WO2012168513A1 - Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno - Google Patents

Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno Download PDF

Info

Publication number
WO2012168513A1
WO2012168513A1 PCT/ES2012/000161 ES2012000161W WO2012168513A1 WO 2012168513 A1 WO2012168513 A1 WO 2012168513A1 ES 2012000161 W ES2012000161 W ES 2012000161W WO 2012168513 A1 WO2012168513 A1 WO 2012168513A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooking
additive
disodium salt
dihydroxyanthracene
kraft
Prior art date
Application number
PCT/ES2012/000161
Other languages
English (en)
French (fr)
Inventor
Antonio TIJERO CRUZ
Mª Concepción MONTE LARA
Julio TIJERO MIGUEL
RAMA. Ana MORAL
Ildefonso PEREZ OT
LA TORRE MOLINA. María Jesús DE
Original Assignee
Universidad Complutense De Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Complutense De Madrid filed Critical Universidad Complutense De Madrid
Publication of WO2012168513A1 publication Critical patent/WO2012168513A1/es

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/02Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes
    • D21C3/022Pulping cellulose-containing materials with inorganic bases or alkaline reacting compounds, e.g. sulfate processes in presence of S-containing compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/22Other features of pulping processes
    • D21C3/222Use of compounds accelerating the pulping processes

Definitions

  • the present invention relates to a process of cooking lignocellulosic material for papermaking. More specifically, the invention relates to a process of firing lignocellulosic material with alkaline lyes of low sulphidity using as an additive a disodium salt of dihydroxyanthracene in the extended delignification stage in order to reduce contamination of the total process of obtaining cellulose pastes STATE OF ART
  • the reduction of the final lignin content in the pulps obtained washed (expressed by low Kappa numbers) by extended delignification and, in the case of Kraft processes, the reduction of sulphidity and even the total removal of sulfur , replacing Kraft processes with processes in which only alkali is used, such as soda processes.
  • delignification is carried out in a digester using a bleach consisting of sodium hydroxide and sodium sulphide as a delignifying agent.
  • 20-25% of lignin dissolves but at temperatures above 140 ° C, in the main stage, the delignification rate is increased and approximately 90% of the delignification is completed.
  • the stage of elimination of residual lignin begins when the lignin content is approximately 10% of the original level and the speed is clearly lower and is regulated by the amount of alkali and the temperature.
  • sodium hydroxide acts as the main degrading agent of lignin while the sulfide undergoes a hydrolysis process resulting in hydrosulfide that is responsible for solubilizing the degraded lignin forming thiolignins that decompose with the formation of Elemental sulfur which, in turn, under the conditions of pH and temperature in the digester, disproportions to hydrosulfide and thiosulfate, producing sulphurous odors that are difficult to avoid.
  • Kraft cooking is characterized by a relatively low selectivity and, therefore, cooking has to be stopped with high lignin contents to avoid the parallel degradation of carbohydrates and the consequent losses in yield and pasta quality.
  • the residual lignin is removed at a later stage of bleaching using expensive chemicals and contaminants.
  • This pollutant load can be reduced by decreasing the lignin content in the pastes by prolonged treatment of delignification (extended delignification) during the cooking process under conditions that guarantee their quality.
  • delignification extended delignification
  • the chemical pulp factories in which low-Kappa pulps are obtained lead to lower emissions of water pollutants, especially when comparing pollutant loads generated from spills generated throughout all stages of pulp production cellulose, which include the processes of cooking, pasta washing, refining and bleaching.
  • the amount of lignin separated in the residual delignification stage depends on the concentration of hydroxyl anion, and to a lesser extent, on the sulfide ion.
  • the reaction rate is independent of the sulphide concentration, and depends exclusively on the concentration of alkali (Santos, A .; Rodr ⁇ guez, F .; Gilarranz, MA; Moreno, D .; Garc ⁇ a-Ochoa , F. Kinetic Modeling of Kraft Delignification of Eucalyptus globulus Ind. Eng. Chem. Res. 1997, 36 (10), 41 14).
  • the disodium salt of dihydroxyanthracene has also been used as a cooking additive.
  • document Re. 32,943 describes a process of cooking lignocellulosic material at temperatures between 150 and 180 ° C in the presence of hydroxyanthracenes and derivatives, among which is the sodium salt of 9,10-dihydroxyanthracene as the preferred additive in a proportion 0.01 and 0.1% by weight on dry wood.
  • US 4,363,700 also describes a process of cooking lignocellulosic material at a temperature between 145 and 180 ° C, an effective alkali content of 8-40% and sulfidez between 3-50% (both on dry wood) where it is used as additive, among others, the disodium salt of dihydroxyanthracene in an amount of 0.01 to 5% together with a reducing agent that can be a sulphite, hydrosulfite, thiosolfate or sodium, potassium or ammonium format, in a proportion of 0.49 to 5% equivalent in terms of Na 0.
  • a reducing agent that can be a sulphite, hydrosulfite, thiosolfate or sodium, potassium or ammonium format
  • Tagas Dutta (Thesis, 1998, "Kraft pulping of Douglas-Fir with soluble anthraquinoe") studied the effect of disodium salt of dihydroxyanthracene on cooking lignocellulosic material in comparison with the effect of anthraquinone and concluded that, during the early stages of delignification, the disodium salt of dihydroxyanthracene has a worse effect than anthraquinone on the kappa index of the resulting paste.
  • solubility in alkaline medium means that it can be added as a solution to the cooking system, unlike anthraquinone, which, due to its insolubility, is added in the form of granules.
  • the disodium salt of dihydroxyanthracene is added directly to the cooking reactor.
  • the present invention proposes a process integrated in the process of obtaining kraft pastes where the use of the cooking additive is more effective, especially in those stages of extended delignification in which the sulphide is less effective and in which cellulosic fibers experience greater degradation.
