WO2012160288A1 - Conductive composite fibres comprising carbon-based conductive fillers and a conductive polymer - Google Patents

Conductive composite fibres comprising carbon-based conductive fillers and a conductive polymer Download PDF

Info

Publication number
WO2012160288A1
WO2012160288A1 PCT/FR2012/051062 FR2012051062W WO2012160288A1 WO 2012160288 A1 WO2012160288 A1 WO 2012160288A1 FR 2012051062 W FR2012051062 W FR 2012051062W WO 2012160288 A1 WO2012160288 A1 WO 2012160288A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
polymer
fibers
fillers
fiber
Prior art date
Application number
PCT/FR2012/051062
Other languages
French (fr)
Inventor
Valérie DENIS-LUTARD
Joseph BARISCI
Maryse Maugey
Alain Derre
Cécile ZAKRI
Patrice Gaillard
Philippe Poulin
Original Assignee
Arkema France
C N R S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France, C N R S filed Critical Arkema France
Publication of WO2012160288A1 publication Critical patent/WO2012160288A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals

Definitions

  • Conductive composite fibers comprising carbon conductive fillers and a conductive polymer
  • the present invention relates to conductive composite fibers containing conductive carbon fillers and at least one conductive polymer dispersed in a polymer matrix comprising a binder polymer such as polyvinyl alcohol. It also relates to a process for preparing these fibers by coagulation, as well as their uses.
  • Electrically conductive fibers are known for various applications, especially for the manufacture of heating textiles, such as clothing, blankets, car seats or cold protective linings (for example to protect fuel tanks), in which their Conductive properties are used to generate, by the Joule effect, heat.
  • Conductive fibers are also of interest in other applications, for their antistatic properties, in particular in the manufacture of aeronautical or automotive parts or for the electromagnetic shielding of electronic equipment, for example to dissipate electrical charges resulting from friction, induced in particular during the circulation of a fluid in a thermoplastic pipe. They can also be used in the manufacture of deformation or stress sensors.
  • the conductive fibers known in the prior art include: metal wires, which have the disadvantage of being heavy, liable to oxidize and difficult to implement,
  • hybrid conductive fibers obtained by coating an insulating polymer fiber, usually a thermoplastic polymer, using conductive particles, in particular silver, or conductive polymer (US 2006/148351; WO 99/15725).
  • conductive particles in particular silver, or conductive polymer
  • Polymer fibers loaded with conductive metal particles within them have also been proposed. These fibers are more resistant to wear than fibers obtained by common coating or coextrusion technologies.
  • the metals used, such as copper are heavy and can oxidize easily, leading to degradation of fiber properties. Their mechanical properties are further affected by their high particle content metallic, necessary to obtain percolated conductive networks.
  • US 6,083,562 discloses thermally stable and abrasion resistant conductive fibers useful for the manufacture of antistatic textiles.
  • the fibers contain an interpenetrating network of conductive polymer, carbon black particles and a non-conductive polymer, preferably based on acrylonitrile and optionally vinyl acetate.
  • a pre-fiber made of carbon black and the non-conductive polymer is impregnated with conducting monomers which are then polymerized on the surface of the fiber.
  • conducting monomers which are then polymerized on the surface of the fiber.
  • such a method does not make it possible to obtain a homogeneous dispersion of the polymer within the fiber in order to improve its conductivity.
  • conductive particles having a high aspect ratio such as carbon nanotubes (hereinafter CNTs)
  • CNTs carbon nanotubes
  • metal particles having a high aspect ratio eg lower aspect ratio (eg a length / diameter ratio of less than 10) or even carbon black particles.
  • CNTs have many interesting properties, namely electrical, thermal, chemical and mechanical, which make them good candidates for use as conductive fillers in conductive composite fibers. It has been proposed fibers Conductors obtained by coagulation from NTC and a homo- or copolymer of vinyl alcohol (EP 2,256,236).
  • NTCs allow an improvement in electrical conductivity, but the fact of keeping a conductive polymer as a matrix does not make it possible to overcome the limitations imposed by the latter, in terms of the mechanical properties and the chemical stability of the fibers.
  • the level of conductive polymer used induces a high cost of the fibers.
  • NTC / polyaniline / polypropylene melt (A. SOROUDI et al., Synthetic Metals, Vol 160, No. 11, pp. 1143-1147, 2010), in order to combine the good mechanical properties of polypropylene with good electrical properties of polyaniline (PANI) and CNTs.
  • PANI polyaniline
  • the high fiber diameter is not suitable for high mechanical performance or good textile properties.
  • the technology used to produce these fibers, namely the molten route does not allow obtaining high levels of CNT. The conductivity of these fibers is therefore insufficient.
  • the solution proposed in document FR 2 940 659 has the same drawback. It consists in preparing conductive fibers by dispersion of CNTs in a thermoplastic polymer matrix containing a polyetherketone. ketone (PEKK), and then melt spinning the composition thus obtained.
  • the conductive fibers must be light, deformable, chemically stable and have good mechanical and frictional strength, as well as a reduced diameter (less than 500 ⁇ m). More particularly, they must have a Young's modulus greater than 1 GPa and a tensile strength greater than 100 MPa.
  • conductive composite fibers meeting the above requirements, as well as a simple and inexpensive method for manufacturing these fibers from dispersions of conductive carbonaceous fillers, such as CNTs, and conductive polymer.
  • these fibers comprising a combination of conductive carbonaceous fillers and conductive polymer, produced a synergistic increase in conductivity, compared to similar fibers containing only these fillers or these polymers, while retaining the mechanical properties of the fibers.
  • the subject of the present invention is conductive composite fibers containing conductive carbonaceous fillers and at least one conductive polymer. dispersed in a polymer matrix comprising a binder polymer selected from a homo- or copolymer of vinyl alcohol.
  • carbon-containing conductive fillers is meant, according to the invention, one or more fillers chosen from carbon nanotubes, carbon nanofibers, and mixtures thereof.
  • the present invention also relates to a process for manufacturing these conductive composite fibers, comprising the successive steps consisting of:
  • process according to the invention may optionally comprise other preliminary, intermediate and / or subsequent stages to those mentioned above, provided that these do not adversely affect the formation of the desired conductive composite fibers. .
  • Carbon nanofibers are, like carbon nanotubes, nanofilaments generally produced by chemical vapor deposition (or CVD) from a carbon source which is decomposed on a catalyst comprising a transition metal (Fe, Ni, Co , Cu), in the presence of hydrogen, at temperatures of 500 to 1200 ° C.
  • CVD chemical vapor deposition
  • these two carbonaceous charges are differentiated by their structure (I. MARTIN-GULLON et al., Carbon, Vol 44, 1572-1580, 2006).
  • carbon nanotubes consist of one or more sheets of graphene wound concentrically to form a cylinder having a diameter of 1 to 100 nm.
  • carbon nanofibers are composed of more or less organized graphitic zones (or turbostratic stacks) whose planes are inclined at variable angles with respect to the axis of the fiber. These stacks can take the form of platelets, fish bones or stacked cups to form structures generally ranging in diameter from 100 nm to 500 nm or more.
  • the carbon nanotubes that can be used according to the invention can be of the single-walled, double-walled or multi-walled type.
  • the double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Com. (2003), 1442.
  • the multi-walled nanotubes may themselves be prepared as described in WO 03/02456. It is preferred to use multi-walled nanotubes, obtained in particular by the chemical vapor deposition process.
  • the nanotubes usually have an average diameter ranging from 0.1 to 100 nm, preferably from 0.4 to 50 nm and better still from 1 to 30 nm, indeed from 10 to 15 nm, and advantageously a length of 0.1.
  • the multiwall nanotubes may for example comprise from 5 to 15 sheets (or walls) and more preferably from 7 to 10 sheets.
  • nanotubes can be purified and / or treated (for example oxidized) and / or milled before being used in the process according to the invention.
  • the grinding of the nanotubes may in particular be carried out cold or hot and be carried out according to known techniques used in devices such as ball mills, hammers, grinders, knives, gas jet or any other system. Grinding capable of reducing the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
  • the purification of the raw or milled nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metal impurities, such as by iron, from their process of preparation.
  • the weight ratio of the nanotubes to the sulfuric acid may especially be between 1: 2 and 1: 3.
  • the purification operation may also be carried out at a temperature ranging from 90 to 120 ° C, for example for a period of 5 to 10 hours. This operation may advantageously be followed by rinsing steps with water and drying the purified nanotubes.
  • the nanotubes may alternatively be purified by high temperature heat treatment, typically greater than 1000 ° C.
  • the oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl, for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1.
  • the oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes.
  • Purified nanotubes obtained for example by sulfuric acid treatment of crude carbon nanotubes such as those commercially available from the company ARKEMA under the trademark Graphistrength C100, are preferably used in the present invention. Alternatively, however, it is possible to use raw carbon nanotubes, that is to say that have not been purified or oxidized.
  • carbon nanofibers as carbon conductive fillers
  • conductive carbonaceous fillers are associated, in the fiber according to the invention, with at least one conductive polymer.
  • conducting polymer is meant a homo- or copolymer whose main chain contains conjugated double bonds - for example in the form of one or more (hetero) aromatic rings - and which forms, after possible oxidation and doping with the using at least one doping agent, a salt or complex having electrical conduction properties.
  • Examples of usable conductive polymers include homo- and copolymers comprising one or more monomers selected from aniline, pyrrole, optionally substituted thiophene, acetylene, phenylene vinylene, phenylene sulfide and mixtures thereof.
  • An example of a substituted thiophene polymer is poly (3,4-ethylenedioxythiophene) or PEDOT.
  • PEDOT and polyaniline (PANI) are preferred for use in the present invention.
  • Polyaniline exists under different oxidation states, related to the proportions of imine and amine functions contained in the molecule. According to the invention, it is preferred to use emeraldine, which corresponds to the oxidation state. intermediate of polyaniline, presenting the best electrical properties.
  • doping agents include strong protonic acids having a pKa of less than 3, such as hydrochloric acid, sulfuric acid and its salts such as sodium dodecyl sulphate, phosphonic acids and sulphonic compounds, especially 2-acrylamido-2-methylpropanesulphonic acid (AMPS), dodecylbenzenesulfonic acid, camphorsulfonic acid, toluenesulphonic acid, methanesulphonic acid and sulphonic function (s) polymers, such as that the polystyrene sulfonic acid which is the doping agent preferentially used in combination with the PEDOT to form a colloidal solution PEDOT: PSS.
  • Other doping agents include polyacrylamide and polyacrylic acid.
  • the salts or complexes of conductive polymers and doping agents may be obtained chemically or electrochemically, according to techniques known to those skilled in the art. Some are also available commercially, especially from PANIPOL.
  • the conductive composite fibers according to the invention may be manufactured by a so-called “coagulation” process, which will now be described in more detail, and which is also the subject of this invention.
  • the first step of this process consists in producing a mixture comprising the carbon-containing conductive fillers, at least one stabilizing agent covalently bonded or non-covalent to said fillers, the conductive polymer, the binder polymer and at least one solvent.
  • step a) of the method according to the invention comprises the following sub-steps a1) to a3):
  • the term "stabilizing agent” is intended to mean a compound which allows homogeneous dispersion of the carbonaceous feedstocks in the solvent, and which does not hinder the subsequent coagulation of the binder polymer with the carbonaceous feedstocks and the conductive polymer in a coagulation solution.
  • the stabilizing agent (s) according to the invention are bonded to the carbonaceous charges either covalently or non-covalently.
  • the stabilizing agent in the case where the stabilizing agent is bonded to the carbonaceous feeds in a non-covalent manner, it may be chosen from essentially nonionic surfactants.
  • substantially nonionic surfactant is meant, in the sense of the present invention, a nonionic amphiphilic compound, cited for example in the book McCUTCHEON'S 2008 "Emulsifiers and Detergents", and preferably having a HLB (hydrophilic-lipophilic balance) from 8 to 20, for example from 13 to 16, as well as block copolymers containing hydrophilic blocks and lipophilic blocks and having a low ionicity, for example 0% to 10% by weight of ionic monomer and 90% to 100% of nonionic monomer.
  • HLB hydrophilic-lipophilic balance
  • the at least one stabilizing agent (s) bound to the non-covalently carbonaceous feedstocks may thus be chosen from:
  • esters of fatty and sorbitan acids optionally polyethoxylated, for example surfactants of the Tween® family,
  • esters of fatty acids and of glycerol esters of fatty acids and of glycerol
  • esters of fatty acids and of sucrose esters of fatty acids and of sucrose
  • esters of fatty acids and of polyethylene glycol esters of fatty acids and of polyethylene glycol
  • the stabilizing agent is covalently bonded to the carbonaceous fillers
  • it is preferably a hydrophilic group, advantageously a polyalkylene oxide group, in particular a polyethylene glycol group, grafted on these carbonaceous fillers.
  • the grafting of reactive units such as polyethylene glycol groups on the surface of the carbonaceous feeds, in particular carbon nanotubes may be carried out according to any method known to those skilled in the art.
  • those skilled in the art will be able to refer to the publication of B. Zhao et al. (Synthesis and Characterization of Soluble Single Walled Carbon Nanotube Graft Copolymers, J. Am Chem Soc (2005) Vol 127 No 22).
  • the nanotubes are dispersed in dimethylformamide (DMF) and are contacted with oxalyl chloride.
  • DMF dimethylformamide
  • PEG polyethylene glycol
  • the nanotubes thus grafted are purified.
  • the mixture produced in the first step of the process according to the invention comprises a solvent.
  • the solvent used is generally a compound for solubilizing the binder polymer, preferably chosen from water; monoalcohols (especially ethanol or methanol); dimethylsulfoxide (DMSO); glycerine; glycols such as ethylene glycol, diethylene glycol and triethylene glycol; diethylene triamine; ethylene diamine; phenol; dimethylformamide (DMF); dimethylacetamide; N-methylpyrrolidone; and their mixtures.
  • the solvent is chosen from water, DMSO and mixtures thereof in all proportions.
