WO2012163064A1 - 互感器全自动化检定系统和方法 - Google Patents

互感器全自动化检定系统和方法 Download PDF

Info

Publication number
WO2012163064A1
WO2012163064A1 PCT/CN2011/082916 CN2011082916W WO2012163064A1 WO 2012163064 A1 WO2012163064 A1 WO 2012163064A1 CN 2011082916 W CN2011082916 W CN 2011082916W WO 2012163064 A1 WO2012163064 A1 WO 2012163064A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
verification
line
robot
test
Prior art date
Application number
PCT/CN2011/082916
Other languages
English (en)
French (fr)
Inventor
王炜
朱炯
张燕
黄金娟
吴坚
李熊
周永佳
严华江
Original Assignee
浙江省电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110145994A external-priority patent/CN102323560A/zh
Priority claimed from CN201110198630.0A external-priority patent/CN102353921B/zh
Priority claimed from CN2011101970228A external-priority patent/CN102305920B/zh
Priority claimed from CN201110198519.1A external-priority patent/CN102353920B/zh
Priority claimed from CN2011102080863A external-priority patent/CN102353922B/zh
Priority claimed from CN201110247680.3A external-priority patent/CN102331568B/zh
Application filed by 浙江省电力公司 filed Critical 浙江省电力公司
Priority to US13/980,556 priority Critical patent/US9562916B2/en
Publication of WO2012163064A1 publication Critical patent/WO2012163064A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station