  • the present invention proposes an extended delignification process where the additive is obtained in parallel to cooking and is incorporated into the digester of the lignocellulosic matter in its most active soluble form (the disodium salt of dihydroxyanthracene) and at a time prior to the critical conditions of cellulose degradation allowing, at the same time, to reduce sulphidity and, therefore, the environmental effects due to sulfur during cooking and during the recovery of black liquors.
  • the protective effect of the additive on the cellulose biopolymer has the associated effect of improving the variables that measure the degree of polymerization of cellulose, such as viscosity.
  • the present invention consists in the use, as a cooking additive, of the disodium salt of dihydroxiantracene, soluble in alkaline medium and directly active during the stage of the cooking process where the alkaline hydrolysis of cellulose, known as peeling reactions.
  • the process object of the present invention consists in a process of delignification of forest or agricultural lignocellulosic material or from waste or by-products of agricultural or forestry processes where, in parallel to digestion, the reduction is carried out in an auxiliary reactor, the reduction of anthraquinone in alkaline medium to obtain the disodium salt of dihydroxyanthracene by means of bleach from the same kra ⁇ process or solutions such as soda, potash or any caustic alkali and a reducing agent such as sulfur, bisulfide, sulfite, bisulfite, hydrosulfite or dithionite of sodium, potassium or any another alkaline or alkaline earth cation.
  • the conversion of anthraquinone is independent of the progress of the main reactor, so that the additive can be fed in a soluble and active way from the auxiliary reactor to the main digester in the extended delignification stage in which cellulose can be more degraded by the alkali, thus improving the production of cellulose pastes, both for the greater effectiveness of the catalyst additive and for its protective effect on cellulose.
  • Figure 1 shows a scheme of the process of obtaining pastes object of the invention.
  • auxiliary reactor a small proportion between 5% and 10% of the sodium hydroxide and sodium sulphide liquors used in the kraft process is incorporated, together with the amount of anthraquinone needed to dose the reactor or the cooking digester in the proportion determined as optimal, (between 0.01 and 0.5%,) but generally less than 0.1% on air-dried wood. It is heated with stirring, at least 30 minutes, to complete the conversion of the additive, at a temperature above 150 ° C, at saturation pressure at the temperature reached.
  • the temperature, pressure and residence time in this reactor is optimized at home process so that, preferably, the auxiliary reactor operates at a temperature higher than that of the cooking reactor, so that the pressure in the auxiliary reactor is slightly higher than the of the cooking digester.
  • the controlled discharge of the cooking additive already converted into its most active form is facilitated, through a conduit in which a filter can be inserted.
  • the dispersed anthraquinone reacts with a decrease in the size of the solid particles by formation of the soluble compound, reaching complete conversions in less than an hour. This reaction makes unnecessary the use of dispersants in the additive, when used in the form of anthraquinone.
  • anthraquinone is not active until it is transformed into the soluble sodium salt form of dihydroxanthracene, if the additive is incorporated into the digestion reactor of lignocellulosic material, purified from its insoluble impurities which consist mainly of anthracene and its counterparts, aromatic hydrocarbons polynucleated, and by reduction in alkaline medium in the auxiliary reactor and is fed in this way to the main digester in its active form.
  • FIG 1 shows the scheme of the proposed process.
  • a digester is used for loads of 6 liters capacity, with recirculation of bleach, in which a Kra ⁇ cooking is carried out, with the following characteristics:
  • Hydro module 4: 1 L of bleach / kg of air-dried wood Active alkali, such as Na 2 0: 35 g / L
  • a digester is used for loads of 6 liters of capacity, with recirculation of bleach, in which Kraft cooking is carried out, with the following characteristics:
  • Hydro module 4: 1 L of bleach / kg of air-dried wood
  • a digester is used for loads of 6 liters of capacity, with recirculation of bleach, in which Kraft cooking is carried out, with the following characteristics:
  • Hydro module 4: 1 L of bleach / kg of air-dried wood
  • Active alkali such as Na 2 0: 15% on dry wood
  • an auxiliary reactor of 1L of total capacity and 0.5 L of useful capacity is available in which the reduction reaction of anthraquinone to the disodium salt of dihydroxyanthracene is carried out, in alkaline solution with a bleach of a composition similar to that fed in the digester.
  • Na OH 50g / L as NaOH or 38.75 g / L as Na 2 O
  • Na 2 S 2.60 g / L as Na 2 So 2.07 g / L as Na 2 0
  • Anthraquinone initial concentration of 0.5 g / L, which once incorporated into the digester, results in a proportion of 0.025% equivalent anthraquinone, on air-dried wood.
  • dihydroxiantracene disodium salt takes place in an alkaline solution of an initial composition similar to that fed in the digester.
  • the reactor temperature rises to 175 ° C, with a ramp of one hour; at this temperature, an approximate pressure of 892 kPa is reached.
  • the temperature is maintained in the stirred auxiliary reactor, for 30 minutes, under these conditions the total conversion of anthraquinone to the disodium salt form of dihydroxyanthracene (DDA) is achieved.
  • DDA dihydroxyanthracene
  • a temperature of 175 ° C in the auxiliary reactor an approximate pressure of 100kPa higher than that existing in the digester at 170 ° C is reached. This difference in pressures favors the discharge of this reactor into the digester, it even allows the retention of the non-solubilized impurities present in the anthraquinone, through an intercalated filter between them.
  • the fundamental objective of the unloading of the additive in the digester is the optimization of cellulose protection, so that it is incorporated into the reactor in the cooking phase when it is most necessary .
  • cellulose is protected by cementitious lignin and by hemicellulose.
  • sodium sulphide does not have an appreciable effect on the kinetics in the advanced phase of deep delignification, although it does maintain its protective effect on cellulose. But when sulfide is incorporated at the beginning of the process, an important part of it has been consumed when the most critical stages are reached from the point of view of cellulose degradation.

