WO2012152177A1 - 一种信道质量处理方法和装置 - Google Patents

一种信道质量处理方法和装置 Download PDF

Info

Publication number
WO2012152177A1
WO2012152177A1 PCT/CN2012/074422 CN2012074422W WO2012152177A1 WO 2012152177 A1 WO2012152177 A1 WO 2012152177A1 CN 2012074422 W CN2012074422 W CN 2012074422W WO 2012152177 A1 WO2012152177 A1 WO 2012152177A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
cqi value
value
user equipment
power
Prior art date
Application number
PCT/CN2012/074422
Other languages
English (en)
French (fr)
Inventor
刘奇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP12782087.6A priority Critical patent/EP2701437B1/en
Publication of WO2012152177A1 publication Critical patent/WO2012152177A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0033Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter
    • H04L1/0035Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the transmitter evaluation of received explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a channel quality processing method and apparatus. Background technique
  • HSDPA high-speed data packet access
  • 3GPP Third Generation Partnership Project
  • the network side transmits data for users through the high-speed downlink physical channel HS-PDSCH, and uses High Speed Sharing Control Channel (HS-SCCH) as a high-speed physical data sharing channel (HS).
  • HS-SCCH High Speed Sharing Control Channel
  • - Control channel of PDSCH indicating HS-PDSCH related control information.
  • the UE side uses the High Speed Dedicate Physical Control Channel (HS-DPCCH) to report the Channel Quality Indication (CQI) value to the network side, indicating that the current User Equipment (UE) is located.
  • CQI Channel Quality Indication
  • the protocol defines 30 CQI values.
  • Each CQI value indicates a combination of a Transport Block Set (TSB), a number of channels, and a modulation scheme.
  • TBS Transport Block Set
  • a modulation scheme When the UE reports a certain CQI value, it indicates that under the current channel condition, the network uses the combination of the TBS, the number of channels, and the modulation mode indicated by the CQI value, and the UE can be guaranteed in the Additive White Gaussian Noise (AWGN) channel.
  • AWGN Additive White Gaussian Noise
  • the TBS is received with a Block Error Rates (BLER) of 10%.
  • the CQI value can be mapped to a combination of TBS, channel number, and modulation mode, and also corresponds to a determinable SNR value.
  • SNR Signal to Noise Ratio
  • the UE side needs to use the CQI value to indicate the current channel condition to the network side.
  • the CQI value represents the demodulation SNR under certain channel conditions. There is a determinable correspondence between the CQI value and the SNR. For example, when the CQI value quantization step is ldB, the SNR is increased by ldB for each level of the CQI value.
  • the downlink channel and the uplink control channel to be used in the HSDPA technology and the HSPAPA-dependent HSPA+ enhancement technology are as follows: A Dedicated Physical Channel (DPCH) or a Fractional Dedicated Physical Channel (F-DPCH) is used for downlink.
  • the downlink transmit power control (TPC) command is sent, and the UE controls the transmit power of the uplink DPCCH according to the TPC command.
  • the uplink DPCCH is used to send an uplink TPC command, and the network side receives the command to adjust the transmit power of the downlink DPCH or F-DPCH channel.
  • the uplink and downlink DPCH/F-DPCH and the TPC commands transmitted by the DPCCH channel are combined to complete the closed loop power control of the air interface.
  • the target of the uplink TPC command control is to adjust the received SNR of the downlink DPCH and the F-DPCH channel to converge to the target value DPCH SNRtarget, which can be assigned by the upper layer.
  • the HS-DPCCH channel is used to report the CQI value measured by the UE side to the UE side.
  • the method of periodic reporting is used: The CQI value is reported once every n transmission time intervals (TTI). If the CQI value is reported too frequently, the uplink channel load is increased. If the reported value is too small, the UE channel condition indication obtained by the network side is inaccurate. The above-mentioned delay may cause the CQI value of the network-side HSDPA scheduling reference to be inconsistent with the channel condition of the current UE, thereby reducing the user data transmission rate and the service quality of the service (Quality of Service, Qos). ) and system air interface capacity. Summary of the invention
  • aspects of the present invention disclose a channel quality processing method and apparatus for improving user data transmission rate, service QoS, and system air interface capacity on the premise of mitigating uplink channel load.
  • An aspect of the present invention discloses a channel quality processing method, including:
  • the received CQI value is compensated using a channel parameter associated with the channel quality of the user equipment such that the signal to noise ratio of the user equipment channel converges to a target value.
  • Another aspect of the present invention discloses a channel quality processing apparatus, including:
  • a receiving unit configured to receive a channel quality indicator CQI value sent by the user equipment
  • a compensation unit configured to compensate the received CQI value by using a channel parameter related to a channel quality of the user equipment, so that a signal to noise ratio of the user equipment channel converges to a target value.
  • the solution of the embodiment of the present invention can reduce the uplink channel load; reduce the delay, thereby improving the user data transmission rate, the Qos of the service, and the system air interface capacity.
  • FIG. 1 is a schematic flowchart of a channel quality processing method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a network scenario of a 3GPP HSDPA according to an embodiment of the present invention
  • FIG. 3 is another channel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of CQI reporting and use according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a channel quality processing apparatus according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of another channel quality processing apparatus according to an embodiment of the present invention
  • a schematic diagram of the structure of a channel quality processing device Concrete implementation
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • TDM A Time Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • FDMA Frequency Division Multiple Addressing
  • OFDM A Orthogonal Frequency-Division Multiple Access
  • SC-FDMA single carrier FDMA
  • GPRS General Packet Radio Service
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this document is merely an association describing the associated object, indicating that there may be three relationships.
  • ⁇ and/or B can mean: There are three cases of A, B and A, and B.
  • the character ",” in this paper, means that the context is an "or”. relationship.
  • the radio access network element refers to an entity that can implement the radio access management function of the user equipment, and the radio access network element may have different names, locations, and products in different networks. form.
  • the radio access network element mentioned in the following embodiments of the present invention may be referred to as: UMTS (Universal Mobile Telecommunications System) terrestrial radio access network (E-UTRAN, Evolved UMTS Territorial Radio) An evolved base station (eNodeB), a home base station (HeNB), or other type of base station in an Access Network; or a high rate packet data access in a Wideband Code Division Multiple Access (CDMA) network HRPD-AN (High Rate Packet Data Access Network) access network logic function entity, wireless local area network (WLAN, Wireless Local Area Network) with Evolved Packet Data Gateway (EPDG) access network logic function Entity; access service network base station (ASN-BS, Access Service Network Base Station) in WiMAX (World Interoperability for Microwave Access) network or other network to implement user equipment wireless access management function
  • An embodiment of the channel quality assessment processing method of the present invention may include: receiving a channel quality indicator CQI value sent by the user equipment, and compensating the received CQI value by using a channel parameter related to the channel quality of the user equipment, so that the user equipment is used.
