WO2012161073A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2012161073A1
WO2012161073A1 PCT/JP2012/062632 JP2012062632W WO2012161073A1 WO 2012161073 A1 WO2012161073 A1 WO 2012161073A1 JP 2012062632 W JP2012062632 W JP 2012062632W WO 2012161073 A1 WO2012161073 A1 WO 2012161073A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
mirror
real
light
display device
Prior art date
Application number
PCT/JP2012/062632
Other languages
French (fr)
Japanese (ja)
Inventor
前川 聡
杉山 貴
Original Assignee
独立行政法人情報通信研究機構
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人情報通信研究機構, スタンレー電気株式会社 filed Critical 独立行政法人情報通信研究機構
Publication of WO2012161073A1 publication Critical patent/WO2012161073A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet
    • B60K2360/23
    • B60K2360/31

Definitions

  • the present invention relates to a display device that uses a real mirror image forming optical system to form a real image (real mirror image) of an object to be observed in the air.
  • a display device has been proposed in which a real image (real mirror image) of an object to be observed is formed in the air using a real mirror image forming optical system so that it can be seen by an observer (Patent Document 1). ,reference).
  • Such a display device includes an observation object arranged in a space opposite to the observer side, and a real mirror image imaging optical system that forms a real image of the observation object in the observer side space. It is a display device, and forms a real image of an object to be observed at a symmetrical position with respect to a symmetrical plane (element plane) of a real mirror image forming optical system.
  • an optical element that forms a real mirror image forming optical system (hereinafter referred to as a real mirror image optical element) is manufactured as a base such as a square, and a real mirror image is formed as shown in FIG.
  • the optical element 5 is used by being incorporated in a display device in a state where the optical element 5 is fitted in the frame 8 that is one size larger. Therefore, the boundary BL between the real mirror image optical element 5 and the frame 8 is formed.
  • the observer observes the display device he / she sees the frame, the real mirror image optical element, and the real mirror image formed in the space before the real mirror image optical element.
  • the real mirror image is near the center of the real mirror image optical element, the observer can easily view it as an aerial image, but the real mirror image is near the end of the real mirror image optical element, that is, the frame. It is difficult to visually recognize the aerial image when it is in the vicinity of the boundary. As a result of repeating various experiments, it was found that it is difficult to visually recognize an aerial image when the boundary between the real mirror image, the real mirror image optical element, and the frame is observed at the same time and at a close position.
  • the viewing angle range in which a real mirror image can be easily viewed as an aerial image is limited to a narrow range depending on the size of the real mirror image optical element and the size of the object to be observed.
  • an object of the present invention is to provide a display device capable of easily viewing a real image formed by a real mirror image forming optical system.
  • the display device of the present invention has a semi-transparent base that partitions a display-side space that can be visually recognized by an observer and an object-side space in which the object is placed, and is provided in the display-side space via the base. It includes a real mirror image forming optical system for forming a real image of the object to be observed, and a translucent plate disposed between the base and the real image of the object to be observed.
  • the present invention has been conceived in order to widen the viewing angle range in which a real mirror image can be easily viewed as an aerial image.
  • a real image (real mirror image) of an object to be observed is observed by an observer.
  • a real mirror image forming optical system that forms an image in a space on the side, and an object to form the real image disposed in a space opposite to the observer side of the real mirror image forming optical system; This is realized by the real mirror image forming optical system and the semi-transmissive plate disposed between the real images.
  • the viewing angle range is widened by making it difficult to see the boundary between the real mirror image optical element and the frame by the translucent plate disposed between the real mirror image forming optical system and the displayed real image. is there. That is, it is advantageous that the translucent plate is larger than the real mirror image forming optical system (actual mirror image optical element) because the boundary can be surely hidden and difficult to see.
  • the translucent plate for example, a translucent acrylic plate (plate) dyed with a black pigment, or an opaque portion printed on a transparent plate in the form of dots, the area ratio between the transparent portion and the opaque portion A plate that adjusts the transmittance can be used.
  • a thin metal film provided on a permeable substrate can be used.
  • the translucent plate with a metal thin film there is a so-called half mirror or the like in which a thin film is formed by vapor-depositing a metal such as chromium on a glass substrate.
  • a simple half mirror is not preferable because there is reflection of an object on the observation side such as the face of the observer.
  • the reflectivity of the observer-side metal thin film should be kept low.
  • the upper or lower portion of the chromium thin film can be used as a chromium oxide film to suppress reflection (look black).
  • the transmissivity of the semi-transparent plate should be about 20% to about 80%, more preferably about 30% to about 60%, assuming that the transmittance when there is nothing is 100%. As a result of observation.
  • the anisotropic semipermeable plate is, for example, a semipermeable plate having a fine slit shape.
  • the slits are parallel slits or mesh-shaped, and are inclined toward the observer side with respect to the element surface.
  • the real mirror image forming optical system is capable of observing a real mirror image of an object to be observed from a viewpoint from an oblique direction with respect to a symmetry plane (base).
  • a two-surface corner reflector array is a set of a plurality of two-surface corner reflectors composed of two orthogonal mirror surfaces in a plane, and a common plane perpendicular to all the mirror surfaces is observed on the object to be observed.
  • an element surface which is a plane of symmetry with respect to the real image.
  • This two-sided corner reflector array reflects the light emitted from the object to be observed once by the two mirror surfaces of each two-sided corner reflector and transmits the element surface to thereby change the element surface of the two-sided corner reflector array.
  • As a symmetry plane it has an action of forming an image of a real mirror image of the object to be observed at a plane symmetrical position of the object to be observed.
  • the two-sided corner reflector in order to transmit light through the element surface while appropriately reflecting and bending the light at each two-sided corner reflector, the two-sided corner reflector is assumed to pass through the element surface. It can be considered that the inner wall of the optical hole is used as a mirror surface. However, such a two-sided corner reflector is conceptual and does not necessarily reflect the shape determined by the physical boundary, for example, optical holes are not independent of each other. It can be connected.
  • the structure of the two-sided corner reflector array is simply described by arranging a large number of mirror surfaces substantially perpendicular to the element surface on the element surface.
  • the problem as a structure is how to support and fix the mirror surface to the element surface.
  • a two-sided corner reflector array is provided with a base that divides a predetermined space, and a single plane passing through the base is defined as an element surface.
  • the corner reflector can be used as an optical hole assumed in a direction penetrating the element surface, and an inner wall of the hole formed in the base can be used as a mirror surface.
  • the hole formed in the substrate only needs to be transparent so that light can be transmitted, and may be, for example, a vacuum filled with a transparent gas or liquid.
  • the shape of the hole may be any shape as long as the inner wall has a mirror surface that is not included in one or more coplanar surfaces to serve as a unit optical element, and the light reflected by the mirror surface can pass through the hole. It may be a complicated shape in which each hole is connected or a part thereof is missing. For example, an aspect in which individual mirror surfaces stand on the surface of the base can be understood as connecting holes formed in the base.
  • the double-sided corner reflector may use a cylindrical body formed of a solid such as transparent glass or resin as an optical hole.
  • these cylindrical bodies may be brought into close contact with each other and serve as a support member for the element, and project from the surface of the base as having a base. You may take the aspect which did.
  • the cylindrical body also has one or more mirror surfaces not included in the same plane for acting as a two-surface corner reflector on its inner wall, and the light reflected by the mirror surface can pass through the cylindrical body. As long as it can take any shape, it may be a cylindrical body, but it may be a complicated shape in which each cylindrical body is connected or partially missing.
  • the dihedral corner reflector is a mirror array (slit mirror array) in which a number of elongated mirror bodies having light reflecting surfaces in the vertical direction are arranged. You may utilize what was piled up so that it might mutually orthogonally cross.
  • the optical hole a shape in which all adjacent inner wall surfaces are orthogonal, such as a cube or a rectangular parallelepiped, can be considered.
  • the distance between the two-surface corner reflectors can be minimized, and a high-density arrangement is possible.
  • non-mirror surface In order to obtain a non-mirror surface, it is possible to employ a configuration in which the surface is covered with an antireflection coating or a thin film, or a configuration in which the surface roughness is roughened to cause irregular reflection. It should be noted that even a transparent and flat substrate does not hinder the function of the optical element, so that the substrate can be arbitrarily used as a support member / protective member.
  • a plurality of two-sided corner reflectors on the element surface with as little space as possible. For example, it is effective to arrange them in a grid pattern. is there. Further, in this case, there is an advantage that manufacture is also facilitated.
  • a mirror surface in a two-sided corner reflector a mirror that reflects a flat surface formed of a glossy substance such as a metal or a resin regardless of whether it is solid or liquid, or between transparent media having different refractive indexes. A material that reflects or totally reflects on a flat boundary surface can be used.
  • the mirror surface when configured by total reflection, undesired multiple reflection by a plurality of mirror surfaces is likely to exceed the critical angle of total reflection, so that it can be expected to be naturally suppressed.
  • the mirror surface may be formed on a very small part of the inner wall of the optical hole as long as there is no functional problem, and may be constituted by a plurality of unit mirror surfaces arranged in parallel.
  • the latter aspect means that one mirror surface may be divided into a plurality of unit mirror surfaces.
  • the unit mirror surfaces do not necessarily have to be on the same plane as long as they are parallel to each other. Further, each unit mirror surface is allowed to be either in contact with or apart from each other.
  • a retroreflector array that retroreflects light rays and a half mirror having a half mirror surface that reflects and transmits light rays.
  • This is a mirror image forming optical system.
  • the retroreflector array is arranged at a position where the half mirror surface is a symmetric surface and the light beam reflected or transmitted by the half mirror among the light rays emitted from the observed object can be retroreflected. Yes.
  • the retro-reflector array is disposed only in the space on the same side as the object to be observed (observed object-side space) with respect to the half mirror, and is provided at a position where the light reflected by the half mirror is retroreflected.
  • “retroreflection”, which is the action of the retroreflector refers to a phenomenon in which the reflected light is reflected (reversely reflected) in the direction in which the incident light is incident.
  • the incident light and the reflected light are parallel and opposite to each other.
  • a plurality of such retroreflectors arranged in an array is a retroreflector array. If the individual retroreflectors are sufficiently small, the paths of incident light and reflected light can be regarded as overlapping.
  • the retroreflectors do not have to be on a plane, may be on a curved surface, and do not have to be on the same plane, and each retroreflector is scattered three-dimensionally. It does not matter.
  • the half mirror refers to a mirror having both a function of transmitting light and a function of reflecting light, and preferably has a transmittance and a reflectance of approximately 1: 1.
  • the retro-reflector can be composed of three adjacent mirror surfaces (which can be called “corner reflector” in a broad sense) or a cat's eye retro-reflector.
  • the corner reflector includes a corner reflector composed of three mirror surfaces orthogonal to each other, two of the angles formed by the three adjacent mirror surfaces are 90 degrees, and the other angle is 90 / N degrees (N May be an acute angle retroreflector or the like in which the angles formed by the three mirror surfaces are 90 degrees, 60 degrees, and 45 degrees.
  • the light emitted from the object to be observed is reflected by the half mirror surface, and then retroreflected by the retroreflector array to ensure the original direction.
  • the image is transmitted through the half mirror surface, so that the shape and position of the retroreflector array are not limited as long as the reflected light from the half mirror is received.
  • the observed real image can be observed from the direction opposite to the light beam that passes through the half mirror surface.
  • the object to be observed is an electronic device such as a liquid crystal display, a CRT display, or an organic EL display.
  • Images displayed on the display surface of the display can be used. It is effective that the size of the image on the image surface changes with time. It is also effective to change the position of the image on the image plane with time. The temporal change of the image may be continuous or discontinuous.
  • a display surface of an electronic display can be used as the image surface.
  • the image plane is effective with respect to the aspect that the three-dimensional display of the image gives an impact.
  • the object to be observed is a three-dimensional image displayed on the display surface of an electronic display capable of displaying a three-dimensional image
  • the real mirror image also becomes a three-dimensional image.
  • the object to be observed may be an image that dynamically changes over time. Use of a moving image or a three-dimensional image is more preferable because an effect such as giving an impact to an observer can be obtained.
  • the translucent plate disposed between the real mirror image forming optical system and the real image (real mirror image) makes it difficult to see the boundary between the real mirror image optical element and the frame. It is possible to widen a viewing angle range in which an image can be easily viewed as an aerial image.
  • FIG. 4 is a schematic partial plan view (a) of a retroreflector array applied to the real mirror image forming optical system, and a schematic partial plan view (b) schematically showing a mode of retroreflection of light rays by an example of the retroreflector. is there.
  • FIG. 2 is a schematic perspective view schematically showing the main part of the display device of the embodiment
  • FIG. 3 is a schematic side view schematically showing the state of the main part of the display device of the embodiment viewed from the side. It is.
  • the display device forms a real mirror image that partitions a space (observed object side space) in which the observed object 2 is arranged and a space on the observer V side (display side space).
  • a dihedral corner reflector array 6 which is an optical system is included.
  • the double-sided corner reflector array 6 forms a real image 3 (an aerial image which is a real mirror image) of the observation object floating in the display-side space.
  • the display device further includes a semi-transmissive plate 4 disposed between the two-surface corner reflector array 6 and the aerial image 3 in the viewer-side display-side space.
  • the two-sided corner reflector array 6 is fitted into the frame 8.
  • a part of the light emitted from the object to be observed 2 is reflected twice by the semi-transmissive two-surface corner reflector array 6 and travels toward the observer V, and a part of the light is semi-transmissive.
  • the light transmitted through the semi-transmissive plate 4 forms an aerial image 3 as a real mirror image on the line of sight of the observer V.
  • the boundary between the two-surface corner reflector array 6 and the frame 8 which is a real mirror image optical element is visually recognized because the two-surface corner reflector array 6 and the frame 8 are visually recognized.
  • the light is scattered and reflected at different intensities in the two-surface corner reflector array 6 and the frame 8, and the intensity difference is visually recognized as a boundary.
  • the semi-transmissive plate 4 works to suppress the influence of light from the space on the observer side as much as possible, and the light from the object 2 through the two-surface corner reflector array 6 passes through the semi-transmissive plate 4.
  • the light from the space on the observer side is used to pass through the semi-transmissive plate 4 twice while passing only once.
  • the transmissivity of the semi-transparent plate 4 is R ( ⁇ 1)
  • the light from the space on the viewer side is reflected by the two-sided corner reflector array 6 and the frame 8, so that the semi-transparent plate 4
  • the light from the object to be observed 2 passing through the two-surface corner reflector array 6 passes through the semi-transmissive plate 4 only once, while being attenuated to R 2.
  • the ratio of the reflected light to the imaging light becomes R times smaller, and the reflected light becomes relatively weak. That is, if R is reduced, reflected light (that is, the boundary between the two-surface corner reflector array 6 and the frame 8 is observed) can be reduced accordingly.
  • the brightness of the image formation is also 1 / R, if R is reduced, it is necessary to brighten the object 2 to be observed. Therefore, the brightness is limited by a request for practical brightness.
  • the single unit of the two-surface corner reflector array 6 is a set of a large number of two-surface corner reflectors 61 each comprising two mirror surfaces 61a and 61b orthogonal to each other on the base 60.
  • a plane substantially perpendicular to each of the two mirror surfaces 61a and 61b constituting the entire two-surface corner reflector 61 is defined as an element surface 6S, and the real image of the object to be observed is in a plane-symmetric position with the element surface 6S as a symmetry plane. 3 can be imaged.
  • an image 72 displayed on the display surface 71 of the display 7 can be used.
  • the two-surface corner reflector 61 is very small ( ⁇ m order) compared to the overall size (cm order) of the two-surface corner reflector array 6, and therefore the two-surface corner reflector 61 of FIG.
  • the entire set is represented in gray, the direction of the inner angle at which the mirror surface opens is represented by a V shape, and the two-surface corner reflector 61 is exaggerated.
  • FIG. 5 shows a schematic plan view of the two-sided corner reflector array 6 in FIG. 5 (a), and FIG. 5 (b) shows a partial perspective view.
  • the two-surface corner reflector 61 and the mirror surfaces 61 a and 61 b are greatly exaggerated as compared with the entire two-surface corner reflector array 6.
  • the two-sided corner reflector array 6 has a number of physical and optical holes penetrating the thickness perpendicular to the flat surface of the flat base 60 so that light can be transmitted while being bent, for example.
  • the inner wall surface of each hole it is possible to employ one in which mirror surfaces 61a and 61b are respectively formed on two orthogonal inner wall surfaces of the hole. Accordingly, as shown in FIGS. 5A and 5B, light having a substantially rectangular shape (for example, square shape) in plan view is transmitted through the thin flat plate-like substrate 60 so that the substrate 60 is at least semi-transmissive.
  • a large number of physical and optical holes (for example, one side of 50 to 200 ⁇ m) are formed, and two inner wall surfaces that are adjacent and orthogonal to each other are subjected to smooth mirror surface processing to form mirror surfaces 61a and 61b.
  • the two-surface corner reflector 61 in which these two mirror surfaces 61a and 61b function as reflecting surfaces can be obtained. It should be noted that it is preferable to suppress the multiple reflected light by making the surface of the inner wall surface of the hole that does not constitute the two-sided corner reflector 61 into a surface that is not mirror-reflected and cannot reflect light, or is angled. .
  • each of the two-surface corner reflectors 61 is preferably formed on a regular lattice point so that the inner angles formed by the mirror surfaces 61a and 61b are all in the same direction on the base 60. Therefore, in each two-surface corner reflector, it is preferable that the intersection line CL of two orthogonal mirror surfaces is orthogonal to the element surface 6S.
  • the direction of the inner angle of the mirror surfaces 61a and 61b may be referred to as the direction (direction) of the two-surface corner reflector 61.
  • a metal mold is first prepared, and the inner wall surface on which the mirror surfaces 61a and 61b are to be formed is subjected to nano-scale cutting processing or a pressing method using the mold to the nano-scale.
  • the mirror surface is formed by processing by the applied nanoimprint method or electroforming method, and that the surface roughness is 10 nm or less so that the surface is uniformly mirrored in the visible light spectrum region.
  • the base 60 is formed of a metal such as aluminum or nickel by an electroforming method, the mirror surfaces 61a and 61b naturally become mirror surfaces if the surface roughness of the mold is sufficiently small.
  • the nanoimprint method is used.
  • the substrate 60 is made of resin or the like, it is necessary to perform mirror coating by sputtering or the like in order to create the mirror surfaces 61a and 61b. Moreover, the transmittance
  • the configuration of the two-surface corner reflector array 6 is not limited to that described above, and a large number of two-surface corner reflectors 61 are formed by two orthogonal mirror surfaces 61a and 61b, and each of the two-surface corner reflectors 61 is an optical hole. As long as it transmits light, an appropriate configuration and manufacturing method can be adopted.
  • each double-sided corner reflector 61 reflects light entering the hole from the back side by one mirror surface 61a (or 61b), and further reflects the reflected light to the other mirror surface 61b (or 61a) has a function of reflecting the light and passing it to the surface side, and the light entrance path and the light exit path are symmetrical with respect to the element surface 6S. That is, the element surface 6S of the two-surface corner reflector array 6 (assuming a surface passing through the center in the height direction of each mirror surface and orthogonal to each mirror surface) is a real image of the object 2 to be observed and an aerial image at a plane-symmetric position ( This is a plane of symmetry to be imaged as (real mirror image) 3.
  • the image formation mode by the two-surface corner reflector array 6 will be briefly described along with the path of light emitted from the point light source o as an object to be observed.
  • FIG. 6 is a schematic plan view and FIG. 7 is a schematic side view.
  • a point light source o (indicated by a one-dot chain line arrow.
  • the point light source o passes through the element surface 6S of the two-surface corner reflector array 6 while spreading in a plane-symmetrical position.
  • each of the two-sided corner reflectors 61 is extremely small, and therefore, when the two-sided corner reflector array 6 is viewed from above as shown in FIG.
  • FIG. 6 the path of light that first strikes each of the two mirror surfaces (61 a and 61 b) of the two-surface corner reflector 61, that is, two paths are illustrated.
  • FIG. Only the first light hitting one of the mirrors is drawn). That is, in the end, transmitted light gathers at a position symmetrical with respect to the element surface 6S of the point light source o, and forms an image as a real mirror image at a position p in FIGS.
  • a semi-transmissive plate (not shown) is disposed between the two-sided corner reflector array 6 and the aerial image 3, but the semi-transmissive plate 4 simply adjusts the light transmittance. Therefore, an aerial image is formed as a real mirror image by the above basic action.
  • the aerial image 3 is in the vicinity of the end portion of the two-surface corner reflector array 6, that is, the portion near the boundary BL between the two-surface corner reflector array 6 and the frame 8.
  • a target for focusing the eye on the boundary BL is created. Therefore, it is difficult to visually recognize the aerial image 3 as an aerial image when focusing on the boundary BL.
  • the aerial image 3 is observed when a semi-transparent plate, which is a feature of the present invention, is added will be described. Due to the added translucent plate, it becomes difficult to observe the boundary BL of the two-sided corner reflector array 6 and the frame 8 for incorporating the same, and not only at the observation position shown in FIG. Even at the observation position shown in FIG. 5, the eyes can be easily focused on the aerial image 3, and the number of observation directions that are easily visible as an aerial image can be increased.
  • the semi-transmissive plate 4 is arranged in the space between the two-surface corner reflector array 6 and the aerial image 3, but the present invention is not limited to this.
  • the semi-transmissive plate 4 may be installed in the form of being bonded to the two-sided corner reflector array 6 and the frame 8 into which it is fitted. Further, the arrangement in the space is not limited to the angle shown in FIG. 3, but can be set at a free angle as long as the effect of the present invention can be exhibited by the semi-transmissive plate.
  • the translucent plate If all the light from the space on the viewer side can be absorbed by the translucent plate, the reflected light from the two-surface corner reflector array and the frame of the real mirror image optical element can be eliminated. It is possible to prevent the boundary from being visually recognized. However, in this case, light from the object to be observed through the two-surface corner reflector array is also absorbed, which makes it impossible to observe an aerial image, which is inconvenient.
  • the inventor considered using an anisotropic translucent plate that passes light from the object to be observed through the two-sided corner reflector array and does not pass other light.
  • FIG. 10 is an overview diagram showing another embodiment of a display device to which the present invention is applied.
  • a display device has the same configuration as the display device of the above-described embodiment except that the anisotropic translucent plate 4a is used instead of the translucent plate 4 (FIG. 3).
  • the anisotropic semi-transmissive plate 4a is used, the light from the viewer's direction out of the light from the viewer-side space passes through the anisotropic semi-transmissive plate 4a and is a two-sided corner reflector array 6.
  • the anisotropic semi-transmissive plate 4a the two surfaces of the light are not visible.
  • the phenomenon in which the boundary between the corner reflector array 6 and the frame 8 is visually recognized can be prevented, and the effect of making the boundary difficult to see than when an isotropic semi-transmissive plate is used as a whole can be brought out more remarkably. it can.
  • the anisotropic semi-transmissive plate 4a for example, a semi-transmissive plate having a fine slit shape can be considered.
  • the slit 4s is a parallel slit or a mesh, and is inclined toward the viewer with respect to the element surface.
  • the wall itself which forms a slit is a thing which fully absorbs a light ray. Since the slit is inclined, the transmitted light has directionality, that is, is anisotropic.
  • a viewing angle limiting film manufactured by Shin-Etsu Polymer Co., Ltd., trade name VC-FILM has such a function and can be used.
  • the direction in which light from the space on the viewer side enters the dihedral corner reflector array 6 and the frame 8 by the inclined slit is limited to the viewer's line-of-sight direction V.
  • the observation of the two-surface corner reflector array 6 and the frame 8 and the boundary between them by this light is the light attributed to the viewer due to the scattered reflection from them.
  • the surfaces of the two-sided corner reflector array 6 and the frame 8 are in a mirror-like state, no scattering reflection occurs, and the light reflected by the surface goes to the opposite side of the observer, It is absorbed by the slit. In other words, the border is not visible, which is more convenient.
  • VC-FILM product number VC-908518 manufactured by Shin-Etsu Polymer Co., Ltd.
  • the anisotropic semi-transmissive plate 4a used in this example has an inclined parallel slit structure, and light from the viewer direction can pass through the anisotropic semi-transmissive plate 4a. Light from other than the observer direction cannot pass through the anisotropic semi-transmissive plate 4a.
  • the anisotropic semi-transmissive plate 4a added also in the present embodiment, the boundary between the two-sided corner reflector array 6 and the frame 8 for incorporating the two-face corner reflector array is difficult to be observed, and at the observation position shown in FIG. Needless to say, the eyes can be easily focused on the aerial image 3 even at the observation position shown in FIG. 9, and the number of observation directions that can be easily viewed as an aerial image can be increased. Furthermore, it was found that the aerial image can be brightened by using the anisotropic semi-transmissive plate 4a.
  • FIG. 11 is a schematic view showing still another embodiment of a display device to which the present invention is applied.
  • This display device is different from the display device of the above-described embodiment only in the real mirror image forming optical system, and a semi-transparent plate 4 which is a feature of the present invention is combined with a half mirror 91 described later and a real image (real mirror image). ) Between 3). Since the half mirror 91 is fitted into the frame 8 and used, the problem of the boundary is also present in the present display device. Therefore, the problem is solved by adding the semi-transmissive plate 4.
  • the display device includes a real mirror image forming optical system that is a semi-transparent base that partitions a space (observed object side space) in which the observed object 2 is arranged and a space on the viewer V side (display side space).
  • a half mirror 91 is included.
  • the display device of the present embodiment is different from the display device of the above-described embodiment only in the real mirror image forming optical system, and the other configuration is the same, so the same reference numerals using the same reference numerals are used. A description of the configuration is omitted.
  • the real mirror image forming optical system 9 applied in this embodiment is a combination of a half mirror 91 and a retro reflector array 92 as shown in FIG. And the element surface used as a symmetrical surface becomes the half mirror surface 91S.
  • a display 7 image 72 displayed on the display surface 71
  • a retro reflector array 92 is further arranged.
  • the translucent plate 4 is arranged in the observer side space (display side space).
  • the semi-transmissive plate 4 is disposed between the half mirror 91 and the real image (real mirror image) 3.
  • the light emitted from the object to be observed 2 is reflected by the half mirror 91 and then guided to the retroreflector array 92. Since the retroreflector array 92 has a function of retroreflecting the light from the half mirror 91, the reflected light travels toward the half mirror 91 again. Then, the reflected light passes through the half mirror 91 and then passes through the semi-transmissive plate 4 disposed in the space on the viewer V side, and forms the real mirror image 3 in the space on the line of sight of the viewer V. To do.
  • the half mirror 91 for example, a thin reflective film coated on one surface of a transparent thin plate such as transparent resin or glass can be used.
  • a transparent thin plate such as transparent resin or glass
  • AR coating anti-reflection treatment
  • an optical film such as a visual field control film or a viewing angle adjustment film
  • this optical film prevents light directly transmitted through the half mirror 91 from reaching any position other than the viewpoint V, thereby allowing the half mirror 91 to pass through.
  • any type of retroreflector array 92 can be applied as long as it reflects incident light strictly, and a retroreflective film or a retroreflective coating may be applied to the surface of the material.
  • the shape may be a curved surface or a flat surface.
  • a retroreflector array 92 shown in FIG. 13A with a part of the front view enlarged is a corner cube array that is a set of corner cubes that use one corner of a cubic body corner.
  • Each retroreflector 92A forms a regular triangle when the mirror surfaces 92Aa, 92Ab, and 92Ac that form three isosceles right-angled isosceles triangles are gathered at one point and viewed from the front.
  • the mirror surfaces 92Aa, 92Ab, and 92Ac are orthogonal to each other to form a corner cube (FIG. 13B).
  • the retroreflector array 92 shown in FIG. 14 (a) by enlarging a part of the front view is also a corner cube array that is a set of corner cubes using one corner of the cubic body.
  • the individual retro reflectors 92B form three regular mirror surfaces 92Ba, 92Bb, 92Bc, which are formed into a single hexagonal shape when the mirror surfaces 92Ba, 92Bb, 92Bc, which form three squares of the same shape and the same size, are viewed from the front.
  • 92Bb and 92Bc are orthogonal to each other (FIG. 14B).
  • the retroreflector array 92 in FIG. 14 differs from the retroreflector array 92 in FIG. 13A only in shape, and the principle of retroreflection is the same. 13B and 14B, the retroreflector array 92 shown in FIGS. 13A and 14A will be described as an example.
  • FIG. The light incident on one is sequentially reflected on the other mirror surfaces (92Ab, 92Bb) and further on the other mirror surfaces (92Ac, 92Bc), so that the light has entered the retroreflectors 92A, 92B. Reflects in the original direction.
  • the paths of the incident light and the outgoing light with respect to the retroreflector array 92 are not strictly overlapping but are parallel to each other. However, when the retroreflectors 92A and 92B are sufficiently smaller than the retroreflector array 92, the incident light and the outgoing light. May be considered as overlapping.
  • the difference between these two types of corner cube arrays is that the mirror surface is isosceles triangle is relatively easy to create, but the reflectivity is slightly lower, and the mirror surface is square is slightly easier to create than the isosceles triangle. While difficult, it has a high reflectivity.
  • a retroreflector array 92 that can retroreflect light rays by three mirror surfaces (“corner reflector” in a broad sense) can be adopted as the retroreflector array 92.
  • corner reflector in a broad sense
  • two mirror surfaces of three mirror surfaces are orthogonal to each other, and another mirror surface is 90 / N degrees with respect to the other two mirror surfaces (where N is an integer)
  • an acute-angle retroreflector having angles of 90 degrees, 60 degrees, and 45 degrees formed by three mirror surfaces that are adjacent to each other are suitable as the retroreflective element 3 applied to the present embodiment.
  • a cat's eye retro reflector or the like can also be used as a unit retroreflective element.
  • These retro-reflector arrays may be planar or bent or curved.
  • the arrangement position of the retroreflector array can be set appropriately as long as the light emitted from the image 72 and reflected by the half mirror 91 can be retroreflected.
  • the half mirror 91 is similar to the display device to which the two-surface corner reflector array is applied.
  • the real mirror image 3 appears to float in the space on the line of sight of the observer viewing from an oblique direction.
  • the actual mirror image 3 can be changed by changing the display position and size of the observation image.
  • the semi-transmissive plate 4 since the semi-transmissive plate 4 merely adjusts the light transmittance, an aerial image is formed as a real mirror image by the above basic action.
  • the case where a half mirror type semi-transmissive plate is used is the same as in the case of the display device. Therefore, also in the case of this display device, when the observer observes only the aerial image 3, the presence or absence of the semi-transmissive plate merely changes the brightness of the aerial image.
  • the boundary between the half mirror 91 and the frame 7 for incorporating the half mirror 91 is less likely to be observed when the semi-transparent plate is added than when the semi-transparent plate is not added. It was possible to easily focus the eyes on the aerial image 3 and to increase the number of observation directions that are easily visible as an aerial image.
  • the present invention has been described above by the embodiments, the specific configuration of each part of the display device can be changed as appropriate without departing from the spirit of the present invention.
  • the present display device not only a simple display device that raises an aerial image but also various devices such as an automobile instrument panel in which a display unit is provided in a deep part.
  • the present invention can be appropriately configured as a display device that causes an aerial image to appear in front of the display unit.
  • FIG. 15 is a schematic view showing still another embodiment of a display device to which the present invention is applied.
  • the display device is different from the display device of the above-described embodiment only in the arrangement of the components, and the semi-transparent plate 4 is set up vertically between the two-surface corner reflector array 6 and the real image (real mirror image) 3. Are arranged.
  • the display device of this embodiment is different from the display device of the above-described embodiment only in the real mirror image forming optical system, and the other configuration is the same. A description of the configuration is omitted.