Abstract

Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno. El aditivo se obtiene en paralelo a la cocción y se incorpora al digestor de la materia lignocelulósica en su forma soluble más activa (la sal disódica del dihidroxiantraceno) durante la etapa de deslignificación extendida, en un tiempo previo a las condiciones críticas de degradación de la celulosa permitiendo, al mismo tiempo, reducir la sulfidez. Se obtienen pastas con poco contenido en lignina (bajos índices kappa) y buenas propiedades mecánicas (baja degradación del polímero celulósico).

Description

TÍTULO
Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno.
SECTOR DE LA TÉCNICA
La presente invención se refiere a un proceso de cocción de material lignocelulósico para la fabricación de papel. De forma más concreta, la invención se refiere a un proceso de cocción de material lignocelulósico con lejías alcalinas de baja sulfidez utilizando como aditivo una sal disódica del dihidroxiantraceno en la etapa de deslignificación extendida con el objeto de reducir la contaminación del proceso total de obtención de pastas de celulosa. ESTADO DEL ARTE
La cocción de materiales lignocelulósicos para la fabricación de pasta de celulosa ha de cumplir, actualmente, determinados requisitos ambientales descritos en los documentos de referencia de la Unión Europea. El documento de referencia sobre las mejores técnicas disponibles en la Industria Papelera refleja el intercambio de información (BREF) que publica la Oficina Europea para el Control y Prevención Integrado de la Contaminación (European IPPC Bureau) en cumplimiento de la directiva Directiva 2008/1 /CE del Parlamento Europeo y del Consejo, de 15 de enero de 2008, donde se establecen las condiciones que han de cumplir los procesos de cocción de pastas celulósicas químicas para que sean considerados Mejores Técnicas Disponibles, (MTD) o Best Available Techniques (BAT). Entre ellas, destacan la reducción del contenido final de lignina en las pastas obtenidas lavadas (expresada por números Kappa bajos) mediante deslignificación extendida y, en el caso de los procesos Kraft, la reducción de la sulfidez e, incluso, la eliminación total de azufre, sustituyendo a los procesos Kraft por procesos en los que se emplea únicamente álcali, tales como los procesos a la sosa. En el proceso Kraft la deslignificación se lleva a cabo en un digestor utilizando como agente deslignificante una lejía constituida por hidróxido sódico y sulfuro sódico. En una etapa inicial, a temperaturas más bajas, se disuelve un 20-25% de lignina pero a temperaturas superiores a 140°C, en la etapa principal, la velocidad de deslignificación se incrementa y se completa aproximadamente el 90% de la deslignificación. Finalmente, la etapa de eliminación de lignina residual (desliginficación extendida) se inicia cuando el contenido de lignina es aproximadamente un 10% del nivel original y la velocidad es claramente menor y está regulada por la cantidad de álcali y la temperatura.
Las reacciones que tienen lugar durante la digestión Kraft no son totalmente conocidas, ya que la multiplicidad de compuestos presentes en el medio reactivo y la complejidad de la lignina dificultan la determinación de las reacciones determinantes de la velocidad global; pero se sabe que la presencia de sulfuro acelera la disolución de la lignina sin que aumente la degradación de la celulosa y que el ataque a las moléculas de lignina implica la formación de grupos que hacen a la lignina más soluble en el álcali. Así, de forma general, se puede decir que el hidróxido sódico actúa como principal agente degradante de la lignina mientas que el sulfuro sufre un proceso de hidrólisis dando lugar a hidrosulfuro que se encarga de solubilizar la lignina degradada formando tioligninas que se descomponen con formación de azufre elemental que, a su vez, en las condiciones de pH y temperatura existentes en el digestor, se desproporciona a hidrosulfuro y tiosulfato, produciendo olores sulfurosos difíciles de evitar. La cocción kraft se caracteriza por una relativa baja selectividad y, por ello, la cocción se tiene que detener con altos contenidos en lignina para evitar la paralela degradación de los carbohidratos y las consiguientes pérdidas en rendimiento y calidad de la pasta. La lignina residual se elimina en una etapa posterior de blanqueo utilizando productos químicos costosos y contaminantes. Esta carga contaminante se pude reducir disminuyendo el contenido de lignina en las pastas mediante un tratamiento prolongado de la deslignificación (deslignificación extendida) durante el proceso de cocción bajo condiciones que garanticen la calidad de las mismas. De este modo, las fábricas de pastas químicas en las que se obtienen pastas de bajo índice Kappa, dan lugar a menores emisiones de contaminantes hídricos, especialmente cuando se comparan entre sí las cargas contaminantes de los vertidos generados a lo largo de todas las etapas de producción de las pastas de celulosa, que comprenden los procesos de cocción, lavado de pastas, refino y blanqueo.
Sin embargo, la obtención de pastas Kraft por deslignificación extendida presenta inconvenientes cinéticos, según Gilarranz et al (Ind. Eng. Chem. Res. 2002, 41 , 1955- 1959 M. A. Gilarranz, A. Santos, J. García, M. Oliet, and F. Rodríguez). En esta investigación se concluye que la influencia del sulfuro sobre la cinética del proceso de cocción decrece a medida que se intensifica la deslignificación, hasta llegar a alcanzarse condiciones cinéticas en las que la velocidad de reacción es independiente de la concentración sulfuro en la extracción de la lignina más íntimamente unida a la madera (bulk lignine).
La cantidad de lignina separada en la etapa de deslignificación residual depende de la concentración de anión hidroxilo, y en menor extensión, del ión sulfuro. En la etapa final de deslignificación, la velocidad de reacción es independiente de la concentración de sulfuro, y depende exclusivamente de la concentración de álcali (Santos, A.; Rodríguez, F.; Gilarranz, M. A.; Moreno, D.; García-Ochoa, F. Kinetic Modeling of Kraft Delignification of Eucalyptus globulus. Ind. Eng. Chem. Res. 1997, 36 (10), 41 14).