  • the signal to noise ratio of the channel converges to the target value.
  • a channel quality processing method the specific steps may include:
  • the radio access network element receives a channel quality indicator CQI value sent by the user equipment.
  • the radio access network element compensates the received CQI value by using a channel parameter related to a channel quality of the user equipment, so that a signal to noise ratio of the user equipment channel converges to a target value.
  • the channel parameter may be a downlink physical channel, a partial downlink physical channel, a Dedicated Physical Data Channel (DPDCH), a partially dedicated physical channel (fractional, DPCH), and a received signal code power (Received Signal Code Power, RSCP), or a slice of the average energy / average power spectral density (Ec / N0) and other related parameters, the above parameters should not be understood as "channel parameters related to the channel quality of the user equipment"
  • DPDCH Dedicated Physical Data Channel
  • DPCH partially dedicated physical channel
  • RSCP Receiveived Signal Code Power
  • Ec / N0 average energy / average power spectral density
  • the radio access network element compensates the received CQI value by using a channel parameter related to the channel quality of the user equipment, and can ensure the accuracy of the CQI value when the CQI reports a long period of time. Therefore, the uplink channel load is mitigated; and the channel control can be performed without using the CQI value reported by the UE to avoid periodic reporting and delay caused by measurement, thereby improving user data transmission rate, service QoS, and system air interface capacity.
  • the use of the channel parameter related to the channel quality of the user equipment to compensate the received CQI value, and the signal-to-noise ratio of the user equipment converges to the target value includes: acquiring a channel parameter related to the channel quality of the user equipment. And calculating a CQI value transmission time and a change amount of the current time channel parameter when the CQI value is used; and compensating the received CQI value by using the change amount to converge the signal to noise ratio of the user equipment to the target value.
  • the obtaining the channel parameter related to the channel quality of the user equipment includes acquiring the power of the physical channel of the user equipment, where the physical channel includes: a downlink physical channel, a part of a downlink physical channel, a dedicated physical data channel, and a part of a dedicated physical channel. At least one of them.
  • the calculating the CQI value transmission time and the current time channel parameter change amount when the CQI value is used includes: calculating a change amount of the power of the physical channel; wherein the change amount is: the first setting of the CQI value reception time The difference between the power of the physical channel within the condition and the power of the physical channel within the second set condition at the current time.
  • Compensating the received CQI value using the amount of change to converge the signal-to-noise ratio of the user equipment to the target value includes: performing data transmission scheduling based on the sum of the received CQI value and the change amount.
  • the power of the physical channel in the first setting condition of the reception time of the CQI value includes: the power of the physical channel before the reception time of the CQI value and the first set time, or the reception of the CQI value.
  • the average value of the power of the physical channel in the second set time before the time; the power of the physical channel in the second set condition of the current time includes: the power of the physical channel before the current time and separated by the third set time average value.
  • first setting The time, the second set time, and the third set time are only used to distinguish the three set times.
  • the specific time value can be set according to actual needs, which is not specifically limited in the embodiment of the present invention.
  • the method further includes: after receiving the channel quality indicator CQI value sent by the user equipment, the method further includes: acquiring a deviation value corresponding to the received CQI value; and using the set CQI value as a reference, and the foregoing reference.
  • the larger the absolute value of the difference the larger the absolute value of the deviation value corresponding to the CQI value and the smaller the deviation value corresponding to the reference CQI value, and the larger the above-mentioned CQI value is, the larger the deviation value is.
  • the data transmission scheduling according to the sum of the received CQI value and the change amount includes: performing data transmission scheduling based on the received CQI value, the change amount, and the sum of the deviation values.
  • the following method is used to illustrate the method in the embodiment of the present invention by using the 3GPP HSDPA application scenario as an example. It should be noted that the method in the embodiment of the present invention may also be applied to any other required UE to report the CQI value, and the CQI value is reported. Any embodiment of the present invention is not limited in any way.
  • Figure 2 is a schematic diagram of the network scenario of the 3GPP HSDPA
  • Figure 3 is a flowchart of the method.
  • the direction of the arrow indicates the transmission direction of data or signaling
  • the downlink (DOWNlink) includes: HS-SCCH, HS-PDSCH, DPCH, F-DPCH
  • uplink includes: DPCCH, HS-DPCCH
  • User equipment 201 and base station 202 perform data and signaling interaction through the above uplink and downlink.
  • the UE needs to report the CQI value to the NodeB through the HS-DPCCH channel.
  • the downlink DPCH or F-DPCH is used for downlink downlink TPC command, and the UE controls the transmit power of the uplink DPCCH according to the TPC command.
  • the uplink DPCCH is used to send an uplink TPC command, and the network side receives the command to adjust the transmit power of the downlink DPCH or F-DPCH channel.
  • the target of the uplink TPC command control is to adjust the downlink DPCH, and the received SNR of the F-DPCH channel converges to the target value DPCH SNRtarget, which is assigned by the upper layer.
  • the base station acquires the HSDPA CQI value reporting period configured by the RNC, and periodically detects and demodulates the CQI value reported by the UE through the HS-DPCCH channel. 301.
  • the NodeB records the transmit power of the downlink DPCH/F-DPCH in each time slot.
  • the power of the DPCH/F-DPCH is controlled by the UE.
  • the TPC is fed back in the uplink.
  • the command DWON, and vice versa feeds back the TPC command UP.
  • the TPC command is adjusted to make the downlink receive SNR close to the target SNR. Therefore, the transmit power of the downlink DPCH/F-DPCH is a changed value.
  • the NodeB When receiving the CQI value, the NodeB calculates the DPCH/F-DPCH transmit power of the first X time slots before the CQI value is reported. This transmission power is recorded as Pdpch-1.
  • the NodeB needs to refer to the CQI value of the UE, the NodeB needs to refer to the CQI value of the UE, and record the DPCH/F-DPCH transmit power at the current moment, and record the transmit power as Pdpch-2.
