WO2012162946A1 - 一种报文处理方法及系统 - Google Patents

一种报文处理方法及系统 Download PDF

Info

Publication number
WO2012162946A1
WO2012162946A1 PCT/CN2011/078478 CN2011078478W WO2012162946A1 WO 2012162946 A1 WO2012162946 A1 WO 2012162946A1 CN 2011078478 W CN2011078478 W CN 2011078478W WO 2012162946 A1 WO2012162946 A1 WO 2012162946A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
ring
area
packet
vlan
Prior art date
Application number
PCT/CN2011/078478
Other languages
English (en)
French (fr)
Inventor
李科
苏金财
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/078478 priority Critical patent/WO2012162946A1/zh
Priority to CN201180001745.4A priority patent/CN103053139B/zh
Priority to EP11866979.5A priority patent/EP2736198B1/en
Publication of WO2012162946A1 publication Critical patent/WO2012162946A1/zh
Priority to US14/180,087 priority patent/US9641396B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/42Loop networks
    • H04L12/437Ring fault isolation or reconfiguration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • H04L12/4675Dynamic sharing of VLAN information amongst network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • H04L41/122Discovery or management of network topologies of virtualised topologies, e.g. software-defined networks [SDN] or network function virtualisation [NFV]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and system for processing a text.
  • the Layer 2 network loop brings many problems to the normal network, such as broadcast storm and media access control (English full name: Media Access Control, the following is called MAC) address learning error and so on.
  • the direct consequence of the broadcast storm is the invalid occupation of the network bandwidth, the central processing unit of the network equipment (English: Central Processing Unit, the following cylinder is called CPU), and the invalid occupation of resources such as memory.
  • the direct result of the MAC address learning error is that the same MAC address flaps back and forth between multiple ports, causing Layer 2 traffic forwarding errors. Therefore, the current metropolitan area network generally uses a Layer 2 broken ring protocol for service protection.
  • the so-called broken ring means that the ring is changed into a chain on the Ethernet Layer 2 network to avoid loops.
  • the existing ring-breaking protocols that are used in the current service protection include the fast ring protection protocol (English full name: Rapid Ring Protection Protocol, the following is called RRPP) and the spanning tree protocol (English full name: Spanning Tree Protocol).
  • RRPP Rapid Ring Protection Protocol
  • STP Short ring protection protocol
  • MSTP Multiple Spanning Tree Protocol
  • RSTP Rapid Spanning Tree Protocol
  • RRPP is a link layer protocol that is applied to the Ethernet ring. It can prevent broadcast storms caused by loops in the Ethernet ring. When a link on the Ethernet ring is disconnected, the backup link can be quickly enabled to recover. Communication path between nodes on the ring network.
  • the RRPP convergence time is independent of the number of nodes on the ring network, and the convergence speed is fast, less than 50ms.
  • RRPP only applies to the network topology of the single ticket. For example, a single ring or an intersecting ring topology with only two intersection points, a slightly more complicated network topology, RRPP is not applicable.
  • STP eliminates the network's Layer 2 loop by selectively blocking network redundant links, and has the link backup function.
  • RSTP introduces a port state negotiation mechanism, so that the topology convergence time can be up to 3 seconds.
  • MSTP has the characteristics of STP and RSTP, and can be applied to all network topologies. However, the topology convergence of RSTP and MSTP is too slow, when it is made in the metropolitan area network. Summary of the invention
  • the embodiment of the invention provides a packet processing method and system, which can be applied to a complex network topology, and the processing time of the text processing is short, and the interruption time is reduced.
  • a method for processing a packet according to an embodiment of the present invention includes: a root node sends a topology update packet to a transit node in the area; and receives a topology update response packet sent by the transit node in the area, where The ping update response message carries the node information of the transit node in the area; and according to the node information of the transport node in the area carried in the topology update response message, the control virtual VLAN VLAN is respectively configured for the ring in the area, where the area The control VLANs of any two rings with adjacent edges are different.
  • the root node sends a VLAN configuration packet to the transit node in the area.
  • the VLAN configuration information carries configuration information for configuring the ring in the area. Control VLAN.
  • a packet processing system includes: a root node and a transit node in an area, where the root node is configured to send a topology update packet to a transit node in the area; a transit node in the area, configured to acquire a priority of the node according to the topology update packet, and send a topology update response packet to the root node, where the topology update response packet carries the node information of the transit node;
  • the node is further configured to receive the topology update response packet, and configure a control virtual local area network VLAN for each ring in the area according to the node information of the transmission node in the area carried in the topology update response message, where the area is The control VLANs of any two rings with adjacent edges are different.
  • the VLAN configuration packets are sent to the nodes in the area.
  • the configuration information of the VLAN configuration packets is used to configure the control VLAN configuration information for the ring in the area.
  • control VLANs are used to transmit protocol packets in the ring in which each control VLAN is configured, because the root node is configured with different control VLANs for any ring that has adjacent edges in the area. It can be applied to the ring network of the metro Ethernet network, which can achieve multi-path protection, realize fast convergence of service switching, and the network topology is not limited to a single ring or a network topology with only two intersection points, which can be applied to All network topologies.
  • FIG. 1 is a schematic diagram of a packet processing method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the composition of all rings in an area provided by an embodiment of the present invention.
  • 3 is a schematic diagram of a Cost value calculated for all rings in a region according to an embodiment of the present invention
  • 4 is a schematic diagram of coloring all rings in a region according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of setting a master node and a blocked port for all rings in an area according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of port states of a root node, a transit node, and a backup root node in an area according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of a fault occurring on an edge of an AB in an area according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of opening a blocked port when an AB edge and an AC edge in a region are faulty according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a newly added transmission node in an area according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a primary node and a blocked port configured for a ring formed by a newly added transit node in an area provided by an embodiment of the present invention
  • FIG. 12 is a schematic diagram of a message processing system according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a packet processing method and system, which can be applied to a complex network topology, and the processing time of the text processing is short, and the interruption time is reduced.
  • FIG. 1 a schematic diagram of a packet processing method according to an embodiment of the present invention, where the method illustrated in FIG. 1 mainly includes:
  • the root node sends a topology update packet to the transit node in the area.
  • the processing of a packet is performed in an area, and each area is distinguished by a configuration string or an area identifier (English name: ID), and an area may include a ring or More than one ring network (hereinafter referred to as a ring). Every ring is It is composed of a node and an edge, where the node may be a root node, a backup root node, and a transit node, and the edge may be a link between two adjacent nodes.
  • the backup root node is used to replace the root node to implement the function of the root node.
  • the backup root with the highest priority can be selected according to the priority of the backup root node.
  • the node implements the function of the root node instead of the root node.
  • the root node After the root node is online, the root node periodically sends the topology update packet to maintain the ring state information of each ring in the area.
  • the root node sends a topology update packet to the transit node in the area.
  • the root node periodically sends a topology update packet to the transit node in the area, and maintains each ring in the area according to the node information fed back by the transport node. Ring status information.
  • the period in which the root node sends the topology update packet may be set according to the network topology, for example, may be set to 15s to 45s.
  • the time interval at which the root node sends the topology update packet is 45s. .
  • the topology update packet is a multicast packet sent by the root node, and the actual application may be a bridge protocol data unit (the full name is a Bridge Protocol Data Unit, and the following is called a BPDU).
  • the topology update packet may carry a time to live (TTL) value, where the TTL value is a number of nodes allowed to pass before the specified data packet is discarded by the node, and the TTL value is set by the root node.
  • TTL time to live
  • any node in the ring is adjacent to only two nodes in the ring; any edge in the region belongs to at most two different rings, and any two nodes in the region
  • the message can be transmitted between the two.
  • two nodes may be adjacent to each other: two transmission nodes are adjacent, one transmission node is adjacent to the root node, one transmission node is adjacent to one backup root node, and two backup root nodes are adjacent, Or a backup root node and the root node are adjacent.
  • the transmission node 1, the transmission node 6, and the transmission node 7 form a ring.
  • the transmission node 1, the transmission node 5, and the transmission node 6 form a ring 2
  • the edges formed by the transmission node 1 and the transmission node 6 in the area belong only to the ring 1 and the ring 2, and no longer belong to the ring rings
  • Any ring, between the transmission node 6 and the transmission node 2 in the area can transmit packets.
  • the transmission node 6 and the transmission node 1 form an edge
  • the transmission node 1 and the transmission node 2 form an edge
  • the transmission of the message is also performed between any two nodes in the area.
  • the transit node may obtain its own priority by analyzing the topology update packet.
  • the priority of the transit node to obtain its own can be achieved as follows:
  • the transit node calculates its own cost (Cost) value according to the TTL value carried in the topology update packet, and obtains its own priority.
  • Cost Cost
  • the priority value of each transmission node may be represented by the Cost value of each transmission node.
  • the Cost value of a transmission node when the Cost value of a transmission node is small, it indicates that the priority of the transmission node is higher.
  • the MAC address of the transport node may be further considered. The priority of the transport node with a small MAC address is high, and the priority of the transport node with a large MAC address is low. .
  • the root node since the root node can be selected according to actual conditions, in order to ensure that the root node has the highest priority, the root node can set its Cost value to 0, and the transmission node calculates its own Cost value according to the following formula. :
  • Cost value ( 256 - TTL value) X 256 - (degree value - 1 ) where the degree is the number of edges formed by a transit node.
  • the cost value of the transit node since the cost value of the transit node is related to the TTL value carried in the received topology update packet, different topology update messages may cause the Cost value calculated by the transit node to be different.
  • the transit node calculates the second cost value according to the latest received topology update message (which may be referred to as a second topology update message, the difference is based on the previously received topology update).
  • the first Cost value calculated by the message (which can be called the first topology update message) If the value is smaller, the cost value of the second value is updated according to the second value, and the TTL value in the second topology update text is decremented by 1 and then forwarded.
  • the transit node when the second cost value calculated by the transit node according to the second topology update packet is larger than the first cost value calculated according to the first topology update packet, the transit node may not be the second extension.
  • the Park update message is processed.
  • the second topology update message is discarded.
  • each node may set an aging time for the Cost value.
  • the aging time may be set to 2 minutes.
  • the post-aging Cost value still takes effect, but in the case of aging, when a node receives the topology update message, even if the calculated Cost value is larger than the previously calculated Cost
  • the node also updates the Cost value, and the TTL value of the topology update packet is decremented by 1 and then forwarded.
  • the transit node After the TTL value of the topology update packet is decremented by 1 and then forwarded, the transit node sends a topology update response packet to the root node, where the topology update response packet carries the node information of the transit node.
  • the topology update response packet may carry the cost value of the transit node, the MAC address, and the MAC address of the node adjacent to the transit node in the same ring, and the identifier of the ring where the transport node is located (English full name Identity, tube) Call ID) the node information of the transit node.
  • the topology update response packet sent by the foregoing transit node may be a unicast packet.
  • the root node may further send a topology update packet to the backup root node in the area.
  • the backup root node After receiving the topology update packet, the backup root node does not modify the TTL value in the topology update packet, and directly forwards the topology update packet, and then sends a topology update response packet to the root node, where
  • the topology update response packet carries the node information of the backup root node.
  • the topology update response packet may carry the backup root node Cost value, the MAC address, and the backup root node in the same ring.
  • the MAC address of the node, the node information such as the ID of the ring where the backup root node is located.
  • the topology update response packet sent by the foregoing transit node may be a unicast packet.
  • the root node since the ring network is formed, it is also possible for the root node to receive the topology update message. Optionally, the root node discards the topology update packet after receiving the topology update packet.
  • the root node receives the topology update response message, where the topology update response message carries the node information of the transit node in the area.
  • the node information of the transit node in the area carried by the topology update response packet is an area. All the rings in the ring are configured to control the virtual local area network (English name: Virtual Local Area Network, called the VLAN). The control VLANs of any two adjacent rings in the area are different.
  • the root node may know how many rings are in the area according to the node information carried in the topology update response packet, and configure a control VLAN for all rings in the area, and the principle is a regional memory.
  • the VLANs configured on any two adjacent rings are different.
  • the four-color theorem ie, any map can be distinguished by using only four colors to distinguish all regions. That is, the root node can use four different control VLANs to distinguish all the rings in one area, and the control VLANs of any two adjacent rings in the area are different.
  • VLAN 1, VLAN 2, VLAN 3, and VLAN 4 can be used to distinguish all rings in the area.
  • VLAN 1, VLAN 2, VLAN 3, and VLAN 4 are only
  • the control VLAN ID is a different control VLAN, but it is not a specific control VLAN identifier. It is used as a description. You need to configure a specific control VLAN ID according to the specific application scenario.
  • the ring formed by the transit node 1, the transport node 6, and the transport node 7 is represented by blue, which means that the ring is configured as VLAN 2.
  • the ring formed by the transit node 1, the transit node 5, and the transport node 6 is represented by red, indicating that the ring is configured as VLAN 1.
  • the colors of the two rings on the adjacent side are different, indicating that the control VLANs for their configuration are different.
  • the root node sends a VLAN configuration file to the transit node in the area, and the VLAN configuration carries the configuration information, which is used to configure a control VLAN for the ring in the area.
  • the root node may also send a VLAN configuration message to the backup root node in the area.
  • the method in the embodiment of the present invention may further include: the master node is in the ring of the master node through the primary port. All the nodes send ring state timing detection packets to check whether the link of the ring where the master node is located is complete.
  • the master node is the lowest priority transit node in the ring, and the master node is the master node. Two ports are connected to two adjacent nodes in the ring, where the port connected to the adjacent node with a higher priority is the blocked port and the other is the primary port.
  • the primary node is a type of the transmission node, and when not specifically pointed out, there is no need to distinguish between the transmission node and the primary node.
  • the embodiment of the present invention may further include: if the master node can receive the ring state timing detection packet through the blocked port Then, the master node determines that the link of the ring is complete. If the stateful timing detection packet is not received through the blocked port, the master node determines that the link of the ring is incomplete.
  • the transmission node H has the largest Cost value, so the transmission node H is the master node in the ring.
  • the primary node is the transit node with the largest MAC address.
  • the master node H has two ports, respectively connecting two transmission nodes B and transmitting Node G, compares the priority of the two transit node B and the transit node G. Since the cost values of the transit node B and the transit node G are both 253, the MAC addresses of the two nodes are further compared, and the MAC address of the transit node B is assumed to be greater than The MAC address of the node G is transmitted, so the priority of the transit node B is lower than that of the transit node G. Therefore, the port connected to the transit node B in the master node H is a blocked port. In FIG. 5, the blocked port is indicated by "X", according to the same In the way, all the rings in the area of Figure 5 are set to the primary node and the blocked port.
  • the method of the embodiment of the present invention may further include: the primary node opens the blocked port of the primary node, and the primary port and the blocked port respectively All the nodes in the ring where the master node is located send a ring state failure notification message, and notify the transit node in the ring to clear the record and address resolution protocol in the MAC address forwarding table of each transport node.
  • the English name is Address Resolution Protocol. For: ARP) The address in the address forwarding table.
  • the method in the embodiment of the present invention may further include: the master node blocks the blocked port of the master node, and all the rings in the ring where the master node is located through the master port
  • the node sends a complete notification message of the ring status, and the transmitting node in the notification ring clears the transmission.
  • the method of the embodiment of the present invention may further include: the first node belongs to the same ring as the first node.
  • the other nodes send the intra-ring topology information exchange packets to implement the interaction of the node information between the nodes in the same ring.
  • the first node is a node in a certain ring, and may be a transit node, or a backup root node, or a root node.
  • all nodes in the same ring include only two ports, and what state each port is in is called a port state machine, a root node in the area, a backup root node, and all rings.
  • the port state machine of the transit node can be divided into the following four cases. In order to clearly describe the conversion relationship between the four port state machines, please refer to FIG. 6, which is specifically described as follows:
  • Initial state When no control VLAN is configured for each ring, the status of each port is Initial. In this state, the protocol>3 ⁇ 4 text can be processed, and the data cannot be forwarded.
  • the Pre-Forwarding state is required for each port to change from the Initial state or the Blocked state to the Forwarding state. In this state, you need to set the timeout period. If the ring state is not received within the timeout period, the packet is forcibly notified. Go to the Forwarding state. In this state, protocol packets can be processed and data packets cannot be forwarded.
  • the ports of the transit nodes other than the master node and the master port of the master node must reach this state in the topology stable state. In this state, data packets can be sent and received normally. Protocol message.
  • Blocked state The blocked port of the master node must reach this state in the ring topology state.
  • the ports of the transit nodes other than the master node in each ring are also in the state when the connected link fails. .