Definitions

  • the present application claims priority to Chinese Patent Application No. 201110198630.0, entitled “Instrumental Automated Verification Device”, filed on July 14, 2011, the entire contents of which is incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of electrical equipment, and in particular, to a current transformer verification system and method.
  • a current transformer applied in a power grid is a small current required to reduce a large current in a primary line to a secondary measurement loop, and mainly realizes electrical isolation and equal-scale measurement at both ends of the high and low voltage.
  • the current transformer for metering is one of the main measuring instruments used for trade settlement in the power grid and belongs to the national mandatory verification specification. Every metering current transformer needs to pass the first verification and periodic verification. After normal use. With the rapid development of the economy, the new quantity and quantity of current transformers for metering have risen sharply. The traditional manual verification method has been unable to adapt quickly due to problems such as low work efficiency, high labor intensity, and manual wiring intervention verification results. With the increasing demand for transformer testing, it is imperative to develop a fully automatic transformer calibration system.
  • the traditional transformer verification device adopts a semi-automatic operation mode to manually complete the connection and disconnection work of the transformer, and the verification device automatically completes the basic error verification project.
  • insulation tests such as insulation resistance test, withstand voltage test, turn-to-turn insulation test and magnetic saturation margin test, need to be manually performed manually, and the work efficiency is low. Even limited by the capabilities of the verification device, some verification projects cannot be completed.
  • Low-voltage current transformers are divided into busbar type (busbar type) and retanning type (reverse type).
  • the primary winding crimping methods of the two transformers are different, and the different sizes of the busbar transformers have different appearance dimensions, central apertures and positions. Therefore, the transformer calibration system needs to adapt to the different wiring of the busbar and the rectifying current transformer. Ways and different size requirements.
  • the existing single-set transformer automatic verification device can not meet the verification requirements of a large number of transformers, and can not reflect the advantages of automated assembly line operation. Therefore, the transformer verification system needs to consider the organic combination of multiple sets of transformer verification devices.
  • the technical problem to be solved by the present invention and the technical task to be solved are to improve and improve the prior art solution, and provide a fully automatic verification system for the transformer to achieve the purpose of fully automatic verification and effectively improve the efficiency and accuracy of the verification.
  • the present invention adopts the following technical solutions.
  • the transformer automatic verification system comprises: conveying the turnover box to transport the turnover box containing the transformer to be tested from the storage system to the loading station and the installed mutual sense in the unloading station
  • the turnover box of the device is transported back to the feeding conveying line of the storage system;
  • the loading device for moving the transformer located at the material processing line on the feeding conveying line to the loading line of the inspection conveying line;
  • An inspection conveyor line for moving the transformer to each verification device;
  • an insulation test device preventive test device) for detecting the insulation resistance, power frequency withstand voltage and turn-to-turn insulation of the transformer; for detecting the transformer Error calibrating device for basic error and magnetic saturation margin; for burning identification information on qualified transformers Laser marking device;
  • a feeding device for transferring the detected transformer from the detecting conveyor line to the feeding conveying line beside the feeding station of the feeding conveying line; for controlling each device and feeding a verification management system for coordinating work between the line and the verification conveyor line and accurately sorting the transformer according to the feedback information of the insulation test device and the error
  • the present invention also includes the following additional technical features.
  • the transformer automatic verification system further comprises an appearance inspection device for photographing and processing the appearance of the transformer in front of the insulation test device; and an insulation test arranged on the frame body next to the verification conveyor line
  • the device and an error verification device constitute a test device group, and the system is provided with a plurality of test device groups arranged side by side; the beginning and the end of the verification transmission line are connected, and the verification transmission line is provided with a matching transmission line for carrying the mutual inductance
  • the tooling board of the device sequentially transports the transformer to the visual inspection station, the insulation test station, the error verification station and the laser marking station, and completes the online verification and transportation task of the whole transformer project.
  • Multiple test device groups coordinate operations, uniform beats, and improve efficiency.
  • the visual inspection device includes a camera, a picture storage and processing unit, the camera sequentially takes photos of the transformers on the visual inspection station, and names the photos according to certain rules, performs image recognition and content comparison on the photos, and analyzes the detected transformers. Whether the nameplate content is complete and the body is in good condition.
  • the supply conveying line comprises a frame body, a driving motor arranged on the frame body for driving the belt to move forward, a belt line connected to the rotating shaft of the driving motor, and an accurate stop belt line disposed on the frame body. a stop mechanism of the tooling plate, a counter for counting the transformer on the frame body, a bar code scanner for inputting information of the transformer on the frame body, and a sorting mechanism for sorting the transformer
  • the input end and the output end of the feed conveying line are respectively connected to the outlet port and the storage port of the storage system.
  • the feeding conveyor line can realize the mixed flow conveying and accurate sorting of multi-standard measuring instruments, and can complete the quantitative and fixed material feeding to the corresponding transformer automatic testing system, so that the tested transformers are in the upper and lower materials. The position is accurately positioned to wait for the loading and unloading device to operate.
  • the loading device includes a loading robot for accurately placing a to-be-tested transformer on a supply conveyor line on a verification conveyor line tooling plate, and the loading robot is provided with a loading robot for controlling a controller for robotic action, a loading clamp that can be coupled to the lower end of the robot, and a transfer platform for precise positioning of the transformer;
  • the unloading device includes means for placing the detected transformer on the verification conveyor line
  • a blanking robot on the feeding conveyor line the blanking robot is provided with a blanking robot, a controller for controlling the movement of the robot hand, and a blanking fixture capable of connecting with the lower end of the blanking robot.
  • the upper and lower material clamps can be adapted to all the specifications of the transformer.
  • the loading robot is provided with a positioning platform for precise positioning of the transformer, and the loading robot grabs the transformer from the feeding conveying line and places it into the positioning platform for positioning, and the positioning platform performs secondary precise positioning according to the transformers of different specifications. , the loading robot is grabbed again and placed on the tooling plate located on the inspection conveyor line.
  • the insulation test device and the error verification device each include a second verification unit and a first verification unit which are sequentially arranged on the side of the conveyor line according to the advancement direction of the verification conveyor line, and the first verification unit and the second verification unit are once large.
  • the connection between the current conductor and the power supply is switched by a relay.
  • the cycle of the transformer calibration is accelerated, and the continuous high current test for a long time lacks the heat dissipation time, which will cause the temperature rise to be too high and may even damage the verification device.
  • a verification device is divided into two verification units, and is energized at the wrong time.
  • the first and second verification units respectively comprise a bus-type current transformer primary connection mechanism, a re-type current transformer primary connection mechanism and a secondary pressure connection mechanism; the bus-type current transformer primary connection mechanism and the re-compression
  • the primary wiring mechanism of the current transformer is a wiring mechanism that can move back and forth, and both are arranged on both sides of the conveyor line during standby. Suitable for busbar and tamping current transformer verification. During standby, the two are placed on both sides of the conveyor line to avoid mutual interference. When a transformer is inspected, the corresponding one-time wiring mechanism moves to the verification conveyor line.
  • the bus-type current transformer primary wiring mechanism includes a bus-type front and rear driving assembly that can move forward and backward on the frame body, and an entry side robot and an output side robot that are respectively connected to the left and right ends of the front and rear driving components, and are arranged to enter. a side gripper and an openable gripper at the lower end of the output robot, a piercing copper rod held by the air gripper for inserting a plurality of busbar type current transformers; and a columnar copper head for connecting the power cord outside the gripper
  • the two-claw and the through-core copper rod of the bus-type current transformer primary wiring mechanism can form a closed loop to realize the primary side series detection of a plurality of bus-type current transformers.
  • the primary connection mechanism of the tamping type current transformer includes a front and rear drive that can move forward and backward on the frame body
  • the movable component a plurality of side-by-side crimping assemblies for connecting the primary side of the corresponding cascading current transformer on the front and rear driving components of the cascading current transformer, the crimping component comprises a clamping retrace Upper and lower conductive clamping blocks of the primary side terminal of the current transformer.
  • the secondary pressure line mechanism comprises a secondary pressure-carrying line lower drive assembly connected to the frame body and movable up and down, and the lower end of the lower pressure drive line on the secondary pressure line is provided with a plurality of vertical for the transformer A conductive rod connected at the secondary end.
  • the verification management system has a task management function module, which is used to obtain a work task from the production scheduling platform, and initiates a warehouse application to the storage system, and performs task decomposition on different verification units and different stations according to the production task; , for triggering the automatic loading and unloading of the robot, controlling the conveying line body to distribute the detected transformer to the corresponding verification station, completing the multiple sets of verification devices and the plurality of verification units; and verifying the control function module for automatically completing The primary winding and secondary winding crimping operations required by the transformer calibration project, the control of the up-converter and the measuring instrument to complete the verification project, and the storage error data; the data processing and analysis function module, which is used to verify the transformer or not. Judgment, analysis and statistics of the completion rate and failure rate of the transformer verification task.
  • the invention also provides a fully automated verification method for a transformer, comprising the following steps:
  • feeding step transferring the transformer to be tested from the outlet of the storage system to the loading station via the feeding conveyor;
  • the loading robot grabs the transformer on the feeding conveyor line to the tooling plate located on the verification conveying line, and binds the tooling board and the transformer information to record the transformer information;
  • the tooling plate enters the visual inspection station under the driving of the verification conveying line, and the camera takes a photo of the transformer, and the visual inspection device compares the photograph taken with the stored corresponding image to analyze the detected mutual transformer. Whether the nameplate content is complete, the body is intact, and recorded;
  • the tooling board reaches the insulation test station along with the verification conveyor line, a certain number of tooling plates enter the corresponding insulation test station under the driving of the verification conveyor line, and the insulation test device on the insulation test station senses the mutual inductance.
  • the primary winding and the secondary winding are crimped, and the programmable power supply outputs 380V or 220V voltage to the booster and booster.
  • the riser generates low voltage and large current
  • the booster generates DC and AC voltage.
  • Error verification step after the insulation test is completed, the tested transformer follows the verification conveyor line and flows into the error verification station.
  • the error verification device on the error verification station crimps the primary winding and the secondary winding of the transformer, and the programmable power supply outputs 380V. Or 220V voltage to the current riser, the current riser generates low voltage and large current, and the low voltage and large current flow through the primary wire connected to the output of the current riser through the primary winding of the transformer to be tested connected in series, and is connected with the secondary winding crimping mechanism
  • the transformer calibrator measures the output current of the secondary winding of the transformer, completes the error test and the magnetic saturation margin test, realizes the automatic verification, and records the unqualified products;
  • the unloading robot grabs the qualified transformer on the tooling plate of the verification conveyor line and puts it into the box on the feeding conveyor line. After the boxing, the box body is transported to the storage line with the supply line. system.
  • the insulation test device and the error verification device are divided into a first verification unit and a second verification unit, and a group of 12 transformers are equally divided into two groups, which sequentially enter the first verification unit and the second verification unit; the first verification of the insulation test device
  • the second verification unit of the insulation test device completes the wiring of the first and second windings, and is in the state of waiting for the power-on test; the first verification unit of the insulation test device is energized and tested for the 6 transformer, and the insulation is completed.
  • the second verification unit of the test device starts the power-on test, and then the first verification unit of the 6-instrument inflow error verification device of the first verification unit of the insulation test device is connected to the 6-electrode after the connection test, and the insulation test device is After the power-on test of the 6 transformers, the second verification unit flows into the 6-module power-on test of the second verification unit of the error verification device.
  • the transformer automatic verification system of the embodiment of the invention has wide application range, and can be applied to verification of bus-type and reclamation current transformers; multiple verification devices coordinate operations, and the robot completes automatic loading and unloading to realize transformers
  • FIG. 1 is a schematic structural view of a fully automated test system for a transformer according to an embodiment of the present invention.
  • 2 is a flow chart showing the working process of the fully automatic testing system of the transformer according to the embodiment of the present invention;
  • FIG. 3 is a schematic diagram showing the planar structure of the primary core-piercing mechanism according to the embodiment of the present invention;
  • FIG. 4 is a schematic perspective view showing a three-dimensional structure of a primary thread-piercing mechanism according to an embodiment of the present invention
  • FIG. 5 is an exploded view of a manipulator of a primary threading mechanism according to an embodiment of the present invention.
  • FIG. 6 is a perspective view showing a three-dimensional structure of a primary crimping mechanism of a tamping type current transformer according to an embodiment of the present invention
  • FIG. 7 is an exploded view of a primary crimping mechanism of a tamping type current transformer according to an embodiment of the present invention
  • FIG. 8 is a schematic structural view of a secondary crimping mechanism for error testing according to an embodiment of the present invention
  • FIG. 10 is a cross-sectional view of a secondary crimping mechanism for error testing according to an embodiment of the present invention
  • FIG. 11 is a cross-sectional view of a transformer according to an embodiment of the present invention; Schematic diagram of the structure when testing the tooling plate;
  • FIG. 12 is a schematic structural view of a toolboard for in-line detection of a transformer according to an embodiment of the present invention
  • FIG. 13 is a front view of a tooling plate for in-line detection of a transformer according to an embodiment of the present invention
  • FIG. 14 is a schematic structural diagram of a primary wiring mechanism of a bus-type current transformer according to an embodiment of the present invention
  • FIG. 15 is a schematic structural diagram of a primary wiring mechanism of a cascading current transformer according to an embodiment of the present invention
  • FIG. 1 is a schematic structural diagram of a fully automated test system for a transformer according to an embodiment of the present invention.
  • the transformer automatic verification system comprises: a supply conveying line 2, a feeding device 3, an authentication conveying line 4, an appearance inspection device 9, an insulation testing device 5, an error detecting device 6, and a laser marking device 7 , the unloading device 8 and the verification management system.
  • the feed conveying line 2 is used for conveying the tote box 1 and the totes 1 containing the transformer to be inspected are returned to the storage system.
  • Feeding device 3 Located next to the feeding station of the feeding conveyor line 2, it is used to move the transformer located at the feeding station of the feeding conveying line 2 to the verification conveying line 4.
  • Verify conveyor line 4 Used to move the transformer to the corresponding station of each device.
  • Visual inspection device 9 Used to take pictures of the appearance of the transformer and process it.
  • Insulation test device 5 Used to test the insulation resistance, power frequency withstand voltage and turn-to-turn insulation of the transformer.
  • Error Detector 6 Used to detect transformer basic error measurement and magnetic saturation margin.
  • Laser marking device 7 For burning identification information on qualified transformers.
  • Cutting device 8 located next to the feeding station of the feeding conveyor line 2, for transferring the tested transformers from the verification conveying line 4 to the feeding conveying line 2, sorting the qualified and unqualified transformers to Different totes 1 in.
  • Verification management system A verification management system for controlling the coordination test results of each device, the supply conveyor line 2, the verification conveyor line 4, and the feedback test results of the insulation test device 5 and the error verification device 6.
  • the visual inspection device 9, the insulation test device 5, the error detecting device 6, and the laser marking device 7 are sequentially arranged in the advancing direction of the verification transport line 4.
  • the transformer automatic verification system of the embodiment of the invention may be provided with a plurality of test device groups arranged side by side.
  • the transformer automatic verification system according to the embodiment of the present invention may specifically have two or more test device groups, and FIG. 1 shows a case where five test device groups are provided.
  • Each test device set includes an insulation test device 5 and an error check device 6.
  • the starting end and the end of the verification conveying line 4 are connected, and the verification conveying line 4 is provided with a tooling plate 10 for supporting the transformer, which is matched with the verification conveying line 4.
  • the supply conveying line 2 comprises a frame body, a driving motor arranged on the frame body for driving the belt to move forward, a belt line connected to the rotating shaft of the driving motor, and/or a frame body for accurate stopping a stop mechanism of the transformer on the belt line, and/or a counter provided on the frame for counting the transformer, And/or a bar code scanner for inputting the information of the transformer on the frame and a sorting mechanism for sorting the transformer.
  • the input end and the output end of the feed conveying line 2 are respectively used to connect the storage port and the storage port of the storage system.
  • the loading device 3 includes a loading robot for accurately placing the to-be-tested transformer on the supply conveying line 2 on the inspection conveyor line 4 tooling plate 10.
  • the loading robot includes a loading robot, a controller for controlling the movement of the robot, a loading jig connected to the lower end of the robot, and a relay platform for secondary positioning of the transformer.
  • the unloading device 8 includes a blanking robot for placing the detected transformer on the verification conveyor line 4 on the supply conveyor line 2.
  • the blanking robot includes a blanking robot, a controller for controlling the movement of the robot, and a blanking fixture connected to the lower end of the blanking robot.
  • the loading robot is provided with a positioning platform for precise positioning of the transformer, and the loading robot picks up the transformer from the feeding conveying line 2 and places it in the positioning platform of the loading robot, and the positioning platform performs the transformer according to different specifications. After the second precise positioning, the loading robot hand grabs again and puts it on the tooling plate 10 on the verification conveying line 4;
  • the insulation test device 5 and the error check device 6 each include a second verification unit and a first verification unit which are sequentially arranged on the side of the transport line in the advancing direction of the verification transport line 4.
  • connection between the primary current line of the first verification unit and the second verification unit and the power source is switched by a relay.
  • the first and second verification units respectively include a bus-type current transformer primary connection mechanism, a re-type current transformer primary connection mechanism, and a secondary pressure connection mechanism.
  • the primary wiring mechanism of the bus-type current transformer and the primary wiring mechanism of the reflow type current transformer are both front and rear moving connection mechanisms, and the primary wiring mechanism of the bus-type current transformer and the primary wiring mechanism of the reflow type current transformer are separately set in standby mode. On both sides of the verification conveyor line (4).
  • the busbar current transformer primary wiring mechanism includes a busbar type front and rear drive assembly, an entry side robot and an output side robot, a gripper and a through-heart copper rod.
  • the busbar type front and rear drive components can realize the moving bus type on the frame body before and after;
  • the entry side robot and the output side robot are respectively connected to the left and right ends of the front and rear drive components, and can move up and down.
  • the air gripper is provided at the lower end of the entry side robot and the output side robot, and can be opened and closed.
  • the cored copper rod is held by the air gripper and is used to thread a plurality of busbar type current transformers.
  • a columnar copper head is arranged on the outer side of the air gripper, and the columnar copper head is used for connecting the power line.
  • the two air grippers and the through core copper rod of the primary current transformer of the busbar type current transformer can form a closed loop, thereby realizing a plurality of busbar type current transformers. Primary side series detection.
  • the primary connection mechanism of the recuperative current transformer includes a front and rear drive assembly that can move back and forth on the frame body, and a plurality of side-by-side pressures for connecting the primary side of the corresponding cascading current transformer in series on the front and rear drive components. Connect the components.
  • the crimping assembly includes upper and lower conductive clamping blocks that can clamp the primary side terminals of the cascading current transformer.
  • the secondary pressure line mechanism comprises a secondary pressure line on the secondary connection connected to the frame body, and the lower end of the lower drive unit is provided with a plurality of vertical ends for connection with the secondary end of the transformer. Conductive rod.
  • the insulation test device 5 has two types of primary winding crimping mechanisms, which are respectively applicable to the reciprocating and busbar type transformers.
  • the primary crimping mechanism of the reclamation transformer (ie, the recuperative current transformer) adopts a clamp-type structure.
  • the primary crimping mechanism of the reclamation transformer adopts a clamp-type structure.
  • the primary winding, the clamp fixture and the primary winding of the transformer form a large current closed loop.
  • the clamp clamp stops on the verification conveying side.
  • the clamp clamp is laterally translated and close to the verification conveyor line 4 to complete a crimping operation.
  • the primary connection mechanism of the recuperative current transformer includes a front and rear drive component of a retractable current transformer that can move back and forth on the frame body, and a plurality of side by side drive components disposed on the front and rear drive components of the retractable current transformer.
  • the crimping assembly 5-602 for connecting the primary side of the corresponding cascading current transformer, the crimping assembly 5-602 includes upper and lower conductive clamping capable of holding the primary side terminal of the cascading current transformer Block 5-603.
  • the primary crimping mechanism of the reclamation type current transformer may specifically include a "z"-shaped connecting bracket 2-1, The upper insulating plate 2-2 above the connecting bracket 2-1, the lower insulating plate 2-3 disposed under the connecting bracket 2-1, the cylinder 2-401 is fixed to the upper insulating plate 2-2 and the movable rod 2-402
  • the cylinder 2-4 connected to the lower insulating plate 2-3 through the connecting bracket 2-1 is located between the upper insulating plate 2-2 and the lower insulating plate 2-3 for holding the primary end of the cascading current transformer
  • the conductive clamping block 2-5 and the lower conductive clamping block 2-6 are connected to the connecting bracket 2-1 and the upper and lower ends are respectively slidably connected to the upper and lower insulating plates 2-2 and 2-3 for guiding plural
  • the root bracket guide rod 2-7, the lower end of the movable rod 2-402 is screwed to the nut 2-403, and the upper surface of the nut 2-403 is abutted against the lower surface of the lower
  • the upper conductive clamping block 2-5 can be specifically passed through a clamping block guide with a large compression spring 2-9.