  • the dispersion of the conductive carbonaceous fillers in the solvent is carried out by means of ultrasound or a rotor-stator system or a ball mill. It can be carried out at room temperature, or by heating, for example, between 40 and 120 ° C.
  • the conductive polymer and the binder polymer may be dispersed with the conductive carbonaceous fillers or they may be separately dispersed in a solvent identical to or different from that used to disperse the conductive fillers and chosen from the list given above.
  • the binder polymer it is preferred to use as the binder polymer the polyvinyl alcohol itself. Its molecular weight can be between 5,000 and 300,000 g / mol. Its degree of hydrolysis may be greater than 96%, or even greater than 99%.
  • the binder polymer may be selected from: cellulose, viscose, alginate, poly (lactic acid), poly (lactic acid-co-glycolic acid), and mixtures thereof, and mixtures thereof with a homo - or vinyl alcohol copolymer as described above.
  • the conductive polymer is polymerized directly in the binder polymer in solution, from a monomer mixture, a doping agent, a polymerization initiator and optionally at least one oxidizing agent chosen from for example ammonium, sodium or potassium persulfates.
  • a first dispersion of conductive carbonaceous fillers and a second conductive polymer dispersion and of the binder polymer are formed separately, these first and second dispersions may be mixed by any means, for example with magnetic stirring.
  • the next step of the inventive method consists in injecting the resulting mixture into a coagulation solution to form a fiber in the form of mono ⁇ filament or multi-filaments.
  • coagulation solution is intended to mean a solution which causes the binder polymer to solidify with the carbonaceous fillers and the conductive polymer.
  • the coagulation solution comprises a solvent chosen from water, an alcohol, a polyol, a ketone, aromatic hydrocarbons and mixtures thereof, more preferably a solvent selected from water, methanol, ethanol, propanol, isopropanol, butanol, a glycol, acetone, methyl-ethyl- ketone, methyl isobutyl ketone, benzene, toluene and mixtures thereof, and even more preferably a solvent selected from water, methanol, ethanol, a glycol, acetone and mixtures thereof.
  • a solvent selected from water, an alcohol, a polyol, a ketone, aromatic hydrocarbons and mixtures thereof more preferably a solvent selected from water, methanol, ethanol, propanol, isopropanol, butanol, a glycol, acetone, methyl-ethyl- ketone, methyl isobutyl ketone, benzene, to
  • the coagulation solution advantageously has a temperature of between 10 and 80 ° C. If the solvent of the coagulation solution is essentially organic, such as methanol, the coagulation solution advantageously has a temperature between -30 and 10 ° C.
  • the coagulation solution may comprise one or more salts intended to promote the coagulation of the binder polymer, chosen from alkaline salts or desiccant salts such as ammonium sulfate, potassium sulphate, sodium sulphate, sodium carbonate, sodium hydroxide, potassium hydroxide and mixtures thereof.
  • alkaline salts or desiccant salts such as ammonium sulfate, potassium sulphate, sodium sulphate, sodium carbonate, sodium hydroxide, potassium hydroxide and mixtures thereof.
  • the coagulation solution may comprise one or more additional compounds which are intended to improve the mechanical properties, the water resistance of the fiber and / or facilitate the spinning of the fiber.
  • the coagulation solution may therefore comprise at least one compound selected from boric acid, borate salts and mixtures thereof.
  • the coagulation solution is saturated with salts.
  • the mixture is injected during this step of the process according to the invention through one or a set of needles and / or one or a set of non-porous cylindrical or conical nozzles in the coagulation solution, which may be static (static bath) or in motion (flow).
  • the average injection speed of the dispersion may be between 0.1 m / min and 50 m / min, preferably between 0.5 m / min and 20 m / min.
  • the coagulant solution induces coagulation in the form of a fiber by solidification of the binder polymer.
  • the carbonaceous fillers and the conductive polymer are then trapped in the binder polymer which solidifies.
  • the next step of the process according to the invention consists in extracting, continuously or not, the fiber from the coagulation solution.
  • the washing tank preferably comprises a solvent of the binder polymer mentioned above, such as water.
  • the washing step may make it possible to eliminate a portion of the peripheral polymer from the fiber and thus enrich (up to 50% by weight) the composition of the fiber with carbonaceous fillers.
  • the washing step may also make it possible to eliminate the agents, in particular the surfactants, potentially detrimental to the mechanical or electrical properties of the fiber.
  • the washing bath may comprise agents that make it possible to modify the composition of the fiber or which interact chemically with it.
  • chemical or physical crosslinking agents in particular borate salts or dialdehydes, may be added to the bath in order to reinforce the fiber.
  • the washing bath may contain salts in low concentration, such as alkaline salts or desiccant salts, including ammonium sulfate, potassium sulfate, sodium sulfate, sodium carbonate, sodium hydroxide and the like. sodium, potassium hydroxide and mixtures thereof.
  • a drying step is also included in the process according to the invention. This step can take place either directly after extraction or after washing. In particular, if it is desired to obtain a polymer-enriched fiber, it is desirable to dry the fiber directly after the extraction.
  • the drying is preferably carried out in an oven that will dry the fiber through a gas flowing in an interior duct of the oven. The drying can also be carried out by infrared radiation.
  • the method according to the invention may also comprise a winding step, and optionally a hot stretching step performed between the drying step and the winding step. It may also include stretches in solvents at different times, as well as hot stretching in the air.
  • the hot stretching in the air may be carried out at a temperature above the glass transition temperature (Tg) of the binder polymer and preferably below its melting point (if it exists).
  • Tg glass transition temperature
  • the draw ratio defined as the ratio of the length of the fiber after drawing to its length before drawing, may be from 1 to 20, preferably from 1 to 10, inclusive. Stretching can be done in one go, or several times, allowing the fiber to relax slightly between each stretch. This stretching step is preferably conducted by passing the fibers through a series of rolls having different rotational speeds, those which unroll the fiber rotating at a lower speed than those receiving it. To achieve the desired draw temperature, the fibers may be passed through ovens arranged between the rolls, or heated rollers may be used, or these two techniques may be combined. This stretching step makes it possible to consolidate the fiber and to achieve high breaking point stresses.
  • the conductive composite fibers obtained at the end of this process are characterized by the fact that they contain the conductive carbonaceous fillers, the conductive polymer and the binder polymer distributed homogeneously within them. It is thought that the presence of Conductive polymer between the carbonaceous charges makes it possible to reduce the contact resistances between these charges.
  • These fibers usually contain from 5 to 50% by weight, preferably from 5 to 30% by weight, more preferably from 5 to 20% by weight, of conductive carbonaceous fillers relative to the total weight of the fibers. It is therefore possible to obtain composite fibers with a high content of these fillers. They also generally contain from 1 to 50% by weight, preferably from 3 to 30% by weight, of conductive polymer.
  • the fiber obtained has good mechanical properties and good chemical stability. Specifically, this fiber can be mechanically characterized by a tensile test and has:
  • an elongation at break preferably between 0.1 and 500% of stretching, more preferably between 1 and 400% of stretching, and more preferably between 5 and 200% of stretching; and or
  • the conductive composite fibers obtained according to this method have much higher electrical conductivity values than could be expected, namely a resistivity which can be between 10 ⁇ 4 and 10 5 ohm. cm, preferably between 0.01 and 10 3 ohm. cm and more preferably between 0.1 and 100 ohm.com at room temperature.
  • the resistivity of the fibers according to the invention can be measured using a Keithley 2000 multimeter, according to the method described in the article F. Grillard et al., Polymer 53 (2012) 183-187.
  • the electrical conductivity of the fibers can be further improved by heat, chemical or physical treatments. It is therefore preferred that the process according to the invention comprises such an additional step, in particular a step of thermal annealing of the fibers obtained.
  • These fibers are also piezoresistive, that is to say that their electrical resistivity varies according to their elongation at room temperature, as shown in Figure 2.
  • the present invention also relates to the use of the above-mentioned conductive composite fibers for the manufacture of nose, wings or cockles of rockets or airplanes; off-shore flexible armor; automotive bodywork components, engine chassis or automobile support parts; automotive seat coverings; structural elements in the field of buildings or bridges and roadways; packaging and antistatic textiles, in particular antistatic curtains, antistatic clothing (for example, safety or clean room) or materials for the protection of silos or the packaging and / or transport of powders or granular materials; furnishing items, including clean room furniture; filters; electromagnetic shielding devices, in particular for the protection of electronic components; heated textiles; conductive cables; sensors, in particular deformation sensors or mechanical stresses; electrodes; hydrogen storage devices; biomedical devices such as sutures, prostheses or catheters; displays, keyboards or connectors incorporated into clothing; or receivers and emitters of electromagnetic waves.
  • the manufacture of these composite parts can be carried out according to various processes, generally involving a step of impregnating the conductive composite fibers according to the invention with a polymeric composition containing at least one thermoplastic, elastomeric or thermosetting material.
  • This impregnation step may itself be carried out according to various techniques, depending in particular on the physical form of the polymeric composition used (pulverulent or more or less liquid).
  • the impregnation of the conductive composite fibers is preferably carried out according to a fluidized bed impregnation process, in which the polymeric composition is in the form of powder. Pre-impregnated fibers are thus obtained.
  • the manufacture of the finished part comprises a step of consolidating the polymeric composition, which is for example melted locally to create zones for fixing the fibers pre-impregnated with each other and / or to secure the fiber ribbons pre-impregnated with each other. impregnated in the filament winding process.
  • a film from the polymeric impregnating composition in particular by means of an extrusion or calendering process, said film having for example a thickness of about 100 ⁇ m, then of placing it between two conductive composite fiber mats according to the invention, the assembly then being hot-pressed to allow impregnation of the fibers and manufacture of the composite part.
  • the conductive composite fibers according to the invention can be woven or knitted, alone or with other fibers, or used, alone or in combination with other fibers, for the manufacture of cables, felts or nonwoven materials.
  • materials constituting these other fibers include, without limitation:
  • stretched polymer fibers based in particular on: polyamide such as polyamide 6 (PA-6), polyamide 11 (PA-11), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6) the polyamide 4.6 (PA-4,6), polyamide-6,10 (PA-6.10) or polyamide 6.12 (PA-6.12), copolymer polyamide / polyether block (Pebax ®), high density polyethylene, polypropylene or polyester such that polyhydroxyalkanoates and polyesters marketed by Du Pont under the trade name Hytrel ®;
  • glass fibers especially of type E, R or
  • the present invention thus has for another object composite materials comprising conductive composite fibers according to the invention, bonded together by weaving or by a polymeric composition.
  • An aqueous dispersion is prepared comprising 0.9% by weight of purified multi-walled carbon nanotubes (or CNTs) and 1.2% by weight of solubilizer (Brij® 78).
  • the dispersion is homogenized by an ultrasonic probe of power 20 W for 2 hours for a volume of 50 ml.
  • aniline is polymerized to polyaniline (or PANI) in an aqueous solution of polyvinyl alcohol (or PVA) at 8% by weight and with a molecular weight of 195 kg / mol.
  • the APV solution is acidified with 1 mol / l hydrochloric acid in order to render the polymer conductive.
  • the aniline is oxidized with ammonium persulfate of concentration 0.5 mol / l. This mixture is homogenized by magnetic stirring.
  • the NTC dispersion and the APV / PANI solution are mixed by magnetic stirring in a weight ratio of 50:50.
  • the mixture obtained is then injected into a static bath of a sodium sulfate solution of concentration 320 g / l at 40 ° C.
  • the fiber is extracted from the coagulation bath after a residence time of about 30 seconds. It is then directed into a rinsing bath consisting of 50 g / l sodium sulfate. It is then dried by infrared heating. The fiber is directed back into a wash bath containing water. After a residence time of 20 seconds in the bath, the fiber is again dried by infrared and wound.
  • the fiber obtained contains 15% by weight of CNT, 5% ⁇ weight of PANI and 80% by weight of APV.
  • This fiber has an electrical resistivity of 20 ⁇ .cm, a breaking stress of 240 MPa, an elongation at break of 40% and a Young's modulus of 9 GPa.
  • This fiber is annealed at 180 ° C. for 1 hour. It then has an electrical resistivity of only 5 Q.cm.
  • a solution of PEDOT: PSS is prepared which is mixed with a solution of APV (195 kg / mol) at 12% by weight and with the multi-wall CNT dispersion described in Example 1.
  • APV 195 kg / mol
  • Example 1 A solution of PEDOT: PSS is prepared which is mixed with a solution of APV (195 kg / mol) at 12% by weight and with the multi-wall CNT dispersion described in Example 1.
  • APV 195 kg / mol
  • Example 1 A solution of PEDOT: PSS is prepared which is mixed with a solution of APV (195 kg / mol) at 12% by weight and with the multi-wall CNT dispersion described in Example 1.
  • APV 195 kg / mol
  • Example 1 A solution of PEDOT: PSS is prepared which is mixed with a solution of APV (195 kg / mol) at 12% by weight and with the multi-wall CNT dispersion described in Example 1.
  • APV 195 kg /
  • a dispersion containing 0.5% by weight of mono-wall CNT and 1% by weight of stabilizer (Brij® 78) is prepared.
  • the dispersion may be mixed with a solution of conductive polymer (PC) chosen from polyaniline, polypyrolle or polythiophene, as specified in Examples 1 and 2.
  • PC conductive polymer
  • Example 1 The procedure of Example 1 is repeated except that no dispersion of CNT is used. Only a solution of APV / PANI is injected into the coagulation bath. A fiber having an electrical resistivity of 10 6 ⁇ .cm is obtained.
  • a solution of APV at 12% by weight was mixed with a solution of PEDOT: PSS in a weight ratio of 1: 1.
  • a fiber having an electrical resistivity of 2000 ⁇ .cm was obtained.
  • Fibers having the different compositions indicated in the table below are prepared according to the procedure described in Example 1. The properties of the fibers obtained are also presented in this table. Synergy is very well observed. The addition of NTC or PEDOT in the APV improves the electrical resistivity and the addition of both leads to a synergistic decrease in electrical resistivity. Constraint