Sin embargo, cuando se intensifica la acción del álcali caústico sobre el material lignocelulósico, bien sea por el aumento de la concentración, de la temperatura, del tiempo de residencia, o por la acción conjunta de algunas de estas variables, se produce una degradación de la celulosa constituyente noble y principal de la pasta obtenida, con pérdida de propiedades físicas y químicas de los papeles que se obtienen con estas pastas. Por otro lado, la sulfidez en las lejías blancas empleadas en la cocción ejerce un papel de protección de las fibras celulósicas, de modo que al intensificar la severidad de la cocción y al reducir la sulfidez, diminuyen las propiedades mecánicas de las fibras de celulosa obtenida. Por todo ello, sería deseable poder realizar un proceso de deslignificación extendida donde se consiguieran pastas con poco contenido en lignina (bajos índices kappa) y buenas propiedades mecánicas (baja degradación del polímero celulósico).
Con este fin, se han utilizado aditivos de cocción como quinonas e hidroquinonas (US4213821) o sosa-antraquinona (US5595628). La utilización de antraquinona en las cocciones alcalinas es conocida desde 1977 (Holton, H.H., "Soda Additive Softwood Pulping: A Major New Process", Pulp and Paper Canadá 78(10): T218-T223 (1977)). Su efecto sobre la estabilización de la celulosa fue puesto de manifiesto en 1978 por Lowendahl en L. and Samuelson, O., "Carbohydrate Stabilization During Soda Pulping UIT Addition of Anthraquinone", Tappi 61(2): 19-21, (1978). También se ha utilizado en etapas previas a la cocción (US41273449). Aunque aumenta la velocidad de deslignificación, reduce parcialmente la hidrólisis de los carbohidratos, permite reducir la sulfídez empleada en el proceso, mejora el rendimiento en pasta y reduce la cantidad de productos en la pasta, sin embargo, el uso de antraquinona como catalizador en el proceso kraft tiene algunos inconvenientes como su adhesión a las paredes de los condensadores/evaporadores en las etapas posteriores a la cocción, durante el tratamiento de las lejías negras (US4481073) o, fundamentalmente, su insolubilidad en medio alcalino.
La sal disódica del dihidroxiantraceno ha sido también empleada como aditivo de cocción. Así, el documento Re. 32,943 describe un proceso de cocción de material lignocelulósico a temperaturas comprendidas entre 150 y 180°C en presencia de hidroxiantracenos y derivados, entre los que se encuentra la sal sódica del 9,10- dihidroxiantraceno como aditivo preferido en una proporción 0,01 y 0,1% en peso sobre la madera seca. El documento US 4,363,700 describe igualmente un proceso de cocción de material lignocelulósico a una temperatura entre 145 y 180°C, un contenido en álcali efectivo del 8-40% y sulfídez entre 3-50% (ambos sobre madera seca) donde se emplea como aditivo, entre otros, la sal disódica del dihidroxiantraceno en una cantidad de 0,01 a 5% junto con un agente reductor que puede ser un sulfito, hidrosulfíto, tiosolfato o formato de sodio, potasio o amonio, en una proporción de 0,49 a 5% equivalentes en términos de Na 0. También Tagas Dutta (Tesis, 1998, "Kraft pulping of Douglas-Fir with soluble anthraquinoe") estudió el efecto de la sal disódica del dihidroxiantraceno en la cocción de material lignocelulósico en comparación con el efecto de la antraquinona y concluyó que, durante las primeras etapas de deslignificación, la sal disódica del dihidroxiantraceno tiene peor efecto que la antraquinona sobre el índice kappa de la pasta resultante. No obstante, según avanza la deslignificación y el índice Kappa disminuye tiene un efecto mayor que la antraquinona y, para una misma conversión, con la sal disódica del dihidroxiantraceno se obtienen índices kappa de 7 a 20 unidades más bajos que con antraquinona. Además, el efecto de la sal disódica del dihidroxiantraceno es más pronunciado a niveles de sulfidez más bajos que en el caso de la antraquinona. El mecanismo de acción de la sal disódica del dihidroxiantraceno es bastante similar al de la antraquinona pero, debido a su potencial redox más bajo, el ciclo redox comienza con la reducción de la lignina en lugar de la oxidación de los carbohidratos. Su solubilidad en medio alcalino hace que pueda ser añadida en forma de disolución al sistema de cocción, a diferencia de la antraquinona que, debido a su insolubilidad, se añade en forma de granulos. En los procesos anteriormente descritos la sal disódica del dihidroxiantraceno se añade directamente al reactor de cocción. La presente invención propone, sin embargo, un procedimiento integrado en el proceso de obtención de pastas kraft donde la utilización del aditivo de cocción es más eficaz, especialmente en aquellas etapas de la deslignificación extendida en las que el sulfuro es menos eficaz y en las que las fibras celulósicas experimentan mayor degradación. En concreto, la presente invención propone un procedimiento de deslignificación extendida donde el aditivo se obtiene en paralelo a la cocción y se incorpora al digestor de la materia lignocelulósica en su forma soluble más activa (la sal disódica del dihidroxiantraceno) y en un tiempo previo a las condiciones críticas de degradación de la celulosa permitiendo, al mismo tiempo, reducir la sulfidez y, por tanto, los efectos ambientales debidos al sulfuro durante la cocción y durante la recuperación de las lejías negras. Además, el efecto protector del aditivo sobre el biopolímero celulosa tiene como efecto asociado la mejora de las variables que miden el grado de polimerización de la celulosa, como la viscosidad. DESCRIPCIÓN
La presente invención consiste en el empleo, como aditivo de cocción, de la sal disódica del dihidroxiantraceno, soluble en medio alcalino y directamente activa durante la etapa del proceso de cocción donde se inicia de forma más acusada la hidrólisis alcalina de la celulosa, conocida como reacciones de pelado.