  • Sliding bearings 2-12 are provided in the guide rod holes of the upper and lower insulating plates 2-2 and 2-3 for driving the bracket guide rods 2-7 and the clamping block guide rods 2-10, the sliding bearings 2-12 protrudes from the inner surfaces of the upper and lower insulating plates 2-2, 2-3, and the large and small compression springs 2-9, 2-8 are jacketed on the sliding bearings 2-12.
  • the upper and lower ends of the bracket guides 2-7 are screwed to the cover bolts 2-11 which can be opposed to the upper and lower insulating plates 2-2 and 2-3.
  • the upper and lower conductive clamping blocks 2-5, 2-6 are located before the connection bracket 2-1, and the upper and lower conductive clamping blocks 2-5, 2-6 are provided with two clamping block guides 2-10.
  • the connecting bracket 2-1 is provided with four or two bracket guides 2-7, and the movable rod of the cylinder 2-4 is located in the middle of the bracket guides 2-7.
  • the upper insulating plate 2-2 is connected with two upper and lower conductive clamping blocks 2-5 disposed on the left and right sides, and the lower insulating plate 2-3 is connected with two lower conductive clips opposite to the upper conductive clamping blocks 2-5.
  • the rear part of the connecting bracket 2-1 is fixed with a large carriage that can be moved back and forth, and a plurality of connecting brackets 2-1 are fixed on a large carriage to simultaneously drag a plurality of pressing devices, which are located on the leftmost side of the large pallet or
  • An upper conductive clamping block 2-5 and a lower conductive clamping block 2 opposite to the upper conductive clamping block 2-5 are respectively disposed on the upper and lower insulating plates 2-2 and 2-3 of the rightmost crimping device. -6.
  • the bus-type current transformer primary wiring mechanism includes a bus-type current transformer front-rear driving component that can move forward and backward on the frame body, and can be moved up and down respectively with the left and right ends of the front and rear driving components.
  • the side robot 5-502 and the output side robot, the openable claws 5-504 provided at the lower side of the entry side robot 5-502 and the output side robot, and the two pneumatic claws 5-504 are matched for the plurality of bus bars.
  • the outer side of the air gripper 5-504 is provided with a cylindrical copper head 5-506 for connecting the power line, and the two pneumatic claws 5-504 of the primary wiring type of the bus type current transformer and the through-core copper rod can form a closed loop to realize a plurality of busbar type.
  • the primary crimping mechanism of the busbar type transformer (ie, the busbar type current transformer 1-3) adopts a through-core copper bar structure (refer to FIG. 3 to FIG. 5 for details), and a mechanical arm is provided on each side of the through-core copper bar 1-2. Grip the core copper rod 1-2, the core copper rod 1-2 and the manipulator should be located directly above the conveyor line 1-4 (ie, the verification conveyor line 4 in Figure 1), the busbar type current transformer 1-3 The entry side robot 1-5 releases the copper rod and moves upward, and the output side robot 1-6 individually grips the copper rod, and the tested bus type current transformer 1-3 flows into the insulation test device 5 along with the verification transfer line 4.
  • the conveyor line 1-4 (ie, the verification conveyor line 4 in Fig. 1) is transported into a row of busbar type current transformers 1-3, and before the busbar type current transformers 1-3 enter the inspection station, the entry side robots 1-5 rise. , the output side robot single arm suspension core copper rod 1-2, the row bus type current transformer 1-3 with the forward movement of the conveyor line 1-4 into the through-heart copper rod 1-2, the conveyor line 1-4 stop the movement, enter the side robot 1-5 to lower the holding core copper rod 1-2, after the detection of the bus type current transformer 1-3, the output side robot 1-6 loose the core copper rod 1-2 And rise, enter the side robot 1-5 single arm suspension core copper rod 1-2, the conveyor line 1-4 start to drive the bus type current transformer 1-3 to continue moving forward away from the inspection station, the output side robot 1-6 lower holding the core copper rod 1-2, thus completing the bus-type current transformer 1-3 - times through the heart.
  • the output side robot 1-6 and the lower end of the entry side robot 1-5 are provided with a grip portion, and the grip portion is provided The clamping hole 1-511 of the through-hole copper bar 1-2 is clamped.
  • the clamping hole 1-511 obliquely upwardly clamps the through-hole copper bar 1-2 obliquely to offset the downward displacement of the space-hanging end of the single-arm suspension of the through-hole copper bar 1-2, and the inclination angle of the clamping hole 1-511 can be 0.05. To 2. .
  • the busbar type current transformers 1-3 are placed in the tooling plates 1-7 (i.e., the tooling plate 10 in Fig. 1), and are placed on the conveying lines 1-4 after being positioned by the tooling plates 1-7.
  • the lower end surface of the tooling plate 1-7 is in contact with the conveying line 1-4, and the lower end surface of the tooling plate 1-7 is provided with two guiding pins, and the conveying line 1-4 is provided with a stopping mechanism matched with the guiding pin to make the tooling Plates 1-7 are accurately positioned at the verification station.
  • the through-hole copper rod 1-2 is matched with the bus-type current transformer 1-3, and the matching gap can be 0.5mm to 2mm.
  • the entry side robot 1-5 and the output side robot 1-6 are respectively disposed on the left and right sides of a front and rear driving device, and the front and rear driving devices drive into The side robot 1-5 and the output side robot 1-6 move synchronously before and after; when the detected transformer is the bus type current transformer 1-3, the front and rear driving devices move to enter the side robot 1-5 and the output side robot 1-6 Located directly above the conveyor line 1-4.
  • the tested transformer is a tamping type current transformer
  • the front and rear drive units and robots are on one side of the conveyor lines 1-4 for standby.
  • the front and rear driving device includes a front and rear driving cylinder 1-501 which is horizontally disposed on the upper portion of the frame body 1-1, a top plate 1-502 which is fixedly connected to the movable end of the front and rear driving cylinders 1-501 and is laterally slidably coupled to the frame body 1-1, and is driven forward and backward.
  • the action of the cylinders 1-501 drives the top plate 1-502 to slide back and forth on the frame body 1-1.
  • the front and rear driving devices are provided with two top plates 1-502 respectively fixed to the output side robot 1-6 and the entry side robot 1-5, and the two top plates 1-502 are fixed by the connecting rods 1-512, and the output side robot 1 6 and the entry side robots 1 - 5 each include a bottom plate 1-503 vertically fixed to the top plate 1-502 and laterally slidably coupled to the frame body 1-1, the cylinder block is fixed to the bottom plate 1-503 and the movable end is downward.
  • the upper and lower driving cylinders 1-504 (two-stroke cylinders), the mounting plates 1-505 connected to the movable ends of the upper and lower driving cylinders 1-504, one end fixed to the mounting plate 1-505 and vertically slidably connected to the bottom plate 1-503
  • the front and rear sliding of the top plate 1-502 drives the bottom plate 1-503 to slide back and forth on the frame body 1-1, so that the output side robot 1-6 and the entry side robot 1-5 move synchronously back and forth, and drive the cylinder up and down.
  • the action of 1-504 drives the mounting plate 1-505 and the up-and-down moving carriage 1-506 to vertically slide on the frame body 1-1 to realize the up and down movement of the robot.
  • the grip portion includes a clamping cylinder 1-507 fixed to the bottom surface of the mounting plate 1-505, two air claws 1-508 respectively connected to the movable ends of the clamping cylinder 1-507, and an outer side surface connected to the air gripper 1-508.
  • the connecting plate connected to the movable end is 1-510, and the opposite side of the two air gripping claws 1-508 is provided with a semicircular groove to form a clamping hole 1-511 matched with the through copper rod 1-2, and the action of clamping the cylinder 1-507 is driven.
  • the connecting plate 1-510 and the insulating block 1-509 operate to control the opening and closing degree of the two air gripping claws 1-508 to grip or release the through-hole copper rod 1-2.
  • the verification system includes an insulation test device 5 insulation test and error verification module 6, and the insulation test device 5 and the error verification module 6 each include a two-thread mechanism, and a heart-piercing mechanism includes The entry side robot 1-5, the output side robot 1-6, and the through core copper rod 1-2.
  • the two core mechanism is connected to the power source through a relay, and the two through core copper rods 1-2 are sequentially passed through the relay to pass the large current to ensure that only one core copper rod 1-2 passes the large current at the same time, and the other core The copper rod 1-2 is in a standby state.
  • Two busbar type current transformers 1-3 are loaded on one tooling plate 1-7, and three metal working plates 1-7 are grouped. Six busbar type current transformers 1-3 are sequentially inserted under the driving line 1-4. Or wear the through-heart copper rod 1-2 to achieve the purpose of simultaneous detection of six bus-type current transformers 1-3. The 12 busbar type current transformers are sequentially tested in an insulation test device 5 or an error check module 6.
  • the transformer through-heart copper rod 1-2 is not moved at the center position, and the transformer 1-4 is carried by the transformer.
  • the insulation test device 5 and the error verification module 6 are compact in structure, single in order, and high in success rate.
  • the primary and secondary crimping mechanisms can be specifically With a two-stroke cylinder, the stroke can be adjusted according to different sizes.
  • the double-stroke cylinder 1-504 can be used to drive the clamp and the primary copper rod to displace in the vertical direction of the verification conveyor line.
  • the copper rod has two height positions, which can meet the requirements of one-time penetration of all types of transformers.
  • the robot and the through-heart copper rod are docked on the other side of the verification conveyor line 4, and are symmetrically arranged with the tamping type transformer fixture.
  • the robot is together with the core copper rod. Move to the center of the verification conveyor line 4, wait for and complete one threading and one crimping action.
  • the secondary pressure line mechanism comprises a secondary pressing component connected to the frame body and capable of moving up and down.
  • the lower end of the lower driving component of the secondary pressure line is provided with a plurality of vertical for the transformer and the transformer. End Connected conductive bars.
  • the secondary pressure line mechanism 5-7 includes a secondary pressing component 5-701 that can be moved up and down and connected to the frame 5-1, and the secondary pressure is applied.
  • the lower end of the in-line drive assembly 5-701 is provided with a plurality of vertical conductive bars 5-702 for connection with the secondary ends of the transformer.
  • the secondary crimping mechanism for the error test will be described as an example.
  • the structure of the secondary crimping mechanism of the insulation test device 5 is basically the same, except that the insulation test device 5 has two rows of conductive bars, and the two rows of conductive bars of the insulation test device 5 are respectively used together with the peak voltmeter and the boost source output.
  • the turn-to-turn insulation test, insulation resistance test and power frequency withstand voltage test are completed and will not be described in detail here.
  • the secondary crimping mechanism for error testing includes a frame body 3-1, a strip-shaped insulating block 3-2 disposed under the frame body 3-1, and is disposed on the frame body.
  • the cylinder 3-3 two-stroke cylinder
  • the guide rod 3 connected to the frame body 3-1 and the insulating block 3-2 12 and a plurality of test probes 3-4 disposed on the insulating block 3-2 for crimping with the secondary ends of the transformer, and the upper ends of the test probes 3-4 are connected to the wires.
  • Two cylinders 3-3 are arranged between the frame body 3-1 and the insulating block 3-2, two cylinders 3-3 are respectively disposed at two ends of the insulating block 3-2, and the cylinders of the cylinders 3-3 pass through the connecting plates 3-5 Mounted vertically downward on the lower end surface of the frame body 3-1, the movable end of the cylinder 3-3 is fixed to the insulating block 3-2 through the bottom plate 3-6 for providing a driving force for the up and down movement of the insulating block 3-2.
  • Two nut mounting slots are formed in the lower end surface of the frame body 3-1, and a nut block is embedded in the slot.
  • the connecting plate 3-5 is locked by a nut block in the screw mounting slot of the nut, and the cylinder block of the cylinder 3-3 is fixed by the connecting member.
  • the cylinder 3-3 cylinder is fixed to the frame body 3-1 at the lower end surface of the connecting plate 3-5.
  • the test probe 3-4 is provided with a spring 3-7, and the insulating block 3-2 is provided with a plurality of test probe sockets.
  • the middle of the test probe 3-4 is provided with a shoulder for abutting the spring 3-7, and the test is performed.
  • the probe 3-4 is inserted into the test probe socket after the sleeve spring 3-7, and the lower end of the test probe 3-4 is externally threaded to be screwed with the copper head 3-8 for abutting the secondary end of the transformer;
  • the end of the spring 3-7 is opposite to the shoulder of the test probe 3-4, and the other end of the spring is abutted against the insulating block 3-2, so that the insulating block 3-2 is moved down, and the test probe 3-4 can be connected to the secondary end of the transformer. Reliable contact.
  • test probe socket The upper and lower ends of the test probe socket are internally threaded to be respectively screwed to the external threads of the two sleeves 3-9; the sleeves 3-9 at the upper end of the test probe 3-4, the lower end surface and the test probe
  • a spring 3-7 which is jacketed on the test probe 3-4; in standby, the shoulder of the test probe 3-4 is under the elastic force of the spring 3-7 and is located in the test.
  • the sleeve 3-9 at the lower end of the needle jack is in contact with it.
  • Guide bars 3-12 are provided with side by side 12
  • the test probe sockets were respectively inserted into 12 test probes 3-4.
  • the wire connected to the upper end of the test probe 3-4 is connected to the transformer calibrator to detect the secondary winding current during the transformer error test, and the lower end of the copper head 3-8 is chamfered to avoid the pressure transformer and the transformer 2 The insulation block in the middle of the secondary winding interferes.
  • test probe 3-4 and the upper end connecting wire together constitute the secondary winding circuit wiring required for the transformer error verification, and the sum of the contact resistance of the test probe 3-4 and the resistance of the upper connecting wire is satisfied.
  • the secondary circuit impedance of the transformer test required by the metrological verification procedure.
  • the secondary crimping mechanism can complete the secondary winding of the six transformers at the same time.
  • the two test probes 3-4 of the secondary winding of the same transformer are short-circuited by the relay, which is in a short-circuit state.
  • the switching relay realizes that six transformers are sequentially connected to the transformer calibrator, and the error test is performed according to the transformer calibration procedure.
  • the two-stroke cylinder 3-3 can be used to make the test probe have two optional strokes when moving downward, according to the type of the transformer. Different sizes, choose a reasonable stroke, and achieve reliable crimping of the secondary winding terminals of all types of transformers.
  • the secondary terminal positions of the busbar type and the tamping type transformer are the same, so the present invention uses the same set of secondary winding crimping mechanisms.
  • the secondary winding crimping mechanism in the insulation test device 5 has two rows of terminals, one row for performing insulation resistance measurement and power frequency withstand voltage test, and by relay switching, the secondary terminal can output DC 500V and AC 3000V voltage, and The insulation resistance of the transformer under test can be measured by measuring the leakage current at the ground.
  • the other row of terminals is connected to the measuring device, but when the primary winding passes the rated current of the tested transformer, the secondary terminal measures and monitors the peak voltage generated by the secondary open circuit of the transformer, and determines the insulation strength between the transformers.
  • the measuring and monitoring device completes the measurement and monitoring of the primary winding up-flow capability of the transformer, the secondary winding peak voltage, and the ground leakage current.
  • the error verification device is arranged beside the verification transmission line 4, after the insulation test device 5, mainly by a current transformer with a current riser, a primary wire, a primary winding crimping mechanism, a secondary winding crimping structure, a programmable power supply, a transformer Calibrator, load box, etc.
  • the insulation test device 5 mainly completes the basic error measurement and magnetic saturation margin test of the low voltage current transformer.
  • the control power source is the same as the insulation test device 5.
  • the secondary winding crimping mechanism has only one row of terminals connected to the transformer calibrator for measuring the output current of the secondary winding of the transformer.
  • the transformer calibrator and load box are both program-controlled and fully automatic verification.
  • the tool board for in-line detection of the transformer includes a bottom plate 4-1 , and the bottom plate 4-1 is provided with two energy displacements.
  • the shift lever 4-2, the bottom plate 4-1 below the shift lever is provided with an insulating mat 4-3.
  • Two guide rails 4-4 are disposed on the center line of the bottom plate 4-1, a slider 4-5 is slidably coupled to the guide rail 4-4, and the shift lever 4-2 is mounted on the slider 4-5.
  • An insulating mat 4-3 is mounted on each side of the guide rail 4-4, and the shift lever 4-2 is in clearance engagement with the insulating mat 4-3.
  • the slider 4-5 is driven by a cylinder 4-6.
  • a positioning hole is formed in each of the front and rear edge positions of the insulating pad 4-3, and the bottom plate 4-1 is provided with a positioning pin 4-7 matched with the positioning hole.
  • the insulating spacer 4-3 is provided with a front and rear groove 4-8 in the middle.
  • the verification management system includes a task management function module, a delivery control function module, a verification control function module, a data processing and an analysis function module.
  • the task management function module is used to obtain work tasks from the production scheduling platform, and initiates an outbound application to the storage system, and performs task decomposition on different verification units and different work stations according to the production task.
  • the conveying control function module is used for triggering the loading and unloading robot to automatically load and unload, controlling the conveying line body to distribute the detected transformer to the corresponding verification station, and completing the orderly loading and unloading of the plurality of verification devices and the plurality of verification units.
  • the verification control function module is used to automatically complete the primary winding and secondary winding crimping operations required for the transformer calibration project, control the up-conversion booster and the measuring instrument to complete the verification project, and store the error data.
  • the data processing and analysis function module is used to judge whether the transformer is qualified or not, and analyze and count the completion rate and failure rate of the transformer verification task.
  • FIG. 2 the figure is a working flowchart of a fully automated verification system for a transformer according to an embodiment of the present invention.
  • the verification method corresponding to the transformer automatic verification system of the embodiment of the invention comprises the following steps:
  • the robot grabs the transformer on the feeding conveyor line 2 onto the tooling plate 10 located on the verification conveying line 4, binds the bar code information of the tooling plate 10 and the corresponding transformer, and records the information of the transformer;
  • the tooling board 10 enters the visual inspection station under the driving of the verification conveying line 4, and the camera takes a photo of the transformer.
  • the visual inspection device compares the photograph taken with the stored corresponding image to analyze whether the nameplate name of the tested transformer is complete. , the body is intact, and recorded;
  • the tooling plate 10 reaches the insulation test station along the verification conveyor line 4, and a certain number of tooling plates 10 enter the corresponding insulation test station under the driving of the verification conveyor line 4, and the insulation test device on the insulation test station 5 pairs the transformer
  • the primary winding and the secondary winding are crimped, and the programmable power supply outputs 380V or 220V voltage to the booster and booster.
  • the riser generates low voltage and large current
  • the booster generates DC and AC voltage, which are completed in sequence.
  • the measured transformer follows the verification conveyor line 4 and flows into the error verification station.
  • the error verification device on the error verification station crimps the primary winding and the secondary winding of the transformer, and the programmable power supply outputs 380V or 220V to liter.
  • the current device generates a low voltage and a large current.
  • the low voltage and the large current flow through the primary winding connected to the output of the current riser through the primary winding of the transformer to be tested in series, and the transformer is connected to the secondary winding crimping mechanism.
  • the instrument measures the output current of the secondary winding of the transformer, completes the error test and the magnetic saturation margin test, realizes the automatic verification, and records the unqualified products;
  • the tooling plate 10 enters the laser marking station along with the verification conveyor line 4, and the laser marking machine will etch a piece of code on the certified transformer. Unqualified transformers are not verified Laser marking, automatic flow into the blanking station, waiting for abnormal processing.
  • the code is used to identify information such as the qualification of the verification, the date of verification, the verification personnel, and the like;
  • the robot picks up the qualified transformers on the inspection conveyor line 4 tooling plate 10 and places them in the tank on the supply conveyor line 2. After the boxing, the tanks are supplied with the supply conveyor line 2 to the storage system.
  • the insulation test device 5 and the error verification device 6 are respectively divided into a first verification unit and a second verification unit, and a group of 12 transformers are equally divided into two groups, which sequentially enter the first verification unit and the second verification unit;
  • the first verification unit of 5 tests the current of the six transformers
  • the second verification unit of the insulation test device 5 completes the wiring of the first and second windings, and is in a state of waiting for the power-on test;
  • the first verification unit pair of the insulation test device 5 After the six transformers are energized and tested, the second verification unit of the insulation test device 5 starts the power-on test, and then the six transformers of the first verification unit of the insulation test device 5 flow into the first verification unit of the error verification device 6, pair 6 After the transformers are connected, the power-on test is performed.
  • the second verification unit of the insulation test device 5 completes the power-on test of the six transformers
  • the six transformers of the second verification unit of the error verification device 6 are energized and tested.
  • the device performs the insulation test and error check on the bus type current transformer.
  • the operation steps are as follows: 3 ⁇ 4 port:
  • the verification management system software obtains the work tasks from the production scheduling platform and decomposes the tasks into different epitopes of different verification devices.
  • the verification control software of the transformer automatic verification device acquires the task and prepares relevant work.
  • the verification device confirms that the batch verification object is a busbar type transformer
  • the busbar type current transformer primary wiring mechanism of the first verification unit of the insulation test device is pushed to the middle position of the conveyor line, so that the height of the through-hole copper bar is up and down
  • the front and rear positions are consistent with the position of the center hole of the transformer on the conveyor line.
  • the air gripper 5-504 at the lower end of the entry side robot 5-502 of the insulation test unit releases the through-heart copper rod, and then enters the side robot 5-502 to rise and let out The transformer flows into the channel, and the through-core copper bar is in a single-sided suspension state.
  • the positioning feedback signal is transmitted to the verification control software by the stop mechanism on the station, and the verification control software receives the above signal and considers
  • the manipulator on the output side is controlled to descend, and the gripper 5-504 grips the piercing copper rod.
  • the secondary pressure line on the secondary pressure line 5-7 suspended above the first verification unit drives the component 5-701 down so that the conductive rod 5-702 is crimped to the secondary end of the transformer.
  • the verification device pre-upgrades the transformer to detect the open circuit voltage of the secondary end of each transformer, which is used to verify whether the secondary winding of the transformer is reliable.
  • the verification instrument on the insulation test device shall separately perform insulation resistance, power frequency withstand voltage, secondary inter-turn insulation test according to the requirements of the verification procedure, and upload the test result to the verification control software.
  • the verification control software controls the action of the second verification unit, and the action process is the same as the first group of bus-type current transformers entering the first verification unit, completing the second group of inspections.
  • the infrared sensor and counter on the conveyor line will feedback the confirmation signal that the transformer has all flowed out of the copper rod, the output side robot is lowered, and the air clamp at the lower end holds the core copper rod. Then, the bus-type current transformer front and rear drive components move the entire bus-type current transformer primary wiring mechanism away from the conveyor belt and place it in a safe position.
  • the first group of transformers directly flows into the first verification unit of the error verification device after completing the insulation test
  • the second group of transformers flows into the second verification unit of the error verification device after completing the insulation test
  • the two sets of transformers flow in and out
  • the process is similar to that in the insulation test apparatus.
  • the device is in the insulation test and error detection of the casket type current transformer. The operation steps are as follows: 3 ⁇ 4 mouth:
  • the verification mode is basically the same as that of the bus type. The difference is: when the tamping type current transformer enters, the first or second verification unit of the tamping type current transformer is connected once. The mechanism acts, and the bus-type current transformer primary connection mechanism does not move, the front and rear drive components of the recuperative current transformer move to the conveyor belt, and then the primary side end of the transformer is clamped by the crimping assembly 5-602, so that the plurality of transformers One side is connected in series. After the verification is completed, the crimping assembly 5-602 releases the primary side of the transformer, and the front and rear drive components are moved away from the conveyor belt and exit the test station.