Abstract

The present invention relates to conductive composite fibres containing carbon-based conductive fillers and at least one conductive polymer that are dispersed in a polymer matrix comprising a binder polymer such as a vinyl alcohol homopolymer or copolymer. It also relates to a process for preparing these fibres by coagulation as well as to the uses thereof.

Description

Fibres composites conductrices comprenant des charges conductrices carbonées et un polymère conducteur  Conductive composite fibers comprising carbon conductive fillers and a conductive polymer
La présente invention concerne des fibres composites conductrices, renfermant des charges conductrices carbonées et au moins un polymère conducteur dispersés dans une matrice polymère comprenant un polymère liant tel que le poly (alcool vinylique) . Elle concerne également un procédé de préparation de ces fibres par coagulation, ainsi que leurs utilisations. The present invention relates to conductive composite fibers containing conductive carbon fillers and at least one conductive polymer dispersed in a polymer matrix comprising a binder polymer such as polyvinyl alcohol. It also relates to a process for preparing these fibers by coagulation, as well as their uses.
Les fibres conductrices de l'électricité sont connues pour différentes applications, notamment pour la fabrication de textiles chauffants, tels que des vêtements, couvertures, sièges automobiles ou garnitures protectrices du froid (destinées par exemple à protéger des cuves de fuel) , dans lesquelles leurs propriétés conductrices sont mises à profit pour générer, par effet Joule, de la chaleur. Les fibres conductrices trouvent également un intérêt dans d'autres applications, pour leurs propriétés antistatiques, en particulier dans la fabrication de pièces aéronautiques ou automobiles ou pour le blindage électromagnétique d'équipements électroniques, par exemple pour dissiper les charges électriques issues de frottements, induites en particulier lors de la circulation d'un fluide dans une conduite thermoplastique. Elles peuvent en outre être utilisées dans la fabrication de capteurs de déformations ou de contraintes. Electrically conductive fibers are known for various applications, especially for the manufacture of heating textiles, such as clothing, blankets, car seats or cold protective linings (for example to protect fuel tanks), in which their Conductive properties are used to generate, by the Joule effect, heat. Conductive fibers are also of interest in other applications, for their antistatic properties, in particular in the manufacture of aeronautical or automotive parts or for the electromagnetic shielding of electronic equipment, for example to dissipate electrical charges resulting from friction, induced in particular during the circulation of a fluid in a thermoplastic pipe. They can also be used in the manufacture of deformation or stress sensors.
Les fibres conductrices connues dans 1 ' art antérieur comprennent : - les fils métalliques, qui ont l'inconvénient d'être lourds, susceptibles de s'oxyder et difficiles à mettre en oeuvre, The conductive fibers known in the prior art include: metal wires, which have the disadvantage of being heavy, liable to oxidize and difficult to implement,
- les fibres de carbone qui, en dépit d'une très bonne conductivité électrique, sont peu flexibles, ce qui limite leurs applications textiles,  carbon fibers which, despite very good electrical conductivity, are not very flexible, which limits their textile applications,
- les fibres de polymères intrinsèquement conducteurs (US-7, 628, 944 ; US-7,264,762 ; US-5,783,111 ; US 2009/0128168 ; S.J. POMFRET et al., Polymer, Vol. 41, p. 2265-2269, 2000), qui offrent une conductivité satisfaisante mais présentent une tenue mécanique insuffisante .  the intrinsically conductive polymer fibers (US-7, 628, 944, US-7,264,762, US-5,783,111, US 2009/0128168, SJ POMFRET et al., Polymer, Vol 41, pp. 2265-2269, 2000), which offer satisfactory conductivity but have insufficient mechanical strength.
Pour remédier à ces inconvénients, il a été proposé des fibres conductrices hybrides, obtenues par enduction d'une fibre de polymère isolant, généralement un polymère thermoplastique, à l'aide de particules conductrices, notamment d'argent, ou de polymère conducteur (US 2006/148351 ; WO 99/15725) . Malheureusement, le revêtement de ces fibres est susceptible de se dégrader sous l'effet des frottements, de l'usure et des lavages, ce qui limite leur usage dans le domaine de l'habillement et des textiles techniques. To overcome these drawbacks, it has been proposed hybrid conductive fibers, obtained by coating an insulating polymer fiber, usually a thermoplastic polymer, using conductive particles, in particular silver, or conductive polymer (US 2006/148351; WO 99/15725). Unfortunately, the coating of these fibers is likely to deteriorate under the effect of friction, wear and washes, which limits their use in the field of clothing and technical textiles.
Des fibres de polymères chargées en leur sein de particules métalliques conductrices ont également été proposées. Ces fibres sont plus résistantes à l'usure que les fibres obtenues par des technologies courantes d' enduction ou de co-extrusion . Cependant, les métaux utilisés, tels que le cuivre, sont lourds et peuvent s'oxyder facilement, conduisant à une dégradation des propriétés des fibres. Leurs propriétés mécaniques sont en outre affectées par leur teneur élevée en particules métalliques, nécessaire pour obtenir des réseaux percolés conducteurs . Polymer fibers loaded with conductive metal particles within them have also been proposed. These fibers are more resistant to wear than fibers obtained by common coating or coextrusion technologies. However, the metals used, such as copper, are heavy and can oxidize easily, leading to degradation of fiber properties. Their mechanical properties are further affected by their high particle content metallic, necessary to obtain percolated conductive networks.
Le document US 6,083,562 divulgue des fibres conductrices stables thermiquement et résistantes à l'abrasion, utiles pour la fabrication de textiles antistatiques. Les fibres contiennent un réseau interpénétré de polymère conducteur, de particules de noir de carbone et d'un polymère non conducteur, de préférence à base d' acrylonitrile et éventuellement d'acétate de vinyle. Dans ce document, une pré-fibre constituée de noir de carbone et du polymère non conducteur est imprégnée de monomères conducteurs qui sont ensuite polymérisés en surface de la fibre. Cependant, un tel procédé ne permet pas d'obtenir une dispersion homogène du polymère au sein de la fibre en vue d'améliorer sa conductivité . US 6,083,562 discloses thermally stable and abrasion resistant conductive fibers useful for the manufacture of antistatic textiles. The fibers contain an interpenetrating network of conductive polymer, carbon black particles and a non-conductive polymer, preferably based on acrylonitrile and optionally vinyl acetate. In this document, a pre-fiber made of carbon black and the non-conductive polymer is impregnated with conducting monomers which are then polymerized on the surface of the fiber. However, such a method does not make it possible to obtain a homogeneous dispersion of the polymer within the fiber in order to improve its conductivity.
A cet égard, les particules conductrices ayant un fort rapport d' aspect (par exemple un rapport longueur/diamètre supérieur à 100), telles que les nanotubes de carbone (ci-après, NTC) , sont plus avantageuses que les particules métalliques ayant un plus faible rapport d' aspect (par exemple un rapport longueur / diamètre inférieur à 10) ou même que les particules de noir de carbone. Elles permettent en effet d'accéder à des réseaux percolés à plus faible concentration, tout en étant stables du point de vue chimique. En outre, les NTC possèdent de nombreuses propriétés intéressantes, à savoir électriques, thermiques, chimiques et mécaniques, qui en font de bons candidats pour une utilisation comme charges conductrices dans des fibres composites conductrices. Il a ainsi été proposé des fibres conductrices obtenues par coagulation à partir de NTC et d'un homo- ou copolymère d'alcool vinylique (EP 2 256 236) . In this respect, conductive particles having a high aspect ratio (e.g. a length / diameter ratio greater than 100), such as carbon nanotubes (hereinafter CNTs), are more advantageous than metal particles having a high aspect ratio (eg lower aspect ratio (eg a length / diameter ratio of less than 10) or even carbon black particles. They allow access to percolated networks at lower concentrations, while being chemically stable. In addition, CNTs have many interesting properties, namely electrical, thermal, chemical and mechanical, which make them good candidates for use as conductive fillers in conductive composite fibers. It has been proposed fibers Conductors obtained by coagulation from NTC and a homo- or copolymer of vinyl alcohol (EP 2,256,236).
Plusieurs types de fibres à deux composants polymères conducteurs / NTC ont par ailleurs été décrits dans la littérature (V. MOTTAGHITALAB et al., Synthetic Metals, Vol. 152, n° 1, p. 77-80, 2005 ; WO 2007/096479). Les NTC permettent une amélioration de conductivité électrique, mais le fait de conserver un polymère conducteur comme matrice ne permet pas de s'affranchir des limitations imposées par ce dernier, sur le plan des propriétés mécaniques et de la stabilité chimique des fibres. De plus, le taux de polymère conducteur utilisé (≥ 60 % en poids) induit un coût élevé des fibres. Several types of conductive polymer / NTC two-component fibers have been described in the literature (see MOTTAGHITALAB et al., Synthetic Metals, Vol.152, No. 1, pp. 77-80, 2005; WO 2007/096479). ). NTCs allow an improvement in electrical conductivity, but the fact of keeping a conductive polymer as a matrix does not make it possible to overcome the limitations imposed by the latter, in terms of the mechanical properties and the chemical stability of the fibers. In addition, the level of conductive polymer used (≥ 60% by weight) induces a high cost of the fibers.
Plus récemment, une approche a été proposée pour réaliser des fibres à trois composantsMore recently, an approach has been proposed to produce three-component fibers
NTC/polyaniline/polypropylène par voie fondue (A. SOROUDI et al., Synthetic Metals, Vol. 160, n° 11, p. 1143-1147, 2010), dans le but de combiner les bonnes propriétés mécaniques du polypropylène avec les bonnes propriétés électriques de la polyaniline (PANI) et des NTC. Cependant, le diamètre élevé des fibres n'est pas adapté pour de hautes performances mécaniques ni de bonnes propriétés textiles. En outre, la technologie utilisée pour produire ces fibres, à savoir la voie fondue, ne permet pas l'obtention de taux élevés de NTC. La conductivité de ces fibres est donc insuffisante. La solution proposée dans le document FR 2 940 659 présente le même inconvénient. Elle consiste à préparer des fibres conductrices par dispersion de NTC dans une matrice polymère thermoplastique renfermant une polyéthercétone- cétone (PEKK) , puis filage par voie fondue de la composition ainsi obtenue. NTC / polyaniline / polypropylene melt (A. SOROUDI et al., Synthetic Metals, Vol 160, No. 11, pp. 1143-1147, 2010), in order to combine the good mechanical properties of polypropylene with good electrical properties of polyaniline (PANI) and CNTs. However, the high fiber diameter is not suitable for high mechanical performance or good textile properties. In addition, the technology used to produce these fibers, namely the molten route, does not allow obtaining high levels of CNT. The conductivity of these fibers is therefore insufficient. The solution proposed in document FR 2 940 659 has the same drawback. It consists in preparing conductive fibers by dispersion of CNTs in a thermoplastic polymer matrix containing a polyetherketone. ketone (PEKK), and then melt spinning the composition thus obtained.
Il subsiste donc le besoin de disposer de nouvelles fibres conductrices présentant à la fois une conductivité électrique satisfaisante (supérieure à 10~5 S/cm et de préférence supérieure à 10~2 S/cm) et un bon compromis de propriétés mécaniques pour une utilisation dans la fabrication de textiles techniques ou d'habillement. En particulier, les fibres conductrices doivent être légères, déformables, stables chimiquement et présenter de bonnes tenues mécanique et au frottement, ainsi qu'un diamètre réduit (inférieur à 500 ym) . Plus particulièrement, elles doivent présenter un module d' Young supérieur à 1 GPa et une contrainte à la rupture supérieure à 100 MPa. There remains therefore the need for new conductive fibers having both a satisfactory electrical conductivity (greater than 10 ~ 5 S / cm and preferably greater than 10 ~ 2 S / cm) and a good compromise of mechanical properties for use in the manufacture of technical textiles or clothing. In particular, the conductive fibers must be light, deformable, chemically stable and have good mechanical and frictional strength, as well as a reduced diameter (less than 500 μm). More particularly, they must have a Young's modulus greater than 1 GPa and a tensile strength greater than 100 MPa.
Or, les inventeurs ont mis au point de nouvelles fibres composites conductrices répondant aux exigences précitées, ainsi qu'un procédé simple et peu coûteux pour fabriquer ces fibres à partir de dispersions de charges conductrices carbonées, telles que des NTC, et de polymère conducteur. En particulier, il a été observé que ces fibres, comprenant une combinaison de charges conductrices carbonées et de polymère conducteur, produisaient une augmentation synergique de la conductivité, par rapport à des fibres similaires ne renfermant que ces charges ou que ces polymères, tout en conservant les propriétés mécaniques des fibres. However, the inventors have developed new conductive composite fibers meeting the above requirements, as well as a simple and inexpensive method for manufacturing these fibers from dispersions of conductive carbonaceous fillers, such as CNTs, and conductive polymer. In particular, it has been observed that these fibers, comprising a combination of conductive carbonaceous fillers and conductive polymer, produced a synergistic increase in conductivity, compared to similar fibers containing only these fillers or these polymers, while retaining the mechanical properties of the fibers.
Précisément, la présente invention a pour objet des fibres composites conductrices, renfermant des charges conductrices carbonées et au moins un polymère conducteur dispersés dans une matrice polymère comprenant un polymère liant choisi parmi un homo- ou copolymère d'alcool vinylique. Specifically, the subject of the present invention is conductive composite fibers containing conductive carbonaceous fillers and at least one conductive polymer. dispersed in a polymer matrix comprising a binder polymer selected from a homo- or copolymer of vinyl alcohol.
Par « charges conductrices carbonées » on entend, selon l'invention, une ou plusieurs charges choisies parmi les nanotubes de carbone, les nanofibres de carbone, et leurs mélanges.  By "carbon-containing conductive fillers" is meant, according to the invention, one or more fillers chosen from carbon nanotubes, carbon nanofibers, and mixtures thereof.
La présente invention a également pour objet un procédé de fabrication de ces fibres composites conductrices, comprenant les étapes successives consistant en : The present invention also relates to a process for manufacturing these conductive composite fibers, comprising the successive steps consisting of:
a) la réalisation d'un mélange comprenant les charges conductrices carbonées, un solvant, au moins un agent stabilisant lié de façon covalente ou non covalente auxdites charges, le polymère conducteur et le polymère liant,  a) producing a mixture comprising the conductive carbonaceous fillers, a solvent, at least one stabilizing agent covalently or non-covalently bonded to said fillers, the conductive polymer and the binder polymer,
b) l'injection dudit mélange dans une solution de coagulation pour former une fibre,  b) injecting said mixture into a coagulation solution to form a fiber,
c) l'extraction, le lavage éventuel puis le séchage de ladite fibre.  c) the extraction, the eventual washing and drying of said fiber.
Il est bien entendu que le procédé selon l'invention peut éventuellement comprendre d'autres étapes préliminaires, intermédiaires et/ou subséquentes à celles mentionnées ci-dessus, pour autant que celles-ci n'affectent pas négativement la formation des fibres composites conductrices recherchées. It is understood that the process according to the invention may optionally comprise other preliminary, intermediate and / or subsequent stages to those mentioned above, provided that these do not adversely affect the formation of the desired conductive composite fibers. .
En préambule, il est précisé que, dans l'ensemble de cette description, l'expression "compris (e) entre" doit être interprétée comme incluant chacune des bornes citées . Les nanofibres de carbone sont, comme les nanotubes de carbone, des nanofilaments généralement produits par dépôt chimique en phase vapeur (ou CVD) à partir d'une source carbonée qui est décomposée sur un catalyseur comportant un métal de transition (Fe, Ni, Co, Cu) , en présence d'hydrogène, à des températures de 500 à 1200°C. Toutefois, ces deux charges carbonées se différencient par leur structure (I. MARTIN-GULLON et al., Carbon, Vol. 44, 1572-1580, 2006) . En effet, les nanotubes de carbone sont constitués d'un ou plusieurs feuillets de graphène enroulés manière concentrique pour former un cylindre ayant un diamètre de 1 à 100 nm. Au contraire, les nanofibres de carbone se composent de zones graphitiques plus ou moins organisées (ou empilements turbostratiques) dont les plans sont inclinés à des angles variables par rapport à l'axe de la fibre. Ces empilements peuvent prendre la forme de plaquettes, d'arêtes de poisson ou de coupelles empilées pour former des structures ayant un diamètre allant généralement de 100 nm à 500 nm voire plus . In the preamble, it is specified that, throughout this description, the expression "included (e) between" must be interpreted as including each of the aforementioned terminals. Carbon nanofibers are, like carbon nanotubes, nanofilaments generally produced by chemical vapor deposition (or CVD) from a carbon source which is decomposed on a catalyst comprising a transition metal (Fe, Ni, Co , Cu), in the presence of hydrogen, at temperatures of 500 to 1200 ° C. However, these two carbonaceous charges are differentiated by their structure (I. MARTIN-GULLON et al., Carbon, Vol 44, 1572-1580, 2006). Indeed, carbon nanotubes consist of one or more sheets of graphene wound concentrically to form a cylinder having a diameter of 1 to 100 nm. On the contrary, carbon nanofibers are composed of more or less organized graphitic zones (or turbostratic stacks) whose planes are inclined at variable angles with respect to the axis of the fiber. These stacks can take the form of platelets, fish bones or stacked cups to form structures generally ranging in diameter from 100 nm to 500 nm or more.