El procedimiento objeto de la presente invención consiste en un proceso de deslignificación de materia lignocelulósica forestal o agrícola o procedente de residuos os subproductos de procesos agrícolas o forestales donde, de forma paralela a la digestión, se lleva a cabo en un reactor auxiliar, la reducción de antraquinona en medio alcalino para obtener la sal disódica del dihidroxiantraceno mediante lejías del mismo proceso krañ o disoluciones que sosa, potasa o cualquier álcali caústico y un agente reductor como sulfuro,bisulfuro, sulfito, bisulfito, hidrosulfito o ditionito de sodio, potasio o cualquier otro catión alcalino o alcalinotérreo.
La conversión de la antraquinona es independiente de la marcha del reactor principal, por lo que se puede alimentar el aditivo de forma soluble y activa desde el reactor auxiliar al digestor principal en la etapa de deslignificación extendida en la que la celulosa puede resultar más degradada por el álcali, mejorando así la obtención de pastas de celulosa, tanto por la mayor eficacia del aditivo catalizador como por su efecto protector sobre la celulosa.
La figura 1 muestra un esquema del proceso de obtención de pastas objeto de la invención. Al reactor auxiliar, se incorpora una pequeña proporción entre un 5% y un 10 % de las lejías de sosa y sulfuro sódico empleadas en el proceso kraft, junto con la cantidad de antraquinona necesaria para dosificar al reactor o al digestor de cocción en la proporción que se determine como óptima, (entre el 0.01 y el 0,5%,) pero generalmente inferior al 0,1% sobre madera seca al aire. Se calienta con agitación, al menos 30 minutos, para completar la conversión del aditivo, a una temperatura superior a 150°C, a presión de saturación a la temperatura alcanzada. En el citado reactor auxiliar tiene lugar la reacción de reducción de la antraquinona a la forma de sal disódica del dihidroxiantraceno, cuya cinética fue estudiada por Rodríguez et al. en "Study of antraquinone reaction with sodium sulphide" (Chem. Eng. J., 63(1996) 37-43).
La temperatura, presión y tiempo de residencia en este reactor se optimiza en casa proceso para que, preferiblemente, el reactor auxiliar opere a una temperatura superior a la del reactor de cocción, de modo que la presión en el reactor auxiliar sea ligeramente superior a la del digestor de cocción. Mediante estas condiciones de presión diferencial positiva entre el reactor auxiliar y el digestor, se facilita la descarga controlada del aditivo de cocción ya convertido en su forma más activa, a través de una conducción en la que se puede intercalar un filtro.
Los estudios termodinámicos previos indican que el ión sulfuro no puede ser oxidado a azufre elemental, sulfato o tiosulfato a temperatura ambiente. A temperatura en torno a 100° C, la reducción de la antraquinona transcurre con formación de sulfato y tiosulfato. A temperaturas superiores a 150° C y pH >12 la conversión de antraquinona (representada por la notación simplificada AQ), transcurre con conversión total de la misma, conforme a la reacción:
4 AQ+ S2' +8 OH"→ 4AQ2" +S04 2" + 4H20
La antraquinona en dispersión reacciona con disminución del tamaño de las partículas sólidas por formación del compuesto soluble, alcanzándose conversiones completas en menos de una hora. Esta reacción hace innecesario el empleo de dispersantes en el aditivo, cuando se emplea en la forma de antraquinona.
En efecto, numerosos estudios relacionados con el empleo de la antraquinona concluyen que el aditivo no es activo hasta su transformación a la forma de sal sódica soluble del dihidroxantraceno, si el aditivo se incorpora al reactor de digestión del material lignocelulósico, purificado de sus impurezas insolubles que están constituidas principalmente por antraceno y sus homólogos, hidrocarburos aromáticos polinucleados, y mediante su reducción en medio alcalino en el reactor auxiliar y se alimenta de esta manera al digestor principal en su forma activa.
Breve descripción de las figuras
La Figura 1 muestra el esquema del proceso propuesto.
Modo de realización de la invención
La invención se ilustra mediante los siguientes ejemplos, los cuales no pretenden ser limitativos de su alcance.
Aunque el procedimiento propuesto es aplicable a cualquier material celulósico, los estudios se han centrado en el la especie forestal Eucalyptus Globulus, que se emplea mayoritariamente en la Península Ibérica. El contenido de lignina total de distintas subespecies de Eucalyptus Globulus está comprendido entre el 25 y el 28% sobre madera seca al aire. Conforme a ensayos realizados y a la bibliografía consultada, se puede considerar que la separación de la lignina residual se inicia cuando se ha separado un 80% de la lignina total; para extender la deslignificación por el proceso krañ se ha de superar el 90% de deslignificación. La cocción hasta un número kappa de las pastas no blanqueadas inferior a 15 exige alcanzar contenidos de lignina residual inferiores al 2,5% en la pasta lavada, antes del blanqueo. Los ensayos se han llevado a cabo con astillas del tamaño estándar, 0,5 x 2,5 x 0,4 cm.
Ejemplo 1
Cocción de referencia Krañ convencional.
Se emplea un digestor por cargas de 6 litros de capacidad, con recirculación de lejías, en el que se efectúa una cocción Krañ, con las siguientes características:
Materias primas y reactivos:
Astillas: E.Globulus de las dimensiones citadas anteriormente.
Lejías:
Hidromódulo: 4:1 L de lejía/ kg de madera seca al aire Álcali activo, como Na20: 35 g/L
Álcali activo, como Na20: 15 %
Álcali eficaz: 13,125 %
Sulfídez: 25%
Condiciones de cocción:
Tiempo hasta alcanzar la temperatura máxima (min): 120
Tiempo de cocción (min): 90
Temperatura máxima (°C): 160
Factor H: 704
Características de las pastas:
índice kappa, IK = 16,0
Viscosidad intrínseca, IV =1335 mL/g
Rendimiento total: 54,3 %
Grado de polimerización = 4756
Ejemplo 2