  • the NodeB helps estimate the downlink channel condition by comparing the difference between the DPCH/F-DPCH transmission power at the time of each UE measurement CQI value and the DPCH/F-DPCH transmission power at the current time, and compensates for the CQI value.
  • the following channel DPCH/F-DPCH can be used to estimate the channel quality during the CQI value reported by the UE twice, and improve the accuracy of the CQI value. degree.
  • the NodeB When receiving the CQI value reported by the UE through the HS-DPCCH channel, the NodeB records the downlink F-DPCH and the transmit power Pdpch-1 of the DPCH channel. When the CQI value needs to be referenced for scheduling and air interface resource allocation, the F at the moment is recorded. - DPCH, DPCH channel transmission power Pdpch-2. The power difference between Pdpch-2 and Pdpch-1 is used as the deviation between the estimated CQI value reporting time and the current usage time, and is compensated to the CQI value. Then, the compensated CQI value can be used as a reference for HSDPA scheduling. The NodeB scheduling is performed with reference to the compensated CQI value.
  • the scheme for calculating the difference between Pdpch-1 and Pdpch-2 in 304 of the above embodiment may be as follows: wherein the method of estimating the CQI time and the channel offset using the CQI time may be referred to the UP and DOWN of the uplink TPC command. Number. With UP as 1 and DOWN as -1, the deviation is the sum of UP and DOWN multiplied by the TPC step. For example, as shown in FIG. 4, the reporting Report CQI is performed by the UE, and the Pdpch-2 and Pdpch-1 are recorded for the base station to perform: the last time the CQI is reported to the current time C2 is used, and the NodeB passes the uplink DPCCH channel.
  • the SNR value converted to the channel quality deviation can be calculated by the set formula.
  • the specific calculation formula can refer to equation (2).
  • is a constant value and can be determined by a preset table or fixed configuration.
  • the embodiment of the present invention can alleviate the performance degradation caused by the change of the channel condition when the CQI is reported by the UE and the CQI is scheduled to be used.
  • the reporting period of the CQI is reduced to reduce the impact of the uplink load, and even the periodic reporting of the CQI can be removed, and the HSDPA can be guaranteed or even improved. performance.
  • a channel quality processing apparatus the apparatus may be a base station (NodeB), or may be another type of access network element on the network side, which is not limited in this embodiment of the present invention.
  • the channel quality processing apparatus includes: a receiving unit 501 and a compensation unit 502.
  • the receiving unit 501 is configured to receive a channel quality indicator CQI value sent by the user equipment.
  • the compensation unit 502 is configured to compensate the received CQI value by using a channel parameter related to the channel quality of the user equipment, so that the signal to noise ratio of the user equipment channel converges to a target value.
  • the foregoing compensation unit 502 may include: a parameter obtaining unit 5021, a calculating unit 5022, and a compensating subunit 5023.
  • the parameter obtaining unit 5021 is configured to acquire channel parameters related to channel quality of the user equipment.
  • the calculating unit 5022 is configured to calculate the CQI value transmission time and the change amount of the channel parameter at the current time when the CQI value is used.
  • a compensation subunit 5023 configured to compensate the received CQI value by using the above change amount
  • the signal to noise ratio of the user equipment is converged to a target value.
  • the parameter obtaining unit 5021 is specifically configured to acquire power of a physical channel of the user equipment, where the physical channel includes: at least one of a downlink physical channel, a partial downlink physical channel, a dedicated physical data channel, and a partial dedicated physical channel. .
  • the calculating unit 5022 is specifically configured to calculate a change amount of power of the physical channel, where the change amount is: a power of a physical channel and a second set condition of a current time in a first setting condition of a receiving time of the CQI value. The difference in power of the physical channels within.
  • the compensation subunit 5023 is specifically configured to perform data transmission scheduling according to the sum of the received CQI value and the change amount.
  • the power of the physical channel in the first setting condition of the reception time of the CQI value includes: a power of a physical channel before the reception time of the CQI value and a distance from the first set time, or the CQI value.
  • the power of the physical channel in the second setting condition of the current time includes: an average value of the power of the physical channel before the current time and separated by the third set time.
  • the apparatus further includes: a deviation value obtaining unit 701, configured to: after receiving a channel quality indicator CQI value sent by the user equipment, acquire a deviation value corresponding to the received CQI value; and set the CQI The value is a reference, and the larger the absolute value of the deviation value corresponding to the CQI value, which is larger than the absolute value of the difference from the above reference, and the smaller the deviation value corresponding to the reference CQI value, and the larger the deviation value is, the larger the CQI value is.
  • a deviation value obtaining unit 701 configured to: after receiving a channel quality indicator CQI value sent by the user equipment, acquire a deviation value corresponding to the received CQI value; and set the CQI The value is a reference, and the larger the absolute value of the deviation value corresponding to the CQI value, which is larger than the absolute value of the difference from the above reference, and the smaller the deviation value corresponding to the reference CQI value, and the larger the deviation value is, the larger the CQI value is
  • the compensation subunit 5023 is specifically configured to perform data transmission scheduling according to the received CQI value, the change amount, and the sum of the deviation values.