  • a port in this state can process only protocol packets and cannot send or receive data packets.
  • a port in the blocked state can still forward and process protocol packets that are not in the local ring.
  • the method in the embodiment of the present invention may further include: when the adjacent edge of any two rings in the area fails, The master node in the ring with the highest priority in the ring opens the blocked port of the master node. If the priorities of the two rings are the same, the master node of the ring with the smaller ID in the two rings opens the blocked port of the master node. , where the priority of the ring is the average of the sum of the priorities of the nodes in the ring. In the network topology in the embodiment of the present invention, any one side belongs to at most two rings. When the adjacent edges of the two rings fail, only the primary node in one ring can open the blocked port.
  • the priority of the ring can be obtained through the cost value of each node in the ring.
  • the cost value of the ring is the average value of the cost values of the nodes in the ring. If the cost of the ring is larger, the priority of the ring is lower. If the two rings have the same value, the ring ID has a small priority and the ring ID has a low priority.
  • the adjacent side AB of the two rings in the area fails, it is represented by "*" in FIG. 7, and by calculating the priority of the two rings, the selection of the lower priority is selected.
  • the blocked port of the primary node B in the green ring continues to block the blocked port of the primary node H in the blue ring.
  • the ring timing detection packet of the blue ring arrives at the transmission node A, and then forwards to the transmission node B through the transmission node C, and the link state detection of the blue ring can still be performed normally, as shown in FIG.
  • the transport nodes that constitute AB and AC need to be included, including: The transmission node VIII, the transmission node B, the transmission node A, and the transmission node C node issue corresponding forwarding rules.
  • This can usually be done using VLAN mapping or VLAN overlay. Take the VLAN mapping as an example.
  • the transit node A sends a VLAN mapping rule: the VLAN 3 packet is mapped to the VLAN 2, because the red represents VLAN 1 in the preceding description, the green represents VLAN 2, and the blue represents VLAN 3.
  • the yellow number is VLAN 4, and the VLAN configured for the ring timing detection packet in the blue ring is VLAN 3.
  • VLAN 3 needs to be mapped to VLAN 2. That is, the intra-ring timing detection packet carrying the VLAN 3 in the blue ring is changed to the intra-ring timing detection packet carrying the VLAN 2 after passing through the A-node, and is represented by "3->2" for the purpose of the tunnel, and is transmitted under the node B.
  • the transit node A sends the VLAN mapping rule: "3->1”
  • the transit node C sends the VLAN mapping rule: "1->3”.
  • the final VLAN mapping rule issued at point A is "3->1”.
  • the transmission node and the transmission node: ⁇ The transmission node C deletes the VLAN mapping rule sent when the edge is faulty.
  • VLAN 3 when the AB side fails, the transit node A sends the VLAN mapping rule:
  • the VLAN 3 packet is mapped to the VLAN 2, because in the foregoing description, the red represents the VLAN 1, the green represents the VLAN 2, and the blue represents the VLAN 3.
  • the yellow number is VLAN 4, and the VLAN configured in the ring timing detection file in the blue ring is VLAN 3.
  • the packets of VLAN 3 are superimposed. VLAN2.
  • the intra-ring timing detection packet carrying the VLAN 3 in the blue ring is changed to the intra-ring timing detection packet carrying the two-layer VLAN (which is VLAN 2 and VLAN 3) after passing through the A-node.
  • the VLAN 2 superimposed on the timing detection packet is removed, and only the carried VLAN 3 is reserved.
  • the method further includes: the root node deploys the bidirectional link detection protocol on the link, or the blocked port of each master node receives the ring timing detection packet, and then confirms the reply, when the primary port of the master node After receiving the packet confirming the reply of the blocked port, the detection is normal. If the packet is not received for several consecutive periods, the link may be considered to be faulty. Thereby further solving the situation that there may be a unidirectional link failure in the real network. In practical applications, after a unidirectional link failure occurs, the following two aspects are affected:
  • the link in the ring is detected periodically and the link in the direction of the packet is faulty.
  • the link in the other direction is normal.
  • the blocked port is opened, causing a one-way loop.
  • the transmission node E, the transmission node F, and the transmission node G form a red ring, and there are links in two directions on one side EG, such as a link from E to G and a link from G.
  • the link to E for example, on the link from E to G, is the direction in which the intra-ring timing detection packet is sent.
  • the link from E to G fails, the link from G to E is normal. If the link to G is faulty, the primary node F of the ring will open the blocked port. In this case, a unidirectional loop will occur for the link in the G to E direction.
  • the link in the ring is detected periodically in the ring, and the link in the other direction is faulty. In this case, some services are interrupted.
  • the transmission node E, the transmission node F, and the transmission node G form a red ring, and there are links in two directions on one side EG, such as a link from E to G and a link from G.
  • the link to E for example, on the link from E to G, is the direction in which the intra-ring timing detection packet is sent.
  • the link from G to E fails.
  • the primary node F of the ring does not open the blocked port.
  • the link in the G to E direction may cause some services to be interrupted due to the failure.
  • the method in the embodiment of the present invention may further include: when there is a ring in the region where the network topology changes.
  • the root node reconfigures the control VLAN for the ring whose network topology changes in the area; the root node sends a VLAN change packet to the node in the area, and the VLAN change packet carries the configuration information used to change the network topology in the area. Reconfigure the control VLAN.
  • the original ring ACB is split into two ring ACKs and AKBs.
  • the IDs of the two ring ACKs and AKBs need to be reconfigured.
  • the root node re-controls the two rings to control the VLAN configuration, and then the two rings respectively select the master node.
  • the ring ACK and the ring AKB need to reselect the master node, which is introduced according to the foregoing embodiment of the present invention.
  • the transit node B is selected as the master node of the ring AKB.
  • the blocked port is represented by an "X" in the figure.
  • the transport node K is the master node of the ring ACK, and the blocked port has been represented by "X" in the figure.
  • the master node change processing method is that, when the topology changes, the master node change of a certain ring may be affected, and the master node changes during the master node change process.
  • To avoid interruption of the service first select the new primary node, and then set the port state machine of the blocked node of the original primary node to the Pre-Forwarding state, and then the new primary node completes the port blocking and sending ring status complete notification. This message informs all ports that they are in the Forwarding state.
  • the ring VLAN change processing mode is as follows: After the network topology is changed, after the root node reconfigures the control VLAN, the ring of the network topology changes in the entire area needs to be controlled by the VLAN. To ensure that the original service is not affected at this time, the status of the ring does not change during the control VLAN change process until the new control VLAN is changed.
  • control VLAN is used to transmit the protocol in the ring of each of the configured VLANs, and the control VLAN can be applied.
  • the network topology is not limited to a single ring or a network topology with only two intersecting points, and can be applied to all Network topology.
  • a message processing system 1200 includes: a root node 1201, a transmission node 1202 in an area, where
  • a root node 1201, configured to send a topology update packet to a transit node in the area
  • the transmitting node 1202 is configured to: obtain a priority of the node according to the topology update message, and send a topology update response message to the root node 1201, where the topology update response message carries the node information of the transit node;
  • the root node 1201 is further configured to receive the topology update response packet, and configure a control virtual local area network VLAN for each ring in the area according to the node information of the transmission node in the area carried in the topology update response message, where the area is The control VLANs of any two rings with adjacent edges are different.
  • the VLAN configuration packets are sent to the nodes in the area.
  • the configuration information of the VLAN configuration packets is used to configure the control VLAN configuration information for the ring in the area.
  • the foregoing system may further include a backup root node 1203, where the root node 1201 is further configured to send a topology update packet to the backup root node 1203 in the area.
  • the transit node 1202 in the foregoing area is the master node
  • the transit node 1202 in the area is further configured to send a ring state timing detection message to all nodes in the ring through the primary port.
  • the transit node 1202 in the foregoing area is a master node
  • the transit node 1202 in the foregoing area is further configured to: when the master node detects that the link of the ring where the master node is located is incomplete through the ring state timing detection packet, The blocked port of the master node sends a ring state invalidation notification message to all the nodes in the ring through the primary port and the blocked port.
  • the transit node 1202 in the foregoing area is the master node
  • the transit node 1202 in the foregoing area is further configured to block the blocked port of the master node when the master node detects that the link of the ring where the master node is located is complete. Send a ring status complete notification message to all nodes in the ring where the primary node is located.
  • control VLANs are used to configure control VLANs in the respective nodes because the root node is configured with different control VLANs for any two ring rings in the region where adjacent edges exist.
  • the intra-ring transport protocol packet can be applied to the ring network of the metro Ethernet network to achieve multi-path protection, which can achieve fast convergence of service switching, and the network topology is not limited to a single ring or only two intersection points.
  • the network topology can be applied to all network topologies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明实施例公开了一种报文处理方法及系统。在本发明实施例方法中,由于根节点为区域内任何存在相邻边的两个环环配置了不同的控制VLAN,不同的控制VLAN用于在各自配置控制VLAN的环内传输协议报文,可以应用于城域以太网的环网中,可以达到多路径保护,实现了业务倒换的快速收敛,并且网络拓扑结构不仅限于单环或者仅有两个相交点的网络拓扑,可以适用于所有的网络拓扑情况。

