WO2012173108A1 - Electrically conductive oxide and method for producing same, and oxide semiconductor film - Google Patents

Electrically conductive oxide and method for producing same, and oxide semiconductor film Download PDF

Info

Publication number
WO2012173108A1
WO2012173108A1 PCT/JP2012/064986 JP2012064986W WO2012173108A1 WO 2012173108 A1 WO2012173108 A1 WO 2012173108A1 JP 2012064986 W JP2012064986 W JP 2012064986W WO 2012173108 A1 WO2012173108 A1 WO 2012173108A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline
powder
conductive oxide
semiconductor film
mgo
Prior art date
Application number
PCT/JP2012/064986
Other languages
French (fr)
Japanese (ja)
Inventor
宮永 美紀
浩一 曽我部
英章 粟田
岡田 浩
吉村 雅司
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2013520553A priority Critical patent/JP5929911B2/en
Priority to CN201280029318.1A priority patent/CN103608310B/en
Priority to KR1020137029873A priority patent/KR102003077B1/en
Publication of WO2012173108A1 publication Critical patent/WO2012173108A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the present invention relates to a conductive oxide, a manufacturing method thereof, and an oxide semiconductor film, and more particularly to a conductive oxide used as a target when forming an oxide semiconductor film by a sputtering method and a manufacturing method thereof.
  • an amorphous silicon film is mainly used for a channel layer of a conventional TFT (thin film transistor).
  • TFT thin film transistor
  • an oxide semiconductor film containing In—Ga—Zn-based composite oxide (IGZO) as a main component has attracted attention as a semiconductor film that can replace an amorphous silicon film.
  • IGZO In—Ga—Zn-based composite oxide
  • Patent Document 1 discloses a technique for forming an amorphous oxide semiconductor film by a sputtering method using a target made of a sintered body of conductive oxide powder. It is disclosed. An oxide semiconductor film formed in this manner has an advantage of higher carrier mobility than an amorphous silicon film.
  • Patent Document 1 The sputtering method disclosed in Japanese Patent Application Laid-Open No. 2008-199005 (Patent Document 1) will be described in detail. First, a target and a substrate are placed facing each other in a sputtering apparatus. Then, a voltage is applied to the target to sputter rare gas ions on the target surface, and the constituent atoms of the target are ejected. The constituent atoms of the target are deposited on the substrate, whereby an IGZO (In—Ga—Zn—O-based composite oxide) film is formed.
  • IGZO In—Ga—Zn—O-based composite oxide
  • Patent Document 2 discloses a sputtering containing a compound represented by InGaZnO 4 as a main component and containing a metal element having a positive tetravalence or higher. Disclose the target.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2008-199005 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-214697 (Patent Document 2) contains expensive Ga, it is expensive. It is. For this reason, development of the conductive oxide which is cheap compared with IGZO and can be suitably used for a sputtering target to obtain an oxide semiconductor film having high physical properties is demanded.
  • An object of the present invention is to provide a conductive oxide that is inexpensive and can be suitably used as a sputtering target to obtain an oxide semiconductor film having high physical properties, a method for manufacturing the same, and an oxide semiconductor film.
  • the present invention includes In, Al, M and O that are at least one element selected from the group consisting of Zn and Mg, and includes crystalline Al 2 MO 4 . It is a conductive oxide containing.
  • crystalline Al 2 ZnO 4 can be included as crystalline Al 2 MO 4 .
  • the proportion of crystalline Al 2 ZnO 4 occupied in the cross-sectional area of the conductive oxide may be 60% or less than 10%.
  • crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p (0 ⁇ m ⁇ 1, 0 ⁇ q ⁇ 1, 0 ⁇ p ⁇ 3m + q) and crystalline In 2 O 3 It may further include at least one crystalline material selected from the group.
  • crystalline Al 2 MgO 4 can be included as crystalline Al 2 MO 4 .
  • the ratio of crystalline Al 2 MgO 4 to the cross-sectional area of the conductive oxide can be set to 2% or more and 60% or less.
  • crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s (0 ⁇ n ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ s ⁇ 3n + t) and crystalline In 2 O 3 It may further include at least one crystalline material selected from the group.
  • the conductive oxide according to the present invention when the total atomic ratio of In, Al, and M is 100 atomic%, 10 to 50 atomic% In, 10 to 50 atomic% Al, and 15 to 40 atoms % M. can be included. Further, it may further contain at least one additive element selected from the group consisting of N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi.
  • the conductive oxide according to the present invention can be used as a sputtering target.
  • the present invention is an oxide semiconductor film formed using the conductive oxide described above.
  • a first mixture containing Al 2 O 3 powder and MO powder is prepared, where M is at least one element selected from the group consisting of Zn and Mg.
  • the MO powder is a ZnO powder
  • the crystalline Al 2 MO 4 powder is a crystalline Al 2 ZnO 4 powder
  • a crystalline Al 2 ZnO 4 powder is produced.
  • the calcining temperature of the mixture 1 may be 800 ° C. or more and less than 1200 ° C.
  • the sintering temperature of the molded body in the step of sintering the molded body may be 1280 ° C. or more and less than 1500 ° C.
  • the MO powder is an MgO powder
  • the crystalline Al 2 MO 4 powder is a crystalline Al 2 MgO 4 powder
  • a crystalline Al 2 MgO 4 powder is produced.
  • the calcining temperature of the mixture No. 1 can be 800 ° C. or higher and lower than 1200 ° C.
  • the sintering temperature of the molded body in the step of sintering the molded body can be 1300 ° C. or higher and 1500 ° C. or lower.
  • a conductive oxide a method for producing the same, and an oxide semiconductor film which are inexpensive and can be suitably used as a sputtering target to obtain an oxide semiconductor film having high physical properties.
  • the conductive oxide according to an embodiment of the present invention includes In, Al, M and O that are at least one element selected from the group consisting of Zn and Mg, and is crystalline Al. 2 Including MO 4 Since the conductive oxide of the present embodiment includes In, Al, M, which is at least one element selected from the group consisting of Zn and Mg, and O, expensive Ga contained in IGZO is contained. Since it is not included, it is cheaper than IGZO. In addition, since the conductive oxide of this embodiment includes crystalline Al 2 MO 4 , the characteristics of the oxide semiconductor film obtained by sputtering using the conductive oxide as a target are stabilized.
  • crystalline Al 2 ZnO 4 is included as crystalline Al 2 MO 4 .
  • crystalline Al 2 ZnO 4 the characteristics of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be stabilized and the etching rate can be increased. Therefore, a conductive oxide containing crystalline Al 2 ZnO 4 is preferably used as a target for forming an oxide semiconductor film by a sputtering method.
  • the ratio of ZnO 4 is preferably 10% or more and 60% or less, and more preferably 14% or more and 50% or less. If the proportion of crystalline Al 2 ZnO 4 in the cross-sectional area of the conductive oxide is lower than 10%, the characteristics of the oxide semiconductor film obtained by sputtering using the conductive oxide as a target become unstable, and the etching rate Becomes lower. When the ratio of crystalline Al 2 ZnO 4 in the cross-sectional area of the conductive oxide is higher than 60%, the surface roughness Ra of the oxide semiconductor film obtained by sputtering using the conductive oxide as a target becomes rough.
  • the proportion of crystalline Al 2 ZnO 4 occupied in the cross-sectional area of the conductive oxide containing crystalline Al 2 ZnO 4 can be obtained by EDX (Energy Dispersive X-ray spectrometry). More specifically, the electrons (reflected electron image) reflected from the cross section resulting from the incident electron beam irradiated onto the cross section of the conductive oxide sample are observed. Then, by performing fluorescent X-ray analysis of regions having different contrasts and specifying the crystalline Al 2 ZnO 4 region, the ratio of the area of the crystalline Al 2 ZnO 4 region to the cross-sectional area can be measured. .
  • the surface roughness Ra refers to the arithmetic average roughness Ra defined by JIS B0601: 2001, and can be measured by an AFM (atomic force microscope) or the like.
  • the conductive oxide containing crystalline Al 2 ZnO 4 is crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p (0 ⁇ m ⁇ 1, 0 ⁇ q ⁇ 1, 0 ⁇ It is preferable to further include at least one crystalline material selected from the group consisting of p ⁇ 3m + q) and crystalline In 2 O 3 .
  • the surface roughness Ra of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be reduced. it can.
  • the thermal conductivity of the conductive oxide is increased, so that the discharge is stabilized when direct current sputtering is performed using the conductive oxide as a target.
  • the field-effect mobility of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be increased.
  • crystalline Al 2 MgO 4 is included as crystalline Al 2 MO 4 .
  • crystalline Al 2 MgO 4 the characteristics of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be stabilized, and the field-effect mobility of the oxide semiconductor film can be increased. Therefore, a conductive oxide containing crystalline Al 2 MgO 4 is preferably used as a target for forming an oxide semiconductor film by a sputtering method.
  • a crystalline ratio of Al 2 MgO 4 occupied in the cross-sectional area of the conductive oxide containing crystalline Al 2 MgO 4 is preferably 2% to 60%, more preferably at most 20% more than 5%.
  • a conductive oxide containing crystalline MgAl 2 O 4 at such an area ratio as a sputtering target an oxide semiconductor film with high field-effect mobility can be manufactured.
  • a conductive oxide containing crystalline Al 2 MgO 4 further comprising a crystalline In 2 O 3 the proportion of crystalline In 2 O 3 occupying the sectional area of the conductive oxide, 40% 98% The following is preferable, and 40% or more and 60% or less are more preferable.
  • an oxide semiconductor film with high field-effect mobility is manufactured by forming an oxide semiconductor film Can do.
  • the ratios of crystalline Al 2 MgO 4 and crystalline In 2 O 3 in the cross-sectional area of the conductive oxide are calculated as follows. First, the peaks of crystalline Al 2 MgO 4 and crystalline In 2 O 3 are confirmed by X-ray diffraction. Next, the conductive oxide is cut at an arbitrary surface. The cut surface of the conductive oxide is irradiated with an incident electron beam using an analytical scanning electron microscope to observe electrons reflected from the cross section (reflected electron image). In such a backscattered electron image, by performing fluorescent X-ray analysis on regions with different contrasts, the region where Al and Mg are mainly observed is identified as crystalline Al 2 MgO 4 , and only the In peak is observed. The region to be formed is identified as crystalline In 2 O 3 . In this way, the ratio of the area of crystalline MgAl 2 O 4 and crystalline In 2 O 3 occupying the cross section is calculated.
  • the conductive oxide containing crystalline Al 2 MgO 4 is crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s (0 ⁇ n ⁇ 1, 0 ⁇ t ⁇ 1, 0 ⁇ s ⁇ 3n + t) and at least one crystalline material selected from the group consisting of crystalline In 2 O 3 is preferable.
  • Such crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s is prepared by mixing crystalline powders of crystalline In 2 Al 2 MgO 7 and crystalline Al 2 MgO 4 under predetermined conditions. It is formed by modification and deficiency of Al and Mg in crystalline In 2 Al 2 MgO 7 .
  • the oxygen stoichiometric ratio is smaller than “7” corresponding to the stoichiometric ratio of this deficiency. It may take a value (ie, s> 0).
  • the crystalline In 2 Al 2 (1-n ) Mg 1-t O 7-s Although it is difficult to directly calculate the values of n and t in the crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s , the crystalline In 2 Al 2 (1-n ) The presence or absence of Mg 1-t O 7-s can be confirmed. The presence or absence of crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s is determined by determining the composition of the conductive oxide by ICP emission analysis and identifying the crystalline phase by X-ray diffraction. To do.
  • the thermal conductivity of the conductive oxide is increased, so that the discharge is stabilized when direct current sputtering is performed using the conductive oxide as a target.
  • the field-effect mobility of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be increased.
  • the conductive oxide of this embodiment when the total atomic ratio of In, Al, and M is 100 atomic%, 10 to 50 atomic% In, 10 to 50 atomic% Al, and 15 to 40 atoms % M is preferable.
  • a conductive oxide having such an atomic ratio is inexpensive and can be suitably used as a sputtering target to obtain an oxide semiconductor film having high physical properties (for example, high etching rate, high field effect mobility, etc.). .
  • the conductive oxide of this embodiment is at least one additive element selected from the group consisting of N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi. Further, it is preferable that these additional elements are contained in an amount of 0.1 ⁇ 10 22 atm / cc to 5.0 ⁇ 10 22 atm / cc. That is, the total concentration of the additive elements contained in the conductive oxide of this embodiment is preferably 0.1 ⁇ 10 22 atm / cc or more and 5.0 ⁇ 10 22 atm / cc or less.
  • SIMS secondary ion mass spectrometry
  • the conductive oxide of this embodiment is suitably used for a sputtering target.
  • the “target for sputtering method” means a material obtained by forming a film by sputtering method into a plate shape, or the plate-like material on a backing plate (back plate for attaching a target material).
  • the backing plate is a generic term for affixed materials and the like, and the backing plate can be manufactured using materials such as oxygen-free copper, steel, stainless steel, aluminum, aluminum alloy, molybdenum, and titanium.
  • the shape of the target described above is not particularly limited, and may be a round shape or a square shape.
  • the target may have a disk shape (flat plate shape) with a diameter of 1 cm, or a square shape (flat plate with a diameter exceeding 2 m, such as a sputtering target for a large LCD (liquid crystal display device). (Rectangular).
  • An oxide semiconductor film according to another embodiment of the present invention is formed using the conductive oxide of the above embodiment, and preferably using the conductive oxide of the above embodiment as a target. It is formed by a sputtering method. Since the oxide semiconductor film of this embodiment is formed using the conductive oxide of the above embodiment, the characteristics are stabilized, the etching rate is increased, and / or the field effect transfer is performed. The degree becomes higher.
  • a target and a substrate are placed facing each other in a sputtering apparatus, a voltage is applied to the target to sputter rare gas ions on the surface of the target, and target atoms are ejected. Is formed on the substrate to form an oxide semiconductor film.
  • the manufacturing method further conductive oxide which is another embodiment of the present invention, when at least one element selected from the group consisting of Zn and Mg and M, Al 2 O 3 A step of preparing a first mixture containing the powder and the MO powder (S10), a step of producing a crystalline Al 2 MO 4 powder by calcining the first mixture (S20), and a crystalline Al 2 A step of preparing a second mixture containing MO 4 powder and In 2 O 3 powder (S30), a step of obtaining a molded body by molding the second mixture (S40), and sintering the molded body A step (S50) of producing a conductive oxide.
  • an inexpensive conductive oxide that is preferably used for forming a semiconductor oxide by including the above-described steps, more specifically, oxidized by a sputtering method.
  • An inexpensive conductive oxide that is suitably used as a target for forming a physical semiconductor film can be efficiently produced.
  • the step (S10) of preparing the first mixture containing the Al 2 O 3 powder and the MO powder includes Al 2 O as a raw material powder. This is performed by mixing 3 powder and MO powder (that is, ZnO powder and / or MgO powder).
  • the purity of the Al 2 O 3 powder and the MO powder is not particularly limited, but is preferably 99.9% by mass or more and 99.99% by mass or more from the viewpoint of improving the quality of the conductive oxide to be produced. Is preferred.
  • the mixing method of the Al 2 O 3 powder and the MO powder is not particularly limited, and may be a dry mixing method or a wet mixing method.
  • a method such as mixing by a normal ball mill, mixing by a planetary ball mill, mixing by a bead mill, stirring mixing by ultrasonic waves, or the like is preferably used.
  • the drying method when the wet mixing method is used may be natural drying or forced drying using a spray dryer or the like.
  • the step (S20) of producing the crystalline Al 2 MO 4 powder is performed by calcining the first mixture.
  • the calcining temperature of the first mixture is preferably 800 ° C. or higher and lower than 1200 ° C.
  • the calcination temperature is less than 800 ° C.
  • unreacted raw material powder remains and it becomes difficult to produce a crystalline Al 2 MO 4 powder having sufficient crystallinity.
  • the calcining temperature is 1200 ° C. or higher, the grain size of the crystalline Al 2 MO 4 powder obtained by calcining becomes large, and it becomes difficult to obtain a dense sintered body in the subsequent sintering step. It takes time to pulverize the crystalline Al 2 MO 4 powder before the sintering step.
  • the calcining atmosphere is not particularly limited, but is preferably an air atmosphere from the viewpoint of suppressing desorption of oxygen from the powder and being simple.
  • Formation of crystalline Al 2 MO 4 powder by calcination is confirmed by the chemical composition determined by ICP emission analysis and the crystal phase identified by X-ray diffraction.
  • the crystalline Al 2 MO 4 powder thus obtained preferably has an average particle size of 0.1 ⁇ m to 1.5 ⁇ m.
  • the value calculated by the light scattering method shall be employ
  • Crystalline Al 2 MO 4 powder and In 2 O 3 preparing a second mixture comprising a powder (S30) is carried out by mixing the crystalline Al 2 MO 4 powder and In 2 O 3 powder .
  • the purity of the In 2 O 3 powder is not particularly limited, but is preferably 99.9% by mass or more and more preferably 99.99% by mass or more from the viewpoint of increasing the quality of the conductive oxide to be produced.
  • the mixing method of the crystalline Al 2 MO 4 powder and the I 2 O 3 powder is not particularly limited, and may be a dry mixing method or a wet mixing method.
  • a method such as mixing by a normal ball mill, mixing by a planetary ball mill, mixing by a bead mill, stirring mixing by ultrasonic waves, or the like is preferably used.
  • the drying method when the wet mixing method is used may be natural drying or forced drying using a spray dryer or the like.
  • N Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, together with crystalline Al 2 MO 4 powder and In 2 O 3 powder.
  • Ta, W, Sn, and Bi The raw material powder containing at least one additive element selected from the group consisting of Bi is mixed.
  • Such additive element raw material powder is not particularly limited, but from the viewpoint of suppressing mixing of impurity elements other than constituent elements and additive elements and oxygen desorption, AlN powder, Al 2 O 3 powder, SiO 2 powder, TiO 2 powder V 2 O 5 powder, Cr 2 O 3 powder, ZrO 2 powder, Nb 2 O 3 powder, MoO 2 powder, HfO 2 powder, Ta 2 O 3 powder, WO 3 powder, SnO 2 powder, and Bi 2 O 3 Powder is preferably used.
  • the conductive oxide was selected from N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi.
  • a conductive oxide that includes at least one kind of additive element and can manufacture an oxide semiconductor film with high field-effect mobility can be manufactured.
  • the method of molding the second mixture is not particularly limited, but from the viewpoint of high productivity, press molding, CIP (cold etc.) A method such as (pressure-pressing) molding or cast molding is preferably used. Further, from the viewpoint of efficiently forming in stages, it is preferable to perform CIP molding after press molding.
  • the sintering temperature of the molded body depends on the type of crystalline Al 2 MO 4 powder containing the molded body (here, M is at least one element selected from the group consisting of Zn and Mg).
  • the sintering temperature of the molded body preferably less than 1280 ° C. or higher 1500 ° C..
  • the sintering temperature is less than 1280 ° C.
  • the crystalline Al 2 ZnO 4 powder and In 2 O 3 powder are not sufficiently sintered, and it is difficult to produce a dense sintered body necessary as a sputtering target. It is.
  • the sintering temperature is 1500 ° C. or higher, crystalline Al 2 ZnO 4 is not formed but only crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p is formed.
  • An oxide semiconductor film obtained by sputtering using a target becomes unstable in characteristics, and its surface roughness Ra increases and its etching rate decreases.
  • the sintering temperature of the compact is 1280 ° C. or higher and lower than 1300 ° C.
  • crystalline Al 2 ZnO 4 and crystalline In 2 O 3 are formed in the crystalline phase.
  • the sintering temperature of the formed body is 1300 ° C. or higher and lower than 1500 ° C.
  • crystalline Al 2 ZnO 4 and crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p are formed in the crystalline phase.
  • the sintering temperature of the molded body is preferably 1300 ° C. or higher 1500 ° C. or less.
  • the sintering temperature is less than 1300 ° C., the crystalline Al 2 MgO 4 powder and In 2 O 3 powder are not sufficiently sintered, and it is difficult to produce a dense sintered body necessary as a sputtering target. It is.
  • the sintering temperature is higher than 1500 ° C., Mg is desorbed, resulting in a variation in the composition of the sintered body and inhomogeneity.
  • the sintering temperature of the compact is 1300 ° C.
  • crystalline Al 2 MgO 4 and crystalline In 2 O 3 are formed in the crystalline phase.
  • the sintering temperature of the formed body is 1390 ° C. or higher and lower than 1500 ° C.
  • crystalline Al 2 ZnO 4 and crystalline In 2 Al 2 (1-n) Zn 1-t O 7-s are formed in the crystalline phase.
  • a ZnO mixture was prepared. Water was used as a dispersion medium during pulverization and mixing. This mixture was dried with a spray dryer to obtain a first mixture.
  • a first mixture prepared resulting crystalline Al 2 ZnO 4 powder was placed in an aluminum oxide crucible and calcined for 5 hours at a temperature of 900 ° C. in an air atmosphere.
  • a crystalline Al 2 ZnO 4 powder that is a calcined powder formed of crystalline Al 2 ZnO 4 was obtained.
  • the presence of crystalline Al 2 ZnO 4 was confirmed by the chemical composition determined by ICP emission analysis and the crystal phase identified by X-ray diffraction.
  • the obtained second mixture was press-molded under the condition of a surface pressure of 1.0 ton f / cm 2 , and CIP-molded under the condition of each surface pressure of 2.0 ton f / cm 2 .
  • a disk-shaped molded body having a diameter of 100 mm and a thickness of about 9 mm was obtained.
  • the eight molded bodies obtained were 1250 ° C (Example A1), 1280 ° C (Example A2), 1300 ° C (Example A3), 1350 ° C (Example A4), 1375 ° C (Example A5), 1400 ° C ( Eight sintered bodies having different crystalline composition ratios as conductive oxides (Example A6), 1450 ° C. (Example A7), and 1500 ° C. (Example AR1), respectively, for 5 hours. A1 to A7 and Example AR1) were obtained.
  • the relative density of the obtained sintered body was calculated by the following method. First, the bulk density of the obtained sintered body was measured by the Archimedes method. Next, the sintered body was pulverized and the true density of the powder was measured by a pycnometer method. Next, the relative density of the sintered body was calculated by dividing the bulk density by the true density.
  • Oxide Semiconductor Films were produced by DC (direct current) magnetron sputtering using the obtained eight conductive oxides as targets. Specifically, a synthetic quartz glass substrate having a size of 25 mm ⁇ 25 mm ⁇ thickness 0.6 mm was disposed as a film formation substrate on a water-cooled substrate holder in the film formation chamber of the sputtering apparatus. The conductive oxide was disposed at a distance of 40 mm so that the main surface thereof was opposed to the main surface of the synthetic quartz glass substrate. Here, a part of the main surface of the synthetic quartz glass substrate was covered with a metal mask.
  • the pressure inside the film forming chamber was reduced to 1 ⁇ 10 ⁇ 4 Pa.
  • Ar gas is introduced into the film forming chamber up to a pressure of 1 Pa, and direct current power of 30 W is applied to cause sputtering discharge.
  • the surface of the conductive oxide (target) was cleaned (pre-sputtering) for 10 minutes.
  • Ar gas was introduced into the film formation chamber to a pressure of 20 Pa, 50 W direct current power was applied to cause sputtering discharge, and the oxide semiconductor film was formed for 1 hour by removing the shutter. Note that no bias voltage was applied to the substrate holder, and the substrate holder was only water-cooled.
  • the oxide semiconductor film was formed.
  • the obtained oxide semiconductor film was amorphous when its crystallinity was evaluated by X-ray diffraction (SmartLab manufactured by Rigaku Corporation).
  • the conductive oxide containing In, Al, Zn, and O and containing crystalline Al 2 ZnO 4 is By sputtering as a target, an oxide semiconductor film having stable characteristics and a high etching rate was able to be manufactured. Furthermore, as shown in Examples A3 to A7, a conductive oxide having a ratio of crystalline Al 2 ZnO 4 to a cross-sectional area of 10% or more and 60% or less has a surface roughness Ra by sputtering using the conductive oxide as a target. A fine oxide semiconductor film could be produced.
  • Example B (Examples B1 to B6) In Examples B1 to B6 of Example B, conductive oxidation comprising crystalline Al 2 MgO 4 and crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n (0 ⁇ n ⁇ 1) A product was made.
  • Molding The second mixture obtained above is press-molded under the condition of a surface pressure of 1.0 ton f / cm 2 , and CIP-molded at each surface pressure of 2.0 ton f / cm 2. A disk-shaped molded body having a thickness of about 9 mm was produced.
  • Example B7 The conductive oxide of Example B7 was produced by the same production method as in Example B1, except that the preparation method of the second mixture and the sintering temperature of the compact were different from Example B1. That is, in Example B7, in the step of preparing the second mixture, in addition to crystalline Al 2 MgO 4 powder and In 2 O 3 powder, AlN powder (purity: 99.99 mass%, BET specific surface area: 5 m 2 / By adding g), a second mixture of In 2 O 3 —AlN—crystalline Al 2 MgO 4 mixed powder was obtained. By using this second mixture, sintering was carried out at a sintering temperature of 1390 ° C. in an atmospheric pressure and nitrogen atmosphere for 5 hours to prepare a disk-shaped molded body having a diameter of 100 mm and a thickness of about 9 mm.
  • Example B8 to B20 In Examples B8 to B20, the conductivity of Examples B8 to B20 is the same as that of Example B7 except that the method for preparing the second mixture and the sintering temperature and sintering atmosphere of the molded body are different. An oxide was produced.
  • Example B8 to B20 the AlN powder of Example B7 was replaced with an oxide powder containing additive elements (Al 2 O 3 powder, SiO 2 powder, TiO 2 powder, V 2 O 5 powder, Cr 2 O 3 powder, ZrO 2 powder, Nb 2 O 3 powder, MoO 2 powder, HfO 2 powder, Ta 2 O 3 powder, WO 3 powder, SnO 2 powder, Bi 2 O 3 powder) Sintering was performed therein to produce conductive oxides of Examples B8 to B20.
  • additive elements Al 2 O 3 powder, SiO 2 powder, TiO 2 powder, V 2 O 5 powder, Cr 2 O 3 powder, ZrO 2 powder, Nb 2 O 3 powder, MoO 2 powder, HfO 2 powder, Ta 2 O 3 powder, WO 3 powder, SnO 2 powder, Bi 2 O 3 powder
  • the obtained mixture was put in an aluminum oxide crucible and calcined in an air atmosphere at 1200 ° C. for 5 hours to obtain crystalline In 2 Al 2 MgO 7 powder.
  • the crystalline In 2 Al 2 MgO 7 powder obtained above was molded by uniaxial pressure molding to produce a disk-shaped molded body having a diameter of 100 mm and a thickness of 9 mm.
  • the molded body was fired at 1500 ° C. for 5 hours in an air atmosphere to produce a conductive oxide of Example BR1. Due to the powder mixing method and the sintering temperature of 1500 ° C. or higher, only crystalline In 2 Al 2 MgO 7 is formed, and crystalline MgAl 2 O 4 and crystalline In 2 Al 2 (1-n) mg 1-n O 7-4n was not formed.
  • Example BR2 a conductive oxide was produced by a process different from the method for producing the conductive oxide of Examples B1 to B20. That is, first, In 2 O 3 powder (purity: 99.99 mass%, BET specific surface area: 5 m 2 / g) was charged into a bead mill apparatus. The In 2 O 3 powder was pulverized and mixed for 30 minutes using water as a dispersion solvent. Thereafter, by evaporating the water by spray drying, to form a granulated powder comprising only an In 2 O 3.
  • In 2 O 3 powder purity: 99.99 mass%, BET specific surface area: 5 m 2 / g
  • the granulated powder obtained above was molded by uniaxial pressure molding to produce a compact on a disc having a diameter of 100 mm and a thickness of 9 mm.
  • the molded body thus produced was sintered at 1500 ° C. for 5 hours in an air atmosphere to produce a conductive oxide of Example BR2.
  • Example B21 to B26 The conductivity of Examples B21 to B26 is the same as Example B1 except that the mixing ratio of the raw material powders in the first mixture and the second mixture is different from Example B1 and the sintering temperature is less than 1390 ° C.
  • An oxide was produced. That is, in Examples B21 to B26, the mixing ratio of the Al 2 O 3 powder, the MgO powder, and the In 2 O 3 particles was adjusted so that the atomic ratio shown in the column “Atom concentration ratio” in Table 3 was obtained. . Note that, by setting the sintering temperature to less than 1390 ° C., the conductive oxide did not contain crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n .
  • Example B27 A conductive oxide of Example B27 was produced in the same manner as in Example B7 except that the sintering temperature was different from that of Example B7. Note that, by setting the sintering temperature to less than 1390 ° C., the conductive oxide did not contain crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n .
  • Example B28-B40 The conductive oxides of Examples B28 to B40 were prepared in the same manner as in Examples B8 to B20, except that the sintering temperature was different from that of Examples B8 to B20. Note that, by setting the sintering temperature to less than 1390 ° C., the conductive oxide did not contain crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n .
  • the atomic ratio (unit: atomic%) of In, Al, and Mg was measured using ICP emission analysis. The results are shown in the column “Atom concentration ratio” in Tables 2 and 3.
  • the conductive oxides produced in Examples B1 to B40 and Examples BR1 to BR2 were cut on an arbitrary surface, and the cut surfaces were subjected to fluorescent X-ray analysis using an analytical scanning electron microscope, whereby conductive oxides were obtained.
  • the ratio of crystalline Al 2 MgO 4 and the ratio of crystalline In 2 O 3 occupying the cross-sectional area was calculated.
  • the conductive oxides prepared in Examples B1 to B40 were subjected to crystal analysis by powder X-ray diffraction. Specifically, the diffraction angle 2 ⁇ was measured by irradiating Cu K ⁇ rays as X-rays, and it was confirmed by the diffraction peaks that both In 2 O 3 and Al 2 MgO 4 were crystalline. On the other hand, in the conductive oxide produced in Example BR1, the presence of Al 2 MgO 4 was not confirmed even by evaluation using an analytical scanning electron microscope and X-ray diffraction, and In 2 Al 2 MgO was detected by X-ray diffraction. A diffraction peak of 7 was confirmed.
  • composition of the additive element and the number of atoms per 1 cm 3 (atom / cm 3 ) of the conductive oxides prepared in Examples B1 to B40 and Examples BR1 to BR2 were calculated by SIMS. The results are shown in the “added elements” and “concentration” columns of Tables 2 and 3.
  • An oxide semiconductor film was formed by DC (direct current) magnetron sputtering using the conductive oxides obtained in Examples B1 to B40 and Examples BR1 and BR2 as targets.
  • a TFT including the oxide semiconductor film as a channel layer was manufactured, and the field-effect mobility of each TFT was calculated to evaluate the performance of the conductive oxides of Examples B1 to B40 and Examples BR1 to BR2.
  • the above-mentioned field effect mobility was specifically calculated as follows. First, the conductive oxides obtained in Examples B1 to B40 and Examples BR1 to BR2 were processed into targets having a diameter of 3 inches (76.2 mm) and a thickness of 5.0 mm. And the target was arrange
  • the inside of the sputtering apparatus is evacuated to about 1 ⁇ 10 ⁇ 4 Pa, and with the shutter placed between the substrate and the target, Ar gas is introduced into the film forming chamber to set the pressure in the film forming chamber to 1 Pa. Further, the surface of the target was cleaned (pre-sputtering) for 10 minutes by applying 120 W DC power to the target and performing sputtering discharge.
  • Ar gas containing 15% by volume of oxygen gas at a flow rate ratio is introduced into the film forming chamber so that the pressure in the film forming chamber is 0.8 Pa, and further, a sputtering direct current power of 120 W is applied to the target, whereby a glass substrate is obtained.
  • An oxide semiconductor film with a thickness of 70 nm was formed thereon.
  • the substrate holder was only cooled with water and no bias voltage was applied.
  • the oxide semiconductor film was etched.
  • a resist was applied on the oxide semiconductor film, exposed, and developed so that only portions of the oxide semiconductor film where the source electrode and the drain electrode were formed were exposed.
  • a metal layer made of Ti, a metal layer made of Al, and a metal layer made of Mo in this order on the portion where the resist is not formed (electrode forming portion) by sputtering, Ti / A source electrode and a drain electrode having a three-layer structure of Al / Mo and a film thickness of 100 nm were formed.
  • the resist over the oxide semiconductor film was peeled off, whereby a TFT including an oxide semiconductor film made of In—Al—Mg—O as a channel layer was manufactured.
  • the conductive oxide according to the present invention can be preferably used as a target for sputtering film formation.