Les nanotubes de carbone utilisables selon l'invention peuvent être du type monoparoi, à double paroi ou à parois multiples. Les nanotubes à double paroi peuvent notamment être préparés comme décrit par FLAHAUT et al dans Chem. Com. (2003), 1442. Les nanotubes à parois multiples peuvent de leur côté être préparés comme décrit dans le document WO 03/02456. On préfère utiliser des nanotubes à parois multiples, obtenus en particulier suivant le procédé de dépôt chimique en phase vapeur. Les nanotubes ont habituellement un diamètre moyen allant de 0,1 à 100 nm, de préférence de 0,4 à 50 nm et, mieux, de 1 à 30 nm, voire de 10 à 15 nm, et avantageusement une longueur de 0,1 à 10 ym, plus préférentiellement de 0,2 à 10 ym. Leur rapport longueur/diamètre est de préférence supérieur à 10 et le plus souvent supérieur à 100. Leur surface spécifique est par exemple comprise entre 100 et 500 m2 /g, avantageusement entre 200 et 300 m2 /g, et leur densité apparente peut notamment être comprise entre 0,05 et 0,5 g/cm3 et plus préférentiellement entre 0,1 et 0,2 g/cm3. Les nanotubes multiparois peuvent par exemple comprendre de 5 à 15 feuillets (ou parois) et plus préférentiellement de 7 à 10 feuillets. The carbon nanotubes that can be used according to the invention can be of the single-walled, double-walled or multi-walled type. The double-walled nanotubes can in particular be prepared as described by FLAHAUT et al in Chem. Com. (2003), 1442. The multi-walled nanotubes may themselves be prepared as described in WO 03/02456. It is preferred to use multi-walled nanotubes, obtained in particular by the chemical vapor deposition process. The nanotubes usually have an average diameter ranging from 0.1 to 100 nm, preferably from 0.4 to 50 nm and better still from 1 to 30 nm, indeed from 10 to 15 nm, and advantageously a length of 0.1. at 10 μm, more preferably from 0.2 to 10 μm. Their length / diameter ratio is preferably greater than 10 and most often greater than 100. Their specific surface area is, for example, between 100 and 500 m 2 / g, advantageously between 200 and 300 m 2 / g, and their apparent density may in particular be between 0.05 and 0.5 g / cm 3 and more preferably between 0.1 and 0.2 g / cm 3. The multiwall nanotubes may for example comprise from 5 to 15 sheets (or walls) and more preferably from 7 to 10 sheets.
Ces nanotubes peuvent être purifiés et/ou traités (par exemple oxydés) et/ou broyés, avant leur mise en œuvre dans le procédé selon l'invention. These nanotubes can be purified and / or treated (for example oxidized) and / or milled before being used in the process according to the invention.
Le broyage des nanotubes peut être notamment effectué à froid ou à chaud et être réalisé selon les techniques connues mises en œuvre dans des appareils tels que broyeurs à boulets, à marteaux, à meules, à couteaux, à jet de gaz ou tout autre système de broyage susceptible de réduire la taille du réseau enchevêtré de nanotubes. On préfère que cette étape de broyage soit pratiquée selon une technique de broyage par jet de gaz et en particulier dans un broyeur à jet d'air. The grinding of the nanotubes may in particular be carried out cold or hot and be carried out according to known techniques used in devices such as ball mills, hammers, grinders, knives, gas jet or any other system. grinding capable of reducing the size of the entangled network of nanotubes. It is preferred that this grinding step is performed according to a gas jet grinding technique and in particular in an air jet mill.
La purification des nanotubes bruts ou broyés peut être réalisée par lavage à l'aide d'une solution d'acide sulfurique, de manière à les débarrasser d'éventuelles impuretés minérales et métalliques résiduelles, comme par exemple le fer, provenant de leur procédé de préparation. Le rapport pondéral des nanotubes à l'acide sulfurique peut notamment être compris entre 1 :2 et 1 :3. L'opération de purification peut par ailleurs être effectuée à une température allant de 90 à 120°C, par exemple pendant une durée de 5 à 10 heures. Cette opération peut avantageusement être suivie d'étapes de rinçage à l'eau et de séchage des nanotubes purifiés. Les nanotubes peuvent en variante être purifiés par traitement thermique à haute température, typiquement supérieur à 1000°C. The purification of the raw or milled nanotubes can be carried out by washing with a sulfuric acid solution, so as to rid them of any residual mineral and metal impurities, such as by iron, from their process of preparation. The weight ratio of the nanotubes to the sulfuric acid may especially be between 1: 2 and 1: 3. The purification operation may also be carried out at a temperature ranging from 90 to 120 ° C, for example for a period of 5 to 10 hours. This operation may advantageously be followed by rinsing steps with water and drying the purified nanotubes. The nanotubes may alternatively be purified by high temperature heat treatment, typically greater than 1000 ° C.
L'oxydation des nanotubes est avantageusement réalisée en mettant ceux-ci en contact avec une solution d' hypochlorite de sodium renfermant de 0,5 à 15% en poids de NaOCl et de préférence de 1 à 10% en poids de NaOCl, par exemple dans un rapport pondéral des nanotubes à 1 ' hypochlorite de sodium allant de 1:0,1 à 1:1. L'oxydation est avantageusement réalisée à une température inférieure à 60 °C et de préférence à température ambiante, pendant une durée allant de quelques minutes à 24 heures. Cette opération d'oxydation peut avantageusement être suivie d'étapes de filtration et/ou centrifugation, lavage et séchage des nanotubes oxydés . The oxidation of the nanotubes is advantageously carried out by putting them in contact with a solution of sodium hypochlorite containing from 0.5 to 15% by weight of NaOCl and preferably from 1 to 10% by weight of NaOCl, for example in a weight ratio of nanotubes to sodium hypochlorite ranging from 1: 0.1 to 1: 1. The oxidation is advantageously carried out at a temperature below 60 ° C. and preferably at room temperature, for a duration ranging from a few minutes to 24 hours. This oxidation operation may advantageously be followed by filtration and / or centrifugation, washing and drying steps of the oxidized nanotubes.
On utilise de préférence dans la présente invention des nanotubes purifiés, obtenus par exemple par traitement à l'acide sulfurique de nanotubes de carbone bruts tels que ceux disponibles dans le commerce auprès de la société ARKEMA sous la dénomination commerciale Graphistrength C100. En variante, il est toutefois possible d'utiliser des nanotubes de carbone bruts, c'est-à-dire qui n'ont été ni purifiés, ni oxydés. Purified nanotubes, obtained for example by sulfuric acid treatment of crude carbon nanotubes such as those commercially available from the company ARKEMA under the trademark Graphistrength C100, are preferably used in the present invention. Alternatively, however, it is possible to use raw carbon nanotubes, that is to say that have not been purified or oxidized.
Par ailleurs, dans le cas où on utilise des nanofibres de carbone comme charges conductrices carbonées, on préfère utiliser des nanofibres de carbone ayant un diamètre de 100 à 200 nm, par exemple d'environ 150 nm (VGCF® de SHOWA DENKO) , et avantageusement une longueur de 100 à 200 ym. Furthermore, in the case of using carbon nanofibers as carbon conductive fillers, it is preferred to use the carbon nanofibers having a diameter of 100 to 200 nm, e.g., about 150 nm (VGCF ® from SHOWA DENKO), and advantageously a length of 100 to 200 μm.
Ces charges conductrices carbonées sont associées, dans la fibre selon l'invention, à au moins un polymère conducteur. Par « polymère conducteur », on entend un homo- ou copolymère dont la chaîne principale renferme des doubles liaisons conjuguées - par exemple sous forme d'un ou plusieurs (hétéro) cycles aromatiques - et qui forme, après oxydation éventuelle et dopage à l'aide d'au moins un agent dopant, un sel ou complexe présentant des propriétés de conduction électrique. These conductive carbonaceous fillers are associated, in the fiber according to the invention, with at least one conductive polymer. By "conducting polymer" is meant a homo- or copolymer whose main chain contains conjugated double bonds - for example in the form of one or more (hetero) aromatic rings - and which forms, after possible oxidation and doping with the using at least one doping agent, a salt or complex having electrical conduction properties.
Des exemples de polymères conducteurs utilisables sont notamment les homo- et copolymères comprenant un ou plusieurs monomères choisis parmi l'aniline, le pyrrole, le thiophène éventuellement substitué, l'acétylène, le phénylène vinylène, le sulfure de phénylène et leurs mélanges. Un exemple de polymère de thiophène substitué est le poly (3, 4-éthylènedioxythiophène) ou PEDOT. Le PEDOT et la polyaniline (PANI) sot préférés pour une utilisation dans la présente invention. La polyaniline existe sous différents états d'oxydation, liés aux proportions de fonctions imine et aminé contenues dans la molécule. On préfère selon l'invention utiliser 1' éméraldine, qui correspond à l'état d'oxydation intermédiaire de la polyaniline, présentant les meilleures propriétés électriques. Examples of usable conductive polymers include homo- and copolymers comprising one or more monomers selected from aniline, pyrrole, optionally substituted thiophene, acetylene, phenylene vinylene, phenylene sulfide and mixtures thereof. An example of a substituted thiophene polymer is poly (3,4-ethylenedioxythiophene) or PEDOT. PEDOT and polyaniline (PANI) are preferred for use in the present invention. Polyaniline exists under different oxidation states, related to the proportions of imine and amine functions contained in the molecule. According to the invention, it is preferred to use emeraldine, which corresponds to the oxidation state. intermediate of polyaniline, presenting the best electrical properties.
Des exemples d'agents dopants comprennent les acides protoniques forts, ayant un pKa inférieur à 3, tels que l'acide chlorhydrique, l'acide sulfurique et ses sels tels que le dodécyl sulfate de sodium, les acides phosphoniques et les composés sulfoniques, notamment l'acide 2-acrylamido 2-méthylpropane sulfonique (AMPS) , l'acide dodécylbenzène sulfonique, l'acide camphosulfonique, l'acide toluène sulfonique, l'acide méthane sulfonique et les polymères à fonction (s) suifonique ( s ) , tels que le poly (acide styrène sulfonique) qui est l'agent dopant préférentiellement utilisé en association avec le PEDOT pour former une solution colloïdale PEDOT :PSS. D'autres agents dopants comprennent le polyacrylamide et le poly (acide acrylique) . Les sels ou complexes de polymères conducteurs et d' agents dopants peuvent être obtenus par voie chimique ou électrochimique, suivant des techniques connues de l'homme du métier. Certains sont par ailleurs disponibles dans le commerce, notamment auprès de la société PANIPOL. Examples of doping agents include strong protonic acids having a pKa of less than 3, such as hydrochloric acid, sulfuric acid and its salts such as sodium dodecyl sulphate, phosphonic acids and sulphonic compounds, especially 2-acrylamido-2-methylpropanesulphonic acid (AMPS), dodecylbenzenesulfonic acid, camphorsulfonic acid, toluenesulphonic acid, methanesulphonic acid and sulphonic function (s) polymers, such as that the polystyrene sulfonic acid which is the doping agent preferentially used in combination with the PEDOT to form a colloidal solution PEDOT: PSS. Other doping agents include polyacrylamide and polyacrylic acid. The salts or complexes of conductive polymers and doping agents may be obtained chemically or electrochemically, according to techniques known to those skilled in the art. Some are also available commercially, especially from PANIPOL.
Les fibres composites conductrices selon l'invention peuvent être fabriquées suivant un procédé dit « par coagulation », qui sera à présent décrit plus en détail, et qui fait également l'objet de cette invention. The conductive composite fibers according to the invention may be manufactured by a so-called "coagulation" process, which will now be described in more detail, and which is also the subject of this invention.
La première étape de ce procédé consiste à réaliser un mélange comprenant les charges conductrices carbonées, au moins un agent stabilisant lié de façon covalente ou non covalente auxdites charges, le polymère conducteur, le polymère liant et au moins un solvant. The first step of this process consists in producing a mixture comprising the carbon-containing conductive fillers, at least one stabilizing agent covalently bonded or non-covalent to said fillers, the conductive polymer, the binder polymer and at least one solvent.
Ce mélange peut être effectué en une seule étape. On préfère toutefois que l'étape a) du procédé selon l'invention comprenne les sous-étapes al) à a3) suivantes : This mixing can be done in one step. It is preferred, however, that step a) of the method according to the invention comprises the following sub-steps a1) to a3):
al) la formation d'une première dispersion renfermant les charges conductrices carbonées, un solvant et au moins un agent stabilisant lié de façon covalente ou non covalente auxdites charges,  al) forming a first dispersion containing the conductive carbonaceous fillers, a solvent and at least one stabilizing agent covalently or non-covalently bonded to said fillers,
a2) la formation d'une seconde dispersion renfermant le polymère conducteur dispersé dans une solution du polymère liant dans un solvant,  a2) forming a second dispersion containing the conductive polymer dispersed in a solution of the binder polymer in a solvent,
a3) le mélange des première et seconde dispersions.  a3) mixing the first and second dispersions.
Par « agent stabilisant », on entend au sens de la présente invention, un composé permettant une dispersion homogène des charges carbonées dans le solvant, et qui n'entrave pas la coagulation ultérieure du polymère liant avec les charges carbonées et le polymère conducteur dans une solution de coagulation. For the purposes of the present invention, the term "stabilizing agent" is intended to mean a compound which allows homogeneous dispersion of the carbonaceous feedstocks in the solvent, and which does not hinder the subsequent coagulation of the binder polymer with the carbonaceous feedstocks and the conductive polymer in a coagulation solution.
Le ou les agent (s) stabilisant ( s ) selon l'invention sont liés aux charges carbonées soit de façon covalente, soit de façon non covalente. The stabilizing agent (s) according to the invention are bonded to the carbonaceous charges either covalently or non-covalently.
Dans le cas où l'agent stabilisant est lié aux charges carbonées de façon non covalente, il pourra être choisi parmi les tensioactifs essentiellement non ioniques . Par « tensioactif essentiellement non ionique » on entend, au sens de la présente invention, un composé amphiphile non ionique, cité par exemple dans l'ouvrage McCUTCHEON'S 2008 « Emulsifiers and Détergents », et ayant de préférence une HLB (balance hydrophile- lipophile) de 8 à 20, par exemple de 13 à 16, ainsi que les copolymères blocs renfermant des blocs hydrophiles et des blocs lipophiles et présentant une ionicité faible, par exemple 0% à 10% en poids de monomère ionique et 90% à 100% de monomère non ionique. In the case where the stabilizing agent is bonded to the carbonaceous feeds in a non-covalent manner, it may be chosen from essentially nonionic surfactants. By "substantially nonionic surfactant" is meant, in the sense of the present invention, a nonionic amphiphilic compound, cited for example in the book McCUTCHEON'S 2008 "Emulsifiers and Detergents", and preferably having a HLB (hydrophilic-lipophilic balance) from 8 to 20, for example from 13 to 16, as well as block copolymers containing hydrophilic blocks and lipophilic blocks and having a low ionicity, for example 0% to 10% by weight of ionic monomer and 90% to 100% of nonionic monomer.
Dans le cadre de la présente invention, le ou les agent (s) stabilisant ( s ) lié (s) aux charges carbonées de façon non covalente peuvent ainsi être choisis parmi :In the context of the present invention, the at least one stabilizing agent (s) bound to the non-covalently carbonaceous feedstocks may thus be chosen from:
(i) les esters de polyols, en particulier : (i) the polyol esters, in particular:
- les esters d'acide gras et de sorbitane, éventuellement polyéthoxylés , par exemple des tensioactifs de la famille des Tween®,  esters of fatty and sorbitan acids, optionally polyethoxylated, for example surfactants of the Tween® family,
- les esters d'acides gras et de glycérol,  esters of fatty acids and of glycerol,
- les esters d'acides gras et de sucrose,  esters of fatty acids and of sucrose,
- les esters d'acides gras et de polyéthylèneglycol , esters of fatty acids and of polyethylene glycol,
(ii) les polysiloxanes modifiés polyéthers, (ii) polyether modified polysiloxanes,
(iii) les éthers d'alcools gras et de polyéthylèneglycol, par exemple des tensioactifs de la famille des Brij®, (iii) ethers of fatty alcohols and of polyethylene glycol, for example surfactants of the Brij® family,
(iv) les alkylpolyglycosides , (iv) alkylpolyglycosides,
(v) les copolymères blocs polyéthylène- polyéthylèneglycol .  (v) polyethylene-polyethylene glycol block copolymers.
Dans le second cas où l'agent stabilisant est lié aux charges carbonées de façon covalente, il s'agit de préférence d'un groupement hydrophile, avantageusement d'un groupement poly (oxyde d'alkylène), en particulier d'un groupement polyéthylèneglycol , greffé sur ces charges carbonées. In the second case where the stabilizing agent is covalently bonded to the carbonaceous fillers, it is preferably a hydrophilic group, advantageously a polyalkylene oxide group, in particular a polyethylene glycol group, grafted on these carbonaceous fillers.
Le greffage de motifs réactifs tels que des groupements polyéthylèneglycol à la surface des charges carbonées, en particulier des nanotubes de carbone, peut être réalisé selon tout procédé connu de l'homme du métier. Par exemple, l'homme du métier pourra se rapporter à la publication de B. Zhao et al. (Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers, J. Am. Chem. Soc. (2005) Vol 127 No 22) . Selon cette publication, les nanotubes sont dispersés dans du diméthylformamide (DMF) et sont mis en contact avec du chlorure d'oxalyle. Dans un second temps, la dispersion obtenue est mise en contact avec du polyéthylène glycol (PEG) . Les nanotubes ainsi greffés sont purifiés. The grafting of reactive units such as polyethylene glycol groups on the surface of the carbonaceous feeds, in particular carbon nanotubes, may be carried out according to any method known to those skilled in the art. For example, those skilled in the art will be able to refer to the publication of B. Zhao et al. (Synthesis and Characterization of Soluble Single Walled Carbon Nanotube Graft Copolymers, J. Am Chem Soc (2005) Vol 127 No 22). According to this publication, the nanotubes are dispersed in dimethylformamide (DMF) and are contacted with oxalyl chloride. In a second step, the dispersion obtained is brought into contact with polyethylene glycol (PEG). The nanotubes thus grafted are purified.