Abstract

一种互感器全自动化检定系统和方法。该系统包括供料输送线(2);上料装置(3);检定输送线(4);绝缘试验装置(5);误差检定装置(6);激光打标装置(7);下料装置(8);检定管理系统。绝缘试验装置(5)、误差检定装置(6)及激光打标装置(7)依次排设在检定输送线(4)旁。供料输送线(2)、检定输送线(4)、各装置之间协调作业,实现互感器的全自动检定,避免人工检测失误,提高分拣准确性。

Description

互感器全自动化检定系统和方法 本申请要求于 2011 年 7 月 14 日提交中国专利局、 申请号为 201110198519.1、 发明名称为 "互感器全自动化检定系统" 的中国专利申请的 优先权, 其全部内容通过引用结合在本申请中。
本申请要求于 2011 年 7 月 14 日提交中国专利局、 申请号为
201110197022.8、 发明名称为 "母线型电流互感器一次穿心方法" 的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。
本申请要求于 2011 年 7 月 22 日提交中国专利局、 申请号为 201110208086.3、 发明名称为 "复匝式互感器一次端自动接压线装置" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
本申请要求于 2011 年 8 月 24 日提交中国专利局、 申请号为 201110247680.3、 发明名称为 "用于误差试验的二次压线机构" 的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
本申请要求于 2011年 6月 1日提交中国专利局、申请号为 201110145994.2、 发明名称为 "一种互感器在线检测用工装板" 的中国专利申请的优先权, 其全 部内容通过引用结合在本申请中。
本申请要求于 2011 年 7 月 14 日提交中国专利局、 申请号为 201110198630.0、 发明名称为 "互感器自动化检定装置" 的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及电力设备领域, 特别涉及一种电流互感器检定系统和方法。
背景技术 目前电网中应用的电流互感器是将一次线路中的大电流等比例缩小为二 次测量回路所需的小电流,主要实现高低压两端的电气隔离和等比例测量的功 能。计量用电流互感器是电网中用于贸易结算的主要计量器具之一,属于国家 强制检定规范。每一台计量用电流互感器都需要通过首次检定和周期检定合格 后才能正常使用。 随着经济的快速发展,计量用电流互感器的新增量和保有量 都急剧上升, 传统的人工检定方式由于存在工作效率低、 劳动强度大、 人工接 线干预检定结果等问题, 已不能适应快速增长的互感器检定需求,研制全自动 的互感器检定系统势在必行。
传统互感器检定装置采用半自动作业方式,人工完成互感器的接、拆线工 作, 检定装置自动完成基本误差检定项目。 但绝缘试验, 如绝缘电阻测试、 耐 压试验、 匝间绝缘试验和磁饱和裕度试验都需要人工手动完成, 工作效率低。 甚至受限于检定装置的能力, 有些检定项目无法完成。
低压电流互感器分为母线型(母线式)和复匝型(复匝式)两种。 两种互 感器的一次绕组压接方式不同,且不同变比的母线式互感器外观尺寸、 中心孔 径和位置都不同,因此互感器检定系统需适应母线式和复匝式电流互感器的不 同接线方式和不同尺寸要求。现有单套互感器全自动检定装置不能满足大量互 感器的检定需求、 同时不能体现自动化流水线作业的优势, 因此互感器检定系 统需考虑多套互感器检定装置的有机结合。
综上所述,研制一个适用于母线式和复匝式电流互感器的、 多套检定装置 与输送线体有机集成的互感器自动化检定系统具有十分重要的意义。
发明内容
本发明要解决的技术问题和提出的技术任务是对现有技术方案进行完善 与改进, 提供一种互感器全自动化检定系统, 以达到全自动检定, 有效提高效 率和检定的准确性的目的。
为此, 本发明采取以下技术方案。
本发明实施例所述互感器全自动化检定系统,包括用于输送周转箱以将装 有待检互感器的周转箱从仓储系统运输至上料工位并将位于下料工位的装有 已检互感器的周转箱运输回仓储系统的供料输送线;位于供料输送线上料工位 旁的用于把位于供料输送线上料工位的互感器移至检定输送线的上料装置;用 于将互感器移至各检定装置的检定输送线; 用于对互感器的绝缘电阻、工频耐 压和匝间绝缘进行检测的绝缘试验装置(预防性试验装置); 用于检测互感器 基本误差和磁饱和裕度的误差检定装置;用于在合格的互感器上刻录标识信息 的激光打标装置;位于供料输送线下料工位旁的用于将已检测完成的互感器从 检测输送线转移到供料输送线的下料装置; 用于控制各装置、 供料输送线、检 定输送线之间协调工作并根据绝缘试验装置、误差检定装置的反馈信息对互感 器准确分拣的检定管理系统; 所述绝缘试验装置、误差检定装置及激光打标装 置依次排设在检定输送线旁。供料输送线、检定输送线、各装置之间协调作业, 实现互感器的全自动检定, 效率高, 避免人工检测失误, 提高分拣准确性, 由 激光打标代替传统的贴合格证的方式, 利于互感器的管理、 使用。
作为对上述技术方案的进一步完善和补充,本发明还包括以下附加技术特 征。
本发明实施例所述互感器全自动化检定系统还包括位于绝缘试验装置前 的用于对互感器外观拍照并处理的外观检查装置;依次排设在检定输送线旁的 架体上的一绝缘试验装置和一误差检定装置构成试验装置组,系统设有复数个 并排设置的试验装置组; 所述检定输送线始端和末端相接,检定输送线上设有 与检定输送线相配的用于承载互感器的工装板以将互感器依次输送至外观检 查工位、 绝缘试验工位、 误差检定工位和激光打标工位, 完成互感器全项目的 在线检定输送任务。 多个试验装置组协调作业, 统一节拍, 提高效率。 外观检 查装置包括相机、 图片储存和处理单元,相机对外观检查工位上的互感器依次 拍照, 并按一定规则对照片进行命名储存, 对照片进行图像识别和内容比对, 分析被检互感器铭牌内容是否完整、 器身是否完好。
所述供料输送线包括架体、 设于架体上的用于驱动皮带前移的驱动电机、 与驱动电机转动轴连接的皮带线、设于架体上的用于准确挡停皮带线上工装板 的挡停机构、设于架体上的用于对互感器进行计数的计数器、设于架体上的用 于录入互感器信息的条码扫描器及用于互感器分拣的分拣机构;所述供料输送 线的输入端、输出端分别用于连接仓储系统的出库口及入库口。供料输送线可 实现多品规计量器具的混流输送及准确分拣,可完成向对应的互感器自动化检 定系统进行定量、 定品规的供料、 使被检互感器在上、 下料工位准确定位, 以 等待上、 下料装置动作。
所述上料装置包括用于将位于供料输送线上的待检互感器精确地放置在 检定输送线工装板上的上料机器人, 所述上料机器人设有上料机器手、用于控 制机器手动作的控制器、 能与机械手下端连接的上料夹具、用于互感器精确定 位的中转平台;所述下料装置包括用于将检定输送线工装板上的被检互感器放 置在供料输送线上的下料机器人, 所述下料机器人设有下料机器手、用于控制 机器手动作的控制器、 能与下料机器手下端连接的下料夹具。 上、 下料夹具可 适应所有品规的互感器。
所述上料机器人设有用于互感器精确定位的定位平台,上料机器手从供料 输送线抓起互感器放入定位平台定位,定位平台根据不同品规的互感器进行二 次精确定位后, 上料机器手再次抓起并放入位于检定输送线的工装板上。
所述绝缘试验装置和误差检定装置均包括按检定输送线前进方向依次排 设在输送线旁架体上的第二检定单元和第一检定单元, 第一检定单元、第二检 定单元的一次大电流导线与电源之间的连接通过一继电器切换。 自动化检定装 置应用后, 互感器检定节拍加快, 长时间连续进行大电流试验缺乏散热时间, 将导致温升过高, 甚至会损害检定装置。 一检定装置分为两个检定单元, 错时 通电, 在同一时刻, 只有一组互感器和一检定单元通过大电流, 另外一组互感 器和另一检定单元处于待机状态, 该检定单元可利用这时段进行散热。控制整 体检定过程温升, 适合全自动、 连续大电流试验的需求。
所述第一、第二检定单元均包括母线式电流互感器一次接线机构、复匝式 电流互感器一次接线机构及二次接压线机构;所述母线式电流互感器一次接线 机构与复匝式电流互感器一次接线机构均为能前后移动的接线机构,待机时两 者分设于输送线两侧。适用于母线式和复匝式电流互感器检定。待机时两者分 设于输送线两侧, 可避免相互的干扰, 当对一互感器进行检定时, 由对应的一 次接线机构向检定输送线移动。
所述母线式电流互感器一次接线机构包括能在架体上前后移动的母线式 前后驱动组件、分别与前后驱动组件左右两端连接的能上下移动的进入侧机械 手和输出侧机械手、设于进入侧机械手和输出械手下端的能开合的气爪、 由气 爪握持的用于穿设复数个母线式电流互感器的穿心铜棒;气爪外侧设有用于连 接电源线的柱状铜头,母线式电流互感器一次接线机构的两气爪及穿心铜棒能 形成闭合回路实现复数个母线式电流互感器的一次侧串联检测。
所述复匝式电流互感器一次接线机构包括能在架体上前后移动的前后驱 动组件、设于复匝式电流互感器前后驱动组件上的复数个并排的用于将对应复 匝式电流互感器的一次侧串联连接的压接组件,压接组件包括能夹持复匝式电 流互感器一次侧端子的上、 下导电夹持块。
所述二次接压线机构包括与架体连接的能上下移动的二次接压线上下驱 动组件,所述二次接压线上下驱动组件下端设有复数个竖直的用于和互感器二 次端连接的导电棒。
检定管理系统设有任务管理功能模块,用于从生产调度平台中获得工作任 务, 并向仓储系统发起出库申请,根据该生产任务对不同检定单元和不同工位 进行任务分解; 输送控制功能模块, 用于触发机器人自动上下料、 控制输送线 体将被检互感器分配至对应检定工位、完成多套检定装置和多个检定单元的有 序上下料;检定控制功能模块, 用于自动完成互感器检定项目所需要的一次绕 组和二次绕组压接动作、控制升流升压器和测量仪器完成检定项目、存储误差 数据; 数据处理及分析功能模块, 用于对互感器检定合格与否进行判断、 对互 感器检定任务的完成率、 故障率进行分析统计。
本发明还提供一种互感器全自动化检定方法, 包括以下步骤:
1 )供料步骤, 将待检互感器从仓储系统的出库口经供料输送线传输至上 料工位;
2 )上料步骤, 上料机器人将位于供料输送线上的互感器抓取至位于检定 输送线的工装板上, 并将工装板和互感器信息绑定, 记录互感器信息;
3 )外观检查步骤, 工装板在检定输送线的带动下进入外观检查工位, 相 机对互感器进行拍照,外观检查装置通过所拍的照片与已存储的对应图片进行 对比, 分析被检互感器铭牌内容是否完整、 器身是否完好, 并记录;
4 ) 绝缘试验步骤, 工装板随着检定输送线到达绝缘试验工位, 一定数量 的工装板在检定输送线的带动下进入对应的绝缘试验工位,绝缘试验工位上的 绝缘试验装置对互感器一次绕组、 二次绕组进行压接, 程控电源输出 380V或 220V电压至升流器、 升压器, 根据不同的试验项目升流器产生低压大电流、 升压器产生直流和交流电压,依次完成低压电流互感器的匝间绝缘试验、绝缘 电阻试验和工频耐压试验; 5 )误差检定步骤, 绝缘试验完毕, 被测互感器跟随检定输送线流入误差 检定工位,误差检定工位上的误差检定装置对互感器一次绕组、二次绕组进行 压接, 程控电源输出 380V或 220V电压至升流器, 升流器产生低压大电流, 低压大电流通过与升流器输出端连接的一次导线流经串联的待测互感器一次 绕组,通过与二次绕组压接机构连接的互感器校验仪测量互感器二次绕组的输 出电流,完成误差试验和磁饱和裕度试验,实现全自动检定,记录不合格产品;
6 )激光打标步骤, 误差检定完毕, 工装板随着检定输送线进入激光打标 工位, 激光打标机将在检定合格的互感器器身上刻蚀一段代码, 用于标识检定 合格、 检定日期、 人员等信息; 检定不合格的互感器不进行激光打标, 自动流 转入下料工位, 等待异常处理;
7 ) 下料步骤, 下料机器人将位于检定输送线工装板上的合格的互感器抓 取放至位于供料输送线上的箱体中, 装箱后, 箱体随供料输送线至仓储系统。
绝缘试验装置及误差检定装置均分为第一检定单元及第二检定单元,一组 12 个互感器平分为两小组, 依次进入第一检定单元及第二检定单元; 绝缘试 验装置的第一检定单元对 6 互感器通电测试时绝缘试验装置的第二检定单元 完成一、 二次绕组的接线, 并处于等待通电测试状态; 待绝缘试验装置的第一 检定单元对 6互感器通电测试完毕,绝缘试验装置的第二检定单元开始通电测 试,接着位于绝缘试验装置的第一检定单元的 6互感器流入误差检定装置的第 一检定单元,对 6互感器接线后通电测试,待绝缘试验装置的第二检定单元对 6互感器通电测试完毕后流入误差检定装置的第二检定单元的 6互感器通电测 试。
有益效果: 本发明实施例所述互感器全自动化检定系统适用范围广, 可适 用于母线式和复匝式电流互感器的检定; 多台检定装置协调作业,机器人完成 自动上下料, 实现互感器的全自动检定, 效率高; 激光打标代替传统的贴合格 证的方式, 便于后序的管理; 两单元交换供电, 控制装置的温升, 利于提高寿 命及检定的稳定性及准确性。
附图说明 图 1是本发明实施例所述互感器全自动化检定系统结构示意图。 图 2是本发明实施例所述互感器全自动化检定系统工作流程图; 图 3是本发明实施例所述一次穿心机构平面结构示意图;
图 4是本发明实施例所述一次穿心机构立体结构示意图;
图 5是本发明实施例所述一次穿心机构的机械手爆炸图;
图 6 是本发明实施例所述复匝式电流互感器的一次压接机构立体结构示 意图;
图 7是本发明实施例所述复匝式电流互感器的一次压接机构爆炸图; 图 8是本发明实施例所述用于误差试验的二次压线机构结构示意图; 图 9是本发明实施例所述用于误差试验的二次压线机构爆炸图; 图 10是本发明实施例所述用于误差试验的二次压线机构剖视图; 图 11 是本发明实施例所述互感器在线检测用工装板使用时的结构示意 图;
图 12是本发明实施例所述互感器在线检测用工装板结构示意图; 图 13是本发明实施例所述互感器在线检测用工装板主视图;
图 14是本发明实施例所述母线式电流互感器一次接线机构结构示意图; 图 15是本发明实施例所述复匝式电流互感器一次接线机构结构示意图; 图 16是本发明实施例所述二次接压线机构结构示意图。
其中: 1、 周转箱, 2、 供料输送线, 3、 上料装置, 4、 检定输送线, 5、 绝缘试验装置, 6、 误差检定装置, 7、 激光打标装置, 8、 下料装置, 9、 外观 检查装置, 10、 工装板。
具体实施方式 以下结合说明书附图对本发明的技术方案做进一步的详细说明。
参见图 1 , 该图为本发明实施例所述互感器全自动化检定系统结构示意 图。