Abstract

An electrically conductive oxide comprises In, Al, at least one element M selected from the group consisting of Zn and Mg and O, and also comprises crystalline Al2MO4. A method for producing an electrically conductive oxide comprises: a step of preparing a first mixture comprising an Al2O3 powder and an MO powder, wherein M represents at least one element selected from the group consisting of Zn and Mg (S10); a step of pre-sintering the first mixture to produce a crystalline Al2MO4 powder (S20); a step of preparing a second mixture comprising the crystalline Al2MO4 powder and an In2O3 powder (S30); a step of molding the second mixture to produce a molding (S40); and a step of sintering the molding (S50). Thus, provided are: an electrically conductive oxide which is inexpensive, can be used suitably for a sputtering target, and enables the production of an oxide semiconductor film having high physical properties; a method for producing the electrically conductive oxide; and an oxide semiconductor film.

Description

導電性酸化物およびその製造方法ならびに酸化物半導体膜Conductive oxide, method for producing the same, and oxide semiconductor film
 本発明は、導電性酸化物およびその製造方法ならびに酸化物半導体膜に関し、特に、スパッタリング法で酸化物半導体膜を形成するときのターゲットに用いる導電性酸化物およびその製造方法に関する。 The present invention relates to a conductive oxide, a manufacturing method thereof, and an oxide semiconductor film, and more particularly to a conductive oxide used as a target when forming an oxide semiconductor film by a sputtering method and a manufacturing method thereof.
 液晶表示装置、薄膜EL(エレクトロルミネッセンス)表示装置、有機EL表示装置などにおいて、従来のTFT(薄膜トランジスタ)のチャネル層には主として非晶質シリコン膜が使用されていた。近年では、非晶質シリコン膜に代わる半導体膜として、In-Ga-Zn系複合酸化物(IGZO)を主成分とする酸化物半導体膜が注目されている。 In a liquid crystal display device, a thin film EL (electroluminescence) display device, an organic EL display device, and the like, an amorphous silicon film is mainly used for a channel layer of a conventional TFT (thin film transistor). In recent years, an oxide semiconductor film containing In—Ga—Zn-based composite oxide (IGZO) as a main component has attracted attention as a semiconductor film that can replace an amorphous silicon film.
 たとえば、特開2008-199005号公報(特許文献1)では、導電性を示す酸化物粉末の焼結体からなるターゲットを用いたスパッタリング法により、非晶質の酸化物半導体膜を形成する技術が開示されている。このようにして形成される酸化物半導体膜は、非晶質シリコン膜に比べてキャリアの移動度が大きいという利点を有する。 For example, Japanese Patent Application Laid-Open No. 2008-199005 (Patent Document 1) discloses a technique for forming an amorphous oxide semiconductor film by a sputtering method using a target made of a sintered body of conductive oxide powder. It is disclosed. An oxide semiconductor film formed in this manner has an advantage of higher carrier mobility than an amorphous silicon film.
 特開2008-199005号公報(特許文献1)に開示されるスパッタリング法を詳述すると、まず、スパッタリング装置内にターゲットと基板とを対向して配置する。そして、ターゲットに電圧を印加してターゲット表面に希ガスイオンをスパッタリングし、ターゲットの構成原子を飛び出させる。このターゲットの構成原子が基板上に堆積されることにより、IGZO(In-Ga-Zn-O系複合酸化物)膜が形成される。 The sputtering method disclosed in Japanese Patent Application Laid-Open No. 2008-199005 (Patent Document 1) will be described in detail. First, a target and a substrate are placed facing each other in a sputtering apparatus. Then, a voltage is applied to the target to sputter rare gas ions on the target surface, and the constituent atoms of the target are ejected. The constituent atoms of the target are deposited on the substrate, whereby an IGZO (In—Ga—Zn—O-based composite oxide) film is formed.
 かかるIGZO膜をスパッタリング法で好適に作製するためのターゲットとして、特開2008-214697号公報(特許文献2)は、InGaZnO4で表わされる化合物を主成分とし、正四価以上の金属元素を含むスパッタリングターゲットを開示する。 As a target for suitably producing such an IGZO film by a sputtering method, Japanese Patent Application Laid-Open No. 2008-214697 (Patent Document 2) discloses a sputtering containing a compound represented by InGaZnO 4 as a main component and containing a metal element having a positive tetravalence or higher. Disclose the target.
特開2008-199005号公報JP 2008-199005 A 特開2008-214697号公報JP 2008-214697 A
 しかし、特開2008-199005号公報(特許文献1)および特開2008-214697号公報(特許文献2)で開示されているようなIGZOのスパッタリングターゲットは、高価なGaを含んでいるため、高価である。このため、IGZOに比べて安価であり、かつスパッタリングのターゲットに好適に用いられて高物性の酸化物半導体膜が得られる導電性酸化物の開発が求められている。 However, since the IGZO sputtering target disclosed in Japanese Patent Application Laid-Open No. 2008-199005 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2008-214697 (Patent Document 2) contains expensive Ga, it is expensive. It is. For this reason, development of the conductive oxide which is cheap compared with IGZO and can be suitably used for a sputtering target to obtain an oxide semiconductor film having high physical properties is demanded.
 本発明は、安価でかつスパッタリングのターゲットに好適に用いられて高物性の酸化物半導体膜が得られる導電性酸化物およびその製造方法ならびに酸化物半導体膜を提供することを目的とする。 An object of the present invention is to provide a conductive oxide that is inexpensive and can be suitably used as a sputtering target to obtain an oxide semiconductor film having high physical properties, a method for manufacturing the same, and an oxide semiconductor film.
 本発明は、ある局面に従えば、Inと、Alと、ZnおよびMgからなる群から選ばれる少なくとも1種類の元素であるMと、Oと、を含み、かつ、結晶質Al2MO4を含む導電性酸化物である。 According to one aspect, the present invention includes In, Al, M and O that are at least one element selected from the group consisting of Zn and Mg, and includes crystalline Al 2 MO 4 . It is a conductive oxide containing.
 本発明にかかる導電性酸化物において、結晶質Al2MO4として結晶質Al2ZnO4を含むことができる。ここで、導電性酸化物の断面積に占める結晶質Al2ZnO4の割合を10%以上60%以下とすることができる。ここで、結晶質In2Al2(1-m)Zn1-q7-p(0≦m<1、0≦q<1、0≦p≦3m+q)および結晶質In23からなる群から選ばれる少なくとも1種類の結晶質をさらに含むことができる。 In the conductive oxide according to the present invention, crystalline Al 2 ZnO 4 can be included as crystalline Al 2 MO 4 . Here, the proportion of crystalline Al 2 ZnO 4 occupied in the cross-sectional area of the conductive oxide may be 60% or less than 10%. Here, crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p (0 ≦ m <1, 0 ≦ q <1, 0 ≦ p ≦ 3m + q) and crystalline In 2 O 3 It may further include at least one crystalline material selected from the group.
 本発明にかかる導電性酸化物において、結晶質Al2MO4として結晶質Al2MgO4を含むことができる。ここで、導電性酸化物の断面積に占める結晶質Al2MgO4の割合を2%以上60%以下とすることができる。ここで、結晶質In2Al2(1-n)Mg1-t7-s(0≦n<1、0≦t<1、0≦s≦3n+t)および結晶質In23からなる群から選ばれる少なくとも1種類の結晶質をさらに含むことができる。 In the conductive oxide according to the present invention, crystalline Al 2 MgO 4 can be included as crystalline Al 2 MO 4 . Here, the ratio of crystalline Al 2 MgO 4 to the cross-sectional area of the conductive oxide can be set to 2% or more and 60% or less. Here, crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s (0 ≦ n <1, 0 ≦ t <1, 0 ≦ s ≦ 3n + t) and crystalline In 2 O 3 It may further include at least one crystalline material selected from the group.
 本発明にかかる導電性酸化物において、In、Al、およびMの合計の原子比率を100原子%とすると、10~50原子%のInと、10~50原子%のAlと、15~40原子%のMと、を含むことができる。また、N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn、およびBiからなる群から選ばれる少なくとも1種類の添加元素をさらに含むことができる。 In the conductive oxide according to the present invention, when the total atomic ratio of In, Al, and M is 100 atomic%, 10 to 50 atomic% In, 10 to 50 atomic% Al, and 15 to 40 atoms % M. can be included. Further, it may further contain at least one additive element selected from the group consisting of N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi.
 本発明にかかる導電性酸化物は、スパッタリング法のターゲットに用いることができる。 The conductive oxide according to the present invention can be used as a sputtering target.
 本発明は、別の局面に従えば、上記に記載された導電性酸化物を用いて形成された酸化物半導体膜である。 According to another aspect, the present invention is an oxide semiconductor film formed using the conductive oxide described above.
 本発明は、さらに別の局面に従えば、ZnおよびMgからなる群から選ばれる少なくとも1種類の元素をMとするとき、Al23粉末とMO粉末とを含む第1の混合物を調製する工程と、第1の混合物を仮焼することにより結晶質Al2MO4粉末を作製する工程と、結晶質Al2MO4粉末とIn23粉末とを含む第2の混合物を調製する工程と、第2の混合物を成形することにより成形体を得る工程と、成形体を焼結する工程と、を含む導電性酸化物の製造方法である。 According to still another aspect of the present invention, a first mixture containing Al 2 O 3 powder and MO powder is prepared, where M is at least one element selected from the group consisting of Zn and Mg. A step of preparing a crystalline Al 2 MO 4 powder by calcining the first mixture, and a second mixture comprising the crystalline Al 2 MO 4 powder and the In 2 O 3 powder. And a process for obtaining a molded body by molding the second mixture, and a process for sintering the molded body.
 本発明にかかる導電性酸化物の製造方法において、MO粉末をZnO粉末とし、結晶質Al2MO4粉末を結晶質Al2ZnO4粉末とし、結晶質Al2ZnO4粉末を作製する工程における第1の混合物の仮焼温度を800℃以上1200℃未満とし、成形体を焼結する工程における成形体の焼結温度を1280℃以上1500℃未満とすることができる。 In the method for producing a conductive oxide according to the present invention, the MO powder is a ZnO powder, the crystalline Al 2 MO 4 powder is a crystalline Al 2 ZnO 4 powder, and a crystalline Al 2 ZnO 4 powder is produced. The calcining temperature of the mixture 1 may be 800 ° C. or more and less than 1200 ° C., and the sintering temperature of the molded body in the step of sintering the molded body may be 1280 ° C. or more and less than 1500 ° C.
 本発明にかかる導電性酸化物の製造方法において、MO粉末をMgO粉末とし、結晶質Al2MO4粉末を結晶質Al2MgO4粉末とし、結晶質Al2MgO4粉末を作製する工程における第1の混合物の仮焼温度を800℃以上1200℃未満とし、成形体を焼結する工程における成形体の焼結温度を1300℃以上1500℃以下とすることができる。 In the method for producing a conductive oxide according to the present invention, the MO powder is an MgO powder, the crystalline Al 2 MO 4 powder is a crystalline Al 2 MgO 4 powder, and a crystalline Al 2 MgO 4 powder is produced. The calcining temperature of the mixture No. 1 can be 800 ° C. or higher and lower than 1200 ° C., and the sintering temperature of the molded body in the step of sintering the molded body can be 1300 ° C. or higher and 1500 ° C. or lower.
 本発明によれば、安価でかつスパッタリングのターゲットに好適に用いられて高物性の酸化物半導体膜が得られる導電性酸化物およびその製造方法ならびに酸化物半導体膜を提供する。 According to the present invention, there are provided a conductive oxide, a method for producing the same, and an oxide semiconductor film which are inexpensive and can be suitably used as a sputtering target to obtain an oxide semiconductor film having high physical properties.
導電性酸化物の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of an electroconductive oxide.
 [導電性酸化物]
 本発明の一実施形態である導電性酸化物は、Inと、Alと、ZnおよびMgからなる群から選ばれる少なくとも1種類の元素であるMと、Oと、を含み、かつ、結晶質Al2MO4を含む。本実施形態の導電性酸化物は、Inと、Alと、ZnおよびMgからなる群から選ばれる少なくとも1種類の元素であるMと、Oとを含むことから、IGZOに含まれる高価なGaを含んでいないため、IGZOに比べて安価である。また、本実施形態の導電性酸化物は、結晶質Al2MO4を含むことから、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の特性が安定化される。結晶質Al2MO4において、Mに対応するZnとMgとは、いずれも原子価が+2であり、イオン半径が極めて近似しているため、結晶質Al2ZnO4と結晶質Al2MgO4とは、いずれもスピネル型の結晶構造を有している。
[Conductive oxide]
The conductive oxide according to an embodiment of the present invention includes In, Al, M and O that are at least one element selected from the group consisting of Zn and Mg, and is crystalline Al. 2 Including MO 4 Since the conductive oxide of the present embodiment includes In, Al, M, which is at least one element selected from the group consisting of Zn and Mg, and O, expensive Ga contained in IGZO is contained. Since it is not included, it is cheaper than IGZO. In addition, since the conductive oxide of this embodiment includes crystalline Al 2 MO 4 , the characteristics of the oxide semiconductor film obtained by sputtering using the conductive oxide as a target are stabilized. In crystalline Al 2 MO 4 , Zn and Mg corresponding to M both have a valence of +2 and their ionic radii are very close, so crystalline Al 2 ZnO 4 and crystalline Al 2 MgO 4 All have a spinel crystal structure.
 本実施形態の導電性酸化物において、結晶質Al2MO4として結晶質Al2ZnO4を含むことが好ましい。結晶質Al2ZnO4を含むことにより、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の特性を安定化させて、そのエッチング速度を高くすることができる。このため、結晶質Al2ZnO4を含む導電性酸化物は、スパッタリング法により酸化物半導体膜を形成するためのターゲットとして好適に用いられる。 In the conductive oxide of this embodiment, it is preferable that crystalline Al 2 ZnO 4 is included as crystalline Al 2 MO 4 . By including crystalline Al 2 ZnO 4 , the characteristics of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be stabilized and the etching rate can be increased. Therefore, a conductive oxide containing crystalline Al 2 ZnO 4 is preferably used as a target for forming an oxide semiconductor film by a sputtering method.
 ここで、結晶質Al2ZnO4を含む導電性酸化物の断面積(導電性酸化物のいずれか1つの面で切断したときの断面の面積をいう、以下同じ。)に占める結晶質Al2ZnO4の割合は、10%以上60%以下が好ましく、14%以上50%以下がより好ましい。導電性酸化物の断面積に占める結晶質Al2ZnO4の割合が10%より低いと、その導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜はその特性が不安定となりエッチング速度が低くなる。導電性酸化物の断面積に占める結晶質Al2ZnO4の割合が60%より高いと、その導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の表面粗さRaが粗くなる。 Here, (meaning the area of the cross section when cut at any one side of the conductive oxide, the same. Or less) the cross-sectional area of the conductive oxide containing crystalline Al 2 ZnO 4 crystalline Al 2 occupying the The ratio of ZnO 4 is preferably 10% or more and 60% or less, and more preferably 14% or more and 50% or less. If the proportion of crystalline Al 2 ZnO 4 in the cross-sectional area of the conductive oxide is lower than 10%, the characteristics of the oxide semiconductor film obtained by sputtering using the conductive oxide as a target become unstable, and the etching rate Becomes lower. When the ratio of crystalline Al 2 ZnO 4 in the cross-sectional area of the conductive oxide is higher than 60%, the surface roughness Ra of the oxide semiconductor film obtained by sputtering using the conductive oxide as a target becomes rough.
 結晶質Al2ZnO4を含む導電性酸化物の断面積に占める結晶質Al2ZnO4の割合は、EDX(エネルギー分散型X線分析)法により求めることができる。より具体的には、導電性酸化物の試料断面に照射された入射電子ビームに起因してその断面から反射された電子(反射電子像)を観察する。そして、コントラストの異なる領域の蛍光X線分析を行なって結晶質Al2ZnO4の領域を特定することによって、断面積に占める結晶質Al2ZnO4の領域の面積の割合を測定することができる。また、表面粗さRaとは、JIS B0601:2001で規定される算術平均粗さRaをいい、AFM(原子間力顕微鏡)などにより測定できる。 The proportion of crystalline Al 2 ZnO 4 occupied in the cross-sectional area of the conductive oxide containing crystalline Al 2 ZnO 4 can be obtained by EDX (Energy Dispersive X-ray spectrometry). More specifically, the electrons (reflected electron image) reflected from the cross section resulting from the incident electron beam irradiated onto the cross section of the conductive oxide sample are observed. Then, by performing fluorescent X-ray analysis of regions having different contrasts and specifying the crystalline Al 2 ZnO 4 region, the ratio of the area of the crystalline Al 2 ZnO 4 region to the cross-sectional area can be measured. . The surface roughness Ra refers to the arithmetic average roughness Ra defined by JIS B0601: 2001, and can be measured by an AFM (atomic force microscope) or the like.
