WO2012173613A1 - Printing system - Google Patents
Printing system Download PDFInfo
- Publication number
- WO2012173613A1 WO2012173613A1 PCT/US2011/040486 US2011040486W WO2012173613A1 WO 2012173613 A1 WO2012173613 A1 WO 2012173613A1 US 2011040486 W US2011040486 W US 2011040486W WO 2012173613 A1 WO2012173613 A1 WO 2012173613A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fixer fluid
- ink
- pattern
- printhead
- fixer
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 53
- 238000000034 method Methods 0.000 claims abstract description 17
- 230000000737 periodic effect Effects 0.000 claims description 15
- 239000003086 colorant Substances 0.000 claims description 8
- 239000000976 ink Substances 0.000 description 34
- 239000002609 medium Substances 0.000 description 27
- 230000008569 process Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000003491 array Methods 0.000 description 3
- 238000004581 coalescence Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2103—Features not dealing with the colouring process per se, e.g. construction of printers or heads, driving circuit adaptations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2107—Ink jet for multi-colour printing characterised by the ink properties
- B41J2/2114—Ejecting specialized liquids, e.g. transparent or processing liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J11/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
- B41J11/0015—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04586—Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads of a type not covered by groups B41J2/04575 - B41J2/04585, or of an undefined type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/0011—Pre-treatment or treatment during printing of the recording material, e.g. heating, irradiating
- B41M5/0017—Application of ink-fixing material, e.g. mordant, precipitating agent, on the substrate prior to printing, e.g. by ink-jet printing, coating or spraying
Definitions
- a fixer fluid which can be used to pretreat a print medium.
- an ink jet printer forms a printed image by printing a pattern of individual dots at particular locations of an array defined for the printing medium.
- the locations are conveniently visualized as being small dots in a rectilinear array.
- the locations are sometimes dot locations, dot positions, or pixels.
- the printing operation can be viewed as the filling of a pattern of dot locations with dots of ink.
- a fixer fluid is sometimes used to pretreat the print medium, which can address coalescence, bleed, or other similar defects characterized by ink or pigment migration across the printed surface.
- Pretreatment fluids are often applied as a uniform layer before printing, with common application methods including roll coating, spray coating, and manually applying the pretreatment on the print medium prior to printing an image on the print medium.
- Pretreating print media with a fixer fluid can have drawbacks, such as a causing a reduction in gloss of the printed image, as well as increasing the total amount of fluid vehicle that will have to be evaporated prior to ink curing.
- Figure 1 is block diagram conceptually illustrating aspects of an example of an ink jet printer.
- Figure 2 is a block diagram conceptually illustrating an example of an ink jet printer printhead arrangement.
- Figure 3 is a partial view of a printhead, illustrating a portion of a nozzle array.
- Figure 4 is a bock diagram conceptually illustrating portions of an example printing pipeline.
- Figure 5A illustrates a portion of an example fixer fluid application pattern.
- Figure 5B is a close up view of a portion of the example pattern illustrated in Figure 5A.
- Figure 6A illustrates a portion of another example fixer fluid application pattern.
- Figure 6B is a close up view of a portion of the example pattern illustrated Figure 6A.
- a fixer fluid which can be used to pretreat a print medium in an attempt to improve printed image quality (IQ) by addressing coalescence, bleed, or other similar defects characterized by ink or pigment migration across the printed surface.
- some printers include a system for applying such a fixer fluid in addition to the other printing fluids, such as black and other colored ink for forming images on a print medium.
- ink jet printers print dots by ejecting very small drops of ink onto the print medium, and typically include a movable carriage that supports one or more printheads each having ink ejecting nozzles.
- the carriage traverses over the surface of the print medium, and the nozzles are controlled to eject drops of ink at appropriate times corresponding to the pattern of pixels of the image being printed.
- the print medium is typically held stationary while the printheads complete a "print swath.”
- the print medium is then advanced and the carriage again moves across the print medium to print on the next portion of the medium.
- Color ink jet printers commonly employ a plurality of printheads mounted in the print carriage to produce different colors.
- Each printhead contains ink of a different color, with commonly used colors including cyan, magenta, yellow, and black. These base colors are produced by depositing a drop of the required color onto a dot location. Secondary or shaded colors are formed by depositing drops of different colors on adjacent dot locations; the human eye interprets the color mixing as the secondary or shading, through well known optical principles.