  • the accuracy of the CQI value may be ensured when the CQI reporting period is long, thereby reducing the uplink channel load; Controlling the channel without using the CQI value reported by the UE avoids periodic reporting and delay caused by measurement, thereby improving user data transmission. Transmission rate, Qos of the service, and system air interface capacity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention may contribute to the prior art or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory (ROM, Read-Only Memory), Random Access Memory (RAM), disk or optical disk, etc., which can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种信道质量处理方法和装置。其中,一种信道质量处理方法,包括:接收用户设备发送的信道质量指示CQI值;使用与该用户设备的信道质量相关的信道参数对该接收的CQI值进行补偿,使该用户设备信道的信噪比收敛于目标值。本发明实施例提供的技术方案有利于减轻上行信道负载的前提下提高用户数据传输速率、业务的Qos以及系统空口容量。

Description

一种信道貭量处理 和装置 本申请要求于 2011 年 05 月 12 日提交中国专利局、 申请号为 201110122921.1、发明名称为"一种信道质量处理方法和装置"的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域, 特别涉及一种信道质量处理方法和装置。 背景技术
信道质量( Channel Quality )评估处理在通信领域有广泛的应用, 以第 三代移动通信伙伴项目 (Third Generation Partnership Project, 3GPP )从 R5 开始引入的高速数据包接入( High Speed Data Packet Access, HSDPA ) 为 例。 在 HSDPA中, 网络侧通过高速下行物理信道 HS-PDSCH为用户传输 数据, 使用高速共享控制信道 ( High Speed Sharing Control Channel , HS-SCCH )作为高速物理数据共享信道( High Speed Physical Data Sharing Channel, HS-PDSCH )的控制信道, 指示 HS-PDSCH相关的控制信息。 UE 侧使用上行高速专用物理控制信道(High Speed Dedicate Physical Control Channel, HS-DPCCH )上报信道质量指示( Channel Quality Indication, CQI ) 值给网络侧, 指示当前用户设备 ( User Equipment , UE )所处的信道环境。
协议定义了 30个 CQI值。 每个 CQI值指示一个传输块集(Transport Block Set, TBS ), 信道数以及调制方式的组合。 当 UE上报某一个 CQI值 时, 表示在当前信道条件下, 网络使用 CQI值指示的 TBS、 信道数以及调 制方式的组合,在附加高斯白噪声( Additive White Gaussian Noise , AWGN ) 信道中可以保证 UE以 10 %的块误码率( Block Error Rates , BLER )接收该 TBS o 由于 TBS的正确接收概率和接收的信噪比( Signal Noise Ratio, SNR ) 相关, 所以 CQI值可以映射为 TBS、 信道数以及调制方式的组合, 同时还 对应可以确定的 SNR值。通过提高发射功率可以提高 SNR值同时增加 TBS 的大小。
对于 HSDPA技术以及 HSDPA依赖的高速数据包接入演进 ( High Speed Packet Access Evolution, HSPA+ )增强技术, UE侧需要使用 CQI值来指示 当前的信道条件给网络侧。 CQI值代表了一定信道条件下的解调 SNR。 CQI 值和 SNR之间存在可以确定的对应关系, 比如 CQI值量化步长为 ldB时, CQI值每增加一级, SNR增加 ldB。
HSDPA技术以及 HSDPA依赖的 HSPA+增强技术中需要使用的下行信 道以及上行控制信道情况如下: 下行物理信道 ( Dedicated Physical Channel, DPCH ) 或部分下行物理信道 ( Fractional Dedicated Physical Channel , F-DPCH )用于下行发送下行发射功率控制 (Transmit Power Control, TPC ) 命令, UE根据该 TPC命令控制调整上行 DPCCH的发射功率。上行 DPCCH 用于发送上行 TPC命令,网络侧收到该命令用于调整下行 DPCH或 F-DPCH 信道的发射功率。 以上技术中,上下行 DPCH/F-DPCH以及 DPCCH信道传 输的 TPC命令合起来完成空口的闭环功率控制。其中上行 TPC命令控制的 目标是调整下行 DPCH和 F-DPCH信道的接收 SNR收敛于目标值 DPCH SNRtarget, 该目标值可以由高层指配。
HS-DPCCH信道则用于 UE侧上报 UE侧测量得到的 CQI值。 一般采 用周期上报的方式: 每隔 n个传输时间间隔( Transmission Time Interval, TTI )上报一次 CQI值。 CQI值上报的太频繁会导致上行信道负载的增加, 上报的太少则会导致网络侧获取的 UE信道条件指示不准确。由于上述测量 和周期上报的原因存在时间延迟,上述延迟可能导致网络侧 HSDPA调度参 考的 CQI值与当前 UE的信道条件不一致, 进而降低了用户数据传输速率、 业务的服务质量(Quality of Service, Qos ) 以及系统空口容量。 发明内容
本发明的各个方面公开一种信道质量处理方法和装置, 以便减轻上行 信道负载的前提下提高用户数据传输速率、业务的 Qos以及系统空口容量。
本发明的一方面公开一种信道质量处理方法, 包括:
接收用户设备发送的信道质量指示 CQI值;
使用与所述用户设备的信道质量相关的信道参数对所述接收的 CQI值 进行补偿, 使所述用户设备信道的信噪比收敛于目标值。
本发明的另一方面公开一种信道质量处理装置, 包括:
接收单元, 用于接收用户设备发送的信道质量指示 CQI值;
补偿单元, 用于使用与所述用户设备的信道质量相关的信道参数对所 述接收的 CQI值进行补偿, 使所述用户设备信道的信噪比收敛于目标值。
由上可见, 本发明实施例的方案可以减轻上行信道负载; 降低延迟, 从而提高用户数据传输速率、 业务的 Qos以及系统空口容量。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中 所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳 动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种信道质量处理方法的流程示意图; 图 2为本发明实施例提供的一种 3GPP HSDPA的网络场景示意图; 图 3为本发明实施例提供的另一种信道质量处理方法的流程示意图; 图 4为本发明实施例提供的一种 CQI上报和使用的示意图;
图 5为本发明实施例提供的一种信道质量处理装置的结构示意图; 图 6为本发明实施例提供的另一种信道质量处理装置的结构示意图; 图 7为本发明实施例提供的另一种信道质量处理装置的结构示意图。 具体实舫式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有作出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
本文中描述的各种技术可用于各种无线通信系统, 例如当前 2G, 3G 通信系统和下一代通信系统,例如全球移动通信系统( GSM , Global System for Mobile communications ), 码分多址 ( CDMA, Code Division Multiple Access ) 系统, 时分多址(TDM A, Time Division Multiple Access ) 系统, 宽带码分多址 ( WCDMA , Wideband Code Division Multiple Access Wireless ), 频分多址 ( FDMA, Frequency Division Multiple Addressing ) 系 统,正交频分多址( OFDM A, Orthogonal Frequency-Division Multiple Access ) 系统,单载波 FDMA ( SC-FDMA )系统,通用分组无线业务( GPRS, General Packet Radio Service ) 系统, 长期演进( LTE, Long Term Evolution ) 系统, 以及其他此类通信系统。