 また、結晶質Al2ZnO4を含む導電性酸化物は、結晶質In2Al2(1-m)Zn1-q7-p(0≦m<1、0≦q<1、0≦p≦3m+q)および結晶質In23からなる群から選ばれる少なくとも1種類の結晶質をさらに含むことが好ましい。結晶質In2Al2(1-m)Zn1-q7-pを含むことにより、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の表面粗さRaを細かくすることができる。結晶質In23を含むことにより、導電性酸化物の熱伝導率が上昇するため、導電性酸化物をターゲットとして直流スパッタリングを実施した際に放電が安定する。また、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の電界効果移動度を高めることができる。 The conductive oxide containing crystalline Al 2 ZnO 4 is crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p (0 ≦ m <1, 0 ≦ q <1, 0 ≦ It is preferable to further include at least one crystalline material selected from the group consisting of p ≦ 3m + q) and crystalline In 2 O 3 . By including crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p , the surface roughness Ra of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be reduced. it can. By including crystalline In 2 O 3 , the thermal conductivity of the conductive oxide is increased, so that the discharge is stabilized when direct current sputtering is performed using the conductive oxide as a target. In addition, the field-effect mobility of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be increased.
 結晶質Al2ZnO4を含む導電性酸化物において、結晶質Al2ZnO4、結晶質In2Al2(1-m)Zn1-q7-pおよび結晶質In23の存在は、ICP(誘導結合プラズマ)発光分析により求められる化学組成と、X線回折により同定される結晶相とにより、確認される。たとえば、結晶質In2Al2(1-m)Zn1-q7-pの存在は、結晶質In2Al2(1-m)Zn1-q7-pのX線回折ピークが、結晶質In2Al2Zn17のX線回折ピークに比べて高角側にシフトすることにより、確認される。なお、結晶質Al2ZnO4はスピネル型の結晶構造を有し、結晶質In2Al2(1-m)Zn1-q7-pは六方晶系の結晶構造を有し、結晶質In23は立方晶系の結晶構造を有している。 In conductive oxide containing a crystalline Al 2 ZnO 4, crystalline Al 2 ZnO 4, the presence of crystalline In 2 Al 2 (1-m ) Zn 1-q O 7-p and crystalline In 2 O 3 is , Confirmed by the chemical composition determined by ICP (inductively coupled plasma) emission analysis and the crystal phase identified by X-ray diffraction. For example, the presence of crystalline In 2 Al 2 (1-m ) Zn 1-q O 7-p is, X-rays diffraction peaks of crystalline In 2 Al 2 (1-m ) Zn 1-q O 7-p is This is confirmed by shifting to a higher angle side than the X-ray diffraction peak of crystalline In 2 Al 2 Zn 1 O 7 . Note that crystalline Al 2 ZnO 4 has a spinel crystal structure, crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p has a hexagonal crystal structure, In 2 O 3 has a cubic crystal structure.
 また、本実施形態の導電性酸化物において、結晶質Al2MO4として結晶質Al2MgO4を含むことが好ましい。結晶質Al2MgO4を含むことにより、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の特性を安定化させて、酸化物半導体膜の電界効果移動度を高めることができる。このため、結晶質Al2MgO4を含む導電性酸化物は、スパッタリング法により酸化物半導体膜を形成するためのターゲットとして好適に用いられる。 In the conductive oxide of this embodiment, it is preferable that crystalline Al 2 MgO 4 is included as crystalline Al 2 MO 4 . By including crystalline Al 2 MgO 4 , the characteristics of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be stabilized, and the field-effect mobility of the oxide semiconductor film can be increased. Therefore, a conductive oxide containing crystalline Al 2 MgO 4 is preferably used as a target for forming an oxide semiconductor film by a sputtering method.
 ここで、結晶質Al2MgO4を含む導電性酸化物の断面積に占める結晶質Al2MgO4の割合は、2%以上60%以下が好ましく、5%以上20%以下がより好ましい。このような面積割合で結晶質MgAl24を含む導電性酸化物をスパッタリングのターゲットとして用いることにより、電界効果移動度が高い酸化物半導体膜を作製することができる。また、結晶質Al2MgO4を含む導電性酸化物がさらに結晶質In23を含む場合、導電性酸化物の断面積に占める結晶質In23の割合は、40%以上98%以下が好ましく、40%以上60%以下がより好ましい。このような面積割合で結晶質In23を含む導電性酸化物をスパッタリングのターゲットとして用いて、酸化物半導体膜を作製することにより、電界効果移動度が高い酸化物半導体膜を作製することができる。 Here, a crystalline ratio of Al 2 MgO 4 occupied in the cross-sectional area of the conductive oxide containing crystalline Al 2 MgO 4 is preferably 2% to 60%, more preferably at most 20% more than 5%. By using a conductive oxide containing crystalline MgAl 2 O 4 at such an area ratio as a sputtering target, an oxide semiconductor film with high field-effect mobility can be manufactured. Further, when a conductive oxide containing crystalline Al 2 MgO 4 further comprising a crystalline In 2 O 3, the proportion of crystalline In 2 O 3 occupying the sectional area of the conductive oxide, 40% 98% The following is preferable, and 40% or more and 60% or less are more preferable. Using the conductive oxide containing crystalline In 2 O 3 at such an area ratio as a sputtering target, an oxide semiconductor film with high field-effect mobility is manufactured by forming an oxide semiconductor film Can do.
 ここで、導電性酸化物の断面積に占める結晶質Al2MgO4および結晶質In23の割合は、以下のようにして算出する。まず、X線回析により結晶質Al2MgO4および結晶質In23のピークを確認する。次に、導電性酸化物を任意の面で切断する。該導電性酸化物の切断面に対し、分析型走査電子顕微鏡を用いて入射電子ビームを照射してその断面から反射された電子(反射電子像)を観察する。かかる反射電子像において、コントラストの異なる領域に対し、蛍光X線分析を行なうことにより、AlとMgとが主に観測される領域を結晶質Al2MgO4として特定し、Inのピークのみが観察される領域を結晶質In23として特定する。このようにして断面に占める結晶質MgAl24および結晶質In23の面積の割合を算出する。 Here, the ratios of crystalline Al 2 MgO 4 and crystalline In 2 O 3 in the cross-sectional area of the conductive oxide are calculated as follows. First, the peaks of crystalline Al 2 MgO 4 and crystalline In 2 O 3 are confirmed by X-ray diffraction. Next, the conductive oxide is cut at an arbitrary surface. The cut surface of the conductive oxide is irradiated with an incident electron beam using an analytical scanning electron microscope to observe electrons reflected from the cross section (reflected electron image). In such a backscattered electron image, by performing fluorescent X-ray analysis on regions with different contrasts, the region where Al and Mg are mainly observed is identified as crystalline Al 2 MgO 4 , and only the In peak is observed. The region to be formed is identified as crystalline In 2 O 3 . In this way, the ratio of the area of crystalline MgAl 2 O 4 and crystalline In 2 O 3 occupying the cross section is calculated.
 また、結晶質Al2MgO4を含む導電性酸化物は、結晶質In2Al2(1-n)Mg1-t7-s(0≦n<1、0≦t<1、0≦s≦3n+t)および結晶質In23からなる群から選ばれる少なくとも1種類の結晶質をさらに含むことが好ましい。 The conductive oxide containing crystalline Al 2 MgO 4 is crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s (0 ≦ n <1, 0 ≦ t <1, 0 ≦ s ≦ 3n + t) and at least one crystalline material selected from the group consisting of crystalline In 2 O 3 is preferable.
 結晶質In2Al2(1-n)Mg1-t7-sを含むことにより、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の電界効果移動度を高めることができる。このような結晶質In2Al2(1-n)Mg1-t7-sは、結晶質In2Al2MgO7および結晶質Al2MgO4の結晶粉末を所定の条件で混合して改質され、結晶質In2Al2MgO7中のAlおよびMgが欠損することにより形成される。このようにAlおよびMgが欠損すると(すなわちnおよびtがいずれもn>0、t>0になると)、この欠損の化学量論比に対応し、酸素の原子比が「7」よりも小さい値をとる(すなわちs>0となる)こともある。このような結晶質In2Al2(1-n)Mg1-t7-sを含む導電性酸化物をスパッタリングのターゲットとして用いて酸化物半導体膜を作製することにより、高い電界効果移動度の酸化物半導体膜を作製することができる。 By including crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s , the field-effect mobility of an oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be increased. . Such crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s is prepared by mixing crystalline powders of crystalline In 2 Al 2 MgO 7 and crystalline Al 2 MgO 4 under predetermined conditions. It is formed by modification and deficiency of Al and Mg in crystalline In 2 Al 2 MgO 7 . When Al and Mg are deficient in this way (that is, when n and t are both n> 0 and t> 0), the oxygen stoichiometric ratio is smaller than “7” corresponding to the stoichiometric ratio of this deficiency. It may take a value (ie, s> 0). By producing an oxide semiconductor film using such a conductive oxide containing crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s as a sputtering target, high field-effect mobility can be obtained. This oxide semiconductor film can be manufactured.
 上記の結晶質In2Al2(1-n)Mg1-t7-sにおけるnおよびtの値を直接的に算出することは困難であるが、結晶質In2Al2(1-n)Mg1-t7-sの存在の有無を確認することはできる。結晶質In2Al2(1-n)Mg1-t7-sの存在の有無は、導電性酸化物の組成をICP発光分析によって求めるとともに、X線回析によって結晶相を同定することによって行なう。たとえば、ICP発光分析によって導電性酸化物中のIn:Al:Mgの原子濃度比率が2:2:1であることが特定されるにもかかわらず、X線回析によって導電性酸化物中にIn2Al2MgO7の存在が確認された場合、導電性酸化物中には、結晶質Al2MgO4とともに、結晶質In2Al2(1-n)Mg1-t7-s(0<n<1、0<t<1、0≦s≦3n+t)が存在していると判断する。また、結晶質のIn23、In2Al2MgO7、およびAl2MgO4の存在がX線回析によって確認された場合も、ICP発光分析による組成と、分析型電子顕微鏡によって求められたIn23、In2Al2MgO7、Al2MgO4の面積割合から考えられた組成とを対比し、AlMgの不足が生じている場合、In2Al2(1-n)Mg1-t7-sが存在しているものと考える。 Although it is difficult to directly calculate the values of n and t in the crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s , the crystalline In 2 Al 2 (1-n ) The presence or absence of Mg 1-t O 7-s can be confirmed. The presence or absence of crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s is determined by determining the composition of the conductive oxide by ICP emission analysis and identifying the crystalline phase by X-ray diffraction. To do. For example, in spite of the fact that ICP emission analysis specifies that the atomic concentration ratio of In: Al: Mg in the conductive oxide is 2: 2: 1, When the presence of In 2 Al 2 MgO 7 is confirmed, in the conductive oxide, crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s (as well as crystalline Al 2 MgO 4 ( 0 <n <1, 0 <t <1, 0 ≦ s ≦ 3n + t). In addition, when the presence of crystalline In 2 O 3 , In 2 Al 2 MgO 7 , and Al 2 MgO 4 is confirmed by X-ray diffraction, the composition by ICP emission analysis and the analytical electron microscope are also used. In contrast to the composition considered from the area ratio of In 2 O 3 , In 2 Al 2 MgO 7 , and Al 2 MgO 4 , In 2 Al 2 (1-n) Mg 1 -t O 7-s is considered to exist.
 結晶質In23を含むことにより、導電性酸化物の熱伝導率が上昇するため、導電性酸化物をターゲットとして直流スパッタリングを実施した際に放電が安定する。また、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜の電界効果移動度を高めることができる。 By including crystalline In 2 O 3 , the thermal conductivity of the conductive oxide is increased, so that the discharge is stabilized when direct current sputtering is performed using the conductive oxide as a target. In addition, the field-effect mobility of the oxide semiconductor film obtained by sputtering using a conductive oxide as a target can be increased.
 結晶質Al2MgO4を含む導電性酸化物において、結晶質Al2MgO4、結晶質In2Al2(1-n)Mg1-t7-sおよび結晶質In23の存在は、ICP発光分析により求められる化学組成と、X線回折により同定される結晶相とにより、確認される。たとえば、結晶質In2Al2(1-n)Mg1-t7-sの存在は、結晶質In2Al2(1-n)Mg1-t7-sのX線回折ピークが、結晶質In2Al2Mg17のX線回折ピークに比べて高角側にシフトすることにより、確認される。なお、結晶質Al2MgO4はスピネル型の結晶構造を有し、結晶質In2Al2(1-n)Mg1-t7-sは六方晶系の結晶構造を有し、結晶質In23は立方晶系の結晶構造を有している。 In conductive oxide containing a crystalline Al 2 MgO 4, crystalline Al 2 MgO 4, the presence of crystalline In 2 Al 2 (1-n ) Mg 1-t O 7-s and crystalline In 2 O 3 is , Confirmed by the chemical composition determined by ICP emission analysis and the crystal phase identified by X-ray diffraction. For example, the presence of crystalline In 2 Al 2 (1-n ) Mg 1-t O 7-s is, X-rays diffraction peaks of crystalline In 2 Al 2 (1-n ) Mg 1-t O 7-s is This is confirmed by shifting to a higher angle side than the X-ray diffraction peak of crystalline In 2 Al 2 Mg 1 O 7 . Note that crystalline Al 2 MgO 4 has a spinel crystal structure, crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s has a hexagonal crystal structure, In 2 O 3 has a cubic crystal structure.
 本実施形態の導電性酸化物は、In、Al、およびMの合計の原子比率を100原子%とすると、10~50原子%のInと、10~50原子%のAlと、15~40原子%のMと、を含むことが好ましい。このような原子比率の導電性酸化物は、安価でかつスパッタリングのターゲットに好適に用いられて高物性(たとえば、エッチング速度が大きい、電界効果移動度が高いなど)の酸化物半導体膜が得られる。 In the conductive oxide of this embodiment, when the total atomic ratio of In, Al, and M is 100 atomic%, 10 to 50 atomic% In, 10 to 50 atomic% Al, and 15 to 40 atoms % M is preferable. A conductive oxide having such an atomic ratio is inexpensive and can be suitably used as a sputtering target to obtain an oxide semiconductor film having high physical properties (for example, high etching rate, high field effect mobility, etc.). .
 本実施形態の導電性酸化物は、N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn、およびBiからなる群から選ばれる少なくとも1種類の添加元素をさらに含むことが好ましく、これらの添加元素を0.1×1022atm/cc以上5.0×1022atm/cc以下含むことがより好ましい。すなわち、本実施形態の導電性酸化物に含まれる添加元素の全体の濃度は、0.1×1022atm/cc以上5.0×1022atm/cc以下であることが好ましい。ここで、導電性酸化物に含まれる添加元素および原子濃度は、SIMS(二次イオン質量分析)によって測定することができる。 The conductive oxide of this embodiment is at least one additive element selected from the group consisting of N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi. Further, it is preferable that these additional elements are contained in an amount of 0.1 × 10 22 atm / cc to 5.0 × 10 22 atm / cc. That is, the total concentration of the additive elements contained in the conductive oxide of this embodiment is preferably 0.1 × 10 22 atm / cc or more and 5.0 × 10 22 atm / cc or less. Here, the additive element and atomic concentration contained in the conductive oxide can be measured by SIMS (secondary ion mass spectrometry).
 本実施形態の導電性酸化物は、スパッタリング法のターゲットに好適に用いられる。ここで、「スパッタリング法のターゲット」とは、スパッタリング法で成膜するための材料をプレート状に加工したものや、該プレート状の材料をバッキングプレート(ターゲット材を貼り付けるための裏板)に貼り付けたものなどの総称であり、バッキングプレートは、無酸素銅、鋼、ステンレス鋼、アルミニウム、アルミニウム合金、モリブデン、チタンなどの素材を用いて作製することができる。上述のターゲットの形状は、特に限定されるものではなく、丸型であってもよいし、角型であっても差し支えない。また、ターゲットの大きさは、径が1cmの円板状(平板丸型)であってもよいし、大型LCD(液晶表示装置)用のスパッタリングターゲットのように径が2mを超える角型(平板矩形)であってもよい。 The conductive oxide of this embodiment is suitably used for a sputtering target. Here, the “target for sputtering method” means a material obtained by forming a film by sputtering method into a plate shape, or the plate-like material on a backing plate (back plate for attaching a target material). The backing plate is a generic term for affixed materials and the like, and the backing plate can be manufactured using materials such as oxygen-free copper, steel, stainless steel, aluminum, aluminum alloy, molybdenum, and titanium. The shape of the target described above is not particularly limited, and may be a round shape or a square shape. The target may have a disk shape (flat plate shape) with a diameter of 1 cm, or a square shape (flat plate with a diameter exceeding 2 m, such as a sputtering target for a large LCD (liquid crystal display device). (Rectangular).
 [酸化物半導体膜]
 本発明の別の実施形態である酸化物半導体膜は、上記の実施形態の導電性酸化物を用いて形成されたものであり、好ましくは上記の実施形態の導電性酸化物をターゲットに用いてスパッタリング法により形成されたものである。本実施形態の酸化物半導体膜は、上記の実施形態の導電性酸化物を用いて形成されているため、その特性が安定化させてそのエッチング速度を高くなり、および/または、その電界効果移動度が高くなる。なお、スパッタリング法とは、スパッタリング装置内にターゲットと基板とを対向して配置して、ターゲットに電圧を印加してターゲット表面に希ガスイオンをスパッタリングし、ターゲットの構成原子を飛び出させ、このターゲットの構成原子を基板上に堆積されることにより、酸化物半導体膜を形成する方法をいう。
[Oxide semiconductor film]