En outre, le mélange réalisé dans la première étape du procédé selon l'invention comprend un solvant. On utilise généralement comme solvant un composé permettant de solubiliser le polymère liant, de préférence choisi parmi l'eau ; les mono-alcools (éthanol ou méthanol, notamment) ; le diméthylsulfoxyde (DMSO) ; la glycérine ; les glycols tels que l'éthylène glycol, le diéthylène glycol et le triéthylène glycol ; la diéthylène triamine ; l'éthylène diamine ; le phénol ; le diméthylformamide (DMF) ; le diméthylacétamide ; la N- méthylpyrrolidone ; et leurs mélanges. De manière préférée, le solvant est choisi parmi l'eau, le DMSO et leurs mélanges en toutes proportions. Selon une forme avantageuse de la présente invention, la dispersion des charges conductrices carbonées dans le solvant est réalisée au moyen d'ultrasons ou d'un système rotor-stator ou d'un broyeur à billes. Elle peut être réalisée à température ambiante, ou bien en chauffant, par exemple, entre 40 et 120°C. In addition, the mixture produced in the first step of the process according to the invention comprises a solvent. The solvent used is generally a compound for solubilizing the binder polymer, preferably chosen from water; monoalcohols (especially ethanol or methanol); dimethylsulfoxide (DMSO); glycerine; glycols such as ethylene glycol, diethylene glycol and triethylene glycol; diethylene triamine; ethylene diamine; phenol; dimethylformamide (DMF); dimethylacetamide; N-methylpyrrolidone; and their mixtures. Preferably, the solvent is chosen from water, DMSO and mixtures thereof in all proportions. According to an advantageous form of the present invention, the dispersion of the conductive carbonaceous fillers in the solvent is carried out by means of ultrasound or a rotor-stator system or a ball mill. It can be carried out at room temperature, or by heating, for example, between 40 and 120 ° C.
Comme indiqué précédemment, le polymère conducteur et le polymère liant peuvent être dispersés avec les charges conductrices carbonées ou ils peuvent être séparément dispersés dans un solvant identique ou différent de celui utilisé pour disperser les charges conductrices et choisi dans la liste donnée précédemment. As indicated above, the conductive polymer and the binder polymer may be dispersed with the conductive carbonaceous fillers or they may be separately dispersed in a solvent identical to or different from that used to disperse the conductive fillers and chosen from the list given above.
On préfère utiliser comme polymère liant le poly(alcool vinylique) lui-même. Sa masse moléculaire peut être comprise entre 5 000 et 300 000 g/mol. Son degré d'hydrolyse peut être supérieur à 96%, voire supérieur à 99%. It is preferred to use as the binder polymer the polyvinyl alcohol itself. Its molecular weight can be between 5,000 and 300,000 g / mol. Its degree of hydrolysis may be greater than 96%, or even greater than 99%.
En variante, le polymère liant peut être choisi parmi : la cellulose, la viscose, un alginate, le poly (acide lactique), le poly (acide lactique-co-acide glycolique) , et leurs mélanges, ainsi que leurs mélanges avec un homo- ou copolymère d'alcool vinylique tel que décrit précédemment.  Alternatively, the binder polymer may be selected from: cellulose, viscose, alginate, poly (lactic acid), poly (lactic acid-co-glycolic acid), and mixtures thereof, and mixtures thereof with a homo - or vinyl alcohol copolymer as described above.
On préfère en outre que le polymère conducteur soit polymérisé directement dans le polymère liant en solution, à partir d'un mélange de monomères, d'un agent dopant, d'un amorceur de polymérisation et éventuellement d'au moins un agent oxydant choisi par exemple parmi les persulfates d'ammonium, de sodium ou de potassium. Dans le cas où on forme séparément une première dispersion de charges conductrices carbonées et une seconde dispersion de polymère conducteur et du polymère liant, ces première et seconde dispersions peuvent être mélangées par tout moyen, par exemple sous agitation magnétique . It is further preferred that the conductive polymer is polymerized directly in the binder polymer in solution, from a monomer mixture, a doping agent, a polymerization initiator and optionally at least one oxidizing agent chosen from for example ammonium, sodium or potassium persulfates. In the case where a first dispersion of conductive carbonaceous fillers and a second conductive polymer dispersion and of the binder polymer are formed separately, these first and second dispersions may be mixed by any means, for example with magnetic stirring.
L'étape suivante du procédé selon l'invention consiste à injecter le mélange obtenu dans une solution de coagulation pour former une fibre, sous forme de mono¬ filament ou de multi-filaments . The next step of the inventive method consists in injecting the resulting mixture into a coagulation solution to form a fiber in the form of mono ¬ filament or multi-filaments.
Par « solution de coagulation », on entend au sens de la présente invention une solution qui provoque la solidification du polymère liant avec les charges carbonées et le polymère conducteur. For the purposes of the present invention, the term "coagulation solution" is intended to mean a solution which causes the binder polymer to solidify with the carbonaceous fillers and the conductive polymer.
De telles solutions sont connues de l'homme du métier, et la production de fibres à base d'un polymère liant tel qu'un 'homo- ou copolymère d'alcool vinylique fait l'objet d'une littérature riche. De manière générale, les techniques les plus courantes sont le filage au mouillé ou « wet spinning » (terminologie anglo-saxonne ; se référer par exemple aux brevets US 3 850 901, US 3 852 402 et US 4 612 157) et le filage au mouillé à jet sec ou « dry-jet wet spinning » (terminologie anglo-saxonne ; se référer par exemple aux brevets US 4 603 083, US 4 698 194, US 4 971 861, US 5 208 104 et US 7 026 049) . Such solutions are known to those skilled in the art, and the production of fibers based on a binder polymer such as a homo- or copolymer of vinyl alcohol is the subject of a rich literature. In general, the most common techniques are wet spinning, refer for example to US Pat. Nos. 3,850,901, 3,852,402 and 4,612,157. Dry-jet wet or "dry-jet wet spinning" (see for example US Pat. Nos. 4,603,083, 4,698,194, 4,971,861, 5,208,104 and 7,226,049).
Selon une forme avantageuse d'exécution de la présente invention, la solution de coagulation comprend un solvant choisi parmi l'eau, un alcool, un polyol, une cétone, les hydrocarbures aromatiques et leurs mélanges, de manière plus préférée un solvant choisi parmi l'eau, le méthanol, l'éthanol, le propanol, 1 ' isopropanol , le butanol, un glycol, l'acétone, le méthyl-éthyl-cétone, le méthyl-isobutyl-cétone, le benzène, le toluène et leurs mélanges, et de manière encore plus préférée un solvant choisi parmi l'eau, le méthanol, l'éthanol, un glycol, l'acétone et leurs mélanges. According to an advantageous embodiment of the present invention, the coagulation solution comprises a solvent chosen from water, an alcohol, a polyol, a ketone, aromatic hydrocarbons and mixtures thereof, more preferably a solvent selected from water, methanol, ethanol, propanol, isopropanol, butanol, a glycol, acetone, methyl-ethyl- ketone, methyl isobutyl ketone, benzene, toluene and mixtures thereof, and even more preferably a solvent selected from water, methanol, ethanol, a glycol, acetone and mixtures thereof.
Si le solvant de la solution de coagulation est essentiellement de l'eau, la solution de coagulation a de manière avantageuse une température comprise entre 10 et 80°C. Si le solvant de la solution de coagulation est essentiellement organique, tel que le méthanol, la solution de coagulation a de manière avantageuse une température comprise entre -30 et 10°C. If the solvent of the coagulation solution is essentially water, the coagulation solution advantageously has a temperature of between 10 and 80 ° C. If the solvent of the coagulation solution is essentially organic, such as methanol, the coagulation solution advantageously has a temperature between -30 and 10 ° C.
En outre, la solution de coagulation peut comprendre un ou plusieurs sels destinés à favoriser la coagulation du polymère liant, choisis parmi les sels alcalins ou les sels déshydratants tels que le sulfate d'ammonium, le sulfate de potassium, le sulfate de sodium, le carbonate de sodium, l'hydroxyde de sodium, l'hydroxyde de potassium et leurs mélanges. In addition, the coagulation solution may comprise one or more salts intended to promote the coagulation of the binder polymer, chosen from alkaline salts or desiccant salts such as ammonium sulfate, potassium sulphate, sodium sulphate, sodium carbonate, sodium hydroxide, potassium hydroxide and mixtures thereof.
D'autre part, la solution de coagulation peut comprendre un ou plusieurs composés additionnels qui sont destinés à améliorer les propriétés mécaniques, la résistance à l'eau de la fibre et/ou à faciliter le filage de la fibre. La solution de coagulation peut donc comprendre au moins un composé choisi parmi l'acide borique, les sels de borate et leurs mélanges. De préférence, la solution de coagulation est saturée en sels. On the other hand, the coagulation solution may comprise one or more additional compounds which are intended to improve the mechanical properties, the water resistance of the fiber and / or facilitate the spinning of the fiber. The coagulation solution may therefore comprise at least one compound selected from boric acid, borate salts and mixtures thereof. Preferably, the coagulation solution is saturated with salts.
De manière avantageuse, le mélange est injecté lors de cette étape du procédé selon l'invention à travers une ou un ensemble d'aiguilles et/ou une ou un ensemble de buses cylindriques ou coniques non poreuses dans la solution de coagulation, qui peut être statique (bain statique) ou en mouvement (écoulement) . La vitesse moyenne d'injection de la dispersion peut être comprise entre 0,1 m/min et 50 m/min, de préférence comprise entre 0,5 m/min et 20 m/min. Advantageously, the mixture is injected during this step of the process according to the invention through one or a set of needles and / or one or a set of non-porous cylindrical or conical nozzles in the coagulation solution, which may be static (static bath) or in motion (flow). The average injection speed of the dispersion may be between 0.1 m / min and 50 m / min, preferably between 0.5 m / min and 20 m / min.
La solution coagulante induit la coagulation sous forme d'une fibre par solidification du polymère liant. Les charges carbonées et le polymère conducteur se retrouvent alors piégés dans le polymère liant qui se solidifie . The coagulant solution induces coagulation in the form of a fiber by solidification of the binder polymer. The carbonaceous fillers and the conductive polymer are then trapped in the binder polymer which solidifies.
L'étape suivante du procédé selon l'invention consiste à extraire, de manière continue ou non, la fibre de la solution de coagulation. The next step of the process according to the invention consists in extracting, continuously or not, the fiber from the coagulation solution.
Après l'extraction de la fibre, celle-ci peut être éventuellement lavée une ou plusieurs fois. Le bac de lavage comprend préférentiellement un solvant du polymère liant cité précédemment, tel que de l'eau. L'étape de lavage peut permettre d'éliminer une partie du polymère périphérique de la fibre et ainsi d'enrichir (jusqu'à 50% en poids) la composition de la fibre en charges carbonées. L'étape de lavage peut aussi permettre d'éliminer les agents, notamment les tensioactifs, potentiellement préjudiciables aux propriétés mécaniques ou électriques de la fibre. After extraction of the fiber, it may be washed once or several times. The washing tank preferably comprises a solvent of the binder polymer mentioned above, such as water. The washing step may make it possible to eliminate a portion of the peripheral polymer from the fiber and thus enrich (up to 50% by weight) the composition of the fiber with carbonaceous fillers. The washing step may also make it possible to eliminate the agents, in particular the surfactants, potentially detrimental to the mechanical or electrical properties of the fiber.
En outre, le bain de lavage peut comprendre des agents qui permettent de modifier la composition de la fibre ou qui interagissent chimiquement avec celle-ci. Notamment, des agents de réticulation chimique ou physique, en particulier des sels de borate ou des dialdéhydes, peuvent être ajoutés au bain afin de renforcer la fibre. Enfin, le bain de lavage peut contenir des sels en faible concentration, tels que les sels alcalins ou les sels déshydratants, dont le sulfate d'ammonium, le sulfate de potassium, le sulfate de sodium, le carbonate de sodium, l'hydroxyde de sodium, l'hydroxyde de potassium et leurs mélanges. In addition, the washing bath may comprise agents that make it possible to modify the composition of the fiber or which interact chemically with it. In particular, chemical or physical crosslinking agents, in particular borate salts or dialdehydes, may be added to the bath in order to reinforce the fiber. Finally, the washing bath may contain salts in low concentration, such as alkaline salts or desiccant salts, including ammonium sulfate, potassium sulfate, sodium sulfate, sodium carbonate, sodium hydroxide and the like. sodium, potassium hydroxide and mixtures thereof.
Une étape de séchage est également comprise dans le procédé selon l'invention. Cette étape peut avoir lieu soit directement après l'extraction, soit consécutivement au lavage. Notamment, si on souhaite obtenir une fibre enrichie en polymère, il est souhaitable de sécher la fibre directement après l'extraction. Le séchage est de préférence réalisé dans un four qui va sécher la fibre grâce à un gaz circulant dans un conduit intérieur du four. Le séchage peut aussi être réalisé par rayonnement infrarouge . A drying step is also included in the process according to the invention. This step can take place either directly after extraction or after washing. In particular, if it is desired to obtain a polymer-enriched fiber, it is desirable to dry the fiber directly after the extraction. The drying is preferably carried out in an oven that will dry the fiber through a gas flowing in an interior duct of the oven. The drying can also be carried out by infrared radiation.
Le procédé selon l'invention peut également comprendre une étape de bobinage, et éventuellement une étape d'étirage à chaud réalisée entre l'étape de séchage et l'étape de bobinage. Il peut aussi inclure à différents moments des étirements dans des solvants, ainsi que des étirements à chaud dans l'air. Les étirements à chaud dans l'air peuvent être effectués à une température supérieure à la température de transition vitreuse (Tg) du polymère liant et de préférence inférieure à sa température de fusion (si elle existe) . Une telle étape, décrite dans le brevet US 6 331 265, permet d'orienter les charges carbonées et les polymères sensiblement dans la même direction, selon l'axe de la fibre, et d'améliorer ainsi les propriétés mécaniques de cette dernière, notamment son module d'Young et son seuil de contrainte à la rupture. Le rapport d'étirage, défini comme le rapport de la longueur de la fibre après étirage à sa longueur avant étirage, peut être compris entre 1 et 20, de préférence entre 1 et 10, bornes incluses. L'étirage peut se faire en une seule fois, ou en plusieurs fois en laissant la fibre relaxer légèrement entre chaque étirage. Cette étape d'étirage est de préférence conduite en faisant passer les fibres dans une série de rouleaux ayant des vitesses de rotation différentes, ceux qui déroulent la fibre tournant à plus faible vitesse que ceux qui la réceptionnent. Pour atteindre la température d'étirage voulue, on peut soit faire passer les fibres dans des fours disposés entre les rouleaux, soit utiliser des rouleaux chauffants, soit combiner ces deux techniques. Cette étape d'étirage permet de consolider la fibre et d'atteindre des contraintes au seuil de rupture élevées. The method according to the invention may also comprise a winding step, and optionally a hot stretching step performed between the drying step and the winding step. It may also include stretches in solvents at different times, as well as hot stretching in the air. The hot stretching in the air may be carried out at a temperature above the glass transition temperature (Tg) of the binder polymer and preferably below its melting point (if it exists). Such a step, described in US Pat. No. 6,331,265, makes it possible to orient the carbonaceous fillers and the polymers substantially in the same direction, along the axis of the fiber, and thus to improve the mechanical properties of the latter, in particular its Young's modulus and its threshold of stress at break. The draw ratio, defined as the ratio of the length of the fiber after drawing to its length before drawing, may be from 1 to 20, preferably from 1 to 10, inclusive. Stretching can be done in one go, or several times, allowing the fiber to relax slightly between each stretch. This stretching step is preferably conducted by passing the fibers through a series of rolls having different rotational speeds, those which unroll the fiber rotating at a lower speed than those receiving it. To achieve the desired draw temperature, the fibers may be passed through ovens arranged between the rolls, or heated rollers may be used, or these two techniques may be combined. This stretching step makes it possible to consolidate the fiber and to achieve high breaking point stresses.
Les fibres composites conductrices obtenues à l'issue de ce procédé sont caractérisées par le fait qu'elles renferment les charges conductrices carbonées, le polymère conducteur et le polymère liant répartis de façon homogène en leur sein. On pense que la présence du polymère conducteur entre les charges carbonées permet de diminuer les résistances de contact entre ces charges. Ces fibres renferment habituellement de 5 à 50% en poids, de préférence de 5 à 30% en poids, plus préférentiellement de 5 à 20% en poids, de charges conductrices carbonées par rapport au poids total des fibres. Il est donc possible d'obtenir des fibres composites à haute teneur en ces charges. Elles renferment par ailleurs généralement de 1 à 50% en poids, de préférence de 3 à 30% en poids, de polymère conducteur . The conductive composite fibers obtained at the end of this process are characterized by the fact that they contain the conductive carbonaceous fillers, the conductive polymer and the binder polymer distributed homogeneously within them. It is thought that the presence of Conductive polymer between the carbonaceous charges makes it possible to reduce the contact resistances between these charges. These fibers usually contain from 5 to 50% by weight, preferably from 5 to 30% by weight, more preferably from 5 to 20% by weight, of conductive carbonaceous fillers relative to the total weight of the fibers. It is therefore possible to obtain composite fibers with a high content of these fillers. They also generally contain from 1 to 50% by weight, preferably from 3 to 30% by weight, of conductive polymer.
La fibre obtenue présente de bonnes propriétés mécaniques et une bonne stabilité chimique. Précisément, cette fibre peut être caractérisée mécaniquement par un test de traction et elle présente : The fiber obtained has good mechanical properties and good chemical stability. Specifically, this fiber can be mechanically characterized by a tensile test and has:
- un seuil de contrainte à la rupture (ou ténacité) supérieur à 100 MPa, plus préférentiellement supérieur à 150 MPa, voire supérieur à 200 MPa ;  a threshold of stress at break (or toughness) greater than 100 MPa, more preferably greater than 150 MPa, or even greater than 200 MPa;
- un allongement à la rupture de préférence compris entre 0,1 et 500% d'étirement, plus préférentiellement entre 1 et 400% d'étirement, et mieux encore entre 5 et 200% d'étirement ; et/ou  an elongation at break preferably between 0.1 and 500% of stretching, more preferably between 1 and 400% of stretching, and more preferably between 5 and 200% of stretching; and or
