiation
  • the medium was changed to EB supplemented with 1 0 ng/ml vascular endothelial growth factor (VEGF) and 1 ng/ml basic fibroblast growth factor (FGF-2).
  • VEGF vascular endothelial growth factor
  • FGF-2 basic fibroblast growth factor
  • F ig ure 4 illustrates that human cardiomyocytes were functional i.e. contractile and presented typical morphology of mature-like cardiomyocytes even after 10 days in the co-culture model.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Epidemiology (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Rheumatology (AREA)

Abstract

The present invention relates to a tubule forming platform and an in vitro cardiovascular model for use in pharmacological studies. Furthermore, the invention relates to methods for the preparation said platform and model, and to a method of determining a biological activity of a test substance in said platform and cardiovascular model. Still further, the invention relates to an implantable cardiac structure for use in the treatment of cardiac disorders.

Description

IN VITRO CARDIOVASCULAR MODEL
FIELD OF THE INVENTION
[0001 ] The present invention relates to a tubule forming platform and an in vitro cardiovascular model for use in pharmacological studies. Furthermore, the invention relates to methods for the preparation said platform and model , and to a method of determining a biological activity of a test substance in said platform and cardiovascular model. Still further, the invention relates to an implantable cardiac structure for use in the treatment of cardiac disorders.
BACKGROUND OF THE INVENTION
[0002] A cardiovascular system together with respiratory and central nervous systems belongs to the vital organs or systems, the function of which is acutely critical for l ife . Therefore , ch em ical su bsta nces such as pharmaceuticals, industrial chemicals, biocides, food and feed preservatives and cosmetics have to be assessed for cardiac toxicity. These studies mainly involve the use of animals although animal-based tests have often been demonstrated to be poor models for predicting effects in man. Furthermore, animal tests are ethically questionable, costly and time consuming. For these reasons the strategy of both European Commission and US regulatory bodies is that the safety testing should be performed in non-animal models, and tests should be based on the predictive, toxicity pathway based human cell organotypic models that mimic as closely as possible the conditions in man (Toxicity Testing in the 21 st Century: A Vision and a Strategy, 2007).
[0003] Anomalies in the cardiac action potential - whether due to a congenital mutation or injury - can lead to human pathologies, especially arrhythmias. The cardiac adverse drug reactions are utmost important because they are typically serious and can be fatal, as was seen for various drugs that were removed from the market in the 1980s and 1990s. These fatalities prompted regulatory attention and the development of the ICH Guidelines S7B and E14, released in 2005. These guidelines formalized the nonclinical and cl in ical assessments of all investigative drug's proarrhythmic liability. Proarrhythmias due to drug-induced QT prolongation are the second most common cause for drug withdrawal and have caused increasing concern. The QT interval is affected by the heart rate. The most common models used today in safety pharmacological studies with new pharmaceuticals are animal models and ex vivo models that contains isolated hearts from guinea pig or rabbit or Purkinje cells isolated from a dog. No validated in vitro heart model exists that could be used for these purposes.
[0004] A few different in vitro 3D-cardiac tissue constructs have been developed with both contractile properties and action potentials (Zimmermann et al ., Circulation Research, 2002, 90:22; Akiyama et al ., Int. J. Mol. Sci., 2010, 1 1 :2910). The disadvantages of the existing research models are that they are based on animal biology (rat cells) and that the models can be kept functional only for a short period of time (a few days). Thus short-term effects can only be assessed. Therefore, in order to mimic the heart function (beating frequency, beating strength, electrical activity, different channel activities) relevant to man human cell based functional tissue construct with relevant biomarkers and physico-chemical conditions control and maintenance would be needed to be developed.
[0005] US 2009/0169521 discloses an artificial 3D cardiac structure for use in the treatment of cardiac disorders. The structure is obtained by co- seeding cardiomyocytes, endothelial cells, and fibroblasts on or within an artificial scaffold. As exogenous scaffolds may interfere with cell-to-cell interactions and cell assembly in a multi-layered tissue construct (Norotte et al. Biomaterials, 2009, 30: 5910), the disclosed cardiac structure would not be optimal for use in pharmacological toxicology studies.
[0006] In addition to toxicity studies of chemical and biological substances, human cell based organotypic heart models would be needed in investigation of novel medicines for cardiovascular diseases. In Western countries, cardiovascular diseases are the most common cause of deaths with heart failure being one of the most common diseases. For this reasons there is an urgent need to develop medicines and tissue engineering treatments to repair heart function . One approach is to use stem cell therapy to repair infracted area. The goal of the stem cell therapy is to differentiate patients own stem cells to functional cardiomyocytes and transplant the cells for reparation of the damaged area of the myocardium. However, before stem cell therapy can be applied to clinical use more research is needed to better understanding of stem cell d ifferentiation, proliferation and behaviour. Tissue engineering treatments would greatly benefit from a human cell based functional heart model including vascular support. [0007] Thus, there is an identified need in the art for val idated cardiac in vitro models.
BRIEF DESCRIPTION OF THE INVENTION
[0008] In one aspect, the present invention provides an in vitro cardiovascular structure comprising an isolated tubule forming platform and cardiomyocytes. The tubule forming platform comprises human adipose stem cells (hASCs), optionally, in the absence of any exogenous matrix components or added biomaterials. In some embodiments, the platform further comprises tubule forming endothelial cells, such as human umbilical vein endothelial cells, human microvascular endothelial cells, human adipose stem cell derived endothelial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, endothelial progenitor cells, or endothelial cells obtained by genetic modification.
[0009] In another aspect, the present invention provides an in vitro cardiovascular structure for use in treating a cardiac disease.
[0010] In yet another aspect, the present invention provides an isolated tubule forming platform described above.
[0011] In still another aspect, the present invention provides a method of producing a tubule forming platform. The method comprises the steps of a) providing hASCs; and b) culturing said hASCs in a complete serum- free medium supplemented with VEGF and FGF-2, optionally, in the absence of any exogenous matrix components or added biomaterials. In some embodiments, the method further comprises a step of providing tubule forming endothelial cells and co-culturing them with said hASC.