本文中结合终端和 /或基站和 /或基站控制器来描述各种方面。
另夕卜, 本文中术语"系统,,和"网络"在本文中常被可互换使用。本文中术 语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, Α和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B , 单独存在 B 这三种情况。 另外, 本文中字符 " , —般表示前后关联对象是一种 "或" 的关系。
首先说明的是, 本发明实施例所指无线接入网元是指可实现用户设备 无线接入管理功能的实体, 而无线接入网元在不同的网络中可能具有不同 的名称、 位置和产品形态。 举例来说, 本发明下述实施例中提及的无线接入网元例如可指: 演进 通用移动通信系统 ( UMTS , Universal Mobile Telecommunications System ) 陆地无线接入网 ( E-UTRAN , Evolved UMTS Territorial Radio Access Network )中的演进基站( eNodeB )、 家庭基站( HeNB )或其它类型的基站; 或者也可指宽带码分多址接入 ( CDMA, Code Division Multiple Access ) 网 络中具有高速率分组数据接入网( HRPD-AN , High Rate Packet Data Access Network )接入网逻辑功能的实体、无线局域网( WLAN , Wireless Local Area Network )中具有演进分组数据网关( EPDG, Evolved Packet Data Gateway ) 接入网逻辑功能的实体; 敖波存取全球互通 ( WiMAX , Worldwide Interoperability for Microwave Access ) 网络中的接入服务网络基站 ( ASN-BS, Access Service Network Base Station )或其它网络中实现用户设 备无线接入管理功能的实体。
下面通过具体实施例进行详细说明。
本发明信道质量评估处理方法的一个实施例, 可包括: 接收用户设备 发送的信道质量指示 CQI值, 使用与该用户设备的信道质量相关的信道参 数对接收的 CQI值进行补偿, 使该用户设备信道的信噪比收敛于目标值。
参见图 1 , 一种信道质量处理方法, 具体步骤可包括:
101、 无线接入网元接收用户设备发送的信道质量指示 CQI值。
102、 无线接入网元使用与上述用户设备的信道质量相关的信道参数对 上述接收的 CQI值进行补偿, 使上述用户设备信道的信噪比收敛于目标值
(该目标值可理解为是实际值)。
其中, 上述信道参数可以是下行物理信道、 部分下行物理信道、 专用 物理数据信道( Dedicated Physical Data Channel, DPDCH )、 部分专用物理 信道(fractional, DPCH ),接收信号码域功率( Received Signal Code Power, RSCP )、 或一个片的平均能量 /平均功率谱密度(Ec/N0 )等的相关参数, 以 上参数的举例不应理解为对 "与用户设备的信道质量相关的信道参数" 的 穷举, 因此以上举例不应理解为对本发明实施例不予限定。
由上可见, 本发明实施例无线接入网元通过使用与上述用户设备的信 道质量相关的信道参数对上述接收的 CQI值进行补偿, 可以在 CQI上报周 期时间长的时候保证 CQI值的准确性, 从而减轻上行信道负载; 且可以不 使用 UE上报的 CQI值进行信道的控制避免了周期性上报以及测量导致的 延迟, 从而提高用户数据传输速率、 业务的 Qos以及系统空口容量。
例如, 上述使用与上述用户设备的信道质量相关的信道参数对上述接 收的 CQI值进行补偿, 使上述用户设备的信噪比收敛于目标值包括: 获取 与上述用户设备的信道质量相关的信道参数, 计算上述 CQI值发送时刻和 当使用 CQI值的当前时刻信道参数的变化量; 使用上述变化量对上述接收 的 CQI值进行补偿使上述用户设备的信噪比收敛于目标值。
例如, 上述获取与上述用户设备的信道质量相关的信道参数包括获取 上述用户设备的物理信道的功率, 上述物理信道包括: 下行物理信道、 部 分下行物理信道、 专用物理数据信道、 部分专用物理信道中的至少一个。
上述计算上述 CQI值发送时刻和当使用 CQI值的当前时刻信道参数的 变化量包括: 计算上述物理信道的功率的变化量; 其中, 上述变化量为: 上述 CQI值的接收时刻的第一设定条件内的物理信道的功率与当前时刻的 第二设定条件内的物理信道的功率的差。
使用上述变化量对上述接收的 CQI值进行补偿使上述用户设备的信噪 比收敛于目标值包括: 根据上述接收的 CQI值与上述变化量的和进行数据 传输调度。
例如, 上述 CQI值的接收时刻的第一设定条件内的物理信道的功率包 括:在上述 CQI值的接收时刻之前且相距第一设定时间的物理信道的功率, 或者, 上述 CQI值的接收时刻之前的第二设定时间内物理信道的功率的平 均值; 上述当前时刻的第二设定条件内的物理信道的功率包括: 在当前时 刻之前且相距第三设定时间的物理信道的功率的平均值。 上述 "第一设定 时间"、 "第二设定时间"、 "第三设定时间,, 只是为了区别三个设定的时间, 至于具体时间值可以根据实际需要进行设定, 本发明实施例不做具体限定。
为了进一步提高数据调度的准确性, 进一步地: 接收用户设备发送的 信道质量指示 CQI值之后还可包括:获取上述接收的 CQI值对应的偏差值; 以设定的 CQI值为基准, 与上述基准的差的绝对值越大的 CQI值对应的偏 差值的绝对值越大且小于基准的 CQI值对应的偏差值为负数,并且上述 CQI 值越大偏差值越大。
根据上述接收的 CQI值与上述变化量的和进行数据传输调度包括: 根 据上述接收的 CQI值、上述变化量以及上述偏差值的和进行数据传输调度。
以下的方法实施例以 3GPP HSDPA这一应用场景为例对本发明实施例 的方法进行举例说明, 需要说明的是本发明实施例的方法还可以应用于其 它任意需要 UE上报 CQI值, 并且 CQI值上报不准会带来性能下降的任意 网络场景, 对此本发明实施例不予限定。
如图 2和图 3所示, 其中图 2为 3GPP HSDPA的网络场景示意图, 图 3为方法流程图。 如图 2所示, 箭头方向表明了数据或信令的传输方向, 下 行链路( Downlink ) 包括: HS-SCCH、 HS-PDSCH、 DPCH, F-DPCH; 上 行链路(Uplink ) 包括: DPCCH、 HS-DPCCH; 用户设备 201 和基站 202 之间通过上述上行链路和下行链路进行数据和信令的交互。
UE需要通过 HS-DPCCH信道上报 CQI值给 NodeB。 下行 DPCH或 F-DPCH用于下行发送下行 TPC命令, UE根据该 TPC命令控制调整上行 DPCCH的发射功率。 上行 DPCCH用于发送上行 TPC命令, 网络侧收到该 命令用于调整下行 DPCH或 F-DPCH信道的发射功率。 其中上行 TPC命令 控制的目标是调整下行 DPCH,F-DPCH 信道的接收 SNR 收敛于目标值 DPCH SNRtarget,该目标值由高层指配。
基站获取 RNC配置的 HSDPA CQI值上报周期, 并且周期性检测并解 调 UE通过 HS-DPCCH信道上报的 CQI值。 301、 NodeB记录每个时隙下行 DPCH/F-DPCH的发射功率。
由于 HSDPA 使用 时都需要有伴随的专用物理控制信道 DPCH/F-DPCH„ DPCH/F-DPCH的功率由 UE控制。 当下行 DPCH/F-DPCH 的 SNR值高于目标 SNR时, 在上行反馈 TPC命令 DWON, 反之反馈 TPC 命令 UP。 通过该 TPC命令调整使下行接收 SNR接近于目标 SNR。 因此下 行 DPCH/F-DPCH的发射功率是一个变化的值。
302、 NodeB在收到 UE上报 CQI值时,计算该 CQI值上报之前的第前 X个时隙的 DPCH/F-DPCH发射功率。 把该发射功率记录为 Pdpch-1。
其中, X为正整数, 例如 x=l , 2, 3, 该第前 X个时隙对应的时刻等于 或近似等于 NodeB估计出的 UE测量出该 CQI值的时刻。
303、 NodeB在需要为该 UE调度发送数据时, 需要参考 UE的 CQI值 情况, 则记录当前时刻的 DPCH/F-DPCH发射功率, 并将发射功率记录为 Pdpch-2„
304、 计算 Pdpch-1和 Pdpch-2的差值 ^F- DpCH/DPCH .