- un module d' Young (ou module de traction) compris entre 1 et 100 GPa, de préférence entre 2 et 50 GPa,tels que mesurés suivant la norme NF EN ISO 5079/1996-02.  a Young's modulus (or traction modulus) of between 1 and 100 GPa, preferably between 2 and 50 GPa, as measured according to standard NF EN ISO 5079 / 1996-02.
En outre, les fibres composites conductrices obtenues selon ce procédé présentent des valeurs de conductivité électrique nettement plus élevées que ce que l'on pouvait attendre, à savoir une résistivité qui peut être comprise entre 10~4 et 105 ohm. cm, de préférence entre 0,01 et 103 ohm. cm et plus préférentiellement entre 0,1 et 100 ohm.com à température ambiante. La résistivité des fibres selon l'invention peut être mesurée à l'aide d'un multimètre Keithley 2000, selon la méthode décrite dans l'article F. Grillard et al, Polymer 53 (2012) 183- 187. La conductivité électrique des fibres peut encore être améliorée par des traitements thermiques, chimiques ou physiques. On préfère donc que le procédé selon l'invention comprenne une telle étape supplémentaire, en particulier une étape de recuit thermique des fibres obtenues. Ces fibres sont par ailleurs piézo-résistives , c'est-à-dire que leur résistivité électrique varie en fonction de leur allongement, à température ambiante, comme illustré à la Figure 2. In addition, the conductive composite fibers obtained according to this method have much higher electrical conductivity values than could be expected, namely a resistivity which can be between 10 ~ 4 and 10 5 ohm. cm, preferably between 0.01 and 10 3 ohm. cm and more preferably between 0.1 and 100 ohm.com at room temperature. The resistivity of the fibers according to the invention can be measured using a Keithley 2000 multimeter, according to the method described in the article F. Grillard et al., Polymer 53 (2012) 183-187. The electrical conductivity of the fibers can be further improved by heat, chemical or physical treatments. It is therefore preferred that the process according to the invention comprises such an additional step, in particular a step of thermal annealing of the fibers obtained. These fibers are also piezoresistive, that is to say that their electrical resistivity varies according to their elongation at room temperature, as shown in Figure 2.
La présente invention a également pour objet l'utilisation des fibres composites conductrices précitées pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de textiles chauffants ; de câbles conducteurs ; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters ; d'afficheurs, de claviers ou de connecteurs intégrés à des vêtements ; ou de récepteurs et émetteurs d' ondes électromagnétiques . The present invention also relates to the use of the above-mentioned conductive composite fibers for the manufacture of nose, wings or cockles of rockets or airplanes; off-shore flexible armor; automotive bodywork components, engine chassis or automobile support parts; automotive seat coverings; structural elements in the field of buildings or bridges and roadways; packaging and antistatic textiles, in particular antistatic curtains, antistatic clothing (for example, safety or clean room) or materials for the protection of silos or the packaging and / or transport of powders or granular materials; furnishing items, including clean room furniture; filters; electromagnetic shielding devices, in particular for the protection of electronic components; heated textiles; conductive cables; sensors, in particular deformation sensors or mechanical stresses; electrodes; hydrogen storage devices; biomedical devices such as sutures, prostheses or catheters; displays, keyboards or connectors incorporated into clothing; or receivers and emitters of electromagnetic waves.
La fabrication de ces pièces composites peut être réalisée suivant différents procédés, impliquant en général une étape d'imprégnation des fibres composites conductrices selon l'invention par une composition polymérique renfermant au moins un matériau thermoplastique, élastomère ou thermodurcissable . Cette étape d'imprégnation peut elle-même être effectuée suivant différentes techniques, en fonction notamment de la forme physique de la composition polymérique utilisée (pulvérulente ou plus ou moins liquide). L'imprégnation des fibres composites conductrices est de préférence réalisée suivant un procédé d'imprégnation en lit fluidisé, dans lequel la composition polymérique se trouve à l'état de poudre. Des fibres pré-imprégnées sont ainsi obtenues. The manufacture of these composite parts can be carried out according to various processes, generally involving a step of impregnating the conductive composite fibers according to the invention with a polymeric composition containing at least one thermoplastic, elastomeric or thermosetting material. This impregnation step may itself be carried out according to various techniques, depending in particular on the physical form of the polymeric composition used (pulverulent or more or less liquid). The impregnation of the conductive composite fibers is preferably carried out according to a fluidized bed impregnation process, in which the polymeric composition is in the form of powder. Pre-impregnated fibers are thus obtained.
On obtient des semi-produits qui sont ensuite utilisés dans la fabrication de la pièce composite recherchée. Différents tissus de fibres pré-imprégnées, de composition identique ou différente, peuvent être empilés pour former une plaque ou un matériau stratifié, ou en variante soumis à un procédé de thermoformage. En variante, les fibres pré-imprégnées peuvent être associées pour former des rubans qui sont susceptibles d'être utilisés dans un procédé d'enroulement filamentaire permettant l'obtention de pièces creuses de forme quasi-illimitée, par enroulement des rubans sur un mandrin ayant la forme de la pièce à fabriquer. Dans tous les cas, la fabrication de la pièce finie comprend une étape de consolidation de la composition polymérique, qui est par exemple fondue localement pour créer des zones de fixation des fibres pré-imprégnées entre elles et/ou solidariser les rubans de fibres pré-imprégnées dans le procédé d'enroulement filamentaire . Semi-finished products are obtained which are then used in the manufacture of the desired composite part. Different preimpregnated fiber fabrics, of identical or different composition, can be stacked to form a plate or a laminated material, or alternatively subjected to a thermoforming process. Alternatively, the pre-impregnated fibers may be combined to form ribbons which are capable of being used in a filament winding process for obtaining hollow pieces of almost unlimited form, by winding ribbons on a mandrel having the shape of the workpiece. In all cases, the manufacture of the finished part comprises a step of consolidating the polymeric composition, which is for example melted locally to create zones for fixing the fibers pre-impregnated with each other and / or to secure the fiber ribbons pre-impregnated with each other. impregnated in the filament winding process.
En variante encore, il est possible de préparer un film à partir de la composition polymérique d'imprégnation, notamment au moyen d'un procédé d'extrusion ou de calandrage, ledit film ayant par exemple une épaisseur d'environ 100 ym, puis de le placer entre deux mats de fibres composites conductrices selon l'invention, l'ensemble étant alors pressé à chaud pour permettre 1 ' imprégnation des fibres et la fabrication de la pièce composite. As a further variant, it is possible to prepare a film from the polymeric impregnating composition, in particular by means of an extrusion or calendering process, said film having for example a thickness of about 100 μm, then of placing it between two conductive composite fiber mats according to the invention, the assembly then being hot-pressed to allow impregnation of the fibers and manufacture of the composite part.
Dans ces procédés, les fibres composites conductrices selon l'invention peuvent être tissées ou tricotées, seules ou avec d'autres fibres, ou être utilisées, seules ou en association avec d'autres fibres, pour la fabrication de câbles, de feutres ou de matériaux non-tissés. Des exemples de matériaux constitutifs de ces autres fibres comprennent, sans limitation : In these processes, the conductive composite fibers according to the invention can be woven or knitted, alone or with other fibers, or used, alone or in combination with other fibers, for the manufacture of cables, felts or nonwoven materials. Examples of materials constituting these other fibers include, without limitation:
- les fibres de polymère étiré, à base notamment : de polyamide tel que le polyamide 6 (PA-6) , le polyamide 11 (PA-11), le polyamide 12 (PA-12), le polyamide 6.6 (PA-6.6), le polyamide 4.6 (PA-4.6), le polyamide 6.10 (PA-6.10) ou le polyamide 6.12 (PA-6.12), de copolymère bloc polyamide/polyéther (Pebax®) , de polyéthylène haute densité, de polypropylène ou de polyester tel que les polyhydroxyalcanoates et les polyesters commercialisés par DU PONT sous la dénomination commerciale Hytrel® ; stretched polymer fibers, based in particular on: polyamide such as polyamide 6 (PA-6), polyamide 11 (PA-11), polyamide 12 (PA-12), polyamide 6.6 (PA-6.6) the polyamide 4.6 (PA-4,6), polyamide-6,10 (PA-6.10) or polyamide 6.12 (PA-6.12), copolymer polyamide / polyether block (Pebax ®), high density polyethylene, polypropylene or polyester such that polyhydroxyalkanoates and polyesters marketed by Du Pont under the trade name Hytrel ®;
- les fibres de carbone ;  - carbon fibers;
- les fibres de verre, notamment de type E, R ou glass fibers, especially of type E, R or
S2 ; S2;
- les fibres d'aramide (Kevlar®) ; - aramid fibers (Kevlar ® );
- les fibres de bore ;  - boron fibers;
- les fibres de silice ;  - silica fibers;
- les fibres naturelles telles que le lin, le chanvre, le sisal le coton ou la laine ; et  - natural fibers such as linen, hemp, sisal cotton or wool; and
- leurs mélanges, tels que les mélanges de fibres de verre, carbone et aramide.  - their mixtures, such as fiberglass, carbon and aramid blends.
La présente invention a ainsi pour autre objet les matériaux composites comprenant des fibres composites conductrices selon l'invention, liées entre elles par tissage ou par une composition polymérique. The present invention thus has for another object composite materials comprising conductive composite fibers according to the invention, bonded together by weaving or by a polymeric composition.
D'autres caractéristiques et avantages de 1 ' invention apparaîtront à la lecture des exemples non limitatifs et purement illustratifs qui vont suivre. Other features and advantages of the invention will become apparent on reading the nonlimiting and purely illustrative examples which follow.
EXEMPLES EXAMPLES
Exemple 1 : Préparation d'une fibre NTC/PANI/APV Example 1 Preparation of a NTC / PANI / APV Fiber
On prépare une dispersion aqueuse comprenant 0,9% en poids de nanotubes de carbone (ou NTC) multi-parois purifiés et 1,2% en poids de solubilisant (Brij® 78) . La dispersion est homogénéisée par une sonde à ultrasons de puissance 20 W pendant 2h pour un volume de 50 ml. Parallèlement, on polymérise de l'aniline en polyaniline (ou PANI) dans une solution aqueuse de poly (alcool vinylique) (ou APV) à 8 % en masse et de masse moléculaire 195 kg/mol. La solution d'APV est acidifiée par de l'acide chlorhydrique de concentration 1 mol/1 afin de rendre le polymère conducteur. L'aniline est oxydée par du persulfate d'ammonium de concentration 0,5 mol/1. Ce mélange est homogénéisé par agitation magnétique . An aqueous dispersion is prepared comprising 0.9% by weight of purified multi-walled carbon nanotubes (or CNTs) and 1.2% by weight of solubilizer (Brij® 78). The dispersion is homogenized by an ultrasonic probe of power 20 W for 2 hours for a volume of 50 ml. In parallel, aniline is polymerized to polyaniline (or PANI) in an aqueous solution of polyvinyl alcohol (or PVA) at 8% by weight and with a molecular weight of 195 kg / mol. The APV solution is acidified with 1 mol / l hydrochloric acid in order to render the polymer conductive. The aniline is oxidized with ammonium persulfate of concentration 0.5 mol / l. This mixture is homogenized by magnetic stirring.
La dispersion de NTC et la solution d'APV/PANI sont mélangées par agitation magnétique dans une proportion pondérale de 50 :50. The NTC dispersion and the APV / PANI solution are mixed by magnetic stirring in a weight ratio of 50:50.
Le mélange obtenu est alors injecté dans un bain statique d'une solution de sulfate de sodium de concentration 320 g/1 à 40 °C. La fibre est extraite du bain de coagulation après un temps de résidence d'environ 30 s. Elle est dirigée ensuite dans un bain de rinçage constitué de sulfate de sodium à 50 g/1. Elle est ensuite séchée par chauffage infrarouge. La fibre est dirigée de nouveau dans un bain de lavage contenant de l'eau. Après un temps de résidence de 20 s dans le bain, la fibre est à nouveau séchée par infrarouge et bobinée. The mixture obtained is then injected into a static bath of a sodium sulfate solution of concentration 320 g / l at 40 ° C. The fiber is extracted from the coagulation bath after a residence time of about 30 seconds. It is then directed into a rinsing bath consisting of 50 g / l sodium sulfate. It is then dried by infrared heating. The fiber is directed back into a wash bath containing water. After a residence time of 20 seconds in the bath, the fiber is again dried by infrared and wound.
La fibre obtenue contient 15% en poids de NTC, 5% θΠ poids de PANI et 80% en poids d'APV. The fiber obtained contains 15% by weight of CNT, 5% ΠΠ weight of PANI and 80% by weight of APV.
Elle possède une résistivité électrique de 20 Q.cm, une contrainte à la rupture de 240 MPa, un allongement à la rupture de 40 % et un module d' Young de 9 GPa. Cette fibre est recuite à 180 °C pendant lh. Elle présente alors une résistivité électrique de 5 Q.cm seulement . It has an electrical resistivity of 20 Ω.cm, a breaking stress of 240 MPa, an elongation at break of 40% and a Young's modulus of 9 GPa. This fiber is annealed at 180 ° C. for 1 hour. It then has an electrical resistivity of only 5 Q.cm.
Exemple 2 : Préparation d'une fibre NTC/PEDOT/APV Example 2 Preparation of a NTC / PEDOT / APV Fiber
On prépare une solution de PEDOT:PSS qui est mélangée à une solution d'APV (195 kg/mol) à 12% en poids et à la dispersion de NTC multi-parois décrite dans l'exemple 1. En suivant le mode opératoire décrit à l'Exemple 1, on obtient une fibre chargée à 15% en poids de NTC, présentant une résistivité électrique de 55 Q.cm, une contrainte à la rupture de 180 MPa, un allongement à la rupture de 120% et un module d' Young de 5 GPa. Cette fibre est illustrée sur la Figure 1, qui représente un cliché en coupe transversale au microscope électronique à balayage . A solution of PEDOT: PSS is prepared which is mixed with a solution of APV (195 kg / mol) at 12% by weight and with the multi-wall CNT dispersion described in Example 1. Following the procedure described in Example 1, a fiber filled with 15% by weight of CNT is obtained, having an electrical resistivity of 55 Ω · cm, a breaking stress of 180 MPa, an elongation at break of 120% and a modulus of 'Young of 5 GPa. This fiber is illustrated in Figure 1, which shows a cross-sectional view through a scanning electron microscope.
Ces fibres sont ensuite étirées de 50% à 100°C. On observe une diminution de leur résistivité électrique qui atteint 20 Q.cm. Leur contrainte à la rupture est de 185 MPa, leur allongement de 18% et leur module d' Young de 8 GPa. These fibers are then stretched by 50% at 100 ° C. A decrease in their electrical resistivity which reaches 20 Ω.cm is observed. Their breaking stress is 185 MPa, their elongation 18% and their Young's modulus of 8 GPa.
Exemple 3 : Préparation d'une fibre NTC/PC/APV Example 3 Preparation of an NTC / PC / APV Fiber
On prépare une dispersion contenant 0,5% en poids de NTC mono-parois et 1% en poids de stabilisant (Brij® 78) . La dispersion peut être mélangée à une solution de polymère conducteur (PC) choisi parmi la polyaniline, le polypyrolle ou le polythiophène, tel que précisé dans les exemples 1 et 2. En suivant le même procédé que celui décrit dans l'exemple 1, on a obtenu une fibre NTC/PANI/APV chargée de 8% en poids de NTC, présentant une résistivité électrique de 1000 Q.cm. A dispersion containing 0.5% by weight of mono-wall CNT and 1% by weight of stabilizer (Brij® 78) is prepared. The dispersion may be mixed with a solution of conductive polymer (PC) chosen from polyaniline, polypyrolle or polythiophene, as specified in Examples 1 and 2. Following the same process as that described in Example 1, got a fiber NTC / PANI / APV charged with 8% by weight of NTC, having an electrical resistivity of 1000 Q.cm.
Exemple 4 (comparatif) : Préparation d'une fibre PA I/APVExample 4 (Comparative) Preparation of a PA I / APV Fiber
On reproduit le mode opératoire de l'Exemple 1, excepté que l'on n'utilise pas de dispersion de NTC. Seule une solution d'APV/PANI est injectée dans le bain de coagulation. On obtient une fibre présentant une résistivité électrique de 106 Q.cm. The procedure of Example 1 is repeated except that no dispersion of CNT is used. Only a solution of APV / PANI is injected into the coagulation bath. A fiber having an electrical resistivity of 10 6 Ω.cm is obtained.
Exemple 5 (comparatif) : Préparation d'une fibre PEDOT/APV Example 5 (Comparative) Preparation of a PEDOT / APV Fiber
Une solution d'APV à 12% en poids a été mélangée à une solution de PEDOT :PSS dans une proportion pondérale de 1:1. En suivant le même procédé que celui décrit dans l'exemple 1, on a obtenu une fibre présentant une résistivité électrique de 2000 Q.cm.  A solution of APV at 12% by weight was mixed with a solution of PEDOT: PSS in a weight ratio of 1: 1. By following the same method as that described in Example 1, a fiber having an electrical resistivity of 2000 Ω.cm was obtained.
Exemple 6 : Démonstration de l'effet synergique de l'association NTC / PEDOT EXAMPLE 6 Demonstration of the Synergistic Effect of the NTC / PEDOT Association
On réalise des fibres ayant les différentes compositions indiquées dans le tableau ci-dessous, en suivant le mode opératoire décrit à l'Exemple 1. Les propriétés des fibres obtenues sont également présentées dans ce tableau. La synergie est très bien observée. L'ajout de NTC ou de PEDOT dans l'APV améliore la résistivité électrique et l'ajout des deux conduit à une diminution synergique de la résistivité électrique. Contrainte Fibers having the different compositions indicated in the table below are prepared according to the procedure described in Example 1. The properties of the fibers obtained are also presented in this table. Synergy is very well observed. The addition of NTC or PEDOT in the APV improves the electrical resistivity and the addition of both leads to a synergistic decrease in electrical resistivity. Constraint
Résistivité Module Resistivity Module
Composition à la Al1ongement Composition at Alongment
électrique d' Young de la fibre rupture (%)  Young's electric fiber breakage (%)
(Ω . cm) (GPa)  (Ω cm) (GPa)
(MPa)  (MPa)
APV 1 E +14 230 50 7 APV 1 E +14 230 50 7
APV / Pedot APV / Pedot
7.7 E +05 275 40 7 15%  7.7 E +05 275 40 7 15%
APV / NTC  APV / NTC
3.4 E +04 160 95 5 3.4 E +04 160 95 5
15% 15%
APV / NTC  APV / NTC
15% / Pedot 55 180 120 5 15 % 15% / Pedot 55 180 120 5 15%