Abstract

[Problem] To provide a display device with which it is possible to easily view a real image which is formed by a real mirror video image forming optical assembly. [Solution] A display device comprises: a real mirror video image forming optical assembly, further comprising a semi-translucent base which separates a display-side space and an observed object-side space, said real mirror video image forming optical assembly forming a real image of an observed object in the display-side space via the base; and a semi-translucent plate which is positioned between the base and the real image of the observed object.

Description

表示装置Display device
 本発明は、実鏡映像結像光学系を利用して、空中に被観察物の実像(実鏡映像)を結像させて見ることができるようにした表示装置に関する。 The present invention relates to a display device that uses a real mirror image forming optical system to form a real image (real mirror image) of an object to be observed in the air.
 実鏡映像結像光学系を利用して、空中に被観察物の実像(実鏡映像)を結像させて観察者に見ることができるようにした表示装置が提案されている(特許文献1、参照)。 A display device has been proposed in which a real image (real mirror image) of an object to be observed is formed in the air using a real mirror image forming optical system so that it can be seen by an observer (Patent Document 1). ,reference).
 かかる表示装置は、観察者側とは反対側の空間に配置される被観察物と、観察者側の空間に当該被観察物の実像を結像させる実鏡映像結像光学系とを備えた表示装置であり、被観察物の実像を、実鏡映像結像光学系の対称面(素子面)に対して対称位置に結像させるものである。 Such a display device includes an observation object arranged in a space opposite to the observer side, and a real mirror image imaging optical system that forms a real image of the observation object in the observer side space. It is a display device, and forms a real image of an object to be observed at a symmetrical position with respect to a symmetrical plane (element plane) of a real mirror image forming optical system.
WO2007-116639号公報WO2007-116639
 特許文献1に示した方法において、実鏡映像結像光学系を形成する光学素子(以下、実鏡映像光学素子という)は例えば正方形などの基盤として作製され、図1に示すように実鏡映像光学素子5を、もう一回り大きいフレーム8に嵌め込んだ状態で表示装置に組み込んで利用する。従って、実鏡映像光学素子5とフレーム8の境目BLができることになる。そして、観察者が本表示装置を観察する時は、フレーム及び実鏡映像光学素子、そして実鏡映像光学素子の手前の空間に結像する実鏡映像を見ることになる。 In the method shown in Patent Document 1, an optical element that forms a real mirror image forming optical system (hereinafter referred to as a real mirror image optical element) is manufactured as a base such as a square, and a real mirror image is formed as shown in FIG. The optical element 5 is used by being incorporated in a display device in a state where the optical element 5 is fitted in the frame 8 that is one size larger. Therefore, the boundary BL between the real mirror image optical element 5 and the frame 8 is formed. When the observer observes the display device, he / she sees the frame, the real mirror image optical element, and the real mirror image formed in the space before the real mirror image optical element.
 この際、実鏡映像が実鏡映像光学素子の中央付近にある場合には観察者は空中像として視認することがたやすいが、実鏡映像が実鏡映像光学素子の端付近、つまりフレームとの境目付近にある場合には空中像として視認することが難しくなる。様々な実験を繰り返した結果、実鏡映像と実鏡映像光学素子とフレームとの境目を同時に、且つ、近い位置で観察した場合に、空中像として視認し難くなることが判った。 At this time, if the real mirror image is near the center of the real mirror image optical element, the observer can easily view it as an aerial image, but the real mirror image is near the end of the real mirror image optical element, that is, the frame. It is difficult to visually recognize the aerial image when it is in the vicinity of the boundary. As a result of repeating various experiments, it was found that it is difficult to visually recognize an aerial image when the boundary between the real mirror image, the real mirror image optical element, and the frame is observed at the same time and at a close position.
 つまり、実鏡映像を空中像として視認し易い視角範囲が、実鏡映像光学素子の大きさや被観察物の大きさによって狭い範囲に制限されてしまうことになる。 That is, the viewing angle range in which a real mirror image can be easily viewed as an aerial image is limited to a narrow range depending on the size of the real mirror image optical element and the size of the object to be observed.
 そこで本発明は、実鏡映像結像光学系によって結像される実像を視認し易くできる表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a display device capable of easily viewing a real image formed by a real mirror image forming optical system.
 本発明の表示装置は、観察者が視認できる表示側空間と被観察物が配置された被観察物側空間とを仕切る半透過性の基盤を有し且つ前記基盤を介して前記表示側空間に前記被観察物の実像を結像させる実鏡映像結像光学系と、前記基盤と前記被観察物の実像の間に配置された半透過性プレートと、を含むことを特徴とする。 The display device of the present invention has a semi-transparent base that partitions a display-side space that can be visually recognized by an observer and an object-side space in which the object is placed, and is provided in the display-side space via the base. It includes a real mirror image forming optical system for forming a real image of the object to be observed, and a translucent plate disposed between the base and the real image of the object to be observed.
 換言すれば、本発明は、実鏡映像を空中像として視認し易い視角範囲を広げるために考え出されたものであり、具体的には、被観察物の実像(実鏡映像)を観察者側の空間に結像させる実鏡映像結像光学系と、当該実鏡映像結像光学系の該観察者側とは反対側の空間に配置される該実像を形成するための被観察物と、該実鏡映像結像光学系と該実像の間に配置された半透過性プレートとにより実現している。 In other words, the present invention has been conceived in order to widen the viewing angle range in which a real mirror image can be easily viewed as an aerial image. Specifically, a real image (real mirror image) of an object to be observed is observed by an observer. A real mirror image forming optical system that forms an image in a space on the side, and an object to form the real image disposed in a space opposite to the observer side of the real mirror image forming optical system; This is realized by the real mirror image forming optical system and the semi-transmissive plate disposed between the real images.
 すなわち、実鏡映像結像光学系と表示される実像の間に配置された半透過性プレートにより、実鏡映像光学素子とフレームの境目を見難くすることにより、上記視角範囲を広げたものである。すなわち、前記半透過性プレートが前記実鏡映像結像光学系(実鏡映像光学素子)より大きい方が前記境目を確実に隠すことができ見難くすることができるので都合がよい。 In other words, the viewing angle range is widened by making it difficult to see the boundary between the real mirror image optical element and the frame by the translucent plate disposed between the real mirror image forming optical system and the displayed real image. is there. That is, it is advantageous that the translucent plate is larger than the real mirror image forming optical system (actual mirror image optical element) because the boundary can be surely hidden and difficult to see.
 本発明において半透過性プレートとしては、例えば黒色色素で染色した半透明のアクリル等の板(プレート)や、透明な板上に不透明な部分をドット状に印刷し透明部分と不透明部分の面積比でその透過率を調整するようなプレートを使用することができる。また、薄い金属膜を透過性基板上に設けたものも使用できる。この金属薄膜付半透過性プレートの例としては、ガラス基板上にクロムなどの金属を蒸着して薄膜を形成したもの、いわゆるハーフミラーなどがある。ただし、単純なハーフミラーとすると観察者の顔など観察側の物体の映り込みがあり好ましくない。この場合は観察者側の金属薄膜を反射率を低く抑えるとよい。上記半透過性プレートの例ではクロム薄膜の上部または下部を酸化クロム膜として反射を抑える(黒く見える)ことができる。この半透過性プレートの反射の抑え方を調整して観察者側の物体の映り込みを少しだけ起こさせることにより、表示装置の前記境目を確実に隠すことができ見難くすることができる効果があることが判った。 In the present invention, as the translucent plate, for example, a translucent acrylic plate (plate) dyed with a black pigment, or an opaque portion printed on a transparent plate in the form of dots, the area ratio between the transparent portion and the opaque portion A plate that adjusts the transmittance can be used. Also, a thin metal film provided on a permeable substrate can be used. As an example of the translucent plate with a metal thin film, there is a so-called half mirror or the like in which a thin film is formed by vapor-depositing a metal such as chromium on a glass substrate. However, a simple half mirror is not preferable because there is reflection of an object on the observation side such as the face of the observer. In this case, the reflectivity of the observer-side metal thin film should be kept low. In the example of the translucent plate, the upper or lower portion of the chromium thin film can be used as a chromium oxide film to suppress reflection (look black). By adjusting how to suppress the reflection of the translucent plate and causing a slight reflection of an object on the viewer side, the boundary of the display device can be reliably hidden and can be difficult to see. It turns out that there is.
 半透過性プレートでの透過率は何も無い時の透過率を100%として、20%程度から80%程度とすることが適当であり、さらに好ましくは、30%程度から60%程度が良いことが観察の結果判った。 The transmissivity of the semi-transparent plate should be about 20% to about 80%, more preferably about 30% to about 60%, assuming that the transmittance when there is nothing is 100%. As a result of observation.
 本発明において非等方半透過性プレートとしては、例えば、細かなスリット形状を持つ半透過性プレートである。スリットは、平行スリットもしくは、メッシュ状のもので、素子面に対して観察者側に傾斜している。非等方半透過性プレートを用いることにより、観察者方向以外からの光は非等方半透過性プレートを通過することができなくなり、前記境目を確実に隠すことができ見難くすることができ、空中像を明るくできることが判った。 In the present invention, the anisotropic semipermeable plate is, for example, a semipermeable plate having a fine slit shape. The slits are parallel slits or mesh-shaped, and are inclined toward the observer side with respect to the element surface. By using an anisotropic semi-transmissive plate, light from other than the viewer direction cannot pass through the anisotropic semi-transmissive plate, and the boundary can be reliably hidden and difficult to see. And found that the aerial image can be brightened.
 本発明において実鏡映像結像光学系とは、対称面(基盤)に対して斜め方向からの視点から被観察物の実鏡映像を観察することができるものであり、その一つの具体例としては、2面コーナーリフレクタアレイからなる実鏡映像結像光学系を挙げることができる。2面コーナーリフレクタアレイは、2つの直交する鏡面により構成される2面コーナーリフレクタを複数、平面的に集合させたものであり、全ての鏡面に対して垂直となる共通な平面を、被観察物と実像との対称面となる素子面としたものである。この2面コーナーリフレクタアレイは、被観察物から発せられる光を各2面コーナーリフレクタの2つの鏡面で1回ずつ反射させ且つその素子面を透過させることにより、2面コーナーリフレクタアレイの素子面を対称面として被観察物の面対称位置に、その被観察物の実鏡映像を結像させる作用を有している。 In the present invention, the real mirror image forming optical system is capable of observing a real mirror image of an object to be observed from a viewpoint from an oblique direction with respect to a symmetry plane (base). Can include a real mirror image-forming optical system composed of a two-surface corner reflector array. A two-surface corner reflector array is a set of a plurality of two-surface corner reflectors composed of two orthogonal mirror surfaces in a plane, and a common plane perpendicular to all the mirror surfaces is observed on the object to be observed. And an element surface which is a plane of symmetry with respect to the real image. This two-sided corner reflector array reflects the light emitted from the object to be observed once by the two mirror surfaces of each two-sided corner reflector and transmits the element surface to thereby change the element surface of the two-sided corner reflector array. As a symmetry plane, it has an action of forming an image of a real mirror image of the object to be observed at a plane symmetrical position of the object to be observed.
 ここで、2面コーナーリフレクタアレイについて考察すると、光線を各2面コーナーリフレクタにおいて適切に反射屈曲させつつ素子面を透過させるには、2面コーナーリフレクタを、素子面を貫通する方向に想定される光学的な穴の内壁を鏡面として利用するものと考えればよい。ただし、このような2面コーナーリフレクタは概念的なものであり、必ずしも物理的な境界などにより決定される形状を反映している必要は無く、例えぱ光学的な穴は相互に独立させることなく連結させたものとすることができる。 Here, considering the two-sided corner reflector array, in order to transmit light through the element surface while appropriately reflecting and bending the light at each two-sided corner reflector, the two-sided corner reflector is assumed to pass through the element surface. It can be considered that the inner wall of the optical hole is used as a mirror surface. However, such a two-sided corner reflector is conceptual and does not necessarily reflect the shape determined by the physical boundary, for example, optical holes are not independent of each other. It can be connected.
 2面コーナーリフレクタアレイの構造は、単純に述べれば、素子面にほぼ垂直な鏡面を、素子面上に多数並べたものである。構造として問題となるのは、この鏡面をどのように素子面に支持固定するかということになる。鏡面形成のより具体的な方法としては、例えば2面コーナーリフレクタアレイを、所定の空間を区画する基盤を具備するものとして、当該基盤を通る1つの平面を素子面としてとして規定し、各2面コーナーリフレクタを、素子面を貫通する方向に想定される光学的な穴として、基盤に形成された穴の内壁を鏡面として利用するものとすることができる。この基盤に形成された穴は、光が透過するように透明でありさえすればよく、例えば内部が真空もしくは透明な気体もしくは液体で満たしたものでもよい。また穴の形状についても、その内壁に単位光学素子として働くための1枚もしくは複数の同一平面に含まれない鏡面を具備し、且つ、鏡面で反射した光が穴を透過できる限り、任意の形状を取ることが可能であり、各穴が連結していたり、一部が欠損している複雑な形状であってもよい。例えば、基盤の表面に個々の独立した鏡面が林立する態様などは、基盤に形成された穴が連結しているものと理解できる。 The structure of the two-sided corner reflector array is simply described by arranging a large number of mirror surfaces substantially perpendicular to the element surface on the element surface. The problem as a structure is how to support and fix the mirror surface to the element surface. As a more specific method of forming the mirror surface, for example, a two-sided corner reflector array is provided with a base that divides a predetermined space, and a single plane passing through the base is defined as an element surface. The corner reflector can be used as an optical hole assumed in a direction penetrating the element surface, and an inner wall of the hole formed in the base can be used as a mirror surface. The hole formed in the substrate only needs to be transparent so that light can be transmitted, and may be, for example, a vacuum filled with a transparent gas or liquid. Also, the shape of the hole may be any shape as long as the inner wall has a mirror surface that is not included in one or more coplanar surfaces to serve as a unit optical element, and the light reflected by the mirror surface can pass through the hole. It may be a complicated shape in which each hole is connected or a part thereof is missing. For example, an aspect in which individual mirror surfaces stand on the surface of the base can be understood as connecting holes formed in the base.
 あるいは、2面コーナーリフレクタは、光学的な穴として透明なガラスや樹脂のような固体によって形成された筒状体を利用するものであってもよい。なお、固体によって個々の筒状体が形成されている場合、これらの筒状体は、相互に密着させて素子の支持部材として働かせてもよく、基盤を具備するものとして当該基盤の表面から突出した態様をとってもよい。また筒状体の形状についても、その内壁に2面コーナーリフレクタとして働くための1枚又は複数の同一平面に含まれない鏡面を具備し、且つ、鏡面で反射した光が筒状体を透過できる限り、任意の形状を取ることが可能であり、筒状体と称してはいるが各筒状体が連結していたり、一部が欠損している複雑な形状であってもよい。 Alternatively, the double-sided corner reflector may use a cylindrical body formed of a solid such as transparent glass or resin as an optical hole. In addition, when each cylindrical body is formed of solid, these cylindrical bodies may be brought into close contact with each other and serve as a support member for the element, and project from the surface of the base as having a base. You may take the aspect which did. The cylindrical body also has one or more mirror surfaces not included in the same plane for acting as a two-surface corner reflector on its inner wall, and the light reflected by the mirror surface can pass through the cylindrical body. As long as it can take any shape, it may be a cylindrical body, but it may be a complicated shape in which each cylindrical body is connected or partially missing.