An oxide semiconductor film according to another embodiment of the present invention is formed using the conductive oxide of the above embodiment, and preferably using the conductive oxide of the above embodiment as a target. It is formed by a sputtering method. Since the oxide semiconductor film of this embodiment is formed using the conductive oxide of the above embodiment, the characteristics are stabilized, the etching rate is increased, and / or the field effect transfer is performed. The degree becomes higher. In the sputtering method, a target and a substrate are placed facing each other in a sputtering apparatus, a voltage is applied to the target to sputter rare gas ions on the surface of the target, and target atoms are ejected. Is formed on the substrate to form an oxide semiconductor film.
 [導電性酸化物の製造方法]
 図1を参照して、本発明のさらに別の実施形態である導電性酸化物の製造方法は、ZnおよびMgからなる群から選ばれる少なくとも1種類の元素をMとするとき、Al23粉末とMO粉末とを含む第1の混合物を調製する工程(S10)と、第1の混合物を仮焼することにより結晶質Al2MO4粉末を作製する工程(S20)と、結晶質Al2MO4粉末とIn23粉末とを含む第2の混合物を調製する工程(S30)と、第2の混合物を成形することにより成形体を得る工程(S40)と、成形体を焼結する工程(S50)と、を含む導電性酸化物の製造方法である。
[Method for producing conductive oxide]
Referring to FIG. 1, the manufacturing method further conductive oxide which is another embodiment of the present invention, when at least one element selected from the group consisting of Zn and Mg and M, Al 2 O 3 A step of preparing a first mixture containing the powder and the MO powder (S10), a step of producing a crystalline Al 2 MO 4 powder by calcining the first mixture (S20), and a crystalline Al 2 A step of preparing a second mixture containing MO 4 powder and In 2 O 3 powder (S30), a step of obtaining a molded body by molding the second mixture (S40), and sintering the molded body A step (S50) of producing a conductive oxide.
 本実施形態の導電性酸化物の製造方法によれば、上記の工程を含むことにより、半導体酸化物を形成するために好適に用いられる安価な導電性酸化物、より詳しくは、スパッタリング法により酸化物半導体膜を形成するためのターゲットに好適に用いられる安価な導電性酸化物を効率よく製造することができる。 According to the method for producing a conductive oxide of the present embodiment, an inexpensive conductive oxide that is preferably used for forming a semiconductor oxide by including the above-described steps, more specifically, oxidized by a sputtering method. An inexpensive conductive oxide that is suitably used as a target for forming a physical semiconductor film can be efficiently produced.
 (第1の混合物の調製工程)
 ZnおよびMgからなる群から選ばれる少なくとも1種類の元素をMとするとき、Al23粉末とMO粉末とを含む第1の混合物を調製する工程(S10)は、原料粉末としてAl23粉末とMO粉末(すなわちZnO粉末および/またはMgO粉末)とを混合することにより行われる。ここで、Al23粉末およびMO粉末の純度は、特に制限はないが、製造する導電性酸化物の品質を高くする観点から、99.9質量%以上が好ましく、99.99質量%以上が好ましい。また、Al23粉末とMO粉末との混合割合は、特に制限はないが、結晶質Al2MO4粉末の収率を高める観点から、モル比率で、Al23:MO=1:0.95~1.05が好ましい。
(Preparation process of the first mixture)
When at least one element selected from the group consisting of Zn and Mg is M, the step (S10) of preparing the first mixture containing the Al 2 O 3 powder and the MO powder includes Al 2 O as a raw material powder. This is performed by mixing 3 powder and MO powder (that is, ZnO powder and / or MgO powder). Here, the purity of the Al 2 O 3 powder and the MO powder is not particularly limited, but is preferably 99.9% by mass or more and 99.99% by mass or more from the viewpoint of improving the quality of the conductive oxide to be produced. Is preferred. The mixing ratio of the Al 2 O 3 powder and the MO powder is not particularly limited, but from the viewpoint of increasing the yield of the crystalline Al 2 MO 4 powder, the molar ratio is Al 2 O 3 : MO = 1: 0.95 to 1.05 is preferable.
 また、Al23粉末とMO粉末との混合方法は、特に制限はなく、乾式の混合方法であっても、湿式の混合方法であってもよい。このような混合方法として、通常のボールミルによる混合、遊星ボールミルによる混合、ビーズミルによる混合、超音波による撹拌混合などの方法が好適に用いられる。湿式の混合方法を用いた場合の乾燥方法としては、自然乾燥であっても、スプレードライヤなどを用いた強制乾燥であってもよい。 The mixing method of the Al 2 O 3 powder and the MO powder is not particularly limited, and may be a dry mixing method or a wet mixing method. As such a mixing method, a method such as mixing by a normal ball mill, mixing by a planetary ball mill, mixing by a bead mill, stirring mixing by ultrasonic waves, or the like is preferably used. The drying method when the wet mixing method is used may be natural drying or forced drying using a spray dryer or the like.
 (結晶質Al2MO4粉末の作製工程)
 結晶質Al2MO4粉末を作製する工程(S20)は、上記の第1の混合物を仮焼することにより行われる。第1の混合物の仮焼温度は、800℃以上1200℃未満が好ましい。仮焼温度が800℃未満であると、未反応の原料粉末が残存し十分な結晶性を有する結晶質Al2MO4粉末を作製することが困難となる。仮焼温度が1200℃以上であると、仮焼により得られる結晶質Al2MO4粉末の粒径が大きくなりそのままでは後の焼結工程で緻密な焼結体を得ることが困難となり、焼結工程前に結晶質Al2MO4粉末の粉砕に時間を要する。仮焼雰囲気は、特に制限はないが、粉末からの酸素の脱離を抑制し、また簡便である観点から、大気雰囲気が好ましい。
(Production process of crystalline Al 2 MO 4 powder)
The step (S20) of producing the crystalline Al 2 MO 4 powder is performed by calcining the first mixture. The calcining temperature of the first mixture is preferably 800 ° C. or higher and lower than 1200 ° C. When the calcination temperature is less than 800 ° C., unreacted raw material powder remains and it becomes difficult to produce a crystalline Al 2 MO 4 powder having sufficient crystallinity. When the calcining temperature is 1200 ° C. or higher, the grain size of the crystalline Al 2 MO 4 powder obtained by calcining becomes large, and it becomes difficult to obtain a dense sintered body in the subsequent sintering step. It takes time to pulverize the crystalline Al 2 MO 4 powder before the sintering step. The calcining atmosphere is not particularly limited, but is preferably an air atmosphere from the viewpoint of suppressing desorption of oxygen from the powder and being simple.
 仮焼による結晶質Al2MO4粉末の形成は、ICP発光分析により求められる化学組成と、X線回折により同定される結晶相とにより、確認される。 Formation of crystalline Al 2 MO 4 powder by calcination is confirmed by the chemical composition determined by ICP emission analysis and the crystal phase identified by X-ray diffraction.
 このようにして得られる結晶質Al2MO4粉末は、平均粒径が0.1μm以上1.5μm以下であることが好ましい。ここで、粉末の平均粒径は、光散乱法により算出した値を採用するものとする。 The crystalline Al 2 MO 4 powder thus obtained preferably has an average particle size of 0.1 μm to 1.5 μm. Here, the value calculated by the light scattering method shall be employ | adopted for the average particle diameter of powder.
 (第2の混合物の調製工程)
 結晶質Al2MO4粉末とIn23粉末とを含む第2の混合物を調製する工程(S30)は、結晶質Al2MO4粉末とIn23粉末とを混合することにより行われる。ここで、In23粉末の純度は、特に制限はないが、製造する導電性酸化物の品質を高くする観点から、99.9質量%以上が好ましく、99.99質量%以上が好ましい。また、結晶質Al2MO4粉末とI23粉末との混合割合は、特に制限はないが、導電性酸化物の導電性を高める観点から、モル比率で、結晶質Al2MO4:I23=1:0.95~1が好ましい。
(Preparation process of the second mixture)
Crystalline Al 2 MO 4 powder and In 2 O 3 preparing a second mixture comprising a powder (S30) is carried out by mixing the crystalline Al 2 MO 4 powder and In 2 O 3 powder . Here, the purity of the In 2 O 3 powder is not particularly limited, but is preferably 99.9% by mass or more and more preferably 99.99% by mass or more from the viewpoint of increasing the quality of the conductive oxide to be produced. Further, the mixing ratio of the crystalline Al 2 MO 4 powder and the I 2 O 3 powder is not particularly limited, but from the viewpoint of enhancing the conductivity of the conductive oxide, the crystalline Al 2 MO 4 : I 2 O 3 = 1: 0.95 to 1 is preferable.
 また、結晶質Al2MO4粉末とI23粉末との混合方法は、特に制限はなく、乾式の混合方法であっても、湿式の混合方法であってもよい。このような混合方法として、通常のボールミルによる混合、遊星ボールミルによる混合、ビーズミルによる混合、超音波による撹拌混合などの方法が好適に用いられる。湿式の混合方法を用いた場合の乾燥方法としては、自然乾燥であっても、スプレードライヤなどを用いた強制乾燥であってもよい。 The mixing method of the crystalline Al 2 MO 4 powder and the I 2 O 3 powder is not particularly limited, and may be a dry mixing method or a wet mixing method. As such a mixing method, a method such as mixing by a normal ball mill, mixing by a planetary ball mill, mixing by a bead mill, stirring mixing by ultrasonic waves, or the like is preferably used. The drying method when the wet mixing method is used may be natural drying or forced drying using a spray dryer or the like.
 また、添加元素を含む導電性酸化物を製造する場合は、結晶質Al2MO4粉末およびIn23粉末とともに、N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn、およびBiからなる群より選択された少なくとも1種類の添加元素を含む原料粉末を混合する。かかる添加元素原料粉末は、特に制限はないが、構成元素および添加元素以外の不純物元素混入と酸素脱離とを抑制する観点から、AlN粉末、Al23粉末、SiO2粉末、TiO2粉末、V25粉末、Cr23粉末、ZrO2粉末、Nb23粉末、MoO2粉末、HfO2粉末、Ta23粉末、WO3粉末、SnO2粉末、およびBi23粉末が好適に用いられる。このような添加元素原料粉末を添加することにより、導電性酸化物がN、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn、およびBiから選ばれた少なくとも1種類の添加元素を含むものとなり、電界効果移動度の高い酸化物半導体膜を作製することができる導電性酸化物を作製することができる。
 (成形工程)
 第2の混合物を成形することにより成形体を得る工程(S40)において、第2の混合物を成形する方法は、特に制限はないが、生産性が高い観点から、プレス成形、CIP(冷間等方圧プレス)成形、鋳込み成形などの方法が好適に用いられる。また、段階的に効率的に成形する観点から、プレス成形した後、さらにCIP成形することが好ましい。
In the case of producing a conductive oxide containing an additive element, N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, together with crystalline Al 2 MO 4 powder and In 2 O 3 powder. , Ta, W, Sn, and Bi. The raw material powder containing at least one additive element selected from the group consisting of Bi is mixed. Such additive element raw material powder is not particularly limited, but from the viewpoint of suppressing mixing of impurity elements other than constituent elements and additive elements and oxygen desorption, AlN powder, Al 2 O 3 powder, SiO 2 powder, TiO 2 powder V 2 O 5 powder, Cr 2 O 3 powder, ZrO 2 powder, Nb 2 O 3 powder, MoO 2 powder, HfO 2 powder, Ta 2 O 3 powder, WO 3 powder, SnO 2 powder, and Bi 2 O 3 Powder is preferably used. By adding such additive element raw material powder, the conductive oxide was selected from N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi. A conductive oxide that includes at least one kind of additive element and can manufacture an oxide semiconductor film with high field-effect mobility can be manufactured.
(Molding process)
In the step of obtaining a molded body by molding the second mixture (S40), the method of molding the second mixture is not particularly limited, but from the viewpoint of high productivity, press molding, CIP (cold etc.) A method such as (pressure-pressing) molding or cast molding is preferably used. Further, from the viewpoint of efficiently forming in stages, it is preferable to perform CIP molding after press molding.
 (焼結工程)
 成形体を焼結する工程(S50)により、導電性酸化物が得られる。成形体の焼結温度は、成形体が含んでいる結晶質Al2MO4粉末(ここで、MはZnおよびMgからなる群から選ばれる少なくとも1種類の元素である)の種類によって異なる。
(Sintering process)
An electroconductive oxide is obtained by the process (S50) of sintering a molded object. The sintering temperature of the molded body depends on the type of crystalline Al 2 MO 4 powder containing the molded body (here, M is at least one element selected from the group consisting of Zn and Mg).
 成形体が結晶質Al2MO4粉末として結晶質Al2ZnO4粉末を含む場合は、その成形体の焼結温度は、1280℃以上1500℃未満が好ましい。焼結温度が1280℃未満であると、結晶質Al2ZnO4粉末とIn23粉末との焼結が十分でなく、スパッタリングのターゲットとして必要な緻密な焼結体を作製するのが困難である。焼結温度が1500℃以上であると、結晶質Al2ZnO4が形成されず結晶質In2Al2(1-m)Zn1-q7-pのみが形成されるため、導電性酸化物をターゲットとするスパッタリングにより得られる酸化物半導体膜は、その特性が不安定になり、その表面粗さRaが大きくなるとともにそのエッチング速度が低くなる。ここで、成形体の焼結温度が1280℃以上1300℃未満の場合は、結晶相には結晶質Al2ZnO4および結晶質In23が形成される。形成体の焼結温度が1300℃以上1500℃未満の場合は、結晶相には結晶質Al2ZnO4および結晶質In2Al2(1-m)Zn1-q7-pが形成される。 If the shaped body contains a crystalline Al 2 ZnO 4 powder as crystalline Al 2 MO 4 powder, the sintering temperature of the molded body, preferably less than 1280 ° C. or higher 1500 ° C.. When the sintering temperature is less than 1280 ° C., the crystalline Al 2 ZnO 4 powder and In 2 O 3 powder are not sufficiently sintered, and it is difficult to produce a dense sintered body necessary as a sputtering target. It is. When the sintering temperature is 1500 ° C. or higher, crystalline Al 2 ZnO 4 is not formed but only crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p is formed. An oxide semiconductor film obtained by sputtering using a target becomes unstable in characteristics, and its surface roughness Ra increases and its etching rate decreases. Here, when the sintering temperature of the compact is 1280 ° C. or higher and lower than 1300 ° C., crystalline Al 2 ZnO 4 and crystalline In 2 O 3 are formed in the crystalline phase. When the sintering temperature of the formed body is 1300 ° C. or higher and lower than 1500 ° C., crystalline Al 2 ZnO 4 and crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p are formed in the crystalline phase. The
 成形体が結晶質Al2MO4粉末として結晶質Al2MgO4粉末を含む場合は、その成形体の焼結温度は、1300℃以上1500℃以下が好ましい。焼結温度が1300℃未満であると、結晶質Al2MgO4粉末とIn23粉末との焼結が十分でなく、スパッタリングのターゲットとして必要な緻密な焼結体を作製するのが困難である。焼結温度が1500℃より高いと、Mgが脱離してしまい、焼結体の組成ばらつきが発生し不均質となる。ここで、成形体の焼結温度が1300℃以上1390℃未満であると結晶相には結晶質Al2MgO4および結晶質In23が形成される。形成体の焼結温度が1390℃以上1500℃未満の場合は、結晶相には結晶質Al2ZnO4および結晶質In2Al2(1-n)Zn1-t7-sが形成される。 If the shaped body contains a crystalline Al 2 MgO 4 powder as crystalline Al 2 MO 4 powder, the sintering temperature of the molded body is preferably 1300 ° C. or higher 1500 ° C. or less. When the sintering temperature is less than 1300 ° C., the crystalline Al 2 MgO 4 powder and In 2 O 3 powder are not sufficiently sintered, and it is difficult to produce a dense sintered body necessary as a sputtering target. It is. When the sintering temperature is higher than 1500 ° C., Mg is desorbed, resulting in a variation in the composition of the sintered body and inhomogeneity. Here, when the sintering temperature of the compact is 1300 ° C. or higher and lower than 1390 ° C., crystalline Al 2 MgO 4 and crystalline In 2 O 3 are formed in the crystalline phase. When the sintering temperature of the formed body is 1390 ° C. or higher and lower than 1500 ° C., crystalline Al 2 ZnO 4 and crystalline In 2 Al 2 (1-n) Zn 1-t O 7-s are formed in the crystalline phase. The
 [実施例A]
 1.第1の混合物の調製
 Al23粉末(純度:99.99質量%、BET(Brunauer,Emmett,Teller)比表面積:10m2/g)と、ZnO粉末(純度:99.99質量%、BET比表面積:4m2/g)とを、Al23:ZnO=1:1のモル混合比率で、ボールミル装置を用いて3時間粉砕混合することにより、第1の混合物としてAl23-ZnO混合物を作製した。粉砕混合の際の分散媒としては、水を用いた。この混合物を、スプレードライヤで乾燥させることにより、第1の混合物を得た。
[Example A]
1. Preparation of first mixture Al 2 O 3 powder (purity: 99.99% by mass, BET (Brunauer, Emmett, Teller) specific surface area: 10 m 2 / g) and ZnO powder (purity: 99.99% by mass, BET Specific surface area: 4 m 2 / g) at a molar mixing ratio of Al 2 O 3 : ZnO = 1: 1 by pulverization and mixing for 3 hours using a ball mill apparatus, to obtain Al 2 O 3 − as the first mixture. A ZnO mixture was prepared. Water was used as a dispersion medium during pulverization and mixing. This mixture was dried with a spray dryer to obtain a first mixture.
 2.結晶質Al2ZnO4粉末の作製
 得られた第1の混合物を、酸化アルミニウム製ルツボに入れて、大気雰囲気中で900℃の温度で5時間仮焼した。こうして、結晶質Al2ZnO4で形成される仮焼粉末である結晶質Al2ZnO4粉末が得られた。結晶質Al2ZnO4の存在は、ICP発光分析により求められる化学組成と、X線回折により同定される結晶相とにより、確認した。