Claims

REVENDICATIONS
1. Fibres composites conductrices, renfermant des charges conductrices carbonées choisies parmi les nanotubes de carbone, les nanofibres de carbone et leurs mélanges, et au moins un polymère conducteur dispersés dans une matrice polymère comprenant un polymère liant choisi parmi un homo- ou copolymère d'alcool vinylique. 1. Conductive composite fibers containing carbon-based conductive fillers chosen from carbon nanotubes, carbon nanofibers and mixtures thereof, and at least one conductive polymer dispersed in a polymer matrix comprising a binder polymer chosen from a homo- or copolymer of vinyl alcohol.
2. Fibres selon la revendication 1, caractérisées en ce que les charges conductrices carbonées comprennent des nanotubes de carbone. 2. Fibers according to claim 1, characterized in that the conductive carbonaceous fillers comprise carbon nanotubes.
3. Fibres selon l'une des revendications 1 et 2, caractérisées en ce que le polymère conducteur est un homo- ou copolymère comprenant un ou plusieurs monomères choisis parmi l'aniline, le pyrrole, le thiophène éventuellement substitué, l'acétylène, le phénylène vinylène, le sulfure de phénylène et leurs mélanges, de préférence la polyaniline. 3. Fibers according to one of claims 1 and 2, characterized in that the conductive polymer is a homo- or copolymer comprising one or more monomers selected from aniline, pyrrole, optionally substituted thiophene, acetylene, phenylene vinylene, phenylene sulphide and mixtures thereof, preferably polyaniline.
4. Fibres selon l'une quelconque des revendications 1 à 3, caractérisées en ce qu'elles renferment de 5 à 50%, de préférence de 5 à 30% et plus préférentiellement de 5 à 20% en poids, de charges conductrices carbonées. 4. Fibers according to any one of claims 1 to 3, characterized in that they contain from 5 to 50%, preferably from 5 to 30% and more preferably from 5 to 20% by weight, of conductive carbonaceous fillers.
5. Fibres selon l'une quelconque des revendications 1 à 4, caractérisées en ce qu'elles renferment de 1 à 50% en poids, de préférence de 3 à 30% en poids, de polymère conducteur . 5. Fibers according to any one of claims 1 to 4, characterized in that they contain from 1 to 50% by weight, preferably from 3 to 30% by weight, of conductive polymer.
6. Fibres selon l'une quelconque des revendications 1 à 5, caractérisées en ce que le polymère liant est le poly (alcool vinylique) . 6. Fibers according to any one of claims 1 to 5, characterized in that the binder polymer is polyvinyl alcohol.
7. Fibres selon l'une quelconque des revendications 1 à 6, caractérisées en ce qu'elles présentent : 7. Fibers according to any one of claims 1 to 6, characterized in that they present:
- un seuil de contrainte à la rupture (ou ténacité) supérieur à 100 MPa, plus préférentiellement supérieur à 150 MPa, voire supérieur à 200 MPa ;  a threshold of stress at break (or toughness) greater than 100 MPa, more preferably greater than 150 MPa, or even greater than 200 MPa;
- un allongement à la rupture de préférence compris entre 0,1 et 500% d'étirement, plus préférentiellement entre 1 et 400% d'étirement, et mieux encore entre 5 et 200% d'étirement ; et/ou  an elongation at break preferably between 0.1 and 500% of stretching, more preferably between 1 and 400% of stretching, and more preferably between 5 and 200% of stretching; and or
- un module d' Young (ou module de traction) compris entre 1 et 100 GPa, de préférence entre 2 et 50 GPa,  a Young's modulus (or traction modulus) of between 1 and 100 GPa, preferably between 2 and 50 GPa,
tels que mesurés suivant la norme NF EN ISO 5079/1996-02.  as measured according to standard NF EN ISO 5079 / 1996-02.
8. Fibres composites conductrices selon l'une quelconque des revendications 1 à 7, caractérisées en ce qu'elles présentent une résistivité électrique comprise entre 10~4 et 105 ohm. cm, de préférence entre 0,01 et 103 ohm. cm, et plus préférentiellement entre 0,1 et 100 ohm. cm. 8. conductive composite fibers according to any one of claims 1 to 7, characterized in that they have an electrical resistivity of between 10 ~ 4 and 10 5 ohm. cm, preferably between 0.01 and 10 3 ohm. cm, and more preferably between 0.1 and 100 ohm. cm.
9. Procédé de fabrication de fibres composites conductrices selon l'une quelconque des revendications 1 à 8, comprenant les étapes successives consistant en : a) la réalisation d'un mélange comprenant les charges conductrices carbonées, un solvant, au moins un agent stabilisant lié de façon covalente ou non covalente auxdites charges, le polymère conducteur et le polymère liant, d) l'injection dudit mélange dans une solution de coagulation pour former une fibre, 9. A method of manufacturing conductive composite fibers according to any one of claims 1 to 8, comprising the successive steps consisting of: a) the realization of a mixture comprising the conductive carbonaceous fillers, a solvent, at least one stabilizing agent bound covalently or non-covalently to said fillers, the conductive polymer and the binder polymer, d) injecting said mixture into a coagulation solution to form a fiber,
e) l'extraction, le lavage éventuel puis le séchage de ladite fibre.  e) extracting, optionally washing and then drying said fiber.
10. Procédé selon la revendication 9, caractérisé en ce que l'étape a) comprend les sous-étapes al) à a3) suivantes : 10. Process according to claim 9, characterized in that step a) comprises the following sub-steps al) to a3):
al) la formation d'une première dispersion renfermant les charges conductrices carbonées, un solvant et au moins un agent stabilisant lié de façon covalente ou non covalente auxdites charges,  al) forming a first dispersion containing the conductive carbonaceous fillers, a solvent and at least one stabilizing agent covalently or non-covalently bonded to said fillers,
a2) la formation d'une seconde dispersion renfermant le polymère conducteur dispersé dans une solution du polymère liant dans un solvant,  a2) forming a second dispersion containing the conductive polymer dispersed in a solution of the binder polymer in a solvent,
a3) le mélange des première et seconde dispersions.  a3) mixing the first and second dispersions.
11. Procédé selon l'une des revendications 9 et 10, caractérisé en ce qu' il comprend en outre une étape de traitement thermique, chimique ou physique des fibres obtenues en vue d'améliorer leur conductivité, de préférence une étape de recuit thermique. 11. Method according to one of claims 9 and 10, characterized in that it further comprises a heat treatment step, chemical or physical fibers obtained to improve their conductivity, preferably a thermal annealing step.
12. Utilisation des fibres composites conductrices selon l'une quelconque des revendications 1 à 8 pour la fabrication de nez, d'ailes ou de carlingues de fusées ou d'avions ; d'armures de flexible off-shore ; d'éléments de carrosserie automobile, de châssis moteur ou de pièces support pour l'automobile ; de revêtements de sièges automobiles ; d'éléments de charpentes dans le domaine du bâtiment ou des ponts et chaussées ; d'emballages et de textiles antistatiques, notamment de rideaux antistatiques, de vêtements antistatiques (par exemple, de sécurité ou pour salle blanche) ou de matériaux pour la protection de silos ou le conditionnement et/ou le transport de poudres ou de matériaux granulaires ; d'éléments d'ameublement, notamment de mobilier pour salle blanche ; de filtres ; de dispositifs de blindage électromagnétique, notamment pour la protection de composants électroniques ; de textiles chauffants ; de câbles conducteurs ; de capteurs, notamment de capteurs de déformation ou de contraintes mécaniques ; d'électrodes ; de dispositifs de stockage d'hydrogène ; de dispositifs biomédicaux tels que des fils de suture, des prothèses ou des cathéters ; d'afficheurs, de claviers ou de connecteurs intégrés à des vêtements ; ou de récepteurs et émetteurs d'ondes électromagnétiques. 12. Use of conductive composite fibers according to any one of claims 1 to 8 for the manufacture of nose, wings or cockles of rockets or airplanes; off-shore flexible armor; automotive bodywork components, engine chassis or automobile support parts; automotive seat coverings; structural elements in the field of buildings or bridges and roadways; packaging and antistatic textiles, including antistatic curtains, antistatic clothing (eg safety or clean room) or materials for the protection of silos or the packaging and / or transport of powders or granular materials; furnishing items, including clean room furniture; filters; electromagnetic shielding devices, in particular for the protection of electronic components; heated textiles; conductive cables; sensors, in particular deformation sensors or mechanical stresses; electrodes; hydrogen storage devices; biomedical devices such as sutures, prostheses or catheters; displays, keyboards or connectors incorporated into clothing; or receivers and emitters of electromagnetic waves.
13. Matériau composite comprenant des fibres composites conductrices selon l'une quelconque des revendications 1 à 8, liées entre elles par tissage ou par une composition polymérique. 13. Composite material comprising conductive composite fibers according to any one of claims 1 to 8, bonded together by weaving or by a polymeric composition.
PCT/FR2012/051062 2011-05-23 2012-05-14 Conductive composite fibres comprising carbon-based conductive fillers and a conductive polymer WO2012160288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1154465A FR2975708B1 (en) 2011-05-23 2011-05-23 CONDUCTIVE COMPOSITE FIBERS COMPRISING CARBON CONDUCTIVE LOADS AND A CONDUCTIVE POLYMER
FR1154465 2011-05-23