- An additional printhead may be provided for depositing a fixer, or pretreatment fluid.
- FIG. 1 is block diagram illustrating aspects of an example of an ink jet printer.
- a controller 10 receives print job commands and data from a print job source 12, which can be a computer system or other source of print jobs.
- the controller 10 acts on the received commands to provide control signals to a media advance device 14 to advance a print medium such as a sheet of paper to a print zone where it receives ink to create an image.
- firing pulses are sent to a plurality of printheads, or pens in response to control signals received from the controller.
- the illustrated example has five printheads, which include a fixer fluid printhead 101 and a plurality of color ink printheads 102.
- the color printheads include cyan (C), magenta (M), yellow (Y) and black (K) ink printheads.
- the controller 10 may be implemented, for example, by one or more discrete modules (or data processing components) that are not limited to any particular hardware, firmware, or software configuration.
- the controller 10 may be implemented in any computing or data processing environment, including in digital electronic circuitry (e.g., an application-specific integrated circuit, such as a digital signal processor (DSP)) or in computer hardware, firmware, device driver, or software.
- DSP digital signal processor
- the functionalities of the modules are combined into a single data processing component.
- the respective functionalities of each of one or more of the modules are performed by a respective set of multiple data processing components.
- process instructions e.g., machine-readable code, such as computer software
- the memory device 16 may include one or more tangible machine-readable storage media.
- Memory devices 16 suitable for embodying these instructions and data include all forms of computer-readable memory, including, for example, semiconductor memory devices, such as EPROM, EEPROM, and flash memory devices, magnetic disks such as internal hard disks and removable hard disks, magneto-optical disks, DVD-ROM/RAM, and CD-ROM/RAM.
- Some printhead arrangements use linear arrays of printheads, wherein the pens of different colors are situated one next to the other. Other
- FIG. 2 conceptually illustrates such a staggered printhead arrangement.
- a printer carriage 100 moves along a swath axis 112 over a print zone 114 of a print medium.
- the swath axis 112 is horizontal, and the print medium moves on an axis perpendicular to the swath axis 112 (up and down in Figure 2), with the media advance direction indicated by an arrow 116.
- the carriage 100 supports the pens 101 ,102 situated in a staggered arrangement wherein each of the non-black-ink pens do not overlap in the scan direction over the print zone 114. Further, the fixer pen 101 is spaced apart from the first (uppermost) color pen 102 in the direction of the media advance axis to form a gap 20. The provision of the gap 120 between the fixer pen 101 and the color pens 102 avoids cross-contamination among inks, for example.
- Each of the printheads 101 , 102 includes a plurality of nozzles through which the fixer fluid and ink are ejected.
- the nozzles are typically arranged in one or more arrays extending in the media advance direction.
- Figure 3 conceptually illustrates a portion of an example printhead having a nozzle array including two columns of nozzles 104.
- the length of the nozzle array defines the maximum pattern of ink that can be laid down on the media in a single pass, with the total span of the nozzle arrays defining the maximum swath height.
- a printer such as that disclosed herein can operate according to several different print modes.
- a single-pass print mode after each printing pass the media is advanced a distance equal to the full span of the nozzle array, such that each pass forms a complete strip of the image on the print medium.
- the swath height is smaller because the media only advances a fraction of the total length of the nozzle array after each printing pass of the printheads, and each strip of the image to be printed is formed in successive passes of the printheads.
- printing can be unidirectional where the printheads only print when travelling in one direction along the scan axis, or it can be bidirectional where the printheads print when travelling in a "forward pass” and also when travelling in a "return pass," the print medium being advanced after each pass.
- the printhead arrangement of Figure 2 supports bidirectional swath printing without resulting in undesirable hue-shifting from a swath in a first direction and a swath in the opposite direction.
- the leading edge of the print zone 114 first encounters the fixer pen 101.
- a first pass of the carriage 100 over the print zone in a first direction, left-to-right for example, will use only the fixer pen 101 to lay down fixer fluid along the coverage area of its nozzle array.
- the medium is incrementally advanced by an advance distance, or swath height.
- a fresh area of the print medium is now positioned below the fixer pen, and the area to which the fixer fluid was applied is now below one or more of the color ink pens 102.
- the fixer pen 101 and the appropriate color ink pen(s) 102 are driven to apply drops of the corresponding fluid.