2. A first mixture prepared resulting crystalline Al 2 ZnO 4 powder was placed in an aluminum oxide crucible and calcined for 5 hours at a temperature of 900 ° C. in an air atmosphere. Thus, a crystalline Al 2 ZnO 4 powder that is a calcined powder formed of crystalline Al 2 ZnO 4 was obtained. The presence of crystalline Al 2 ZnO 4 was confirmed by the chemical composition determined by ICP emission analysis and the crystal phase identified by X-ray diffraction.
 3.第2の混合物の調製
 得られた結晶質Al2ZnO4粉末(仮焼粉末)と、In23粉末(純度:99.99質量%、BET比表面積:5m2/g)とを、結晶質Al2ZnO4:In23=1:0.95のモル混合比率で、ボールミル装置を用いて6時間粉砕混合することにより、第2の混合物としてIn23-結晶質Al2ZnO4混合物を調製した。粉砕混合の際の分散媒としては、水を用いた。この混合物を、スプレードライヤで乾燥させることにより、第2の混合物を得た。
3. Preparation of Second Mixture The obtained crystalline Al 2 ZnO 4 powder (calcined powder) and In 2 O 3 powder (purity: 99.99 mass%, BET specific surface area: 5 m 2 / g) were crystallized. The mixture is pulverized and mixed for 6 hours using a ball mill apparatus at a molar mixing ratio of fine Al 2 ZnO 4 : In 2 O 3 = 1: 0.95, whereby In 2 O 3 -crystalline Al 2 ZnO is used as the second mixture. Four mixtures were prepared. Water was used as a dispersion medium during pulverization and mixing. This mixture was dried with a spray dryer to obtain a second mixture.
 4.成形
 得られた第2の混合物を、面圧1.0トンf/cm2の条件でプレス成形し、各面圧2.0トンf/cm2の条件でCIP成形することにより、8個の直径100mmで厚さ約9mmの円板状の成形体を得た。
4). Molding The obtained second mixture was press-molded under the condition of a surface pressure of 1.0 ton f / cm 2 , and CIP-molded under the condition of each surface pressure of 2.0 ton f / cm 2 . A disk-shaped molded body having a diameter of 100 mm and a thickness of about 9 mm was obtained.
 5.焼結
 得られた8個の成形体を、1250℃(例A1)、1280℃(例A2)、1300℃(例A3)、1350℃(例A4)、1375℃(例A5)、1400℃(例A6)、1450℃(例A7)、1500℃(例AR1)の温度でそれぞれ5時間焼結することにより、導電性酸化物として結晶質の組成比率が互いに異なる8個の焼結体(例A1~A7、および例AR1)が得られた。
5. Sintering The eight molded bodies obtained were 1250 ° C (Example A1), 1280 ° C (Example A2), 1300 ° C (Example A3), 1350 ° C (Example A4), 1375 ° C (Example A5), 1400 ° C ( Eight sintered bodies having different crystalline composition ratios as conductive oxides (Example A6), 1450 ° C. (Example A7), and 1500 ° C. (Example AR1), respectively, for 5 hours. A1 to A7 and Example AR1) were obtained.
 得られた焼結体(導電性酸化物)について、それらの相対密度を以下の方法により算出した。まず、得られた焼結体の嵩密度をアルキメデス法により測定した。次いで、その焼結体を粉砕してその粉末をピクノメータ法により真密度を測定した。次いで、嵩密度を真密度で除することによりその焼結体の相対密度を算出した。 The relative density of the obtained sintered body (conductive oxide) was calculated by the following method. First, the bulk density of the obtained sintered body was measured by the Archimedes method. Next, the sintered body was pulverized and the true density of the powder was measured by a pycnometer method. Next, the relative density of the sintered body was calculated by dividing the bulk density by the true density.
 また、それらの導電性酸化物の断面積に占める結晶質Al2ZnO4、結晶質In2Al2(1-m)Zn1-q7-pおよび結晶質In23の割合を、それらの導電性酸化物の主表面を研磨して、研磨後の主表面のEDX(エネルギー分散型X線分析)により、算出した。結果を表1にまとめた。 Further, the proportion of crystalline Al 2 ZnO 4 , crystalline In 2 Al 2 (1-m) Zn 1-q O 7-p and crystalline In 2 O 3 in the cross-sectional area of these conductive oxides, The main surfaces of these conductive oxides were polished and calculated by EDX (energy dispersive X-ray analysis) of the main surface after polishing. The results are summarized in Table 1.
 6.スパッタリングによる酸化物半導体膜の作製および評価
 得られた上記8個の導電性酸化物をターゲットとして、DC(直流)マグネトロンスパッタリングにより、8個の酸化物半導体膜をそれぞれ作製した。具体的には、スパッタリング装置の成膜室内の水冷している基板ホルダ上に、成膜用基板として25mm×25mm×厚さ0.6mmの合成石英ガラス基板を配置した。上記の導電性酸化物を、その主表面が上記の合成石英ガラス基板の主表面に対向するように40mmの距離に配置した。ここで、合成石英ガラス基板は、その主表面の一部領域を金属マスクで被覆した。
6). Production and Evaluation of Oxide Semiconductor Films by Sputtering Eight oxide semiconductor films were produced by DC (direct current) magnetron sputtering using the obtained eight conductive oxides as targets. Specifically, a synthetic quartz glass substrate having a size of 25 mm × 25 mm × thickness 0.6 mm was disposed as a film formation substrate on a water-cooled substrate holder in the film formation chamber of the sputtering apparatus. The conductive oxide was disposed at a distance of 40 mm so that the main surface thereof was opposed to the main surface of the synthetic quartz glass substrate. Here, a part of the main surface of the synthetic quartz glass substrate was covered with a metal mask.
 次に、成膜室内を1×10-4Paまで減圧した。次いで、合成石英ガラス基板と導電性酸化物(ターゲット)との間にシャッターを入れた状態で、成膜室内へArガスを1Paの圧力まで導入し、30Wの直流電力を印加してスパッタリング放電を起こし、これによって導電性酸化物(ターゲット)表面のクリーニング(プレスパッタ)を10分間行なった。次いで、成膜室内へ20Paの圧力までArガスを導入し、50Wの直流電力を印加してスパッタリング放電を起こし、上記シャッターを外して1時間酸化物半導体膜を成膜した。なお、基板ホルダに対しては、特にバイアス電圧は印加されておらず、水冷がされているのみであった。酸化物半導体膜の成膜後に合成石英ガラス基板を成膜室から取り出したところ、合成石英ガラス基板上において金属マスクで覆われていなかった領域のみにIn-Al-Zn系複合酸化物(IAZO)の酸化物半導体膜が形成された。得られた酸化物半導体膜は、その結晶性をX線回折(リガク社製SmartLab)により評価したところ、非晶質(アモルファス)であった。 Next, the pressure inside the film forming chamber was reduced to 1 × 10 −4 Pa. Next, in a state where a shutter is put between the synthetic quartz glass substrate and the conductive oxide (target), Ar gas is introduced into the film forming chamber up to a pressure of 1 Pa, and direct current power of 30 W is applied to cause sputtering discharge. Thus, the surface of the conductive oxide (target) was cleaned (pre-sputtering) for 10 minutes. Next, Ar gas was introduced into the film formation chamber to a pressure of 20 Pa, 50 W direct current power was applied to cause sputtering discharge, and the oxide semiconductor film was formed for 1 hour by removing the shutter. Note that no bias voltage was applied to the substrate holder, and the substrate holder was only water-cooled. When the synthetic quartz glass substrate was taken out of the deposition chamber after the oxide semiconductor film was formed, only the region on the synthetic quartz glass substrate that was not covered with the metal mask was In—Al—Zn-based composite oxide (IAZO). The oxide semiconductor film was formed. The obtained oxide semiconductor film was amorphous when its crystallinity was evaluated by X-ray diffraction (SmartLab manufactured by Rigaku Corporation).
 (1)表面粗さRaの評価
 得られた酸化物半導体膜の表面粗さRaを、AFM(原子間力顕微鏡)により10μm×10μm角の範囲で測定した。結果を表1にまとめた。
(1) Evaluation of surface roughness Ra The surface roughness Ra of the obtained oxide semiconductor film was measured in the range of 10 μm × 10 μm square by AFM (atomic force microscope). The results are summarized in Table 1.
 (2)エッチング速度の評価
 合成石英ガラス基板上において、酸化物半導体膜が形成された領域と金属マスクに覆われて酸化物半導体膜が形成されなかった領域との間の段差を触針式表面粗さ計で測定することによって、成膜された酸化物半導体膜の厚さを求めた。
(2) Evaluation of etching rate On a synthetic quartz glass substrate, a step between a region where an oxide semiconductor film is formed and a region covered with a metal mask and where an oxide semiconductor film is not formed is a stylus type surface. The thickness of the formed oxide semiconductor film was determined by measuring with a roughness meter.
 その後、モル比率でリン酸:酢酸:水=4:1:100のエッチング水溶液を調製し、酸化物半導体膜が形成された合成石英ガラス基板をそのエッチング液内に浸漬させた。このとき、エッチング液は、ホットバス内で50℃に昇温されていた。浸漬時間を2分間に設定し、その間にエッチングされずに残った酸化物半導体膜の厚さを触針式の表面粗さ計にて測定した。エッチング前後における酸化物半導体膜の厚さの差をエッチング時間で割ることによりエッチング速度を算出した。結果を表1にまとめた。 Thereafter, an etching aqueous solution of phosphoric acid: acetic acid: water = 4: 1: 100 was prepared at a molar ratio, and the synthetic quartz glass substrate on which the oxide semiconductor film was formed was immersed in the etching solution. At this time, the etching solution was heated to 50 ° C. in the hot bath. The immersion time was set to 2 minutes, and the thickness of the oxide semiconductor film remaining without being etched during that time was measured with a stylus type surface roughness meter. The etching rate was calculated by dividing the difference in thickness of the oxide semiconductor film before and after etching by the etching time. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、例A1~A7に示すように、Inと、Alと、Znと、Oと、を含み、かつ、結晶質Al2ZnO4を含む導電性酸化物は、それをターゲットとするスパッタリングにより、安定した特性を有しエッチング速度が高い酸化物半導体膜を作製することができた。さらに、例A3~A7に示すように、断面積に占める結晶質Al2ZnO4の割合が10%以上60%以下の導電性酸化物は、それをターゲットとするスパッタリングにより、表面粗さRaが細かい酸化物半導体膜を作製することができた。 As is clear from Table 1, as shown in Examples A1 to A7, the conductive oxide containing In, Al, Zn, and O and containing crystalline Al 2 ZnO 4 is By sputtering as a target, an oxide semiconductor film having stable characteristics and a high etching rate was able to be manufactured. Furthermore, as shown in Examples A3 to A7, a conductive oxide having a ratio of crystalline Al 2 ZnO 4 to a cross-sectional area of 10% or more and 60% or less has a surface roughness Ra by sputtering using the conductive oxide as a target. A fine oxide semiconductor film could be produced.
 [実施例B]
 (例B1~B6)
 実施例Bの例B1~B6においては、結晶質Al2MgO4と結晶質In2Al2(1-n)Mg1-n7-4n(0≦n<1)とを含む導電性酸化物を作製した。
[Example B]
(Examples B1 to B6)
In Examples B1 to B6 of Example B, conductive oxidation comprising crystalline Al 2 MgO 4 and crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n (0 ≦ n <1) A product was made.
 1.第1の混合物を調製
 Al23粉末(純度:99.99質量%、BET比表面積:5m2/g)と、MgO粉末(純度:99.99質量%、BET比表面積:6m2/g)とを、モル混合比率がAl23:MgO=1:1となるようにボールミル装置に入れた。これらの粉末を分散溶媒として水を用いて30分間粉砕混合した。その後、スプレードライヤによって水を揮発させることにより、Al23-MgO混合物からなる第1の混合物を得た。
1. Prepare first mixture Al 2 O 3 powder (purity: 99.99 mass%, BET specific surface area: 5 m 2 / g) and MgO powder (purity: 99.99 mass%, BET specific surface area: 6 m 2 / g) Was placed in a ball mill apparatus so that the molar mixing ratio was Al 2 O 3 : MgO = 1: 1. These powders were pulverized and mixed for 30 minutes using water as a dispersion solvent. Thereafter, water was volatilized by a spray dryer to obtain a first mixture made of an Al 2 O 3 —MgO mixture.
 2.結晶質Al2MgO4粉末の作製
 次に、上記の第1の混合物を酸化アルミニウム製ルツボに入れて、900℃の大気雰囲気中で5時間の仮焼を行なうことにより、結晶質Al2MgO4粉末が得られた。結晶質Al2MgO4の存在は、ICP発光分析により求められる化学組成と、X線回折により同定される結晶相とにより、確認した。
2. Preparation of crystalline Al 2 MgO 4 powder Next, the first mixture of the above placed in an aluminum oxide crucible, by performing calcination for 5 hours in the air atmosphere at 900 ° C., crystalline Al 2 MgO 4 A powder was obtained. The presence of crystalline Al 2 MgO 4 was confirmed by the chemical composition determined by ICP emission analysis and the crystal phase identified by X-ray diffraction.
 3.第2の混合物の調製
 上記の結晶質Al2MgO4粉末とIn23粉末(純度:99.99質量%、BET比表面積:8m2/g)とを、モル混合比率がAl2MgO4:In23=1:1となるようにボールミル装置に入れた。そして、これらの粒子を分散溶媒として水を用いて6時間粉砕混合した。その後、スプレードライヤによって水を揮発させることにより、第2の混合物であるIn23-結晶質Al2MgO4混合物を得た。
3. Preparation of Second Mixture The above crystalline Al 2 MgO 4 powder and In 2 O 3 powder (purity: 99.99 mass%, BET specific surface area: 8 m 2 / g) were mixed at a molar mixing ratio of Al 2 MgO 4. : In 2 O 3 = 1: 1. These particles were pulverized and mixed for 6 hours using water as a dispersion solvent. Thereafter, water was volatilized by a spray dryer to obtain a second mixture of In 2 O 3 -crystalline Al 2 MgO 4 .
 4.成形
 上記で得られた第2の混合物を、面圧1.0トンf/cm2の条件でプレス成形し、各面圧2.0トンf/cm2でCIP成形することにより、直径100mmで厚さ約9mmの円板状の成形体を作製した。
4). Molding The second mixture obtained above is press-molded under the condition of a surface pressure of 1.0 ton f / cm 2 , and CIP-molded at each surface pressure of 2.0 ton f / cm 2. A disk-shaped molded body having a thickness of about 9 mm was produced.
 5.焼結
 このようにして得られた成形体を大気雰囲気中にて、以下の表2の「焼結温度」の欄に示す温度で5時間焼成することにより導電性酸化物を作製した。なお、焼結温度を1390℃以上1500℃以下としたことにより、結晶質Al2MgO4および結晶質In2Al2(1-n)Mg1-n7-4nを含む導電性酸化物が得られた。
5. Sintering The compact thus obtained was fired for 5 hours in the atmosphere at the temperature shown in the column of “Sintering temperature” in Table 2 below to produce a conductive oxide. By setting the sintering temperature to 1390 ° C. or higher and 1500 ° C. or lower , a conductive oxide containing crystalline Al 2 MgO 4 and crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n can be obtained. Obtained.
 (例B7)
 例B1に対し第2の混合物の調製方法ならびに成形体の焼結温度が異なる他は、例B1と同様の製造方法によって、例B7の導電性酸化物を作製した。すなわち、例B7では、第2の混合物を調製する工程において、結晶質Al2MgO4粉末とIn23粉末に加え、AlN粉末(純度:99.99質量%、BET比表面積:5m2/g)を加えたことにより、In23-AlN-結晶質Al2MgO4混合粉体からなる第2の混合物を得た。かかる第2の混合物を用いて、1390℃の焼結温度で、大気圧、窒素雰囲気にて5時間焼結することにより、直径100mmで厚さ約9mmの円板状の成形体を作製した。
(Example B7)
The conductive oxide of Example B7 was produced by the same production method as in Example B1, except that the preparation method of the second mixture and the sintering temperature of the compact were different from Example B1. That is, in Example B7, in the step of preparing the second mixture, in addition to crystalline Al 2 MgO 4 powder and In 2 O 3 powder, AlN powder (purity: 99.99 mass%, BET specific surface area: 5 m 2 / By adding g), a second mixture of In 2 O 3 —AlN—crystalline Al 2 MgO 4 mixed powder was obtained. By using this second mixture, sintering was carried out at a sintering temperature of 1390 ° C. in an atmospheric pressure and nitrogen atmosphere for 5 hours to prepare a disk-shaped molded body having a diameter of 100 mm and a thickness of about 9 mm.
 (例B8~B20)
 例B8~B20では、例B7に対し、第2の混合物の調整方法ならびに成形体の焼結温度および焼結雰囲気が異なる他は、例B7と同様の製造方法によって、例B8~B20の導電性酸化物を作製した。すなわち、例B8~B20では、例B7のAlN粉末を、添加元素を含む酸化物粉末(Al23粉末、SiO2粉末、TiO2粉末、V25粉末、Cr23粉末、ZrO2粉末、Nb23粉末、MoO2粉末、HfO2粉末、Ta23粉末、WO3粉末、SnO2粉末、Bi23粉末)に代え、表2に示す焼結温度で、大気中にて焼結を行ない、例B8~B20の導電性酸化物を作製した。
(Examples B8 to B20)
In Examples B8 to B20, the conductivity of Examples B8 to B20 is the same as that of Example B7 except that the method for preparing the second mixture and the sintering temperature and sintering atmosphere of the molded body are different. An oxide was produced. That is, in Examples B8 to B20, the AlN powder of Example B7 was replaced with an oxide powder containing additive elements (Al 2 O 3 powder, SiO 2 powder, TiO 2 powder, V 2 O 5 powder, Cr 2 O 3 powder, ZrO 2 powder, Nb 2 O 3 powder, MoO 2 powder, HfO 2 powder, Ta 2 O 3 powder, WO 3 powder, SnO 2 powder, Bi 2 O 3 powder) Sintering was performed therein to produce conductive oxides of Examples B8 to B20.
 (例BR1)
 例BR1では、例B1~B20の導電性酸化物の製造方法とは異なる工程により導電性酸化物を作製した。すなわち、例BR1の導電性酸化物の製造方法では、まずAl23粉末(純度:99.99質量%、BET比表面積:11m2/g)と、MgO粉末(純度:99.99質量%、BET比表面積:4m2/g)と、In23粉末(純度:99.99質量%、BET比表面積:5m2/g)とを、モル混合比率がIn23:Al23:MgO=1:1:1となるようにビーズミル装置に投入した。そして、これらの混合粉末を分散溶媒として水を用いて30分間粉砕混合した。その後、スプレードライヤによって水を揮発させることにより、In23-Al23-MgO混合物を得た。
(Example BR1)