Cocción Kraft convencional con adición de antraquinona con dispersante y antraquinona según describe el documento "AQ/Surfactant Combination, a Better Digester Additive than AQ". in 91stAnnual Meeting Preprints - Pulp and Paper Technical Association of Canadá. Mon rca , QC, Canadá. 2005.
Se emplea un digestor por cargas de 6 litros de capacidad, con recirculación de lejías, en el que se efectúa una cocción Kraft, con las siguientes características: Materias primas y reactivos:
Astillas: E. Globulus de las dimensiones citadas anteriormente.
Lejías:
Hidromódulo: 4: 1 L de lejía/ kg de madera seca al aire
Sulfídez, como IS: 25%
Álcali activo, como Na20: 15 %
Álcali eficaz: 13,125 % Antraquinona (AQ): 0,05% sobre madera seca al aire
Condiciones de cocción:
Tiempo hasta la temperatura máxima: 120 minutos
Tiempo de cocción: 90 minutos
Temperatura máxima: 160 °C
Factor H= 704
Características de las pastas:
índice kappa, IK = 14,3
Viscosidad intrínseca, IV =1452 mL/g
Rendimiento total: 56,1 %
Grado de polimerización = 5217
Ejemplo 3
Cocción especial, realizada según el procedimiento propuesto:
Se emplea un digestor por cargas de 6 litros de capacidad, con recirculación de lejías, en el que se efectúa una cocción Kraft, con las siguientes características:
Materias primas y reactivos:
Astillas: E. Globulus de las dimensiones citadas anteriormente.
Lejía:
Hidromódulo: 4: 1 L de lejía/ kg de madera seca al aire
Álcali activo, como Na20: 15% sobre madera seca
Sulfidez: 5%
Álcali eficaz: 14,625%
Condiciones de cocción
Tiempo hasta la temperatura máxima: 120 minutos
Tiempo de cocción: 120 minutos
Temperatura máxima: 170°C Factor H: 2073
Paralelamente a la cocción de la madera, se dispone un reactor auxiliar, de 1L de capacidad total y 0,5 L de capacidad útil en el que se efectúa la reacción de reducción de la antraquinona a la sal disódica del dihidroxiantraceno, en disolución alcalina con una lejía de composición semejante a la alimentada en el digestor.
Lejía:
Na OH = 50g/L como NaOHo 38,75 g/L como Na2 O
Na2S =2,60 g/L como Na2So 2,07 g/L como Na20
Que corresponden a 40,8 g/L de álcali activo como Na20, y 37,71 g/L como álcali efectivo y sulfidez del 5%.
Antraquinona, concentración inicial de 0,5 g/L, que una vez incorporada al digestor, da lugar a una proporción de 0,025 % de antraquinona equivalente, sobre madera seca al aire.
La adición de la sal disódica del dihidroxiantraceno, tiene lugar en una disolución alcalina de composición inicial semejante a la alimentada en el digestor.
La temperatura del reactor se eleva a 175°C, con una rampa de una hora; a esta temperatura, se alcanza una presión aproximada de 892 kPa. Se mantiene la temperatura en el reactor auxiliar agitado, durante 30 minutos, en estas condiciones se alcanza la conversión total de la antraquinona a la forma de sal disódica de dihidroxiantraceno (DDA). A la temperatura de 175 °C en el reactor auxiliar se alcanza una presión aproximada de 100kPa superior a la existente en el digestor a 170°C. Esta diferencia de presiones favorece la descarga de este reactor en el digestor, incluso permite la retención de las impurezas no solubilizadas presentes en la antraquinona, a través de un filtro intercalado entre ambos.
Características de las pastas:
índice kappa, IK = 1 1.7 Viscosidad intrínseca, IV =1625 mL/g
Rendimiento total: 53,1.0 %
Grado de polimerización = 5904 En la tabla ser resume el resultado de la deslignificación llevada a cabo según los ejemplos mostrados.
Convencional AQ + Dispersante DDA integrado
Lejías
Hidromódulo 4 4 4
Álcali Activo (%) 15 15 15
Álcali Efectivo (%) 13,125 13,125 14,625
Sulfidez (%) 25 25 5
Aditivo AQ (0,05%) 0,025% AQ
equivalente
Condiciones Cocción * * *
Tiempo hasta TmáX 120 120 120
(min) 90 90 120
Tiempo cocción (min) 160 160 170
Tmáx ( C) 704 704 2073
Factor H 618 618 792
Presión absoluta
(kPa)
Reactor auxiliar
Capacidad total (L) 1
Capacidad útil (L) 0,5
NaOH (g/L) 50
Na2S (g/L) 2,60
Sulfidez (%) 5
AQ (g/L) 0,5 Tiempo hasta TmáX 90
(min) 175
Tmáx ( C) 892
Presión absoluta 30
(kPa)
Tiempo agitación
(min)
Características pastas
índice Kappa 16,0 14,3 11,7
Viscosidad intrínseca 1335 1452 1625
(mL/g) 54,3 56,1 53,1
Rendimiento total 4756 5217 5904
\ '°)
Grado polimerización
Hidromódulo: litros lejía / kg made Álcali Activo: NaOH + Na2S Álcali Efectivo: NaOH + ½ Na2S Sulfidez: NaOH/(NaOH+Na2S)
Se pone de manifiesto, por comparación entre estos ejemplos que el objetivo fundamental de la descarga del aditivo en el digestor es la optimación de la protección de la celulosa, de modo que se incorpore al reactor en la fase de la cocción en que resulta más necesaria. En efecto, durante las primeras etapas de la cocción, la celulosa está protegida por la lignina cementante y por las hemicelulosas. También cabe destacar que la presencia de sulfuro sódico no tiene un efecto apreciable sobre la cinética en la fase avanzada de la deslignificación profunda, aunque si mantiene su efecto protector sobre la celulosa. Pero cuando se incorpora el sulfuro al comienzo del proceso, una parte importante del mismo se ha consumido cuando se alcanzan las etapas más críticas desde el punto de vista de la degradación de la celulosa. La forma reducida de la antraquinona presenta efectos de protección sobre la celulosa, que se hacen más necesarios a medida que se han eliminado, por disolución en la lejía, de la lignina cementante de las fibras. También se ha comentado que en el proceso de deslignificación extendida, una proporción mayoritaria de la lignina ha pasado a las lejías, y gran parte de las hemicelulosas han pasado a disolución, por lo que el efecto de degradación del álcali sobre la celulosa se hace más intenso. En nuestra experiencia, para igual grado de deslignificación dado por el índice Kappa, y especialmente para valores de este índice bajos (deslignificación extendida) todos los aspectos reseñados contribuyen a un mayor rendimiento de pastas, mejor calidad de las mismas y menores cargas contaminantes en su producción.