[0012] In a still further aspect, the present invention provides a method of producing the in vitro cardiovascular structure described above. The method comprises the steps of a) providing hASCs, cardiomyocytes, and, optionally, tubule forming endothelial cells; b) culturing said hASCs, optionally, with said tubule forming endothelial cells; c) culturing said cardiomyocytes on top of the culture formed in step b); and d) administering VEGF and FGF-2 to the cell culture formed in step c).
[0013] Furthermore, one aspect of the present invention relates to a method of determining a biological activity of a test substance. The method comprises the steps of: a) providing a tubule forming platform or an in vitro cardiovascular structure described above; b) administering said test substance to said platform or structure; c) determining the effect of the test substance in said platform or structure; and d) comparing the effect determined in step c) to a corresponding effect determined in the absence of said test substance. In some embodiments, the biological activity to be determined is selected from the group consisting of cellular toxicity, tubule formation modulating activity, electrical properties such as rate of cardiomyocyte contraction, mechanical properties such as force of card iomyocyte contraction orand basic cell metabolism.
[0014] One further aspect of the present invention provides a method of treating a cardiac disease in a patient in need thereof, comprising implanting a cardiac structure described above into said patient. Non-liming examples of said cardiac disease may be selected from the group consisting of coronary heart disease and dilated cardiomyopathy.
[0015] Other aspects, specific embodiments, objects, details, and advantages of the invention are set forth in the dependent claims, following drawings, detailed description and examples.
BRIEF DESCRIPTION OF THE DRAWINGS
[0016] In the following the invention will be described in greater detail by means of preferred embodiments with reference to the attached drawings, in which
[0017] Figure 1 is a photograph illustrating the tubule formation of hASC monoculture and hASC+HUVEC co-culture. Cells were stained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, red fluorescence shown with TRITC conjugated secondary antibody, 1 : 1 00, Sigma). Figure 1 A: Comparison of tubule formation of hASC monoculture and hASC+HUVEC co-culture. Cells were cultured and induced to angiogenesis for 3 or 6 days in growth factor enriched EGM-2 BulletKit medium. Figure 1 B: Semi-q uantitative analysis of the tu bu le formation between d ifferent treatments. hASC monoculture and hASC+HUVEC co-culture were compared to each other at 3 and 6 days. Semiquantitative scale according to Sarkanen et al., (Front. Pharmacol, 201 1 , 1 : 147.). The results are reported as mean ± SD and differences considered significant when p<0.05*, p<0.01 ** and p<0.001 ***. Figure 1 C: For controls, HUVEC were plated at 4000 cells/cm2 and grown in growth factor enriched EGM-2, and hASC+HUVEC co-culture grown without exogenous addition of growth factors Figure 1 D: hASC+HUVEC were cultured in the growth factor enriched EGM-2 with human serum (EGM-2, 2% HS) or without serum (EGM-2 w/o serum).
[0018] Figure 2 is a photograph illustrating the expression of pericytic and smooth muscle cell differentiation markers in tubule structures after angiogenic induction with growth factor enriched EGM-2 medium. For detection of tubule formation, cell cultures were immunostained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, red fluorescence shown with TRITC conjugated secondary antibody, 1 :100, Sigma). For detection of tubule maturation, cultures were immunostained with either anti- aSMA (1 :200, Sigma), anti-COLIV (1 :500, Sigma), anti-PDGFRp (1 :500, Sigma), anti-SMMHC (1 :800, Sigma) or anti-calponin (1 :800, Sigma), all of these green fluorescence, FITC-conjugated secondary antibody (1 :100, Sigma). The images shown are merged images of double immunofluoresence at day 6, except for anti-PDGFRp, that is at day 3, and except for anti-COLIV and anti-calponin for which both merged image of staining (small image) and the FITC-conjugated secondary antibody - anti-COLIV/anti-calponin staining (large images) are shown.
[0019] Figure 3 is a photograph illustrating an In vitro cardiovascular model based on hASCs, HUVECs and Neonatal Rat Cardiomyocytes, cultured for 10 days. Scale bar 100 μιτι. For detection of tubule formation, cell cultures were immunostained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, TRITC conjugated secondary antibody, 1 :100, Sigma). For detection of cardiomyocytes, the cultured were immunostained with card iac specific anti-troponin T (1 :500, Abeam) and FITC-conjugated secondary antibody (1 :100, Sigma).
[0020] Figure 4 is a photograph illustrating an In vitro cardiovascular model based on hASCs, HUVECs and human embryonic stem cell derived cardiomyocytes, cultured for 10 days. Scale bar 1 00 μιτι . For detection of tubule formation, cell cultures were immunostained with von Willebrand factor antibody (anti-von Willebrand factor, 1 :500, Sigma, TRITC conjugated secondary antibody, 1 : 1 00, Sigma). For detection of cardiomyocytes, the cultured were immunostained with cardiac specific anti-troponin T (1 :500, Abeam) and FITC-conjugated secondary antibody (1 :100, Sigma).
[0021] Figure 5 is a multi-electrode array (MEA) recording showing the electrical signal from synchronously contracting cardiovascular model 4 days after constructing the model.
DETAILED DESCRIPTION OF THE INVENTION
[0022] The present invention provides an in vitro cardiovascular structure, i.e. a cardiovascular model, for use in pharmacological safety and toxicity studies. The model comprises cardiomyocytes cultured on a tubule forming platform. Surprisingly, such a functional cardiovascular model may be obtained without any exogenous matrix or added biomaterials.
[0023] Exogenous scaffolds typically used for creating multi-layered tissue constructs may interfere with cell-to-cell interactions and cell assembly. Thus, the present scaffold-free cardiovascular model is advantageous in this respect. An optimal tissue construct shou ld contain no animal-derived components or unnatural scaffold materials and contain only growth factors and proteins that occur in tissues naturally. The present cardiovascular model, at least in some embodiments, fulfils these requirements and has features of mature vessels, i.e. in addition to the formation of tubule structures, the model is characterized by pericyte recruitment, basement membrane formation, and formation of a vessel supporting layer of smooth muscle cells.
[0024] As used herein, the terms "comprises" and "comprising" encompass the terms "consisting of and "consisting essentially of.
[0025] As used herein, the term "tubule forming platform" refers to a multilayered cell structure having the capability of self-assembling into vascular network structures.
[0026] In one embodiment, the tubule forming platform may be constructed solely from adipose-derived stromal/stem cells (ASCs), such as human adipose stem cells (hASCs). This type of tubule forming platform is referred to as a monoculture model.
[0027] As used herein, the term "adipose-derived stem cell(s)" or "ASC(s)" refers to an unsorted stromal vascular fraction obtained from adipose tissue. Such a fraction is heterogeneous and comprises mesenchymal stem cells. According to more recent terminology, "ASCs" may also be referred to as "adipose-derived stromal cells". Methods of obtaining human ASCs (hASCs) are readily available in the art, including , but not limited to, the method disclosed in Example 1 . ASCs have the ability to differentiate into a variety cell types, as well known in the art.