In Example BR1, a conductive oxide was produced by a process different from the method for producing the conductive oxide of Examples B1 to B20. That is, in the method for producing the conductive oxide of Example BR1, first, Al 2 O 3 powder (purity: 99.99 mass%, BET specific surface area: 11 m 2 / g) and MgO powder (purity: 99.99 mass%). , BET specific surface area: 4 m 2 / g) and In 2 O 3 powder (purity: 99.99 mass%, BET specific surface area: 5 m 2 / g), the molar mixing ratio is In 2 O 3 : Al 2 O 3 : MgO = 1: 1: 1 was charged into the bead mill apparatus. These mixed powders were pulverized and mixed for 30 minutes using water as a dispersion solvent. Thereafter, water was volatilized by a spray dryer to obtain an In 2 O 3 —Al 2 O 3 —MgO mixture.
 次に、得られた混合物を酸化アルミニウム製ルツボに入れて、1200℃の大気雰囲気中で5時間の仮焼を行なうことにより、結晶質In2Al2MgO7粉末を得た。 Next, the obtained mixture was put in an aluminum oxide crucible and calcined in an air atmosphere at 1200 ° C. for 5 hours to obtain crystalline In 2 Al 2 MgO 7 powder.
 上記で得られた結晶質In2Al2MgO7粉末を一軸加圧成形によって成形することにより、直径100mm、厚さ9mmの円板状の成形体を作製した。この成形体を大気雰囲気中にて1500℃で5時間焼成することにより、例BR1の導電性酸化物を作製した。粉末の混合方法と、焼結温度が1500℃以上であることとにより、結晶質In2Al2MgO7のみが形成され、結晶質MgAl24および結晶質In2Al2(1-n)Mg1-n7-4nは形成されなかった。 The crystalline In 2 Al 2 MgO 7 powder obtained above was molded by uniaxial pressure molding to produce a disk-shaped molded body having a diameter of 100 mm and a thickness of 9 mm. The molded body was fired at 1500 ° C. for 5 hours in an air atmosphere to produce a conductive oxide of Example BR1. Due to the powder mixing method and the sintering temperature of 1500 ° C. or higher, only crystalline In 2 Al 2 MgO 7 is formed, and crystalline MgAl 2 O 4 and crystalline In 2 Al 2 (1-n) mg 1-n O 7-4n was not formed.
 (例BR2)
 例BR2では、例B1~B20の導電性酸化物の製造方法とは異なる工程により導電性酸化物を作製した。すなわち、まずIn23粉末(純度:99.99質量%、BET比表面積:5m2/g)をビーズミル装置に投入した。そして、In23粉末を分散溶媒として水を用いて30分間粉砕混合した。その後、スプレードライによって水を揮発させることにより、In23のみからなる造粒粉を形成した。
(Example BR2)
In Example BR2, a conductive oxide was produced by a process different from the method for producing the conductive oxide of Examples B1 to B20. That is, first, In 2 O 3 powder (purity: 99.99 mass%, BET specific surface area: 5 m 2 / g) was charged into a bead mill apparatus. The In 2 O 3 powder was pulverized and mixed for 30 minutes using water as a dispersion solvent. Thereafter, by evaporating the water by spray drying, to form a granulated powder comprising only an In 2 O 3.
 次に、上記で得られた造粒粉を一軸加圧成形によって成形することにより、直径100mm、厚さ9mmの円板上の成形体を作製した。このようにして作製した成形体を大気雰囲気中にて1500℃で5時間焼結することにより例BR2の導電性酸化物を作製した。 Next, the granulated powder obtained above was molded by uniaxial pressure molding to produce a compact on a disc having a diameter of 100 mm and a thickness of 9 mm. The molded body thus produced was sintered at 1500 ° C. for 5 hours in an air atmosphere to produce a conductive oxide of Example BR2.
 (例B21~B26)
 例B1に対し第1の混合物および第2の混合物中の原料粉末の混合比率が異なると共に焼結温度が1390℃未満である他は、例B1と同様の方法によって、例B21~B26の導電性酸化物を作製した。すなわち、例B21~B26では、表3の「原子濃度比率」の欄に示す原子比率となるように、Al23粉末と、MgO粉末と、In23粒子との混合比率を調整した。なお、焼結温度を1390℃未満としたことにより、導電性酸化物が結晶質In2Al2(1-n)Mg1-n7-4nを含まなかった。
(Example B21 to B26)
The conductivity of Examples B21 to B26 is the same as Example B1 except that the mixing ratio of the raw material powders in the first mixture and the second mixture is different from Example B1 and the sintering temperature is less than 1390 ° C. An oxide was produced. That is, in Examples B21 to B26, the mixing ratio of the Al 2 O 3 powder, the MgO powder, and the In 2 O 3 particles was adjusted so that the atomic ratio shown in the column “Atom concentration ratio” in Table 3 was obtained. . Note that, by setting the sintering temperature to less than 1390 ° C., the conductive oxide did not contain crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n .
 (例B27)
 例B7に対し焼結温度が異なる他は、例B7と同様の方法によって、例B27の導電性酸化物を作製した。なお、焼結温度を1390℃未満としたことにより、導電性酸化物は結晶質In2Al2(1-n)Mg1-n7-4nを含まなかった。
(Example B27)
A conductive oxide of Example B27 was produced in the same manner as in Example B7 except that the sintering temperature was different from that of Example B7. Note that, by setting the sintering temperature to less than 1390 ° C., the conductive oxide did not contain crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n .
 (例B28~B40)
 例B8~B20のそれぞれに対し焼結温度が異なる他は、例B8~B20のそれぞれと同様の方法によって、例B28~B40のそれぞれの導電性酸化物を作製した。なお、焼結温度を1390℃未満としたことにより、導電性酸化物が結晶質In2Al2(1-n)Mg1-n7-4nを含まなかった。
(Example B28-B40)
The conductive oxides of Examples B28 to B40 were prepared in the same manner as in Examples B8 to B20, except that the sintering temperature was different from that of Examples B8 to B20. Note that, by setting the sintering temperature to less than 1390 ° C., the conductive oxide did not contain crystalline In 2 Al 2 (1-n) Mg 1-n O 7-4n .
 例B1~B40および例BR1~BR2の導電性酸化物に対し、ICP発光分析を用いてIn、Al、およびMgの原子比率(単位:原子%)を測定した。その結果を表2および3中の「原子濃度比率」の欄に示す。また、例B1~B40および例BR1~BR2で作製した導電性酸化物を任意の一面で切断し、該切断面を分析型走査電子顕微鏡を用いて蛍光X線分析することにより、導電性酸化物の断面積を占める結晶質Al2MgO4の割合および結晶質In23の割合を算出した。その結果を表2および3中の「断面積中のAl2MgO4割合」、「断面積中のIn23割合」の欄に示す。なお、例B1~B20の導電性酸化物の断面およびX線回析による評価では結晶質In23の領域を確認できなかった。 For the conductive oxides of Examples B1 to B40 and Examples BR1 to BR2, the atomic ratio (unit: atomic%) of In, Al, and Mg was measured using ICP emission analysis. The results are shown in the column “Atom concentration ratio” in Tables 2 and 3. In addition, the conductive oxides produced in Examples B1 to B40 and Examples BR1 to BR2 were cut on an arbitrary surface, and the cut surfaces were subjected to fluorescent X-ray analysis using an analytical scanning electron microscope, whereby conductive oxides were obtained. The ratio of crystalline Al 2 MgO 4 and the ratio of crystalline In 2 O 3 occupying the cross-sectional area was calculated. The results are shown in the columns of “Al 2 MgO 4 ratio in cross-sectional area” and “In 2 O 3 ratio in cross-sectional area” in Tables 2 and 3. In addition, the crystalline In 2 O 3 region could not be confirmed by the cross sections of the conductive oxides of Examples B1 to B20 and evaluation by X-ray diffraction.
 例B1~B40で作製した導電性酸化物に対し、粉末X線回折法によって結晶解析を行なった。具体的には、X線としてCuのKα線を照射して回折角2θを測定し、この回折ピークによってIn23およびAl2MgO4がいずれも結晶質であることを確認した。一方、例BR1で作製した導電性酸化物は、Al2MgO4の存在が分析型走査電子顕微鏡およびX線回析による評価を用いても確認されず、X線回析でIn2Al2MgO7の回析ピークが確認された。 The conductive oxides prepared in Examples B1 to B40 were subjected to crystal analysis by powder X-ray diffraction. Specifically, the diffraction angle 2θ was measured by irradiating Cu Kα rays as X-rays, and it was confirmed by the diffraction peaks that both In 2 O 3 and Al 2 MgO 4 were crystalline. On the other hand, in the conductive oxide produced in Example BR1, the presence of Al 2 MgO 4 was not confirmed even by evaluation using an analytical scanning electron microscope and X-ray diffraction, and In 2 Al 2 MgO was detected by X-ray diffraction. A diffraction peak of 7 was confirmed.
 また、例B1~B40および例BR1~BR2で作製した導電性酸化物をSIMSにより、添加元素の組成および該添加元素の1cm3当りの原子数(atom/cm3)を算出した。その結果を表2および3の「添加元素」および「濃度」の欄に示す。 Further, the composition of the additive element and the number of atoms per 1 cm 3 (atom / cm 3 ) of the conductive oxides prepared in Examples B1 to B40 and Examples BR1 to BR2 were calculated by SIMS. The results are shown in the “added elements” and “concentration” columns of Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (評価:電界効果移動度)
 例B1~B40および例BR1~BR2で得られた導電性酸化物をターゲットとして用いて、DC(直流)マグネトロンスパッタ法により酸化物半導体膜を成膜した。該酸化物半導体膜をチャネル層として備えるTFTを作製し、各TFTの電界効果移動度を算出することにより、例B1~B40および例BR1~BR2の導電性酸化物の性能を評価した。
(Evaluation: Field effect mobility)
An oxide semiconductor film was formed by DC (direct current) magnetron sputtering using the conductive oxides obtained in Examples B1 to B40 and Examples BR1 and BR2 as targets. A TFT including the oxide semiconductor film as a channel layer was manufactured, and the field-effect mobility of each TFT was calculated to evaluate the performance of the conductive oxides of Examples B1 to B40 and Examples BR1 to BR2.
 上記の電界効果移動度は、具体的には次のようにして算出した。まず、例B1~B40および例BR1~BR2で得られた導電性酸化物を直径3インチ(76.2mm)で厚さ5.0mmのターゲットに加工した。そして、直径3インチの面がスパッタ面となるようにターゲットをスパッタリング装置内に配置した。一方、スパッタリング装置の水冷されている基板ホルダに、25mm×25mm×0.5mmの導電性Siウェハ(<0.02Ωcm)からなる成膜用基板を配置し、成膜用基板の表面の一部を金属マスクで覆った。このとき、ターゲットと成膜用基板との距離は40mmであった。 The above-mentioned field effect mobility was specifically calculated as follows. First, the conductive oxides obtained in Examples B1 to B40 and Examples BR1 to BR2 were processed into targets having a diameter of 3 inches (76.2 mm) and a thickness of 5.0 mm. And the target was arrange | positioned in a sputtering device so that a 3 inch diameter surface might become a sputtering surface. On the other hand, a film formation substrate made of a conductive Si wafer of 25 mm × 25 mm × 0.5 mm (<0.02 Ωcm) is placed on a water-cooled substrate holder of a sputtering apparatus, and a part of the surface of the film formation substrate is placed. Was covered with a metal mask. At this time, the distance between the target and the deposition substrate was 40 mm.
 そして、スパッタリング装置内を1×10-4Pa程度まで真空引きし、基板とターゲットとの間にシャッターを入れた状態で、成膜室にArガスを導入して成膜室内の圧力を1Paとし、さらにターゲットに120Wの直流電力を印加してスパッタリング放電することにより、ターゲット表面のクリーニング(プレスパッタ)を10分間行なった。 Then, the inside of the sputtering apparatus is evacuated to about 1 × 10 −4 Pa, and with the shutter placed between the substrate and the target, Ar gas is introduced into the film forming chamber to set the pressure in the film forming chamber to 1 Pa. Further, the surface of the target was cleaned (pre-sputtering) for 10 minutes by applying 120 W DC power to the target and performing sputtering discharge.
 その後、流量比率で15体積%の酸素ガスを含むArガスを成膜室内に導入して成膜室内の圧力を0.8Paとし、さらにターゲットに120Wのスパッタ直流電力を印加することにより、ガラス基板上に70nmの厚みの酸化物半導体膜を成膜した。なお、基板ホルダは、水冷するのみでバイアス電圧を印加しなかった。 Thereafter, Ar gas containing 15% by volume of oxygen gas at a flow rate ratio is introduced into the film forming chamber so that the pressure in the film forming chamber is 0.8 Pa, and further, a sputtering direct current power of 120 W is applied to the target, whereby a glass substrate is obtained. An oxide semiconductor film with a thickness of 70 nm was formed thereon. The substrate holder was only cooled with water and no bias voltage was applied.
 このようにして作製した酸化物半導体膜を所定のチャネル幅およびチャネル長さに加工するために、酸化物半導体膜上に所定の形状のレジストを塗布、露光、現像した。そして、この酸化物半導体膜付きのガラス基板を、リン酸:酢酸:水=4:1:100のモル比率に調整したエッチング水溶液に浸漬させることにより、所定のチャネル幅およびチャネル長さとなるように酸化物半導体膜をエッチングした。 In order to process the oxide semiconductor film thus fabricated into a predetermined channel width and channel length, a resist having a predetermined shape was applied, exposed, and developed on the oxide semiconductor film. Then, the glass substrate with the oxide semiconductor film is immersed in an aqueous etching solution adjusted to a molar ratio of phosphoric acid: acetic acid: water = 4: 1: 100 so that a predetermined channel width and channel length are obtained. The oxide semiconductor film was etched.
 次に、酸化物半導体膜上のうちのソース電極およびドレイン電極が形成される部分のみが露出するように、酸化物半導体膜上にレジストを塗布、露光、現像した。上記でレジストを形成していない部分(電極形成部)に対し、スパッタリング法を用いてTiからなる金属層、Alからなる金属層、Moからなる金属層を、この順に形成することにより、Ti/Al/Moの3層構造で膜厚が100nmのソース電極およびドレイン電極を形成した。その後、酸化物半導体膜上のレジストを剥離することにより、In-Al-Mg-Oからなる酸化物半導体膜をチャネル層として備えるTFTを作製した。 Next, a resist was applied on the oxide semiconductor film, exposed, and developed so that only portions of the oxide semiconductor film where the source electrode and the drain electrode were formed were exposed. By forming a metal layer made of Ti, a metal layer made of Al, and a metal layer made of Mo in this order on the portion where the resist is not formed (electrode forming portion) by sputtering, Ti / A source electrode and a drain electrode having a three-layer structure of Al / Mo and a film thickness of 100 nm were formed. After that, the resist over the oxide semiconductor film was peeled off, whereby a TFT including an oxide semiconductor film made of In—Al—Mg—O as a channel layer was manufactured.
 上記のようにして作製したTFTに対し、以下のようにして電界効果移動度(μfe)を算出した。まず、TFTのソース電極およびドレイン電極の間に5Vの電圧を印加し、ソース電極と、Siウエハからなるゲート電極との間に印加する電圧(Vgs)を-10Vから20Vに変化させて、そのときのドレイン電流(Ids)を式(1)に代入することにより、Vgs=10Vでのgm値を算出した。次に、上記で算出したgm値を式(2)に代入し、さらにW=20μm、L=15μmを代入することにより電界効果移動度(μfe)を算出した。この結果を表2および3の「電界効果移動度」の欄に示す。なお、電界効果移動度の値が高いほど、TFTの特性が良好であることを示す。 The field effect mobility (μ fe ) was calculated as follows for the TFT fabricated as described above. First, a voltage of 5V is applied between the source electrode and the drain electrode of the TFT, the source electrode, the voltage to be applied to (V gs) is changed to 20V from -10V between the gate electrode made of Si wafer, The g m value at V gs = 10V was calculated by substituting the drain current (I ds ) at that time into the equation (1). Next, the field effect mobility (μ fe ) was calculated by substituting the g m value calculated above into Equation (2) and further substituting W = 20 μm and L = 15 μm. The results are shown in the “field effect mobility” column of Tables 2 and 3. In addition, it shows that the characteristic of TFT is so favorable that the value of field effect mobility is high.
  gm=dIds/dVgs   ・・・式(1)
  μfe=gm・L/(W・Ci・Vds)   ・・・式(2)
 (評価結果と考察)
 表2および3に示される結果から、例B1~B40の導電性酸化物を用いて作製した酸化物半導体膜は、例BR1~BR2の導電性酸化物を用いて作製した酸化物半導体膜に比して、TFTの電界効果移動度が高い値を示している。これは、例B1~B40の導電性酸化物が、In、Al、Mg、Oを含み、かつ結晶質として結晶質Al2MgO4を含むことによるものと考えられる。
g m = dI ds / dV gs (1)
μ fe = g m · L / (W · C i · V ds ) (2)
(Evaluation results and discussion)
From the results shown in Tables 2 and 3, the oxide semiconductor films manufactured using the conductive oxides of Examples B1 to B40 are in comparison with the oxide semiconductor films manufactured using the conductive oxides of Examples BR1 to BR2. Thus, the field effect mobility of the TFT is high. This is presumably because the conductive oxides of Examples B1 to B40 contain In, Al, Mg, O, and contain crystalline Al 2 MgO 4 as the crystalline material.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明による導電性酸化物は、スパッタリング成膜のターゲットとして好ましく用いることができる。 The conductive oxide according to the present invention can be preferably used as a target for sputtering film formation.
 S10 第1の混合物を調製する工程、S20 結晶質Al2MO4粉末を作製する工程、S30 第2の混合物を調製する工程、S40 成形体を得る工程、S50 成形体を焼結する工程。 S10 Step of preparing the first mixture, S20 Step of preparing crystalline Al 2 MO 4 powder, S30 Step of preparing the second mixture, Step of obtaining S40 molded body, S50 Step of sintering the molded body.