- the medium is advanced by the same incremental distance, such that a fresh medium area is again below the fixer pen 101 , the second area just traversed by the fixer pen 101 during the second pass is below the color ink pen 102, and the area to which both fixer and colored ink have been applied is now below another color ink pen 102.
- the carriage 100 again traverses the print zone 114 with the fixer pen 101 and appropriate color ink pens 102 driven to apply the corresponding fluid, and so on. For the subsequent passes over the print zone 114 until the end of the page or print job is approached, all of the color ink pens 102 driven by the controller 102 to achieve the desired color image.
- fixer fluid from the fixer pen 101 as a solid, uniform layer can cause a reduction in gloss of the printed image, as well as increasing the total amount of fluid vehicle that will have to be evaporated prior to ink curing.
- the fixer fluid is applied to a print area of the print medium in a pattern to form cells having a predetermined area without the fixer fluid.
- Figure 4 is an example of a portion of a printing pipeline, which may be implemented by the controller 10.
- the controller receives the printjob 12, which typically is in the form of vector information.
- the controller 12 includes a rasterization, or rendering, process 20 that converts the vector data to a pattern of pixels that when printed on the print medium create the desired image.
- Colormapping and halftoning processes 22,24 are additionally executed by the controller 10 for producing the desired printed colors, though these processes typically are not needed for applying the fixer fluid in the desired pattern because the lines, or borders, of the pattern are printed solid with the fixer fluid.
- the printheads 101 ,102 include nozzles 104 through which fluid is ejected to the print medium.
- the controller 10 is operatively connected to the printheads 101 ,102 to control which specific nozzles 104 of the printheads 101 ,102 are fired to eject fluid via a print mask.
- the "print mask” is not a physical mask but rather, logic that includes control data determining which nozzles 104 of the various printheads 101 ,102 are fired at a given time to eject fluid as desired.
- the print mask may be stored in the memory device 16.
- Figure 5A illustrates an implementation in which the fixer fluid is applied in a predetermined pattern to form a simple square grid 210.
- Figure 5B conceptually illustrates a portion of the grid 210 after the rasterization process, showing an example of some of the pixels to which the fixer fluid is applied to form the grid pattern 210.
- the borders 212 of the pattern 210 create cells 214 including areas where no fixer fluid is applied.
- the borders 210 isolate the cells 214 from other cells 214, and thus ink defects caused, for example, by pigment and ink migration cannot grow larger than the size of the cells 214.
- a smaller pattern defining smaller cells 214 may provide better reduction of defects and be less visible, but requires applying more fixer fluid.
- a pattern forming larger cells uses less fixer fluid but may not provide the desired IQ improvements.
- the term "grid" is not necessarily limited to patterns of horizontal and vertical lines. Other periodic, or regular, patterns that could be used in further implementations include patterns forming triangular or hexagonal grids, for example.
- a hexagonal grid has a lower perimeter to cell area ratio and thus would require less pretreatment fluid to form the grid.
- Figure 6A illustrates an example of a pattern 220 used in another implementation.
- Figure 6B is a close up view of a portion of the pattern 220, showing part of the pixel placement producing the pattern resulting from the rasterization process.
- the pattern 220 illustrated in Figures 6A and 6B is a non- periodic pattern - the cells do not repeat themselves in regular intervals or periods. A non-periodic pattern of cell borders is less visible when viewed by a user.
- the non-periodic pattern 220 illustrated in Figures 6A and 6B has an improved perimeter to cell area ratio as compared to the regular grid 210 of Figures 5A and 5B.
- the non-periodic pattern 220 is the Voronoi grid of a blue noise dither pattern of the appropriate density.
- the combination of features of the blue noise pattern with those of the Voronoi grid creates a sort of random hexagonal grid, which is not highly recognizable when viewed.
- the blue noise pattern used in some implementations actually is periodic, but it is periodic on a larger scale. At the level of the individual Voronoi grid cells, the blue noise pattern is non-periodic.
- some implementations use a grid of about 0.5mm in diameter. This allows for desired coalescence control using about 25% of the total fixer fluid required to achieve a similar IQ as when fixer fluid is applied in a uniform, solid manner. Such a pattern also provides an increase in gloss without significantly degrading other IQ attributes. Because of the highly reduced amount of fixer fluid used, the negative effects of pretreating a print medium are also reduced.
- the predetermined pattern forming the cells 214 is pre-calculated and stored in the pretreatment print mask. This allows depositing the fixer fluid grid without significant modifications to a typical printing pipeline.
