WO2012161011A1 - Phosphor substrate for display device, display device, and manufacturing method of phosphor substrate for display device - Google Patents

Phosphor substrate for display device, display device, and manufacturing method of phosphor substrate for display device Download PDF

Info

Publication number
WO2012161011A1
WO2012161011A1 PCT/JP2012/062284 JP2012062284W WO2012161011A1 WO 2012161011 A1 WO2012161011 A1 WO 2012161011A1 JP 2012062284 W JP2012062284 W JP 2012062284W WO 2012161011 A1 WO2012161011 A1 WO 2012161011A1
Authority
WO
WIPO (PCT)
Prior art keywords
display device
substrate
phosphor
layer
light
Prior art date
Application number
PCT/JP2012/062284
Other languages
French (fr)
Japanese (ja)
Inventor
真也 門脇
壮史 石田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012161011A1 publication Critical patent/WO2012161011A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to a phosphor substrate for a display device, a display device, and a method for manufacturing the phosphor substrate for a display device.
  • a liquid crystal display device which is a type of display device, includes, as a backlight, a device that combines a light source such as an LED (Light Emitting Diode) or a cold cathode tube, a light guide plate, and an optical sheet.
  • the liquid crystal display device includes a liquid crystal panel as an optical shutter.
  • the liquid crystal panel includes two substrates and a liquid crystal layer sealed between the two substrates.
  • a TFT element is provided on one surface of two substrates, and a color filter (CF) is provided on the other surface.
  • the white light of the backlight is emitted as light of a desired color by passing through one of the three primary colors of red, green, and blue provided as a color filter, but is incident by passing through the color filter. Since light components other than the color of the filter are absorbed, the amount of light is reduced to about 1/3.
  • Patent Document 1 proposes a display device including a backlight that emits blue light, a liquid crystal panel, and a phosphor substrate.
  • the phosphor substrate herein includes a phosphor that absorbs blue light and emits red light, and a phosphor that absorbs blue light and emits green light. Blue light is displayed by light transmitted through the blue color filter, but since the light source light is originally blue, there is almost no loss of light in the blue color filter. As described above, in the display device described in Patent Document 1, there is no loss of light amount due to absorption by the color filter, and light utilization efficiency is improved.
  • a method for forming a phosphor layer having a desired pattern on a phosphor substrate a method in which a phosphor is supplied and arranged only in a necessary region can be considered.
  • a method may be considered in which a phosphor layer is formed so as to cover the entire surface of the substrate, and only the phosphor layer in a necessary region is left and the others are removed.
  • the first method includes an inkjet method and various printing methods.
  • the second method includes a photolithography method.
  • the phosphor is applied to the entire substrate.
  • the first ink jet method applies a phosphor only to a necessary region. Therefore, compared with the second method, the ink jet method of the first method has an advantage that the amount of phosphor to be used can be reduced.
  • the inkjet method is preferable because the inkjet method can form a pattern with higher accuracy than the printing method.
  • the phosphor constituting the color filter needs to be disposed on the surface of the phosphor substrate on the side of the optical shutter, that is, the side on which light that has passed through the optical shutter enters.
  • Crosstalk here means that light that has passed through the optical shutter of one pixel enters a phosphor region other than the phosphor region of the color that correctly corresponds to that pixel. Since display quality deteriorates when crosstalk occurs, it is desirable that the crosstalk be as little or as little as possible.
  • the “pixel” refers to a monochrome pixel. For example, when one element of color display in an image is expressed by a combination of three different colors of single color display, it means an area for displaying one of the three colors.
  • the liquid crystal display device includes a color filter having a phosphor that emits red fluorescence when excited by blue light, and a phosphor that emits green fluorescence when excited by blue light, and further scatters at least blue light.
  • a light scattering film is provided.
  • a light-shielding partition wall is used to separate different color filters from each other. Is required.
  • partition walls 902 are arranged on the surface of the transparent substrate 901 opposite to the viewing side 5, and phosphors 903 r and 903 g are disposed between these partition walls 902. The light 4 from the backlight enters the phosphors 903r and 903g from below.
  • the light converted into a desired color by the phosphors 903r and 903g as color filters is in a state having a Lambertian distribution, that is, omnidirectionality, as schematically displayed in the phosphor 903r in FIG. Emits light. Therefore, not only light travels to the viewing side 5, but also much light travels in a direction that is not the viewing side 5. At this time, the light traveling toward the partition 902 adjacent to the side of the phosphor is absorbed by the partition 902.
  • an object of the present invention is to provide a phosphor substrate for a display device, a display device, and a method for manufacturing the phosphor substrate for a display device that can increase the light utilization efficiency.
  • a phosphor substrate for a display device includes a substrate having a main surface, a plurality of monochromatic layers formed on the main surface, each having a side surface, and the plurality of monochromatic layers.
  • a translucent partition wall disposed on the main surface so as to separate the two monochrome layers from each other while contacting the side surfaces of the two monochrome layers adjacent to each other.
  • the said partition has the groove part dug down to the depth which divides the said partition in the center. The groove portion becomes narrower as it approaches the main surface, and the inner surface of the groove portion is covered with a reflective film.
  • the light traveling sideways is reflected toward the viewing side by the reflective film and emitted from the substrate toward the viewing side.
  • the light utilization efficiency can be increased.
  • the barrier ribs 902 As shown in FIG. It is necessary to prepare a partition wall 902 having a tapered shape so that the viewing side 5 is wide, and to provide a reflective film on the tapered slope 907.
  • the “viewing side” is the transparent substrate 901 side that is the base material of the phosphor substrate. Accordingly, it is required to form a reflective film on the overhanging slope 907 so that the opening distance becomes narrower as the distance from the transparent substrate 901 increases.
  • the sputtering method usually used for forming the reflective film cannot form the reflective film on the so-called reverse tapered slope 907.
  • the inventors have made the present invention as an invention that can be realized by a sputtering method and that can improve the utilization efficiency of light.
  • the phosphor substrate 41 for a display device is adjacent to each other among the transparent substrate 1 as the substrate having the main surface 1a, the plurality of single-color layers 3 formed on the main surface 1a and each having a side surface, and the plurality of single-color layers 3.
  • the partition wall 2 has a groove 8 in the center that is dug down to a depth at which the partition wall 2 is divided. Groove portion 8 becomes narrower as it approaches main surface 1a.
  • the inner surface of the groove 8 is covered with the reflective film 6.
  • the transparent substrate 1 is, for example, a glass substrate.
  • the plurality of monochromatic layers 3 are preferably arranged by combining a combination of the three primary colors, such as red, green, and blue.
  • the plurality of monochromatic layers 3 may be phosphor layers that emit light of each color.
  • the partition walls 2 are translucent. Therefore, the light 11 traveling to the side can pass through the partition wall 2 and reach the reflection film 6. Since the reflection film 6 covers the inner surface of the groove portion 8 whose width becomes narrower as it approaches the main surface 1 a, the light 11 is reflected by the reflection film 6 toward the viewing side 5. Thus, the light 11 that originally traveled to the side is emitted from the transparent substrate 1 toward the viewing side 5. In this embodiment, the light utilization efficiency can be improved in this way.
  • a low refractive index layer 9 is preferably provided between the main surface 1 a of the transparent substrate 1 and the partition walls 2 and the monochromatic layer 3.
  • a low refractive index layer 10 is preferably provided on the surface of the monochromatic layer 3 opposite to the viewing side 5. If the low refractive index layers 9 and 10 are provided, a lot of light that is going to be emitted from the phosphor 3 in an inappropriate direction can be reflected by the low refractive index layers 9 and 10 and guided to the reflective film 6. By reflecting these lights with the reflective film 6, the light can be emitted from the transparent substrate 1 to the viewing side 5 with higher probability, which contributes to the improvement of the light utilization efficiency.
  • the cross-sectional shape of the groove 8 is preferably V-shaped. This is because if the groove 8 is V-shaped, the light directed toward the side can be efficiently reflected toward the viewing side 5. Even if the cross-sectional shape of the groove portion is not V-shaped, if the width becomes narrower as it approaches the main surface of the transparent substrate, light can be reflected toward the viewing side, so that a temporary effect can be achieved. it can.
  • the cross-sectional shape may be round like a groove 8i shown in FIG.
  • the main surface 1a of the transparent substrate 1 may be exposed at the bottom of the groove as in the groove portion 8j shown in FIG.
  • the correct V shape as shown in FIG. 3 is most preferred.
  • the barrier rib 2 is covered with the reflective film 6 except for the surface that contacts the side surface of the phosphor 3 and the surface that contacts the main surface 1a. This is because if the reflection film 6 is formed in this way, the light traveling from the phosphor 3 to the inside of the partition wall 2 can be reliably reflected by the reflection film 6.
  • One of the plurality of monochrome layers 3 includes a red phosphor layer 3r that emits red light, and another one of the plurality of monochrome layers 3 includes a green phosphor layer 3g that emits green light. It is preferable. If these are included, at least red and green light can be emitted toward the viewing side, and color display is facilitated.
  • the display apparatus in Embodiment 2 based on this invention is demonstrated.
  • the display device 51 in the present embodiment is overlapped with any of the display device phosphor substrates 41 described in the first embodiment and the main surface 1a side of the display device phosphor substrate 41, that is, the lower side in FIG. And an optical shutter 42 to be arranged.
  • the display device phosphor substrate 41 includes the transparent substrate 1.
  • the optical shutter 42 is a panel-like device, has a display area, and the inside of the display area is divided into a plurality of pixel areas.
  • the optical shutter 42 serves to emit light from the other surface by controlling the transmittance for each individual pixel region with respect to the light incident from one surface.
  • the optical shutter 42 it is sufficient to determine how much light is transmitted among the incident light in each pixel region, and it is not necessary to change the color of the light.
  • the optical shutter 42 is, for example, a liquid crystal display panel.
  • the optical shutter 42 may be a transmissive MEMS panel.
  • the phosphor substrate for display device and the optical shutter according to the present invention are combined, a display device with high light use efficiency can be obtained.
  • Embodiment 3 With reference to FIG. 7, the display apparatus in Embodiment 3 based on this invention is demonstrated.
  • the display device in the present embodiment is based on the display device described in the second embodiment. Further, as shown in FIG. 7, the light is emitted on the side opposite to the display device phosphor substrate 41 side of the optical shutter 42.
  • a backlight device 43 disposed to overlap the shutter 42 is provided.
  • the backlight device 43 includes an LED 431 and a light guide plate 432.
  • the LED 431 is disposed along the side surface of the light guide plate 432. Light emitted from the LED 431 enters the light guide plate 432 from the side surface of the light guide plate 432, travels through the light guide plate 432, and then exits from the main surface of the light guide plate 432 toward the optical shutter 42.
  • the phosphor substrate for display device, the optical shutter, and the backlight device according to the present invention are combined in an appropriate order, a display device with high light utilization efficiency can be obtained.
  • the configuration of the backlight device is not limited to that illustrated in FIG. 7 and may be other configurations.
  • the LEDs 433 may be planarly arranged without providing the light guide plate.
  • an organic EL panel 434 may be provided like a backlight 43j shown in FIG.
  • the phosphor substrate 41e for display device is basically the same as that described in the first embodiment, but not all of the plurality of monochromatic layers are phosphor layers.
  • the breakdown of the plurality of monochromatic layers is as follows.
  • a red phosphor layer 3r that absorbs blue light and emits red light is included as one of the plurality of monochrome layers, and blue light is emitted as the other one of the plurality of monochrome layers.
  • a green phosphor layer 3g that absorbs and emits green light is included, and a diffusion layer 3b that scatters blue light as blue light is included as yet another one of the plurality of monochromatic layers.
  • the phosphor substrate for display device in the present embodiment can use blue light 4b as incident light.
  • the incident blue light 4b the light incident on the red phosphor layer 3r is absorbed by the red phosphor layer 3r, but simultaneously causes red light emission from the red phosphor layer 3r.
  • the incident blue light 4b the light incident on the green phosphor layer 3g is absorbed by the green phosphor layer 3g, but simultaneously causes green light emission from the green phosphor layer 3g.
  • red light and green light can be obtained.
  • the red light and the green light from the red phosphor layer 3r and the green phosphor layer 3g are considered to emit light with omnidirectionality. However, as described above, the light traveling sideways is reflected to the viewing side 5. Since it can radiate
  • the display device 52 in the present embodiment is disposed so as to overlap the display device phosphor substrate 41e described in the fourth embodiment and the main surface 1a side of the display device phosphor substrate 41e, that is, the lower side in FIG.
  • An optical shutter 42 and a backlight device 43b that emits blue light are disposed so as to overlap the optical shutter 42 on the opposite side of the optical shutter 42 from the display device phosphor substrate 41e side.
  • the backlight device 43 b includes a blue LED 431 b and a light guide plate 432.
  • the backlight device 43b may be configured by a combination of an LED that emits light other than blue and a light guide plate that has a function of emitting incident light as blue light.
  • the blue light emitted from the backlight device 43b is emitted toward the optical shutter 42.
  • the phosphor substrate for display device, the optical shutter, and the backlight device emitting blue light are combined in an appropriate order according to the present invention, a display device with high light utilization efficiency is obtained. Can do.
  • the optical shutter 42 is a liquid crystal display panel.
  • a transparent substrate 421a which is a “light source side substrate” and a transparent substrate 421b which is a “viewing side substrate” are bonded to face each other so as to sandwich the liquid crystal layer 423 and the sealant 422.
  • the outer edge of the liquid crystal layer 423 is sealed with a sealant 422.
  • Polarizing plates 424a and 424b are attached to the surfaces facing the outside of the transparent substrates 421a and 421b.
  • the optical shutter 42 is preferably a liquid crystal display panel.
  • the optical shutter 42 preferably includes the liquid crystal layer 423. This is because if the liquid crystal layer is used to control the light transmittance, the optical shutter can be made thin, and the light transmittance for each pixel region can be easily controlled by an electric signal. is there.
  • a combination of a phosphor substrate 41 or 41e for a display device and an optical shutter 42 may be referred to as a display device. This is because even a structure that does not include a backlight device may be distributed as a display device.
  • the transparent substrates 421a and 421b included in the optical shutter 42 are also referred to as “light source side substrate” and “viewing side substrate”, respectively.
  • the phosphor substrate for display device in the sixth embodiment based on the present invention will be described.
  • the main surface 1a of the transparent substrate 1 is covered with a low refractive index layer 9, and a partition wall 2 having a groove 8 is further formed thereon.
  • a red phosphor layer 3r, a green phosphor layer 3g, and a diffusion layer 3b are disposed as monochromatic layers so as to be formed and separated by the partition walls 2.
  • the surface of the partition wall 2 that does not contact the monochromatic layer or the main surface 1 a is covered with the reflective film 6.
  • a planarization layer 19 is formed so as to cover these partition walls 2 and the monochromatic layer.
  • the planarizing layer 19 is made of an acrylic resin or the like.
  • the lower surface of the planarizing layer 19 is substantially flat.
  • a polarizing layer 12 made of a wire grid or the like is formed so as to cover the lower surface of the planarizing layer 19.
  • the optical shutter 42f includes a phosphor substrate 41f for display device and a transparent substrate 421a which is a “light source side substrate”.
  • a liquid crystal layer 423 that is sealed so as to be surrounded by the sealant 422 is disposed between the transparent substrate 421a and the phosphor substrate for display device 41f.
  • a polarizing plate 424a is attached to the surface of the transparent substrate 421a opposite to the display device phosphor substrate 41f.
  • a total of three transparent substrates are used to realize the display device.
  • only a total of two transparent substrates are used as in the example shown in FIG.
  • the display device 41f can be configured. Therefore, the display device can be further reduced in thickness. Further, since the number of transparent substrates to be used is reduced, the material cost of the display device can be reduced.
  • the transparent substrate 1 included in the phosphor substrate 41f for display device serves as a viewing side substrate.
  • FIG. 16 shows a flowchart of the method for manufacturing the phosphor substrate for display device in the present embodiment.
  • a step S1 of preparing a substrate having a main surface, and the main surface are dug down to a depth that has side surfaces on both sides to contact a monochromatic layer and separates the partition walls.
  • a transparent substrate 1 is prepared as shown in FIG.
  • Transparent substrate 1 has a main surface 1a.
  • a low refractive index layer 9 is formed on the main surface 1 a of the transparent substrate 1.
  • the low refractive index layer is a layer having a low refractive index as compared with both the monochromatic layer 3 and the partition 2.
  • the thickness of the low refractive index layer 9 is not less than 0.5 ⁇ m and not more than 3 ⁇ m.
  • the thickness of the low refractive index layer 9 is preferably about 1 ⁇ m.
  • the translucent partition 2 is formed so that the low-refractive-index layer 9 may be covered in the main surface 1a of the transparent substrate 1.
  • FIG. The partition wall 2 is formed at a plurality of locations. In FIG. 19, the partition walls 2 are formed so that two peaks are arranged, but a set of two adjacent mountains shown in FIG. 19 is one partition wall 2.
  • the partition wall 2 has side surfaces for contacting the monochromatic layer on both sides, and has a groove 8 in the center that is dug down to a depth at which the partition wall 2 is divided.
  • the thickness of the partition wall 2 is 3 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the partition wall 2 is preferably 5 ⁇ m or more and 20 ⁇ m or less. A detailed method of forming the partition wall 2 will be described later.
  • step S3 at least two monochromatic layers 3 are formed as shown in FIG.
  • the monochromatic layer 3 is formed so as to be in contact with the side surface for contacting the monochromatic layer of the partition wall 2.
  • a state in which three monochromatic layers 3 are formed is shown.
  • a red phosphor layer 3r is formed.
  • a green phosphor layer 3g is formed.
  • a diffusion layer 3b is formed.
  • the width W of one single color layer 3 is 20 ⁇ m or more and 200 ⁇ m or less.
  • the monochromatic layer 3 can be formed in a desired amount at a desired location between the partition walls 2 by applying a liquid material by an ink jet method.
  • an inorganic transparent film 13 is formed so as to cover the surfaces of the partition walls 2 and the monochromatic layer 3.
  • the inorganic transparent film 13 may be formed of, for example, SiO 2 or SiN.
  • the inorganic transparent film 13 has a thickness of 100 to 500 nm.
  • the reflective film 6 is formed so as to cover a portion of the surface of the partition wall 2 other than the side surface for contacting the monochromatic layer.
  • the reflective film 6 may be made of, for example, Al or Ag.
  • the thickness of the reflective film 6 is not less than 100 nm and not more than 500 nm.
  • the thickness of the reflective film 6 is preferably about 200 nm.
  • the low refractive index layer 10 is formed so as to cover the entire surface.
  • the method for forming the partition wall 2 in step S2 will be described in detail. As a method of forming the partition wall 2, here, two preferable methods are listed.
  • FIG. 24 shows a flowchart of the breakdown of step S2 in this case.
  • Step S2 for forming the partition walls 2 at a plurality of locations includes a step S201 for forming a resist layer by applying a positive resist to the main surface, and a step S202 for irradiating the resist layer with ultraviolet light through a photomask. And step S203 of developing the resist layer irradiated with the ultraviolet light.
  • a resist layer 20 is formed on the main surface 1a of the transparent substrate 1 with a positive resist.
  • the resist layer 20 is irradiated with ultraviolet light 15 through the photomask 14.
  • the photomask 14 has a desired pattern of light shielding film pattern disposed on the lower surface of a transparent plate.
  • the ultraviolet light 15 can be irradiated by a high pressure mercury lamp.
  • step S203 the resist layer 20 irradiated with the ultraviolet light 15 is developed. That is, as shown in FIG. 27, the exposed portion of the resist layer 20 is dissolved by an inorganic or organic alkali. In this way, the partition wall 2 is obtained.
  • the partition wall 2 may be further irradiated with ultraviolet light 15 as shown in FIG. It is good also as baking the structure containing the partition 2 obtained after image development. By these treatments, the partition wall 2 can be decolored or the hardness of the partition wall 2 can be increased. The partition 2 can be obtained as described above.
  • FIG. 29 shows a flowchart of the breakdown of step S2 in this case.
  • the main surface comes into contact with the step S211 of pouring the ultraviolet light curable transparent resin into the mold and the ultraviolet light curable transparent resin stored in the mold.
  • a step S212 of stacking a transparent substrate on the mold a step S213 of irradiating the ultraviolet light curable transparent resin sandwiched between the transparent substrate and the mold, and the transparent substrate And step S214 for removing the mold.
  • step S211 first, a liquid ultraviolet light curable transparent resin 17 is poured into the mold 16 as shown in FIG. A concave pattern corresponding to a convex pattern to be formed as the partition wall 2 is formed in the mold 16 in advance.
  • the transparent substrate 1 is stacked on the mold 16 so that the main surface 1a contacts the ultraviolet light curable transparent resin 17 stored in the mold 16.
  • the main surface 1a abuts is not limited to the case where the main surface 1a is in direct contact, but also includes contact through some film formed on the main surface 1a.
  • the main surface 1a since the main surface 1a is covered with the low refractive index layer 9, it is the low refractive index layer 9 that is directly in contact with the ultraviolet light curable transparent resin 17. Specifically, it can be considered that the main surface 1 a contacts the ultraviolet light curable transparent resin 17.
  • step S213 the ultraviolet light 15 is irradiated to the ultraviolet light curable transparent resin 17 sandwiched between the transparent substrate 1 and the mold 16. Thereby, the ultraviolet light curable transparent resin 17 is cured.
  • step S214 the mold 16 is removed from the transparent resin 1 as shown in FIG. By being irradiated with the ultraviolet light 15, the ultraviolet light curable transparent resin 17 is cured to form the partition 2.
  • the partition 2 can be obtained as described above.
  • a phosphor substrate for a display device having a structure capable of reflecting light traveling laterally from the monochromatic layer toward the viewing side is obtained. Therefore, a phosphor substrate for display device with improved light utilization efficiency can be obtained.
  • the partition wall 2 may have such a structure.
  • the cross-sectional shape tends to be formed in a mountain shape having a trapezoidal shape.
  • the partition wall 2 may have such a structure.
  • the bottom of the groove 8 may have a structure in which the width of the groove 8 is zero.
  • the bottom of the groove 8 may have a certain width.
  • the cross-sectional shape of the groove is a V-shape.
  • the side surfaces of the plurality of monochromatic layers 3 in contact with the partition walls 2 are within an angle range of 90 ° ⁇ 10 ° with respect to the main surface 1a. Make. This angle is more preferably within a range of 90 ° ⁇ 5 °. That is, in the present embodiment, the side surfaces of the plurality of monochromatic layers 3 that are in contact with the partition walls 2 are substantially perpendicular to the main surface 1a. Other configurations may be the same as those described in the above embodiments.
  • the side surface opposite to the side surface in contact with the monochromatic layer 3 should be inclined in order to reflect the light traveling from the inside of the monochromatic layer 3 to the viewing side.
  • a plurality of single color layers 3 are arranged.
  • the plurality of single color layers 3 may be phosphor layers that emit light of each color.
  • a structure as shown in FIGS. 37 and 38 can be considered.
  • a plurality of monochromatic layers other than the phosphor layer are also included.
  • a red phosphor layer 3r, a green phosphor layer 3g, and a diffusion layer 3b are arranged as a plurality of monochromatic layers.
  • the planarization layer 19 is formed so as to cover the partition wall 2 and the monochromatic layer, and the polarizing layer 12 made of a wire grid or the like is formed so as to cover the lower surface of the planarization layer 19.
  • the details of the planarizing layer 19 are as described in the sixth embodiment.
  • FIG. 39 shows a comparative example.
  • A is a portion where the thickness of the monochromatic layer 3 is insufficient.
  • the reflective film 6 covers the region A so that light from the light source does not directly enter the region A.
  • the width W of the opening can be increased.
  • the width occupied by one pixel on the main surface 1a is P, but the ratio of W to P can be made larger. Increasing the ratio of W to P leads to an improvement in light utilization efficiency.
  • the side surface of the plurality of monochromatic layers 3 that contacts the partition wall 2 is perpendicular to the main surface 1a, and the side surface of the partition wall 2 is opposite to the side surface that contacts the monochromatic layer 3
  • the following method may be employed.
  • a method of forming the light-transmitting partition 2 as the step S2 as a method of forming the light-transmitting partition 2 as the step S2, a lithography method as the first method and a mold as the second method are used. A method is considered.
  • the lithography using the negative resist and the lithography using the positive resist are combined. This is because lithography using a negative resist has a strong tendency to make the side wall of a pattern to be vertical, and lithography using a positive resist has a strong tendency to have a side wall of a pattern to be inclined.
  • the step S2 of forming the partition walls at a plurality of locations includes a step of forming a first resist layer by applying a negative resist to the main surface, Irradiating the first resist layer with ultraviolet light through one photomask, and developing the first resist layer after finishing irradiating with ultraviolet light through the first photomask; A step of forming a second resist layer by applying a positive resist on the main surface after developing the first resist layer, and irradiating the second resist layer with ultraviolet light through a second photomask; And a step of developing the second resist layer after finishing the step of irradiating with ultraviolet light through the second photomask. More specifically, it is as follows.
  • a resist layer 20n as a first resist layer is formed with a negative resist.
  • the resist layer 20n is irradiated with ultraviolet light 15 through a photomask 14n as a first photomask, as shown in FIG.
  • the photomask 14n is a light shielding film pattern having a desired pattern disposed on the lower surface of a transparent plate material, and an area corresponding to a portion other than the inclined portion of the partition wall 2 is opened.
  • the ultraviolet light 15 can be irradiated by a high pressure mercury lamp.
  • the resist layer 20n irradiated with the ultraviolet light 15 is developed. That is, as shown in FIG. 43, the unexposed portion of the resist layer 20n is dissolved by an inorganic or organic alkali. In this way, the partition first portion 2a that becomes a part of the partition later is obtained.
  • the structure including the partition first portion 2a is baked on the partition first portion 2a using a hot plate or an oven. By these treatments, the chemical resistance of the partition first portion 2a can be improved or the hardness can be increased.
  • a resist layer 20 as a second resist layer is formed on the main surface 1a on which the partition first portion 2a is formed with a positive resist.
  • the partition first portion 2 a is covered with the resist layer 20.
  • the resist layer 20 is irradiated with ultraviolet light 15 through a photomask 14e as a second photomask.
  • the light-shielding film of the photomask 14e covers regions corresponding to the flat portion and the inclined portion of the partition wall 2, and other regions are opened.
  • the resist layer 20 irradiated with the ultraviolet light 15 is developed. That is, as shown in FIG. 47, the exposed portion of the resist layer 20 is dissolved. In this way, the partition wall second portion 2b is obtained in addition to the partition wall first portion 2a already obtained. As shown in FIG. 48, the partition wall second portion 2b is decolored by further irradiating ultraviolet light 15, and the structure including the partition wall second portion 2b is baked.
  • the partition wall 2 including the partition first portion 2a and the partition second portion 2b can be obtained.
  • the partition wall 2 has a shape in which one side surface is perpendicular to the main surface 1a and the other side surface is inclined.
  • a liquid ultraviolet light curable transparent resin 17 is poured into the mold 16v.
  • a concave pattern corresponding to the convex pattern of the partition wall 2 is formed in advance on the mold 16v.
  • This concave shape has a shape in which one side surface is vertical and the other side surface is inclined.
  • the subsequent steps are the same as those described as the second method in the seventh embodiment. That is, the structure of FIG. 51 can be obtained by irradiating the ultraviolet light 15 with the transparent substrate 1 overlapped as shown in FIG.
  • the inclined surface tends to be an inclined surface having a curved sectional shape rather than an inclined surface having a straight sectional shape. Therefore, when the partition 2 is formed by lithography using a positive resist, for example, the structure shown in FIGS. 52 and 53 may be obtained.
  • the low refractive index layers 9 and 10 and the inorganic transparent film 13 are not shown.
  • the low refractive index layers 9 and 10 and the inorganic transparent film 13 are preferably provided, but are not essential.
  • the low refractive index layers 9 and 10 may be transparent to visible light and have a refractive index lower than that of the phosphor layer. If a fluorine-based material is selected as the material for the low refractive index layers 9 and 10, the refractive index can be lowered to about 1.3. In particular, the refractive index can be adjusted between 1.2 and 1.4 by using hollow silica or the like.
  • the material for forming the low refractive index layer is described in, for example, Japanese Patent Application Laid-Open No. 2001-233611 and Japanese Patent No. 3272111.
  • the low refractive index layer 10 is not required.
  • the present invention can be used for a phosphor substrate for a display device, a display device, and a method for manufacturing a phosphor substrate for a display device.
  • 1,901 transparent substrate 1a main surface, 2,902 partition, 2a partition first part, 2b partition second part, 3 monochromatic layer, 3r red phosphor layer, 3g green phosphor layer, 3b diffusion layer, 903, 903r 903g phosphor, 4 (from backlight) light, 4b blue light, 5 viewing side, 6,906 reflective film, 8 grooves, 9, 10 low refractive index layer, 11 light, 12 (formed by wire grid etc.