305、 计算补偿后的 CQI值。
NodeB通过比较每次 UE测量 CQI值时刻的 DPCH/F-DPCH发射功率 和当前时刻的 DPCH/F-DPCH发射功率的差值来帮助估计下行信道条件, 对 CQI值做补偿。 305中 CQI值补偿的计算公式请参阅式( 1 ):
Figure imgf000010_0001
当前时刻 = C JIUE上报 + AF— DpcH/DpcH ( χ ) 采用以上 CQI值补偿, 可以以下行 DPCH/F-DPCH辅助实现估计 UE 两次上报 CQI值期间的信道质量, 提高 CQI值的准确度。
NodeB在收到 UE通过 HS-DPCCH信道上报的 CQI值时, 记录下来下 行 F-DPCH,DPCH信道的发射功率 Pdpch-1 , 在需要参考 CQI值进行调度 和空口资源分配时, 记录该时刻的 F-DPCH,DPCH信道发射功率 Pdpch-2。 把 Pdpch-2和 Pdpch-1的功率差值作为估计的 CQI值上报时刻和当前使用 时刻的偏差, 补偿到 CQI值中, 然后可以将补偿后的 CQI值作为 HSDPA 调度的参考进行使用。 NodeB调度参考该补偿后的 CQI值进行。
优选地,在以上实施例的 304中计算 Pdpch-1和 Pdpch-2的差值的方案 可以如下: 其中估计上报 CQI时刻与使用 CQI时刻信道偏差的方法可以参 考上行的 TPC命令的 UP和 DOWN的个数。 以 UP为 1 , DOWN为 -1 , 则 偏差为 UP和 DOWN总和乘上 TPC步距。 具体的使用举例, 如图 4所示, 其中上报 Report CQI为 UE执行, 记录 Pdpch-2和 Pdpch-1为基站执行: 在 最近一次上报 CQI时刻 tl到当前使用 CQI时刻 t2, NodeB通过上行 DPCCH 信道一共收到 TPC命令 60个 UP, 30个 DOWN, 并且 RNC配置的 TPC 命令调整步距为 0.25dB。 则 Pdpch-2 和 Pdpch-1 的差值为: (60*l+30*(-l))*0.25dB=7.5dB。
优选地, 可以通过设定的公式计算转换为信道质量偏差的 SNR值。 具 体的计算公式可以参考式(2 ),
SNR= Δ PDPCH/F-DPCH - α ( 2 )
其中 α为一个常数值, 可以通过一个预先设定的表格或固定配置来确 定。 可以参考表 1 ,
表 1
Figure imgf000011_0001
已知 DPCH信道 delta值为 7.5dB。 假定 UE上报的 CQI为 20, 则 α为- ldB。 偏差 ddta SNR为 7.5+l=8.5dB; 那么在使用 CQI的时刻, 用 户实际的信道条件为 CQI report + 8.5dB。
本发明实施例可以緩解 UE上报 CQI和调度使用 CQI时信道条件变化 带来的性能下降问题, 减小 CQI的上报周期降低上行负载影响, 甚至可以 去掉 CQI的周期性上报, 同时保证甚至提升 HSDPA的性能。
需要说明的是, 对于前述的各方法实施例, 为了筒单描述, 故将其都 表述为一系列的动作组合, 但是本领域技术人员应该知悉, 本发明并不受 所描述的动作顺序的限制, 因为依据本发明, 某些步骤可以采用其他顺 序或者同时进行。 其次, 本领域技术人员也应该知悉, 说明书中所描述 的实施例均属于优选实施例, 所涉及的动作和模块并不一定是本发明所 必须的。
为便于更好的实施本发明实施例的技术方案, 下面还提供用于实施上 述方法实施例的相关装置。 一种信道质量处理装置, 本装置可以为基站 (NodeB ), 也可以是网络 侧的其他类型的接入网元, 对此本发明实施例不予限定。
如图 5所示, 信道质量处理装置包括: 接收单元 501和补偿单元 502。 其中, 接收单元 501 , 用于接收用户设备发送的信道质量指示 CQI值。 补偿单元 502,用于使用与上述用户设备的信道质量相关的信道参数对 上述接收的 CQI值进行补偿,使上述用户设备信道的信噪比收敛于目标值。
可选地, 如图 6所示, 上述补偿单元 502可包括: 参数获取单元 5021 , 计算单元 5022和补偿子单元 5023。
参数获取单元 5021 , 用于获取与上述用户设备的信道质量相关的信道 参数。
计算单元 5022,用于计算上述 CQI值发送时刻和当使用 CQI值的当前 时刻信道参数的变化量。
补偿子单元 5023, 用于使用上述变化量对上述接收的 CQI值进行补偿 使上述用户设备的信噪比收敛于目标值。
可选地, 上述参数获取单元 5021具体用于, 获取上述用户设备的物理 信道的功率, 上述物理信道包括: 下行物理信道、 部分下行物理信道、 专 用物理数据信道、 部分专用物理信道中的至少一个。
上述计算单元 5022具体用于, 计算上述物理信道的功率的变化量; 上 述变化量为: 上述 CQI值的接收时刻的第一设定条件内的物理信道的功率 与当前时刻的第二设定条件内的物理信道的功率的差。
上述补偿子单元 5023具体用于,根据上述接收的 CQI值与上述变化量 的和进行数据传输调度。
更具体地, 上述 CQI值的接收时刻的第一设定条件内的物理信道的功 率包括: 在上述 CQI值的接收时刻之前且相距第一设定时间的物理信道的 功率, 或者, 上述 CQI值的接收时刻之前的第二设定时间内物理信道的功 率的平均值。
上述当前时刻的第二设定条件内的物理信道的功率包括: 在当前时刻 之前且相距第三设定时间的物理信道的功率的平均值。
进一步地, 如图 7所示, 上述装置还包括: 偏差值获取单元 701 , 用于 接收用户设备发送的信道质量指示 CQI值之后, 获取上述接收的 CQI值对 应的偏差值;以设定的 CQI值为基准,与上述基准的差的绝对值越大的 CQI 值对应的偏差值的绝对值越大且小于基准的 CQI值对应的偏差值为负数, 并且上述 CQI值越大偏差值越大。
上述补偿子单元 5023具体用于, 根据上述接收的 CQI值、 上述变化量 以及上述偏差值的和进行数据传输调度。
本发明实施例, 通过使用与上述用户设备的信道质量相关的信道参数 对上述接收的 CQI值进行补偿,可以在 CQI上报周期时间长的时候保证 CQI 值的准确性, 从而减轻上行信道负载; 可以不使用 UE上报的 CQI值进行 信道的控制避免了周期性上报以及测量导致的延迟, 从而提高用户数据传 输速率、 业务的 Qos以及系统空口容量。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述 描述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的 对应过程, 在此不再赞述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置 和方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅 是示意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成 到另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论 的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单 元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。 作为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地 方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软 件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储 在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全 部或部分步骤。而前述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。 以上所述, 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者 对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权利要求