Publications (1)

Publication Number Publication Date
WO2012160288A1 true WO2012160288A1 (en) 2012-11-29

Family

ID=46321096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/051062 WO2012160288A1 (en) 2011-05-23 2012-05-14 Conductive composite fibres comprising carbon-based conductive fillers and a conductive polymer

Country Status (2)

Country Link
FR (1) FR2975708B1 (en)
WO (1) WO2012160288A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019055615A1 (en) * 2017-09-13 2019-03-21 The Board Of Regents For Oklahoma State University Preparation and characterization of organic conductive threads as non-metallic electrodes and interconnects
CN113201168A (en) * 2021-05-12 2021-08-03 江苏省特种设备安全监督检验研究院 Preparation method of aramid fiber/graphene/conductive polymer aerogel composite pressure sensing material
EP4227449A1 (en) * 2022-02-14 2023-08-16 SHPP Global Technologies B.V. Fibers comprising reinforcement additives and recycled contents
EP4249256A3 (en) * 2022-03-22 2023-10-18 Xerox Corporation Piezoresistive composites via additive manufacturing and composite filaments associated therewith

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850901A (en) 1969-11-25 1974-11-26 T Kimura Polyvinyl alcohol fibers
US3852402A (en) 1969-11-25 1974-12-03 S Tanaka Process for the preparation of polyvinyl alcohol fibers
US4603083A (en) 1983-12-12 1986-07-29 Toray Industries, Inc. Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
US4612157A (en) 1984-01-31 1986-09-16 Kuraray Company, Limited Method for production of high-tenacity, fine-denier polyvinyl alcohol fiber
US4971861A (en) 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
US5208104A (en) 1988-02-10 1993-05-04 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
US5783111A (en) 1993-09-03 1998-07-21 Uniax Corporation Electrically conducting compositions
WO1999015725A1 (en) 1997-09-23 1999-04-01 Zipperling Kessler & Co. (Gmbh & Co.) Preparation of fibers containing intrinsically conductive polymers
US6083562A (en) 1997-06-04 2000-07-04 Sterling Chemicals International, Inc. Methods for making antistatic fibers [and methods for making the same]
US6331265B1 (en) 1999-05-18 2001-12-18 Atofina Research Reinforced polymers
WO2003002456A2 (en) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Method for the selective production of ordered carbon nanotubes in a fluidised bed
US7026049B2 (en) 2004-02-18 2006-04-11 Kuraray Co., Ltd. Conductive polyvinyl alcohol fiber
US20060148351A1 (en) 2005-01-06 2006-07-06 Xiaoming Tao Patterned conductive textile sensors and devices
WO2007096479A1 (en) 2006-02-23 2007-08-30 Panipol Oy Novel compositions and methods for the production thereof
US7264762B2 (en) 2000-01-06 2007-09-04 Drexel University Electrospinning ultrafine conductive polymeric fibers
US20090128168A1 (en) 2003-08-01 2009-05-21 Santa Fe Science And Technology, Inc. Multifunctional conducting polymer structures
US7628944B2 (en) 2002-10-30 2009-12-08 Santa Fe Science And Technology, Inc. Spinning, doping, dedoping and redoping polyaniline fiber
FR2940659A1 (en) 2008-12-26 2010-07-02 Arkema France PEKK COMPOSITE FIBER, PROCESS FOR PRODUCING THE SAME AND USES THEREOF
EP2256236A1 (en) 2009-05-27 2010-12-01 Arkema France Method for manufacturing conducting composite fibres with high nanotube content

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3850901A (en) 1969-11-25 1974-11-26 T Kimura Polyvinyl alcohol fibers
US3852402A (en) 1969-11-25 1974-12-03 S Tanaka Process for the preparation of polyvinyl alcohol fibers
US4603083A (en) 1983-12-12 1986-07-29 Toray Industries, Inc. Ultra-high-tenacity polyvinyl alcohol fiber and process for producing same
US4698194A (en) 1983-12-12 1987-10-06 Toray Industries, Inc. Process for producing ultra-high-tenacity polyvinyl alcohol fiber
US4612157A (en) 1984-01-31 1986-09-16 Kuraray Company, Limited Method for production of high-tenacity, fine-denier polyvinyl alcohol fiber
US4971861A (en) 1986-12-27 1990-11-20 Unitika Ltd. Polyvinyl alcohol fiber and method of manufacture thereof
US5208104A (en) 1988-02-10 1993-05-04 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
US5783111A (en) 1993-09-03 1998-07-21 Uniax Corporation Electrically conducting compositions
US6083562A (en) 1997-06-04 2000-07-04 Sterling Chemicals International, Inc. Methods for making antistatic fibers [and methods for making the same]
WO1999015725A1 (en) 1997-09-23 1999-04-01 Zipperling Kessler & Co. (Gmbh & Co.) Preparation of fibers containing intrinsically conductive polymers
US6331265B1 (en) 1999-05-18 2001-12-18 Atofina Research Reinforced polymers
US7264762B2 (en) 2000-01-06 2007-09-04 Drexel University Electrospinning ultrafine conductive polymeric fibers
WO2003002456A2 (en) 2001-06-28 2003-01-09 Institut National Polytechnique De Toulouse Method for the selective production of ordered carbon nanotubes in a fluidised bed
US7628944B2 (en) 2002-10-30 2009-12-08 Santa Fe Science And Technology, Inc. Spinning, doping, dedoping and redoping polyaniline fiber
US20090128168A1 (en) 2003-08-01 2009-05-21 Santa Fe Science And Technology, Inc. Multifunctional conducting polymer structures
US7026049B2 (en) 2004-02-18 2006-04-11 Kuraray Co., Ltd. Conductive polyvinyl alcohol fiber
US20060148351A1 (en) 2005-01-06 2006-07-06 Xiaoming Tao Patterned conductive textile sensors and devices
WO2007096479A1 (en) 2006-02-23 2007-08-30 Panipol Oy Novel compositions and methods for the production thereof
FR2940659A1 (en) 2008-12-26 2010-07-02 Arkema France PEKK COMPOSITE FIBER, PROCESS FOR PRODUCING THE SAME AND USES THEREOF
EP2256236A1 (en) 2009-05-27 2010-12-01 Arkema France Method for manufacturing conducting composite fibres with high nanotube content

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Emulsifiers and Detergents", 2008
A. SOROUDI ET AL., SYNTHETIC METALS, vol. 160, no. 11, 2010, pages 1143 - 1147
B. ZHAO ET AL.: "Synthesis and Characterization of Water Soluble Single-Walled Carbon Nanotube Graft Copolymers", J. AM. CHEM. SOC., vol. 127, no. 22, 2005, XP002426704, DOI: doi:10.1021/ja042924i
CHEM. COM., 2003, pages 1442
F. GRILLARD ET AL., POLYMER, vol. 53, 2012, pages 183 - 187
I. MARTIN-GULLON ET AL., CARBON, vol. 44, 2006, pages 1572 - 1580
S.J. POMFRET ET AL., POLYMER, vol. 41, 2000, pages 2265 - 2269
SHIN M K ET AL: "Enhanced conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning", SENSORS AND ACTUATORS B: CHEMICAL: INTERNATIONAL JOURNAL DEVOTED TO RESEARCH AND DEVELOPMENT OF PHYSICAL AND CHEMICAL TRANSDUCERS, ELSEVIER S.A, SWITZERLAND, vol. 134, no. 1, 28 August 2008 (2008-08-28), pages 122 - 126, XP023979333, ISSN: 0925-4005, [retrieved on 20080423], DOI: 10.1016/J.SNB.2008.04.021 *
SOROUDI A ET AL: "Melt blending of carbon nanotubes/polyaniline/polypropylene compounds and their melt spinning to conductive fibres", SYNTHETIC METALS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 160, no. 11-12, 1 June 2010 (2010-06-01), pages 1143 - 1147, XP027067775, ISSN: 0379-6779, [retrieved on 20100601], DOI: 10.1016/J.SYNTHMET.2010.02.038 *
SOROUDI A; SKRIFVARS M; LIU H: "Polyaniline-polypropylene melt-spun fiber filaments: The collaborative effects of blending conditions and fiber draw ratios on the electrical properties of fiber filaments", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 119, no. 1, 27 October 2010 (2010-10-27), pages 558 - 564, XP002666046, DOI: 10.1002/app.32655 *
V. MOTTAGHITALAB ET AL., SYNTHETIC METALS, vol. 152, no. 1, 2005, pages 77 - 80
XUE ET AL: "Electrically conductive yarns based on PVA/carbon nanotubes", COMPOSITE STRUCTURES, ELSEVIER SCIENCE LTD, GB, vol. 78, no. 2, 8 December 2006 (2006-12-08), pages 271 - 277, XP005798860, ISSN: 0263-8223, DOI: 10.1016/J.COMPSTRUCT.2005.10.016 *
ZHANG X ET AL: "Gel spinning of PVA/SWNT composite fiber", POLYMER, ELSEVIER SCIENCE PUBLISHERS B.V, GB, vol. 45, no. 26, 1 December 2004 (2004-12-01), pages 8801 - 8807, XP004652167, ISSN: 0032-3861, DOI: 10.1016/J.POLYMER.2004.10.048 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019055615A1 (en) * 2017-09-13 2019-03-21 The Board Of Regents For Oklahoma State University Preparation and characterization of organic conductive threads as non-metallic electrodes and interconnects
US11525209B2 (en) 2017-09-13 2022-12-13 The Board Of Regents For Oklahoma State University Preparation and characterization of organic conductive threads as non-metallic electrodes and interconnects
CN113201168A (en) * 2021-05-12 2021-08-03 江苏省特种设备安全监督检验研究院 Preparation method of aramid fiber/graphene/conductive polymer aerogel composite pressure sensing material
CN113201168B (en) * 2021-05-12 2023-09-08 江苏省特种设备安全监督检验研究院 Preparation method of aramid fiber/graphene/conductive polymer aerogel composite pressure sensing material
EP4227449A1 (en) * 2022-02-14 2023-08-16 SHPP Global Technologies B.V. Fibers comprising reinforcement additives and recycled contents
WO2023152726A1 (en) * 2022-02-14 2023-08-17 Shpp Global Technologies B.V. Fibers comprising reinforcement additives and recycled contents
EP4249256A3 (en) * 2022-03-22 2023-10-18 Xerox Corporation Piezoresistive composites via additive manufacturing and composite filaments associated therewith

Also Published As

Publication number Publication date
FR2975708A1 (en) 2012-11-30
FR2975708B1 (en) 2014-07-18

Similar Documents

Publication Publication Date Title
WO2010136704A1 (en) Method for producing conducting composite fibres having a high nanotube content
EP2370619B1 (en) Pekk composite fibre, its method of production, and its uses
WO2013011250A1 (en) Graphene-based conductive composite fibres
FR2946178A1 (en) PROCESS FOR MANUFACTURING COATED MULTILAYER CONDUCTIVE FIBER
Du et al. The present status and key problems of carbon nanotube based polymer composites
WO2010136729A1 (en) Multilayer conductive fiber and method for producing the same by coextrusion
Naebe et al. Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres
WO2009007617A2 (en) Method for impregnating continuous fibres with a composite polymer matrix containing a thermoplastic polymer
WO2009007616A2 (en) Method for impregnating continuous fibres with a composite polymer matrix containing a grafted fluorinated polymer
CA3039721A1 (en) Novel method for producing high-carbon materials and high-carbon material produced
WO2019122648A1 (en) Method for producing a carbon fibre from recycled cotton and use of the fibre obtained in this way for forming an article made from composite material
WO2009047456A2 (en) Continuous method for obtaining composite fibres containing colloidal particles and resulting fibre
WO2012160288A1 (en) Conductive composite fibres comprising carbon-based conductive fillers and a conductive polymer
US20170092388A1 (en) Conductive composites and compositions for producing the same, and production methods thereof
Long et al. High-strength carbon nanotube/epoxy resin composite film from a controllable cross-linking reaction
Jestin et al. Wet spinning of CNT-based fibers
CA2644518C (en) Method for making polymeric extruded composite products and carbon nanotubes
Min et al. Polymer/carbon nanotube composite fibers—an overview
Obradović et al. Processing and characterisation of hybrid aramid fabrics reinforced with cross-linked electrospun PVB composite nanofibres
Uchida et al. Processing, structure, and properties of carbon nano fiber filled PBZT composite fiber
CN114438618B (en) Fiber and preparation method thereof
Rana et al. Polymer Nanocomposite Fibers Based on Carbon Nanomaterial for Enhanced Electrical Properties
Denis-Lutard et al. New wet spinning process for the continuous production of polymer/carbon nanotubes composite fibers
Fakirov et al. From bulk polymers to nano-sized materials with controlled nanomorphology
Jestin et al. Nanotube Superfiber Materials: Chapter 6. Wet Spinning of CNT-based Fibers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12728671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12728671

Country of ref document: EP

Kind code of ref document: A1