Abstract

This phosphor substrate (41) for a display device is provided with: a transparent substrate (1) as the substrate having a primary surface (1a); multiple monochrome layers (3) formed on said primary surface (1a), each having a lateral surface; and transparent partition walls (2) arranged on the primary surface (1a) so as to separate pairs of neighboring monochrome layers (3) from each other while in contact the lateral surfaces of the two monochrome layers. The center of the partition walls (2) have a groove portion (8) dug out to a depth so as to divide the partition walls (2). The nearer to the primary surface (1a), the narrower the groove (8) is, and said groove is covered on the inner surface by a reflection film (6).

Description

表示装置用蛍光体基板、表示装置および表示装置用蛍光体基板の製造方法Phosphor substrate for display device, display device, and method for manufacturing phosphor substrate for display device
 本発明は、表示装置用蛍光体基板、表示装置および表示装置用蛍光体基板の製造方法に関するものである。 The present invention relates to a phosphor substrate for a display device, a display device, and a method for manufacturing the phosphor substrate for a display device.
 従来の自発光型でないカラーの表示装置の一形態として、白色光を発するバックライトと光シャッタとを備えた構成のものがある。たとえば、表示装置の一種である液晶表示装置は、LED(Light Emitting Diode)や冷陰極管などの光源と、導光板と、光学シートとを組み合わせた装置をバックライトとして備えている。一方、液晶表示装置は、光シャッタとして液晶パネルを備えている。液晶パネルは2枚の基板とこれら2枚の基板の間に封入された液晶層とを備える。通常、2枚の基板のうち1枚の表面にはTFT素子が設けられ、もう1枚の表面にはカラーフィルタ(CF)が設けられている。バックライトの白色光はカラーフィルタとして設けられた赤、緑、青の3原色のいずれかのフィルタを透過することによって所望の色の光となって出射するが、カラーフィルタを透過することによって入射光のうち当該フィルタの色以外の成分が吸収されるので、光量としては約1/3に低下する。 As one form of a conventional color display device that is not a self-luminous type, there is a configuration including a backlight that emits white light and an optical shutter. For example, a liquid crystal display device, which is a type of display device, includes, as a backlight, a device that combines a light source such as an LED (Light Emitting Diode) or a cold cathode tube, a light guide plate, and an optical sheet. On the other hand, the liquid crystal display device includes a liquid crystal panel as an optical shutter. The liquid crystal panel includes two substrates and a liquid crystal layer sealed between the two substrates. Usually, a TFT element is provided on one surface of two substrates, and a color filter (CF) is provided on the other surface. The white light of the backlight is emitted as light of a desired color by passing through one of the three primary colors of red, green, and blue provided as a color filter, but is incident by passing through the color filter. Since light components other than the color of the filter are absorbed, the amount of light is reduced to about 1/3.
 これに対して、特開2000-131683号公報(特許文献1)には、青色光を発するバックライトと、液晶パネルと、蛍光体基板とを備える表示装置が提案されている。ここでいう蛍光体基板は、青色光を吸収して赤色光を発光する蛍光体と、青色光を吸収し緑色光を発光する蛍光体とを備えるものである。青色光は青色カラーフィルタを透過した光により表示されるが、光源光が元々青色であるので、青色カラーフィルタでの光の損失はほとんどない。このように特許文献1に記載された表示装置ではカラーフィルタでの吸収による光量ロスがなくなり、光の利用効率が向上する。 On the other hand, Japanese Patent Laid-Open No. 2000-131683 (Patent Document 1) proposes a display device including a backlight that emits blue light, a liquid crystal panel, and a phosphor substrate. The phosphor substrate herein includes a phosphor that absorbs blue light and emits red light, and a phosphor that absorbs blue light and emits green light. Blue light is displayed by light transmitted through the blue color filter, but since the light source light is originally blue, there is almost no loss of light in the blue color filter. As described above, in the display device described in Patent Document 1, there is no loss of light amount due to absorption by the color filter, and light utilization efficiency is improved.
 蛍光体基板において所望パターンの蛍光体層を形成する第1の方法としては、必要な領域にのみ蛍光体を供給配置して形成する方法が考えられる。第2の方法としては、基板全面を覆うように蛍光体層を形成し、必要な領域の蛍光体層のみを残して他は除去する方法が考えられる。 As a first method for forming a phosphor layer having a desired pattern on a phosphor substrate, a method in which a phosphor is supplied and arranged only in a necessary region can be considered. As a second method, a method may be considered in which a phosphor layer is formed so as to cover the entire surface of the substrate, and only the phosphor layer in a necessary region is left and the others are removed.
 第1の方法としてインクジェット法や種々の印刷法などがある。第2の方法としてフォトリソグラフィ法などがある。第2の方法は基板全体に蛍光体を塗布する。一方、第1の方法のインクジェット法は必要な領域にのみ蛍光体を塗布する。従って第2の方法と比較して第1の方法のインクジェット法は使用する蛍光体の量を削減できるという利点がある。また、第1の方法の中でも、インクジェット法は印刷法と比較して高精度のパターンを形成することができるため、インクジェット法が望ましい。 The first method includes an inkjet method and various printing methods. The second method includes a photolithography method. In the second method, the phosphor is applied to the entire substrate. On the other hand, the first ink jet method applies a phosphor only to a necessary region. Therefore, compared with the second method, the ink jet method of the first method has an advantage that the amount of phosphor to be used can be reduced. Among the first methods, the inkjet method is preferable because the inkjet method can form a pattern with higher accuracy than the printing method.
 クロストーク低減のためには光シャッタとカラーフィルタとの間の距離はできるだけ短くすることが望まれる。したがって、カラーフィルタを構成する蛍光体は蛍光体基板の基板の光シャッタ側すなわち光シャッタを経た光が入射する側の表面に配置する必要がある。ここでいう「クロストーク」とは、1つの画素の光シャッタを通過した光が、その画素に正しく対応する色の蛍光体の領域以外の蛍光体の領域に入射することをいう。クロストークが生じると表示品位が低下するので、クロストークはなるべく少ないかまたはないことが望ましい。ただし、ここでいう「画素」とは、単色の画素をいう。たとえば画像の中のカラー表示の1つの要素を3つの異なる色の単色表示の組合せで表現している場合、その3つの色のうちの1色分を表示するための領域をいう。 In order to reduce crosstalk, it is desirable to make the distance between the optical shutter and the color filter as short as possible. Therefore, the phosphor constituting the color filter needs to be disposed on the surface of the phosphor substrate on the side of the optical shutter, that is, the side on which light that has passed through the optical shutter enters. “Crosstalk” here means that light that has passed through the optical shutter of one pixel enters a phosphor region other than the phosphor region of the color that correctly corresponds to that pixel. Since display quality deteriorates when crosstalk occurs, it is desirable that the crosstalk be as little or as little as possible. Here, the “pixel” refers to a monochrome pixel. For example, when one element of color display in an image is expressed by a combination of three different colors of single color display, it means an area for displaying one of the three colors.
 青色光源を利用した液晶表示装置のもうひとつの例が特開2009-244383号公報(特許文献2)に記載されている。この液晶表示装置は、青色光に励起されて赤色の蛍光を発する蛍光体、および、青色光に励起されて緑色の蛍光を発する蛍光体を有するカラーフィルタを備え、さらに、少なくとも青色光を散乱させる光散乱フィルムを備えている。 Another example of a liquid crystal display device using a blue light source is described in Japanese Unexamined Patent Application Publication No. 2009-244383 (Patent Document 2). The liquid crystal display device includes a color filter having a phosphor that emits red fluorescence when excited by blue light, and a phosphor that emits green fluorescence when excited by blue light, and further scatters at least blue light. A light scattering film is provided.
特開2000-131683号公報JP 2000-131683 A 特開2009-244383号公報JP 2009-244383 A
 特許文献1に記載された表示装置においては、光の利用効率が向上するとされているが、カラーフィルタとしての蛍光体をインクジェットで形成する場合、異なる色のフィルタ同士を隔てるために遮光性の隔壁が必要となる。たとえば図54に示すように、透明基板901の視認側5とは反対側の面に隔壁902が配列され、これらの隔壁902の間に蛍光体903r,903gが配置されている。バックライトからの光4は下方から蛍光体903r,903gへと入射する。一方、カラーフィルタとしての蛍光体903r,903gで所望の色に変換された光は、図54において蛍光体903rの中に模式的に表示するように、ランバーシアン分布すなわち無指向性を有する状態で発光する。したがって、視認側5に光が進行するだけでなく視認側5ではない方向にも多くの光が進行する。この際に蛍光体の側方に隣接する隔壁902に向かって進行した光は隔壁902によって吸収されてしまう。 In the display device described in Patent Document 1, it is said that the light use efficiency is improved. However, when a phosphor as a color filter is formed by inkjet, a light-shielding partition wall is used to separate different color filters from each other. Is required. For example, as shown in FIG. 54, partition walls 902 are arranged on the surface of the transparent substrate 901 opposite to the viewing side 5, and phosphors 903 r and 903 g are disposed between these partition walls 902. The light 4 from the backlight enters the phosphors 903r and 903g from below. On the other hand, the light converted into a desired color by the phosphors 903r and 903g as color filters is in a state having a Lambertian distribution, that is, omnidirectionality, as schematically displayed in the phosphor 903r in FIG. Emits light. Therefore, not only light travels to the viewing side 5, but also much light travels in a direction that is not the viewing side 5. At this time, the light traveling toward the partition 902 adjacent to the side of the phosphor is absorbed by the partition 902.
 蛍光体から発光する光の一部が隔壁によって吸収されてしまうということは、光の利用効率の低下につながる。 The fact that part of the light emitted from the phosphor is absorbed by the barrier ribs leads to a decrease in light utilization efficiency.
 そこで、本発明は、光の利用効率を上げることができる表示装置用蛍光体基板、表示装置および表示装置用蛍光体基板の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a phosphor substrate for a display device, a display device, and a method for manufacturing the phosphor substrate for a display device that can increase the light utilization efficiency.
 上記目的を達成するため、本発明に基づく表示装置用蛍光体基板は、主表面を有する基板と、上記主表面に形成され、それぞれ側面を有する複数の単色層と、上記複数の単色層のうち互いに隣り合う2つの単色層の上記各側面に当接しつつ上記2つの単色層を互いに隔てるように上記主表面に配置された透光性の隔壁とを備える。上記隔壁は、上記隔壁を分断する深さまで掘り下げられた溝部を中央に有する。上記溝部は、上記主表面に近づくほど幅が狭くなっており、上記溝部の内面は反射膜で覆われている。 In order to achieve the above object, a phosphor substrate for a display device according to the present invention includes a substrate having a main surface, a plurality of monochromatic layers formed on the main surface, each having a side surface, and the plurality of monochromatic layers. A translucent partition wall disposed on the main surface so as to separate the two monochrome layers from each other while contacting the side surfaces of the two monochrome layers adjacent to each other. The said partition has the groove part dug down to the depth which divides the said partition in the center. The groove portion becomes narrower as it approaches the main surface, and the inner surface of the groove portion is covered with a reflective film.
 本発明によれば、各単色層において無指向性の発光が起こった際に、側方に進行した光を反射膜によって視認側に向けて反射し、視認側に向けて基板から出射させることができるので、光の利用効率を上げることができる。 According to the present invention, when omnidirectional light emission occurs in each monochromatic layer, the light traveling sideways is reflected toward the viewing side by the reflective film and emitted from the substrate toward the viewing side. As a result, the light utilization efficiency can be increased.
本発明に至る前に発明者らが検討した構造の拡大断面図である。It is an expanded sectional view of the structure which inventors examined before reaching this invention. 本発明に至る前に発明者らが検討した構造の作製途中段階の拡大断面図である。It is an expanded sectional view in the middle of preparation of the structure which inventors examined before reaching the present invention. 本発明に基づく実施の形態1における表示装置用蛍光体基板の断面図である。It is sectional drawing of the fluorescent substance substrate for display apparatuses in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における表示装置用蛍光体基板の第1の変形例の溝部近傍の拡大断面図である。It is an expanded sectional view of the groove part vicinity of the 1st modification of the fluorescent substance substrate for display apparatuses in Embodiment 1 based on this invention. 本発明に基づく実施の形態1における表示装置用蛍光体基板の第2の変形例の溝部近傍の拡大断面図である。It is an expanded sectional view of the groove part vicinity of the 2nd modification of the fluorescent substance substrate for display apparatuses in Embodiment 1 based on this invention. 本発明に基づく実施の形態2における表示装置の断面図である。It is sectional drawing of the display apparatus in Embodiment 2 based on this invention. 本発明に基づく実施の形態3における表示装置の説明図である。It is explanatory drawing of the display apparatus in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における表示装置の第1の変形例の説明図である。It is explanatory drawing of the 1st modification of the display apparatus in Embodiment 3 based on this invention. 本発明に基づく実施の形態3における表示装置の第2の変形例の説明図である。It is explanatory drawing of the 2nd modification of the display apparatus in Embodiment 3 based on this invention. 本発明に基づく実施の形態4における表示装置用蛍光体基板の説明図である。It is explanatory drawing of the fluorescent substance substrate for display apparatuses in Embodiment 4 based on this invention. 本発明に基づく実施の形態5における表示装置の第1の説明図である。It is 1st explanatory drawing of the display apparatus in Embodiment 5 based on this invention. 光シャッタの断面図である。It is sectional drawing of an optical shutter. 本発明に基づく実施の形態5における表示装置の第2の説明図である。It is 2nd explanatory drawing of the display apparatus in Embodiment 5 based on this invention. 本発明に基づく実施の形態6における表示装置用蛍光体基板の説明図である。It is explanatory drawing of the fluorescent substance substrate for display apparatuses in Embodiment 6 based on this invention. 本発明に基づく実施の形態6における表示装置用蛍光体基板を用いて表示装置を作製した例の断面図である。It is sectional drawing of the example which produced the display apparatus using the fluorescent substance substrate for display apparatuses in Embodiment 6 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法の第7の工程の説明図である。It is explanatory drawing of the 7th process of the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をリソグラフィで行なう場合のフローチャートである。It is a flowchart at the time of performing the process of forming a partition among the manufacturing methods of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention by lithography. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をリソグラフィで行なう場合の第1の工程の説明図である。It is explanatory drawing of the 1st process in the case of performing the process of forming a partition among the manufacturing methods of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention by lithography. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をリソグラフィで行なう場合の第2の工程の説明図である。