[0028] In another embodiment, the tubule forming platform is constructed by co-culturing tubule forming endothelial cells and hASCs. This type of a tubule forming platform is referred to as a co-culture model.
[0029] As used herein, the term "tubule forming endothelial cell(s)" refers to endothelial cells having the capability of forming vascular structures, such as a vascu lar network. Non-limiting examples of tubule forming endothelial cells include human umbilical vein endothelial cells (HUVECs), human microvascular endothelial cells, human adipose stem cell derived endothelial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, endothel ial progen itor cells from other tissues, and endothelial cells obtained by genetic modification. Means and methods for inducing endothelial differentiation of the above-mentioned cells are readily known to a person skilled in the art. Tubule forming endothelial cells are also commercially available.
[0030] Embryonic stem cells (ESCs) are pluripotent cells having the ability to d ifferentiate into a wide variety of different cell types, such as endothelial cells. Methods of obtain ing embryonic stem cells are readily available in the art. In addition, WO 2007/130664 discloses a promising new approach, termed blastomere biopsy, for obtaining human embryonic stem cells without damaging the donor embryo.
[0031] As used herein, the term "induced pluripotent stem cells" (iPSCs) refers to pluripotent stem cells generated from differentiated cells, typically from adult somatic cells such as fibroblasts by developmental reprogramming. Such cells have been described e.g. in WO 2008/151058 and US 2008/076176. Human induced pluripotent stem cells are referred to as hiPSCs.
[0032] As used herein, the term "transdifferentiation", or "lineage reprogramming", refers to a conversion of one mature cell type into another without undergoing an intermediate pluripotent state or progenitor cell type.
[0033] The tubule forming platform may be obtained by a method, wherein i) ASCs, or ii) ASCs and tubule forming endothelial cells, are plated on a cell culture or tissue culture plate, such as a 24-well, 48-well, 96-well plate or microplate in a cell culture medium supporting endothelial cell growth. A non- limiting example of such a culture medium is EGM-2 BulletKit™ obtainable from Lonza. The tubule formation may be induced in any endothelial growth medium (suppl ied by e.g . Lonza, Provitro, Promocell, BD); or in DMEM, DMEM/F12 or Knock-Out (KO) DMEM (supplied e.g . by Gibco Invitrogen, Sigma, BD, Lonza) that contain low concentration of human or animal serum, or no serum, and bFGF, VEGF, ascorbic acid, heparin, and/or hydrocortisone as supplements. Non-limiting examples of optional factors than may be further included are insulin, IGF-I, hEGF, transferrin and/or hormones such as trijodotyronine.
[0034] In some embodiments, the bottom surface of a cell culture plate may be grooved or scratched in order to align the tubules to be formed towards a desired orientation.
[0035] I n the monocu ltu re model , cel l s are typically but not necessarily plated in a density of about 24 x 104 cells/cm2 or more. In the co- culture model, ASCs and endothelial cells are typically but not necessarily plated in a ratio of 2:1 to 8:1 , preferably 5:1 , respectively. In one embodiment, ASCs are plated in a density of about 20 x 104 cells/cm2 and tubule forming endothelial cells in a density of about 4 x 104 cells/cm2. In some embodiments, the tubule forming cells, such as HUVECs, are plated 1 to 3 hours later that the ASCs, such as hASCs.
[0036] The present cardiovascular model is obtained by a method, wherein cardiomyocytes are seeded or plated on top of on a tubule forming platform thus modelling a human or animal heart. Non-limiting examples of ca rd iomyocytes su ita bl e for u se i n th e mod el i n cl ude neonatal rat cardiomyocytes, human embryonic stem cell (hESC) derived cardiomyocytes, human induced pluripotent stem cell (hiPSC) derived cardiomyocytes, adult stem cel l derived ca rd iomyocytes, human transdifferentiation-derived cardiomyocytes, and human cardiac myocytes. Means and methods for inducing cardiomyocyte differentiation are known in the art and include, but are not limited to, endodermal cell induced differentiation developed by Mummery et al. (Circulation, 2003, 107:2733), Activin A and BMP4 induced differentiation developed by Laflamme et al . (Nat Biotechnol, 2007, 25(9): 1015), and embryoid body technique developed by Kehat et al. (Circ. Res. 2002, 91 : 659).
[0037] In some embodiments, cardiomyocytes are plated on top of a tubule forming platform in a complete serum-free medium (CSFM). This appl ies especially to rat cardiomyocytes. A non-lim iting exam ple of a commercially available cell culture medium suitable for use as a basal medium for CSFM is DMEM™ or DMEM/F12 or Knock-Out (KO) DMEM available from Gibco. [0038] If the cardiovascular structure is implemented employing human cardiomyocytes, the culture medium may be serum-free or contain up to about 10% of bovine or human serum. For instance, DMEM/F12 may be used as a basal medium in such cases.
[0039] Typically, cardiomyocytes are plated in a density of about 1 x105 or about 2x105 cells/cm2, but the seeding density is not limited to these values.
[0040] Typically, but not necessarily, cardiomyocytes are seeded on top of a tubule forming platform one day later than the cells forming the tubule forming platform. It is not a prerequisite for the cardiovascular model that the tubules be completely formed prior to seeding the cardiomyocytes.
[0041] I n ord er to fol low real-time the tubule formation and cardiomyocyte alignment with the tubules, tubule forming endothelial cells and/or cardiomyocytes may be fluorescently labelled with e.g . lentivirus infection by inserting e.g . Green or Yellow Fluorescent Protein into the endothelial cell genome. The cells could also be genetically modified (including insertion of reporter genes, disease specific genes, differentiation related genes).
[0042] Typically, one day after plating the cardiomyocytes, vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (FGF-2) are administered to the cells in order to induce tubule formation. This may be done by replacing the culture medium to fresh CSFM supplemented with said growth factors. Typically, VEGF is used in a concentration range of about 1 ng/ml to about 20 ng/ml, preferably 10 to 15 ng/ml; whereas FGF-2 is used typically in a concentration range of about 0,5 ng/ml to 2 ng/ml, preferably 1 to 2 ng/ml.
[0043] Optional agents for increasing angiogenic induction in the model include, but are not limited to, ascorbic acid, heparin, hydrocortisone, insulin-like growth factor 1 (IGF-1 ), epidermal growth factor (EGF), preferably human EGF, and any combinations thereof.
[0044] Further optional ingredients in a culture medium suitable for inducing angiogenesis (i.e. tubule formation) in the present model include bovine and human serum in a concentration up to 10%, as well as bovine and human albumin. As readily understood by a skilled person, any of the culture media used for producing and/or utilizing the present tubule forming platform and/or cardiovascular model may contain any ingredients typically used in cell culture media, such as antibiotics, L-glutamine and sodium pyruvate.