本发明实施例所述互感器全自动化检定系统包括: 供料输送线 2、 上料装 置 3、 检定输送线 4、 外观检查装置 9、 绝缘试验装置 5、 误差检定装置 6、 激 光打标装置 7、 下料装置 8和检定管理系统。 所述供料输送线 2: 用于输送周转箱 1 , 将装有待检互感器的周转箱 1从 输回仓储系统。
上料装置 3: 位于供料输送线 2上料工位旁, 用于将位于供料输送线 2上 料工位的互感器移至检定输送线 4。
检定输送线 4: 用于将互感器移至各装置对应工位。
外观检查装置 9: 用于对互感器外观拍照并处理。
绝缘试验装置 5: 用于对互感器的绝缘电阻、 工频耐压和匝间绝缘进行检 测。
误差检定装置 6: 用于检测互感器基本误差测量和磁饱和裕度。
激光打标装置 7: 用于在合格的互感器上刻录标识信息。
下料装置 8: 位于供料输送线 2下料工位旁的用于将已检测完成的互感器 从检定输送线 4转移到供料输送线 2, 将合格和不合格的互感器分拣至不同的 周转箱 1中。
检定管理系统: 用于控制各装置、 供料输送线 2、 检定输送线 4之间协调 工作并根据绝缘试验装置 5、 误差检定装置 6的反馈信息对互感器检定结果进 行判断的检定管理系统。
外观检查装置 9、 绝缘试验装置 5、 误差检定装置 6及激光打标装置 7按 检定输送线 4的前进方向依次排设。
本发明实施例所述互感器全自动化检定系统可以设有复数个并排设置的 试验装置组。本发明实施例所述互感器全自动化检定系统具体可以设有 2个或 2个以上试验装置组, 图 1所示为设置有 5个试验装置组的情况。
每个试验装置组包括一个绝缘试验装置 5和一个误差检定装置 6。
检定输送线 4始端和末端相接,检定输送线 4上设有与检定输送线 4相配 的用于承载互感器的工装板 10。
供料输送线 2包括架体、设于架体上的用于驱动皮带前移的驱动电机、 与 驱动电机转动轴连接的皮带线, 和 /或, 设于架体上的用于准确挡停皮带线上 互感器的挡停机构, 和 /或, 设于架体上的用于对互感器进行计数的计数器, 和 /或, 设于架体上的用于录入互感器信息的条码扫描器及用于互感器分拣的 分拣机构。
供料输送线 2 的输入端、 输出端分别用于连接仓储系统的出库口及入库 口。
上料装置 3包括用于将位于供料输送线 2上的待检互感器精确地放置在检 定输送线 4工装板 10上的上料机器人。
上料机器人包括上料机器手、用于控制机器手动作的控制器、与机械手下 端连接的上料夹具、 对互感器进行二次定位的中转平台。
下料装置 8包括用于将检定输送线 4工装板 10上的被检互感器放置在供 料输送线 2上的下料机器人。
下料机器人包括下料机器手、用于控制机器手动作的控制器、与下料机器 手下端连接的下料夹具。
上料机器人设有用于互感器精确定位的定位平台,所述上料机器手从供料 输送线 2抓起互感器放入上料机器人定位平台定位,, 定位平台根据不同品规 的互感器进行二次精确定位后, 上料机器手再次抓起并放入位于检定输送线 4 的工装板 10上;
绝缘试验装置 5和误差检定装置 6均包括按检定输送线 4前进方向依次排 设在输送线旁架体上的第二检定单元和第一检定单元。
第一检定单元、第二检定单元的一次大电流导线与电源之间的连接通过一 继电器切换。
第一、第二检定单元均包括母线式电流互感器一次接线机构、复匝式电流 互感器一次接线机构及二次接压线机构。
母线式电流互感器一次接线机构与复匝式电流互感器一次接线机构均为 能前后移动的接线机构,待机时所述母线式电流互感器一次接线机构与复匝式 电流互感器一次接线机构分设于检定输送线(4 ) 两侧。
母线式电流互感器一次接线机构包括母线式前后驱动组件、进入侧机械手 和输出侧机械手、 气爪和穿心铜棒。
母线式前后驱动组件, 能够实现在架体上前后移动母线式; 进入侧机械手和输出侧机械手, 分别与前后驱动组件左右两端连接,且能 够实现上下移动。
气爪, 设于进入侧机械手和输出侧机械手下端, 且能够实现开合。
穿心铜棒, 由气爪握持, 且用于穿设复数个母线式电流互感器。
气爪外侧设有柱状铜头,柱状铜头用于连接电源线,母线式电流互感器一 次接线机构的两气爪及穿心铜棒能形成闭合回路,从而实现复数个母线式电流 互感器的一次侧串联检测。
复匝式电流互感器一次接线机构包括能在架体上前后移动的前后驱动组 件、设于前后驱动组件上的复数个并排的用于将对应复匝式电流互感器的一次 侧串联连接的压接组件。
压接组件包括能夹持复匝式电流互感器一次侧端子的上、 下导电夹持块。 二次接压线机构包括与架体连接的能上下移动的二次接压线上下驱动组 件,二次接压线上下驱动组件下端设有复数个竖直的用于和互感器二次端连接 的导电棒。
绝缘试验装置 5具有两类一次绕组压接机构,分别适用与复匝式和母线式 互感器。
复匝式互感器(即复匝型电流互感器)的一次压接机构采用钳式结构, 针 对每只复匝式互感器有两组钳式夹具, 分别夹紧互感器两侧的一次母排, 此时 一次导线、钳型夹具和互感器一次绕组形成大电流闭合回路。待机状态时钳形 夹具停靠在检定输送一侧, 当复匝式互感器输送至检定工位后,钳形夹具横向 平移并靠近检定输送线 4, 完成一次压接动作。
如图 15所示, 复匝式电流互感器一次接线机构包括能在架体上前后移动 的复匝式电流互感器前后驱动组件、设于复匝式电流互感器前后驱动组件上的 复数个并排的用于将对应复匝式电流互感器的一次侧串联连接的压接组件 5-602, 压接组件 5-602 包括能夹持复匝式电流互感器一次侧端子的上、 下导 电夹持块 5-603。
复匝式电流互感器的一次压接机构, 如图 6、 7所示。
复匝型电流互感器的一次压接机构具体可以包括 "z"形连接支架 2-1、设 于连接支架 2-1上方的上绝缘板 2-2、 设于连接支架 2-1下方的下绝缘板 2-3、 缸体 2-401固定在上绝缘板 2-2且活动杆 2-402穿过连接支架 2-1与下绝缘板 2-3相连的气缸 2-4、位于上绝缘板 2-2及下绝缘板 2-3之间用于夹持复匝式电 流互感器一次端的上导电夹持块 2-5和下导电夹持块 2-6、穿设于连接支架 2-1 且上下端分别与上、 下绝缘板 2-2、 2-3 滑动连接的用于导向的复数根支架导 杆 2-7, 活动杆 2-402的下端螺接螺母 2-403 , 螺母 2-403的上表面与下绝缘板 2-3的下表面相抵, 复数根支架导杆 2-7与气缸 2-4活动杆平行且分设于气缸 2-4活动杆 2-402的两侧,上绝缘板 2-2与连接支架 2-1之间及下绝缘板 2-3与 连接支架 2-1的支架导杆 2-7上均套接小压缩弹簧 2-8。
所述上导电夹持块 2-5具体可以通过外套有大压缩弹簧 2-9的夹持块导杆
2-10可滑动地连接在对应的上绝缘板 2-2上, 所述下导电夹持块 2-6通过外套 有大压缩弹簧 2-9的夹持块导杆 2-10可滑动地连接在对应的下绝缘板 2-3上, 夹持块导杆 2-10顶部固定用于进行互感器检定试验的大电流导线。
上、 下绝缘板 2-2、 2-3上的用于穿设支架导杆 2-7及夹持块导杆 2-10的 导杆孔中设有滑动轴承 2-12,所述滑动轴承 2-12外凸于上、下绝缘板 2-2、 2-3 的内表面, 所述大、 小压缩弹簧 2-9、 2-8外套在滑动轴承 2-12上。 支架导杆 2-7的上下端部螺接能与上、 下绝缘板 2-2、 2-3相抵的盖板螺栓 2-11。
上、 下导电夹持块 2-5、 2-6位于连接支架 2-1前, 一上、 下导电夹持块 2-5、 2-6设有两夹持块导杆 2-10。 连接支架 2-1设有四根或二根支架导杆 2-7, 气缸 2-4的活动杆位于支架导杆 2-7的中间。
所述上绝缘板 2-2上连接两个左右设置的上导电夹持块 2-5 , 所述下绝缘 板 2-3上连接两个与上导电夹持块 2-5相对的下导电夹持块 2-6。连接支架 2-1 后部与可前后移动的大拖板固接,一大拖板上固定复数个连接支架 2-1以同时 拖动多个压线装置,位于大拖板上最左侧或最右侧的压线装置的上、 下绝缘板 2-2、 2-3上分别设有一上导电夹持块 2-5及与上导电夹持块 2-5相对的一下导 电夹持块 2-6。
工作时, 气缸 2-4的活动杆收缩使上、 下绝缘板 2-2、 2-3相对运动, 使连 接在上、 下绝缘板 2-2、 2-3上的上导电夹持块 2-5和下导电夹持块 2-6随之相 对运动夹住复匝式互感器的一次铜排, 实现自动接线。 如图 14所示, 所述的母线式电流互感器一次接线机构包括能在架体上前 后移动的母线式电流互感器前后驱动组件、分别与前后驱动组件左右两端连接 的能上下移动的进入侧机械手 5-502和输出侧机械手、设于进入侧机械手 5-502 和输出侧机械手下端的能开合的气爪 5-504、 与两气爪 5-504相配的用于穿设 复数个母线式电流互感器的穿心铜棒。其中气爪 5-504外侧设有用于连接电源 线的柱状铜头 5-506, 母线式电流互感器一次接线机构的两气爪 5-504及穿心 铜棒能形成闭合回路实现复数个母线式电流互感器的一次侧串联检测。
母线式互感器(即母线式电流互感器 1-3 ) 的一次压接机构采用穿心铜棒 结构(具体可以参见图 3至图 5 ), 穿心铜棒 1-2两侧各有一个机械手握紧穿心 铜棒 1-2, —次压接过程中穿心铜棒 1-2和机械手应位于输送线 1-4 (即图 1 中检定输送线 4 )正上方, 母线式电流互感器 1-3进入侧机械手 1-5松开铜棒 并向上运动, 输出侧机械手 1-6单独握紧铜棒, 被检母线式电流互感器 1-3随 着检定输送线 4流入绝缘试验装置 5并依次穿入穿心铜棒 1-2中,在固定的检 定工位将被输送线的档停机构准确定位。一组母线式电流互感器 1-3完全穿入 穿心铜棒 1-2后, 输入侧的机械手 1-5向下运动并握紧穿心铜棒 1-2, 此时一 次导线、 机械手导电部分、 穿心铜棒 1-2形成大电流闭合回路。 试验完成后, 输出侧机械手松开铜棒并向上运动,输送线的档停机构张开,母线式电流互感 器 1-3随着工装板 10流出穿心铜棒 1-2, 流入后续的误差检定装置。
为了便于本领域技术人员的理解,具体说明母线式电流互感器一次穿心方 法为:
输送线 1-4 (即图 1中检定输送线 4 )输送成排的母线式电流互感器 1-3 , 在母线式电流互感器 1-3进入检测工位前, 进入侧机械手 1-5上升, 输出侧机 械手单臂悬握穿心铜棒 1-2, 成排母线式电流互感器 1-3随着输送线 1-4的向 前移动穿入穿心铜棒 1-2中, 输送线 1-4停止运动, 进入侧机械手 1-5下降握 持穿心铜棒 1-2, 待母线式电流互感器 1-3检测完毕, 输出侧机械手 1-6松开 穿心铜棒 1-2并上升, 进入侧机械手 1-5单臂悬握穿心铜棒 1-2, 输送线 1-4 启动以带动母线式电流互感器 1-3继续向前移动离开该检测工位,输出侧机械 手 1-6下降握持穿心铜棒 1-2, 至此完成母线式电流互感器 1-3—次穿心。
输出侧机械手 1-6及进入侧机械手 1-5的下端设有握持部, 握持部设有用 于夹持穿心铜棒 1-2的夹持孔 1-511。
夹持孔 1-511斜向上使穿心铜棒 1-2斜向夹持以抵消穿心铜棒 1-2单臂悬 握时空悬端的下移量, 夹持孔 1-511倾斜角可以为 0.05。 至 2。 。
为提高穿心的准确性, 母线式电流互感器 1-3置于工装板 1-7 (即图 1中 工装板 10 ) 中, 经工装板 1-7定位后放于输送线 1-4上, 工装板 1-7的下端面 与输送线 1-4接触, 工装板 1-7的下端面设有两导向销, 输送线 1-4上设有与 导向销相配的挡停机构以使工装板 1-7在检定工位上准确定位。 穿心后, 穿心 铜棒 1-2与母线式电流互感器 1-3间隙配合, 配合间隙具体可以为 0.5mm至 2mm。
为了使输送线 1-4适用于其它类型的互感器增设前后驱动装置,进入侧机 械手 1-5和输出侧机械手 1-6分设于一前后驱动装置的左、 右两侧, 前后驱动 装置带动进入侧机械手 1-5和输出侧机械手 1-6前后同步运动; 当检测的互感 器为母线式电流互感器 1-3时, 前后驱动装置移动使进入侧机械手 1-5和输出 侧机械手 1-6位于输送线 1-4的正上方。当被检互感器为复匝式电流互感器时, 前后驱动装置和机械手位于输送线 1-4的单侧待命。
前后驱动装置包括横向设于架体 1-1上部的前后驱动气缸 1-501、 与前后 驱动气缸 1-501活动端固接且与架体 1-1横向滑动连接的顶板 1-502, 前后驱 动气缸 1—501的动作带动顶板 1-502在架体 1-1上前后滑动。 前后驱动装置设 有分别与输出侧机械手 1-6及进入侧机械手 1-5固接的两顶板 1-502, 两顶板 1 -502之间通过连杆 1 -512固接,输出侧机械手 1-6及进入侧机械手 1 -5均包括 竖向固接于顶板 1-502且与架体 1-1横向滑动连接的底板 1-503、 缸体固接于 底板 1-503且活动端向下的上下驱动气缸 1-504 (双行程气缸)、 与上下驱动气 缸 1—504活动端连接的安装板 1-505、一端固接在安装板 1-505上且与底板 1-503 竖向滑动连接的上下移动拖板 1-506, 顶板 1-502的前后滑动带动底板 1-503 在架体 1-1上前后滑动使输出侧机械手 1-6及进入侧机械手 1-5同步前后移动, 上下驱动气缸 1-504的动作带动安装板 1-505及上下移动拖板 1-506在架体 1-1 上竖直滑动实现机械手的上下移动。握持部包括固定于安装板 1-505底面的夹 紧气缸 1-507、 分别与夹紧气缸 1-507两活动端连接的两气爪 1-508、 与气爪 1-508外侧面连接的绝缘块 1-509, 绝缘块 1-509外侧螺接一与夹紧气缸 1-507 活动端连接的连板 1-510, 两气爪 1-508的相对侧设有半圓槽形成与穿心铜棒 1-2相配的夹持孔 1-511 ,夹紧气缸 1-507的动作带动连板 1-510、绝缘块 1-509 动作以控制两气爪 1-508的开合度实现握持或松开穿心铜棒 1-2。
为了提高检测效率并避免电流过大而产生的高温,检定系统包括绝缘试验 装置 5绝缘试验和误差检定模块 6, 绝缘试验装置 5和误差检定模块 6均包括 两穿心机构, 一穿心机构包括所述进入侧机械手 1-5、 输出侧机械手 1-6及穿 心铜棒 1-2。 两穿心机构通过一继电器与电源连接, 通过继电器切换实现两穿 心铜棒 1-2依次通过大电流以保证在同一时刻只有一穿心铜棒 1-2通过大电 流, 而另一穿心铜棒 1-2处于待机状态。
在一工装板 1-7装载两母线式电流互感器 1-3 , 三工装板 1-7为一组, 在 输送线 1-4的带动下六个母线式电流互感器 1-3依次穿入或穿出穿心铜棒 1-2, 实现对六个母线式电流互感器 1-3同时检测的目的。 12个母线式电流互感器依 次完成在一绝缘试验装置 5或误差检定模块 6中的检测。
本发明实施例所述互感器穿心铜棒 1-2在中心位置不动, 由输送线 1-4带 着互感器进行穿心。 使得绝缘试验装置 5和误差检定模块 6结构紧凑、 筒单, 穿心成功率高。