- a non-periodic pattern such as the Voronoi grid 220 can be calculated by any of a number of suitable algorithms.
Landscapes
- Ink Jet (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/040486 WO2012173613A1 (en) | 2011-06-15 | 2011-06-15 | Printing system |
EP11867738.4A EP2720872B1 (en) | 2011-06-15 | 2011-06-15 | Printing system |
BR112013032093-1A BR112013032093B1 (en) | 2011-06-15 | 2011-06-15 | printing method, printing system and tangible machine-readable storage medium |
US14/125,912 US9132667B2 (en) | 2011-06-15 | 2011-06-15 | Printing system |
CN201180071585.0A CN103619597B (en) | 2011-06-15 | 2011-06-15 | Print system |
US14/853,671 US9415583B2 (en) | 2011-06-15 | 2015-09-14 | Printing system |
US15/205,295 US10093109B2 (en) | 2011-06-15 | 2016-07-08 | Printing system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/040486 WO2012173613A1 (en) | 2011-06-15 | 2011-06-15 | Printing system |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/125,912 A-371-Of-International US9132667B2 (en) | 2011-06-15 | 2011-06-15 | Printing system |
US14/853,671 Division US9415583B2 (en) | 2011-06-15 | 2015-09-14 | Printing system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012173613A1 true WO2012173613A1 (en) | 2012-12-20 |
Family
ID=47357374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2011/040486 WO2012173613A1 (en) | 2011-06-15 | 2011-06-15 | Printing system |
Country Status (5)
Country | Link |
---|---|
US (3) | US9132667B2 (en) |
EP (1) | EP2720872B1 (en) |
CN (1) | CN103619597B (en) |
BR (1) | BR112013032093B1 (en) |
WO (1) | WO2012173613A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018143989A1 (en) * | 2017-02-02 | 2018-08-09 | Hewlett-Packard Development Company, L.P. | Nozzle replacement to minimize visual discontinuities |
WO2024035433A1 (en) * | 2022-08-10 | 2024-02-15 | Hewlett-Packard Development Company, L.P. | Patterning printed material |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5940506B2 (en) * | 2013-10-30 | 2016-06-29 | 京セラドキュメントソリューションズ株式会社 | Halftone dot addition device, halftone dot addition program, and halftone dot addition method |
JP6344353B2 (en) * | 2015-09-25 | 2018-06-20 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus, color conversion program, and color conversion method |
JP6380763B2 (en) * | 2015-09-25 | 2018-08-29 | 京セラドキュメントソリューションズ株式会社 | Image forming apparatus, color conversion program, and color conversion method |
EP3281799B1 (en) * | 2016-08-11 | 2021-02-24 | HP Scitex Ltd | Selective overcoat |
CN107867086A (en) * | 2016-09-27 | 2018-04-03 | 扣尼数字有限公司 | Printing machine for woven seamless product |
WO2018194678A1 (en) * | 2017-04-21 | 2018-10-25 | Hewlett-Packard Development Company, L.P. | Applying fixing liquid to print media |
US11379161B2 (en) | 2017-05-02 | 2022-07-05 | Hewlett-Packard Development Company, L.P. | Determining cumulative probability values for subsets of elements |
US20240098210A1 (en) * | 2021-01-19 | 2024-03-21 | Hewlett-Packard Development Company, L.P. | User print mode for user level of treatment fluid |
JP2022149764A (en) * | 2021-03-25 | 2022-10-07 | ブラザー工業株式会社 | Printing device, printing method and printing program |
CN113427923B (en) * | 2021-08-03 | 2022-04-01 | 珠海华天印新材料有限公司 | Printing method, computer readable storage medium and printing equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0726158A1 (en) | 1995-02-13 | 1996-08-14 | Canon Kabushiki Kaisha | Method and apparatus for ink-jet printing |
JPH10119320A (en) * | 1996-10-24 | 1998-05-12 | Canon Inc | Recording apparatus, recording method, and recording medium |
US6435639B1 (en) | 1998-04-27 | 2002-08-20 | Canon Kabushiki Kaisha | Ink jet recording method and ink jet recording apparatus |
US20040048001A1 (en) * | 1998-01-19 | 2004-03-11 | Hiroshi Kiguchi | Pattern formation method and substrate manufacturing apparatus |