Claims

REIVINDICACIONES
1. Procedimiento de obtención de pastas de celulosa de bajo índice Kappa por cocción krañ de materia lignocelulósica empleando como aditivo la sal disódica del dihidroxiantraceno caracterizado porque el aditivo de cocción se activa en un reactor auxiliar por reducción de antraquinona en medio básico y se introduce a la cocción en la etapa de deslignificación extendida.
2. Procedimiento de obtención de pastas de celulosa de bajo índice Kappa por cocción kraft de materia lignocelulósica empleando como aditivo la sal disódica del dihidroxiantraceno, según reivindicación 1, donde el medio básico es una disolución de sosa, potasa o cualquier álcali cáustico y el agente reductor es sulfuro, bisulfuro, sulfito, bisulfito, ditionito o hidrosulfito de sodio, potasio o cualquier otro catión alcalino o alcalinotérreo.
3. Procedimiento de obtención de pastas de celulosa de bajo índice Kappa por cocción kraft de materia lignocelulósica empleando como aditivo la sal disódica del dihidroxiantraceno, según reivindicaciones 1 y 2, donde la reducción de antraquinonas se lleva a cabo con lejías kraft de hidróxido sódico y sulfuro sódico.
4. Procedimiento de obtención de pastas de celulosa de bajo índice Kappa por cocción kraft de materia lignocelulósica empleando como aditivo la sal disódica del dihidroxiantraceno, según reivindicaciones anteriores, donde la presión del reactor auxiliar es superior a la presión en el reactor de cocción y el aditivo se introduce desde el reactor auxiliar al reactor de cocción por diferencia de presión.
5. Procedimiento de obtención de pastas de celulosa de bajo índice Kappa por cocción kraft de materia lignocelulósica empleando como aditivo la sal disódica del dihidroxiantraceno, según reivindicación 1, donde opcionalmente se puede purificar el aditivo de sus impurezas no activas, mediante retención en un filtro antes de ser dosificado desde el reactor auxiliar al reactor de cocción. Procedimiento de obtención de pastas de celulosa de bajo índice Kappa por cocción kraft de materia lignocelulósica empleando como aditivo la sal disódica del dihidroxiantraceno, según reivindicaciones anteriores, donde la materia lignocelulósica es forestal o agrícola o residuos o subproductos de procesos agrícolas o forestales.
PCT/ES2012/000161 2011-06-09 2012-06-08 Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno WO2012168513A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201100656 2011-06-09
ES201100656A ES2393596B2 (es) 2011-06-09 2011-06-09 Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno.