[0045] Card iomyocytes remain viable and functional in the cardiovascular model longer than previously possible. In some embodiments, contractility of the new born rat cardiomyocytes can be maintained three weeks compared to hiPSC and hESC derived cardiomyocytes which m ay be maintained for months. The viability and contractility of the cardiomyocytes is more important in the cardiovascular model than completely formed tubule structures. Thus, cardiovascular models with moderate tubule formation may be used for testing test substances according to various embodiments of the present invention.
[0046] In some embodiments, substances to be tested in the present card iovascu l ar model a re added to the cel ls one day after administration of VEGF and FGF-2. A prerequisite is that the cardiomyocytes need to have functional properties before the chemical substances are added. The effects of said substances may be followed for e.g. two to three weeks, or even for months, if needed, depending on the application and source of cardiomyocytes.
[0047] Examples of biological effects to be determined include, but are not limited to, toxic effects as determined e.g. by assessing increase or decrease in the expression of different genes; viability of the cells by different means (e.g. MTT test, Neutral Red Uptake (NRU) assay, or LiveDead assay available from Invitrogen); electrical properties such as changes in the cardiomyocyte contraction rate and repolarization time or arrhythmic events as determined e.g. by measuring QT interval; mechanical properties such as changes in the contraction force as measured by different planar biosensors or distraction; immunostainings of card iac markers such as connexin-43 for detecting GAP-junctions or markers such as cardiac specific troponin T; and changes in cell metabolism (e.g. lactic acid formation, calcium flux, changes in ion channels, glucose consumption, oxygen consumption, and carbon dioxide release). These effects may be assessed in any desired com bination separately, sequentially, concomitantly, or simultaneously.
[0048] The cardiovascular model may contain one or more sensors, such as planar biosensors, for assessing any of the above-mentioned cellular effects. Su itable sensors include, but are not l im ited to, electrochemical, electrical and/or optical sensors. Fu rther sensors may be incl uded for monitoring and, if desired, adjusting physico-chemical properties of the culture medium.
[0049] In some embodiments, the tubule forming platform per se may be used for assessing angiogenic properties of a test substance. Non- limiting examples of angiogenic properties to be assessed include tubule forming capability (e.g . by measuring tubule lengths and/or branches, or determining the presence of endothelial tight junctions) and tubule maturation capability (e.g. by determining the basement membrane formation, presence of pericytes and smooth muscle cells lining the mature tubule structures). In such cases, no cardiomyocytes are added to cell culture. The test substance may be appl ied to the tubule form ing platform , for instance, one day after angiogenesis induction by VEGF and FGF-2 with or without above-mentioned optional angiogenesis inducing agents. The angiogenic properties may be followed for e.g. few days or two weeks. The test substance may be applied to the model even prior to the tubules being completely formed.
[0050] Non-limiting examples of test substances to be screened in the present cardiovascular and angiogenesis models include chemical and biolog ical substances such as small molecule chemical compounds, nanoparticles, polypeptides, antibodies, and growth factors.
[0051] Although the cardiovascular structure and the tubule forming platform in the absence of any exogenous matrix components and added biomaterials functions well for the purposes of pharmacological safety and toxicity tests and m im ics a card iac tissue without interfering non-native components, it may, however, in some cases be advantageous to include such components in the model and/or the platform. Such embodiments may be used, for instance, to test safety and toxicity of test substances in an artificial cardiac construct. Non-l im iting examples of suitable exogenous matrix components or biomaterials to be provided in the cardiovascular model and/or the tubule forming platform include, but are not restricted to, synthetic or natural polymers such as collagen I or IV, hyaluronic acid, gelatin or other extracellular matrix components.
[0052] In some aspects of the present invention, the cardiovascular structure wh ich contains exogenous matrix components and/or added biomaterials may be constructed as an implantable 3D cardiac structure for use in the treatment of cardiac diseases including, but not limited to coronary heart disease and dilated cardiomyopathy.
[0053] As used herein, the term "treatment" or "treating" refers not only to complete cure of a disease, but also to prevention, alleviation, and amelioration of a disease or symptoms related thereto.
[0054] For therapeutic purposes, it is important that the cardiac structure is xeno-free, i.e. it does not contain any components obtained from a foreign source or is not prepared under conditions containing foreign agents. Furthermore, it may be advantageous to use of autologous cells for therapeutic purposes.
[0055] It will be obvious to a person skilled in the art that, as the technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the examples described above but may vary within the scope of the claims.
EXAMPLES
[0056] All work has been performed according to the guidelines of national Ethical Committee. The human umbilical cords were obtained from scheduled caesarean sections while human adipose tissue specimens were obtained from surgical operations, both with appropriate permissions and informed consents from Tampere University Hospital . Further, Pirkanmaa Hospital District ethical committee has approved the derivation and use of h u man i PS and hESC cells, permission Nos. R08070 and R051 1 16, respectively.
EXAMPLE 1. Construction and characterization of co-culture based tubule forming platform
Isolation of human umbilical vein endothelial cells (HUVECs):
[0057] HUVECs cells were derived from umbilical cords obtained from scheduled cesarean sections with informed consent from Tampere University Hospital (permission No. R08028 from the Ethics Committee of the Pirkanmaa Hospital District, Tampere, Finland). The isolation of umbilical vein endothelial cells (HUVEC) from human umbilical cord veins was performed as described by Jaffe et al. (J Clin Invest, 1973, 52: 2745) but the process was further optimized. The umbilical cord was separated from the placenta and the umbilical vein was cannulated with a 20G needle. The needle was secured by clamping the cord over the needle with a surgical clamp. The vein was perfused with Umbilical cord buffer solution (UBS; 0.1 M phosphate buffer solution containing 0.14 M NaCI, 0.004 M KCI, and 0.01 1 M glucose) to wash out blood after which the other end of the umbilical vein was clamped with a surgical clamp. The vein was infused with 0.05% collagenase I. The umbilical cord was incubated in a water bath at 37°C for up to 20 min. After incubation, the collagenase I solution containing HUVEC was flushed from the cord by perfusion with PBS into a 50 ml polypropylene tube (Sarstedt). The cells were centrifuged at 200 x g for 10 min, washed once with medium, centrifuged again and resuspended in EGM-2 BulletKit medium (Lonza Group Ltd, Basel , Switzerland) and seeded into 75 cm2 flasks. The cells were cultured at 37°C in 5% CO2 incubator. Medium was changed every two to three days and cells were divided when confluent. For assay controls, HUVEC were plated at 4000 cells/cm2 and cultured in EGM-2 BulletKit medium.