Description

一种报文处理方法及系统 技术领域
本发明实施例涉及通信技术领域, 尤其涉及一种 "¾文处理方法及系统。
背景技术
二层网络环路会给正常的网络带来诸多问题, 例如, 广播风暴和媒体接入 控制 (英文全称为: Media Access Control, 以下筒称为 MAC )地址学习错误 等等。 广播风暴的直接后果是网络带宽的无效占用、 网络设备的中央处理单元 (英文全称为: Central Processing Unit, 以下筒称为 CPU )和内存等资源的 无效占用等。 而 MAC地址学习错误的直接后果是同一个 MAC地址在多个端 口之间来回震荡, 导致二层流量转发错误。 因此, 当前城域网中普遍使用二层 破环协议来进行业务保护。 所谓破环, 是指在以太二层网络上变环为链, 避免 环路。现有的业务保护中使用较多的破环协议包括快速环保护协议(英文全称 为: Rapid Ring Protection Protocol, 以下筒称为 RRPP )和生成树协议 (英文 全称为: Spanning Tree Protocol , 以下筒称为 STP ) , 其中, STP又分为多生成 树协议(英文全称为: Multiple Spanning Tree Protocol , 以下筒称为 MSTP ) 和快速生成树协议(英文全称为: Rapid Spanning Tree Protocol, 以下筒称为 RSTP )。
RRPP是一个专门应用于以太网环的链路层协议, 它在以太网环中能够防 止环路引起的广播风暴, 当以太网环上一条链路断开时, 能迅速启用备份链路 以恢复环网上各个节点之间的通信通路。 RRPP收敛时间与环网上节点数无关, 收敛速度快, 低于 50ms。 然而, RRPP仅适用于筒单的网络拓朴, 例如, 单环 或者仅有两个相交点的相交环拓朴,稍复杂一些的网络拓朴, RRPP则不适用。
STP通过有选择性地阻塞网络冗余链路来达到消除网络二层环路的目的, 同时具备了链路的备份功能。 RSTP引入了端口状态协商机制, 使得拓朴收敛 时间可以达到 3秒以内, MSTP兼有 STP和 RSTP的特点, 能够适用所有网络 拓朴的情况。 然而, RSTP和 MSTP的拓朴收敛速度过慢, 当在城域网中使 发明内容
本发明实施例提供了一种报文处理方法及系统,能够适用于复杂的网络拓 朴, 并且 文处理切换时间短, 减少了中断时间。
本发明实施例提供的一种报文处理方法, 包括: 根节点向区域内的传输节 点发送拓朴更新报文; 接收所述区域内的传输节点发送的拓朴更新回应报文, 其中,拓朴更新回应报文携带所述区域内传输节点的节点信息; 根据拓朴更新 回应报文携带的所述区域内传输节点的节点信息,为区域内的环分别配置控制 虚拟局域网 VLAN, 其中, 区域内任意两个存在相邻边的环的控制 VLAN是 不同的; 根节点向所述区域内的传输节点发送 VLAN配置报文, 所述 VLAN 配置 文携带配置信息用于为区域内的环分别配置控制 VLAN。
本发明实施例提供的一种报文处理系统, 包括: 根节点和区域内的传输节 点, 其中, 所述根节点, 用于向所述区域内的传输节点发送拓朴更新报文; 所 述区域内的传输节点, 用于根据拓朴更新报文获取节点的优先级, 并向根节点 发送拓朴更新回应报文,拓朴更新回应报文中携带有传输节点的节点信息; 所 述根节点,还用于接收到所述拓朴更新回应报文, 并根据拓朴更新回应报文携 带的区域内传输节点的节点信息,为区域内所有环分别配置一个控制虚拟局域 网 VLAN , 其中, 区域内任意两个存在相邻边的环的控制 VLAN是不同的; 向区域内的节点发送 VLAN配置报文, VLAN配置报文携带配置信息用于为 区域内的环配置控制 VLAN的配置信息。
从上述本发明实施例可知,由于根节点为区域内任何存在相邻边的两个环 环配置了不同的控制 VLAN, 不同的控制 VLAN用于在各自配置控制 VLAN 的环内传输协议报文,可以应用于城域以太网的环网中,可以达到多路径保护, 实现了业务倒换的快速收敛,并且网络拓朴结构不仅限于单环或者仅有两个相 交点的网络拓朴, 可以适用于所有的网络拓朴情况。 附图说明
图 1是本发明实施例提供的一种报文处理方法的示意图;
图 2是本发明实施例提供的区域内所有环的组成示意图;
图 3是本发明实施例提供的为区域内所有环计算出的 Cost值示意图; 图 4是本发明实施例提供的为区域内所有环着色的示意图;
图 5 是本发明实施例提供的为区域内所有环设置主节点和阻塞端口的示 意图;
图 6是本发明实施例提供的区域内的根节点、传输节点、备份根节点的端 口状态示意图;
图 7是本发明实施例提供的区域内 AB边出现故障的示意图; 图; ^ 、 、
图 9是本发明实施例提供的区域内 AB边和 AC边出现故障时打开阻塞端 口的示意图;
图 10是本发明实施例提供的区域内新增传输节点的示意图;
图 11是本发明实施例提供的区域内为新增传输节点形成的环配置主节点 和阻塞端口的示意图;
图 12是本发明实施例提供一种报文处理系统的示意图。 具体实施方式
本发明实施例提供了一种报文处理方法及系统,能够适用于复杂的网络拓 朴, 并且 文处理切换时间短, 减少了中断时间。
为使得本发明的发明目的、 特征、 优点能够更加的明显和易懂, 下面将结 合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描 述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。 基于本发明中的实施例, 本领域的技术人员所获得的所有其他实施例,都属于 本发明保护的范围。
请参阅图 1 , 本发明实施例提供的一种报文处理方法示意图, 图 1示例的 方法主要包括:
101、 根节点向区域内的传输节点发送拓朴更新报文。
在本发明实施例中,对于一个报文的处理在一个区域内进行,各个区域之 间通过配置字符串或区域标识(英文全称 Identity, 筒称 ID )来区分, 一个区 域内可以包括一个环或者一个以上的环状网络(以下筒称为环)。 每一个环是 由节点和边组成, 其中, 节点具体可以为根节点、 备份根节点和传输节点, 边 具体可以为连接两个相邻的节点之间的链路。
在本发明实施例中, 一个区域内可以只有一个根节点, 一个或者一个以上 的备份根节点, 一个或者一个以上的传输节点。 当根节点离线后, 备份根节点 用于代替根节点实现根节点的功能,当一个区域内设置两个以上的备份根节点 时,可以根据备份根节点的优先级来选择优先级最高的备份根节点代替根节点 实现根节点的功能, 当根节点上线后, 仍然由根节点周期性地发送拓朴更新报 文, 维护区域内的每一个环的环状态信息。
根节点向区域内的传输节点发送拓朴更新报文,可以是根节点周期性地向 区域内的传输节点发送拓朴更新报文,根据传输节点反馈的节点信息, 维护区 域内的每一个环的环状态信息。在实际应用中,根节点发送拓朴更新报文的周 期具体可以根据网络拓朴结构而设定, 例如可以设置为 15s至 45s, 优选的, 根节点发送拓朴更新报文的时间间隔为 45s。 可选的, 上述拓朴更新报文是根 节点发送的组播报文,在实际应用中具体可以是桥协议数据单元(英文全称是 Bridge Protocol Data Unit, 以下筒称 BPDU )报文。 可选的, 上述拓朴更新报 文可以携带生存时间 (TTL, Time To Live )值, 其中, TTL值为指定数据包 被节点丟弃之前允许通过的节点数量, TTL值是由根节点设置的, 以防止数据 包不断在区域内的网络拓朴上循环, 当节点转发数据包时, 需要将 TTL值减 小 1后再转发。
对于区域内的任意一个环,该环中的任意一个节点在该环中都只与两个节 点相邻; 区域内的任何一条边最多属于两个不同的环, 区域内的任何两个节点 之间都可以进行报文的传输。 本发明实施例中, 两个节点相邻具体可以是: 两 个传输节点相邻、一个传输节点和根节点相邻、一个传输节点和一个备份根节 点相邻、 两个备份根节点相邻、 或者一个备份根节点和根节点相邻。
接下来以图示进行举例说明,如图 2所示,在一个区域内只设置了一个根 节点 4, 该区域内包括多个环, 例如传输节点 1、 传输节点 6、 传输节点 7构 成一个环 1 , 传输节点 1、 传输节点 5、 传输节点 6构成一个环 2, 对于区域内 的传输节点 1和传输节点 6组成的边只属于环 1和环 2, 不再属于这两个环以 外的其它任何环,在区域内传输节点 6和传输节点 2之间可以进行报文的传输, 传输节点 6和传输节点 1组成一个边、 传输节点 1和传输节点 2组成一个边, 同样在该区域内的任何两个节点之间都进行报文的传输。
在本发明实施例中,传输节点接收到根节点发送的拓朴更新报文后, 可以 通过分析该拓朴更新报文, 获取到自身的优先级。 例如, 传输节点获取自身的 优先级具体可以通过如下方式实现:
传输节点根据拓朴更新报文携带的 TTL值, 计算自身的开销 (Cost )值, 获取到自身的优先级。
在本发明实施例中, 可以用各个传输节点的 Cost值来表示各个传输节点 自身的优先级, 例如, 当一个传输节点的 Cost值越小时, 表示该传输节点的 优先级越高。 在实际中, 可能出现两个传输节点的 Cost值相同的情况, 此时, 可以进一步考虑传输节点的 MAC地址, MAC地址小的传输节点的优先级高, MAC地址大的传输节点的优先级低。