1、 一种信道质量处理方法, 其特征在于, 包括:
接收用户设备发送的信道质量指示 CQI值;
使用与所述用户设备的信道质量相关的信道参数对所述接收的 CQI值 进行补偿, 使所述用户设备信道的信噪比收敛于目标值。
2、 根据权利要求 1所述方法, 其特征在于,
所述使用与所述用户设备的信道质量相关的信道参数对所述接收的 CQI值进行补偿, 使所述用户设备的信噪比收敛于目标值, 包括:
获取与所述用户设备的信道质量相关的信道参数;
计算所述 CQI值发送时刻和使用 CQI值的当前时刻信道参数的变化量; 使用所述变化量对所述接收的 CQI值进行补偿使所述用户设备的信噪 比收敛于目标值。
3、 根据权利要求 2所述方法, 其特征在于,
所述获取与所述用户设备的信道质量相关的信道参数, 包括: 获取所述用户设备的物理信道的功率, 其中, 所述物理信道包括: 下 行物理信道、 部分下行物理信道、 专用物理数据信道、 部分专用物理信道 中的至少一个。
4、 根据权利要求 3所述方法, 其特征在于, 所述计算所述 CQI值发送时 刻和使用 CQI值时刻的信道参数的变化量, 包括:
计算所述物理信道的功率的变化量, 其中, 所述变化量为: 所述 CQI 值的接收时刻的第一设定条件内的物理信道的功率与当前时刻的第二设定 条件内的物理信道的功率的差;
使用所述变化量对所述接收的 CQI值进行补偿使所述用户设备的信噪 比收敛于目标值包括:
根据所述接收的 CQI值与所述变化量的和进行数据传输调度。
5、 根据权利要求 4所述方法, 其特征在于, 所述 CQI值的接收时刻的第一设定条件内的物理信道的功率, 包括: 在 所述 CQI值的接收时刻之前且相距第一设定时间的物理信道的功率, 或者, 所述 CQI值的接收时刻之前的第二设定时间内物理信道的功率的平均值; 所述当前时刻的第二设定条件内的物理信道的功率包括: 在当前时刻 之前且相距第三设定时间的物理信道的功率的平均值。
6、 根据权利要求 3、 4或 5所述方法, 其特征在于, 接收用户设备发送 的信道质量指示 CQI值之后, 还包括:
获取所述接收的 CQI值对应的偏差值, 其中, 以设定的 CQI值为基准, 与所述基准的差的绝对值越大的 CQI值对应的偏差值的绝对值越大,且小于 基准的 CQI值对应的偏差值为负数, 并且所述 CQI值越大偏差值越大;
根据所述接收的 CQI值与所述变化量的和进行数据传输调度包括: 根据所述接收的 CQI值、所述变化量以及所述偏差值的和进行数据传输 调度。
7、 一种信道质量处理装置, 其特征在于, 包括:
接收单元, 用于接收用户设备发送的信道质量指示 CQI值;
补偿单元, 用于使用与所述用户设备的信道质量相关的信道参数对所 述接收的 CQI值进行补偿, 使所述用户设备信道的信噪比收敛于目标值。
8、 根据权利要求 7所述装置, 其特征在于, 所述补偿单元包括: 参数获取单元, 用于获取与所述用户设备的信道质量相关的信道参数; 计算单元, 用于计算所述 CQI值发送时刻和当使用 CQI值的当前时刻信 道参数的变化量;
补偿子单元,用于使用所述变化量对所述接收的 CQI值进行补偿使所述 用户设备的信噪比收敛于目标值。
9、 根据权利要求 8所述装置, 其特征在于,
所述参数获取单元具体用于, 获取所述用户设备的物理信道的功率, 其中, 所述物理信道包括: 下行物理信道、 部分下行物理信道、 专用物理 数据信道、 部分专用物理信道中的至少一个。
10、 根据权利要求 9所述装置, 其特征在于,
所述计算单元具体用于, 计算所述物理信道的功率的变化量, 其中, 所述变化量为:所述 CQI值的接收时刻的第一设定条件内的物理信道的功率 与当前时刻的第二设定条件内的物理信道的功率的差;
所述补偿子单元具体用于,根据所述接收的 CQI值与所述变化量的和进 行数据传输调度。
11、 根据权利要求 9所述装置, 其特征在于,
所述 CQI值的接收时刻的第一设定条件内的物理信道的功率, 包括: 在 所述 CQI值的接收时刻之前且相距第一设定时间的物理信道的功率, 或者, 所述 CQI值的接收时刻之前的第二设定时间内物理信道的功率的平均值; 所述当前时刻的第二设定条件内的物理信道的功率包括: 在当前时刻 之前且相距第三设定时间的物理信道的功率的平均值。
12、 根据权利要求 9、 10或 11所述装置, 其特征在于, 还包括: 偏差值获取单元, 用于接收用户设备发送的信道质量指示 CQI值之后, 获取所述接收的 CQI值对应的偏差值, 其中, 以设定的 CQI值为基准, 与所 述基准的差的绝对值越大的 CQI值对应的偏差值的绝对值越大且小于基准 的 CQI值对应的偏差值为负数, 并且所述 CQI值越大偏差值越大;
所述补偿子单元具体用于, 根据所述接收的 CQI值、 所述变化量以及所 述偏差值的和进行数据传输调度。
PCT/CN2012/074422 2011-05-12 2012-04-20 一种信道质量处理方法和装置 WO2012152177A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12782087.6A EP2701437B1 (en) 2011-05-12 2012-04-20 Channel quality processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110122921.1 2011-05-12
CN2011101229211A CN102186230B (zh) 2011-05-12 2011-05-12 一种信道质量处理方法和装置

Publications (1)

Publication Number Publication Date
WO2012152177A1 true WO2012152177A1 (zh) 2012-11-15

Family

ID=44572285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074422 WO2012152177A1 (zh) 2011-05-12 2012-04-20 一种信道质量处理方法和装置

Country Status (3)

Country Link
EP (1) EP2701437B1 (zh)
CN (1) CN102186230B (zh)
WO (1) WO2012152177A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102186230B (zh) * 2011-05-12 2013-10-02 上海华为技术有限公司 一种信道质量处理方法和装置
WO2016019503A1 (zh) * 2014-08-05 2016-02-11 华为技术有限公司 一种功率控制的方法、基站及系统
CN105871443B (zh) * 2015-01-23 2019-04-30 深圳市中兴微电子技术有限公司 一种指示信息修正方法及系统