[0058] The isolated HUVEC were daily observed microscopically for their morphology, cell culture purity, and cell proliferation. The medium was changed every 2-3 days. When confluent, the cells were detached with Tryple Express . Pu re H UVEC cu ltures with good prol iferation capacity were subcultured at primary culture (pO) in the ratio of 1 :2-1 :4 and at passages 1 (p1 ) upward in a ratio of 1 :3-1 :5.
Lentivirus infection:
[0059] Lentiviral construct pLKO-MISSION-Bright-GFP was purchased from Biomedicum Genom ics (BMGen, Biomed icum Helsinki , Helsinki, Finland). The infection was carried out with HUVEC at low passages with 300 μΙ of pLKO-MISSION-Bright-GFP in 1 ml EGM-2 Bullet Kit medium (1 U/ml). Virus infection was accelerated with 8 g/ml hexadimethrine bromide (Sigma). After 24 hours of incubation, medium was replaced with fresh EGM-2 medium. Highly fluorescent clones were selected with cloning rings and further selected with d il ution clon ing to obtain pu re G FP-HUVEC-culture. After expanding the infected HUVEC, they were used for hASC and HUVEC co- culture assay as described below.
Isolation of human adipose stem cells (hASCs):
[0060] Stem cell isolation procedure was performed as described previously (Gimble and Guilak, Cytotherapy, 2003, 5: 362; Hong et al. Mol Cell Biochem, 2005, 276.Niemela et al ., J Craniofac Surg, 2007, 18: 325-335). Briefly, hu man ad ipose tissue specimens were cut into small pieces, enzymatically digested with 0,05% collagenase I (Invitrogen, Paisley, Scotland, U K ) i n D ulbecco's Modified Eagle's Medium Nutrient Mixture F-12 (DMEM/F12, Gibco, Invitrogen, Carlsbad, CA, USA) for 60 min at 37°C in a gyratory water bath. The digested tissue was centrifuged at 600 x g for 10 min in room temperature (RT). The digested tissue was filtered through a 100 m filter (Sarstedt, Numbrecht, Germany), centrifuged and filtered through a 40 μιτι filter (Sarstedt). Cells were seeded into 75 cm2 flasks (Nunc EasyFlask™, Nunc, Roskilde, Denmark) in DMEM/F12 supplemented with 1 % L-glutamine (L-glut, Gibco), 1 % Antibiotic-antimycotic mixture (AB/AM, Gibco) and 1 5% human serum (HS, Cambrex, East Rutherford, NJ, USA). The next day, cells were washed several times with PBS. The cells were maintained at 37°C under a 5% CO2 air atmosphere at a constant humidity and medium was changed every two to three days. After grown to confluency, cells were divided in a ratio of 1 :2-1 :3, or further used for cell culture studies.
Co-culture of hASCs and HUVECs:
[0061] Human ASC (up to passage 7) were seeded in EGM-2 BulletKit (Lonza) culture medium into 48-well plates (Nunclon™ Multidishes, Nunc, Roskilde, Denmark) at a density of 20 000 cells/cm2. HUVEC, cultured as above (up to passage 4), were immediately carefully seeded on top of hASC at a density of 4000 cells/cm2. The day after plating, VEGF (10 ng/ml) and FGF-2 (1 ng/ml) were applied to the co-culture.
[0062] Cel l s were cu ltu red for e ith er 3 or 6 d ays prior to immunocytochemistry or quantitative RT-PCR. Medium was changed and the treatments applied once to cells cultured for 3 days and twice to cells cultured for 6 days.
Immunocytochemistry:
[0063] The tubule formation was visualized with endothelial cell specific antibody to von Willebrand Factor (anti-vWf primary antibody produced in rabbit, 1 :500, Sigma). To evaluate human adipose stem cell differentiation, parallel double immunofluorescence staining with a-vWf was performed . Primary antibody against either common pericytic marker a-smooth muscle actin (monoclonal anti aSMA clone 1 A4, 1 :200, Sigma), vascular smooth muscle cell marker smooth muscle myosin heavy chain (anti-SMMHC, 1 :800, Sigma), contractile smooth muscle cell marker calponin (anti-calponin, 1 :800, Sigma), pericytic and smooth muscle cell progenitor marker platelet derived growth factor receptor-β (anti-PDGFRp 1 :800) or basement membrane marker collagen IV (anti-COLIV, 1 :500, Sigma) was combined with anti-vWf. Cells were washed three times with PBS, fixed with ice-cold 70% ethanol for 20 minutes, permeabilized with 0,5% Triton X-100 (JT Baker, Phillipsburg, NJ, USA) for 1 5 minutes and blocked for unspecific staining with 1 0% bovine serum albumin (BSA, Sigma) for 30 minutes. After blocking, cells were incubated with the primary antibody pairs at 1 hour at RT. Cells were washed three times with PBS, incubated 30 min with secondary antibody polyclonal anti- rabbit IgG TRITC (1 :100, Sigma) for anti-vWf and polyclonal anti- mouse IgG FITC (1 :100, Sigma) for anti-aSMA, anti-COLIV, anti- PDGFR-β and anti- SMMHC. Cell nuclei were stained with Hoechst 33258 (1 ug/ml, Sigma) for 5 m inutes and washed 5 times with PBS . For anti-GFP staining, primary antibody pair was mouse monoclonal antibody to GFP (Abeam, Cambridge, UK, 1 :100) and anti-vWf, secondary antibodies being anti- mouse IgG TRITC (Sigma, 1 :100) and polyclonal antibody to rabbit IgG FITC, (Acris Antibodies GmbH, Hiddenhausen, Germany, 1 :500), respectively. Fluorescence was visualized with Nikon Eclipse Ti-S microscope (Nikon, Tokyo, Japan) and the images were processed with Adobe Photoshop software 7.0 (Adobe Systems, San Jose, CA, USA) and Corel Draw software 1 0.0 (Corel Corporation, Ottawa, ON, Canada).
Microscopic analysis of tubule formation:
[0064] After immunocytochem ical stain ing , the tubules were analyzed with Nikon Eclipse TS100 microscope (Nikon, Tokyo, Japan) from 48-well plate wells with 40x magnification . The extent of tubules in different cultures was quantified visually by using semi-quantitative grading scale from 0 to 10, the grading was based on tubule formation, the length and the branches of tubules, as described in our previous study (Sarkanen et al., 201 1 ).
Statistical analysis:
[0065] Statistical analyses were performed and graphs processed with GraphPadPrism 5.0 (GraphPad Software, Inc., San Diego, CA, USA). Tubule formation and RT-PCR results were subjected to One-way ANOVA followed by Dunnett's and Bonferroni's post tests when applicable. The results were reported as mean ± SD and differences were considered significant when p<0.05*, p<0.01 ** and p<0.001 ***.
Results:
[0066] Th e tu bu l e formation ca pacity and a nti-vWf-positive endothelial tubule structures of the co-culture were evaluated and compared at two different time points (day 3 and day 6). The co-culture showed early (day 3) tubular network formation which was reproducible and not dependent on the cell line or passage number of the cells. At day 6, the co-culture showed an extremely accelerated proliferation rate as massive, dense multilayered vascular network formation.
[0067] Semi-quantitative evaluation of the tubule formation was showed that the co-culture had significantly more tubules at day 6 than at day 3 (p<0.001 ). Control cells grown without growth factors, as well as HUVECs alone, grown in growth factor enriched EGM-2 medium, showed only mild tubule formation or no tubule formation, respectively.