在本发明的实施例中, 由于根节点可以根据实际情况选择, 因此, 为了保 证根节点的优先级最高,对于根节点可以将其 Cost值设为 0,传输节点依据如 下公式计算自身的 Cost值:
Cost值 = ( 256 - TTL值) X 256 - (度值 - 1 ) 其中, 度值为一个传输节点组成的边的个数。
例如, 在图 3所示的场景中, 对于区域内的唯——个根节点 A, 可以将该 根节点 A的 Cost值取为 0,对于传输节点 G, 因为传输节点 G共组成 4条边, 因此其度值为 4, 假设传输节点 G接收的拓朴更新报文携带的 TTL值为 255 , 则传输节点 G的 Cost值 = ( 256 - TTL值) χ 256 - (度值 - 1 ) = ( 256 - 255 ) Χ 256 - ( 4 - 1 ) =253 , 按照同样的计算方式, 可以得到图 3所示的区域内的 每一个传输节点的 Cost值, 如图 3中每一个传输节点的下边所标示出来的数 值为每一个传输节点的 Cost值。
在本发明实施例中, 由于传输节点的 Cost值与接收到的拓朴更新报文携 带的 TTL值有关, 因此, 不同的拓朴更新报文可能导致传输节点计算得到的 Cost值也是不同的。 可选的, 当传输节点根据最新接收到的拓朴更新报文(为 加以区别, 可称为第二拓朴更新报文)计算得到的第二 Cost值, 比根据之前 接收到的拓朴更新报文(可称为第一拓朴更新报文)计算得到的第一 Cost值 更小时, 则根据第二 Cost值更新自身的 Cost值, 并该第二拓朴更新 文中的 TTL值减 1后再转发出去。反之, 当传输节点根据上述第二拓朴更新报文计算 得到的第二 Cost值,比根据第一拓朴更新报文计算得到的第一 Cost值更大时, 传输节点可以不对上述第二拓朴更新报文做任何处理,优选的, 可以将上述第 二拓朴更新报文丟弃掉。
进一步可选的, 在本发明实施例中, 各节点可以为 Cost值设置老化时间, 例如可以设置老化时间是 2分钟。 为了保持网络拓朴的稳定, 老化后的 Cost 值仍然生效, 但是在老化后的情况下, 当一个节点接收到拓朴更新报文时, 即 使计算得到的 Cost值比之前计算得到的 Cost更大,该节点同样进行 Cost值的 更新, 并将该拓朴更新报文的 TTL值减 1后转发出去。
传输节点将该拓朴更新报文中的 TTL值减 1后转发出去后, 向根节点发 送拓朴更新回应报文, 其中,拓朴更新回应报文中携带有该传输节点的节点信 息。 例如, 拓朴更新回应报文中可以携带该传输节点的 Cost值、 MAC地址、 与该传输节点在同一环中相邻的节点的 MAC地址, 该传输节点所在环的标识 (英文全称 Identity, 筒称 ID )等该传输节点的节点信息。 可选的, 上述传输 节点发送的拓朴更新回应报文具体可以是单播报文。
进一步可选的,在本发明的实施例中,根节点还可以向区域内的备份根节 点发送拓朴更新报文。备份根节点接收到拓朴更新报文之后, 不修改该拓朴更 新报文中的 TTL值, 直接将该拓朴更新报文转发出去, 然后向根节点发送拓 朴更新回应报文,其中,拓朴更新回应报文中携带有该备份根节点的节点信息, 例如, 拓朴更新回应报文中可以携带该备份根节点 Cost值、 MAC地址、 与该 备份根节点在同一环中相邻的节点的 MAC地址, 该备份根节点所在环的 ID 等节点信息。可选的, 上述传输节点发送的拓朴更新回应报文具体可以是单播 报文。
在本发明的实施例中, 由于是环状的组网, 因此, 根节点也有可能接收到 拓朴更新报文。可选的,根节点接收到拓朴更新报文后将该拓朴更新报文丟弃。
102、 根节点接收拓朴更新回应报文, 其中, 拓朴更新回应报文携带所述 区域内传输节点的节点信息。
103、 根据拓朴更新回应报文携带的区域内传输节点的节点信息, 为区域 内的所有环分别配置控制虚拟局域网 (英文全称 Virtual Local Area Network , 筒称 VLAN ),其中,区域内任意两个存在相邻边的环的控制 VLAN是不同的。
在本发明实施例中, 根节点可以根据拓朴更新回应报文中携带的节点信 息,知道在区域内有多少个环,并为区域内的所有环分别配置一个控制 VLAN , 原则就是一个区域内存在相邻边的任意两个环所配置的 VLAN是不同的。
可选的, 在实际应用中, 可以利用四色定理(即: 任何一张地图都可以只 使用四种颜色把所有地区区分开来)来实现。 即: 根节点可以利用 4种不同的 控制 VLAN,将一个区域内的所有环区分来开,且区域内任意两个存在相邻边 的环的控制 VLAN是不同的。
例如, 可以利用 VLAN1、 VLAN2、 VLAN3、 VLAN4 (即相当于四种不 同的颜色: 红、蓝、 黄、绿)来区分区域内的所有环, 需要说明的是, VLAN1、 VLAN2、 VLAN3、 VLAN4只是控制 VLAN的代号以表示是不同的控制 VLAN, 但并不是具体的控制 VLAN标识, 只是用作说明而已, 需要根据具体的应用 场景来配置具体的控制 VLAN标识。
以图 4所示场景为例, 传输节点 1、 传输节点 6、 传输节点 7组成的环用 蓝色表示, 就表示该环配置的为 VLAN2。 传输节点 1、 传输节点 5、 传输节点 6组成的环用红色表示, 就表示该环配置的为 VLAN1。 在图 4中的区域内存 在相邻边的两个环的颜色是不同的, 表示其配置的控制 VLAN是不同的。
当然, 可以理解, 如果区域内的环数量不是 4艮多, 例如, 只有 2个或者 3 个, 则只需要利用 2个或者 3个控制 VLAN即可将区域内的所有环区分开, 且区域内任意两个存在相邻边的环的控制 VLAN是不同的。
104、 根节点向区域内的传输节点发送 VLAN配置 文, VLAN配置 4艮文 携带配置信息用于为区域内的环配置控制 VLAN。
可选的, 在本发明实施例中, 根节点也可以向区域内的备份根节点发送 VLAN配置艮文。
可选的,根节点在向区域内的传输节点发送 VLAN配置报文(即操作 104 ) 之后, 本发明实施例的方法还可以进一步的包括: 主节点通过主端口向该主节 点所在环中的所有节点发送环状态定时检测报文,用于检测该主节点所在环的 链路是否完整。 其中, 主节点为所在环中的优先级最低的传输节点, 主节点通 过两个端口与所在环中相邻的两个节点相连, 其中, 与优先级较^ ^的相邻节点 相连的那一个端口为阻塞端口, 另一个为主端口。
需要说明的是, 在本发明实施例中, 主节点是传输节点的一种, 当没有特 别指出时, 不需要区分传输节点和主节点。
主节点通过主端口向该主节点所在环中的所有节点发送环状态定时检测 报文之后, 本发明实施例还可以进一步的包括, 若主节点能够通过阻塞端口接 收到该环状态定时检测报文, 则主节点确定此时环的链路完整, 若没有通过阻 塞端口接收到该状态定时检测报文, 则主节点确定此时环的链路不完整。
以图 3所示场景为例, 传输节点八、 传输节点0、 传输节点11、 传输节点 B组成的环中,传输节点 H的 Cost值最大,故传输节点 H为该环中的主节点。 当所在环中存在 Cost值最大但相同的多个传输节点时,主节点为 MAC地址最 大的传输节点。
再以图 5所示场景为例, 传输节点八、 传输节点0、 传输节点11、 传输节 点 B组成的的蓝色环中, 主节点 H有两个端口, 分别连接两个传输节点 B和 传输节点 G, 比较两个传输节点 B和传输节点 G的优先级, 由于传输节点 B 和传输节点 G的 Cost值都是 253,进一步比较这两个节点的 MAC地址,假设 传输节点 B的 MAC地址大于传输节点 G的 MAC地址,故传输节点 B的优先 级低于传输节点 G, 故主节点 H中与传输节点 B相连的端口为阻塞端口, 在 图 5中用 " X "表示阻塞端口, 按照同样的方式, 将图 5的区域内的所有环设 置主节点和阻塞端口。
可选的, 当主节点确定该主节点所在环的链路不完整时, 本发明实施例的 方法还可以进一步地包括: 主节点打开该主节点的阻塞端口,通过主端口和阻 塞端口分别向该主节点所在环中的所有节点发送环状态失效通知报文,通知环 内的传输节点清除各传输节点自身的 MAC地址转发表中的记录和地址解析协 议(英文全称为 Address Resolution Protocol , 以下筒称为: ARP )地址转发 表中的记录。
若主节点检测到该主节点所在环的链路恢复完整,本发明实施例的方法还 可以进一步地包括: 主节点阻塞该主节点的阻塞端口,通过主端口向该主节点 所在环中的所有节点发送环状态完整通知 文,通知环内的传输节点清除各传 输节点自身的 MAC地址转发表中的记录和 ARP地址转发表中的记录。
可选的, 根节点在向区域内的传输节点发送 VLAN配置报文(操作 104 ) 之后, 本发明实施例的方法还可以进一步地包括: 第一节点向与所述第一节点 属于同一个环的其他节点发送环内拓朴信息交换报文,以实现同一环内各节点 之间节点信息的交互, 其中, 节点信息的描述请参见操作 103中的描述, 此处 不再赘述。 上述第一节点, 是某一个环内的某一个节点, 可以是传输节点, 或 者备份根节点, 或者是根节点。
在本发明实施例中, 在同一环内, 所有的节点都只包括两个端口, 将每个 端口分别处于什么状态称之为端口状态机, 区域内的根节点、备份根节点和所 有环中的传输节点的端口状态机可以分为以下四种情况,为了清楚的描述四种 端口状态机之间的转换关系, 请参阅图 6所示, 具体说明如下:
初始状态(Initial ): 当各环没有配置控制 VLAN时, 各端口状态为 Initial 状态, 此状态下可以处理协议>¾文, 无法转发数据 ^艮文。