 あるいは2面コーナーリフレクタは、PCT/WO2009-131128やPCT/WO2009-136578で開示されているように、垂直方向に光反射面を有する細長い鏡面体を多数並べたミラーアレイ(スリットミラーアレイ)を、お互いに直交するように重ねたものを利用してもよい。 Alternatively, as disclosed in PCT / WO2009-131128 and PCT / WO2009-136578, the dihedral corner reflector is a mirror array (slit mirror array) in which a number of elongated mirror bodies having light reflecting surfaces in the vertical direction are arranged. You may utilize what was piled up so that it might mutually orthogonally cross.
 ここで、前記光学的な穴として、立方体又は直方体のように隣接する内壁面が全て直交する形状を考えることができる。この場合、2面コーナーリフレクタ相互の間隔を最小化することができ、高密度な配置が可能となる。ただし、被観察物方向を向く2面コーナーリフレクタ以外の面は、反射を抑制することが望ましい。 Here, as the optical hole, a shape in which all adjacent inner wall surfaces are orthogonal, such as a cube or a rectangular parallelepiped, can be considered. In this case, the distance between the two-surface corner reflectors can be minimized, and a high-density arrangement is possible. However, it is desirable to suppress reflection on surfaces other than the two-surface corner reflector that faces the object to be observed.
 2面コーナーリフレクタ内に複数の鏡面が存在する場合には、想定された回数以上の反射を起こす多重反射の透過光が存在する可能性がある。この多重反射対策として、光学的な穴の内壁に相互に直交する2つの鏡面を形成する場合は、これら2鏡面以外の面を、非鏡面として光が反射しないようにしたり、素子面に対して垂直とならないように角度を付けて設けたり曲面としたりすることで、3回以上の反射を起こす多重反射光を軽減又は除去できる。非鏡面とするには、その面を反射防止用の塗料や薄膜で覆う構成や、面粗さを粗くして乱反射を生じさせる構成を採用することができる。なお、透明で平坦な基盤としても光学素子の働きを阻害するものではないので、基盤を任意に支持部材・保護部材として用いることが可能である。 When there are a plurality of mirror surfaces in the two-sided corner reflector, there is a possibility that there are multiple reflected transmitted lights that cause reflection more than the expected number of times. As a countermeasure against this multiple reflection, when two mirror surfaces orthogonal to each other are formed on the inner wall of the optical hole, the surfaces other than these two mirror surfaces are made non-mirror surfaces so that light is not reflected, By providing an angle or providing a curved surface so as not to be vertical, it is possible to reduce or eliminate multiple reflected light that causes three or more reflections. In order to obtain a non-mirror surface, it is possible to employ a configuration in which the surface is covered with an antireflection coating or a thin film, or a configuration in which the surface roughness is roughened to cause irregular reflection. It should be noted that even a transparent and flat substrate does not hinder the function of the optical element, so that the substrate can be arbitrarily used as a support member / protective member.
 さらに、映像の実鏡映像の高輝度化を図るには、複数の2面コーナーリフレクタを、素子面上においてできるだけ間隔を空けずに配置することが望ましく、例えば格子状に配置することが有効である。またこの場合、製造も容易になるという利点がある。2面コーナーリフレクタにおける鏡面としては、固体であるか液体であるかに関わらず金属や樹脂などの光沢のある物質によって形成された平坦面で反射するもの、あるいは異なる屈折率を持つ透明媒質同士の平坦な境界面において反射又は全反射するものなどを利用することができる。また、鏡面を全反射によって構成した場合には、複数の鏡面による望まない多重反射は、全反射の臨界角を超える可能性が高くなることから、自然に抑制されることが期待できる。また、鏡面は、機能的に問題ない限り、光学的な穴の内壁のごく一部分に形成されていてもよく、平行に配置される複数の単位鏡面により構成されても構わない。後者の態様を換言すれば、1つの鏡面が複数の単位鏡面に分割されても構わないことを意味する。またこの場合、各単位鏡面は、必ずしも同一平面に存在していなくてもよく、それぞれが平行であればよい。さらに、各単位鏡面は、当接している態様、離れている態様のいずれもが許容される。 Furthermore, in order to increase the brightness of the actual mirror image, it is desirable to arrange a plurality of two-sided corner reflectors on the element surface with as little space as possible. For example, it is effective to arrange them in a grid pattern. is there. Further, in this case, there is an advantage that manufacture is also facilitated. As a mirror surface in a two-sided corner reflector, a mirror that reflects a flat surface formed of a glossy substance such as a metal or a resin regardless of whether it is solid or liquid, or between transparent media having different refractive indexes. A material that reflects or totally reflects on a flat boundary surface can be used. Further, when the mirror surface is configured by total reflection, undesired multiple reflection by a plurality of mirror surfaces is likely to exceed the critical angle of total reflection, so that it can be expected to be naturally suppressed. Further, the mirror surface may be formed on a very small part of the inner wall of the optical hole as long as there is no functional problem, and may be constituted by a plurality of unit mirror surfaces arranged in parallel. In other words, the latter aspect means that one mirror surface may be divided into a plurality of unit mirror surfaces. In this case, the unit mirror surfaces do not necessarily have to be on the same plane as long as they are parallel to each other. Further, each unit mirror surface is allowed to be either in contact with or apart from each other.
 さらに、本発明において実鏡映像結像光学系として適用可能な他の具体例としては、光線を再帰反射させるレトロリフレクタアレイと光線を反射および透過させるハーフミラー面を有するハーフミラーとを具備する実鏡映像結像光学系である。この実鏡映像結像光学系においては、ハーフミラー面を対称面とし、被観察物から出た光線のうちハーフミラーで反射又は透過した光線を再帰反射し得る位置にレトロリフレクタアレイを配置している。なお、レトロリフレクタアレイは、ハーフミラーに対して被観察物と同じ側の空間(被観察物側空間)にのみ配置され、ハーフミラーで反射した光を再帰反射する位置に設けられる。ここでレトロリフレクタの作用である「再帰反射」とは、反射光を入射光が入射してきた方向へ反射(逆反射)する現象をいい、入射光と反射光とは平行であり且つ逆向きとなる。このようなレトロリフレクタの複数をアレイ状に配置したものがレトロリフレクタアレイであり、個々のレトロリフレクタが十分に小さい場合は、入射光と反射光の経路は重なると見なすことができる。このレトロリフレクタアレイにおいてレトロリフレクタは平面上に存在している必要はなく、曲面上にあってもよく、さらには同一面上に存在している必要はなく、各レトロリフレクタは3次元的に散在していても構わない。また、ハーフミラーは、光線を透過させる機能と反射させる機能の両方を備えているものをいい、好ましくは透過率と反射率がほぼ1:1のものが理想的である。 Furthermore, as another specific example applicable as a real mirror image forming optical system in the present invention, there is provided a retroreflector array that retroreflects light rays and a half mirror having a half mirror surface that reflects and transmits light rays. This is a mirror image forming optical system. In this real mirror image forming optical system, the retroreflector array is arranged at a position where the half mirror surface is a symmetric surface and the light beam reflected or transmitted by the half mirror among the light rays emitted from the observed object can be retroreflected. Yes. The retro-reflector array is disposed only in the space on the same side as the object to be observed (observed object-side space) with respect to the half mirror, and is provided at a position where the light reflected by the half mirror is retroreflected. Here, “retroreflection”, which is the action of the retroreflector, refers to a phenomenon in which the reflected light is reflected (reversely reflected) in the direction in which the incident light is incident. The incident light and the reflected light are parallel and opposite to each other. Become. A plurality of such retroreflectors arranged in an array is a retroreflector array. If the individual retroreflectors are sufficiently small, the paths of incident light and reflected light can be regarded as overlapping. In this retroreflector array, the retroreflectors do not have to be on a plane, may be on a curved surface, and do not have to be on the same plane, and each retroreflector is scattered three-dimensionally. It does not matter. The half mirror refers to a mirror having both a function of transmitting light and a function of reflecting light, and preferably has a transmittance and a reflectance of approximately 1: 1.
 レトロリフレクタには、3つの隣接する鏡面から構成されるもの(広義には「コーナーリフレクタ」と呼ぶことができる)や、キャッツアイレトロリフレクタを利用することができる。コーナーリフレクタには、相互に直交する3つの鏡面から構成されるコーナーリフレクタ、3つの隣接する鏡面がなす角度のうち2つが90度であり、且つ他の1つの角度が90/N度(ただしNは整数)をなすもの、3つの鏡面がなす角度が90度、60度および45度となる鋭角レトロリフレクタなどを採用することができる。 The retro-reflector can be composed of three adjacent mirror surfaces (which can be called “corner reflector” in a broad sense) or a cat's eye retro-reflector. The corner reflector includes a corner reflector composed of three mirror surfaces orthogonal to each other, two of the angles formed by the three adjacent mirror surfaces are 90 degrees, and the other angle is 90 / N degrees (N May be an acute angle retroreflector or the like in which the angles formed by the three mirror surfaces are 90 degrees, 60 degrees, and 45 degrees.
 このようなレトロリフレクタアレイとハーフミラーを利用する実鏡映像結像光学系の場合、被観察物から出た光はハーフミラー面で反射し、さらにレトロリフレクタアレイで再帰反射して必ず元の方向に戻り、ハーフミラー面を透過して結像するため、ハーフミラーからの反射光を受けられる位置にある限りレトロリフレクタアレイの形状や位置は限定されない。そして、結像した実像の観察は、ハーフミラー面を透過する光線に対向する方向から観察することができる。 In the case of a real mirror imaging optical system that uses such a retroreflector array and a half mirror, the light emitted from the object to be observed is reflected by the half mirror surface, and then retroreflected by the retroreflector array to ensure the original direction. Returning to FIG. 2, the image is transmitted through the half mirror surface, so that the shape and position of the retroreflector array are not limited as long as the reflected light from the half mirror is received. The observed real image can be observed from the direction opposite to the light beam that passes through the half mirror surface.
 ここで、被観察物としてはネオンサインや表示パネル(非常灯のように光源と表示パネルを組み合わせたもの)のように固定表示の他に、液晶ディスプレイやCRTディスプレイや有機ELディスプレイのような電子ディスプレイの表示面に表示される画像が利用できる。前記画像を、前記画像面上における大きさが時間的に変化するものとすることが効果的である。また、前記画像を、前記画像面上における位置が時間的に変化するものとすることも効果的である。前記画像の時間的な変化は連続的なものであっても、不連続的なものであってもよい。前記画像面としては、電子ディスプレイの表示面が使用可能である。 Here, in addition to a fixed display such as a neon sign or a display panel (a combination of a light source and a display panel such as an emergency light), the object to be observed is an electronic device such as a liquid crystal display, a CRT display, or an organic EL display. Images displayed on the display surface of the display can be used. It is effective that the size of the image on the image surface changes with time. It is also effective to change the position of the image on the image plane with time. The temporal change of the image may be continuous or discontinuous. A display surface of an electronic display can be used as the image surface.
 さらに、前記画像面は、前記画像を立体的に表示するものがインパクトを与えるという面に関して効果的である。被観察物を3次元画像を表示し得る電子ディスプレイの表示面に表示される立体画像とすれば実鏡映像も立体像となる。また、被観察物を経時的に動的に変化する画像としてもよい。動画や立体画像を用いれば、観察者にインパクトを与えられるなどの効果も得られさらに好ましい。 Furthermore, the image plane is effective with respect to the aspect that the three-dimensional display of the image gives an impact. If the object to be observed is a three-dimensional image displayed on the display surface of an electronic display capable of displaying a three-dimensional image, the real mirror image also becomes a three-dimensional image. The object to be observed may be an image that dynamically changes over time. Use of a moving image or a three-dimensional image is more preferable because an effect such as giving an impact to an observer can be obtained.
 本発明によれば、実鏡映像結像光学系と実像(実鏡映像)の間に配置された半透過性プレートにより、実鏡映像光学素子とフレームの境目を見難くすることにより、実鏡映像を空中像として視認し易い視角範囲を広げることができる。 According to the present invention, the translucent plate disposed between the real mirror image forming optical system and the real image (real mirror image) makes it difficult to see the boundary between the real mirror image optical element and the frame. It is possible to widen a viewing angle range in which an image can be easily viewed as an aerial image.
実鏡映像光学素子をフレームに嵌め込んだ状態を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the state which engage | inserted the real mirror image optical element in the flame | frame. 本発明による実施形態の表示装置の要部を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the principal part of the display apparatus of embodiment by this invention. 同実施形態の表示装置の要部を側方から見た状態を模式的に示す概略側面図である。It is a schematic side view which shows typically the state which looked at the principal part of the display apparatus of the embodiment from the side. 同実施形態に適用される2面コーナーリフレクタアレイ単体の結像様式を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically the image formation style of the 2 surface corner reflector array single-piece | unit applied to the embodiment. 同実施形態の表示装置に適用される2面コーナーリフレクタレイの具体的構成例を模式的に示す概略平面図(a)および部分切欠斜視図(b)である。It is the schematic plan view (a) and partial notch perspective view (b) which show typically the example of a specific structure of the 2 surface corner reflector layout applied to the display apparatus of the embodiment. 同実施形態の表示装置に適用される2面コーナーリフレクタアレイによる結像様式を模式的に示す概略平面図である。It is a schematic plan view which shows typically the imaging style by the 2 surface corner reflector array applied to the display apparatus of the embodiment. 同実施形態の表示装置に適用される2面コーナーリフレクタアレイによる結像様式を模式的に示す概略側面図である。It is a schematic side view which shows typically the imaging style by the 2 surface corner reflector array applied to the display apparatus of the embodiment. 同実施形態に適用される2面コーナーリフレクタアレイ単体による空中像が2面コーナーリフレクタアレイの中央付近に存在するように観察する場合を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the case where it observes so that the aerial image by the 2 surface corner reflector array single-piece | unit applied to the embodiment may exist in the center vicinity of a 2 surface corner reflector array. 観察者の観察位置を変化させ、同実施形態に適用される2面コーナーリフレクタアレイ単体による空中像が2面コーナーリフレクタアレイの端付近に存在するように観察する場合を説明するための模式的に示す概略斜視図である。Schematic for explaining a case where the observation position of the observer is changed and observation is performed so that an aerial image by the single-sided corner reflector array applied to the embodiment exists near the end of the double-sided corner reflector array. It is a schematic perspective view shown. 本発明の他の実施形態の表示装置の要部を側方から見た状態を模式的に示す概略側面図である。It is a schematic side view which shows typically the state which looked at the principal part of the display apparatus of other embodiment of this invention from the side. 本発明の更なる他の実施形態の表示装置の要部を側方から見た状態を模式的に示す概略側面図である。It is a schematic side view which shows typically the state which looked at the principal part of the display apparatus of further another embodiment of this invention from the side. 本発明の更なる他の実施形態を示す実鏡映像結像光学系に適用されるレトロリフレクタアレイおよびレトロリフレクタの他の例による光線の再帰反射の態様を模式的に示す概略斜視図である。It is a schematic perspective view which shows typically the aspect of the retroreflection of the light ray by the retroreflector array applied to the real mirror image formation optical system which shows further another embodiment of this invention, and the other example of a retroreflector. 同実鏡映像結像光学系に適用されるレトロリフレクタアレイの概略部分平面図(a)および該レトロリフレクタの一例による光線の再帰反射の態様を模式的に示す概概略部分平面図(b)である。FIG. 4 is a schematic partial plan view (a) of a retroreflector array applied to the real mirror image forming optical system, and a schematic partial plan view (b) schematically showing a mode of retroreflection of light rays by an example of the retroreflector. is there. 同実鏡映像結像光学系に適用される他のレトロリフレクタアレイの概略部分平面図(a)および該レトロリフレクタの他の例による光線の再帰反射の態様を模式的に示す概概略部分平面図(b)である。Schematic partial plan view of another retroreflector array applied to the real mirror image-forming optical system (a) and a schematic partial plan view schematically showing a mode of retroreflection of light rays by another example of the retroreflector (B). 本発明の他の実施形態としてデジタルサイネージへ適用した場合の表示装置の要部を側方から見た状態を模式的に示す概略側面図である。It is a schematic side view which shows typically the state which looked at the principal part of the display apparatus at the time of applying to digital signage as other embodiment of this invention from the side.
 以下に、本発明による一実施形態の表示装置について、図面を用いて説明する。 Hereinafter, a display device according to an embodiment of the present invention will be described with reference to the drawings.
 図2は、実施形態の表示装置の要部を模式的に示す概略斜視図であり、図3は同実施形態の表示装置の要部を側方から見た状態を模式的に示す概略側面図である。 FIG. 2 is a schematic perspective view schematically showing the main part of the display device of the embodiment, and FIG. 3 is a schematic side view schematically showing the state of the main part of the display device of the embodiment viewed from the side. It is.
 図2及び図3に示すように、表示装置は、被観察物2が配置された空間(被観察物側空間)と観察者V側の空間(表示側空間)とを仕切る実鏡映像結像光学系である2面コーナーリフレクタアレイ6を含む。2面コーナーリフレクタアレイ6は表示側空間に浮ぶ被観察物の実像3(実鏡映像である空中像)を結像させる。表示装置は、さらに、観察者側の表示側空間で2面コーナーリフレクアレイ6と空中像3の間に配置された半透過性プレート4を含む。2面コーナーリフレクタアレイ6はフレーム8に嵌め込まれている。 As shown in FIGS. 2 and 3, the display device forms a real mirror image that partitions a space (observed object side space) in which the observed object 2 is arranged and a space on the observer V side (display side space). A dihedral corner reflector array 6 which is an optical system is included. The double-sided corner reflector array 6 forms a real image 3 (an aerial image which is a real mirror image) of the observation object floating in the display-side space. The display device further includes a semi-transmissive plate 4 disposed between the two-surface corner reflector array 6 and the aerial image 3 in the viewer-side display-side space. The two-sided corner reflector array 6 is fitted into the frame 8.
 被観察物2から発せられた光の一部は、半透過性の2面コーナーリフレクタアレイ6で2回反射して観察者Vへ向けて進み、その一部が途中に配置された半透過性プレート4で反射若しくは吸収さるものの、半透過性プレート4を透過した光が観察者Vの視線上に空中像3を実鏡映像で結像する。 A part of the light emitted from the object to be observed 2 is reflected twice by the semi-transmissive two-surface corner reflector array 6 and travels toward the observer V, and a part of the light is semi-transmissive. Although reflected or absorbed by the plate 4, the light transmitted through the semi-transmissive plate 4 forms an aerial image 3 as a real mirror image on the line of sight of the observer V.
 そもそも、実鏡映像光学素子である2面コーナーリフレクアレイ6とフレーム8の境目が視認されてしまうのは、2面コーナーリフレクアレイ6とフレーム8が視認されるためであり、観察者側の空間から光が2面コーナーリフレクアレイ6とフレーム8のそれぞれで異なった強度で散乱反射し、その強度差が境界として視認されるものである。半透過性プレート4は、この観測者側の空間からの光の影響を極力抑えるために働くものであり、2面コーナーリフレクアレイ6を通しての被観察物2からの光が半透過性プレート4を1回しか通らないのに対して、観察者側の空間からの光は半透過性プレート4を2回通過すること利用している。 In the first place, the boundary between the two-surface corner reflector array 6 and the frame 8 which is a real mirror image optical element is visually recognized because the two-surface corner reflector array 6 and the frame 8 are visually recognized. The light is scattered and reflected at different intensities in the two-surface corner reflector array 6 and the frame 8, and the intensity difference is visually recognized as a boundary. The semi-transmissive plate 4 works to suppress the influence of light from the space on the observer side as much as possible, and the light from the object 2 through the two-surface corner reflector array 6 passes through the semi-transmissive plate 4. The light from the space on the observer side is used to pass through the semi-transmissive plate 4 twice while passing only once.
 例えば、半透過性プレート4の透過率をR(<1)とした場合、観察者側の空間からの光は2面コーナーリフレクアレイ6とフレーム8で反射されることから、半透過性プレート4を2回通過することになるので、Rに減弱するのに対して、2面コーナーリフレクアレイ6を通しての被観察物2からの光は、半透過性プレート4を1回だけ通過するのでRに減弱する。すると、結像光に対する反射光の比率はR倍に小さくなり、反射光が相対的に弱くなる。つまり、Rを小さくすれば、それだけ反射光(すなわち2面コーナーリフレクアレイ6とフレーム8の境目が観察されること)を小さくできる。 For example, when the transmissivity of the semi-transparent plate 4 is R (<1), the light from the space on the viewer side is reflected by the two-sided corner reflector array 6 and the frame 8, so that the semi-transparent plate 4 , The light from the object to be observed 2 passing through the two-surface corner reflector array 6 passes through the semi-transmissive plate 4 only once, while being attenuated to R 2. To attenuate. As a result, the ratio of the reflected light to the imaging light becomes R times smaller, and the reflected light becomes relatively weak. That is, if R is reduced, reflected light (that is, the boundary between the two-surface corner reflector array 6 and the frame 8 is observed) can be reduced accordingly.
 ただし、結像の明るさも1/Rとなることから、Rを小さくすると被観察物2を明るくする必要があるため、実用的な明るさの要求によって制限されることとなる。 However, since the brightness of the image formation is also 1 / R, if R is reduced, it is necessary to brighten the object 2 to be observed. Therefore, the brightness is limited by a request for practical brightness.
 以上の結像様式をさらに詳しく説明するために、まずは2面コーナーリフレクタアレイ単体の構成および作用について説明し、次いで、半透過性プレート4を追加した場合の作用について述べる。 In order to explain the above imaging mode in more detail, first, the configuration and operation of the two-sided corner reflector array alone will be described, and then the operation when the semi-transmissive plate 4 is added will be described.
 2面コーナーリフレクタアレイ6の単体は、図4に模式的に示すように、基盤60上に、それぞれが2つの相互に直交する鏡面61a,61bから構成される多数の2面コーナーリフレクタ61の集合であり、全2面コーナーリフレクタ61を構成するそれぞれ2つの鏡面61a,61bに対してほぼ垂直な平面を素子面6Sとし、この素子面6Sを対称面とする面対称位置に被観察物の実像3を結像させることができるものである。被観察物としては、ディスプレイ7の表示面71に表示された画像72を用いることができる。ディスプレイ7を動作させ、表示面71に表示される画像72を動かすなどすれば実鏡映像3も動く像になり、観察者にインパクトを与えることができ効果的である。なお、本実施形態において2面コーナーリフレクタ61は2面コーナーリフレクタアレイ6の全体の大きさ(cmオーダ)と比べて非常に微小(μmオーダ)であるので、図4では2面コーナーリフレクタ61の集合全体をグレーで表し、鏡面の開く内角の向きをV字形状で表し2面コーナーリフレクタ61を誇張して表現してある。 As schematically shown in FIG. 4, the single unit of the two-surface corner reflector array 6 is a set of a large number of two-surface corner reflectors 61 each comprising two mirror surfaces 61a and 61b orthogonal to each other on the base 60. A plane substantially perpendicular to each of the two mirror surfaces 61a and 61b constituting the entire two-surface corner reflector 61 is defined as an element surface 6S, and the real image of the object to be observed is in a plane-symmetric position with the element surface 6S as a symmetry plane. 3 can be imaged. As the object to be observed, an image 72 displayed on the display surface 71 of the display 7 can be used. If the display 7 is operated and the image 72 displayed on the display surface 71 is moved, the real mirror image 3 also becomes a moving image, which is effective in giving an impact to the observer. In the present embodiment, the two-surface corner reflector 61 is very small (μm order) compared to the overall size (cm order) of the two-surface corner reflector array 6, and therefore the two-surface corner reflector 61 of FIG. The entire set is represented in gray, the direction of the inner angle at which the mirror surface opens is represented by a V shape, and the two-surface corner reflector 61 is exaggerated.
 そして、図5では、2面コーナーリフレクタアレイ6の模式的な平面図を図5(a)に、同(b)に部分的な斜視図を示す。但し、図5では、2面コーナーリフレクタアレイ6の全体に比して、2面コーナーリフレクタ61および鏡面61a,61bを大きく誇張して表している。 FIG. 5 shows a schematic plan view of the two-sided corner reflector array 6 in FIG. 5 (a), and FIG. 5 (b) shows a partial perspective view. However, in FIG. 5, the two-surface corner reflector 61 and the mirror surfaces 61 a and 61 b are greatly exaggerated as compared with the entire two-surface corner reflector array 6.
 2面コーナーリフレクタアレイ6は、例えば光線を屈曲しつつ透過し得るように、平板状の基盤60に、その平らな表面に対して垂直に肉厚を貫通する物理的・光学的な穴を多数形成し、各穴の内壁面を2面コーナーリフレクタ61として利用するために、穴の内壁面のうち直交する2つにそれぞれ鏡面61a,61bを形成したものを採用することができる。したがって、基盤60が少なくとも半透過性となるように、図5(a)、同(b)に示すように、薄い平板状の基盤60に平面視ほぼ矩形状(例えば正方形状)の光線が透過する物理的・光学的な穴(例えば一辺が例えば50~200μm)を多数形成し、各穴のうち隣接して直交する2つの内壁面に平滑鏡面処理を施して鏡面61a,61bとする。これにより、これら2つの鏡面61a,61bが反射面として機能する2面コーナーリフレクタ61を得ることができる。なお、穴の内壁面のうち2面コーナーリフレクタ61を構成しない部分には鏡面処理を施さず光が反射不能な面とするか、又は角度をつけるなどして多重反射光を抑制することが好ましい。また、各2面コーナーリフレクタ61は、基盤60上において鏡面61a,61bがなす内角が全て同じ向きとなるように、規則的な格子点上に整列させて形成することが好ましい。よって、各2面コーナーリフレクタでは、2つの直交する鏡面の交線CLが素子面6Sに直交することが好ましい。以下、この鏡面61a,61bの内角の向きを、2面コーナーリフレクタ61の向き(方向)と称することがある。 The two-sided corner reflector array 6 has a number of physical and optical holes penetrating the thickness perpendicular to the flat surface of the flat base 60 so that light can be transmitted while being bent, for example. In order to form and use the inner wall surface of each hole as the two-sided corner reflector 61, it is possible to employ one in which mirror surfaces 61a and 61b are respectively formed on two orthogonal inner wall surfaces of the hole. Accordingly, as shown in FIGS. 5A and 5B, light having a substantially rectangular shape (for example, square shape) in plan view is transmitted through the thin flat plate-like substrate 60 so that the substrate 60 is at least semi-transmissive. A large number of physical and optical holes (for example, one side of 50 to 200 μm) are formed, and two inner wall surfaces that are adjacent and orthogonal to each other are subjected to smooth mirror surface processing to form mirror surfaces 61a and 61b. Thereby, the two-surface corner reflector 61 in which these two mirror surfaces 61a and 61b function as reflecting surfaces can be obtained. It should be noted that it is preferable to suppress the multiple reflected light by making the surface of the inner wall surface of the hole that does not constitute the two-sided corner reflector 61 into a surface that is not mirror-reflected and cannot reflect light, or is angled. . In addition, each of the two-surface corner reflectors 61 is preferably formed on a regular lattice point so that the inner angles formed by the mirror surfaces 61a and 61b are all in the same direction on the base 60. Therefore, in each two-surface corner reflector, it is preferable that the intersection line CL of two orthogonal mirror surfaces is orthogonal to the element surface 6S. Hereinafter, the direction of the inner angle of the mirror surfaces 61a and 61b may be referred to as the direction (direction) of the two-surface corner reflector 61.
 鏡面61a,61bの形成にあたっては、例えば金属製の金型をまず作成し、鏡面61a,61bを形成すべき内壁面をナノスケールの切削加工処理や、金型を用いたプレス工法をナノスケールに応用したナノインプリント工法又は電鋳工法による処理をすることによって鏡面形成を行い、これらの面粗さを10nm以下とし、可視光スペクトル域に対して一様に鏡面となるようにするとよい。なお、電鋳工法によりアルミニウムやニッケルなどの金属で基盤60を形成した場合、鏡面61a,61bは、金型の面粗さが十分小さければ、それによって自然に鏡面となるが、ナノインプリント工法を用いて、基盤60を樹脂製などとした場合には、鏡面61a,61bを作成するには、スパッタリングなどによって、鏡面コーティングを施す必要がある。また、隣り合う2面コーナーリフレクタ6同士の離間寸法を極力小さく設定することで、透過率を向上させることができる。また、このような2面コーナーリフレクタアレイ6の上面(観察者から見える側の面)には、低反射剤を塗布するなどの処理を行うことが好ましい。但し、2面コーナーリフレクタアレイ6の構成は上述のものに限定されず、直交する2つの鏡面61a,61bにより2面コーナーリフレクタ61が多数形成され、且つ各2面コーナーリフレクタ61が光学的な穴として光を透過するものであれば、適宜の構成および製造方法を採用することができる。 In forming the mirror surfaces 61a and 61b, for example, a metal mold is first prepared, and the inner wall surface on which the mirror surfaces 61a and 61b are to be formed is subjected to nano-scale cutting processing or a pressing method using the mold to the nano-scale. It is preferable that the mirror surface is formed by processing by the applied nanoimprint method or electroforming method, and that the surface roughness is 10 nm or less so that the surface is uniformly mirrored in the visible light spectrum region. In addition, when the base 60 is formed of a metal such as aluminum or nickel by an electroforming method, the mirror surfaces 61a and 61b naturally become mirror surfaces if the surface roughness of the mold is sufficiently small. However, the nanoimprint method is used. When the substrate 60 is made of resin or the like, it is necessary to perform mirror coating by sputtering or the like in order to create the mirror surfaces 61a and 61b. Moreover, the transmittance | permeability can be improved by setting the separation | spacing dimension of adjacent 2 surface corner reflectors 6 as small as possible. Moreover, it is preferable to perform a process such as applying a low-reflecting agent on the upper surface (the surface visible to the observer) of the two-sided corner reflector array 6. However, the configuration of the two-surface corner reflector array 6 is not limited to that described above, and a large number of two-surface corner reflectors 61 are formed by two orthogonal mirror surfaces 61a and 61b, and each of the two-surface corner reflectors 61 is an optical hole. As long as it transmits light, an appropriate configuration and manufacturing method can be adopted.
 そして、2面コーナーリフレクタアレイ6では、各2面コーナーリフレクタ61は、裏面側から穴に入った光を一方の鏡面61a(又は61b)で反射させ、さらにその反射光を他方の鏡面61b(又は61a)で反射させて表面側へと通過させる機能を有し、この光の進入経路と射出経路とが素子面6Sを挟んで面対称をなすこととなる。すなわち、2面コーナーリフレクタアレイ6の素子面6S(各鏡面の高さ方向中央部を通り且つ各鏡面と直交する面を仮定)は、被観察物2の実像を、面対称位置に空中像(実鏡映像)3として結像させる対称面となる。 In the double-sided corner reflector array 6, each double-sided corner reflector 61 reflects light entering the hole from the back side by one mirror surface 61a (or 61b), and further reflects the reflected light to the other mirror surface 61b (or 61a) has a function of reflecting the light and passing it to the surface side, and the light entrance path and the light exit path are symmetrical with respect to the element surface 6S. That is, the element surface 6S of the two-surface corner reflector array 6 (assuming a surface passing through the center in the height direction of each mirror surface and orthogonal to each mirror surface) is a real image of the object 2 to be observed and an aerial image at a plane-symmetric position ( This is a plane of symmetry to be imaged as (real mirror image) 3.
 ここで、2面コーナーリフレクタアレイ6による結像様式について、被観察物として点光源oから発せられた光の経路とともに簡単に説明する。 Here, the image formation mode by the two-surface corner reflector array 6 will be briefly described along with the path of light emitted from the point light source o as an object to be observed.
 図6に模式的な平面図で、図7に模式的な側面図でそれぞれ示すように、点光源oから発せられる光(一点鎖線矢印で示す。図6において3次元的には紙面奥側から紙面手前側へ進行する)は、2面コーナーリフレクタアレイ6を通過する際に、2面コーナーリフレクタ61を構成する一方の鏡面61a(又は61b)で反射して更に他方の鏡面61b(又は61a)で反射した後に素子面6S(図7、図4、図5(b))を通過し、2面コーナーリフレクタアレイ6の素子面6Sに対して点光源oの面対称位置を広がりながら通過する。図6では入射光と反射光とが平行をなすように表されているが、これは同図では点光源oに対して2面コーナーリフレクタ61を誇張して大きく記載しているためであり、実際には各2面コーナーリフレクタ61は極めて微小なものであるため、図6のように2面コーナーリフレクタアレイ6を上方から見た場合には、入射光と反射光とは殆ど重なって見える(図6では2面コーナーリフレクタ61の2つの鏡面(61a,61b)それぞれに最初に当たる光の経路、つまり2本の経路を描いて説明しているが、図7では煩雑さを避けるためにどちらか一方の鏡面に最初に当たる光のみを描いている)。すなわち、結局は点光源oの素子面6Sに対する面対称位置に透過光が集まり、図6、図7においてpの位置に実鏡映像として結像することになる。 FIG. 6 is a schematic plan view and FIG. 7 is a schematic side view. As shown in FIG. 7, light emitted from a point light source o (indicated by a one-dot chain line arrow. When the light passes through the two-surface corner reflector array 6, it is reflected by one of the mirror surfaces 61a (or 61b) constituting the two-surface corner reflector 61 and further the other mirror surface 61b (or 61a). After passing through the element surface 6S (FIGS. 7, 4, and 5B), the point light source o passes through the element surface 6S of the two-surface corner reflector array 6 while spreading in a plane-symmetrical position. In FIG. 6, the incident light and the reflected light are shown to be parallel, but this is because the dihedral corner reflector 61 is greatly exaggerated with respect to the point light source o in FIG. 6. Actually, each of the two-sided corner reflectors 61 is extremely small, and therefore, when the two-sided corner reflector array 6 is viewed from above as shown in FIG. In FIG. 6, the path of light that first strikes each of the two mirror surfaces (61 a and 61 b) of the two-surface corner reflector 61, that is, two paths are illustrated. However, in FIG. Only the first light hitting one of the mirrors is drawn). That is, in the end, transmitted light gathers at a position symmetrical with respect to the element surface 6S of the point light source o, and forms an image as a real mirror image at a position p in FIGS.
 本発明では、2面コーナーリフレクタアレイ6と空中像3の間に半透過性プレート(図示せず)を配置しているが、この半透過性プレート4は単に光の透過率を調整するものであるため、上記基本的な作用により空中像を実鏡映像で結像する。 In the present invention, a semi-transmissive plate (not shown) is disposed between the two-sided corner reflector array 6 and the aerial image 3, but the semi-transmissive plate 4 simply adjusts the light transmittance. Therefore, an aerial image is formed as a real mirror image by the above basic action.
 ハーフミラー形式の半透過性プレートを使用した場合は、透過率調整のために一部の光を反射させることになり、この反射光は半透過性プレートを透過した光による空中像とは違う場所に結像することになるが(結像する前に他の物によって反射等されてしまえば像はできないが)、こちらの結像は観察者からは観察されない。 When a half-mirror type semi-transmissive plate is used, part of the light is reflected to adjust the transmittance, and this reflected light is different from the aerial image of the light transmitted through the semi-transmissive plate. (If it is reflected by another object before being imaged, an image cannot be formed), but this image formation is not observed by the observer.
 従って、観察者が空中像3のみを観察する場合には、半透過性プレートの有り無しは単に空中像の明るさが変化するに過ぎない。 Therefore, when the observer observes only the aerial image 3, the presence or absence of the translucent plate simply changes the brightness of the aerial image.
 次いで、表示側空間の2面コーナーリフレクタアレイ6と空中像3の間に半透過性プレートを追加配置した場合の作用について述べる。 Next, the operation when a semi-transparent plate is additionally arranged between the two-surface corner reflector array 6 in the display side space and the aerial image 3 will be described.
 先ずは、半透過性プレートが無い時の空中像3の観察の様子について述べる。半透過性プレートが無いために、観察者は空中像3の他にも、その背後にある2面コーナーリフレクタアレイ6とそれを組み込むためのフレーム8も観察することになる。 First, the state of observation of the aerial image 3 when there is no translucent plate is described. Since there is no translucent plate, the observer observes the aerial image 3 as well as the dihedral corner reflector array 6 behind it and the frame 8 for incorporating it.
 図8に示すように、空中像3が2面コーナーリフレクタアレイ6の中央付近に存在するように観察する場合は、空中像3に目のピントを容易に合わせることができ、空中像として視認しやすい。 As shown in FIG. 8, when observing the aerial image 3 so that it is present near the center of the two-sided corner reflector array 6, the eye can be easily focused on the aerial image 3 so that the aerial image can be visually recognized. Cheap.
 しかし、観察者の観察位置を変化させ、図9に示すように、空中像3が2面コーナーリフレクタアレイ6の端部の付近、つまり2面コーナーリフレクタアレイ6とフレーム8の境目BLに近い部分に存在するように観察する場合は、空中像3の他にも境目BLに目のピントを合わせるターゲットができてしまうため、境目BLにピントを合わせた時には空中像3を空中像として視認でき難くなることが判った。 However, by changing the observation position of the observer, as shown in FIG. 9, the aerial image 3 is in the vicinity of the end portion of the two-surface corner reflector array 6, that is, the portion near the boundary BL between the two-surface corner reflector array 6 and the frame 8. In addition to the aerial image 3, in addition to the aerial image 3, a target for focusing the eye on the boundary BL is created. Therefore, it is difficult to visually recognize the aerial image 3 as an aerial image when focusing on the boundary BL. I found out that
 次に、本発明の特徴である半透過性プレートを追加した時の空中像3の観察の様子について述べる。追加された半透過性プレートのために、2面コーナーリフレクタアレイ6とそれを組み込むためのフレーム8の境目BLが観察され難くなり、図8に示した観察位置の時は勿論のこと、図9に示した観察位置の時にも、空中像3に目のピントを容易に合わせることができ、空中像として視認しやすい観察方向を増やすことができる。
なお、図3では2面コーナーリフレクタアレイ6と空中像3の間の空間に半透過性プレート4を配置しているが、本発明はこれに限定されるものではなく、例えば、半透過性プレート4を2面コーナーリフレクタアレイ6及びそれを嵌め込んでいるフレーム8に貼り合せる形で設置しても良い。また、空間に配置される場合も図3に示した角度に限定される訳ではなく、半透過性プレートによる本発明の効果が発揮できる範囲において自由な角度での設定が可能である。
Next, how the aerial image 3 is observed when a semi-transparent plate, which is a feature of the present invention, is added will be described. Due to the added translucent plate, it becomes difficult to observe the boundary BL of the two-sided corner reflector array 6 and the frame 8 for incorporating the same, and not only at the observation position shown in FIG. Even at the observation position shown in FIG. 5, the eyes can be easily focused on the aerial image 3, and the number of observation directions that are easily visible as an aerial image can be increased.
In FIG. 3, the semi-transmissive plate 4 is arranged in the space between the two-surface corner reflector array 6 and the aerial image 3, but the present invention is not limited to this. For example, the semi-transmissive plate 4 may be installed in the form of being bonded to the two-sided corner reflector array 6 and the frame 8 into which it is fitted. Further, the arrangement in the space is not limited to the angle shown in FIG. 3, but can be set at a free angle as long as the effect of the present invention can be exhibited by the semi-transmissive plate.
 更に、本発明の特徴である半透過性プレートにかかわる他の実施形態について述べる。 Furthermore, other embodiments relating to the semi-permeable plate which is a feature of the present invention will be described.
 もし、観察者側の空間からの光の全てを半透過性プレートで吸収することができれば、実鏡映像光学素子の2面コーナーリフレクタアレイとフレームからの反射光を無くすことができるので、それらの境目を視認させないようにすることができる。しかし、この場合は2面コーナーリフレクタアレイを通しての被観察物からの光も吸収してしまうため空中像が観察できなくなってしまい都合が悪い。 If all the light from the space on the viewer side can be absorbed by the translucent plate, the reflected light from the two-surface corner reflector array and the frame of the real mirror image optical element can be eliminated. It is possible to prevent the boundary from being visually recognized. However, in this case, light from the object to be observed through the two-surface corner reflector array is also absorbed, which makes it impossible to observe an aerial image, which is inconvenient.
 そこで、発明者は2面コーナーリフレクタアレイを通しての被観察物からの光を通して、それ以外の光を通さない、非等方半透過性プレートを利用すること考えた。 Therefore, the inventor considered using an anisotropic translucent plate that passes light from the object to be observed through the two-sided corner reflector array and does not pass other light.
 図10は、本発明が適用される表示装置の他の実施形態を示す概観図である。かかる表示装置は、半透過性プレート4(図3)に代えて非等方半透過性プレート4aを用いた以外、上述した実施形態の表示装置と同一の構成を有している。非等方半透過性プレート4aを使用すれば、観察者側の空間からの光のうち観察者の方向からの光は、非等方半透過性プレート4aを通過して2面コーナーリフレクタアレイ6とフレーム8に達するためそれらの境界を視認させる光となってしまうが、観察者方向以外からの光は、非等方半透過性プレート4aを通過することができないため、それらの光による2面コーナーリフレクタアレイ6とフレーム8の境目が視認される現象を防止することができ、全体として、等方的な半透過性プレートを使用する場合より境目を見難くする効果をより顕著に引き出すことができる。非等方半透過性プレート4aとしては、例えば、細かなスリット形状を持つ半透過性プレートが考えられる。スリット4sは、平行スリットもしくは、メッシュ状のもので、素子面に対して観察者側に傾斜している。また、スリットを形成する壁自体は光線を十分に吸収するものであることが好ましい。スリットに傾斜がついているため、透過光に方向性が生じる、つまり、非等方性となる。具体的には、例えば信越ポリマー社製の視角制限フィルム、商品名VC-FILMがこのような機能を持っており使用可能である。 FIG. 10 is an overview diagram showing another embodiment of a display device to which the present invention is applied. Such a display device has the same configuration as the display device of the above-described embodiment except that the anisotropic translucent plate 4a is used instead of the translucent plate 4 (FIG. 3). If the anisotropic semi-transmissive plate 4a is used, the light from the viewer's direction out of the light from the viewer-side space passes through the anisotropic semi-transmissive plate 4a and is a two-sided corner reflector array 6. However, since the light from outside the viewer direction cannot pass through the anisotropic semi-transmissive plate 4a, the two surfaces of the light are not visible. The phenomenon in which the boundary between the corner reflector array 6 and the frame 8 is visually recognized can be prevented, and the effect of making the boundary difficult to see than when an isotropic semi-transmissive plate is used as a whole can be brought out more remarkably. it can. As the anisotropic semi-transmissive plate 4a, for example, a semi-transmissive plate having a fine slit shape can be considered. The slit 4s is a parallel slit or a mesh, and is inclined toward the viewer with respect to the element surface. Moreover, it is preferable that the wall itself which forms a slit is a thing which fully absorbs a light ray. Since the slit is inclined, the transmitted light has directionality, that is, is anisotropic. Specifically, for example, a viewing angle limiting film manufactured by Shin-Etsu Polymer Co., Ltd., trade name VC-FILM has such a function and can be used.
 傾斜がついたスリットによって観察者側の空間からの光が2面コーナーリフレクタアレイ6とフレーム8に入射する方向は、観察者視線方向Vに限定される。この光によって観察者から2面コーナーリフレクタアレイ6とフレーム8およびそれらの境界が観察されるのは、それらからの散乱反射によって、観察者側に帰された光ということになる。ここで、もし2面コーナーリフレクタアレイ6とフレーム8の表面が鏡面のような状態になっていた場合、散乱反射は生じず、表面で反射された光は、観察者とは反対側へ向かい、スリットにあたって吸収される。つまり、境目は見えないということになり、さらに都合が良い。 The direction in which light from the space on the viewer side enters the dihedral corner reflector array 6 and the frame 8 by the inclined slit is limited to the viewer's line-of-sight direction V. The observation of the two-surface corner reflector array 6 and the frame 8 and the boundary between them by this light is the light attributed to the viewer due to the scattered reflection from them. Here, if the surfaces of the two-sided corner reflector array 6 and the frame 8 are in a mirror-like state, no scattering reflection occurs, and the light reflected by the surface goes to the opposite side of the observer, It is absorbed by the slit. In other words, the border is not visible, which is more convenient.
 図10に示す表示装置として非等方半透過性プレート4aに信越ポリマー社製のVC-FILM(品番VC-908518)を使用した実施例を作製した。本実施例に用いた非等方半透過性プレート4aは傾斜した平行スリット構造を成しており、観察者方向からの光は、非等方半透過性プレート4aを通過することができるが、観察者方向以外からの光は、非等方半透過性プレート4aを通過することができない。 As an example of the display device shown in FIG. 10, an example was prepared in which VC-FILM (product number VC-908518) manufactured by Shin-Etsu Polymer Co., Ltd. was used for the anisotropic translucent plate 4a. The anisotropic semi-transmissive plate 4a used in this example has an inclined parallel slit structure, and light from the viewer direction can pass through the anisotropic semi-transmissive plate 4a. Light from other than the observer direction cannot pass through the anisotropic semi-transmissive plate 4a.
 本実施例でも追加された非等方半透過性プレート4aのために、2面コーナーリフレクタアレイ6とそれを組み込むためのフレーム8の境目が観察され難くなり、図8に示した観察位置の時は勿論のこと、図9に示した観察位置の時にも、空中像3に目のピントを容易く合わせることができ、空中像として視認しやすい観察方向を増やすことができた。さらに、非等方半透過性プレート4aを用いた方が空中像を明るくできることが判った。 Since the anisotropic semi-transmissive plate 4a added also in the present embodiment, the boundary between the two-sided corner reflector array 6 and the frame 8 for incorporating the two-face corner reflector array is difficult to be observed, and at the observation position shown in FIG. Needless to say, the eyes can be easily focused on the aerial image 3 even at the observation position shown in FIG. 9, and the number of observation directions that can be easily viewed as an aerial image can be increased. Furthermore, it was found that the aerial image can be brightened by using the anisotropic semi-transmissive plate 4a.
 図11は、本発明が適用される表示装置の更なる他の実施形態を示す概観図である。かかる表示装置は、実鏡映像結像光学系のみが上述した実施形態の表示装置と異なるだけであり、本発明の特徴である半透過性プレート4を後述するハーフミラー91と実像(実鏡映像)3の間に配置したものである。ハーフミラー91をフレーム8に嵌め込んで使用するため、上記の境目の課題がやはり本表示装置でも存在するので、半透過性プレート4の追加により課題解決を図ろうとするものである。表示装置は、被観察物2が配置された空間(被観察物側空間)と観察者V側の空間(表示側空間)とを仕切る半透過性の基盤である実鏡映像結像光学系のハーフミラー91を含む。なお、本実施形態の表示装置は、実鏡映像結像光学系のみが上述した実施形態の表示装置と異なり、他は同様の構成となっているので、それらの同一の符号を用いた同一の構成については説明を省略する。 FIG. 11 is a schematic view showing still another embodiment of a display device to which the present invention is applied. This display device is different from the display device of the above-described embodiment only in the real mirror image forming optical system, and a semi-transparent plate 4 which is a feature of the present invention is combined with a half mirror 91 described later and a real image (real mirror image). ) Between 3). Since the half mirror 91 is fitted into the frame 8 and used, the problem of the boundary is also present in the present display device. Therefore, the problem is solved by adding the semi-transmissive plate 4. The display device includes a real mirror image forming optical system that is a semi-transparent base that partitions a space (observed object side space) in which the observed object 2 is arranged and a space on the viewer V side (display side space). A half mirror 91 is included. The display device of the present embodiment is different from the display device of the above-described embodiment only in the real mirror image forming optical system, and the other configuration is the same, so the same reference numerals using the same reference numerals are used. A description of the configuration is omitted.
 本実施形態で適用される実鏡映像結像光学系9は、図12に示すように、ハーフミラー91とレトロリフレクタアレイ92とを組み合わせたものである。そして、対称面となる素子面はハーフミラー面91Sとなる。ハーフミラー91を挟んで観察者Vと反対側の空間(被観察物側空間)に被観察物としてディスプレイ7(表示面71に表示された画像72)を配置し、さらに、レトロリフレクタアレイ92を配置し、観察者側空間(表示側空間)に半透過性プレート4を配置している。半透過性プレート4は、ハーフミラー91と実像(実鏡映像)3の間に配置されている。 The real mirror image forming optical system 9 applied in this embodiment is a combination of a half mirror 91 and a retro reflector array 92 as shown in FIG. And the element surface used as a symmetrical surface becomes the half mirror surface 91S. A display 7 (image 72 displayed on the display surface 71) is arranged as an object to be observed in a space (observed object side space) opposite to the observer V across the half mirror 91, and a retro reflector array 92 is further arranged. The translucent plate 4 is arranged in the observer side space (display side space). The semi-transmissive plate 4 is disposed between the half mirror 91 and the real image (real mirror image) 3.
 被観察物2から発せられた光はハーフミラー91で反射され、次にレトロリフレクタアレイ92へと導かれる。レトロリフレクタアレイ92はハーフミラー91からの光を再帰反射させる機能を有しているので、反射光は再びハーフミラー91に向かうことになる。そして反射光は今度はハーフミラー91を透過して、観察者V側の空間に配置された半透過性プレート4を透過して、実鏡映像3を観察者Vの視線上の空間に結像する。 The light emitted from the object to be observed 2 is reflected by the half mirror 91 and then guided to the retroreflector array 92. Since the retroreflector array 92 has a function of retroreflecting the light from the half mirror 91, the reflected light travels toward the half mirror 91 again. Then, the reflected light passes through the half mirror 91 and then passes through the semi-transmissive plate 4 disposed in the space on the viewer V side, and forms the real mirror image 3 in the space on the line of sight of the viewer V. To do.
 ハーフミラー91は、例えば透明樹脂やガラスなどの透明薄板の一方の面に薄い反射膜をコーティングしたものを利用することができる。この透明薄板の反対側の面には、無反射処理(ARコート〉を施すことで、観察される実鏡映像3が2重になるのを防止することができる。なお、ハーフミラー91の上面には、それぞれ特定方向の光線を透過し且つ別の特定方向の光線を遮断するか、あるいは特定方向の光線のみを拡散する視線制御手段として、視界制御フィルム又は視野角調整フィルムなどの光学フィルム(図示せず)を貼り付けて設けることができる。具体的にはこの光学フィルムにより、ハーフミラー91を直接透過した光が視点V以外の位置には届かないようにすることで、ハーフミラー91を通じて視点V以外から半透過性プレート4に写った被観察像が直接観察できるようになることを防止する一方で、後述するハーフミラー91で一旦反射してレトロリフレクタアレイ92で再帰反射した後にハーフミラー91を透過する方向の光線のみを透過させることで、実鏡映像3のみを特定の視点Vから観察できるようにしている。 As the half mirror 91, for example, a thin reflective film coated on one surface of a transparent thin plate such as transparent resin or glass can be used. By applying anti-reflection treatment (AR coating) to the opposite surface of the transparent thin plate, it is possible to prevent the observed real mirror image 3 from being doubled. As a line-of-sight control means that transmits a light beam in a specific direction and blocks another light beam in a specific direction, or diffuses only a light beam in a specific direction, an optical film (such as a visual field control film or a viewing angle adjustment film) (This is not shown in the figure.) Specifically, this optical film prevents light directly transmitted through the half mirror 91 from reaching any position other than the viewpoint V, thereby allowing the half mirror 91 to pass through. While preventing the observed image on the translucent plate 4 from being directly observable from other than the viewpoint V, it is reflected once by a half mirror 91 (to be described later) and retroreflected. By that transmits only light in a direction through the half mirror 91 after retroreflection by Taarei 92, and can be observed only real mirror image 3 from a particular view point V.
 一方、レトロリフレクタアレイ92には、入射光を厳密に逆反射させるものであればあらゆる種類のものを適用することができ、素材表面への再帰反射膜や再帰反射塗料のコーティングなども考えられる。また、その形状も曲面としてもよいし、平面とすることもできる。例えば、図13(a)に正面図の一部を拡大して示すレトロリフレクタアレイ92は、立方体内角の1つの角を利用するコーナーキューブの集合であるコーナーキューブアレイである。個々のレトロリフレクタ92Aは、3つの同形同大の直角二等辺三角形をなす鏡面92Aa,92Ab,92Acを1点に集合させて正面視した場合に正三角形を形成するものであり、これら3つの鏡面92Aa,92Ab,92Acは互いに直交してコーナーキューブを構成している(図13(b))。 On the other hand, any type of retroreflector array 92 can be applied as long as it reflects incident light strictly, and a retroreflective film or a retroreflective coating may be applied to the surface of the material. Moreover, the shape may be a curved surface or a flat surface. For example, a retroreflector array 92 shown in FIG. 13A with a part of the front view enlarged is a corner cube array that is a set of corner cubes that use one corner of a cubic body corner. Each retroreflector 92A forms a regular triangle when the mirror surfaces 92Aa, 92Ab, and 92Ac that form three isosceles right-angled isosceles triangles are gathered at one point and viewed from the front. The mirror surfaces 92Aa, 92Ab, and 92Ac are orthogonal to each other to form a corner cube (FIG. 13B).
 また、図14(a)に正面図の一部を拡大して示すレトロリフレクタアレイ92も、立方体内角の1つの角を利用するコーナーキューブの集合であるコーナーキューブアレイである。個々のレトロリフレクタ92Bは、3つの同形同大の正方形をなす鏡面92Ba,92Bb,92Bcを1点に集合させて正面視した場合に正六角形を形成するものであり、これら3つの鏡面92Ba,92Bb,92Bcは互いに直交している(図14(b))。 Further, the retroreflector array 92 shown in FIG. 14 (a) by enlarging a part of the front view is also a corner cube array that is a set of corner cubes using one corner of the cubic body. The individual retro reflectors 92B form three regular mirror surfaces 92Ba, 92Bb, 92Bc, which are formed into a single hexagonal shape when the mirror surfaces 92Ba, 92Bb, 92Bc, which form three squares of the same shape and the same size, are viewed from the front. 92Bb and 92Bc are orthogonal to each other (FIG. 14B).
 図14のレトロリフレクタアレイ92は、図13(a)のレトロリフレクタアレイ92とは形状が異なるだけで再帰反射の原理は同じである。図13(b)および図14(b)に、図13(a)および図14(a)にそれぞれ示したレトロリフレクタアレイ92を例にして説明すると、各レトロリフレクタ92A,92Bの鏡面のうちの一つ(例えば92Aa,92Ba)に入射した光は、他の鏡面(92Ab,92Bb)、さらに他の鏡面(92Ac,92Bc)で順次反射することで、レトロリフレクタ92A,92Bへ光が入射してきた元の方向へ反射する。なおレトロリフレクタアレイ92に対する入射光と出射光の経路は、厳密には重ならず平行であるが、レトロリフレクタ92A,92Bがレトロリフレクタアレイ92と比べて十分小さい場合には、入射光と出射光の経路が重なっているとみなしてもよい。これら2種類のコーナーキューブアレイの違いは、鏡面が二等辺三角形のものは比較的作成しやすいが反射率が若干低くなり、鏡面が正方形のものは二等辺三角形のものと比較して作成がやや難しい反面、反射率が高い、ということである。 The retroreflector array 92 in FIG. 14 differs from the retroreflector array 92 in FIG. 13A only in shape, and the principle of retroreflection is the same. 13B and 14B, the retroreflector array 92 shown in FIGS. 13A and 14A will be described as an example. Of the mirror surfaces of the retroreflectors 92A and 92B, FIG. The light incident on one (for example, 92Aa, 92Ba) is sequentially reflected on the other mirror surfaces (92Ab, 92Bb) and further on the other mirror surfaces (92Ac, 92Bc), so that the light has entered the retroreflectors 92A, 92B. Reflects in the original direction. The paths of the incident light and the outgoing light with respect to the retroreflector array 92 are not strictly overlapping but are parallel to each other. However, when the retroreflectors 92A and 92B are sufficiently smaller than the retroreflector array 92, the incident light and the outgoing light. May be considered as overlapping. The difference between these two types of corner cube arrays is that the mirror surface is isosceles triangle is relatively easy to create, but the reflectivity is slightly lower, and the mirror surface is square is slightly easier to create than the isosceles triangle. While difficult, it has a high reflectivity.
 なお、レトロリフレクタアレイ92には、上述したコーナーキューブアレイの他にも、3つの鏡面により光線を再帰反射させるもの(広義には「コーナーリフレクタ」)を採用することができる。図示しないが、例えば、単位再帰反射素子として、3つの鏡面のうち2つの鏡面同士が直交し、且つ他の1つの鏡面が他の2つの鏡面に対して90/N度(ただしNは整数とする)をなすものや、3つの鏡面がそれぞれ隣接する鏡面となす角度が90度、60度および45度となる鋭角レトロリフレクタが、本実施形態に適用される再帰反射素子3として適している。その他にも、キャッツアイレトロリフレクタなども単位再帰反射素子として利用することができる。これらのレトロリフレクタアレイは、平面的なものであっても、屈曲又は湾曲していてもよい。また、レトロリフレクタアレイの配置位置も、画像72から発してハーフミラー91で反射した光を再帰反射することができるのであれば、適宜に設定することができる。 In addition to the above-described corner cube array, a retroreflector array 92 that can retroreflect light rays by three mirror surfaces (“corner reflector” in a broad sense) can be adopted as the retroreflector array 92. Although not shown, for example, as a unit retroreflective element, two mirror surfaces of three mirror surfaces are orthogonal to each other, and another mirror surface is 90 / N degrees with respect to the other two mirror surfaces (where N is an integer) Or an acute-angle retroreflector having angles of 90 degrees, 60 degrees, and 45 degrees formed by three mirror surfaces that are adjacent to each other are suitable as the retroreflective element 3 applied to the present embodiment. In addition, a cat's eye retro reflector or the like can also be used as a unit retroreflective element. These retro-reflector arrays may be planar or bent or curved. Also, the arrangement position of the retroreflector array can be set appropriately as long as the light emitted from the image 72 and reflected by the half mirror 91 can be retroreflected.
 このようなハーフミラー91とレトロリフレクタアレイ92を備えた実鏡映像結像光学系9を適用したこの実施形態の表示装置でも、2面コーナーリフレクタアレイを適用した表示装置と同様に、ハーフミラー91に対して斜め方向から見る観察者の視線上の空間に実鏡映像3が浮かんで見えることになる。また、この表示装置においても、観察像の表示位置や大きさを変化させることで、実鏡映像3に変化を持たせることも可能である。 In the display device of this embodiment to which the real mirror image forming optical system 9 including the half mirror 91 and the retroreflector array 92 is applied, the half mirror 91 is similar to the display device to which the two-surface corner reflector array is applied. On the other hand, the real mirror image 3 appears to float in the space on the line of sight of the observer viewing from an oblique direction. Also in this display device, the actual mirror image 3 can be changed by changing the display position and size of the observation image.
 本実施形態の表示装置でも、半透過性プレート4は単に光の透過率を調整するものであるため、上記基本的な作用により空中像を実鏡映像で結像する。ハーフミラー形式の半透過性プレートを使用した場合も表示装置の場合と同様である。従って、この表示装置の場合も観察者が空中像3のみを観察する場合には、半透過性プレートの有り無しは単に空中像の明るさが変化するに過ぎない。 Also in the display device of the present embodiment, since the semi-transmissive plate 4 merely adjusts the light transmittance, an aerial image is formed as a real mirror image by the above basic action. The case where a half mirror type semi-transmissive plate is used is the same as in the case of the display device. Therefore, also in the case of this display device, when the observer observes only the aerial image 3, the presence or absence of the semi-transmissive plate merely changes the brightness of the aerial image.
 本実施形態でも、やはり、半透過性プレートを追加した時の方がを追加しない時より、ハーフミラー91とそれを組み込むためのフレーム7の境目が観察され難くなり、どの観察位置の時でも、空中像3に目のピントを容易に合わせることができ、空中像として視認しやすい観察方向を増やすことができた。 Even in this embodiment, the boundary between the half mirror 91 and the frame 7 for incorporating the half mirror 91 is less likely to be observed when the semi-transparent plate is added than when the semi-transparent plate is not added. It was possible to easily focus the eyes on the aerial image 3 and to increase the number of observation directions that are easily visible as an aerial image.
 以上、実施態様により本発明を説明したが、本発明の趣旨を逸脱しない範囲で表示装置を構成する各部の具体的構成は適宜に変更することができる。
また、本表示装置の適用例としては、単に空中映像を浮かび上がらせる単純な表示装置だけでなく、例えば自動車の計器盤のように、奥まった部分に表示部が設けられる種々の装置に対してその表示部の手前に空中映像を浮かび上がらせる表示装置として本発明を適宜構成することが可能である。
Although the present invention has been described above by the embodiments, the specific configuration of each part of the display device can be changed as appropriate without departing from the spirit of the present invention.
In addition, as an application example of the present display device, not only a simple display device that raises an aerial image but also various devices such as an automobile instrument panel in which a display unit is provided in a deep part. The present invention can be appropriately configured as a display device that causes an aerial image to appear in front of the display unit.
 さらに、本発明で示した半透過性プレート4を壁面や柱面の表面に配置する構成とすれば、床面に対して垂直な面をなす壁面や柱面から空中像を手前の空間に飛び出させることができるため、デジタルサイネージなどへの本発明の有効な適用も可能である(図15参照)
 図15は、本発明が適用される表示装置の更なる他の実施形態を示す概観図である。表示装置は、構成要素の配置が上述した実施形態の表示装置と異なるだけであり、2面コーナーリフレクタアレイ6と実像(実鏡映像)3との間に半透過性プレート4を鉛直に立てて、配置したものである。2面コーナーリフレクタアレイ6をフレーム8に嵌め込んで使用するため、境目の課題がやはり本表示装置でも存在するが、半透過性プレート4の追加により当該課題は解決される。なお、本実施形態の表示装置は、実鏡映像結像光学系のみが上述した実施形態の表示装置と異なり、他は同様の構成となっているので、それらの同一の符号を用いた同一の構成については説明を省略する。
Furthermore, if the translucent plate 4 shown in the present invention is arranged on the wall surface or the surface of the column surface, the aerial image jumps out from the wall surface or the column surface perpendicular to the floor surface to the front space. Therefore, the present invention can be effectively applied to digital signage or the like (see FIG. 15).
FIG. 15 is a schematic view showing still another embodiment of a display device to which the present invention is applied. The display device is different from the display device of the above-described embodiment only in the arrangement of the components, and the semi-transparent plate 4 is set up vertically between the two-surface corner reflector array 6 and the real image (real mirror image) 3. Are arranged. Since the double-sided corner reflector array 6 is used by being fitted into the frame 8, the boundary problem still exists in the present display device, but the problem is solved by the addition of the translucent plate 4. The display device of this embodiment is different from the display device of the above-described embodiment only in the real mirror image forming optical system, and the other configuration is the same. A description of the configuration is omitted.
2…被観察物
3…空中像(実鏡映像)
4…半透過プレート
5…実鏡映像光学素子
6…2面コーナーリフレクタアレイ(実鏡映像結像光学系)
6S…素子面(対称面)
61…2面コーナーリフレクタ
61a、61b…鏡面
7…ディスプレイ
71…表示面
72…被観察物(画像)
8…フレーム
91…ハーフミラー
91S…ハーフミラー面(対称面)
92…レトロリフレクタアレイ
92A,92B…レトロリフレクタ
92Aa,92Ab,92Ac,92Ba,92Bb,92bc…鏡面
CL…鏡面の交線
2 ... Object 3 ... Aerial image (real mirror image)
4 ... Semi-transmissive plate 5 ... Real mirror image optical element 6 ... Two-sided corner reflector array (real mirror image imaging optical system)
6S: Element plane (symmetric plane)
61 ... Two- surface corner reflectors 61a, 61b ... Mirror surface 7 ... Display 71 ... Display surface 72 ... Object to be observed (image)
8 ... Frame 91 ... Half mirror 91S ... Half mirror surface (symmetrical surface)
92 ... Retro reflector arrays 92A, 92B ... Retro reflectors 92Aa, 92Ab, 92Ac, 92Ba, 92Bb, 92bc ... Mirror plane CL ... Intersection line of mirror planes

Claims (8)

  1.  観察者が視認できる表示側空間と被観察物が配置された被観察物側空間とを仕切る半透過性の基盤を有し且つ前記基盤を介して前記表示側空間に前記被観察物の実像を結像させる実鏡映像結像光学系と、
     前記基盤と前記被観察物の実像の間に配置された半透過性プレートと、を含むことを特徴とする表示装置。
    A real image of the object to be observed is provided in the display side space through the base having a translucent base that partitions the display side space that can be visually recognized by the observer and the object side space on which the object is placed. A real mirror image forming optical system to form an image;
    A display device comprising: the base and a translucent plate disposed between the real image of the object to be observed.
  2.  前記半透過性プレートは非等方半透過性プレートであることを特徴とする請求項1に記載の表示装置。 The display device according to claim 1, wherein the translucent plate is an anisotropic translucent plate.
  3.  前記半透過性プレートは前記基盤より大きい面積を有することを特徴とする請求項1又は2に記載の表示装置。 3. The display device according to claim 1, wherein the translucent plate has a larger area than the base.
  4.  前記被観察物は、所定形状の画像面に表示される画像であることを特徴とする請求項1乃至3の何れか1に記載の表示装置。 4. The display device according to claim 1, wherein the object to be observed is an image displayed on an image surface having a predetermined shape.
  5.  前記画像面は、電子ディスプレイの表示面であることを特徴とする請求項4に記載の表示装置。 The display device according to claim 4, wherein the image surface is a display surface of an electronic display.
  6.  前記画像面は、前記画像を立体的に表示するものであることを特徴とする請求項4又は5に記載の表示装置。 The display device according to claim 4 or 5, wherein the image plane displays the image three-dimensionally.
  7.  前記実鏡映像結像光学系の前記基盤は2面コーナーリフレクタとして機能する光学素子であることを特徴とする請求項1乃至6のいずれか1に記載の表示装置。 The display device according to any one of claims 1 to 6, wherein the base of the real mirror image forming optical system is an optical element that functions as a two-surface corner reflector.
  8.  前記実鏡映像結像光学系はハーフミラーとレトロリフレクタアレイの組合せにより形成され且つ前記基盤が前記ハーフミラーであることを特徴とする請求項1乃至6のいずれか1に記載の表示装置。 The display device according to any one of claims 1 to 6, wherein the real mirror image forming optical system is formed by a combination of a half mirror and a retroreflector array, and the base is the half mirror.
PCT/JP2012/062632 2011-05-25 2012-05-17 Display device WO2012161073A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-116448 2011-05-25
JP2011116448A JP2012247458A (en) 2011-05-25 2011-05-25 Display device