[0068] The co-culture was also subjected to immunocytochemical staining. PDGFR expression was most intense at day 3 and was seen as dotlike structures surrounding the developing tubules constantly. At day 6, PDGFR was seen in some extent. COLIV, showing the development of basement membrane, was remarkably widely expressed in the co-culture. The expression was co-localized with the developing tubules, covering the tubules. a-SMA and SMMHC positive cells were expressed widely in the co-culture at day 6, often localized in the branching points of tubular structures and in between the tubules. SMMHC expression was increased between days 3 and 6. It can be concluded, that co-culture model forms a dense multilayered vascular network with properties of mature blood vessels such as complete basement membrane formation and smooth muscle cells with contractile properties aligning the tubules. This co-culture model is more mature that any of the previous developed angiogenesis models.
EXAMPLE 2. Construction and characterization of monoculture based tubule forming platform
[0069] Human ASCs were obtained as described in Example 1 and seeded in EGM-2 BulletKit medium into 48-well plates (Nunclon™ Multidishes, Nunc, Roskilde, Denmark) at a density of 20 000 cells/cm2. Cells were cultured for either 3 or 6 days in EGM-2 BulletKit medium, a commercially available growth factor enriched medium containing EGF, VEGF, bFGF, IGF-I, ascorbic acid, heparin, 0,1 % gentamicin/amphotericin-B and 2 % FBS, or in DMEM/F- 12 medium supplemented with 15% HS, 1 mM L-glut and 1 % AB/AM. Medium was changed and the treatments applied once to cells cultured for 3 days and twice to cells cultured for 6 days. As assay control, hASC were cultured in DMEM/F-12 medium supplemented with 15% HS, 1 mM L-glut and 1 % AB/AM.
Results:
[0070] In th e hASC monoculture, the induction towards angiogenesis was not as massive as in the co-culture. However, in the monoculture, vessel supporting pericytic and smooth muscle cell markers were often seen.
EXAMPLE 3. Construction and characterization of in vitro cardiovascular model
[0071] HUVECs and hASCs used in this Example were obtained as described in Example 1 . Neonatal rat cardiomyocytes were extracted from neonatal rat puppies aged two to three days.
[0072] An in vitro cardiovascular model was constructed in a 48-well plate as follows:
[0073] Day 0: construction of a tubule forming platform
[0074] Co-culture model: hASCs (up to passage 4) were seeded in EGM-2 BulletKit -medium into 48-well plates at a density of 20 000 cells/cm2. After 1 -3 hours, HUVECs (up to passage 4) in EGM-2 culture medium were carefully seeded on top of hASC at a density of 4000 cells/cm2.
[0075] Monoculture model: hASCs (up to passage 4) were seeded in EGM-2 BulletKit -medium into 48-well plates at a density of 24 000 cells/cm2.
[0076] Day 1 : construction of an in vitro cardiovascular model
[0077] Neonatal rat cardiomyocytes (100 000, 200 000, or 40000 cells) in complete serum free medium (CSFM) were seeded on top of the tubule forming platform.
[0078] Day 2: Induction of differentiation
[0079] The medium was changed to CSFM supplemented with 10 ng/ml vascular endothelial growth factor (VEGF) and 1 ng/ml basic fibroblast growth factor (FGF-2). The medium was changed to a fresh one three times in a week.
Results:
[0080] Neonatal rat cardiomyocytes survived viable and contractile in the monoculture model for about 7 days and for at least 14 days in the co- culture model (see Table 1 ). The striated form of the cell morphology was maintained throughout the culture time. The cardiomyocytes were orientated along or close to the tubule structures and were synchronously contracting throughout the culture.
Table 1. Contractility of neonatal rat cardiomyocytes
Figure imgf000019_0001
* approximations done by visual inspection
[0081] (EGM-2 BulletKit Single Quots supplements, Lonza) and heparin (EGM-2 Single Quots supplements, Lonza).
[0082] Medium 3: CSFM supplemented with 2 % FBS (fetal bovine serum. Gibco), 10 ng/ml VEGF and 1 ng/ml FGF-2.
[0083] Medium 4: Angiogenic stimulation medium: Endothelial cell basal medium (EBM-2, Lonza) supplemented with 10 ng/ml VEGF, 1 ng/ml FGF-2, 0,1 % gentamicin (GA-1000, Lonza), 2 % fetal bovine serum and 1 mM L-glutamine.
[0084] Medium 5: Angiogenic stimulation medium + human serum: Endothelial cell basal medium (EBM-2, Lonza) supplemented with 10 ng/ml vascular endothelial growth factor,and 1 ng/ml basic fibroblast growth factor (FGF-2, Sigma), 0,1 % gentamicin (GA-1000, Lonza) and 2 % human serum (Lonza) serum and 1 mM L-glutamine.
EXAMPLE 4. Comparative results
[0085] Tubule formation and cardiomyocyte contractibil ity of neonatal rat cardiomyocytes (NRC) was assessed in a co-culture based tubule forming platform seven different treatments. [0086] Medium 1: CSFM (complete serum free medium) supplemented with 10 ng/ml VEGF (Sigma Aldrich, Manassas, VA, USA) and 1 ng/ml FGF-2 (Sigma).
[0087] 50 ml of CSFM was composed of the following ingredients:
- DMEM/F-12 42 ml
- 200 mM L-glutamine 0.64 ml
- 100 x penicillin/streptomycin 0,5 ml
- 0.1 nMT3 0.5 μΙ
- lOxBSA 5 ml
- 100 mM Sodium pyruvate 1.4 ml
- ITS 0.576 ml
[0088] Medium 2: CSFM supplemented with 10 ng/ml VEGF, 1 ng/ml FGF-2, ascorbic acid (EGM-2 Single Quots supplements, Lonza), hydrocortison Medium 6: EGM-2 BulletKit -medium (Lonza) where 2 % fetal bovine serum (Lonza) is replaced by 2 % human serum (Lonza).
[0089] Medium 7: EGM-2 BulletKit -medium (Lonza) without fetal bovine serum.
Table 2. Cardiomyocyte contractibility and tubule formation
Treatment NRC + Angiogenesismodel
(HUVEC+hASC cells)
Survival time and Tubule
level of formation ** cardiomyocyte
contractility*
Medium 1 : 14 days, strong 2
CSFM +VEGF+ FGF
Medium 2: 13 days, strong 7
CSFM+ VEGF+ FGF
+ascorbic acid
+ hydrocortisone
+ heparin
Medium 3: 10 days, moderate 2
CSFM + VEGF + FGF
+ 2 % FBS Medium 4: 2 days, weak 2
Angiogenic stimulation
medium
Medium 5: 6 days, weak 3
Angiogenic stimulation media
+ human serum
Medium 6: 4 days, weak 8
EGM-2
+ human serum
Medium 7: 3 days, weak 8
EGM-2 without serum
* by visual inspection
**at scale 1 -8 according to Sarkanen et al. 201 1
EXAMPLE 5. Construction and characterization of in vitro human cardiovascular model
[0090] HUVECs and hASCs used in this Example were obtained as described in Example 1 . Human embryonic stem cell derived cardiomyocytes were differentiated for 2 weeks as described by Mummery et a\ .(ibid).. The beating cl usters were cut out, dissociated and cultured in DMEM/F12 supplemented with 10% FBS, 1 % NEAA and 1 % Glutamax (EB medium).
[0091] An in vitro cardiovascular model was constructed in a 48-well plate as follows:
[0092] Day 0: construction of a tubule forming platform
[0093] Co-culture model: hASCs (up to passage 4) were seeded in EGM-2 BulletKit -medium into 48-well plates at a density of 20 000 cells/cm2. After 1 -3 hours, HUVECs (up to passage 4) in EGM-2 culture medium were carefully seeded on top of hASC at a density of 4000 cells/cm2.
[0094] Monoculture model: hASCs (up to passage 4) were seeded in EGM-2 BulletKit -medium into 48-well plates at a density of 24 000 cells/cm2.
[0095] Day 1 : construction of an in vitro cardiovascular model
[0096] Human embryonic stem cell derived cardiomyocytes (1 -7 cell aggregates per 48-well plate well) in their EB were seeded on top of the tubule forming platform.
[0097] Day 2: Induction of differentiation [0098] The medium was changed to EB supplemented with 1 0 ng/ml vascular endothelial growth factor (VEGF) and 1 ng/ml basic fibroblast growth factor (FGF-2). The medium was changed to a fresh one three times in a week.
Results:
[0099] F ig ure 4 illustrates that human cardiomyocytes were functional i.e. contractile and presented typical morphology of mature-like cardiomyocytes even after 10 days in the co-culture model.