由于不同互感器的中心孔和二次绕组的高度都有 4艮大差异,为适应所有类 型的互感器的一次穿心和二次压接,一次穿心机构和二次压接机构具体都可以 采用双行程气缸, 可根据不同尺寸调节运动行程。
参见图 4, 由于被检的各类型互感器穿心孔径和中心高度不同, 若穿心铜 棒 1-2只保持一种高度难以实现对所有类型互感器的一次穿心动作。采用双行 程气缸 1-504, 可带动夹具和一次铜棒在检定输送线体的垂直方向进行位移, 实现一次铜棒具有两个高度位置, 可满足所有类型互感器的一次穿心要求。
待机状态时机械手和穿心铜棒停靠在检定输送线 4体的另一侧,与复匝式 互感器夹具对称布置, 当母线式互感器输送至检定工位前,机械手连同穿心铜 棒一起平移至检定输送线 4中心, 等待并完成一次穿心和一次压接动作。
所述二次接压线机构包括与架体连接的能上下移动的二次接压线上下驱 动组件,二次接压线上下驱动组件下端设有复数个竖直的用于和互感器二次端 连接的导电棒。
如图 16所示, 所述的二次接压线机构 5-7包括与架体 5-1连接的能上下 移动的二次接压线上下驱动组件 5-701 ,所述的二次接压线上下驱动组件 5-701 下端设有复数个竖直的用于和互感器二次端连接的导电棒 5-702。
下面以用于误差试验的二次压线机构为例进行说明。绝缘试验装置 5的二 次压线机构的结构基本相同, 区别为绝缘试验装置 5具有两排导电棒, 绝缘试 验装置 5的两排导电棒分别用于连同峰值电压表和升压源输出端,完成匝间绝 缘试验、 绝缘电阻测试和工频耐压试验, 在此不再详述。
如图 8-10所示, 本发明所述用于误差试验的二次压线机构包括架体 3-1、 设于架体 3-1下方的条状绝缘块 3-2、设于架体 3-1与绝缘块 3-2之间以驱动绝 缘块 3-2上下移动的气缸 3-3 (双行程气缸)、 连接在架体 3-1和绝缘块 3-2上 的导杆 3-12及设于绝缘块 3-2上用于和互感器二次端压接的复数个并排设置 的试验探针 3-4, 试验探针 3-4的上端连接导线。
架体 3-1与绝缘块 3-2之间设有两气缸 3-3 , 两气缸 3-3分设于绝缘块 3-2 的两端, 气缸 3-3的缸体通过连接板 3-5垂直向下安装在架体 3-1的下端面, 气缸 3-3的活动端通过底板 3-6固定在绝缘块 3-2上用于为绝缘块 3-2的上下 移动提供驱动力。
架体 3-1下端面开设两条螺母安装槽, 槽内嵌有螺母块, 连接板 3-5通过 螺釘与螺母安装槽内的螺母块锁紧, 气缸 3-3的缸体通过连接件固定在连接板 3-5的下端面实现气缸 3-3缸体固定在架体 3-1上。
试验探针 3-4外套有弹簧 3-7, 绝缘块 3-2上设有复数个试验探针插孔, 试验探针 3-4中部设用于和弹簧 3-7相抵的凸肩, 试验探针 3-4套接弹簧 3-7 后插入试验探针插孔,试验探针 3-4的下端设外螺纹以与用于和互感器二次端 相抵的铜头 3-8螺接; 弹簧 3-7—端与试验探针 3-4的凸肩相抵, 其另一端与 绝缘块 3-2相抵使绝缘块 3-2下移后试验探针 3-4能与互感器二次端可靠接触。 试验探针插孔的上下端均设有内螺纹以分别与两轴套 3-9的外螺纹螺接;位于 试验探针 3-4上端的轴套 3-9, 其下端面与试验探针 3-4的凸肩之间设有外套 于试验探针 3-4的弹簧 3-7;在待机时,试验探针 3-4的凸肩在弹簧 3-7的弹力 作用下与位于试验探针插孔下端的轴套 3-9抵触。 导杆 3-12上设有并排的 12 个试验探针插孔分别插接 12个试验探针 3-4。 连接架体 3-1和绝缘块 3-2的导 杆 3-12为两个,导杆 3-12的下端通过法兰 3-10固定在绝缘块 3-2上,架体 3-1 上设有用于穿设导杆 3-12的导杆孔, 一导杆孔内设有分别与绝缘块 3-2上、 下端面通过螺釘固接的两滑动轴承 3-11。与试验探针 3-4上端连接的导线接入 互感器校验仪以检测互感器误差试验时的二次绕组电流,铜头 3-8下端设倒角 以避免在压接时与互感器二次绕组中间的绝缘挡块干涉。试验探针 3-4与上端 接接导线共同组成了互感器误差检定所需的二次绕组回路接线, 试验探针 3-4 压接时的接触电阻和上端连接导线的电阻之和为需满足计量检定规程要求的 互感器检定的二次回路阻抗。
二次压接机构可完成六只互感器的二次绕组同时压接,在误差试验过程中 同一互感器二次绕组的两个试验探针 3-4通过继电器短接, 处于短路状态, 通 过依次切换继电器实现六只互感器依次接入互感器校验仪中,按照互感器检定 规程进行误差试验。
参见图 8, 由于被检各类型的互感器二次端子具有两类不同高度, 具体可 以采用双行程气缸 3-3可使试验探针向下运动时具有两个可选行程,根据互感 器类型尺寸的不同,选择合理的行程, 实现所有类型互感器二次绕组端子的可 靠压接。
母线式和复匝式互感器的二次端子位置相同,因此本发明采用同一套二次 绕组压接机构。 绝缘试验装置 5中的二次绕组压接机构具有两排端子, 一排用 于完成绝缘电阻测量和工频耐压试验, 通过继电器切换, 二次端子可输出 DC 500V和 AC 3000V的电压, 而通过在接地端测量泄露电流可测得被检互感器 的绝缘电阻。 另一排端子连接测量装置,但一次绕组通过被检互感器额定电流 时,二次端子测量并监控互感器二次开路产生的峰值电压, 判断互感器匝间绝 缘强度。 测量及监控装置完成互感器一次绕组升流能力、 二次绕组峰值电压、 接地端泄露电流等的测量和监控。误差检定装置布置在检定输送线 4旁,在绝 缘试验装置 5之后, 主要由带升流器的电流互感器、 一次导线、 一次绕组压接 机构、 二次绕组压接结构、 程控电源、 互感器校验仪、 负荷箱等组成。 绝缘试 验装置 5主要完成低压电流互感器的基本误差测量和磁饱和裕度试验项目。误 差检定装置 6中的带升流器的电流互感器、 一次导线、 一次绕组压接机构、 程 控电源都与绝缘试验装置 5相同。其中二次绕组压接机构只有一排端子, 连接 到互感器校验仪中, 用于测量互感器二次绕组的输出电流。 互感器校验仪和负 荷箱都为程控式, 可实现全自动检定功能。
如图 11-图 13所示, 本发明实施例所述互感器在线检测用工装板 (即图 1 中工装板 10 ), 包括底板 4-1 , 所述底板 4-1上装有两能前后位移的档杆 4-2, 处于档杆下方的底板 4-1上装有绝缘垫板 4-3。 所述底板 4-1 中心线上设有两 导轨 4-4, 所述导轨 4-4上滑动连接一滑块 4-5 , 所述滑块 4-5上装有档杆 4-2, 所述导轨 4-4的两侧各装有一绝缘垫板 4-3 ,所述档杆 4-2与绝缘垫板 4-3间隙 配合。 所述滑块 4-5被一气缸 4-6驱动。 所述绝缘垫板 4-3前后边缘位置各开 有一定位孔, 所述底板 4-1上设有与定位孔相匹配的定位销 4-7。 所述绝缘垫 板 4-3中间开有前后向的凹槽 4-8。
工作过程: 当自动化流水线体进行互感器 4-9上料部分, 气缸 4-6将挡杆 4-2退回, 一上料机械手可将互感器箱内互感器 4-9取出, 放在绝缘垫板 4-3 上后, 气缸 4-6伸出, 挡杆 4-2将互感器 4-9浮动卡紧, 然后进入自动化流水 线体进行检测检定工作。
检定管理系统包括任务管理功能模块、输送控制功能模块、检定控制功能 模块、 数据处理及分析功能模块。
任务管理功能模块用于从生产调度平台中获得工作任务,并向仓储系统发 起出库申请, 根据该生产任务对不同检定单元和不同工位进行任务分解。
输送控制功能模块用于触发上、 下料机器人自动上下料、控制输送线体将 被检互感器分配至对应检定工位、完成多套检定装置和多个检定单元的有序上 下料。
检定控制功能模块用于自动完成互感器检定项目所需要的一次绕组和二 次绕组压接动作、 控制升流升压器和测量仪器完成检定项目、 存储误差数据。
数据处理及分析功能模块用于对互感器检定合格与否进行判断、对互感器 检定任务的完成率、 故障率进行分析统计。
参见图 2, 该图为本发明实施例所述互感器全自动化检定系统工作流程 图。 本发明实施例所述互感器全自动化检定系统对应的检定方法包括以下步 骤:
1 )供料步骤。
将互感器从仓储系统的出库口经供料输送线 2传输至上料工位;
2 )上料步骤。
机器人将位于供料输送线 2上的互感器抓取至位于检定输送线 4的工装板 10上, 将工装板 10和对应互感器的条码信息绑定, 记录互感器信息;
3 )外观检查步骤。
工装板 10在检定输送线 4的带动下进入外观检查工位, 相机对互感器进 行拍照,外观检查装置通过所拍的照片与已存储的对应图片进行对比以分析被 检互感器铭牌内容是否完整、 器身是否完好, 并记录;
4 )绝缘试验(预防性试验) 步骤。
工装板 10随着检定输送线 4到达绝缘试验工位, 一定数量的工装板 10 在检定输送线 4的带动下进入对应的绝缘试验工位,绝缘试验工位上的绝缘试 验装置 5对互感器一次绕组、二次绕组进行压接,程控电源输出 380V或 220V 电压至升流器、 升压器, 根据不同的试验项目升流器产生低压大电流、 升压器 产生直流和交流电压,依次完成低压电流互感器的匝间绝缘试验、绝缘电阻试 马全和工频耐压试马全;
5 )误差检定步骤。
绝缘试验完毕,被测互感器跟随检定输送线 4流入误差检定工位,误差检 定工位上的误差检定装置对互感器一次绕组、二次绕组进行压接,程控电源输 出 380V或 220V电压至升流器, 升流器产生低压大电流, 低压大电流通过与 升流器输出端连接的一次导线流经串联的待测互感器一次绕组,通过与二次绕 组压接机构连接的互感器校验仪测量互感器二次绕组的输出电流,完成误差试 验和磁饱和裕度试验, 实现全自动检定, 记录不合格产品;
6 )激光打标步骤。
误差检定完毕, 工装板 10随着检定输送线 4进入激光打标工位, 激光打 标机将在检定合格的互感器器身上刻蚀一段代码。检定不合格的互感器不进行 激光打标, 自动流转入下料工位, 等待异常处理。
所述代码用于标识检定合格、 检定日期、 检定人员等信息;
7 ) 下料步骤。
机器人将位于检定输送线 4工装板 10上的合格的互感器抓取放至位于供 料输送线 2上的箱体中, 装箱后, 箱体随供料输送线 2至仓储系统。
其中,绝缘试验装置 5及误差检定装置 6均分为第一检定单元及第二检定 单元, 一组 12个互感器平分为两小组, 依次进入第一检定单元及第二检定单 元; 绝缘试验装置 5的第一检定单元对 6个互感器通电测试时绝缘试验装置 5 的第二检定单元完成一、 二次绕组的接线, 并处于等待通电测试状态; 待绝缘 试验装置 5的第一检定单元对 6个互感器通电测试完毕,绝缘试验装置 5的第 二检定单元开始通电测试,接着位于绝缘试验装置 5的第一检定单元的 6个互 感器流入误差检定装置 6的第一检定单元, 对 6个互感器接线后通电测试,待 绝缘试验装置 5的第二检定单元对 6个互感器通电测试完毕后流入误差检定装 置 6的第二检定单元的 6个互感器通电测试。
在本技术方案中,分别对母线式及复匝式电流互感器设计有不同的一次接 线机构以满足其不同的接线要求,而二种不同型号互感器因其二次端尺寸一致 因此采用一套二次端子接压线机构。在二次匝间绝缘检定时因为要长时间地通 过大电流因此在一次接线机构中会产生大量的热量,而温升的大幅上升又会降 低大电流导线及机构的使用寿命, 因此在设计本装置时把一批 12个互感器分 成左右两组机构每组 6个工位。以减少每个机构的通电时间并使其有更多的时 间散热。
一、本装置在对母线式电流互感器进行绝缘试验及误差检定时其运作步骤 :¾口下:
1) 检定管理系统软件从生产调度平台获得工作任务,将该任务分解到不 同检定装置的不同表位。 互感器自动化检定装置的检定控制软件获取该任务, 做好相关的准备工作。
2 ) 当检定装置确认本批次检定对象为母线式互感器时, 绝缘试验装置的 第一检定单元的母线式电流互感器一次接线机构推至输送线中间位置,使穿心 铜棒上下高度与前后位置与输送线上的互感器中心孔位置保持一致。 3)当被检互感器在输送线体分拣工位被挡停时,通过身份识别环节确定该 批次互感器应进入的自动化检定装置。
4 ) 自动化检定装置获得输送管理软件发过来的触发信号时, 绝缘试验单 元的进入侧机械手 5-502下端的气爪 5-504松开穿心铜棒, 随后进入侧机械手 5-502上升让出互感器流入通道, 此时穿心铜棒处于单边悬握状态。
5)被检互感器从装置的左面穿入穿心铜棒至检测工位后, 由工位上的档停 机构同时将定位反馈信号传给检定控制软件,检定控制软件接到上述信号后认 为互感器已到达检测工位, 就控制输出侧机械手下降, 气爪 5-504握紧穿心铜 棒。
6)悬挂在第一检定单元上方的二次接压线机构 5-7的二次接压线上下驱动 组件 5-701下降使导电棒 5-702压接互感器二次端。
7)互感器一二次绕组接线结束后检定装置对互感器进行预升流来检测每 个互感器二次端的开路电压, 用于验证互感器一二次绕组接线是否可靠。
8)接线完成后绝缘试验装置上的检定仪器根据检定规程的要求分别对其 进行绝缘电阻.工频耐压.二次匝间绝缘试验, 并将试验结果上传到检定控制软 件。
9)在绝缘试验装置的第一检定单元检测的同时,检定控制软件控制第二检 定单元动作, 其动作过程与第一组母线式电流互感器进入第一检定单元相同, 完成第二组被检互感器的绝缘试验自动接线和自动测试
10)第一检定单元各项检测完成后, 输出侧的机械手下端的气爪 5-504松 开穿心铜棒, 输出侧的机械手上升, 此时穿心铜棒再次处于单边悬握状态, 互 感器向右流出工位。
11)当工位上互感器全部流出后, 输送线上的红外感应器和计数器将反馈 互感器已全部流出铜棒的确认信号,输出侧机械手下降, 其下端的气夹握持穿 心铜棒,接着母线式电流互感器前后驱动组件将整个母线式电流互感器一次接 线机构移离输送带, 放置于安全位置。
12)第二检定单元的互感器完成检测后,其流出过程与第一组互感器相同。
13)第一组互感器在完成绝缘试验后直接流入误差检定装置的第一检定单 元, 第二组互感器在完成绝缘试验后流入误差检定装置的第二检定单元, 两组 互感器流入及流出过程与在绝缘试验装置时相似。 二、本装置在对复匝式电流互感器进行绝缘试验及误差检定时其运作步骤 :¾口下:
本装置在做复匝式电流互感器时其检定方式与母线式基本一致, 区别在 于: 在复匝式电流互感器进入时, 第一或第二的检定单元的复匝式电流互感器 一次接线机构动作, 而母线式电流互感器一次接线机构不动, 复匝式电流互感 器前后驱动组件向输送带移动, 接着由压接组件 5-602夹持互感器一次侧端, 使复数个互感器一次侧串联。 检定结束后, 压接组件 5-602松开互感器一次侧 端, 前后驱动组件背离输送带, 退出测试工位。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局 限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求的保护范围为准。