Publications (1)

Publication Number Publication Date
WO2012168513A1 true WO2012168513A1 (es) 2012-12-13

Family

ID=47295528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000161 WO2012168513A1 (es) 2011-06-09 2012-06-08 Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno

Country Status (2)

Country Link
ES (1) ES2393596B2 (es)
WO (1) WO2012168513A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220049381A1 (en) * 2018-12-21 2022-02-17 Lenzing Aktiengesellschaft Cellulose raw material and method for recycling a cellulose raw material from blended textile waste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181565A (en) * 1976-12-10 1980-01-01 Honshu Seishi Kabushiki Kaisha Process for cooking lignocellulosic material in the presence of hydroxyanthracenes and derivatives thereof
US4363700A (en) * 1977-12-14 1982-12-14 Oji Paper Co., Ltd. Process for pulping lignocellulosic material with an alkaline sulfide cooking liquor containing an accelerating additive and reducing assistant
JPS63126984A (ja) * 1986-11-11 1988-05-30 川崎化成工業株式会社 リグノセルロ−ス材料の脱リグニン方法
US4764252A (en) * 1979-03-23 1988-08-16 Oji Paper Co., Ltd. Process for pulping lignocellulosic material with a preoxidized alkaline sulfide pulping liquor containing a cyclic organic compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4181565A (en) * 1976-12-10 1980-01-01 Honshu Seishi Kabushiki Kaisha Process for cooking lignocellulosic material in the presence of hydroxyanthracenes and derivatives thereof
US4363700A (en) * 1977-12-14 1982-12-14 Oji Paper Co., Ltd. Process for pulping lignocellulosic material with an alkaline sulfide cooking liquor containing an accelerating additive and reducing assistant
US4764252A (en) * 1979-03-23 1988-08-16 Oji Paper Co., Ltd. Process for pulping lignocellulosic material with a preoxidized alkaline sulfide pulping liquor containing a cyclic organic compound
JPS63126984A (ja) * 1986-11-11 1988-05-30 川崎化成工業株式会社 リグノセルロ−ス材料の脱リグニン方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220049381A1 (en) * 2018-12-21 2022-02-17 Lenzing Aktiengesellschaft Cellulose raw material and method for recycling a cellulose raw material from blended textile waste

Also Published As

Publication number Publication date
ES2393596A1 (es) 2012-12-26
ES2393596B2 (es) 2013-05-09

Similar Documents

Publication Publication Date Title
Li et al. Hydrogen peroxide bleaching of hardwood kraft pulp with adsorbed birch xylan and its effect on paper properties
US3698995A (en) Digestion and bleaching of wood pulp followed by recovery of chemicals and countercurrent flow of wash water
BR112021000329B1 (pt) Processo para separação da parte celulósica de uma composição de matéria-prima compreendendo poliéster e composição contendo celulose
BRPI0618527A2 (pt) uma nova polpa celulósica e processo para polpação
US4507172A (en) Kraft pulping process
Paananen et al. High-alkali low-temperature polysulfide pulping (HALT) of Scots pine
CN101967771B (zh) 一种改善纸浆漂白性能的方法
ES2393596B2 (es) Procedimiento para la cocción kraft de material lignocelulósico con lejías alcalinas de baja sulfidez en la fabricación de pasta con incorporación directa al digestor de la sal disódica del dihidoxiantraceno.
US1689534A (en) Cyclic process for the manufacture of kraft pulp
BR112014024776B1 (pt) Método de branqueamento de polpa
CA2203096C (en) Batch process for preparing improved kraft pulp
JPH05163690A (ja) クラフトパルプの製造方法
US5385641A (en) Delignification of cellulosic raw materials using acetic acid, nitric acid and ozone
JPH0314687A (ja) 過酸化水素を補給した酸素脱リグニン化法
US4384921A (en) Alkaline sulfite pulping process with sodium aluminate and anthraquinone
FI73020C (fi) Foerfarande foer delignifiering/blekning av cellulosamassa.
AU2008202566B2 (en) Processes and Systems for the Bleaching of Lignocellulosic Pulps Following Cooking with Soda and Anthraquinone
US5507912A (en) Kraft pulping process wherein sulphide-rich and sulphide-lean white liquors are generated
WO1995032331A1 (en) Sulphidic impregnation of chips for alkaline pulping
EP1520070A1 (en) Bleaching of lignin and process for producing paper
EP0262988A2 (en) Manufacture of pulp
US3092535A (en) Sulphite pulping process
Shafiei et al. Alkaline-sulfite/anthraquinone (AS/AQ) pulping of old corrugated container and elemental chlorine free (ECF) bleaching of the pulp
JP2001192991A (ja) アルカリパルプの漂白方法
Lindström et al. The effect of polysulfide pretreatment when kraft pulping to very low kappa numbers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12796001

Country of ref document: EP

Kind code of ref document: A1