Claims (14)

  1.  Inと、Alと、ZnおよびMgからなる群から選ばれる少なくとも1種類の元素であるMと、Oと、を含み、かつ、結晶質Al2MO4を含む導電性酸化物。 A conductive oxide containing In, Al, and at least one element selected from the group consisting of Zn and Mg, and O, and containing crystalline Al 2 MO 4 .
  2.  前記結晶質Al2MO4として結晶質Al2ZnO4を含む請求項1に記載の導電性酸化物。 Conductive oxide according to claim 1 comprising a crystalline Al 2 ZnO 4 as the crystalline Al 2 MO 4.
  3.  前記導電性酸化物の断面積に占める前記結晶質Al2ZnO4の割合が10%以上60%以下である請求項2に記載の導電性酸化物。 The conductive oxide according to claim 2, wherein a ratio of the crystalline Al 2 ZnO 4 occupying in a cross-sectional area of the conductive oxide is 10% or more and 60% or less.
  4.  結晶質In2Al2(1-m)Zn1-q7-p(0≦m<1、0≦q<1、0≦p≦3m+q)および結晶質In23からなる群から選ばれる少なくとも1種類の結晶質をさらに含む請求項2または3に記載の導電性酸化物。 Selected from the group consisting of crystalline In 2 Al 2 (1-m ) Zn 1-q O 7-p (0 ≦ m <1,0 ≦ q <1,0 ≦ p ≦ 3m + q) and crystalline In 2 O 3 The conductive oxide according to claim 2, further comprising at least one crystalline material.
  5.  前記結晶質Al2MO4として結晶質Al2MgO4を含む請求項1に記載の導電性酸化物。 Conductive oxide according to claim 1 comprising a crystalline Al 2 MgO 4 as the crystalline Al 2 MO 4.
  6.  前記導電性酸化物の断面積に占める前記結晶質Al2MgO4の割合が2%以上60%以下である請求項5に記載の導電性酸化物。 The conductive oxide according to claim 5, wherein a ratio of the crystalline Al 2 MgO 4 to a cross-sectional area of the conductive oxide is 2% or more and 60% or less.
  7.  結晶質In2Al2(1-n)Mg1-t7-s(0≦n<1、0≦t<1、0≦s≦3n+t)および結晶質In23からなる群から選ばれる少なくとも1種類の結晶質をさらに含む請求項5または6に記載の導電性酸化物。 Selected from the group consisting of crystalline In 2 Al 2 (1-n) Mg 1-t O 7-s (0 ≦ n <1, 0 ≦ t <1, 0 ≦ s ≦ 3n + t) and crystalline In 2 O 3 The conductive oxide according to claim 5, further comprising at least one crystalline material.
  8.  In、Al、およびMの合計の原子比率を100原子%とすると、10~50原子%のInと、10~50原子%のAlと、15~40原子%のMと、を含む請求項1~7のいずれかに記載の導電性酸化物。 2. The atomic ratio of the total of In, Al, and M includes 10 to 50 atomic% In, 10 to 50 atomic% Al, and 15 to 40 atomic% M, assuming that the total atomic ratio of In, Al and M is 100 atomic%. 8. The conductive oxide according to any one of 1 to 7.
  9.  N、Al、Si、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Sn、およびBiからなる群から選ばれる少なくとも1種類の添加元素をさらに含む、請求項1~8のいずれかに記載の導電性酸化物。 The element according to claim 1 further comprising at least one additive element selected from the group consisting of N, Al, Si, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, Sn, and Bi. The conductive oxide in any one.
  10.  スパッタリング法のターゲットに用いられる請求項1~9のいずれかに記載の導電性酸化物。 The conductive oxide according to claim 1, which is used for a sputtering target.
  11.  請求項1~10のいずれかに記載された導電性酸化物を用いて形成された酸化物半導体膜。 An oxide semiconductor film formed using the conductive oxide according to any one of claims 1 to 10.
  12.  ZnおよびMgからなる群から選ばれる少なくとも1種類の元素をMとするとき、Al23粉末とMO粉末とを含む第1の混合物を調製する工程(S10)と、
     前記第1の混合物を仮焼することにより結晶質Al2MO4粉末を作製する工程(S20)と、
     前記結晶質Al2MO4粉末とIn23粉末とを含む第2の混合物を調製する工程(S30)と、
     前記第2の混合物を成形することにより成形体を得る工程(S40)と、
     前記成形体を焼結する工程(S50)と、を含む導電性酸化物の製造方法。
    A step (S10) of preparing a first mixture containing Al 2 O 3 powder and MO powder, where M is at least one element selected from the group consisting of Zn and Mg;
    Producing a crystalline Al 2 MO 4 powder by calcining the first mixture (S20);
    Preparing a second mixture containing the crystalline Al 2 MO 4 powder and In 2 O 3 powder (S30);
    A step of obtaining a molded body by molding the second mixture (S40);
    A method of producing a conductive oxide, comprising: sintering the molded body (S50).
  13.  前記MO粉末はZnO粉末であり、前記結晶質Al2MO4粉末は結晶質Al2ZnO4粉末であって、前記結晶質Al2ZnO4粉末を作製する工程(S20)における前記第1の混合物の仮焼温度は800℃以上1200℃未満であり、前記成形体を焼結する工程(S50)における前記成形体の焼結温度は1280℃以上1500℃未満である請求項12に記載の導電性酸化物の製造方法。 The MO powder is a ZnO powder, the crystalline Al 2 MO 4 powder is a crystalline Al 2 ZnO 4 powder, and the first mixture in the step of preparing the crystalline Al 2 ZnO 4 powder (S20). The calcination temperature is 800 ° C or higher and lower than 1200 ° C, and the sintering temperature of the molded body in the step of sintering the molded body (S50) is 1280 ° C or higher and lower than 1500 ° C. Production method of oxide.
  14.  前記MO粉末はMgO粉末であり、前記結晶質Al2MO4粉末は結晶質Al2MgO4粉末であって、前記結晶質Al2MgO4粉末を作製する工程(S20)における前記第1の混合物の仮焼温度は800℃以上1200℃未満であり、前記成形体を焼結する工程(S50)における前記成形体の焼結温度は1300℃以上1500℃以下である請求項12に記載の導電性酸化物の製造方法。 The MO powder is an MgO powder, the crystalline Al 2 MO 4 powder is a crystalline Al 2 MgO 4 powder, and the first mixture in the step of preparing the crystalline Al 2 MgO 4 powder (S20). The calcination temperature is 800 ° C or higher and lower than 1200 ° C, and the sintering temperature of the molded body in the step of sintering the molded body (S50) is 1300 ° C or higher and 1500 ° C or lower. Production method of oxide.
PCT/JP2012/064986 2011-06-15 2012-06-12 Electrically conductive oxide and method for producing same, and oxide semiconductor film WO2012173108A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013520553A JP5929911B2 (en) 2011-06-15 2012-06-12 Conductive oxide, method for producing the same, and oxide semiconductor film
CN201280029318.1A CN103608310B (en) 2011-06-15 2012-06-12 Electroconductive oxide and manufacture method thereof and oxide semiconductor film
KR1020137029873A KR102003077B1 (en) 2011-06-15 2012-06-12 Electrically conductive oxide and method for producing same, and oxide semiconductor film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-132982 2011-06-15
JP2011132982 2011-06-15
JP2011-139631 2011-06-23
JP2011139631 2011-06-23