WO2017074299A1 (en) * 2015-10-26 2017-05-04 Intel IP Corporation Differential cqi reporting for optimizing throughput of systems operating on link adaptation
CN113133048A (zh) * 2019-12-31 2021-07-16 中国移动通信有限公司研究院 一种信道质量处理方法、基站、终端及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084640A (zh) * 2004-12-17 2007-12-05 艾利森电话股份有限公司 用于高速下行链路共享信道分组接入的功率步长控制
CN101431791A (zh) * 2007-12-27 2009-05-13 华为技术有限公司 Hspa功率分配方法、系统和装置
CN101442345A (zh) * 2007-11-19 2009-05-27 大唐移动通信设备有限公司 下行不连续传输信道的功率控制方法及装置
CN102186230A (zh) * 2011-05-12 2011-09-14 上海华为技术有限公司 一种信道质量处理方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100505733C (zh) * 2005-01-14 2009-06-24 华为技术有限公司 高速下行分组数据包接入中校正信道质量指示的方法
WO2008143566A1 (en) * 2007-05-24 2008-11-27 Telefonaktiebolaget Lm Ericsson (Publ) A method and a device for improved channel quality reporting
US8848549B2 (en) * 2008-09-17 2014-09-30 Qualcomm Incorporated Optimizing throughput in a wireless communication system
WO2011000420A1 (en) * 2009-07-01 2011-01-06 Telefonaktiebolaget L M Ericsson (Publ) Adjusting channel quality report in a wireless communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101084640A (zh) * 2004-12-17 2007-12-05 艾利森电话股份有限公司 用于高速下行链路共享信道分组接入的功率步长控制
CN101442345A (zh) * 2007-11-19 2009-05-27 大唐移动通信设备有限公司 下行不连续传输信道的功率控制方法及装置
CN101431791A (zh) * 2007-12-27 2009-05-13 华为技术有限公司 Hspa功率分配方法、系统和装置
CN102186230A (zh) * 2011-05-12 2011-09-14 上海华为技术有限公司 一种信道质量处理方法和装置

Also Published As

Publication number Publication date
EP2701437A4 (en) 2014-03-05
EP2701437B1 (en) 2017-12-20
EP2701437A1 (en) 2014-02-26
CN102186230B (zh) 2013-10-02
CN102186230A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
JP6692953B2 (ja) 低レイテンシアップリンク電力制御
US20200154374A1 (en) Device-To-Device (D2D) Cross Link Power Control
US8977313B2 (en) Method for optimizing uplink power-control parameters in LTE
JP5922185B2 (ja) サービングセクタ干渉ブロードキャスト及び対応する逆方向リンクトラヒック電力制御
JP5369237B2 (ja) 電力制御方法及び基地局
JP5077485B2 (ja) 基地局装置、無線通信システム、基地局の制御方法、および無線通信システムの制御方法
EP2220779B1 (en) Method and arrangement for separate channel power control
BR112012004869B1 (pt) método de controle de potência de enlace ascendente em uma estação base de rede de comunicação sem fio, estação base para uso em uma rede de comunicação sem fio, terminal móvel e método de controle de potência de enlace ascendente em um terminal móvel
US10958372B2 (en) Radio link adaptation in communication systems
WO2009140082A1 (en) Method and apparatus for allocating downlink power in an orthogonal frequency division multiplexing communication system
JP2010503344A5 (zh)
WO2015038930A1 (en) Clear channel assessment (cca) threshold adaptation method
CN114245444A (zh) 用于在与多个定时提前关联的多个分量载波上无线传输的功率控制的方法和装置
WO2014206335A1 (zh) 一种pusch功率控制方法及装置
WO2012152177A1 (zh) 一种信道质量处理方法和装置
WO2013138987A1 (zh) 上行覆盖测量项的测量结果获取和上报方法、设备
JP5735178B2 (ja) 物理下り制御チャンネル資源の確定方法及び装置
WO2013139301A1 (zh) 降低信道干扰的方法和基站
WO2013056527A1 (zh) 控制信令发送方法及系统
WO2016119128A1 (zh) 调制编码方式的选择方法及基站
US20150117407A1 (en) Adapting Uplink Transmissions in a Wireless Telecommunications Network
EP2223439B1 (en) Method for selecting reference e-tfci based on requested service
WO2015096047A1 (zh) 一种上行调度的方法、用户设备及基站
TW201244517A (en) Power headroom reporting for carrier aggregation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012782087

Country of ref document: EP