预转发状态 ( Pre-Forwarding ): 各端口从 Initial状态或者 Blocked状态转 向 Forwarding状态时都需要经过 Pre-Forwarding状态,此状态需设置超时时间, 超时时间内收不到环状态完整通知 文, 则强制转到 Forwarding状态, 此状 态下可以处理协议报文, 无法转发数据报文。
转发状态(Forwarding ): 各环内除了主节点之外的其他传输节点的端口、 以及主节点的主端口在拓朴稳定状态下都必须达到此状态,此状态下可以正常 收发数据报文和处理协议报文。
阻塞状态(Blocked ): 主节点的阻塞端口在环拓朴稳定状态下必须达到此 状态,各环内的除了主节点之外的其他传输节点的端口在连接的链路出现故障 时, 也是此状态。 处于此状态下的端口只可以处理协议报文, 不可以收发数据 报文。 在阻塞状态下的端口仍然可以正常转发和处理非本环的协议报文。
可选的, 在向区域内的传输节点发送 VLAN配置报文(104 )之后, 本发 明实施例的方法还可以进一步地包括:当区域内的任意两个环的相邻边出现故 障时, 两个环中优先级高的环中的主节点打开该主节点的阻塞端口, 若两个环 的优先级相同, 两个环中标识 ID小的那一个环的主节点打开该主节点的阻塞 端口, 其中, 环的优先级为环中节点的优先级之和的平均值。 在本发明实施例中的网络拓朴中,任何一个边最多属于只有两个环。 两个 环的相邻边出现故障时, 只能有一个环中的主节点打开阻塞端口, 若两个环中 的主节点同时打开阻塞端口时则可能会出现新的环路。 因此, 当两个环的相邻 边故障时, 优先级高的环中的主节点打开自身的阻塞端口。 其中, 可以通过环 中的各节点的 Cost值获得该环的优先级。例如:环的 Cost值=环中各节点 Cost 值的平均值, 若环的 Cost值越大, 则该环的优先级越低。 若两个环 Cost值一 样, 则环 ID小的优先级高, 反之环 ID大的优先级低。
例如, 如图 7所示, 当区域内的两个环中的相邻边 AB出现故障时, 在图 7中用" * " 表示, 通过计算两个环的优先级, 选择打开优先级低的绿环中的 主节点 B的阻塞端口, 继续保持蓝环中的主节点 H的阻塞端口阻塞。 此时蓝 环的环内定时检测报文到达传输节点 A后, 通过传输节点 C转发到传输节点 B, 蓝环的链路状态检测仍然能够正常进行, 如图 8所示。
又例如, 在图 8中, 当打开绿环之后, 若此时 AC边出现故障, 如图 9所 示, 在图 9中" * " 表示, 通过计算相邻边 AC所在的红环和绿环之后, 选择 打开优先级低的红环中的主节点 D的阻塞端口, 蓝环的环内定时检测报文仍 然能够通过路径 AEDCB继续正常转发。
为保证上述图 9 中所示的蓝环的环内定时检测报文正常在绿环和红环上 转发, 在 AB和 AC链路出现故障时, 需要在组成 AB和 AC的传输节点, 包 括: 传输节点八、 传输节点 B和传输节点 A、 传输节点 C节点下发相应的转 发规则。 一般可以使用 VLAN映射或者 VLAN叠加来做这种处理。 以 VLAN 映射为例,当 AB边出现故障时,传输节点 A下发 VLAN映射规则:把 VLAN3 的报文映射到 VLAN2内, 因为在前述描述中用红色代表 VLAN1 , 绿色代表 VLAN2, 蓝色代表 VLAN3, 黄色代表 VLAN4, 蓝环内的环定时检测报文配 置的 VLAN 为 VLAN3 , 为了将传输节点 A 的环定时检测报文映射到绿环 ( VLAN配置为 VLAN2 ), 故需要将 VLAN3映射到 VLAN2。 也就是在蓝环 中携带 VLAN3的环内定时检测报文, 在通过 A节点后变为携带 VLAN2的环 内定时检测报文, 为了筒化起见用 "3-〉 2" 表示, 传输节点 B下发 VLAN映 射规则: "2-〉 3"。 当 AC边故障时, 传输节点 A下发 VLAN映射规则: "3-〉 1" , 传输节点 C下发 VLAN映射规则: "1-〉 3"。 当边 AB和边 AC都故障时, 在 A点下发的最终 VLAN映射规则是 "3-〉1"。 当边 AB和边 AC的故障恢复 时, 传输节点 、 传输节点:^ 传输节点 C将边故障时下发的 VLAN映射规 则删除。 以 VLAN叠加为例, 当 AB边出现故障时, 传输节点 A下发 VLAN 映射规则: 把 VLAN3的报文映射到 VLAN2内, 因为在前述描述中用红色代 表 VLAN1 , 绿色代表 VLAN2, 蓝色代表 VLAN3, 黄色代表 VLAN4, 蓝环内 的环定时检测 文配置的 VLAN为 VLAN3 ,为了将传输节点 A的环定时检测 报文映射到绿环 (VLAN 配置为 VLAN2 ), 将 VLAN3 的报文在叠加一层 VLAN2。 也就是在蓝环中携带 VLAN3的环内定时检测报文, 在通过 A节点 后变为携带两层 VLAN (为 VLAN2和 VLAN3 ) 的环内定时检测报文, 当该 环内定时检测报文离开绿环时, 将该环内定时检测报文叠加的 VLAN2去掉, 只保留携带的 VLAN3。
在本发明实施例中, 上述方法进一步包括,根节点在链路上部署双向链路 检测协议, 或者各主节点的阻塞端口收到环内定时检测报文后进行确认回复, 当主节点的主端口收到这个阻塞端口确认回复的报文后才算检测正常,如连续 若干个周期收不到则可以认为链路出现故障。从而进一步解决现实网络中可能 存在单向链路故障的情况。在实际应用中,产生单向链路故障后会造成如下两 方面影响:
1、 在环内定时检测报文发送方向链路出现故障, 而另外一个方向链路正 常, 此种情况下会造成打开阻塞端口, 造成单向环路。 例如, 以图 7为例, 传 输节点 E、 传输节点F、 传输节点 G组成红环中, 在其中一条边 EG上存在两 个方向上的链路,如从 E到 G的链路和从 G到 E的链路, 比如在 E到 G的链 路上为环内定时检测报文发送方向, 当 E到 G的链路出现故障时, 从 G到 E 的链路正常, 则此时由于 E到 G的链路故障, 该环的主节点 F会打开阻塞端 口, 此时对于 G到 E方向的链路就会出现单向环路。
2、 在环内定时检测报文发送方向链路正常, 而另外一个方向链路出现故 障, 此种情况下会造成一部分业务出现中断。例如, 以图 7为例,传输节点E、 传输节点F、 传输节点 G组成红环中, 在其中一条边 EG上存在两个方向上的 链路,如从 E到 G的链路和从 G到 E的链路, 比如在 E到 G的链路上为环内 定时检测报文发送方向, 当 E到 G的链路时, 从 G到 E的链路出现故障, 则 此时由于 E到 G的链路正常, 该环的主节点 F不会打开阻塞端口, 但是对于 G到 E方向的链路由于故障会导致一部分业务出现中断。
在本发明实施例中,根节点在向区域内传输节点发送 VLAN配置报文(操 作 104 )之后, 本发明实施例的方法还可以进一步地包括: 当区域内存在网络 拓朴发生变化的环时, 根节点为区域内网络拓朴发生变化的环重新配置控制 VLAN;根节点向区域内的节点发送 VLAN变更报文, VLAN变更报文携带配 置信息用于为区域内网络拓朴发生变化的环重新配置控制 VLAN。
例如, 如图 10所示, 在 BC之间新增节点 K后, 原有的环 ACB被分割成 两个环 ACK和 AKB, 此时需要通过重新配置两个环 ACK和 AKB的 ID。 根 节点重新对这两个环进行控制 VLAN配置, 之后这两个环分别重新选择主节 点, 如图 11所示, 对环 ACK和环 AKB需要重新选择主节点, 按照本发明前 述实施例介绍的方法, 选择传输节点 B为环 AKB的主节点, 阻塞端口已经在 图中用 " X " 表示了, 传输节点 K为环 ACK的主节点, 阻塞端口已经在图中 用 " X " 表示了。
需要说明的是, 在图 11中, 主节点在变更时, 主节点变更处理方式为, 当拓朴产生变化后,有可能会影响到某个环的主节点变更,在主节点的变更过 程中, 为避免业务产生中断, 先选择新的主节点, 然后, 把原来的主节点的阻 塞端口的端口状态机置为 Pre-Forwarding状态,之后新的主节点完成端口阻塞 和发送环状态完整通知报文通知所有端口置为 Forwarding状态。 环 VLAN变 更处理方式为: 在网络拓朴变化后, 根节点进行重新配置控制 VLAN后, 整 个区域内网络拓朴发生变化的环需要进行控制 VLAN变更处理。 为保证此时 原有业务不受影响, 在控制 VLAN变更过程中, 环内状态不再发生变更, 直 至新的控制 VLAN变更完成后重新进行主节点变更操作。
从上述本发明实施例可知,由于根节点为区域内任何存在相邻边的两个环 环配置的 VLAN是不同的,控制 VLAN用于在各自配置 VLAN的环内传输协 议才艮文, 可以应用于城域以太网的环网中, 可以达到多路径保护, 能够实现业 务倒换的快速收敛,并且网络拓朴结构不仅限于单环或者仅有两个相交点的网 络拓朴, 可以适用于所有的网络拓朴情况。
以上实施例分别介绍了本发明实施例提供的报文处理方法,接下来介绍本 发明实施例提供的使用该报文处理方法的系统。
如图 12所示, 本发明实施例提供的一种报文处理系统 1200, 包括: 根节 点 1201、 区域内的传输节点 1202, 其中,
根节点 1201 , 用于向区域内的传输节点发送拓朴更新报文;
区域内的传输节点 1202, 用于根据拓朴更新报文获取节点的优先级, 并 向根节点 1201发送拓朴更新回应报文, 拓朴更新回应报文中携带有传输节点 的节点信息;