US20050206711A1 (en) * | 2004-03-17 | 2005-09-22 | Paolo MILINI | Method and apparatus for digital inkjet printing of materials, particularly sheet-like materials such as fabrics, hides or the like |
US20100194805A1 (en) * | 2009-01-30 | 2010-08-05 | Hiroaki Houjou | Inkjet recording apparatus and inkjet recording method |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5012257A (en) | 1990-03-16 | 1991-04-30 | Hewlett-Packard Company | Ink jet color graphics printing |
JPH0796603A (en) | 1993-07-31 | 1995-04-11 | Sony Corp | Ink jet recording device |
JP3337879B2 (en) * | 1995-02-13 | 2002-10-28 | キヤノン株式会社 | Ink jet printing method, ink jet head, ink jet cartridge and ink jet printing apparatus used for the same |
US6378976B1 (en) * | 1999-08-23 | 2002-04-30 | Hewlett-Packard Company | Use of an essentially colorless marker to allow evaluation of nozzle health for printing colorless “fixer” agents in multi-part ink-jet images |
JP4931164B2 (en) * | 2000-08-30 | 2012-05-16 | キヤノン株式会社 | Mask pattern manufacturing method |
US6561610B2 (en) | 2000-10-05 | 2003-05-13 | Seiko Epson Corporation | Printing with reduced outline bleeding |
US6443568B1 (en) | 2001-06-29 | 2002-09-03 | Hewlett-Packard Company | Printing strategy for improved image quality and durability |
JP2004167996A (en) | 2002-11-22 | 2004-06-17 | Brother Ind Ltd | Image recording method |
US20040241323A1 (en) * | 2003-05-29 | 2004-12-02 | 3M Innovative Properties Company | Method for applying adhesive to a substrate |
US7517041B2 (en) * | 2003-11-19 | 2009-04-14 | Donald J Palmer | Printing and detecting a fixer pattern on a medium |
US7621631B2 (en) * | 2004-02-04 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Enhancing color space of reactive ink using heat |
US7530683B2 (en) | 2004-07-29 | 2009-05-12 | E.I. Du Pont De Nemours And Company | Fixing fluid and inkjet ink sets comprising same |
JP2006102981A (en) | 2004-09-30 | 2006-04-20 | Fuji Photo Film Co Ltd | Image forming apparatus |
JP4827450B2 (en) * | 2005-07-15 | 2011-11-30 | 富士フイルム株式会社 | Image forming method and image forming apparatus |
JP2007069378A (en) | 2005-09-05 | 2007-03-22 | Canon Inc | Inkjet printer |
JP4828241B2 (en) * | 2006-01-25 | 2011-11-30 | 大日本スクリーン製造株式会社 | Printing apparatus, dither matrix generation method, and dither matrix |
US8215744B2 (en) * | 2007-12-14 | 2012-07-10 | Fujifilm Corporation | Image forming method and image forming apparatus |
WO2009079071A1 (en) | 2007-12-18 | 2009-06-25 | E. I. Du Pont De Nemours And Company | Aqueous inkjet ink comprising a bleed control agent |
US8197050B2 (en) * | 2007-12-20 | 2012-06-12 | Canon Kabushiki Kaisha | Inkjet printing apparatus and inkjet printing method |
JP4902764B2 (en) | 2009-05-15 | 2012-03-21 | キヤノン株式会社 | Paper feeding method of printing device |
EP2261418A1 (en) | 2009-05-25 | 2010-12-15 | Vistaprint Technologies Limited | Pre-treatment liquid for liquid absorbing printing substrates |
US8356871B2 (en) * | 2009-06-24 | 2013-01-22 | Canon Kabushiki Kaisha | Inkjet printer, inkjet printing method and program |
JP5371844B2 (en) * | 2010-03-16 | 2013-12-18 | 富士フイルム株式会社 | Treatment liquid, ink set and image forming method |
JP5990868B2 (en) * | 2010-04-09 | 2016-09-14 | 株式会社リコー | Film production method and film by ink jet method |
US8355169B2 (en) * | 2010-08-23 | 2013-01-15 | Ecole Polytechnique Federale De Lausanne (Epfl) | Synthesis of authenticable luminescent color halftone images |
EP2763855B1 (en) * | 2011-10-06 | 2016-06-08 | Hewlett-Packard Development Company, L.P. | Printing systems and printing methods |
-
2011
- 2011-06-15 US US14/125,912 patent/US9132667B2/en not_active Expired - Fee Related
- 2011-06-15 WO PCT/US2011/040486 patent/WO2012173613A1/en active Application Filing
- 2011-06-15 CN CN201180071585.0A patent/CN103619597B/en not_active Expired - Fee Related
- 2011-06-15 EP EP11867738.4A patent/EP2720872B1/en not_active Not-in-force