Publications (1)

Publication Number Publication Date
WO2012173108A1 true WO2012173108A1 (en) 2012-12-20

Family

ID=47357095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064986 WO2012173108A1 (en) 2011-06-15 2012-06-12 Electrically conductive oxide and method for producing same, and oxide semiconductor film

Country Status (5)

Country Link
JP (2) JP5929911B2 (en)
KR (1) KR102003077B1 (en)
CN (1) CN103608310B (en)
TW (1) TWI532864B (en)
WO (1) WO2012173108A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112363A1 (en) * 2013-01-15 2014-07-24 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and production methods for both
WO2015137468A1 (en) * 2014-03-14 2015-09-17 大日精化工業株式会社 Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor
JP2016522317A (en) * 2013-04-11 2016-07-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG LIGHT ABSORBING LAYER, LAYER SYSTEM HAVING THIS LAYER, LAYER SYSTEM MANUFACTURING METHOD, AND SPUTTER TARGET MATERIAL
WO2018096992A1 (en) * 2016-11-25 2018-05-31 宇部マテリアルズ株式会社 Physical vapor-deposition target member and sputtering target member, and physical vapor-deposition film and layer structure manufacturing method
US11374130B2 (en) 2020-02-07 2022-06-28 Kioxia Corporation Semiconductor device and semiconductor memory device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2933825B1 (en) * 2014-03-31 2017-07-05 Flosfia Inc. Crystalline multilayer structure and semiconductor device
CN105063559A (en) * 2015-08-17 2015-11-18 基迈克材料科技(苏州)有限公司 Zr element-doped AZO target material with enhanced photoelectric property
EP4286339A1 (en) * 2022-05-31 2023-12-06 Imec VZW Mixed metal oxides

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018402A1 (en) * 2006-08-11 2008-02-14 Hitachi Metals, Ltd. Zinc oxide sinter, process for producing the same, and sputtering target
WO2010007989A1 (en) * 2008-07-15 2010-01-21 東ソー株式会社 Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06191844A (en) * 1992-12-25 1994-07-12 Hoya Corp Electric conductive transparent oxide
JP3947575B2 (en) * 1994-06-10 2007-07-25 Hoya株式会社 Conductive oxide and electrode using the same
JP3501614B2 (en) * 1997-02-26 2004-03-02 株式会社オプトロン ITO sintered body, method of manufacturing the same, and method of forming ITO film using the ITO sintered body
US7635440B2 (en) * 2003-03-04 2009-12-22 Nippon Mining & Metals Co., Ltd. Sputtering target, thin film for optical information recording medium and process for producing the same
JP5244327B2 (en) 2007-03-05 2013-07-24 出光興産株式会社 Sputtering target
KR101312259B1 (en) 2007-02-09 2013-09-25 삼성전자주식회사 Thin film transistor and method for forming the same
TWI393695B (en) * 2009-10-02 2013-04-21 Chunghwa Picture Tubes Ltd Fabricating method of nano-powder and application thereof
JP5081959B2 (en) * 2010-08-31 2012-11-28 Jx日鉱日石金属株式会社 Oxide sintered body and oxide semiconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008018402A1 (en) * 2006-08-11 2008-02-14 Hitachi Metals, Ltd. Zinc oxide sinter, process for producing the same, and sputtering target
WO2010007989A1 (en) * 2008-07-15 2010-01-21 東ソー株式会社 Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112363A1 (en) * 2013-01-15 2014-07-24 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and production methods for both
JPWO2014112363A1 (en) * 2013-01-15 2017-01-19 出光興産株式会社 Sputtering target, oxide semiconductor thin film, and manufacturing method thereof
JP2016522317A (en) * 2013-04-11 2016-07-28 ヘレーウス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトHeraeus Deutschland GmbH&Co.KG LIGHT ABSORBING LAYER, LAYER SYSTEM HAVING THIS LAYER, LAYER SYSTEM MANUFACTURING METHOD, AND SPUTTER TARGET MATERIAL
WO2015137468A1 (en) * 2014-03-14 2015-09-17 大日精化工業株式会社 Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor
KR20160134752A (en) * 2014-03-14 2016-11-23 다이니치 세이카 고교 가부시키가이샤 Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor
JPWO2015137468A1 (en) * 2014-03-14 2017-04-06 大日精化工業株式会社 Thermally conductive complex oxide, method for producing the same, thermally conductive complex oxide-containing composition and use thereof
JP2017190456A (en) * 2014-03-14 2017-10-19 大日精化工業株式会社 Heat conductive composite oxide, manufacturing method therefor and heat conductive composite oxide-containing composition
KR101873139B1 (en) 2014-03-14 2018-06-29 다이니치 세이카 고교 가부시키가이샤 Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor
US10072195B2 (en) 2014-03-14 2018-09-11 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Thermally conductive complex oxide, production method therefor, thermally conductive complex oxide-containing composition, and use therefor
WO2018096992A1 (en) * 2016-11-25 2018-05-31 宇部マテリアルズ株式会社 Physical vapor-deposition target member and sputtering target member, and physical vapor-deposition film and layer structure manufacturing method
US11374130B2 (en) 2020-02-07 2022-06-28 Kioxia Corporation Semiconductor device and semiconductor memory device

Also Published As

Publication number Publication date
KR20140036176A (en) 2014-03-25
KR102003077B1 (en) 2019-07-23
CN103608310B (en) 2016-02-03
TWI532864B (en) 2016-05-11
JP6137382B2 (en) 2017-05-31
CN103608310A (en) 2014-02-26
JPWO2012173108A1 (en) 2015-02-23
TW201305371A (en) 2013-02-01
JP2016153370A (en) 2016-08-25
JP5929911B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP6137382B2 (en) Conductive oxide, method for producing the same, and method for producing oxide semiconductor film
WO2009142289A1 (en) Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
TWI648241B (en) Oxide sintered body, method of manufacturing the same, sputtering target, and semiconductor device
CN107001146B (en) Oxide sintered material, method for producing oxide sintered material, sputtering target, and method for producing semiconductor device
TWI737727B (en) Oxide sintered body, manufacturing method thereof, sputtering target, and manufacturing method of semiconductor device
TWI769255B (en) Oxide sintered body and its manufacturing method, sputtering target, oxide semiconductor film, and manufacturing method of semiconductor element
JP2013001590A (en) Conductive oxide, method of manufacturing the same and oxide semiconductor film
KR102401708B1 (en) Oxide sintered compact and its manufacturing method, sputtering target, and semiconductor device manufacturing method
JP5407969B2 (en) Conductive oxide and method for producing the same
JP5494082B2 (en) Conductive oxide and method for producing the same
JP6350466B2 (en) Oxide sintered body and method for manufacturing the same, sputter target, and method for manufacturing semiconductor device
JP5526904B2 (en) Conductive oxide sintered body and manufacturing method thereof
KR102406137B1 (en) Oxide sintered compact and its manufacturing method, sputtering target, and semiconductor device manufacturing method
JP5333525B2 (en) Conductive oxide, method for producing the same, and oxide semiconductor film
JP5857775B2 (en) Conductive oxide and method for producing the same
JP6493601B2 (en) Oxide sintered body and method for manufacturing the same, sputter target, and method for manufacturing semiconductor device
JP5811877B2 (en) Conductive oxide and method for producing the same
JP2014094862A (en) Conductive oxide, oxide semiconductor film and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520553

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137029873

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12799830

Country of ref document: EP

Kind code of ref document: A1