Claims

1 . An in vitro cardiovascular structure comprising
i) an isolated tubule forming platform comprising human adipose stem cells (hASCs) ,and
ii) cardiomyocytes.
2. The structure according to claim 1 , wherein the tubule forming platform further comprises tubule forming endothelial cells.
3. The structure according to claim 2, wherein the tubule forming endothelial cells are selected from the group consisting of human umbilical vein endothelial cells, human microvascular endothelial cells, human adipose stem cell derived endothel ial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, endothelial progenitor cells, and endothelial cells obtained by genetic modification.
4. The structure according to any one of claims 1 to 3, wherein said cardiomyocytes are selected from the group consisting of new born rat ca rd io m yocytes , h i P SC d e rived ca rd io m yocytes , h E SC d erived cardiomyocytes, adult stem cell derived cardiomyocytes, transdifferentation- derived cardiomyocytes, and human primary cardiomyocytes.
5. The structure according to any one of claims 1 to 4, further comprising exogenous matrix components or added biomaterials selected from the group consisting of synthetic polymers, natural polymers, collagen I, collagen IV, hyaluronic acid, gelatin and other extracellular matrix components, or mixtures thereof.
6. The structure according to any one of claims 1 to 5 for use in treating a cardiac disease.
7. The structure according to claim 5, wherein said cardiac disease is selected from the group consisting of coronary heart disease and dilated cardiomyopathy.
8. An isolated tubule forming platform comprising human adipose stem cells (hASCs).
9. The platform accord ing to cla im 8 in the absence of any exogenous matrix components or added biomaterials.
10. A method of producing the tubule forming platform according to claim 8, comprising: a) providing hASCs;
b) culturing said hASCs in a cell culture medium supplemented with VEG F and FG F-2, optionally in the absence of any exogenous matrix components or added biomaterials.
1 1 . The method according to claim 10, further comprising: providing tubule forming endothelial cells and co-culturing them with said hASCs.
12. The method according to claim 1 1 , wherein the tubule forming endothelial cells are selected from the group consisting of human umbilical vein endothelial cells, human microvascular endothelial cells, human adipose stem cell derived endothel ial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, and endothelial progenitor cells.
13. The method according to any one of claims 10 to 12, wherein the culture medium further comprises at least one agent selected from the group consisting of ascorbic acid, hydrocortisone, heparin, IGF-1 , and EGF.
14. A method of producing an in vitro cardiovascular structure according to claim 1 , comprising:
a) providing hASCs, cardiomyocytes, and, optionally, tubule forming endothelial cells;
b) culturing said hASCs, optionally, with said tubule forming endothelial cells;
c) culturing said cardiomyocytes on top of the culture formed in step b) ; and
d) administering VEGF and FGF-2 to the cell culture formed in step c) .
15. The method according to claim 14, wherein the tubule forming endothelial cells are selected from the group consisting of human umbilical vein endothelial cells, human microvascular endothelial cells, human adipose stem cell derived endothel ial cells, human embryonic stem cell derived endothelial cells, induced pluripotent stem cell derived endothelial cells, transdifferentiation derived endothelial cells, and endothelial progenitor cells.
16. The method according to claim 14 or 15, wherein step c) further comprises administering at least one agent selected from the group consisting of ascorbic acid, hydrocortisone, heparin, IGF-1 , and EGF.
17. A method of determining a biological activity of a test substance, comprising the steps of: a) providing an in vitro cardiovascular structure according to claim 1 or a tubule forming platform according to claim 8;
b) administering said test substance to said structure or platform; c) determining the effect of the test substance in said structure or platform; and
d) comparing the effect determined in step c) to a corresponding effect determined in the absence of said test substance.
18. The method according to claim 17 wherein the biological activity to be determined is selected from the group consisting of cellular toxicity, tubule formation modulating activity, electrical properties such as rate regularity of cardiomyocyte contraction, duration of repolarization time, presence of arrhythmogenicity, mechan ical properties such as force of cardiomyocyte contraction and cell metabolism.
1 9. A method of treating a cardiac disease in a patient in need thereof, comprising implanting a cardiac structure according to claim 5 into said patient.
20. The method according to claim 19, wherein said cardiac disease is selected from the group consisting of coronary heart disease and dilated cardiomyopathy.
PCT/FI2012/050611 2011-06-23 2012-06-14 In vitro cardiovascular model WO2012175797A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014516404A JP2014519837A (en) 2011-06-23 2012-06-14 In vitro cardiovascular model
CA2839052A CA2839052A1 (en) 2011-06-23 2012-06-14 In vitro cardiovascular model
KR1020147000113A KR20140048190A (en) 2011-06-23 2012-06-14 In vitro cardiovascular model
CN201280030909.0A CN103814124A (en) 2011-06-23 2012-06-14 In vitro cardiovascular model
BR112013033246A BR112013033246A2 (en) 2011-06-23 2012-06-14 in vitro cardiovascular model
EP12803040.0A EP2723853B1 (en) 2011-06-23 2012-06-14 In vitro cardiovascular model
DK12803040.0T DK2723853T3 (en) 2011-06-23 2012-06-14 In vitro cardiovascular model
US14/128,766 US20140206029A1 (en) 2011-06-23 2012-06-14 In vitro cardiovascular model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20115670 2011-06-23
FI20115670A FI20115670A0 (en) 2011-06-23 2011-06-23 In vitro cardiovascular model

Publications (1)

Publication Number Publication Date
WO2012175797A1 true WO2012175797A1 (en) 2012-12-27

Family

ID=44206878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FI2012/050611 WO2012175797A1 (en) 2011-06-23 2012-06-14 In vitro cardiovascular model

Country Status (10)

Country Link
US (1) US20140206029A1 (en)
EP (1) EP2723853B1 (en)
JP (1) JP2014519837A (en)
KR (1) KR20140048190A (en)
CN (1) CN103814124A (en)
BR (1) BR112013033246A2 (en)
CA (1) CA2839052A1 (en)
DK (1) DK2723853T3 (en)
FI (1) FI20115670A0 (en)
WO (1) WO2012175797A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104940997A (en) * 2014-03-27 2015-09-30 复旦大学 Human tissue-engineered cardiac muscle tissue
CN105838670A (en) * 2015-01-13 2016-08-10 上海交通大学医学院附属第九人民医院 Cell mixture and preparation method and application thereof
WO2017147381A1 (en) * 2016-02-25 2017-08-31 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Generation of expandable cardiovascular progenitor cells
IT201800007946A1 (en) * 2018-08-07 2020-02-07 1Lab Sa Model to simulate the behavior of dysfunctional vessels in-vitro
EP3950711A4 (en) * 2019-04-01 2022-12-21 Toppan Inc. Cell construct and cell construct production method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105911096B (en) * 2016-03-29 2018-07-10 南京艾尔普再生医学科技有限公司 A kind of artificial heart system that can carry out drug pharmacological toxicology screening in vitro
CN111793609B (en) * 2020-09-08 2020-12-29 北京达熙生物科技有限公司 Method for promoting proliferation and differentiation of adipose-derived stem cells
JPWO2022113540A1 (en) * 2020-11-26 2022-06-02

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070116674A1 (en) * 2003-09-05 2007-05-24 Louis Casteilla Use of adipose tisue cells for initiating the formation of a fuctional vascular network
RU2334793C1 (en) 2007-02-20 2008-09-27 Федеральное Государственное Учреждение "Российский кардиологический научно-производственный комплекс Федерального агентства по здравоохранению и социальному развитию" Method for obtaining cell culture with induced angiogenic phenotype intended for tissue engineering in region of ischemia
US20090169521A1 (en) 2007-12-31 2009-07-02 Technion Research & Development Foundation Ltd. Vascularized cardiac tissue and methods of producing and using same
US20100022005A1 (en) * 2002-03-19 2010-01-28 March Keith L Adipose stromal stem cells for tissue and vascular modification
US20100035297A1 (en) * 2008-08-08 2010-02-11 Indiana University Research And Technology Corporation Methods and compositions for vasculogenic potential determination
EP2184068A1 (en) 2007-08-03 2010-05-12 Genetrix, S.L. Population of adult stem cells derived from cardiac adipose tissue and use thereof in cardiac regeneration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7052829B2 (en) * 2001-03-30 2006-05-30 The Arizona Board Of Regents On Behalf Of The University Of Arizona Prevascularized constructs for implantation to provide blood perfusion
US7029838B2 (en) * 2001-03-30 2006-04-18 Arizona Board Of Regents On Behalf Of The University Of Arizona Prevascularized contructs for implantation to provide blood perfusion
US8727965B2 (en) * 2010-03-05 2014-05-20 Tissue Genesis, Inc. Methods and compositions to support tissue integration and inosculation of transplanted tissue and transplanted engineered penile tissue with adipose stromal cells