It is explanatory drawing of the 2nd process in the case of performing the process of forming a partition among the manufacturing methods of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention by lithography. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をリソグラフィで行なう場合の第3の工程の説明図である。It is explanatory drawing of the 3rd process in the case of performing the process of forming a partition among the manufacturing methods of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention by lithography. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をリソグラフィで行なう場合の第4の工程の説明図である。It is explanatory drawing of the 4th process in the case of performing the process of forming a partition among the manufacturing methods of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention by lithography. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をモールドで行なう場合のフローチャートである。It is a flowchart at the time of performing the process of forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention by a mold. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をモールドで行なう場合の第1の工程の説明図である。It is explanatory drawing of the 1st process in the case of performing the process of forming a partition among the manufacturing methods of the phosphor substrate for display apparatuses in Embodiment 7 based on this invention with a mold. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をモールドで行なう場合の第2の工程の説明図である。It is explanatory drawing of the 2nd process at the time of performing the process of forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention by a mold. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法のうち隔壁を形成する工程をモールドで行なう場合の第3の工程の説明図である。It is explanatory drawing of the 3rd process in the case of performing the process of forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention by a mold. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法で得られる隔壁の形状の第1の例の断面図である。It is sectional drawing of the 1st example of the shape of the partition obtained by the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法で得られる隔壁の形状の第2の例の断面図である。It is sectional drawing of the 2nd example of the shape of the partition obtained by the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法で得られる隔壁の形状の第3の例の断面図である。It is sectional drawing of the 3rd example of the shape of the partition obtained by the manufacturing method of the fluorescent substance substrate for display apparatuses in Embodiment 7 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の断面図である。It is sectional drawing of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の第1の変形例の断面図である。It is sectional drawing of the 1st modification of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の第2の変形例の断面図である。It is sectional drawing of the 2nd modification of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の効果を説明するための比較例の拡大断面図である。It is an expanded sectional view of the comparative example for demonstrating the effect of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の効果を説明するための拡大断面図である。It is an expanded sectional view for demonstrating the effect of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第7の工程の説明図である。It is explanatory drawing of the 7th process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第1の方法の第8の工程の説明図である。It is explanatory drawing of the 8th process of the 1st method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第2の方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the 2nd method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第2の方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the 2nd method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. 本発明に基づく実施の形態8における表示装置用蛍光体基板の製造方法のうち隔壁を形成するための第2の方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the 2nd method for forming a partition among the manufacturing methods of the fluorescent substance substrate for display apparatuses in Embodiment 8 based on this invention. ポジ型レジストを用いたリソグラフィによって得られる構造の第1の例の断面図である。It is sectional drawing of the 1st example of the structure obtained by the lithography using a positive resist. ポジ型レジストを用いたリソグラフィによって得られる構造の第2の例の断面図である。It is sectional drawing of the 2nd example of the structure obtained by the lithography using a positive resist. 従来技術に基づく表示装置用蛍光体基板の説明図である。It is explanatory drawing of the phosphor substrate for display apparatuses based on a prior art.
 まず、本発明に至る前に発明者らが検討した構造について説明する。
 図1に示すように、蛍光体903の側面に視認側5に向って広がるテーパ形状の反射膜906を設けることとすれば、蛍光体903から側方に向かう光は反射膜906によって視認側5に反射される。したがって、蛍光体903から発せられる光のより多くが視認側5に向かうこととなるので、光の利用効率を向上させることができると考えられる。
First, the structure studied by the inventors before reaching the present invention will be described.
As shown in FIG. 1, if a reflective film 906 having a tapered shape that spreads toward the viewing side 5 is provided on the side surface of the phosphor 903, light directed from the phosphor 903 to the side is reflected by the reflecting film 906 on the viewing side 5. Is reflected. Therefore, more of the light emitted from the phosphor 903 is directed to the viewing side 5, and it is considered that the light use efficiency can be improved.
 上述の第1の方法により蛍光体を塗布し、かつ蛍光体のパターンの側面にテーパ形状の反射膜を設けるためには、蛍光体の塗布前に予め図2に示すような隔壁902、すなわち、視認側5が広くなるようなテーパ形状を有する隔壁902を用意し、このテーパ形状の斜面907に反射膜を設ける必要がある。この場合、「視認側」とは、蛍光体基板の母材となる透明基板901側である。したがって、透明基板901から離れるほど開口距離が狭くなるようにオーバハングした斜面907に反射膜を形成することが求められる。しかし、反射膜を形成するために通常用いられるスパッタリング法では、このようないわゆる逆テーパ形状の斜面907には反射膜を形成することができない。 In order to apply the phosphor by the above-described first method and provide a tapered reflective film on the side surface of the phosphor pattern, the barrier ribs 902 as shown in FIG. It is necessary to prepare a partition wall 902 having a tapered shape so that the viewing side 5 is wide, and to provide a reflective film on the tapered slope 907. In this case, the “viewing side” is the transparent substrate 901 side that is the base material of the phosphor substrate. Accordingly, it is required to form a reflective film on the overhanging slope 907 so that the opening distance becomes narrower as the distance from the transparent substrate 901 increases. However, the sputtering method usually used for forming the reflective film cannot form the reflective film on the so-called reverse tapered slope 907.
 そこで、発明者らは、スパッタリング方法によって実現可能で、なおかつ光の利用効率を向上させることができる発明として、本発明をなすに至った。 Therefore, the inventors have made the present invention as an invention that can be realized by a sputtering method and that can improve the utilization efficiency of light.
 (実施の形態1)
 図3を参照して、本発明に基づく実施の形態1における表示装置用蛍光体基板について説明する。表示装置用蛍光体基板41は、主表面1aを有する基板としての透明基板1と、主表面1aに形成され、それぞれ側面を有する複数の単色層3と、複数の単色層3のうち互いに隣り合う2つの単色層の前記各側面に当接しつつ前記2つの単色層を互いに隔てるように主表面1aに配置された透光性の隔壁2とを備える。隔壁2は、隔壁2を分断する深さまで掘り下げられた溝部8を中央に有する。溝部8は、主表面1aに近づくほど幅が狭くなっている。溝部8の内面は反射膜6で覆われている。
(Embodiment 1)
With reference to FIG. 3, the phosphor substrate for display device according to the first embodiment of the present invention will be described. The phosphor substrate 41 for a display device is adjacent to each other among the transparent substrate 1 as the substrate having the main surface 1a, the plurality of single-color layers 3 formed on the main surface 1a and each having a side surface, and the plurality of single-color layers 3. A translucent partition wall 2 disposed on the main surface 1a so as to be in contact with the side surfaces of the two monochrome layers and to separate the two monochrome layers from each other. The partition wall 2 has a groove 8 in the center that is dug down to a depth at which the partition wall 2 is divided. Groove portion 8 becomes narrower as it approaches main surface 1a. The inner surface of the groove 8 is covered with the reflective film 6.
 透明基板1はたとえばガラス基板である。複数の単色層3は、たとえば赤、緑、青などのように、3原色の組合せをひとまとまりとして、配列されていることが好ましい。複数の単色層3はそれぞれの色の光を発する蛍光体層であってよい。 The transparent substrate 1 is, for example, a glass substrate. The plurality of monochromatic layers 3 are preferably arranged by combining a combination of the three primary colors, such as red, green, and blue. The plurality of monochromatic layers 3 may be phosphor layers that emit light of each color.
 本実施の形態における表示装置用蛍光体基板では、光4が下方から各単色層3に入射し、各単色層3において無指向性の発光が起こったとしても、隔壁2は透光性であるので、側方に進行した光11は、隔壁2を透過して反射膜6に到達することができる。反射膜6は、主表面1aに近づくほど幅が狭くなる形状の溝部8の内面を覆うものであるので、光11は反射膜6によって視認側5に向けて反射する。こうして、元々側方に進行していた光11は視認側5に向かって透明基板1から出射することとなる。本実施の形態では、このようにして光の利用効率を向上させることができる。 In the phosphor substrate for display device according to the present embodiment, even when light 4 is incident on each monochromatic layer 3 from below and non-directional light emission occurs in each monochromatic layer 3, the partition walls 2 are translucent. Therefore, the light 11 traveling to the side can pass through the partition wall 2 and reach the reflection film 6. Since the reflection film 6 covers the inner surface of the groove portion 8 whose width becomes narrower as it approaches the main surface 1 a, the light 11 is reflected by the reflection film 6 toward the viewing side 5. Thus, the light 11 that originally traveled to the side is emitted from the transparent substrate 1 toward the viewing side 5. In this embodiment, the light utilization efficiency can be improved in this way.
 なお、透明基板1の主表面1aと隔壁2および単色層3との間には低屈折率層9が設けられていることが好ましい。単色層3の視認側5とは逆側の表面には低屈折率層10が設けられていることが好ましい。低屈折率層9,10が設けられていれば蛍光体3から不適切な向きに出射しようとする多くの光を低屈折率層9,10によって反射させて反射膜6に導くことができる。これらの光を反射膜6で反射させることによって、より高い確率で透明基板1から視認側5に出射させることができるので、光の利用効率の向上に貢献する。 Note that a low refractive index layer 9 is preferably provided between the main surface 1 a of the transparent substrate 1 and the partition walls 2 and the monochromatic layer 3. A low refractive index layer 10 is preferably provided on the surface of the monochromatic layer 3 opposite to the viewing side 5. If the low refractive index layers 9 and 10 are provided, a lot of light that is going to be emitted from the phosphor 3 in an inappropriate direction can be reflected by the low refractive index layers 9 and 10 and guided to the reflective film 6. By reflecting these lights with the reflective film 6, the light can be emitted from the transparent substrate 1 to the viewing side 5 with higher probability, which contributes to the improvement of the light utilization efficiency.
 溝部8の断面形状はV字形状であることが好ましい。溝部8がV字形状であれば、側方に向かう光を効率良く視認側5に向けて反射することができるからである。溝部の断面形状はV字形状でなくても透明基板の主表面に近づくほど幅が狭くなる形状であれば、光を視認側に向けて反射することができるので、一応の効果を奏することができる。 The cross-sectional shape of the groove 8 is preferably V-shaped. This is because if the groove 8 is V-shaped, the light directed toward the side can be efficiently reflected toward the viewing side 5. Even if the cross-sectional shape of the groove portion is not V-shaped, if the width becomes narrower as it approaches the main surface of the transparent substrate, light can be reflected toward the viewing side, so that a temporary effect can be achieved. it can.
 たとえば図4に示す溝部8iのように断面形状が丸みを帯びていてもよい。また、図5に示す溝部8jのように溝の底において透明基板1の主表面1aが露出していてもよい。しかし、図3に示したような正しいV字形状が最も好ましい。 For example, the cross-sectional shape may be round like a groove 8i shown in FIG. Moreover, the main surface 1a of the transparent substrate 1 may be exposed at the bottom of the groove as in the groove portion 8j shown in FIG. However, the correct V shape as shown in FIG. 3 is most preferred.
 隔壁2の、蛍光体3側面に当接する面と主表面1aに当接する面以外は、反射膜6で覆われていることが好ましい。このように反射膜6が形成されていれば、蛍光体3から隔壁2内部に進行する光を確実に反射膜6で反射させることができるからである。 It is preferable that the barrier rib 2 is covered with the reflective film 6 except for the surface that contacts the side surface of the phosphor 3 and the surface that contacts the main surface 1a. This is because if the reflection film 6 is formed in this way, the light traveling from the phosphor 3 to the inside of the partition wall 2 can be reliably reflected by the reflection film 6.
 前記複数の単色層3のうちのひとつとして、赤色に発光する赤色蛍光体層3rが含まれ、前記複数の単色層3のうちの他のひとつとして緑色に発光する緑色蛍光体層3gが含まれることが好ましい。これらが含まれていれば、少なくとも赤色および緑色の光を視認側に向けて出射することができ、カラー表示がしやすくなるからである。 One of the plurality of monochrome layers 3 includes a red phosphor layer 3r that emits red light, and another one of the plurality of monochrome layers 3 includes a green phosphor layer 3g that emits green light. It is preferable. If these are included, at least red and green light can be emitted toward the viewing side, and color display is facilitated.
 (実施の形態2)
 図6を参照して、本発明に基づく実施の形態2における表示装置について説明する。本実施の形態における表示装置51は、実施の形態1で述べたいずれかの表示装置用蛍光体基板41と、表示装置用蛍光体基板41の主表面1a側すなわち図6における下側に重ねて配置される光シャッタ42とを備える。表示装置用蛍光体基板41は透明基板1を含む。光シャッタ42は、パネル状の装置であり、表示領域を有し、表示領域の内部は複数の画素領域に区分されている。光シャッタ42は、一方の面から入射した光に対して、個別の画素領域ごとに透過率を制御して他方の面から出射する役割を果たす。光シャッタ42においては、各画素領域において入射した光のうちどの程度の光量を透過するかを決定すれば十分であり、その光の色を変更することまでは必要ない。光シャッタ42はたとえば液晶表示パネルである。光シャッタ42は、透過型のMEMSパネルであってもよい。
(Embodiment 2)
With reference to FIG. 6, the display apparatus in Embodiment 2 based on this invention is demonstrated. The display device 51 in the present embodiment is overlapped with any of the display device phosphor substrates 41 described in the first embodiment and the main surface 1a side of the display device phosphor substrate 41, that is, the lower side in FIG. And an optical shutter 42 to be arranged. The display device phosphor substrate 41 includes the transparent substrate 1. The optical shutter 42 is a panel-like device, has a display area, and the inside of the display area is divided into a plurality of pixel areas. The optical shutter 42 serves to emit light from the other surface by controlling the transmittance for each individual pixel region with respect to the light incident from one surface. In the optical shutter 42, it is sufficient to determine how much light is transmitted among the incident light in each pixel region, and it is not necessary to change the color of the light. The optical shutter 42 is, for example, a liquid crystal display panel. The optical shutter 42 may be a transmissive MEMS panel.