Claims

权 利 要 求
1、 互感器全自动化检定系统, 其特征在于: 包括供料输送线(2)、 上料 装置( 3 )、 检定输送线( 4 )、 外观检查装置( 9 )、 绝缘试验装置( 5 )、 误差检 定装置(6)、 激光打标装置 (7)、 下料装置 (8)和检定管理系统; 所述绝缘 试验装置 ( 5 )、 误差检定装置( 6 )及激光打标装置( 7 )按检定输送线 ( 4 ) 的前进方向依次排设;
供料输送线(2), 用于将装有待检互感器的周转箱 (1 )从仓储系统运输 至上料工位, 并将位于下料工位的装有已检互感器的周转箱 (1)运输回仓储 系统;
上料装置( 3 )位于供料输送线( 2 )上料工位旁, 用于将位于供料输送线
(2)上料工位的互感器移至检定输送线(4);
检定输送线(4)用于将互感器移至各装置对应工位;
绝缘试验装置 (5)用于对互感器的绝缘电阻、 工频耐压和匝间绝缘进行 检测;
误差检定装置(6), 用于检测互感器基本误差和磁饱和裕度;
激光打标装置(7)用于在合格的互感器上刻录标识信息;
下料装置 (8), 位于供料输送线(2) 下料工位旁的用于将已检测完成的 互感器从检测输送线转移到供料输送线(2);
检定管理系统, 用于控制各装置、 供料输送线 (2)、 检定输送线(4)之 间协调工作并根据绝缘试验装置 (5)、 误差检定装置(6) 的反馈信息对互感 器准确分拣。
2、 根据权利要求 1所述互感器全自动化检定系统, 其特征在于: 所述系 统进一步包括位于所述绝缘试验装置 (5)前, 用于对待检互感器外观拍照并 处理的外观检查装置 (9)。
3、 根据权利要求 1所述互感器全自动化检定系统, 其特征在于: 所述系 统设有复数个并排设置的试验装置组; 每个试验装置组包括: 排设在检定输送 线(4) 旁的架体上的一个绝缘试验装置(5)和一个误差检定装置;
所述检定输送线(4)始端和末端相接, 检定输送线(4)上设有与所述检 定输送线(4 )相配的用于承载待检互感器的工装板(10 )。
4、 根据权利要求 2所述互感器全自动化检定系统, 其特征在于: 所述供 料输送线 (2 ) 包括架体、 设于架体上的用于驱动皮带前移的驱动电机、 与驱 动电机转动轴连接的皮带线, 和 /或, 设于架体上的用于准确挡停皮带线上工 装板的挡停机构, 和 /或, 设于架体上的用于对互感器进行计数的计数器, 和 / 或,设于架体上的用于录入互感器信息的条码扫描器及用于互感器分拣的分拣 机构; 所述供料输送线(2 ) 的输入端、 输出端分别用于连接仓储系统的出库 口及入库口。
5、 根据权利要求 4所述互感器全自动化检定系统, 其特征在于: 所述上 料装置( 3 )包括用于将位于供料输送线( 2 )上的待检互感器精确地放置在检 定输送线 (4 )工装板 ( 10 )上的上料机器人, 所述上料机器人设有上料机器 手、 用于控制机器手动作的控制器、 与机械手下端连接的上料夹具; 所述下料 装置( 8 ) 包括用于将检定输送线( 4 )工装板 ( 10 )上的被检互感器放置在供 料输送线 (2 )上的下料机器人, 所述下料机器人设有下料机器手、 用于控制 机器手动作的控制器、 与下料机器手下端连接的下料夹具。
6、 根据权利要求 5所述的互感器全自动化检定系统, 其特征在于: 所述 上、 下料机器人设有用于互感器精确定位的定位平台, 所述上料机器手从供料 输送线(2 )抓起互感器放入上料机器人定位平台定位后, 再次抓起并放入位 于检定输送线 (4 ) 的工装板(10 )上;
7、 根据权利要求 6所述的互感器全自动化检定系统, 其特征在于: 所述 绝缘试验装置 (5 )和误差检定装置 (6 ) 均包括按检定输送线 (4 )前进方向 依次排设在检定输送线(4 ) 旁架体上的第二检定单元和第一检定单元;
第一检定单元、第二检定单元的一次大电流导线与电流源之间的连接通过 一继电器切换;
所述第一、第二检定单元均包括母线式电流互感器一次接线机构、复匝式 电流互感器一次接线机构及二次接压线机构;
所述母线式电流互感器一次接线机构与复匝式电流互感器一次接线机构 均为能前后移动的接线机构,待机时所述母线式电流互感器一次接线机构与复 匝式电流互感器一次接线机构分设于检定输送线(4 ) 两侧。
8、 根据权利要求 7所述的互感器全自动化检定系统, 其特征在于: 所述 母线式电流互感器一次接线机构包括母线式电流互感器前后驱动组件、进入侧 机械手和输出侧机械手、 气爪和穿心铜棒;
母线式电流互感器前后驱动组件, 能够实现在架体上前后移动母线式; 进入侧机械手和输出侧机械手, 分别与前后驱动组件左右两端连接,且能 够实现上下移动;
气爪, 设于所述进入侧机械手和输出侧机械手下端, 且能够实现开合; 穿心铜棒, 由气爪握持, 且用于穿设复数个母线式电流互感器; 气爪外侧设有用于连接电源线的柱状铜头,母线式电流互感器一次接线机 构的两气爪及穿心铜棒能形成闭合回路母线式;
所述复匝式电流互感器一次接线机构包括能在架体上前后移动的复匝式 电流互感器前后驱动组件、设于复匝式电流互感器前后驱动组件上的复数个并 排的用于将对应复匝式电流互感器的一次侧串联连接的压接组件;
压接组件包括能夹持复匝式电流互感器一次侧端子的上、 下导电夹持块; 所述二次接压线机构包括与架体连接的能上下移动的二次接压线上下驱 动组件,所述二次接压线上下驱动组件下端设有复数个竖直的用于和互感器二 次端连接的导电棒。
9、 根据权利要求 8所述的互感器全自动化检定系统, 其特征在于: 所述 二次压线机构, 包括架体(3-1 )、 设于架体(3-1 ) 下方的条状绝缘块(3-2 )、 设于架体( 3-1 )与绝缘块( 3-2 )之间用于驱动绝缘块( 3-2 )上下移动的气缸 ( 3-3 )、 连接在架体(3-1 )和绝缘块(3-2 )上的导杆(3-12 )及设于绝缘块 ( 3-2 )上用于和互感器二次端压接的复数个并排设置的试验探针(3-4 ); 所 述的试验探针(3-4 ) 的上端连接导线, 下端为用于与被检互感器的二次绕组 接线端压接的压接端;
所述架体( 3-1 )与绝缘块( 3-2 )之间设有两气缸( 3-3 ) , 两气缸( 3-3 ) 分设于绝缘块( 3-2 )的两端, 气缸( 3-3 )的缸体通过连接板( 3-5 )垂直向下 安装在架体(3-1 )的下端面, 气缸(3-3 )的活动端通过底板(3-6 ) 固定在绝 缘块(3-2)上用于为绝缘块(3-2) 的上下移动提供驱动力。
10、 根据权利要求 9所述的互感器全自动化检定系统, 其特征在于: 所述 试验探针 (3-4)外套有弹簧(3-7), 绝缘块(3-2)上设有复数个与试验探针 (3-4)相配的试验探针插孔, 所述试验探针 (3-4) 中部设用于和弹簧(3-7) 相抵的凸肩, 试验探针 (3-4)套接弹簧(3-7)后插入试验探针插孔, 试验探 针(3-4) 的下端设外螺纹以与用于和互感器二次端相抵的铜头 (3-8)螺接; 弹簧(3-7)—端与试验探针 (3-4)的凸肩相抵, 其另一端与绝缘块(3-2)相 抵以在试验探针(3-4) 与互感器二次端相抵时提供合适的压紧力使两者可靠 电连接的同时避免损坏。
11、 根据权利要求 8所述的互感器全自动化检定系统, 其特征在于: 所述 复匝式电流互感器一次接线机构包括连接支架(2-1)、 设于连接支架(2-1 ) 上方的上绝缘板( 2-2 )、设于连接支架( 2-1 )下方的下绝缘板( 2-3 )、缸体( 2-401 ) 固定在上绝缘板( 2-2 )且活动杆( 2-402 )穿过连接支架( 2-1 )与下绝缘板( 2-3 ) 相连的气缸(2-4)、 位于上绝缘板(2-2)及下绝缘板(3)之间用于夹持复匝 式电流互感器一次端的上导电夹持块(2-5)和下导电夹持块(2-6)。
12、 根据权利要求 11所述的互感器全自动化检定系统, 其特征在于: 所 述复匝式电流互感器一次接线机构进一步包括穿设于连接支架(2-1 )且上下 端分别与上、 下绝缘板 (2-3)滑动连接的用于导向的复数根支架导杆(2-7), 复数根支架导杆( 2-7 )与气缸( 2-4 )活动杆平行且分设于气缸( 2-4 )活动杆 的两侧, 上绝缘板( 2-2 )与连接支架( 2-1 )之间及下绝缘板 ( 2-3 )与连接支 架(2-1) 的支架导杆(2-7)上均套接小压缩弹簧(2-8); 所述上导电夹持块 (2-5)通过外套有大压缩弹簧(2-9) 的夹持块导杆(2-10)可滑动地连接在 对应的上绝缘板(2-2)上, 所述下导电夹持块(2-6)通过外套有大压缩弹簧 (2-9) 的夹持块导杆(2-10)可滑动地连接在对应的下绝缘板(2-3)上, 所 述的夹持块导杆(2-10)顶部固定用于进行互感器检定试验的大电流导线。
13、 根据权利要求 11所述的互感器全自动化检定系统, 其特征在于: 所 述连接支架(2-1 )呈 "z" 形, 连接支架(2-1)前部与上、 下绝缘板(2-2、 2-3)相连, 连接支架(2-1)后部与可前后移动的大拖板固接, 所述大拖板上 固定复数个连接支架(2-1 ) 以同时拖动多个压线装置, 位于所述大拖板上最 左侧或最右侧的压线装置的上、 下绝缘板(2-2、 2-3 )上分别设有一上导电夹 持块(2-5 )及与上导电夹持块(2-5 )相对的一下导电夹持块(2-6 )。
14、根据权利要求 3至 6任一项所述的互感器全自动化检定系统, 其特征 在于: 所述工装板(10 ) 包括底板(4-1 ), 所述底板(4-1 )上装有两能前后 位移的档杆( 4-2 ) , 处于档杆下方的底板( 4-1 )上装有绝缘垫板( 4-3 );
所述底板(4-1 ) 同一直线上设有两导轨(4-4 ), 所述导轨(4-4 )上滑动 连接一滑块( 4-5 ) , 所述滑块( 4-5 )上装有档杆( 4-2 );
所述滑块(4-5 )通过气缸(4-6 )驱动。
15、 根据权利要求 8所述的互感器全自动化检定系统, 其特征在于: 所述 检定管理系统包括:
任务管理功能模块, 用于从生产调度平台中获得工作任务, 并向仓储系统 发起出库申请, 根据所述生产任务对不同检定单元和不同工位进行任务分解; 输送控制功能模块, 用于触发上、 下料机器人自动上下料、控制输送线体 将被检互感器分配至对应检定工位、完成多套检定装置和多个检定单元的有序 上下料;
检定控制功能模块,用于自动完成互感器检定项目所需要的一次绕组和二 次绕组压接动作、 控制升流升压器和测量仪器完成检定项目、 存储误差数据; 数据处理及分析功能模块, 用于对互感器检定合格与否进行判断、对互感 器检定任务的完成率、 故障率进行分析统计。
16、 互感器全自动化检定方法, 其特征在于, 所述方法应用权利要求 1 至 8所述的系统, 所述方法包括以下步骤:
1 )供料步骤, 将待检互感器从仓储系统的出库口经供料输送线( 2 )传输 至上料工位;
2 )上料步骤, 上料机器人将位于供料输送线(2 )上的互感器抓取至位于 检定输送线(4 ) 的工装板(10 )上, 将工装板(10 )和互感器信息绑定, 记 录互感器信息;
3 )外观检查步骤, 工装板 ( 10 )在检定输送线( 4 )的带动下进入外观检 查工位,相机对互感器进行拍照, 外观检查装置通过所拍的照片与已存储的对 应图片进行对比,分析被检互感器铭牌内容是否完整、器身是否完好,并记录; 4 )绝缘试验步骤, 工装板( 10 )随着检定输送线( 4 )到达绝缘试验工位, 一定数量的工装板(10 )在检定输送线(4 ) 的带动下进入对应的绝缘试验工 位, 绝缘试验工位上的绝缘试验装置 (5 )对互感器一次绕组、 二次绕组进行 压接, 程控电源输出 380V或 220V电压至升流器, 升流器产生低压大电流, 低压大电流通过与升流器输出端连接的一次导线流经串联的待测互感器一次 绕组, 通过对接地端及二次端的检测处理得到低压电流互感器的绝缘电阻值、 工频耐压结果和匝间绝缘结果;
5 )误差检定步骤, 绝缘试验完毕, 被测互感器跟随检定输送线(4 )流入 误差检定工位, 误差检定工位上的误差检定装置(6 )对互感器一次绕组、 二 次绕组进行压接, 程控电源输出 380V或 220V电压至升流器, 升流器产生低 压大电流,低压大电流通过与升流器输出端连接的一次导线流经串联的待测互 感器一次绕组,通过与二次绕组压接机构连接的互感器校验仪测量互感器二次 绕组的输出电流, 完成误差试验和磁饱和裕度试验, 实现全自动检定, 记录不 合格产品;
6 )激光打标步骤, 误差检定完毕, 工装板 ( 10 )随着检定输送线(4 )进 入激光打标工位,激光打标机将在检定合格的互感器器身上刻蚀一段唯一的代 码,; 检定不合格的互感器不进行激光打标, 自动流转入下料工位, 等待异常 处理;
7 )下料步骤, 下料机器人将位于检定输送线( 4 )工装板 ( 10 )上的合格 的互感器抓取放至位于供料输送线(2 )上的箱体中, 装箱后, 箱体随供料输 送线(2 )至仓储系统。
PCT/CN2011/082916 2011-06-01 2011-11-25 互感器全自动化检定系统和方法 WO2012163064A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/980,556 US9562916B2 (en) 2011-06-01 2011-11-25 Full-automatic detecting system and method for transformer

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201110145994A CN102323560A (zh) 2011-06-01 2011-06-01 一种互感器在线检测用工装板
CN201110145994.2 2011-06-01
CN201110198630.0A CN102353921B (zh) 2011-07-14 2011-07-14 互感器自动化检定装置
CN201110197022.8 2011-07-14
CN2011101970228A CN102305920B (zh) 2011-07-14 2011-07-14 母线型电流互感器一次穿心方法
CN201110198630.0 2011-07-14
CN201110198519.1A CN102353920B (zh) 2011-07-14 2011-07-14 互感器全自动化检定系统
CN201110198519.1 2011-07-14
CN2011102080863A CN102353922B (zh) 2011-07-22 2011-07-22 复匝式互感器一次端自动接压线装置
CN201110208086.3 2011-07-22
CN201110247680.3 2011-08-24
CN201110247680.3A CN102331568B (zh) 2011-08-24 2011-08-24 用于误差试验的二次压线机构

Publications (1)

Publication Number Publication Date
WO2012163064A1 true WO2012163064A1 (zh) 2012-12-06

Family

ID=47258339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082916 WO2012163064A1 (zh) 2011-06-01 2011-11-25 互感器全自动化检定系统和方法

Country Status (2)

Country Link
US (1) US9562916B2 (zh)
WO (1) WO2012163064A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301548A (zh) * 2015-10-27 2016-02-03 中国电力科学研究院 一种低压电流互感器温升特性自动检测装置
CN107300637A (zh) * 2017-06-07 2017-10-27 浙江工业大学 一种电瓶车充电桩功率自动化校准检测装置及检测方法
CN107561301A (zh) * 2017-10-19 2018-01-09 东方伊诺(苏州)医疗科技有限公司 一种分析仪用的固相载体自动排料装置及反应盘系统
CN107957537A (zh) * 2017-12-22 2018-04-24 浙江八达电子仪表有限公司 变压器耐压测试工装
CN108152616A (zh) * 2017-12-14 2018-06-12 马鞍山豪远电子有限公司 一种变压器铁芯的性能检测装置、变压器制造系统及方法
CN109752617A (zh) * 2019-03-01 2019-05-14 山东红宝自动化有限公司 一种空调分体内机电气安全测试随动装置
CN110261751A (zh) * 2019-07-29 2019-09-20 无锡新畅电子有限公司 一种变压器绝缘性能自动测试装置
CN110639826A (zh) * 2019-10-08 2020-01-03 郑州三晖电气股份有限公司 一种通信模块自动化检测流水线检测单元及实现方法
CN112578207A (zh) * 2020-12-08 2021-03-30 宁波华祥技术服务有限公司 一种温升自动测试设备及方法
CN113484657A (zh) * 2021-07-01 2021-10-08 海宁联丰东进电子有限公司 一种标准化的高频变压器自动检测设备
CN113763995A (zh) * 2021-09-07 2021-12-07 中科计算技术西部研究院 一种自动配存流水线
CN114002637A (zh) * 2021-10-19 2022-02-01 国网山东省电力公司营销服务中心(计量中心) 一种电压互感器高压检测辅助装置
CN116105649A (zh) * 2023-04-13 2023-05-12 邦迪智能装备(河南)有限公司 一种对扁线电机线圈扩口后的线脚进行检测的装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154204B (zh) * 2016-08-18 2023-03-31 大连第一互感器有限责任公司 超大电流一次载流导体的随动压接触装置
CN106404798A (zh) * 2016-09-30 2017-02-15 苏州松翔电通科技有限公司 光收发模块扣片毛边检测机
CN106841864A (zh) * 2017-01-21 2017-06-13 温州微特电子有限公司 一种变压器装配的检测装置
CN107045334B (zh) * 2017-03-09 2020-03-27 珠海小可乐科技有限公司 充电桩管理系统的测试方法及测试装置
CN107576876A (zh) * 2017-09-21 2018-01-12 佛山市帝博世电子有限公司 高压变压器在线检测自动化设备及检测方法
CN107528927A (zh) * 2017-10-17 2017-12-29 云南电网有限责任公司电力科学研究院 一种计量终端自动化装置调度平台
CN108840059B (zh) * 2018-09-12 2024-02-27 东莞联洲电子科技有限公司 一种基于循环回流的音响电板自动检测下料系统
CN109342824A (zh) * 2018-10-15 2019-02-15 郑州市凯瑞德新材料科技有限公司 一种多匝铁芯电感测试工装及系统
CN109406874B (zh) * 2018-12-24 2023-12-22 胜利油田恒达电气有限责任公司 一种一体化高压电能计量装置
CN109917320A (zh) * 2019-03-18 2019-06-21 广州供电局有限公司 互感器检定夹具与互感器检定系统
CN110161445B (zh) * 2019-06-11 2024-03-08 沈阳仪表科学研究院有限公司 汽车电流传感器自动测试装置
CN110281028A (zh) * 2019-07-29 2019-09-27 无锡新畅电子有限公司 一种变压器自动测试线
CN110488141A (zh) * 2019-09-29 2019-11-22 格力电器(武汉)有限公司 变压器测试装置
CN110794357A (zh) * 2019-11-04 2020-02-14 云南电网有限责任公司曲靖供电局 一种全方位安全防护的10kV电力互感器全性能试验系统
CN111830351B (zh) * 2020-07-30 2022-11-22 淮南万泰电子股份有限公司 一种电机减速机变频器一体机用安全性能检测设备
CN113238115A (zh) * 2021-05-10 2021-08-10 东莞市博展机械科技有限公司 一种变压器测试设备
CN113270262B (zh) * 2021-05-25 2021-12-21 大唐国际发电股份有限公司北京高井热电厂 一种能自检修的变压器
CN113960425B (zh) * 2021-10-19 2023-08-04 广东电网有限责任公司 一种用于变压器的高压试验系统
CN114035123A (zh) * 2021-11-08 2022-02-11 国网山东省电力公司临沂供电公司 配电变压器检测装置
CN114083352B (zh) * 2022-01-19 2022-04-12 浙江金火科技实业有限公司 基于数控机床制造的刹车推杆的检测设备及检测方法
CN114720830B (zh) * 2022-06-09 2022-09-06 江苏沃尔法电气有限公司 一种高压充气柜用电压互感器的绝缘试验装置
CN114994481B (zh) * 2022-08-03 2022-10-04 万泰智能电子科技(新沂)有限公司 一种微型变压器高压测试机
CN116973609B (zh) * 2023-09-21 2023-12-01 国网辽宁省电力有限公司 一种电网支柱复合绝缘子检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB740430A (en) * 1953-10-23 1955-11-09 Landis & Gyr Ag Testing of electricity meters
CN201285442Y (zh) * 2008-11-03 2009-08-05 郑州三晖电气有限公司 流水线型电能表耐压试验装置
CN201322792Y (zh) * 2008-12-18 2009-10-07 绍兴电力局 电能表检定自动化流水线标准装置
CN101592719A (zh) * 2009-06-30 2009-12-02 深圳市科陆电子科技股份有限公司 电流互感器测试方法及其系统
CN201796137U (zh) * 2009-10-23 2011-04-13 宁波恒力达科技有限公司 一种全自动流水线式电能表复校装置
CN102135607A (zh) * 2011-03-01 2011-07-27 国网电力科学研究院武汉南瑞有限责任公司 智能型低压电流互感器自动检定线及其自动检定方法
CN201965226U (zh) * 2011-03-01 2011-09-07 国网电力科学研究院武汉南瑞有限责任公司 智能型低压电流互感器自动检定线

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002163809A (ja) 2000-11-22 2002-06-07 Sony Corp 磁気抵抗効果素子の製造方法と磁気抵抗効果型磁気ヘッドの製造方法
DE10220343B4 (de) 2002-05-07 2007-04-05 Atg Test Systems Gmbh & Co. Kg Reicholzheim Vorrichtung und Verfahren zum Prüfen von Leiterplatten und Prüfsonde
US7463459B2 (en) 2004-02-18 2008-12-09 Hitachi Global Storage Technologies Netherlands B.V. Self-pinned read sensor design with enhanced lead stabilizing mechanism
CN100582680C (zh) 2006-12-05 2010-01-20 鸿富锦精密工业(深圳)有限公司 检测仪
CN201242580Y (zh) 2007-12-28 2009-05-20 暄泰电子(苏州)有限公司 电容器的自动测试机
CN201600420U (zh) 2009-11-26 2010-10-06 平高集团有限公司 一种电压互感器试验工装
CN201663045U (zh) 2010-02-09 2010-12-01 重庆博森电气集团高压电器有限公司 互感器一次绕组并腿夹具
CN201740800U (zh) 2010-08-11 2011-02-09 阿滨仪器(天津)有限公司 多通道电池夹具
CN202102100U (zh) 2011-06-01 2012-01-04 浙江省电力公司 一种互感器在线检测用工装板
CN202204923U (zh) 2011-07-14 2012-04-25 浙江省电力公司 互感器全自动化检定系统
CN202305783U (zh) 2011-07-14 2012-07-04 浙江省电力公司 互感器自动化检定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB740430A (en) * 1953-10-23 1955-11-09 Landis & Gyr Ag Testing of electricity meters
CN201285442Y (zh) * 2008-11-03 2009-08-05 郑州三晖电气有限公司 流水线型电能表耐压试验装置
CN201322792Y (zh) * 2008-12-18 2009-10-07 绍兴电力局 电能表检定自动化流水线标准装置
CN101592719A (zh) * 2009-06-30 2009-12-02 深圳市科陆电子科技股份有限公司 电流互感器测试方法及其系统
CN201796137U (zh) * 2009-10-23 2011-04-13 宁波恒力达科技有限公司 一种全自动流水线式电能表复校装置
CN102135607A (zh) * 2011-03-01 2011-07-27 国网电力科学研究院武汉南瑞有限责任公司 智能型低压电流互感器自动检定线及其自动检定方法
CN201965226U (zh) * 2011-03-01 2011-09-07 国网电力科学研究院武汉南瑞有限责任公司 智能型低压电流互感器自动检定线

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301548A (zh) * 2015-10-27 2016-02-03 中国电力科学研究院 一种低压电流互感器温升特性自动检测装置
CN105301548B (zh) * 2015-10-27 2019-03-22 中国电力科学研究院 一种低压电流互感器温升特性自动检测装置
CN107300637A (zh) * 2017-06-07 2017-10-27 浙江工业大学 一种电瓶车充电桩功率自动化校准检测装置及检测方法
CN107300637B (zh) * 2017-06-07 2023-08-29 浙江工业大学 一种电瓶车充电桩功率自动化校准检测装置及检测方法
CN107561301A (zh) * 2017-10-19 2018-01-09 东方伊诺(苏州)医疗科技有限公司 一种分析仪用的固相载体自动排料装置及反应盘系统
CN108152616A (zh) * 2017-12-14 2018-06-12 马鞍山豪远电子有限公司 一种变压器铁芯的性能检测装置、变压器制造系统及方法
CN107957537A (zh) * 2017-12-22 2018-04-24 浙江八达电子仪表有限公司 变压器耐压测试工装
CN109752617A (zh) * 2019-03-01 2019-05-14 山东红宝自动化有限公司 一种空调分体内机电气安全测试随动装置
CN109752617B (zh) * 2019-03-01 2024-03-26 山东红宝自动化有限公司 一种空调分体内机电气安全测试随动装置
CN110261751A (zh) * 2019-07-29 2019-09-20 无锡新畅电子有限公司 一种变压器绝缘性能自动测试装置
CN110639826A (zh) * 2019-10-08 2020-01-03 郑州三晖电气股份有限公司 一种通信模块自动化检测流水线检测单元及实现方法
CN110639826B (zh) * 2019-10-08 2024-04-05 郑州三晖电气股份有限公司 一种通信模块自动化检测流水线检测单元及实现方法
CN112578207A (zh) * 2020-12-08 2021-03-30 宁波华祥技术服务有限公司 一种温升自动测试设备及方法
CN112578207B (zh) * 2020-12-08 2023-10-27 宁波华祥技术服务有限公司 一种温升自动测试设备及方法
CN113484657A (zh) * 2021-07-01 2021-10-08 海宁联丰东进电子有限公司 一种标准化的高频变压器自动检测设备
CN113484657B (zh) * 2021-07-01 2023-10-13 海宁联丰东进电子有限公司 一种标准化的高频变压器自动检测设备
CN113763995B (zh) * 2021-09-07 2023-04-18 中科计算技术西部研究院 一种自动配存流水线
CN113763995A (zh) * 2021-09-07 2021-12-07 中科计算技术西部研究院 一种自动配存流水线
CN114002637B (zh) * 2021-10-19 2023-08-18 国网山东省电力公司营销服务中心(计量中心) 一种电压互感器高压检测辅助装置
CN114002637A (zh) * 2021-10-19 2022-02-01 国网山东省电力公司营销服务中心(计量中心) 一种电压互感器高压检测辅助装置
CN116105649B (zh) * 2023-04-13 2023-06-16 邦迪智能装备(河南)有限公司 一种对扁线电机线圈扩口后的线脚进行检测的装置
CN116105649A (zh) * 2023-04-13 2023-05-12 邦迪智能装备(河南)有限公司 一种对扁线电机线圈扩口后的线脚进行检测的装置

Also Published As

Publication number Publication date
US20130297245A1 (en) 2013-11-07
US9562916B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
WO2012163064A1 (zh) 互感器全自动化检定系统和方法
CN102353920B (zh) 互感器全自动化检定系统
CN202204923U (zh) 互感器全自动化检定系统
US20160291079A1 (en) Automated testing platform
CN102628930A (zh) 互感器自动检测线
JP6099339B2 (ja) 電力量計自動検査装置および方法
CN108646123A (zh) 一种充电器充电头测试设备
CN108646122A (zh) 一种充电器充电头测试方法
CN110031711B (zh) 一种小电机碳刷架检测系统及测试方法
CN110860490A (zh) 全自动牛角电容过程监控老化机
CN206451600U (zh) 电感线圈自动焊锡、测试一体机
CN105203011A (zh) 一种电源适配器壳体检测用旋转机构
CN211438589U (zh) 双极板生产线
CN110364591A (zh) 太阳能电池串排版检测一体机
CN106695152B (zh) 一种电子产品生产线及电子产品生产方法
CN217369338U (zh) 电容器的全自动下料设备
CN216971011U (zh) 一种变压器测试打码检测一体设备
CN110947648B (zh) 全自动牛角电容老化数据监控测试方法
CN211359704U (zh) 全自动牛角电容过程监控老化机
CN203909265U (zh) 一种计量用低压电流互感器绝缘耐压和误差检定装置
CN114074080A (zh) 一种dip元件检测装置及检测方法
CN112452823A (zh) 一种10kV高压熔断器自动化检定线及检定方法
CN106841864A (zh) 一种变压器装配的检测装置
CN207764331U (zh) 一种网络滤波器高压测试设备
CN112285129A (zh) 一种aoi光学测试机位置运动模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13980556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866508

Country of ref document: EP

Kind code of ref document: A1