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100022005A1 (en) * 2002-03-19 2010-01-28 March Keith L Adipose stromal stem cells for tissue and vascular modification
US20070116674A1 (en) * 2003-09-05 2007-05-24 Louis Casteilla Use of adipose tisue cells for initiating the formation of a fuctional vascular network
RU2334793C1 (en) 2007-02-20 2008-09-27 Федеральное Государственное Учреждение "Российский кардиологический научно-производственный комплекс Федерального агентства по здравоохранению и социальному развитию" Method for obtaining cell culture with induced angiogenic phenotype intended for tissue engineering in region of ischemia
EP2184068A1 (en) 2007-08-03 2010-05-12 Genetrix, S.L. Population of adult stem cells derived from cardiac adipose tissue and use thereof in cardiac regeneration
US20090169521A1 (en) 2007-12-31 2009-07-02 Technion Research & Development Foundation Ltd. Vascularized cardiac tissue and methods of producing and using same
US20100035297A1 (en) * 2008-08-08 2010-02-11 Indiana University Research And Technology Corporation Methods and compositions for vasculogenic potential determination

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
AKIYAMA ET AL., INT. J. MOL. SCI., vol. 11, 2010, pages 2910
CAO, Y. ET AL.: "Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 332, no. 2, July 2005 (2005-07-01), pages 370 - 379, XP027230009 *
IKONEN, L. ET AL.: "Vascularized heart tissue model for cardiac toxicity testing", CARDIOVASCULAR RESEARCH, vol. 93, no. 1, March 2012 (2012-03-01), pages S82, XP008172856 *
KIM, Y.J. ET AL.: "Role of CD9 in proliferation and proangiogenic action of human adipose-derived mesenchymal stem cells", PFLÜGERS ARCHIV EUROPEAN JOURNAL OF PHYSIOLOGY, vol. 455, no. 2, November 2007 (2007-11-01), pages 283 - 296, XP019563530 *
MERFELD-CLAUSS, S. ET AL.: "Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation", TISSUE ENGINEERING: PART A, vol. 16, no. 9, September 2010 (2010-09-01), pages 2953 - 2966, XP055140634 *
NOROTTE ET AL., BIOMATERIALS, vol. 30, 2009, pages 5910
RUBINA ET AL., TISSUE ENGINEERING: PART A, vol. 15, no. 8, 2009, pages 2039 - 2050
RUBINA, K. ET AL.: "Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation", TISSUE ENGINEERING: PART A, vol. 15, no. 8, August 2009 (2009-08-01), pages 2039 - 2050, XP055140638 *
SARKANEN ET AL., FRONT. PHARMACOL, vol. 1, 2011, pages 147
See also references of EP2723853A4 *
TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND A STRATEGY, 2007
ZIMMERMANN ET AL., CIRCULATION RESEARCH, vol. 90, 2002, pages 22

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104940997A (en) * 2014-03-27 2015-09-30 复旦大学 Human tissue-engineered cardiac muscle tissue
CN105838670A (en) * 2015-01-13 2016-08-10 上海交通大学医学院附属第九人民医院 Cell mixture and preparation method and application thereof
WO2017147381A1 (en) * 2016-02-25 2017-08-31 The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone Generation of expandable cardiovascular progenitor cells
IT201800007946A1 (en) * 2018-08-07 2020-02-07 1Lab Sa Model to simulate the behavior of dysfunctional vessels in-vitro
WO2020031067A1 (en) * 2018-08-07 2020-02-13 1Lab Sa Model for in-vitro simulation of the behaviour of dysfunctional vessels
EP3950711A4 (en) * 2019-04-01 2022-12-21 Toppan Inc. Cell construct and cell construct production method

Also Published As

Publication number Publication date
EP2723853B1 (en) 2017-12-27
BR112013033246A2 (en) 2017-03-01
CN103814124A (en) 2014-05-21
CA2839052A1 (en) 2012-12-27
EP2723853A4 (en) 2015-07-22
FI20115670A0 (en) 2011-06-23
EP2723853A1 (en) 2014-04-30
US20140206029A1 (en) 2014-07-24
DK2723853T3 (en) 2018-04-16
JP2014519837A (en) 2014-08-21
KR20140048190A (en) 2014-04-23

Similar Documents

Publication Publication Date Title
EP2723853B1 (en) In vitro cardiovascular model
KR101900116B1 (en) Methods of recellularizing a tissue or organ for improved transplantability
US11326150B2 (en) Method for producing tissue and organ
Chen et al. In vivo tendon engineering with skeletal muscle derived cells in a mouse model
DK2273996T3 (en) HUMAN CARDIOVASCULAR PROGENITOR CELLS
Aizawa et al. The role of endothelial cells in the retinal stem and progenitor cell niche within a 3D engineered hydrogel matrix
Wang et al. The critical role of ECM proteins within the human MSC niche in endothelial differentiation
Xiao et al. Extracellular matrix from human umbilical cord-derived mesenchymal stem cells as a scaffold for peripheral nerve regeneration
Cho et al. Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts
IL264273B1 (en) Method for generating mesoderm and/or endothelial colony forming cell-like cells having in vivo blood vessel forming capacity
Twardowski et al. Cardiac fibroblasts support endothelial cell proliferation and sprout formation but not the development of multicellular sprouts in a fibrin gel co-culture model
US20140162366A1 (en) Generation of vascular progenitor cells
Blumenthal et al. Olfactory bulb-derived cells seeded on 3D scaffolds exhibit neurotrophic factor expression and pro-angiogenic properties
Wakao et al. Efficient direct conversion of human fibroblasts into myogenic lineage induced by co-transduction with MYCL and MYOD1
Wezel et al. Plasticity of in vitro-generated urothelial cells for functional tissue formation
Chang et al. CD90+ cardiac fibroblasts reduce fibrosis of acute myocardial injury in rats
EP3448984A1 (en) Derivation and self-renewal of multipotent cells and uses thereof
Liu et al. Induced differentiation of human gingival fibroblasts into VSMC-like cells
AU2013225946B2 (en) Method for guiding the derivation of endothelial cells from human pluripotent stem cells employing two-dimensional, feeder-free differentiation
Sullivan et al. An in vitro model for the assessment of stem cell fate following implantation within the infarct microenvironment identifies ISL-1 expression as the strongest predictor of c-Kit+ cardiac progenitor cells' therapeutic potential
Zhang et al. Differentiation induction of cardiac c-kit positive cells from rat heart into sinus node-like cells by 5-azacytidine
EP2690174B1 (en) Method for producing epithelial stem cells
Cha et al. A method of isolation and culture of microvascular endothelial cells from mouse skin
KR20180083934A (en) METHODS
Ishii et al. Technical advantage of recombinant collagenase for isolation of muscle stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2839052

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014516404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000113

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14128766

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013033246

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013033246

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131223