 本実施の形態では、本発明に基づく表示装置用蛍光体基板と光シャッタとが組み合わされているので、光の利用効率が高い表示装置とすることができる。 In the present embodiment, since the phosphor substrate for display device and the optical shutter according to the present invention are combined, a display device with high light use efficiency can be obtained.
 (実施の形態3)
 図7を参照して、本発明に基づく実施の形態3における表示装置について説明する。本実施の形態における表示装置は、実施の形態2で述べた表示装置を基本とし、さらに図7に示すように、光シャッタ42の、表示装置用蛍光体基板41の側とは反対側において光シャッタ42と重ねて配置されるバックライト装置43を備える。図7に示した例では、バックライト装置43は、LED431と導光板432とを備える。LED431は導光板432の側面に沿うように配置されている。LED431から出射した光は、導光板432の側面から導光板432の内部に向かって入射し、導光板432内を進行した後に、導光板432の主表面から光シャッタ42に向かって出射する。
(Embodiment 3)
With reference to FIG. 7, the display apparatus in Embodiment 3 based on this invention is demonstrated. The display device in the present embodiment is based on the display device described in the second embodiment. Further, as shown in FIG. 7, the light is emitted on the side opposite to the display device phosphor substrate 41 side of the optical shutter 42. A backlight device 43 disposed to overlap the shutter 42 is provided. In the example illustrated in FIG. 7, the backlight device 43 includes an LED 431 and a light guide plate 432. The LED 431 is disposed along the side surface of the light guide plate 432. Light emitted from the LED 431 enters the light guide plate 432 from the side surface of the light guide plate 432, travels through the light guide plate 432, and then exits from the main surface of the light guide plate 432 toward the optical shutter 42.
 本実施の形態では、本発明に基づく表示装置用蛍光体基板と光シャッタとバックライト装置とが適切な順序で組み合わせられているので、光の利用効率が高い表示装置とすることができる。 In the present embodiment, since the phosphor substrate for display device, the optical shutter, and the backlight device according to the present invention are combined in an appropriate order, a display device with high light utilization efficiency can be obtained.
 なお、バックライト装置の構成は図7に例示したものに限らず、他の構成であってもよい。たとえば図8に示すバックライト装置43iのように、導光板を備えずに、LED433を平面的に配列したものであってもよい。あるいは、たとえば図9に示すバックライト43jのように、有機ELパネル434を備えるものであってもよい。 Note that the configuration of the backlight device is not limited to that illustrated in FIG. 7 and may be other configurations. For example, as in the backlight device 43 i shown in FIG. 8, the LEDs 433 may be planarly arranged without providing the light guide plate. Alternatively, for example, an organic EL panel 434 may be provided like a backlight 43j shown in FIG.
 (実施の形態4)
 図10を参照して、本発明に基づく実施の形態4における表示装置用蛍光体基板について説明する。この表示装置用蛍光体基板41eは、基本的には実施の形態1で説明したものと同様であるが、複数の単色層の全てが蛍光体層というわけではない。表示装置用蛍光体基板41eにおいては、複数の単色層の内訳は以下のとおりである。本実施の形態では、複数の単色層のうちのひとつとして、青色光を吸収して赤色に発光する赤色蛍光体層3rが含まれ、前記複数の単色層のうちの他のひとつとして青色光を吸収して緑色に発光する緑色蛍光体層3gが含まれ、前記複数の単色層のうちのさらに他のひとつとして、青色光を青色光として散乱させる拡散層3bが含まれる。
(Embodiment 4)
With reference to FIG. 10, the phosphor substrate for display device in the fourth embodiment based on the present invention will be described. The phosphor substrate 41e for display device is basically the same as that described in the first embodiment, but not all of the plurality of monochromatic layers are phosphor layers. In the phosphor substrate 41e for display device, the breakdown of the plurality of monochromatic layers is as follows. In the present embodiment, a red phosphor layer 3r that absorbs blue light and emits red light is included as one of the plurality of monochrome layers, and blue light is emitted as the other one of the plurality of monochrome layers. A green phosphor layer 3g that absorbs and emits green light is included, and a diffusion layer 3b that scatters blue light as blue light is included as yet another one of the plurality of monochromatic layers.
 本実施の形態では、実施の形態1で説明したような効果を奏することができる。すなわち、側方に進行する光を反射膜6によって視認側5に向かって反射することができるので、光の利用効率を向上させることができる。本実施の形態における表示装置用蛍光体基板は、入射する光として青色光4bを利用することができる。入射した青色光4bのうち赤色蛍光体層3rに入射したものは赤色蛍光体層3rに吸収されるが同時に赤色蛍光体層3rから赤色の発光を引き起こす。入射した青色光4bのうち緑色蛍光体層3gに入射したものは緑色蛍光体層3gに吸収されるが同時に緑色蛍光体層3gから緑色の発光を引き起こす。こうして、赤色光および緑色光を得ることができる。赤色蛍光体層3rおよび緑色蛍光体層3gからの赤色光および緑色光は無指向性を以って発光すると考えられるが、上述のように側方に進行する光を反射して視認側5に向けて出射することができるので、光の利用効率を向上させることができる。 In the present embodiment, the effects described in the first embodiment can be obtained. That is, since the light traveling sideways can be reflected toward the viewing side 5 by the reflective film 6, the light utilization efficiency can be improved. The phosphor substrate for display device in the present embodiment can use blue light 4b as incident light. Of the incident blue light 4b, the light incident on the red phosphor layer 3r is absorbed by the red phosphor layer 3r, but simultaneously causes red light emission from the red phosphor layer 3r. Of the incident blue light 4b, the light incident on the green phosphor layer 3g is absorbed by the green phosphor layer 3g, but simultaneously causes green light emission from the green phosphor layer 3g. Thus, red light and green light can be obtained. The red light and the green light from the red phosphor layer 3r and the green phosphor layer 3g are considered to emit light with omnidirectionality. However, as described above, the light traveling sideways is reflected to the viewing side 5. Since it can radiate | emit toward, the utilization efficiency of light can be improved.
 (実施の形態5)
 図11を参照して、本発明に基づく実施の形態5における表示装置について説明する。本実施の形態における表示装置52は、実施の形態4で説明した表示装置用蛍光体基板41eと、表示装置用蛍光体基板41eの主表面1a側すなわち図11における下側に重ねて配置される光シャッタ42と、光シャッタ42の、表示装置用蛍光体基板41eの側とは反対側において光シャッタ42と重ねて配置され、青色光を発するバックライト装置43bとを備える。バックライト装置43bは、青色LED431bと導光板432とを備える。あるいは、バックライト装置43bは、青色以外の光を発するLEDと、入射した光を青色光として出射する機能を備えた導光板との組合せによって構成してもよい。バックライト装置43bから出射する青色光は、光シャッタ42に向かって出射する。
(Embodiment 5)
With reference to FIG. 11, a display device according to Embodiment 5 of the present invention will be described. The display device 52 in the present embodiment is disposed so as to overlap the display device phosphor substrate 41e described in the fourth embodiment and the main surface 1a side of the display device phosphor substrate 41e, that is, the lower side in FIG. An optical shutter 42 and a backlight device 43b that emits blue light are disposed so as to overlap the optical shutter 42 on the opposite side of the optical shutter 42 from the display device phosphor substrate 41e side. The backlight device 43 b includes a blue LED 431 b and a light guide plate 432. Alternatively, the backlight device 43b may be configured by a combination of an LED that emits light other than blue and a light guide plate that has a function of emitting incident light as blue light. The blue light emitted from the backlight device 43b is emitted toward the optical shutter 42.
 本実施の形態では、本発明に基づく表示装置用蛍光体基板と光シャッタと青色光を発するバックライト装置とが適切な順序で組み合わせられているので、光の利用効率が高い表示装置とすることができる。 In the present embodiment, since the phosphor substrate for display device, the optical shutter, and the backlight device emitting blue light are combined in an appropriate order according to the present invention, a display device with high light utilization efficiency is obtained. Can do.
 光シャッタ42の詳細な構造の一例を図12に示す。この例では光シャッタ42は液晶表示パネルである。「光源側基板」である透明基板421aと「視認側基板」である透明基板421bとが液晶層423およびシール剤422を挟み込むようにして対向して貼り合せられている。液晶層423はシール剤422によって外縁を封止されている。透明基板421a,421bの外側を向く表面には偏光板424a,424bが貼られている。光シャッタ42はこのように液晶表示パネルであることが好ましい。言い換えれば、光シャッタ42は液晶層423を含むことが好ましい。なぜなら、液晶層を用いて光の透過率を制御することとすれば、光シャッタの薄型化が可能であり、電気信号によって画素領域ごとの光の透過率を容易に制御することができるからである。 An example of the detailed structure of the optical shutter 42 is shown in FIG. In this example, the optical shutter 42 is a liquid crystal display panel. A transparent substrate 421a which is a “light source side substrate” and a transparent substrate 421b which is a “viewing side substrate” are bonded to face each other so as to sandwich the liquid crystal layer 423 and the sealant 422. The outer edge of the liquid crystal layer 423 is sealed with a sealant 422. Polarizing plates 424a and 424b are attached to the surfaces facing the outside of the transparent substrates 421a and 421b. Thus, the optical shutter 42 is preferably a liquid crystal display panel. In other words, the optical shutter 42 preferably includes the liquid crystal layer 423. This is because if the liquid crystal layer is used to control the light transmittance, the optical shutter can be made thin, and the light transmittance for each pixel region can be easily controlled by an electric signal. is there.
 図13に示すように、表示装置用蛍光体基板41または41eと光シャッタ42とを組み合わせたものを表示装置と称してもよい。このようにバックライト装置を含まない構造であっても、表示装置として流通する場合があるからである。光シャッタ42に含まれる透明基板421a,421bはそれぞれ「光源側基板」、「視認側基板」とも呼ばれる。 As shown in FIG. 13, a combination of a phosphor substrate 41 or 41e for a display device and an optical shutter 42 may be referred to as a display device. This is because even a structure that does not include a backlight device may be distributed as a display device. The transparent substrates 421a and 421b included in the optical shutter 42 are also referred to as “light source side substrate” and “viewing side substrate”, respectively.
 (実施の形態6)
 図14を参照して、本発明に基づく実施の形態6における表示装置用蛍光体基板について説明する。本実施の形態における表示装置用蛍光体基板41fは、図14に示すように、透明基板1の主表面1aが低屈折率層9で覆われ、さらにその上に、溝部8を有する隔壁2が形成され、隔壁2で隔てられるように、単色層としての赤色蛍光体層3r、緑色蛍光体層3gおよび拡散層3bが配置されたものである。隔壁2のうち単色層にも主表面1aにも接しない表面は反射膜6で覆われている。これらの隔壁2および単色層を覆うように平坦化層19が形成されている。平坦化層19はアクリル系樹脂などによって形成されている。平坦化層19の下面はほぼ平坦となっている。平坦化層19の下面を覆うようにワイヤグリッドなどによる偏光層12が形成されている。
(Embodiment 6)
With reference to FIG. 14, the phosphor substrate for display device in the sixth embodiment based on the present invention will be described. As shown in FIG. 14, in the phosphor substrate for display device 41f in the present embodiment, the main surface 1a of the transparent substrate 1 is covered with a low refractive index layer 9, and a partition wall 2 having a groove 8 is further formed thereon. A red phosphor layer 3r, a green phosphor layer 3g, and a diffusion layer 3b are disposed as monochromatic layers so as to be formed and separated by the partition walls 2. The surface of the partition wall 2 that does not contact the monochromatic layer or the main surface 1 a is covered with the reflective film 6. A planarization layer 19 is formed so as to cover these partition walls 2 and the monochromatic layer. The planarizing layer 19 is made of an acrylic resin or the like. The lower surface of the planarizing layer 19 is substantially flat. A polarizing layer 12 made of a wire grid or the like is formed so as to cover the lower surface of the planarizing layer 19.
 このような表示装置用蛍光体基板41fを用いる場合、図15に示すように、光シャッタと表示装置用蛍光体基板とを一体的に構成することができる。光シャッタ42fは、表示装置用蛍光体基板41fと「光源側基板」である透明基板421aとを備える。透明基板421aと表示装置用蛍光体基板41fとの間にはシール剤422に取り囲まれるようにして封止された液晶層423が配置されている。透明基板421aの、表示装置用蛍光体基板41fとは反対側の面には偏光板424aが貼られている。 When such a phosphor substrate for display device 41f is used, the optical shutter and the phosphor substrate for display device can be integrally formed as shown in FIG. The optical shutter 42f includes a phosphor substrate 41f for display device and a transparent substrate 421a which is a “light source side substrate”. A liquid crystal layer 423 that is sealed so as to be surrounded by the sealant 422 is disposed between the transparent substrate 421a and the phosphor substrate for display device 41f. A polarizing plate 424a is attached to the surface of the transparent substrate 421a opposite to the display device phosphor substrate 41f.
 図13に示した例では表示装置を実現するために透明基板を合計3枚用いていたが、本実施の形態では、図15に示した例のように、透明基板を合計2枚用いるのみで表示装置41fを構成することができる。したがって、表示装置のさらなる薄型化を図ることができる。また、使用する透明基板の枚数が減ったことにより、表示装置の材料コスト削減を図ることができる。 In the example shown in FIG. 13, a total of three transparent substrates are used to realize the display device. However, in this embodiment, only a total of two transparent substrates are used as in the example shown in FIG. The display device 41f can be configured. Therefore, the display device can be further reduced in thickness. Further, since the number of transparent substrates to be used is reduced, the material cost of the display device can be reduced.
 この例では、表示装置用蛍光体基板41fに含まれる透明基板1が視認側基板の役割を果たす。 In this example, the transparent substrate 1 included in the phosphor substrate 41f for display device serves as a viewing side substrate.
 (実施の形態7)
 図16~図32を参照して、本発明に基づく実施の形態7における表示装置用蛍光体基板の製造方法について説明する。本実施の形態における表示装置用蛍光体基板の製造方法のフローチャートを図16に示す。この表示装置用蛍光体基板の製造方法は、主表面を有する基板を用意する工程S1と、前記主表面に、単色層に接するための側面を両脇に有し前記隔壁を分断する深さまで掘り下げられた溝部を中央に有する透光性の隔壁を複数箇所に形成する工程S2と、前記単色層に接するための側面にそれぞれ接するように少なくとも2つの単色層を形成する工程S3と、前記隔壁の表面のうち前記単色層に接するための側面以外の部分を覆うように反射膜パターンを形成する工程S4とを含む。以下に詳しく説明する。
(Embodiment 7)
With reference to FIGS. 16 to 32, a method of manufacturing the phosphor substrate for display device in the seventh embodiment based on the present invention will be described. FIG. 16 shows a flowchart of the method for manufacturing the phosphor substrate for display device in the present embodiment. In this method of manufacturing a phosphor substrate for a display device, a step S1 of preparing a substrate having a main surface, and the main surface are dug down to a depth that has side surfaces on both sides to contact a monochromatic layer and separates the partition walls. A step S2 of forming a light-transmitting partition wall having a groove portion formed in the center at a plurality of locations, a step S3 of forming at least two monochrome layers so as to be in contact with the side surfaces for contacting the monochrome layer, Forming a reflective film pattern so as to cover a portion of the surface other than the side surface for contacting the monochromatic layer. This will be described in detail below.