- 2011-06-15 BR BR112013032093-1A patent/BR112013032093B1/en not_active IP Right Cessation
-
2015
- 2015-09-14 US US14/853,671 patent/US9415583B2/en active Active
-
2016
- 2016-07-08 US US15/205,295 patent/US10093109B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0726158A1 (en) | 1995-02-13 | 1996-08-14 | Canon Kabushiki Kaisha | Method and apparatus for ink-jet printing |
JPH10119320A (en) * | 1996-10-24 | 1998-05-12 | Canon Inc | Recording apparatus, recording method, and recording medium |
US20040048001A1 (en) * | 1998-01-19 | 2004-03-11 | Hiroshi Kiguchi | Pattern formation method and substrate manufacturing apparatus |
US6435639B1 (en) | 1998-04-27 | 2002-08-20 | Canon Kabushiki Kaisha | Ink jet recording method and ink jet recording apparatus |
US20050206711A1 (en) * | 2004-03-17 | 2005-09-22 | Paolo MILINI | Method and apparatus for digital inkjet printing of materials, particularly sheet-like materials such as fabrics, hides or the like |
US20100194805A1 (en) * | 2009-01-30 | 2010-08-05 | Hiroaki Houjou | Inkjet recording apparatus and inkjet recording method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018143989A1 (en) * | 2017-02-02 | 2018-08-09 | Hewlett-Packard Development Company, L.P. | Nozzle replacement to minimize visual discontinuities |
WO2024035433A1 (en) * | 2022-08-10 | 2024-02-15 | Hewlett-Packard Development Company, L.P. | Patterning printed material |
Also Published As
Publication number | Publication date |
---|---|
US9415583B2 (en) | 2016-08-16 |
US20160318308A1 (en) | 2016-11-03 |
US9132667B2 (en) | 2015-09-15 |
BR112013032093B1 (en) | 2021-03-02 |
US20140160214A1 (en) | 2014-06-12 |
EP2720872A1 (en) | 2014-04-23 |
CN103619597A (en) | 2014-03-05 |
US10093109B2 (en) | 2018-10-09 |
CN103619597B (en) | 2016-08-17 |
US20160001548A1 (en) | 2016-01-07 |
EP2720872A4 (en) | 2016-07-13 |
EP2720872B1 (en) | 2020-07-29 |
BR112013032093A2 (en) | 2016-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10093109B2 (en) | Printing system | |
US7866786B2 (en) | Liquid ejecting method, liquid ejecting apparatus, and storage medium having program stored thereon | |
US20140232783A1 (en) | Printing Systems and Printing Methods | |
US8251477B2 (en) | Multipass printing method | |
JP6095398B2 (en) | Recording apparatus and recording method | |
US9996774B2 (en) | Printers and methods of controlling same | |
US8256875B2 (en) | Two pass print mode method and apparatus for limiting wind-related print defects | |
US9849671B2 (en) | Adjusting the firing times of a number of nozzles | |
US8511771B2 (en) | Printing system | |
JP5776348B2 (en) | Image forming apparatus and image forming method | |
US20090021541A1 (en) | Printer control system and method for changing print mask height | |
US7637585B2 (en) | Halftone printing on an inkjet printer | |
US7108344B2 (en) | Printmode for narrow margin printing | |
US20090128599A1 (en) | Method and printer for multi-pass page-wide array printing | |
US10242298B2 (en) | Method of printing and printer | |
JP2014139005A (en) | Recording device and recording method | |
JP6060037B2 (en) | Image recording apparatus and image recording method | |
US10946659B2 (en) | Applying first and second weaving masks | |
JP6328022B2 (en) | Print data correction method, print data correction apparatus, and ink jet recording apparatus | |
JP6424125B2 (en) | Image recording apparatus, print data correction apparatus, and print data correction method | |
US8469487B2 (en) | Inkjet printing apparatus and method for printing a plurality of pixels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11867738 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14125912 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112013032093 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112013032093 Country of ref document: BR Kind code of ref document: A2 Effective date: 20131213 |