根节点 1201 , 还用于接收到拓朴更新回应报文, 并根据拓朴更新回应报 文携带的区域内传输节点的节点信息,为区域内所有环分别配置一个控制虚拟 局域网 VLAN, 其中, 区域内任意两个存在相邻边的环的控制 VLAN是不同 的; 向区域内的节点发送 VLAN配置报文, VLAN配置报文携带配置信息用 于为区域内的环配置控制 VLAN的配置信息。
可选的, 上述系统中还可以包括备份根节点 1203, 上述根节点 1201还用 于向区域内的备份根节点 1203发送拓朴更新报文。
可选的, 当上述区域内的传输节点 1202为主节点时, 上述区域内的传输 节点 1202 还用于通过主端口向所在环中的所有节点发送环状态定时检测报 文。
可选的, 当上述区域内的传输节点 1202为主节点时, 上述区域内的传输 节点 1202还用于当主节点通过环状态定时检测报文检测到主节点所在环的链 路不完整时,打开主节点的阻塞端口, 并通过主端口和阻塞端口分别向所在环 中的所有节点发送环状态失效通知 文。
可选的, 当上述区域内的传输节点 1202为主节点时, 上述区域内的传输 节点 1202还用于当主节点检测到主节点所在环的链路恢复完整时, 阻塞主节 点的阻塞端口, 并向主节点所在环中的所有节点发送环状态完整通知 文。
需要说明的是, 上述系统中各节点之间的信息交互、 执行过程等内容, 由 于与本发明方法实施例基于同一构思,其带来的技术效果与本发明方法实施例 相同, 具体内容可参见本发明方法实施例中的叙述, 此处不再赘述。
从上述本发明实施例可知,由于根节点为区域内任何存在相邻边的两个环 环配置的控制 VLAN是不同的,不同的控制 VLAN用于在各自配置控制 VLAN 的环内传输协议报文,可以应用于城域以太网的环网中,可以达到多路径保护, 能够实现业务倒换的快速收敛,并且网络拓朴结构不仅限于单环或者仅有两个 相交点的网络拓朴, 可以适用于所有的网络拓朴情况。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,该程序可以存储于一种计算机可读存 储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光盘等。
以上对本发明所提供的一种报文处理方法及系统进行了详细介绍,对于本 领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围 上均会有改变之处, 因此, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种 文处理方法, 其特征在于, 所述方法包括:
根节点向区域内的传输节点发送拓朴更新报文;
接收所述区域内的传输节点发送的拓朴更新回应报文, 其中,拓朴更新回 应报文携带所述区域内传输节点的节点信息;
根据拓朴更新回应报文携带的所述区域内传输节点的节点信息,为区域内 的环分别配置控制虚拟局域网 VLAN,其中, 区域内任意两个存在相邻边的环 的控制 VLAN是不同的;
根节点向所述区域内的传输节点发送 VLAN配置报文, 所述 VLAN配置 文携带配置信息用于为区域内的环分别配置控制 VLAN。
2、 根据权利要求 1所述的报文处理方法, 其特征在于, 所述节点信息包 括:
所述区域内传输节点的开销值, 所述区域内传输节点的媒体接入控制 MAC地址, 与所述区域内传输节点在同一环中相邻的节点的 MAC地址, 以 及所述区域内传输节点所在环的标识 ID。
3、 根据权利要求 1或 2所述的报文处理方法, 其特征在于, 所述根节点 向区域内的传输节点发送 VLAN配置报文之后, 还包括:
主节点通过主端口向所述主节点所在环中的所有节点发送环状态定时检 测报文。
4、 根据权利要求 3所述的报文处理方法, 其特征在于, 所述主节点通过 主端口向所述主节点所在环中的所有节点发送环状态定时检测报文之后还包 括:
若主节点能够通过阻塞端口接收到该环状态定时检测报文,则主节点确定 此时环的链路完整, 若没有通过阻塞端口接收到该状态定时检测报文, 则主节 点确定此时环的链路不完整。
5、 根据权利要求 3所述的报文处理方法, 其特征在于, 当主节点确定该 主节点所在环的链路不完整时, 还包括:
主节点打开该主节点的阻塞端口,通过主端口和阻塞端口分别向该主节点 所在环中的所有节点发送环状态失效通知 文,通知环内的传输节点清除各传 输节点自身的 MAC地址转发表中的记录和地址解析协议 ARP地址转发表中 的记录。
6、 根据权利要求 5所述的报文处理方法, 其特征在于, 若主节点检测到 该主节点所在环的链路恢复完整, 还包括:
主节点阻塞该主节点的阻塞端口,通过主端口向该主节点所在环中的所有 节点发送环状态完整通知报文, 通知环内的传输节点清除各传输节点自身的 MAC地址转发表中的记录和 ARP地址转发表中的记录。
7、 根据权利要求 1或 2所述的报文处理方法, 其特征在于, 根节点在向 区域内的传输节点发送 VLAN配置报文后, 包括:
所述区域内的传输节点与同一环内的其他节点通过环内拓朴信息交换报 文进行节点信息的交互。
8、 根据权利要求 1或 2所述的报文处理方法, 其特征在于, 根节点在向 区域内的传输节点发送 VLAN配置报文后, 当所述区域内的任意两个环的相 邻边出现故障时,所述两个环中优先级高的环中的主节点打开所述主节点的阻 塞端口, 若所述两个环的优先级相同, 所述两个环中标识 ID小的环中的主节 点打开所述主节点的阻塞端口。
9、 根据权利要求 8所述的报文处理方法, 其特征在于, 当所述区域内的 任意两个环的相邻边出现故障时,在组成出现故障的边的传输节点下发转发规 贝1 J , 包括: VLAN映射或 VLAN叠加。
10、 根据权利要求 1或 2所述的报文处理方法, 其特征在于, 根节点在向 区域内的传输节点发送 VLAN配置报文后, 还包括:
当所述区域内存在网络拓朴发生变化的环时,根节点为所述区域内网络拓 朴发生变化的环重新配置控制 VLAN,并向所述区域内的传输节点发送 VLAN 变更报文, 所述 VLAN变更报文携带配置信息用于为区域内网络拓朴发生变 化的环重新配置控制 VLAN。
11、一种报文处理系统,其特征在于, 包括: 根节点和区域内的传输节点, 其中,
所述根节点, 用于向所述区域内的传输节点发送拓朴更新报文;
所述区域内的传输节点, 用于根据拓朴更新报文获取节点的优先级, 并向 根节点发送拓朴更新回应报文,拓朴更新回应报文中携带有传输节点的节点信 息;
所述根节点,还用于接收到所述拓朴更新回应报文, 并根据拓朴更新回应 报文携带的区域内传输节点的节点信息,为区域内所有环分别配置一个控制虚 拟局域网 VLAN, 其中, 区域内任意两个存在相邻边的环的控制 VLAN是不 同的; 向区域内的节点发送 VLAN配置报文, VLAN配置报文携带配置信息 用于为区域内的环配置控制 VLAN的配置信息。
12、 根据权利要求 11所述的报文处理系统, 其特征在于, 当上述区域内 的传输节点为主节点时,上述区域内的传输节点还用于通过主端口向所在环中 的所有节点发送环状态定时检测报文。
13、 根据权利要求 11所述的报文处理系统, 其特征在于, 当上述区域内 的传输节点为主节点时,上述区域内的传输节点还用于当主节点通过环状态定 时检测报文检测到主节点所在环的链路不完整时,打开主节点的阻塞端口, 并 通过主端口和阻塞端口分别向所在环中的所有节点发送环状态失效通知报文。
14、 根据权利要求 13所述的报文处理系统, 其特征在于, 当主节点检测 到主节点所在环的链路恢复完整时,上述区域内的传输节点还用于阻塞主节点 的阻塞端口, 并向主节点所在环中的所有节点发送环状态完整通知 文。
15、 根据权利要求 11至 14中任一所述的报文处理系统, 其特征在于, 还 包括: 区域内的备份根节点; 上述根节点还用于向所述区域内的备份根节点发 送拓朴更新报文。
PCT/CN2011/078478 2011-08-16 2011-08-16 一种报文处理方法及系统 WO2012162946A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/078478 WO2012162946A1 (zh) 2011-08-16 2011-08-16 一种报文处理方法及系统
CN201180001745.4A CN103053139B (zh) 2011-08-16 2011-08-16 一种报文处理方法及系统
EP11866979.5A EP2736198B1 (en) 2011-08-16 2011-08-16 Message processing method and system
US14/180,087 US9641396B2 (en) 2011-08-16 2014-02-13 Packet processing method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/078478 WO2012162946A1 (zh) 2011-08-16 2011-08-16 一种报文处理方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/180,087 Continuation US9641396B2 (en) 2011-08-16 2014-02-13 Packet processing method and system