 まず、工程S1として、図17に示すように透明基板1を用意する。透明基板1は主表面1aを有する。図18に示すように、透明基板1の主表面1aに低屈折率層9を形成する。低屈折率層は、単色層3および隔壁2のいずれに比べても屈折率が低い層である。低屈折率層9の厚みは0.5μm以上3μm以下である。低屈折率層9の厚みは好ましくは約1μmである。 First, as step S1, a transparent substrate 1 is prepared as shown in FIG. Transparent substrate 1 has a main surface 1a. As shown in FIG. 18, a low refractive index layer 9 is formed on the main surface 1 a of the transparent substrate 1. The low refractive index layer is a layer having a low refractive index as compared with both the monochromatic layer 3 and the partition 2. The thickness of the low refractive index layer 9 is not less than 0.5 μm and not more than 3 μm. The thickness of the low refractive index layer 9 is preferably about 1 μm.
 工程S2として、図19に示すように、透明基板1の主表面1aにおいて低屈折率層9を覆うように透光性の隔壁2を形成する。隔壁2は複数箇所に形成される。図19においては、山が2つずつ並ぶように隔壁2が形成されているが、図19に示される互いに近接し合う山2つの集合が1つの隔壁2である。隔壁2は、単色層に接するための側面を両脇に有し隔壁2を分断する深さまで掘り下げられた溝部8を中央に有する。隔壁2の厚みは3μm以上30μm以下である。隔壁2の厚みは好ましくは5μm以上20μm以下である。隔壁2の詳しい形成方法については、後述する。 As process S2, as shown in FIG. 19, the translucent partition 2 is formed so that the low-refractive-index layer 9 may be covered in the main surface 1a of the transparent substrate 1. FIG. The partition wall 2 is formed at a plurality of locations. In FIG. 19, the partition walls 2 are formed so that two peaks are arranged, but a set of two adjacent mountains shown in FIG. 19 is one partition wall 2. The partition wall 2 has side surfaces for contacting the monochromatic layer on both sides, and has a groove 8 in the center that is dug down to a depth at which the partition wall 2 is divided. The thickness of the partition wall 2 is 3 μm or more and 30 μm or less. The thickness of the partition wall 2 is preferably 5 μm or more and 20 μm or less. A detailed method of forming the partition wall 2 will be described later.
 工程S3として、図20に示すように、少なくとも2つの単色層3を形成する。単色層3は、隔壁2の単色層に接するための側面にそれぞれ接するように形成される。図20に示した例では、3つの単色層3が形成された様子が示されている。複数の単色層3のうちのひとつとしては、赤色蛍光体層3rが形成されている。他のひとつとしては、緑色蛍光体層3gが形成されている。さらに他の1つとしては、拡散層3bが形成されている。1つの単色層3の幅Wは20μm以上200μm以下である。単色層3は、液状の材料をインクジェット方式で塗布することによって隔壁2同士の間の所望の箇所に所望の量だけ形成することが可能である。 As step S3, at least two monochromatic layers 3 are formed as shown in FIG. The monochromatic layer 3 is formed so as to be in contact with the side surface for contacting the monochromatic layer of the partition wall 2. In the example shown in FIG. 20, a state in which three monochromatic layers 3 are formed is shown. As one of the plurality of monochromatic layers 3, a red phosphor layer 3r is formed. As another one, a green phosphor layer 3g is formed. As another one, a diffusion layer 3b is formed. The width W of one single color layer 3 is 20 μm or more and 200 μm or less. The monochromatic layer 3 can be formed in a desired amount at a desired location between the partition walls 2 by applying a liquid material by an ink jet method.
 図21に示すように、隔壁2および単色層3の表面を覆うように無機透明膜13を形成する。無機透明膜13は、たとえばSiO2によって形成されてもよく、SiNによって形成されてもよい。無機透明膜13の厚みは100以上500nm以下である。 As shown in FIG. 21, an inorganic transparent film 13 is formed so as to cover the surfaces of the partition walls 2 and the monochromatic layer 3. The inorganic transparent film 13 may be formed of, for example, SiO 2 or SiN. The inorganic transparent film 13 has a thickness of 100 to 500 nm.
 工程S4として、図22に示すように、隔壁2の表面のうち単色層に接するための側面以外の部分を覆うように反射膜6を形成する。反射膜6は、たとえばAlまたはAgによって形成されてもよい。反射膜6の厚みは100nm以上500nm以下である。反射膜6の厚みは好ましくは約200nmである。 As step S4, as shown in FIG. 22, the reflective film 6 is formed so as to cover a portion of the surface of the partition wall 2 other than the side surface for contacting the monochromatic layer. The reflective film 6 may be made of, for example, Al or Ag. The thickness of the reflective film 6 is not less than 100 nm and not more than 500 nm. The thickness of the reflective film 6 is preferably about 200 nm.
 図23に示すように、全面を覆うように低屈折率層10を形成する。
 工程S2において隔壁2を形成する方法について詳しく説明する。隔壁2を形成する方法として、ここでは好ましい2通りの方法を挙げる。
As shown in FIG. 23, the low refractive index layer 10 is formed so as to cover the entire surface.
The method for forming the partition wall 2 in step S2 will be described in detail. As a method of forming the partition wall 2, here, two preferable methods are listed.
 隔壁2を形成するための第1の方法としてリソグラフィによる方法について説明する。この場合の工程S2の内訳のフローチャートを図24に示す。 A method by lithography will be described as a first method for forming the partition 2. FIG. 24 shows a flowchart of the breakdown of step S2 in this case.
 隔壁2を複数箇所に形成する工程S2は、ポジ型レジストを前記主表面に塗布することによってレジスト層を形成する工程S201と、フォトマスクを介して前記レジスト層に紫外光を照射する工程S202と、前記紫外光を照射された前記レジスト層を現像する工程S203とを含む。 Step S2 for forming the partition walls 2 at a plurality of locations includes a step S201 for forming a resist layer by applying a positive resist to the main surface, and a step S202 for irradiating the resist layer with ultraviolet light through a photomask. And step S203 of developing the resist layer irradiated with the ultraviolet light.
 具体的には、まず工程S201として、図25に示すように、透明基板1の主表面1aにポジ型レジストによってレジスト層20を形成する。 Specifically, first, as step S201, as shown in FIG. 25, a resist layer 20 is formed on the main surface 1a of the transparent substrate 1 with a positive resist.
 工程S202として、図26に示すように、レジスト層20に対して、フォトマスク14を介して紫外光15を照射する。フォトマスク14は、透明板材の下面に所望のパターンの遮光膜パターンを配置したものである。紫外光15は高圧水銀ランプによって照射することができる。 As step S202, as shown in FIG. 26, the resist layer 20 is irradiated with ultraviolet light 15 through the photomask 14. The photomask 14 has a desired pattern of light shielding film pattern disposed on the lower surface of a transparent plate. The ultraviolet light 15 can be irradiated by a high pressure mercury lamp.
 工程S203として、紫外光15を照射されたレジスト層20を現像する。すなわち、図27に示すように、無機または有機のアルカリによりレジスト層20のうち露光された部分を溶解する。こうして隔壁2が得られる。 In step S203, the resist layer 20 irradiated with the ultraviolet light 15 is developed. That is, as shown in FIG. 27, the exposed portion of the resist layer 20 is dissolved by an inorganic or organic alkali. In this way, the partition wall 2 is obtained.
 隔壁2に対して、図28に示すように、さらに紫外光15を照射することとしてもよい。現像後に得られる隔壁2を含む構造体をベークすることとしてもよい。これらの処理によって、隔壁2の脱色をしたり、隔壁2の硬さを増したりすることができる。以上のようにして隔壁2を得ることができる。 The partition wall 2 may be further irradiated with ultraviolet light 15 as shown in FIG. It is good also as baking the structure containing the partition 2 obtained after image development. By these treatments, the partition wall 2 can be decolored or the hardness of the partition wall 2 can be increased. The partition 2 can be obtained as described above.
 隔壁2を形成するための第2の方法としてモールドによる方法について説明する。この場合の工程S2の内訳のフローチャートを図29に示す。 A method using a mold will be described as a second method for forming the partition wall 2. FIG. 29 shows a flowchart of the breakdown of step S2 in this case.
 隔壁2を複数箇所に形成する工程S2は、紫外光硬化型透明樹脂をモールド型に流し込む工程S211と、前記モールド型に溜められた前記紫外光硬化型透明樹脂に前記主表面が当接するように、前記モールド型に対して透明基板を重ねる工程S212と、前記透明基板と前記モールド型との間に挟まれた前記紫外光硬化型透明樹脂に紫外光を照射する工程S213と、前記透明基板から前記モールド型を取り外す工程S214とを含む。 In the step S2 of forming the partition walls 2 at a plurality of locations, the main surface comes into contact with the step S211 of pouring the ultraviolet light curable transparent resin into the mold and the ultraviolet light curable transparent resin stored in the mold. From the transparent substrate, a step S212 of stacking a transparent substrate on the mold, a step S213 of irradiating the ultraviolet light curable transparent resin sandwiched between the transparent substrate and the mold, and the transparent substrate And step S214 for removing the mold.
 具体的には、まず工程S211として、図30に示すように、液状の紫外光硬化型透明樹脂17をモールド型16に流し込む。モールド型16には隔壁2として形成すべき凸形状のパターンに対応する凹形状のパターンが予め形成されている。 Specifically, as step S211, first, a liquid ultraviolet light curable transparent resin 17 is poured into the mold 16 as shown in FIG. A concave pattern corresponding to a convex pattern to be formed as the partition wall 2 is formed in the mold 16 in advance.
 工程S212として、図31に示すように、モールド型16に溜められた紫外光硬化型透明樹脂17に主表面1aが当接するように、モールド型16に対して透明基板1を重ねる。ここでいう「主表面1aが当接する」とは、主表面1aが直接接する場合に限らず、主表面1aに形成された何らかの膜を介して接することも含む。図31に示した例では、主表面1aは低屈折率層9で覆われているので、紫外光硬化型透明樹脂17に直接接するのは低屈折率層9であるが、この場合も、巨視的には主表面1aが紫外光硬化型透明樹脂17に当接するとみなすことができる。 As step S212, as shown in FIG. 31, the transparent substrate 1 is stacked on the mold 16 so that the main surface 1a contacts the ultraviolet light curable transparent resin 17 stored in the mold 16. Here, “the main surface 1a abuts” is not limited to the case where the main surface 1a is in direct contact, but also includes contact through some film formed on the main surface 1a. In the example shown in FIG. 31, since the main surface 1a is covered with the low refractive index layer 9, it is the low refractive index layer 9 that is directly in contact with the ultraviolet light curable transparent resin 17. Specifically, it can be considered that the main surface 1 a contacts the ultraviolet light curable transparent resin 17.
 工程S213として、図31に示すように、透明基板1とモールド型16との間に挟まれた紫外光硬化型透明樹脂17に紫外光15を照射する。これにより、紫外光硬化型透明樹脂17が硬化する。 As step S213, as shown in FIG. 31, the ultraviolet light 15 is irradiated to the ultraviolet light curable transparent resin 17 sandwiched between the transparent substrate 1 and the mold 16. Thereby, the ultraviolet light curable transparent resin 17 is cured.
 工程S214として、図32に示すように、透明樹脂1からモールド型16を取り外す。紫外光15を照射されたことにより、紫外光硬化型透明樹脂17が硬化して隔壁2となっている。以上のようにして隔壁2を得ることができる。 As step S214, the mold 16 is removed from the transparent resin 1 as shown in FIG. By being irradiated with the ultraviolet light 15, the ultraviolet light curable transparent resin 17 is cured to form the partition 2. The partition 2 can be obtained as described above.
 本実施の形態における表示装置用蛍光体基板の製造方法によれば、単色層から側方に進行する光を視認側に向かって反射させることができる構造を有する表示装置用蛍光体基板を得ることができるので、光の利用効率を向上させた表示装置用蛍光体基板を得ることができる。 According to the method for manufacturing a phosphor substrate for a display device in the present embodiment, a phosphor substrate for a display device having a structure capable of reflecting light traveling laterally from the monochromatic layer toward the viewing side is obtained. Therefore, a phosphor substrate for display device with improved light utilization efficiency can be obtained.
 なお、第1の方法で隔壁2を形成した場合、図33に示すように、断面形状が曲線となった山状に形成される傾向がある。隔壁2はこのような構造であってもよい。 In addition, when the partition 2 is formed by the first method, as shown in FIG. 33, the cross-sectional shape tends to be formed in a mountain shape. The partition wall 2 may have such a structure.
 第2の方法で隔壁2を形成した場合、図34に示すように、断面形状が台形となった山状に形成される傾向がある。隔壁2はこのような構造であってもよい。図34に示したように溝部8の底では溝部8の幅がゼロとなるような構造であってもよい。図35に示すように、溝部8の底がある程度の広さを有する構造であってもよい。図33~図35に示した例の中では、図34に示した構造が最も好ましい。したがって、本実施の形態における表示装置用蛍光体基板の製造方法において、前記溝部の断面形状はV字形状であることが好ましい。 When the partition wall 2 is formed by the second method, as shown in FIG. 34, the cross-sectional shape tends to be formed in a mountain shape having a trapezoidal shape. The partition wall 2 may have such a structure. As shown in FIG. 34, the bottom of the groove 8 may have a structure in which the width of the groove 8 is zero. As shown in FIG. 35, the bottom of the groove 8 may have a certain width. Among the examples shown in FIGS. 33 to 35, the structure shown in FIG. 34 is most preferable. Therefore, in the method for manufacturing a phosphor substrate for a display device in the present embodiment, it is preferable that the cross-sectional shape of the groove is a V-shape.
 (実施の形態8)
 図36~図40を参照して、本発明に基づく実施の形態8における表示装置用蛍光体基板について説明する。
(Embodiment 8)
A phosphor substrate for a display device according to an eighth embodiment based on the present invention will be described with reference to FIGS.
 本実施の形態における表示装置用蛍光体基板においては、図36に示すように、複数の単色層3の隔壁2に接する側面は、主表面1aに対して90°±10°の範囲内の角度をなす。この角度は90°±5°の範囲内であればより好ましい。すなわち、本実施の形態では、複数の単色層3の隔壁2に接する側面は、主表面1aに対してほぼ垂直ということである。他の構成は上記各実施の形態で説明したものと同様であってよい。隔壁2の側面のうち単色層3に接する側面と反対側の側面は、単色層3内部から進行してきた光を視認側に反射させるために傾斜させるべきである。図36に示した例では、複数の単色層3が配置されている。この例において、複数の単色層3はそれぞれの色の光を発する蛍光体層であってよい。 In the phosphor substrate for display device according to the present embodiment, as shown in FIG. 36, the side surfaces of the plurality of monochromatic layers 3 in contact with the partition walls 2 are within an angle range of 90 ° ± 10 ° with respect to the main surface 1a. Make. This angle is more preferably within a range of 90 ° ± 5 °. That is, in the present embodiment, the side surfaces of the plurality of monochromatic layers 3 that are in contact with the partition walls 2 are substantially perpendicular to the main surface 1a. Other configurations may be the same as those described in the above embodiments. Of the side surfaces of the partition wall 2, the side surface opposite to the side surface in contact with the monochromatic layer 3 should be inclined in order to reflect the light traveling from the inside of the monochromatic layer 3 to the viewing side. In the example shown in FIG. 36, a plurality of single color layers 3 are arranged. In this example, the plurality of single color layers 3 may be phosphor layers that emit light of each color.
 本実施の形態における表示装置用蛍光体基板の変形例としては、たとえば、図37、図38に示すような構造が考えられる。図37に示した例では、複数の単色層として、蛍光体層以外のものも含まれている。この例では、複数の単色層として、赤色蛍光体層3r、緑色蛍光体層3gおよび拡散層3bが配置されている。図38に示された例では、隔壁2および単色層を覆うように平坦化層19が形成され、平坦化層19の下面を覆うようにワイヤグリッドなどによる偏光層12が形成されている。平坦化層19の詳細については実施の形態6で述べたとおりである。 As a modification of the phosphor substrate for a display device in the present embodiment, for example, a structure as shown in FIGS. 37 and 38 can be considered. In the example shown in FIG. 37, a plurality of monochromatic layers other than the phosphor layer are also included. In this example, a red phosphor layer 3r, a green phosphor layer 3g, and a diffusion layer 3b are arranged as a plurality of monochromatic layers. In the example shown in FIG. 38, the planarization layer 19 is formed so as to cover the partition wall 2 and the monochromatic layer, and the polarizing layer 12 made of a wire grid or the like is formed so as to cover the lower surface of the planarization layer 19. The details of the planarizing layer 19 are as described in the sixth embodiment.