Publications (1)

Publication Number Publication Date
WO2012161073A1 true WO2012161073A1 (en) 2012-11-29

Family

ID=47217151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062632 WO2012161073A1 (en) 2011-05-25 2012-05-17 Display device

Country Status (2)

Country Link
JP (1) JP2012247458A (en)
WO (1) WO2012161073A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084034A1 (en) * 2012-11-27 2014-06-05 日東電工株式会社 Presentation device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893503B2 (en) * 2012-05-14 2016-03-23 シャープ株式会社 Display device and display method
JP6634330B2 (en) * 2016-04-05 2020-01-22 株式会社ジャパンディスプレイ Display device
JP6930244B2 (en) * 2017-06-21 2021-09-01 日本精機株式会社 Display device
JP2020024281A (en) * 2018-08-07 2020-02-13 コイト電工株式会社 Space projection device and non-contact input device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015081A (en) * 2001-06-29 2003-01-15 Ishikawa Kogaku Zokei Kenkyusho:Kk Device for displaying real image in a plurality of directions
WO2008111426A1 (en) * 2007-03-05 2008-09-18 National Institute Of Information And Communications Technology Multiple-viewing-point aerial video display element
JP2009075483A (en) * 2007-09-21 2009-04-09 National Institute Of Information & Communication Technology Volume scanning type three-dimensional aerial video display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015081A (en) * 2001-06-29 2003-01-15 Ishikawa Kogaku Zokei Kenkyusho:Kk Device for displaying real image in a plurality of directions
WO2008111426A1 (en) * 2007-03-05 2008-09-18 National Institute Of Information And Communications Technology Multiple-viewing-point aerial video display element
JP2009075483A (en) * 2007-09-21 2009-04-09 National Institute Of Information & Communication Technology Volume scanning type three-dimensional aerial video display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084034A1 (en) * 2012-11-27 2014-06-05 日東電工株式会社 Presentation device
JP2014106354A (en) * 2012-11-27 2014-06-09 Nitto Denko Corp Display unit
US9684179B2 (en) 2012-11-27 2017-06-20 Nitto Denko Corporation Presentation device including a plate

Also Published As

Publication number Publication date
JP2012247458A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5408532B2 (en) Display device
JP5392612B2 (en) Display device
WO2010131622A1 (en) Display device
JP5392613B2 (en) Head-up display
JP5365957B2 (en) Display device
JP5498853B2 (en) Display device
JP7128541B2 (en) Display device
JP5177483B2 (en) Real mirror imaging optical system
JP5063494B2 (en) Display device
JP7437068B2 (en) display device
CN101765798B (en) Multi-viewpoint aerial image display
JP5001888B2 (en) Display device
JPWO2007116639A1 (en) Imaging element, display device
JP5410776B2 (en) Display device
WO2012161073A1 (en) Display device
JP5513752B2 (en) Display device
JP2014139620A (en) Volume scanning type three-dimensional aerial video display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789489

Country of ref document: EP

Kind code of ref document: A1