Publications (1)

Publication Number Publication Date
WO2012162946A1 true WO2012162946A1 (zh) 2012-12-06

Family

ID=47258295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078478 WO2012162946A1 (zh) 2011-08-16 2011-08-16 一种报文处理方法及系统

Country Status (4)

Country Link
US (1) US9641396B2 (zh)
EP (1) EP2736198B1 (zh)
CN (1) CN103053139B (zh)
WO (1) WO2012162946A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108551408A (zh) * 2018-07-11 2018-09-18 智强通达科技(北京)有限公司 一种环形冗余网络
CN111695223A (zh) * 2020-06-11 2020-09-22 Ut斯达康通讯有限公司 一种网络拓扑布局方法及系统

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9743367B2 (en) * 2014-09-18 2017-08-22 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Link layer discovery protocol (LLDP) on multiple nodes of a distributed fabric
US10728096B2 (en) 2015-10-02 2020-07-28 Arista Networks, Inc. Dynamic service device integration
US10341185B2 (en) * 2015-10-02 2019-07-02 Arista Networks, Inc. Dynamic service insertion
US10091103B2 (en) * 2016-04-22 2018-10-02 Juniper Networks, Inc. Efficient synchronization of stored information using a parallel ring network topology
US9923731B1 (en) * 2016-09-12 2018-03-20 Fujitsu Limited Seamless migration from multiple spanning tree protocol to ethernet ring protection switching protocol
CN110995560A (zh) * 2019-12-27 2020-04-10 安徽皖通邮电股份有限公司 一种利用单向检测实现以太网环网保护的方法
US11240167B2 (en) * 2020-06-29 2022-02-01 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Energy efficient optimization for spanning tree protocol

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013992A (zh) * 2007-02-14 2007-08-08 中兴通讯股份有限公司 一种以太网自动保护方法
CN101610193A (zh) * 2009-07-27 2009-12-23 武汉烽火网络有限责任公司 以太环网自动发现及生成环的方法
CN101834770A (zh) * 2009-03-09 2010-09-15 中兴通讯股份有限公司 以太多环网的地址刷新方法和装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8126470B2 (en) * 2006-07-03 2012-02-28 Nokia Corporation Topology and route discovery and management for relay networks
US8270319B2 (en) * 2006-12-14 2012-09-18 Rockstart Bidco, LP Method and apparatus for exchanging routing information and establishing connectivity across multiple network areas
US8526325B2 (en) * 2007-01-31 2013-09-03 Hewlett-Packard Development Company, L.P. Detecting and identifying connectivity in a network
US8166205B2 (en) * 2007-07-31 2012-04-24 Cisco Technology, Inc. Overlay transport virtualization
US8837491B2 (en) * 2008-05-27 2014-09-16 Glue Networks Regional virtual VPN
US8547877B2 (en) * 2010-03-30 2013-10-01 Telefonaktiebolaget L M Ericsson (Publ) RSTP tracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013992A (zh) * 2007-02-14 2007-08-08 中兴通讯股份有限公司 一种以太网自动保护方法
CN101834770A (zh) * 2009-03-09 2010-09-15 中兴通讯股份有限公司 以太多环网的地址刷新方法和装置
CN101610193A (zh) * 2009-07-27 2009-12-23 武汉烽火网络有限责任公司 以太环网自动发现及生成环的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2736198A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108551408A (zh) * 2018-07-11 2018-09-18 智强通达科技(北京)有限公司 一种环形冗余网络
CN111695223A (zh) * 2020-06-11 2020-09-22 Ut斯达康通讯有限公司 一种网络拓扑布局方法及系统
CN111695223B (zh) * 2020-06-11 2023-03-03 Ut斯达康通讯有限公司 一种网络拓扑布局方法及系统

Also Published As

Publication number Publication date
US9641396B2 (en) 2017-05-02
EP2736198A1 (en) 2014-05-28
CN103053139A (zh) 2013-04-17
EP2736198B1 (en) 2015-10-07
CN103053139B (zh) 2015-01-21
EP2736198A4 (en) 2014-06-11
US20140169155A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
US9509591B2 (en) Technique for dual homing interconnection between communication networks
EP2104994B1 (en) Hash-based multi-homing
EP2027676B1 (en) Technique for providing interconnection between communication networks
WO2012162946A1 (zh) 一种报文处理方法及系统
US7778205B2 (en) System and method for implementing virtual ports within ring networks
EP1974485B1 (en) Vpls failure protection in ring networks
US8724452B2 (en) Technique for protecting communication traffic in a connection having redundancy
US8077633B2 (en) Transient loop prevention in a hybrid layer-2 network
EP1958364B1 (en) Vpls remote failure indication
EP1842342A1 (en) A method of operating a node in a communications network
Golash Reliability in ethernet networks: A survey of various approaches
IL191454A (en) Remote Virtual Network Failure Indicator (vpls)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001745.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866979

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011866979

Country of ref document: EP