 本実施の形態における表示装置用蛍光体基板においても、上記各実施の形態で述べたのと同様の効果が得られるが、さらに好ましい効果がある。好ましい効果について、以下に説明する。 Also in the phosphor substrate for display device in the present embodiment, the same effects as described in the above embodiments can be obtained, but there are further preferable effects. A preferable effect will be described below.
 図39は比較例として示すものである。図39に示すように、隔壁2の側面のうち単色層3に接する側の側面が傾斜している場合、透明基板1の主表面1aに垂直な方向から見たときにその傾斜部が占める領域Aは、言い換えれば単色層3の厚みが不十分な箇所となる。領域Aでは光源からの光が直接入射したとしても吸収が十分でないので、光源からの光がそのまま透過してしまい、色変化不良となる。たとえば光源からの光が青色光である場合に、領域Aにおいて青色光が十分に吸収されず、結果的に表示される色が青味がかったものとなってしまう。この現象を防止するためには、領域Aに光源からの光が直接入射しないように反射膜6が領域Aを覆うことが好ましい。 FIG. 39 shows a comparative example. As shown in FIG. 39, when the side surface of the partition wall 2 that is in contact with the monochromatic layer 3 is inclined, the region occupied by the inclined portion when viewed from the direction perpendicular to the main surface 1a of the transparent substrate 1. In other words, A is a portion where the thickness of the monochromatic layer 3 is insufficient. In area A, even if light from the light source is directly incident, absorption is not sufficient, and light from the light source is transmitted as it is, resulting in poor color change. For example, when the light from the light source is blue light, the blue light is not sufficiently absorbed in the region A, and as a result, the displayed color becomes bluish. In order to prevent this phenomenon, it is preferable that the reflective film 6 covers the region A so that light from the light source does not directly enter the region A.
 図40に示すように隔壁2の側面のうち単色層3に接する側の側面がほぼ垂直であれば、すなわち、本実施の形態では、単色層3のある区間とない区間との変化が明確となり、単色層3の厚みが不十分な領域Aをほぼ生じさせないようにすることができる。領域Aを隠すために反射膜6を延在させることも必要なくなるので、開口部の幅Wを大きくとることができる。図40においては、主表面1aにおいて1つの画素が占める幅はPとなるが、Pに対するWの比率をより大きくとることができる。Pに対するWの比率を大きくすることは、光の利用効率の向上につながる。 As shown in FIG. 40, if the side surface of the partition wall 2 that is in contact with the monochromatic layer 3 is substantially vertical, that is, in this embodiment, the change between the section with the monochromatic layer 3 and the section without the monochromatic layer 3 becomes clear. The region A in which the thickness of the monochromatic layer 3 is insufficient can be hardly generated. Since it is not necessary to extend the reflective film 6 in order to hide the region A, the width W of the opening can be increased. In FIG. 40, the width occupied by one pixel on the main surface 1a is P, but the ratio of W to P can be made larger. Increasing the ratio of W to P leads to an improvement in light utilization efficiency.
 本実施の形態で述べた好ましい構造、すなわち、複数の単色層3の隔壁2に接する側面を主表面1aに対して垂直とし、なおかつ、隔壁2の側面のうち単色層3に接する側面と反対側の側面は傾斜させた構造を得るためには、以下の方法を採用すればよい。ここでも、実施の形態7で説明したのと同様に、工程S2として透光性の隔壁2を形成する方法としては、第1の方法としてのリソグラフィによる方法と、第2の方法としてのモールドによる方法とが考えられる。 The preferred structure described in the present embodiment, that is, the side surface of the plurality of monochromatic layers 3 that contacts the partition wall 2 is perpendicular to the main surface 1a, and the side surface of the partition wall 2 is opposite to the side surface that contacts the monochromatic layer 3 In order to obtain a structure in which the side surface is inclined, the following method may be employed. Here, as described in the seventh embodiment, as a method of forming the light-transmitting partition 2 as the step S2, a lithography method as the first method and a mold as the second method are used. A method is considered.
 第1の方法すなわちリソグラフィによる方法の場合、ネガ型レジストによるリソグラフィとポジ型レジストによるリソグラフィとを組み合わせて行なう。なぜならネガ型レジストによるリソグラフィは生成されるパターンの側壁が垂直となる傾向が強く、ポジ型レジストによるリソグラフィは生成されるパターンの側壁が傾斜面となる傾向が強いからである。 In the case of the first method, that is, the lithography method, the lithography using the negative resist and the lithography using the positive resist are combined. This is because lithography using a negative resist has a strong tendency to make the side wall of a pattern to be vertical, and lithography using a positive resist has a strong tendency to have a side wall of a pattern to be inclined.
 この場合の表示装置用蛍光体基板の製造方法においては、前記隔壁を複数箇所に形成する工程S2は、ネガ型レジストを前記主表面に塗布することによって第1レジスト層を形成する工程と、第1のフォトマスクを介して前記第1レジスト層に紫外光を照射する工程と、前記第1のフォトマスクを介して紫外光を照射する工程を終えた前記第1レジスト層を現像する工程と、前記第1レジスト層を現像した後の前記主表面にポジ型レジストを塗布することによって第2レジスト層を形成する工程と、第2のフォトマスクを介して前記第2レジスト層に紫外光を照射する工程と、前記第2のフォトマスクを介して紫外光を照射する工程を終えた前記第2レジスト層を現像する工程とを含む。より具体的には以下のとおりである。 In the method of manufacturing the phosphor substrate for display device in this case, the step S2 of forming the partition walls at a plurality of locations includes a step of forming a first resist layer by applying a negative resist to the main surface, Irradiating the first resist layer with ultraviolet light through one photomask, and developing the first resist layer after finishing irradiating with ultraviolet light through the first photomask; A step of forming a second resist layer by applying a positive resist on the main surface after developing the first resist layer, and irradiating the second resist layer with ultraviolet light through a second photomask; And a step of developing the second resist layer after finishing the step of irradiating with ultraviolet light through the second photomask. More specifically, it is as follows.
 図41で示すようにネガ型レジストによって第1レジスト層としてのレジスト層20nを形成する。 As shown in FIG. 41, a resist layer 20n as a first resist layer is formed with a negative resist.
 次に、図42に示すように、レジスト層20nに対して、第1のフォトマスクとしてのフォトマスク14nを介して紫外光15を照射する。フォトマスク14nは、透明板材の下面に所望のパターンの遮光膜パターンを配置したものであり、隔壁2の傾斜部以外の部分に対応する領域が開口している。紫外光15は高圧水銀ランプによって照射することができる。 42, the resist layer 20n is irradiated with ultraviolet light 15 through a photomask 14n as a first photomask, as shown in FIG. The photomask 14n is a light shielding film pattern having a desired pattern disposed on the lower surface of a transparent plate material, and an area corresponding to a portion other than the inclined portion of the partition wall 2 is opened. The ultraviolet light 15 can be irradiated by a high pressure mercury lamp.
 紫外光15を照射されたレジスト層20nを現像する。すなわち、図43に示すように、無機または有機のアルカリによりレジスト層20nのうち露光されなかった部分を溶解する。こうして、のちに隔壁の一部となる隔壁第1部分2aが得られる。次に隔壁第1部分2aに対して、図44に示すように、ホットプレートやオーブンを使用して隔壁第1部分2aを含む構造体をベークする。これらの処理によって、隔壁第1部分2aの耐薬品性を向上させたり、硬さを増したりすることができる。 The resist layer 20n irradiated with the ultraviolet light 15 is developed. That is, as shown in FIG. 43, the unexposed portion of the resist layer 20n is dissolved by an inorganic or organic alkali. In this way, the partition first portion 2a that becomes a part of the partition later is obtained. Next, as shown in FIG. 44, the structure including the partition first portion 2a is baked on the partition first portion 2a using a hot plate or an oven. By these treatments, the chemical resistance of the partition first portion 2a can be improved or the hardness can be increased.
 隔壁第1部分2aが形成された主表面1aに対して、図45で示すようにポジ型レジストによって第2レジスト層としてのレジスト層20を形成する。隔壁第1部分2aはレジスト層20によって覆われる。 As shown in FIG. 45, a resist layer 20 as a second resist layer is formed on the main surface 1a on which the partition first portion 2a is formed with a positive resist. The partition first portion 2 a is covered with the resist layer 20.
 図46に示すように、レジスト層20に対して、第2のフォトマスクとしてのフォトマスク14eを介して紫外光15を照射する。フォトマスク14eの遮光膜は、隔壁2の平坦部および傾斜部に相当する領域を被覆しており、他の領域が開口したものである。 As shown in FIG. 46, the resist layer 20 is irradiated with ultraviolet light 15 through a photomask 14e as a second photomask. The light-shielding film of the photomask 14e covers regions corresponding to the flat portion and the inclined portion of the partition wall 2, and other regions are opened.
 紫外光15を照射されたレジスト層20を現像する。すなわち、図47に示すように、レジスト層20のうち露光された部分を溶解する。こうして、既に得られている隔壁第1部分2aに加えて隔壁第2部分2bが得られる。図48に示すように、さらに紫外光15を照射することによって、隔壁第2部分2bの脱色を行ない、さらに隔壁第2部分2bを含む構造体をベークする。 The resist layer 20 irradiated with the ultraviolet light 15 is developed. That is, as shown in FIG. 47, the exposed portion of the resist layer 20 is dissolved. In this way, the partition wall second portion 2b is obtained in addition to the partition wall first portion 2a already obtained. As shown in FIG. 48, the partition wall second portion 2b is decolored by further irradiating ultraviolet light 15, and the structure including the partition wall second portion 2b is baked.
 以上のようにして、隔壁第1部分2aおよび隔壁第2部分2bからなる隔壁2を得ることができる。隔壁2は、一方の側面が主表面1aに対して垂直であり、他方の側面が傾斜した形状となる。 As described above, the partition wall 2 including the partition first portion 2a and the partition second portion 2b can be obtained. The partition wall 2 has a shape in which one side surface is perpendicular to the main surface 1a and the other side surface is inclined.
 第2の方法すなわちモールドによる方法の場合、まず図49に示すように、液状の紫外光硬化型透明樹脂17をモールド型16vに流し込む。モールド型16vには隔壁2の凸形状のパターンに対応する凹形状のパターンが予め形成されている。この凹形状は、一方の側面が垂直であり、他方の側面が傾斜した形状となっている。 In the case of the second method, that is, the method using a mold, first, as shown in FIG. 49, a liquid ultraviolet light curable transparent resin 17 is poured into the mold 16v. A concave pattern corresponding to the convex pattern of the partition wall 2 is formed in advance on the mold 16v. This concave shape has a shape in which one side surface is vertical and the other side surface is inclined.
 以降の各工程は、実施の形態7において第2の方法として説明したものと同様である。すなわち、図50のように透明基板1を重ねて紫外光15を照射することによって、図51の構造を得ることができる。 The subsequent steps are the same as those described as the second method in the seventh embodiment. That is, the structure of FIG. 51 can be obtained by irradiating the ultraviolet light 15 with the transparent substrate 1 overlapped as shown in FIG.
 なお、ポジ型レジストを用いたリソグラフィにおいては、斜面は断面形状が直線となるような斜面となるよりむしろ、断面形状が曲線となるような斜面となる傾向がある。したがって、ポジ型レジストを用いたリソグラフィによって隔壁2を形成した場合、たとえば図52、図53に示すような構造となる場合がある。図52、図53では、低屈折率層9,10および無機透明膜13は図示省略している。低屈折率層9,10および無機透明膜13は、設けることが好ましいが必須ではない。 In lithography using a positive resist, the inclined surface tends to be an inclined surface having a curved sectional shape rather than an inclined surface having a straight sectional shape. Therefore, when the partition 2 is formed by lithography using a positive resist, for example, the structure shown in FIGS. 52 and 53 may be obtained. 52 and 53, the low refractive index layers 9 and 10 and the inorganic transparent film 13 are not shown. The low refractive index layers 9 and 10 and the inorganic transparent film 13 are preferably provided, but are not essential.
 なお、上記各実施の形態において、低屈折率層9,10は、可視光に対して透明であり、かつ、蛍光体層より低い屈折率であればよい。低屈折率層9,10の材料としてフッ素系の材料を選択すれば、屈折率を約1.3まで下げることが可能である。特に、中空シリカなどを使用することによって屈折率は1.2~1.4の間で調整することができる。低屈折率層を形成するための材料については、たとえば特開2001-233611号公報、特許第3272111号に記載されている。 In each of the above embodiments, the low refractive index layers 9 and 10 may be transparent to visible light and have a refractive index lower than that of the phosphor layer. If a fluorine-based material is selected as the material for the low refractive index layers 9 and 10, the refractive index can be lowered to about 1.3. In particular, the refractive index can be adjusted between 1.2 and 1.4 by using hollow silica or the like. The material for forming the low refractive index layer is described in, for example, Japanese Patent Application Laid-Open No. 2001-233611 and Japanese Patent No. 3272111.
 なお、蛍光体層の透明基板1とは反対側の面に、低屈折率層の材料より屈折率の高い材料が密着して存在しない場合は、低屈折率層10は設ける必要がない。 If a material having a higher refractive index than the material of the low refractive index layer is not in close contact with the surface of the phosphor layer opposite to the transparent substrate 1, the low refractive index layer 10 is not required.
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。 It should be noted that the above-described embodiment disclosed herein is illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、表示装置用蛍光体基板、表示装置および表示装置用蛍光体基板の製造方法に利用することができる。 The present invention can be used for a phosphor substrate for a display device, a display device, and a method for manufacturing a phosphor substrate for a display device.
 1,901 透明基板、1a 主表面、2,902 隔壁、2a 隔壁第1部分、2b 隔壁第2部分、3 単色層、3r 赤色蛍光体層、3g 緑色蛍光体層、3b 拡散層、903,903r,903g 蛍光体、4 (バックライトからの)光、4b 青色光、5 視認側、6,906 反射膜、8 溝部、9,10 低屈折率層、11 光、12 (ワイヤグリッドなどにより形成された)偏光層、13 無機透明膜、14,14e,14n フォトマスク、15 紫外光、16,16v モールド型、17 (液状の)紫外光硬化型透明樹脂、19 平坦化層、20,20n レジスト層、41,41e,41f 表示装置用蛍光体基板、42,42f 光シャッタ、43,43i,43j バックライト装置、43b (青色光を発する)バックライト装置、51,52 表示装置、421a (光源側基板である)透明基板、421b (視認側基板である)透明基板、422 シール剤、423 液晶層、424a,424b 偏光板、431 LED、431b 青色LED、432 導光板、907 斜面。 1,901 transparent substrate, 1a main surface, 2,902 partition, 2a partition first part, 2b partition second part, 3 monochromatic layer, 3r red phosphor layer, 3g green phosphor layer, 3b diffusion layer, 903, 903r 903g phosphor, 4 (from backlight) light, 4b blue light, 5 viewing side, 6,906 reflective film, 8 grooves, 9, 10 low refractive index layer, 11 light, 12 (formed by wire grid etc. A) Polarizing layer, 13 inorganic transparent film, 14, 14e, 14n photomask, 15 ultraviolet light, 16, 16v mold type, 17 (liquid) ultraviolet light curable transparent resin, 19 flattening layer, 20, 20n resist layer 41, 41e, 41f phosphor substrate for display device, 42, 42f optical shutter, 43, 43i, 43j backlight device, 43b (blue) Backlight device, 51, 52 display device, 421a (light source side substrate) transparent substrate, 421b (viewing side substrate) transparent substrate, 422 sealant, 423 liquid crystal layer, 424a, 424b polarizing plate, 431 LED, 431b blue LED, 432 light guide plate, 907 slope.

Claims (17)

  1.  主表面(1a)を有する基板と、
     前記主表面に形成され、それぞれ側面を有する複数の単色層(3)と、
     前記複数の単色層のうち互いに隣り合う2つの単色層の前記各側面に当接しつつ前記2つの単色層を互いに隔てるように前記主表面に配置された透光性の隔壁(2)とを備え、
     前記隔壁は、前記隔壁を分断する深さまで掘り下げられた溝部(8)を中央に有し、
     前記溝部は、前記主表面に近づくほど幅が狭くなっており、
     前記溝部の内面は反射膜(6)で覆われている、表示装置用蛍光体基板。
    A substrate having a main surface (1a);
    A plurality of monochromatic layers (3) formed on the main surface and each having a side surface;
    A translucent partition wall (2) disposed on the main surface so as to separate the two monochrome layers from each other while contacting the side surfaces of two monochrome layers adjacent to each other among the plurality of monochrome layers. ,
    The partition wall has a groove portion (8) dug down to a depth at which the partition wall is divided.
    The groove portion becomes narrower as it approaches the main surface,
    A phosphor substrate for a display device, wherein an inner surface of the groove is covered with a reflective film (6).
  2.  前記溝部の断面形状はV字形状である、請求項1に記載の表示装置用蛍光体基板。 The phosphor substrate for a display device according to claim 1, wherein a cross-sectional shape of the groove portion is a V-shape.
  3.  前記隔壁の表面のうち少なくとも前記単色層にも前記基板にも接していない表面は断面形状で見たときに丸みを帯びている、請求項1に記載の表示装置用蛍光体基板。 2. The phosphor substrate for a display device according to claim 1, wherein at least a surface of the partition wall that is not in contact with the monochromatic layer or the substrate is rounded when viewed in a cross-sectional shape.
  4.  前記隔壁の、前記単色層の側面に当接する面と前記主表面に当接する面以外は、反射膜で覆われている、請求項1から3のいずれかに記載の表示装置用蛍光体基板。 The phosphor substrate for a display device according to any one of claims 1 to 3, wherein a surface of the partition wall other than a surface contacting the side surface of the monochromatic layer and a surface contacting the main surface is covered with a reflective film.
  5.  前記複数の単色層のうちのひとつとして、赤色に発光する赤色蛍光体層(3r)が含まれ、前記複数の単色層のうちの他のひとつとして緑色に発光する緑色蛍光体層(3g)が含まれる、請求項1から4のいずれかに記載の表示装置用蛍光体基板。 A red phosphor layer (3r) that emits red light is included as one of the plurality of monochrome layers, and a green phosphor layer (3g) that emits green light as another one of the plurality of monochrome layers. The phosphor substrate for a display device according to claim 1, which is included.
  6.  前記複数の単色層の前記隔壁に接する側面は、前記主表面に対して90°±10°の範囲内の角度をなす、請求項1から5のいずれかに記載の表示装置用蛍光体基板。 6. The phosphor substrate for a display device according to claim 1, wherein side surfaces of the plurality of monochromatic layers in contact with the partition walls form an angle within a range of 90 ° ± 10 ° with respect to the main surface.
  7.  請求項1から6のいずれかに記載の表示装置用蛍光体基板(41,41e,41f)と、前記表示装置用蛍光体基板の前記主表面側に重ねて配置される光シャッタ(42,42f)とを備える、表示装置。 7. The phosphor substrate for display device (41, 41e, 41f) according to any one of claims 1 to 6, and an optical shutter (42, 42f) arranged so as to overlap the main surface side of the phosphor substrate for display device. And a display device.
  8.  前記光シャッタの、前記表示装置用蛍光体基板の側とは反対側において前記光シャッタと重ねて配置されるバックライト装置(43,43i,43j,43b)を備える、請求項7に記載の表示装置。 The display according to claim 7, further comprising a backlight device (43, 43 i, 43 j, 43 b) arranged to overlap the optical shutter on the side opposite to the phosphor substrate side for the display device of the optical shutter. apparatus.
  9.   前記複数の単色層のうちのひとつとして、青色光を吸収して赤色に発光する赤色蛍光体層(3r)が含まれ、前記複数の単色層のうちの他のひとつとして青色光を吸収して緑色に発光する緑色蛍光体層(3g)が含まれ、前記複数の単色層のうちのさらに他のひとつとして、青色光を青色光として散乱させる拡散層(3b)が含まれる、請求項1から4のいずれかに記載の表示装置用蛍光体基板。 One of the plurality of monochromatic layers includes a red phosphor layer (3r) that absorbs blue light and emits red light, and the other of the plurality of monochromatic layers absorbs blue light. The green phosphor layer (3g) that emits green light is included, and the diffusion layer (3b) that scatters blue light as blue light is included as yet another one of the plurality of monochromatic layers. 4. The phosphor substrate for a display device according to any one of 4 above.
  10.  請求項9に記載の表示装置用蛍光体基板(41e)と、
     前記表示装置用蛍光体基板の前記主表面側に重ねて配置される光シャッタ(42)と、
     前記光シャッタの、前記表示装置用蛍光体基板の側とは反対側において前記光シャッタと重ねて配置され、青色光を発するバックライト装置(43b)とを備える、表示装置。
    The phosphor substrate (41e) for a display device according to claim 9,
    An optical shutter (42) disposed on the main surface side of the phosphor substrate for display device,
    A display device, comprising: a backlight device (43b) that emits blue light and is disposed on the opposite side of the optical shutter from the phosphor substrate side for the display device so as to overlap the optical shutter.
  11.  前記光シャッタは液晶層(423)を含む、請求項7、8および10のいずれかに記載の表示装置。 The display device according to claim 7, wherein the optical shutter includes a liquid crystal layer (423).
  12.  主表面(1a)を有する基板を用意する工程と、
     前記主表面に、単色層に接するための側面を両脇に有し前記隔壁を分断する深さまで掘り下げられた溝部(8)を中央に有する透光性の隔壁を複数箇所に形成する工程と、
     前記単色層に接するための側面にそれぞれ接するように少なくとも2つの単色層(3)を形成する工程と、
     前記隔壁の表面のうち前記単色層に接するための側面以外の部分を覆うように反射膜(6)を形成する工程とを含む、表示装置用蛍光体基板の製造方法。
    Preparing a substrate having a main surface (1a);
    Forming a plurality of translucent barrier ribs at the center on the main surface, each side having a side surface for contacting the monochromatic layer and having a groove (8) dug down to a depth at which the partition wall is divided;
    Forming at least two monochrome layers (3) so as to be in contact with the side surfaces for contacting the monochrome layers,
    Forming a reflective film (6) so as to cover a part of the surface of the partition wall other than the side surface for contacting the monochromatic layer.
  13.  前記隔壁を複数箇所に形成する工程は、ポジ型レジストを前記主表面に塗布することによってレジスト層(20n)を形成する工程と、フォトマスクを介して前記レジスト層に紫外光(15)を照射する工程と、前記紫外光を照射された前記レジスト層を現像する工程とを含む、請求項12に記載の表示装置用蛍光体基板の製造方法。 The step of forming the partition walls at a plurality of locations includes a step of forming a resist layer (20n) by applying a positive resist to the main surface, and irradiating the resist layer with ultraviolet light (15) through a photomask. The manufacturing method of the phosphor substrate for display apparatuses of Claim 12 including the process to develop and the process of developing the said resist layer irradiated with the said ultraviolet light.
  14.  前記隔壁を複数箇所に形成する工程は、紫外光硬化型透明樹脂をモールド型(16v)に流し込む工程と、前記モールド型に溜められた前記紫外光硬化型透明樹脂に前記主表面が当接するように、前記モールド型に対して透明基板を重ねる工程と、前記透明基板と前記モールド型との間に挟まれた前記紫外光硬化型透明樹脂に紫外光を照射する工程と、前記透明基板から前記モールド型を取り外す工程とを含む、請求項12に記載の表示装置用蛍光体基板の製造方法。 The step of forming the partition walls at a plurality of locations is such that the ultraviolet light curable transparent resin is poured into a mold (16v) and the main surface is in contact with the ultraviolet light curable transparent resin stored in the mold. A step of superposing a transparent substrate on the mold, a step of irradiating the ultraviolet light curable transparent resin sandwiched between the transparent substrate and the mold, and from the transparent substrate The manufacturing method of the fluorescent substance substrate for display apparatuses of Claim 12 including the process of removing a mold type | mold.
  15.  前記溝部の断面形状はV字形状である、請求項14に記載の表示装置用蛍光体基板の製造方法。 The method for manufacturing a phosphor substrate for a display device according to claim 14, wherein the cross-sectional shape of the groove portion is V-shaped.
  16.  前記隔壁の表面のうち少なくとも前記単色層にも前記基板にも接していない表面は断面形状で見たときに丸みを帯びている、請求項14に記載の表示装置用蛍光体基板の製造方法。 15. The method for manufacturing a phosphor substrate for a display device according to claim 14, wherein at least a surface of the partition wall that is not in contact with the monochromatic layer or the substrate is rounded when viewed in a cross-sectional shape.
  17.  前記隔壁を複数箇所に形成する工程は、
     ネガ型レジストを前記主表面に塗布することによって第1レジスト層を形成する工程と、
     第1のフォトマスクを介して前記第1レジスト層に紫外光を照射する工程と、
     前記第1のフォトマスクを介して紫外光を照射する工程を終えた前記第1レジスト層を現像する工程と、
     前記第1レジスト層を現像した後の前記主表面にポジ型レジストを塗布することによって第2レジスト層を形成する工程と、
     第2のフォトマスクを介して前記第2レジスト層に紫外光を照射する工程と、
     前記第2のフォトマスクを介して紫外光(15)を照射する工程を終えた前記第2レジスト層を現像する工程とを含む、請求項12に記載の表示装置用蛍光体基板の製造方法。
    The step of forming the partition walls at a plurality of locations,
    Forming a first resist layer by applying a negative resist to the main surface;
    Irradiating the first resist layer with ultraviolet light through a first photomask;
    Developing the first resist layer after finishing the step of irradiating with ultraviolet light through the first photomask;
    Forming a second resist layer by applying a positive resist to the main surface after developing the first resist layer;
    Irradiating the second resist layer with ultraviolet light through a second photomask;
    The method for manufacturing a phosphor substrate for a display device according to claim 12, further comprising: developing the second resist layer after finishing the step of irradiating ultraviolet light (15) through the second photomask.
PCT/JP2012/062284 2011-05-20 2012-05-14 Phosphor substrate for display device, display device, and manufacturing method of phosphor substrate for display device WO2012161011A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011113850 2011-05-20
JP2011-113850 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012161011A1 true WO2012161011A1 (en) 2012-11-29

Family

ID=47217091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062284 WO2012161011A1 (en) 2011-05-20 2012-05-14 Phosphor substrate for display device, display device, and manufacturing method of phosphor substrate for display device

Country Status (1)

Country Link
WO (1) WO2012161011A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034437A1 (en) * 1997-02-04 1998-08-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent display device
JP2008066103A (en) * 2006-09-07 2008-03-21 Fuji Electric Holdings Co Ltd Organic el element
WO2010143461A1 (en) * 2009-06-12 2010-12-16 シャープ株式会社 Display panel and display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998034437A1 (en) * 1997-02-04 1998-08-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent display device
JP2008066103A (en) * 2006-09-07 2008-03-21 Fuji Electric Holdings Co Ltd Organic el element
WO2010143461A1 (en) * 2009-06-12 2010-12-16 シャープ株式会社 Display panel and display device

Similar Documents

Publication Publication Date Title
US10620478B2 (en) Photoluminescent display device and method for manufacturing the same
US9274371B2 (en) Color conversion substrate, method for manufacturing same, and display device
KR20140074495A (en) Photoluminescent liquid crystal display panel, photoluminescent liquid crystal display apparatus having the same, and method for manufacturing the same
WO2011145247A1 (en) Display device
JP6890470B2 (en) Photoluminescence display device and its manufacturing method
US8496367B2 (en) Suppression of color mixing in UV LED based color pixel backlight for liquid crystal display
JPWO2009093452A1 (en) Wavelength separation device, planar illumination device using the same, and liquid crystal display device using the same
US9182532B2 (en) Display device
US10976619B2 (en) Illumination device and display device
WO2012161012A1 (en) Color-conversion substrate, lighting device, and color display device
JP2013235141A (en) Color liquid crystal display unit
TWI498596B (en) Display device
CN107450218B (en) Photoluminescent display device and method of manufacturing the same
JP7187879B2 (en) Wavelength conversion element, light source device and projector
WO2013058075A1 (en) Image display apparatus and method for manufacturing image display apparatus
JP2013246303A (en) Color conversion substrate, illumination device and color display
WO2012161013A1 (en) Color-conversion substrate, lighting device, and color display device
CN110473892B (en) Display device
US10809571B2 (en) Lighting device and display device
WO2012161011A1 (en) Phosphor substrate for display device, display device, and manufacturing method of phosphor substrate for display device
JP2006012722A (en) Backlight device and liquid crystal display equipped with it
JP5669210B2 (en) Display device
US20200041853A1 (en) Display device
WO2013180152A1 (en) Display device evaluation method and display device
KR102303148B1 (en) Photoluminescent liquid crystal display panel, photoluminescent display apparatus having the same, and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12789033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP