WO2012151836A1 - 一种输电线路工频参数模拟系统及其控制方法 - Google Patents

一种输电线路工频参数模拟系统及其控制方法 Download PDF

Info

Publication number
WO2012151836A1
WO2012151836A1 PCT/CN2011/080008 CN2011080008W WO2012151836A1 WO 2012151836 A1 WO2012151836 A1 WO 2012151836A1 CN 2011080008 W CN2011080008 W CN 2011080008W WO 2012151836 A1 WO2012151836 A1 WO 2012151836A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
line
voltage
interference
analog
Prior art date
Application number
PCT/CN2011/080008
Other languages
English (en)
French (fr)
Inventor
傅中
叶剑涛
杨道文
陈自年
李伟
程登峰
黄永康
董晶晶
童文辉
王翠翠
Original Assignee
安徽省电力科学研究院
苏州华电电气股份有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽省电力科学研究院, 苏州华电电气股份有限公司, 国家电网公司 filed Critical 安徽省电力科学研究院
Priority to US13/810,318 priority Critical patent/US9460636B2/en
Publication of WO2012151836A1 publication Critical patent/WO2012151836A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/18Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for electricity or magnetism
    • G09B23/181Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for electricity or magnetism for electric and magnetic fields; for voltages; for currents
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/06Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics
    • G09B23/18Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for physics for electricity or magnetism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks

Definitions

  • the invention belongs to the power transmission and transformation test, and particularly relates to a power frequency parameter simulation system for a transmission line and a control method thereof.
  • the system and the control method simulate the power frequency parameters of the actual line, and realize the analysis and test of the actual line in the laboratory.
  • the object of the present invention is to provide a technical scheme for a power frequency parameter simulation system of a transmission line and a control method thereof, which simulates a power frequency distribution parameter of a 10-100 km 500 kV transmission line by using a concentrated parameter, such as: wire resistance, inductance, Capacitors (ground capacitance and phase capacitance), interference voltage, etc., are used for line power frequency parameter testing and training, and can be adapted to line parameter testers produced by most domestic manufacturers.
  • a concentrated parameter such as: wire resistance, inductance, Capacitors (ground capacitance and phase capacitance), interference voltage, etc.
  • a power line parameter simulation system for a transmission line includes an analog main line, an interference power supply, and a program controller;
  • the analog main line includes three independent independent electric voltage regulators and three single-phase transformers, and the three single-phase transformers
  • the input of the transformer is respectively connected to the output of the independent three-phase electric voltage regulator;
  • the interference power supply comprises a three-phase electric voltage regulator and a three-phase transformer, and the three-phase voltages output by the three-phase transformer are not equal, the three The phase electric motor regulator output is connected to the three-phase transformer input;
  • the three single-phase transformer outputs are respectively provided with voltage and current signal sensors, and the three-phase output of the three-phase transformer is respectively provided with a voltage signal sensor,
  • the three-phase independent electric voltage regulator and the three-phase electric voltage regulator are respectively provided with reset signal sensors, the signal sensors are respectively connected to the signal acquisition end of the program controller, and the control output of the program controller is connected to three Control inputs for separate independent electric voltage regulators and three-phase electric voltage regulators
  • the connection between the forearm and the output of the three single-phase transformers is called three single-phase transformer output.
  • the rear arm is referred to as an output end; the output end is provided with a three-phase short-circuit switch, and a ground loop resistance and a decoupling inductance are disposed between the short-circuit point of the three-phase short-circuit switch and the ground, and the ground loop resistance and
  • the decoupling inductor is connected in series, the ground loop resistor is grounded at one end, and the ground loop resistor is connected with a resistor short circuit switch, and the decoupling inductor is connected with a decoupling inductor short circuit switch; the three-phase voltage of the three-phase transformer output of the interference power source is respectively passed
  • the switch and the coupling capacitor are connected to the output primary end corresponding to the three-phase output of the three single-phase transformers of the analog main line.
  • the ⁇ -type impedance circuit is multi-channel, and the multi-channel ⁇ -type impedance circuits are connected in series;
  • the ground loop resistance is multi-channel, and the polysilicon circuit resistances are connected in series, and each of the ground loop resistances is coupled with a resistance short-circuit switch;
  • the decoupling inductor is multi-channel, and the decoupling inductors are connected in series with each other, and each decoupling inductor is connected with a decoupling inductor short-circuit switch.
  • the capacitance of the coupling capacitor is 22 nanofarads to 100 nanofarads.
  • the analog main line is a 500 kV transmission analog line, the three independent motor voltage regulators are in the range of 0 to 500 V; the interference power source is 0 to 500 V, and the interference power supply three-phase transformer output is three
  • the phase voltage is divided into three groups of outputs through switches.
  • the three groups of outputs are connected to the output initials corresponding to the three-phase output of three single-phase transformers through three sets of coupling capacitors.
  • the three sets of coupling capacitors are 22 nanofarads and 44 nanofarads respectively. And 100 nanofarads.
  • the multi-channel ⁇ -type impedance circuits are respectively 10 km, 20 km, 30 km, 40 km ⁇ -type impedance circuits, and the multi-channel ground loop resistances are ground loop resistances of 10 km, 20 km, 30 km, and 40 km, respectively.
  • the multi-way decoupling inductors are decoupling inductors of 10 km, 20 km, 30 km, and 40 km, respectively.
  • the voltage regulating motor of the electric voltage regulator is separately supplied from the analog main line and the interference power source.
  • a power line parameter simulation system control method for a transmission line comprising the above-mentioned power line parameter simulation system for a transmission line, wherein the ⁇ -type impedance circuit is a 10 km, 20 km, 30 km, 40 km ⁇ -type impedance circuit, respectively
  • the ground loop resistance is 10 km, 20 km, 30 km, 40 km ground loop resistance
  • the decoupling inductance is 10 km, 20 km, 30 km, 40 km, respectively.
  • Decoupling inductance, 10 km, 20 km, 30 km, 40 km analog line voltage corresponding to the above parameters; the control method steps include: Start automatic zero return detection step, shorten analog line length control step, analog interference voltage control step;
  • the step of detecting the automatic zero return of the power on is: starting to detect the zero state of each voltage regulator, and automatically resetting the voltage regulator that is not at the zero position;
  • the step of shortening the analog line length is: when the line length parameter is shortened, firstly, the voltage is reduced to a voltage corresponding to the length of the analog line, and then the parameter is changed to a parameter corresponding to the length of the line; the analog interference voltage control step Yes: When it is necessary to add interference voltage to the analog line, first turn on the "interference power" power supply, switch the analog line length to the highest line length, adjust the buck-boost of the interference voltage output to the required interference voltage, and add the interference voltage. Go to the analog line phase line.
  • the invention has the beneficial effects that the line power failure requirement of the traditional transmission line parameter field test is avoided, and the intelligent control of the analog transmission line is realized by the program controller to collect and analyze the signal; Line parameter test and test, and can test the anti-interference ability of the test instrument.
  • FIG. 1 is a schematic diagram of a power supply circuit of a control system of the present invention
  • FIG. 2 is a schematic diagram of a four-way parameter access circuit of the control system of the present invention.
  • the system includes an analog main line 1, an interference power supply 2, and a program controller 3; the analog main line includes three independent electric tones.
  • the compressor 1-1, the three single-phase transformers 1-2, the three single-phase transformer inputs respectively correspond to the outputs of the three independent independent electric voltage regulators;
  • the interference power supply comprises a three-phase electric voltage regulator 2 -1, three-phase transformer 2-2, the three-phase voltages outputted by the three-phase transformer are not equal, the three-phase electric voltage regulator output is connected with the three-phase transformer input; the three single-phase transformer outputs
  • the voltage sensor 1-3 and the current signal sensor 1-4 are respectively disposed, and the three-phase output of the three-phase transformer is respectively provided with a voltage signal sensor 2-3, the three-phase independent electric voltage regulator and the three Phase electric tone
  • the voltage regulators are respectively provided with reset signal sensors, the signal sensors are respectively connected to the signal acquisition end of the program controller, and the control output of the program controller is connected to
  • the control input controls the driving motor M and MA, MB and MC; the three-phase outputs of the three single-phase transformers of the analog main line are respectively connected to a ⁇ -type impedance circuit, and the forearm and the rear arm of the ⁇ -type impedance circuit are respectively phase-to-phase capacitance C1 And a capacitor R2 connected to the ground, and a resistor R1 and an inductor L1 connected in series in the middle, wherein the phase-to-phase capacitance is connected to the capacitor through the phase-to-phase switch K1, and the capacitance to the ground is connected to the ground through the grounding switch K2,
  • the resistors and inductors connected in series are connected in parallel with a short-circuiting switch K3, and the connecting ends of the forearms and the output of the three single-phase transformers are referred to as three single-phase transformer output initial ends 4, and the rear arms are referred to as output terminals 5;
  • the output end is provided with a three-phase short-circuit
  • the capacitance, the resistance and the inductance of the ⁇ -type impedance circuit are calculated according to the equivalent circuit of the simulated line length.
  • the ⁇ -type impedance circuit is divided into multiple paths, multi-way ⁇
  • the impedance circuits are connected in series with each other (the multiple phase-to-phase capacitances and the multiple ground capacitances are connected to each other, and the intermediate multi-circuit resistance inductors are connected in series);
  • the ground loop resistance is multi-channel, multi-way grounding
  • the loop resistances are connected in series, and each ground loop resistance is coupled with a resistance short-circuit switch;
  • the decoupling inductor is multi-channel, the multi-channel decoupling inductors are connected in series, and each decoupling inductor is connected with a decoupling inductor short-circuit switch.
  • the capacitance of the coupling capacitor is selected from 22 nanofarads (nF) to 100 nanofarads (nF).
  • the terminal when measuring the positive sequence impedance and the zero sequence impedance of the line, the terminal is grounded, the resistance is neglected, the phase of each phase of the three-phase line has self-inductance, and the phase and the phase have mutual inductance, because the ⁇ -type impedance circuit uses the concentrated parameter instead of the distribution parameter, Concentrated inductance, there is no mutual inductance between the phases, and it is difficult to realize in the circuit.
  • the analog line parameters are more accurate.
  • the decoupling inductance is added at the end of the analog line. After the decoupling inductance, the self-inductance of each phase changes, so that the measurement results are close to the actual circuit.
  • the analog main line in this embodiment is a 500 kV transmission line, and the analog voltages of the three independent independent electric voltage regulators are adjusted in the range of 0 to 500 V; in addition, the interference power supply is adjusted between 0 and 500 V, as shown in the figure.
  • the three-phase voltage outputted by the three-phase transformer of the interference power source is divided into three groups of outputs through the switch, and the three groups of outputs are connected to the output initial end corresponding to the output of the three single-phase transformers through three sets of coupling capacitors, and the three groups are coupled.
  • the capacitances are 22 nanofarads, 44 nanofarads, and 100 nanofarads, respectively.
  • the multi-channel ⁇ -type impedance circuits shown in FIG. 2 are respectively 10 km, 20 km, 30 km, 40 km ⁇ -type impedance circuits, and the multi-channel ground loop resistances are 10 km, 20 km, 30 km, 40, respectively.
  • the decoupling inductors are decoupling inductors of 10 km, 20 km, 30 km, and 40 km, respectively.
  • the values of the above parameters can be calculated by the equivalent circuit; the four phase-to-phase capacitances C1 correspond to 0.01, 0.02, 0.03, and 0.04 microfarads respectively; the four capacitances to ground C2 correspond to 0.015, 0.03, 0.045, and 0.06 microfarads, respectively;
  • the resistors R1 correspond to 0.15, 0.3, 0.45, and 0.6 ohms, respectively;
  • the four inductors L1 correspond to 8.9, 17.8, 26.7, and 35.6 millihenries, respectively; and the four ground loop resistors R2 correspond to 0.5, 1.0, 1.5, and 2.0 ohms, respectively.
  • the voltage regulating motor of the electric voltage regulator is separately supplied from the analog main line and the interference power source.
  • a power line parameter simulation system control method for a transmission line comprising the power line parameter simulation system of the transmission line described in Embodiment 1, wherein the ⁇ -type impedance circuit is a ⁇ -type impedance of 10 km, 20 km, 30 km, and 40 km, respectively.
  • the ground loop resistance is 10 km, 20 km, 30 km, 40 km ground loop resistance, respectively
  • the decoupling inductance is 10 km, 20 km, 30 km, 40 km decoupling inductance, corresponding to the above parameter setting
  • the control method steps include: start automatic zero return detection step, shorten analog line length control step, analog interference voltage control step;
  • the step of detecting the automatic zero return of the power on is: starting to detect the zero state of each voltage regulator, and automatically resetting the voltage regulator that is not at the zero position;
  • the step of shortening the analog line length is: when the line length parameter is shortened, firstly, the voltage is reduced to a voltage corresponding to the length of the analog line, and then the parameter is changed to a parameter corresponding to the length of the line; the analog interference voltage control step Yes: When it is necessary to add interference voltage to the analog line, first turn on the "interference power" power supply, switch the analog line length to any line length, and perform interference voltage. The buck-boost of the output is adjusted to the required interference voltage, and the interference voltage is added to the analog line phase line.
  • the voltage values of the parameters corresponding to the simulated line length are 10 km: 30 V, 20 km: 60 V, 30 km: 90 V, 40 km: 120 V, 50 km: 150 V, 60 km: 180 V, 70 km: 210 V , 80 km: 240 V, 90 km: 270 V, 100 km: 300 V.
  • the distribution parameters of the 500 kV transmission line are simulated by means of centralized parameters, and the line of 100 km length can be divided into 10 equal parts by the combination of four parameters, and the interference is added while adding the analog power supply.
  • Power supply, analog line power frequency parameter test on the line induced voltage, interference power supply will have an impact on the power frequency parameter tester measurement, so through this system can test the power frequency parameter tester anti-interference power supply capacity and interference power supply pair The impact of the accuracy of the test results.
  • the transmission line is a symmetric passive two-port network, and can be represented by a symmetrical equivalent circuit.
  • both ⁇ -type and T-type circuits can be used as the equivalent circuit of the power line.
  • it is necessary to calculate as much as possible.
  • it is more accurate to replace the line with a length of not more than 300km with a ⁇ -type circuit.
  • more cascades can be used.
  • a ⁇ -type circuit is analogous.
  • the present invention replaces the characteristics of its distribution parameters by using a concentrated parameter ⁇ -type circuit of the transmission line, and the total length of the line is 100 kilometers.
  • the ⁇ -type circuit is the phase-to-phase capacitance and the capacitance to the ground, and the middle is the resistance and the inductance.
  • the size of the resistor, the inductance, and the capacitance are used to indicate the length of the line (the length is 10 km, 20 km...100 km, a total of 10 different Length), when adjusting the parameter switching circuit, the parameters of the phase-to-phase capacitance, the capacitance to the ground, and the resistance and the inductance can be switched into the same line length at the same time.
  • the zero-sequence impedance is simultaneously cut into the corresponding length.
  • Ground loop impedance When measuring the impedance, the inductor L2 is added to the end. This inductor is an inductor that needs to be added at the end when the three-phase line is decoupled to form a lumped parameter. This inductance can be obtained by calculation.
  • Switching 10 equal parts 100 km line length adopts binary combination mode, 1, 2, 3, 4 combination mode, which can be manually stepped combination mode, that is, when it is necessary to reduce the line length, the internal software can intelligently judge the combination mode.
  • the induced voltage mainly includes a capacitively coupled induced voltage and an electromagnetically coupled induced voltage, and the interference voltage ranges from several hundred volts to several ten kilovolts depending on the interference line voltage level and the tight coupling condition.
  • the system incorporates an analog capacitive coupling induced voltage to superimpose the interference power supply with the test power supply to simulate the effect on the test loop.
  • the interference voltage is switched by the voltage regulator through the isolation transformer and the capacitor.
  • the capacitor is coupled to the test loop. This embodiment has three sources of interference, which can be cut into any interference source.
  • the main difference is that the coupling capacitors are different in size and the coupling energy is different. Therefore, the voltages coupled to the line are different, and the interference effect is different; the interference voltage of each phase in each interference source is different, and the voltage regulators at the front end of the capacitor are synchronously adjusted to ensure that the three phases of the voltage coupled to the line are inconsistent, thereby achieving
  • the analog interference function of the measuring circuit can cut into the interference voltage when making various parameters of the line of any length.
  • the loop power supply and the interference power supply can be cut into interference without phase synchronization.
  • the choice of coupling capacitor needs to limit the current through the capacitor. This current is not more than 150mA.
  • the capacitor should be small enough to be less than 150nF.
  • the capacitive reactance is large enough to limit the current through the capacitor.
  • Three-phase synchronous adjustable interference power isolation output Phase A 0-200V; Phase B 0-300V; Phase C 0-500V.
  • the system When the "interference power supply" is turned on, the system automatically switches to the highest line length file. Click one of the interference one, two or three.
  • the interference light When the interference light is flashing, press the interference boost or buck button to adjust the voltage to the analog line. Value, then press the flashing button light, and cut into the corresponding interference voltage when it is always on.
  • the system will automatically step down and then cut to the current line length file.
  • the system first reduces the voltage of each phase to an equal automatic step-down value, and then the user performs independent voltage-dependent test.
  • the system does not automatically adjust the voltage.
  • Interference Power When you need to add interference voltage to the analog line, first click “Interference Power” to turn on the power. At this time, the system automatically switches the analog line length to the highest line length, such as 100 km. Tap the interference type one, two or three. At this time, the corresponding interference light flashes. The user must first adjust the buck-boost of the interference voltage output until the appropriate interference voltage is adjusted, and then the interference voltage is superimposed on the analog line phase line. .
  • the A phase buck-boost button When switching to independent voltage regulation, press the A phase buck-boost button, then the A-phase regulator will raise and lower the pressure output, and the other voltage regulators will not operate; when the B or C phase is pressed, the corresponding action will be performed, and the three will not interfere with each other. However, if the boost is too high, the system may have overcurrent protection. If it is the first independent voltage regulation and then the synchronous voltage regulation, when the voltage is synchronously boosted, the system first boosts the voltage to the highest phase of the three phases, and then the three voltage regulators are boosted together; Step down to the lowest phase of the three phases and then step down together.

Description

一种输电线路工频 模拟系统及其控制方法
本申请要求于 2011 年 5 月 10 日提交中国专利局、 申请号为 201110118892.1、 发明名称为"输电线路工频参数模拟系统及其控制方法 "的中 国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明属于输变电测试,特别涉及一种输电线路工频参数模拟系统及其控 制方法, 该系统及控制方法是模拟实际线路的工频参数, 实现在实验室对实际 线路的分析测试。
背景技术
对于输电线路的参数测试通常需要线路停电进行实地测试,此种方式的测 试对于使用各种仪器培训测试人员极为不方便, 容易发生安全事故, 并且不能 提前检验到测试仪器的抗干扰能力, 抗干扰能力差的仪器测试结果将不准确。 发明内容
本发明的目的是提出一种输电线路工频参数模拟系统及其控制方法技术 方案,该方案采用集中参数的方式模拟出 10-100km的 500kV输电线路工频分 布参数, 如: 导线电阻、 电感、 电容(对地电容和相间电容)、 干扰电压等, 用于线路工频参数测试及培训,且能适应国内现有大多数厂家生产的线路参数 测试仪。
为了实现上述目的, 本发明技术方案是这样实现的:
一种输电线路工频参数模拟系统, 包括模拟主线路、干扰电源和程序控制 器; 所述模拟主线路包括三相各自独立的电动调压器、 三个单相变压器, 所述 三个单相变压器输入分别对应连接三相各自独立的电动调压器的输出;所述干 扰电源包括三相电动调压器、三相变压器, 所述三相变压器输出的三相电压各 不相等, 所述三相电动调压器输出与所述三相变压器输入连接; 所述三个单相 变压器输出分别设置有电压、 电流信号传感器, 所述三相变压器的三相输出分 别设置有电压信号传感器,所述三相各自独立的电动调压器和所述三相电动调 压器分别设置有复位信号传感器,所述各信号传感器分别连接至程序控制器的 信号采集端,程序控制器的控制输出连接至三相各自独立的电动调压器和三相 电动调压器的控制输入;所述模拟主线路的三个单相变压器的三相输出分别连 接 π型阻抗电路, 所述 π型阻抗电路前臂和后臂分别是相间电容和对地电容、 中间是相互串接的电阻和电感,所述的相间电容通过相间开关实现电容相间连 接, 所述对地电容通过接地开关实现电容与地连接, 与所述相互串接的电阻和 电感並接有短路开关,所述前臂与三个单相变压器输出的连接端称为三个单相 变压器输出初端,所述后臂称为输出末端;所述输出末端设置有三相短路开关, 所述三相短路开关的短路点与地之间设置有接地回路电阻和解耦电感,所述接 地回路电阻和解耦电感串联,接地回路电阻一端接地, 与接地回路电阻並联接 有电阻短路开关,与解耦电感並连接有解耦电感短路开关; 所述干扰电源的三 相变压器输出的三相电压分别通过开关和耦合电容连接至模拟主线路三个单 相变压器三相输出所对应的输出初端。
所述 π型阻抗电路是多路, 多路 π型阻抗电路相互串联; 所述接地回路电 阻是多路, 多 妻地回路电阻相互串联,每一 妻地回路电阻並联接有电阻短 路开关; 所述解耦电感是多路, 多路解耦电感相互串联, 每一路解耦电感並连 接有解耦电感短路开关。
所述耦合电容的电容值是 22毫微法拉至 100毫微法拉。
所述模拟主线路是 500kV输电模拟线路, 所述三相各自独立的电动调压 器电压是在 0至 500V的范围; 所述干扰电源是 0至 500V, 所述干扰电源三 相变压器输出的三相电压通过开关分为三组输出,三组输出通过三组耦合电容 连接至三个单相变压器三相输出所对应的输出初端, 三组耦合电容分别是 22 毫微法拉、 44毫微法拉和 100毫微法拉。
所述多路 π型阻抗电路分别是 10公里、 20公里、 30公里、 40公里 π型 阻抗电路, 所述多路接地回路电阻分别是 10公里、 20公里、 30公里、 40公 里接地回路电阻, 所述多路解耦电感分别是 10公里、 20公里、 30公里、 40 公里解耦电感。
所述电动调压器的调压电机与模拟主线路和干扰电源分开电源供电。
一种输电线路工频参数模拟系统控制方法,包括上述的一种输电线路工频 参数模拟系统, 所述 π型阻抗电路分别是 10公里、 20公里、 30公里、 40公 里 π型阻抗电路, 所述接地回路电阻分别是 10公里、 20公里、 30公里、 40 公里接地回路电阻, 所述解耦电感分别是 10公里、 20公里、 30公里、 40公 里解耦电感, 对应上述参数设有 10公里、 20公里、 30公里、 40公里模拟线 路电压; 其控制方法步骤包括: 开机自动回零检测步骤、 减短模拟线路长度控 制步骤、 模拟干扰电压控制步骤;
所述开机自动回零检测步骤是: 开机检测各调压器的零位状态, 并将不在 零位的调压器自动回零;
所述减短模拟线路长度控制步骤是: 当减短线路长度参数时, 首先是将电 压减至对应模拟线路长度的电压, 然后将参数改变到对应线路长度的参数; 所述模拟干扰电压控制步骤是: 当需要对模拟线路加入干扰电压时, 先打 开 "干扰电源" 电源, 将模拟线路长度切换到最高线路长度档, 进行干扰电压 输出的升降压调节到所需的干扰电压, 加入干扰电压到模拟线路相线上。
本发明的有益效果是:避免了了传统输电线路参数现场测试的线路停电需 要, 通过程序控制器对信号的采集分析, 实现了对模拟输电线路的智能控制; 在实验室筒单的实现各种线路参数测试与试验,并可检验试验仪器的抗干扰能 力。
附图说明
图 1为本发明控制系统电源电路示意图;
图 2为本发明控制系统四路参数接入电路示意图。
具体实施方式
为使本发明的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对 本发明的具体实施方式做详细的说明。
实施例 1 ,
一种输电线路工频参数模拟系统实施例, 参见图 1和图 2, 所述系统包括 模拟主线路 1、 干扰电源 2和程序控制器 3; 所述模拟主线路包括三相各自独 立的电动调压器 1-1、 三个单相变压器 1-2, 所述三个单相变压器输入分别对 应连接三相各自独立的电动调压器的输出;所述干扰电源包括三相电动调压器 2-1、 三相变压器 2-2, 所述三相变压器输出的三相电压各不相等, 所述三相电 动调压器输出与所述三相变压器输入连接;所述三个单相变压器输出分别设置 有电压传感器 1-3、 电流信号传感器 1-4, 所述三相变压器的三相输出分别设 置有电压信号传感器 2-3 , 所述三相各自独立的电动调压器和所述三相电动调 压器分别设置有复位信号传感器,所述各信号传感器分别连接至程序控制器的 信号采集端,程序控制器的控制输出连接至三相各自独立的电动调压器和三相 电动调压器的控制输入控制驱动电机 M和 MA、 MB和 MC; 所述模拟主线路 的三个单相变压器的三相输出分别连接 π型阻抗电路,所述 π型阻抗电路前臂 和后臂分别是相间电容 C1和对地电容 C2、 中间是相互串接的电阻 R1和电感 L1 , 所述的相间电容通过相间开关 K1实现电容相间连接, 所述对地电容通过 接地开关 K2实现电容与地连接, 与所述相互串接的电阻和电感並接有短路开 关 K3, 所述前臂与三个单相变压器输出的连接端称为三个单相变压器输出初 端 4, 所述后臂称为输出末端 5; 所述输出末端设置有三相短路开关 6, 所述 三相短路开关的短路点与地之间设置有接地回路电阻 R2和解耦电感 L2,所述 接地回路电阻和解耦电感串联,接地回路电阻一端接地, 与接地回路电阻並联 接有电阻短路开关 K4,与解耦电感並连接有解耦电感短路开关 K5; 所述干扰 电源的三相变压器输出的三相电压分别通过开关 K6和耦合电容 C3连接至模 拟主线路三个单相变压器三相输出所对应的输出初端。
其中, π型阻抗电路的电容、 电阻和电感是根据所模拟的线路长度的等值 电路计算得出,为了模拟不同长度的线路的阻抗,所述 π型阻抗电路分为多路, 多路 π型阻抗电路相互串联(其中的多路的相间电容和多路的对地电容相互是 並接的, 中间的多路电阻电感是串接的); 所述接地回路电阻是多路, 多路接 地回路电阻相互串联,每一路接地回路电阻並联接有电阻短路开关; 所述解耦 电感是多路, 多路解耦电感相互串联,每一路解耦电感並连接有解耦电感短路 开关。
为了限制干扰电压接入时不会产生大电流,所述耦合电容的电容值选择在 22毫微法拉( nF )至 100毫微法拉( nF ) 。
其中, 当测量线路正序阻抗和零序阻抗时, 末端接地, 忽略电阻, 三相线 路每相有自感,相与相之间有互感, 由于 π型阻抗电路使用集中参数代替分布 参数, 使用集中电感, 各相之间没有互感的关系, 电路中也很难实现, 为了使 模拟线路的电感接近实际电感, 模拟线路参数更准确, 根据电路原理, 在模拟 线路末端加入了解耦电感,接入了解耦电感后各相自感发生了变化,使得测量 的结果跟接近实际电路, 这些参数我们可以通过实测和计算得到。 本实施例所述模拟主线路是 500kV输电线路, 其三相各自独立的电动调 压器模拟电压是在 0至 500V的范围调整; 另外所述干扰电源是在 0至 500V 之间调整,如图 2所示, 所述干扰电源三相变压器输出的三相电压通过开关分 为三组输出,三组输出通过三组耦合电容连接至三个单相变压器输出所对应的 输出初端, 三组耦合电容分别是 22毫微法拉、 44毫微法拉和 100毫微法拉。
图 2中显示的所述多路 π型阻抗电路分别是 10公里、 20公里、 30公里、 40公里 π型阻抗电路, 所述多路接地回路电阻分别是 10公里、 20公里、 30 公里、 40公里接地回路电阻, 所述多路解耦电感分别是 10公里、 20公里、 30 公里、 40公里解耦电感。 上述参数的数值通过等值电路可以计算出来; 四个 相间电容 C1分别对应是 0.01、 0.02、 0.03、 0.04微法拉; 四个对地电容 C2分 别对应是 0.015、 0.03、 0.045、 0.06微法拉; 四个电阻 R1分别对应是 0.15、 0.3、 0.45、 0.6欧姆; 四个电感 L1分别对应是 8.9、 17.8、 26.7、 35.6毫亨; 四 个接地回路电阻 R2分别对应是 0.5、 1.0、 1.5、 2.0欧姆。
为了能够在模拟主线路和干扰电源断电时调压器回零,因此所述电动调压 器的调压电机与模拟主线路和干扰电源分开电源供电。
实施例 2,
一种输电线路工频参数模拟系统控制方法,包括实施例 1上述的一种输电 线路工频参数模拟系统,所述 π型阻抗电路分别是 10公里、 20公里、 30公里、 40公里 π型阻抗电路, 所述接地回路电阻分别是 10公里、 20公里、 30公里、 40公里接地回路电阻, 所述解耦电感分别是 10公里、 20公里、 30公里、 40 公里解耦电感, 对应上述参数设有 10公里、 20公里、 30公里、 40公里模拟 线路电压; 其控制方法步骤包括: 开机自动回零检测步骤、 减短模拟线路长度 控制步骤、 模拟干扰电压控制步骤;
所述开机自动回零检测步骤是: 开机检测各调压器的零位状态, 并将不在 零位的调压器自动回零;
所述减短模拟线路长度控制步骤是: 当减短线路长度参数时, 首先是将电 压减至对应模拟线路长度的电压, 然后将参数改变到对应线路长度的参数; 所述模拟干扰电压控制步骤是: 当需要对模拟线路加入干扰电压时,先打 开 "干扰电源" 电源, 将模拟线路长度切换到任意线路长度档, 进行干扰电压 输出的升降压调节到所需的干扰电压, 加入干扰电压到模拟线路相线上。
所述的各参数对应模拟的线路长度的的电压值分别是 10公里: 30V, 20 公里: 60V, 30公里: 90V, 40公里: 120V, 50公里: 150V, 60公里: 180V, 70公里: 210V, 80公里: 240V, 90公里: 270V, 100公里: 300V。
上述实施例 1和实施例 2是用集中参数的方式模拟出 500kV输电线路的 分布参数,将 100公里长度的线路通过四组参数组合可以划分成 10等分, 在加 入模拟电源的同时叠加入干扰电源,模拟线路工频参数测试时线路上的感应电 压, 干扰电源将对工频参数测试仪测量时产生影响, 因此通过这套系统可检测 工频参数测试仪抗干扰电源的能力以及干扰电源对测试结果准确度的影响。
理论上,输电线路就是对称的无源二端口网络, 并可用对称的等值电路来 表示, 一般有 π型和 T型两种电路均可作为输电线的等值电路, 在工程中, 既 要保证必要的精度, 又要尽可能的筒化计算, 采用近似参数时, 对长度不超过 300km的线路用一个 π型电路来代替更为准确,对于更长的线路, 则可用串级 联接的多个 π型电路来模似。
因此, 本发明使用输电线路的集中参数 π型电路代替了其分布参数特征, 线路全长 100公里。该 π型电路前后为相间电容和对地电容, 中间为电阻和电 感, 通过调节电阻、 电感、 电容的大小表示不同长度的线路(长度有 10公里、 20公里…… 100公里,共 10种不同长度) , 调节参数切换电路时, 可将相间电 容、 对地电容和电阻、 电感同时切换入相同线路长度时的参数, 为保证 π型电 路的准确性, 测零序阻抗时同时切入相应长度的地回路阻抗。 测量阻抗时, 末 端增加了电感 L2, 此电感是将三相线路解耦后形成集中参数时, 末端需要增 加的一个电感, 此电感可以通过计算获得。 切换 10等份 100公里线路长度时 采用二进制组合方式, 1、 2、 3、 4组合方式, 可以手动步进式组合方式, 即 当需要减少线路长度时可以由内部软件智能化判断组合方式。
线路工频参数测试时, 可能从附近运行的线路或设备上感应较高的电压, 此电压对测试人员的安全和测试数据的准确度都会有影响。此感应电压主要包 括电容耦合感应电压和电磁耦合感应电压,根据干扰线路电压等级和耦合紧密 情况的不同, 干扰电压值从几百伏到十几千伏不等。本系统加入了模拟电容耦 合感应电压, 将干扰电源与测试电源叠加, 模拟对测试回路的影响。 干扰电压由调压器经隔离变和电容切入,利用电容耦合的原理加入测试回 路, 本实施例有三条干扰源, 可以切入任意一条干扰源, 主要区别在于耦合电 容大小不相同, 耦合能量不相同, 因此耦合至线路的电压不同, 干扰效果也不 相同; 每条干扰源中每相干扰电压不相同, 由电容前端的调压器同步调节, 保 证耦合到线路的电压三相不一致,从而实现对测量回路的模拟干扰作用,做任 意长度线路的各种参数时均可以切入干扰电压。 当试验进行时, 由于采用电容 耦合的方式, 因此回路电源和干扰电源不需要相位同步就可切入干扰。耦合电 容的选择, 需要限制通过该电容的电流大小, 此电流不大于 150mA, 因此选 择电容时需足够小, 要小于 150nF, 其容抗足够大以便限制通过电容的电流, 通过计算我们选择了电容 22nF、 44nF、 100nF。 三相同步可调干扰电源隔离输 出: A相 0-200V; B相 0-300V; C相 0-500V。
打开 "干扰电源" 时, 系统自动切换到最高线路长度档, 点按干扰一, 二 或三之一, 干扰灯闪亮时, 长按干扰升或降压按钮, 调节干扰到模拟线路上的 电压值, 再点按闪亮按钮灯, 常亮时切入相应干扰电压。
打开 "调压电源" 后, "同步调压" 时, 长按任一相电压升或降压按钮, 各相模拟线路电压同时调节; "独立调压"时, 长按任一相电压升或降压按钮, 对应相模拟线路电压独立调节。 二者可以互相切换控制。
实施例开机默认为最长档位, 如 100公里, 即 10+20+30+40= 100公里, 当用户想减短线路长度时, 系统会先自动降压, 再切至当前线路长度档, 以免 直接切换到低长度档时电流过大, 当独立调压时, 系统将各相电压先降至相等 的自动降压值, 然后用户再进行独立调压相关试验。在使用调压电源加长模拟 线路长度时, 系统不会自动调压。
当需要对模拟线路加入干扰电压时, 先点按 "干扰电源"打开电源, 此时 系统自动将模拟线路长度切换到最高线路长度档,如 100公里档。 点按干扰类 型一, 二或三, 此时相应干扰灯闪亮, 用户须先进行干扰电压输出的升降压调 节, 直到调到合适的干扰电压, 然后将干扰电压叠加到模拟线路相线上。
本系统调压方式有二种: 同步调压和独立调压,在调压过程中可以互相切 换, 只有在使用 "调压电源" 时才这二种调压方式才有效。 默认状态下, 在同 步调压时, 按任意 ABC升压按钮时, 三相电压同步升压; 按任意 ABC降压按 钮时, 三相电压同步降压; 松开升降压按钮时停止升降压。 当切换到独立调压 时, 按 A相升降压按钮, 则 A相调压器升降压输出, 其它调压器不动作; 按 B或 C相时也相应动作, 三者不会互相干扰, 但如果升压过高, 系统有可能会 过流保护。 如果是先独立调压后同步调压, 则同步升压时, 系统先升压到三相 中最高的一相的电压, 然后三个调压器再一起升压; 而同步降压时, 先降压到 三相中最低的一相的电压, 然后再一起降压。
以上所述,仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的 限制。 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发明。 任何 熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述 揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改 为等同变化的等效实施例。 因此, 凡是未脱离本发明技术方案的内容, 依据本 于本发明技术方案保护的范围内。

Claims

权 利 要 求
1、输电线路工频参数模拟系统, 其特征在于, 所述系统包括模拟主线路、 干扰电源和程序控制器; 所述模拟主线路包括三相各自独立的电动调压器、三 个单相变压器,所述三个单相变压器输入分别对应连接三相各自独立的电动调 压器的输出; 所述干扰电源包括三相电动调压器、 三相变压器, 所述三相变压 器输出的三相电压各不相等,所述三相电动调压器输出与所述三相变压器输入 连接; 所述三个单相变压器输出分别设置有电压、 电流信号传感器, 所述三相 变压器的三相输出分别设置有电压信号传感器,所述三相各自独立的电动调压 器和所述三相电动调压器分别设置有复位信号传感器,所述各信号传感器分别 连接至程序控制器的信号采集端,程序控制器的控制输出连接至三相各自独立 的电动调压器和三相电动调压器的控制输入;所述模拟主线路的三个单相变压 器的三相输出分别连接 π型阻抗电路,所述 π型阻抗电路前臂和后臂分别是相 间电容和对地电容、 中间是相互串接的电阻和电感, 所述的相间电容通过相间 开关实现电容相间连接, 所述对地电容通过接地开关实现电容与地连接, 与所 述相互串接的电阻和电感並接有短路开关,所述前臂与三个单相变压器输出的 连接端称为三个单相变压器输出初端, 所述后臂称为输出末端; 所述输出末端 设置有三相短路开关,所述三相短路开关的短路点与地之间设置有接地回路电 阻和解耦电感, 所述接地回路电阻和解耦电感串联, 接地回路电阻一端接地, 与接地回路电阻並联接有电阻短路开关 ,与解耦电感並连接有解耦电感短路开 关;所述干扰电源的三相变压器输出的三相电压分别通过开关和耦合电容连接 至模拟主线路三个单相变压器三相输出所对应的输出初端。
2、 根据权利要求 1所述的输电线路工频参数模拟系统, 其特征在于, 所 述 π型阻抗电路是多路, 多路 π型阻抗电路相互串联; 所述接地回路电阻是多 路,多路接地回路电阻相互串联,每一路接地回路电阻並联接有电阻短路开关; 所述解耦电感是多路, 多路解耦电感相互串联,每一路解耦电感並连接有解耦 电感短路开关。
3、 根据权利要求 1所述的输电线路工频参数模拟系统, 其特征在于, 所 述耦合电容的电容值是 22毫微法拉至 100毫微法拉。
4、 根据权利要求 1所述的输电线路工频参数模拟系统, 其特征在于, 所 述模拟主线路是 500kV输电模拟线路, 所述三相各自独立的电动调压器电压 是在 0至 500V的范围, 所述干扰电源是 0至 500V, 所述干扰电源三相变压 器输出的三相电压通过开关分为三组输出,三组输出通过三组耦合电容连接至 三个单相变压器三相输出所对应的输出初端, 三组耦合电容分别是 22毫微法 拉、 44毫微法拉和 100毫微法拉。
5、 根据权利要求 2所述的输电线路工频参数模拟系统, 其特征在于, 所 述多路 π型阻抗电路分别是 10公里、 20公里、 30公里、 40公里 π型阻抗电 路, 所述多路接地回路电阻分别是 10公里、 20公里、 30公里、 40公里接地 回路电阻, 所述多路解耦电感分别是 10公里、 20公里、 30公里、 40公里解 耦电感。
6、 根据权利要求 1所述的输电线路工频参数模拟系统, 其特征在于, 所 述电动调压器的调压电机与模拟主线路和干扰电源分开电源供电。
7、 输电线路工频参数模拟系统控制方法, 其特征在于, 包括权利要求 1 所述的输电线路工频参数模拟系统, 所述 π型阻抗电路分别是 10公里、 20公 里、 30公里、 40公里 π型阻抗电路, 所述接地回路电阻分别是 10公里、 20 公里、 30公里、 40公里接地回路电阻, 所述解耦电感分别是 10公里、 20公 里、 30公里、 40公里解耦电感, 对应上述参数设有 10公里、 20公里、 30公 里、 40公里模拟线路电压; 其控制方法步骤包括: 开机自动回零检测步骤、 减短模拟线路长度控制步骤、 模拟干扰电压控制步骤;
所述开机自动回零检测步骤是: 开机检测各调压器的零位状态, 并将不在 零位的调压器自动回零;
所述减短模拟线路长度控制步骤是: 当减短线路长度参数时, 首先是将电 压减至对应模拟线路长度的电压, 然后将参数改变到对应线路长度的参数; 所述模拟干扰电压控制步骤是: 当需要对模拟线路加入干扰电压时,先打 开 "干扰电源" 电源, 将模拟线路长度切换到任意线路长度档, 进行干扰电压 输出的升降压调节到所需的干扰电压, 加入干扰电压到模拟线路相线上。
PCT/CN2011/080008 2011-05-10 2011-09-22 一种输电线路工频参数模拟系统及其控制方法 WO2012151836A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/810,318 US9460636B2 (en) 2011-05-10 2011-09-22 Power frequency parameter simulation system for a power transmission line and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110118892.1 2011-05-10
CN2011101188921A CN102184656B (zh) 2011-05-10 2011-05-10 输电线路工频参数模拟系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2012151836A1 true WO2012151836A1 (zh) 2012-11-15

Family

ID=44570824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080008 WO2012151836A1 (zh) 2011-05-10 2011-09-22 一种输电线路工频参数模拟系统及其控制方法

Country Status (3)

Country Link
US (1) US9460636B2 (zh)
CN (1) CN102184656B (zh)
WO (1) WO2012151836A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108984959A (zh) * 2018-08-14 2018-12-11 国网安徽省电力有限公司 基于pscad的新建直流输电线路感应电压和电流的仿真计算方法
CN111881558A (zh) * 2020-07-06 2020-11-03 武汉大学 消除冲击试验中布线回路感应干扰电压的仿真计算方法
US11092632B2 (en) 2016-10-05 2021-08-17 Hydro-Quebec Resistance-measuring device and method

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184656B (zh) * 2011-05-10 2012-12-26 安徽省电力科学研究院 输电线路工频参数模拟系统及其控制方法
CN103809052B (zh) * 2012-11-14 2019-01-29 中国广核集团有限公司 超高压电网输电线路保护动模实验系统、带电功能测试方法
US10088546B2 (en) * 2013-08-09 2018-10-02 Eaton Intelligent Power Limited Method and apparatus to diagnose current sensor polarities and phase associations for a three-phase electric power system
CN106443256A (zh) * 2016-09-28 2017-02-22 国家电网公司 一种用于谐波仿真的电网模拟装置
CN106959405B (zh) * 2017-03-08 2020-02-14 国网山东省电力公司电力科学研究院 特高压gis主回路绝缘试验的电气量与试验能力计算方法
CN107123348B (zh) * 2017-06-01 2023-03-21 国网湖北省电力公司电力科学研究院 一种高精度中压配电线路真型等效模型及其参数计算方法
CN107727898B (zh) * 2017-11-15 2024-03-19 乾友科技有限公司 一种试验信号输出电路
CN108181538B (zh) * 2018-03-14 2021-01-05 华北科技学院 智能型短路实验台
CN108230815A (zh) * 2018-04-08 2018-06-29 无锡职业技术学院 弱电信号传输模拟实训装置
CN108597330B (zh) * 2018-08-02 2023-07-14 广东电网有限责任公司 测相教学仪器
JP7145035B2 (ja) 2018-10-29 2022-09-30 本田技研工業株式会社 学習装置、学習方法、及びプログラム
RU188135U1 (ru) * 2018-12-20 2019-04-01 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Лабораторный стенд для исследований режимов работы участка электрической сети с регулятором напряжения
RU2715794C1 (ru) * 2019-07-25 2020-03-03 Денис Александрович Давыдов Способ симуляции электрической схемы, система для его осуществления и симулирующий компонент
CN110543739B (zh) * 2019-09-11 2023-04-18 南方电网科学研究院有限责任公司 一种电力架空输电线路的电路仿真模型
CN110648574B (zh) * 2019-09-30 2021-10-22 武汉大学 一种跨步电压及接触电压模拟实验装置及方法
CN111049661B (zh) * 2019-11-26 2022-08-30 深圳欧陆通电子股份有限公司 数字网络接口电路
CN110988621A (zh) * 2019-11-27 2020-04-10 国网福建省电力有限公司检修分公司 潮湿气候条件下超高压变电站直流系统电压偏移仿真方法
CN111141956B (zh) * 2019-12-31 2022-03-11 国网山东省电力公司淄博供电公司 一种基于微积分方程组单相变压器短路参数在线监测方法
CN111681509A (zh) * 2020-06-01 2020-09-18 广州大学 一种网络型微机继电保护实验系统及方法
CN111781440A (zh) * 2020-06-01 2020-10-16 广州大学 一种开放式微机继电保护实验系统及方法
CN112419822A (zh) * 2020-11-16 2021-02-26 贵州电网有限责任公司 一种10kv配网等效测试低压模拟系统及其模拟方法
CN115166479A (zh) * 2022-06-29 2022-10-11 珠海视熙科技有限公司 D类功放电路的仿真测试方法、装置及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073387A1 (en) * 2002-10-10 2004-04-15 Abb Research Ltd. Determining parameters of an equivalent circuit representing a transmission section of an electrical network
CN2722259Y (zh) * 2004-08-25 2005-08-31 江苏省电力公司南京供电公司 高压输电线路工频参数测试仪
EP1976089A2 (en) * 2007-03-30 2008-10-01 General Electric Company A fast impedance protection technique immune to dynamic errors of capacitive voltage transformers
CN101789602A (zh) * 2010-01-13 2010-07-28 中国电力科学研究院 一种超、特高压可控串联补偿装置的动态模拟装置及其试验方法
CN201639294U (zh) * 2010-01-05 2010-11-17 湖北省电力试验研究院 一种同杆并架双回输电线路物理模型
CN101938125A (zh) * 2009-07-03 2011-01-05 武汉义天科技有限公司 输电线路工频干扰动态抑制网络
CN102184656A (zh) * 2011-05-10 2011-09-14 安徽省电力科学研究院 输电线路工频参数模拟系统及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1153339A1 (ru) * 1983-09-22 1985-04-30 Войсковая часть 42347 Тренажер оператора линии электропередач
CN1330969C (zh) * 2004-08-25 2007-08-08 江苏省电力公司南京供电公司 高压输电线路工频参数测试仪及测试方法
CN1707275A (zh) * 2005-05-10 2005-12-14 武汉中元华电科技有限公司 一种消除输电线路工频参数测试中的干扰感应电压的方法
CN201311456Y (zh) * 2008-12-05 2009-09-16 河南电力试验研究院 一种高压输电线路工频参数测量装置
CN101825667B (zh) * 2009-03-06 2013-06-26 华北电力科学研究院有限责任公司 电力通信传输通道故障检测设备、故障检测系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073387A1 (en) * 2002-10-10 2004-04-15 Abb Research Ltd. Determining parameters of an equivalent circuit representing a transmission section of an electrical network
CN2722259Y (zh) * 2004-08-25 2005-08-31 江苏省电力公司南京供电公司 高压输电线路工频参数测试仪
EP1976089A2 (en) * 2007-03-30 2008-10-01 General Electric Company A fast impedance protection technique immune to dynamic errors of capacitive voltage transformers
CN101938125A (zh) * 2009-07-03 2011-01-05 武汉义天科技有限公司 输电线路工频干扰动态抑制网络
CN201639294U (zh) * 2010-01-05 2010-11-17 湖北省电力试验研究院 一种同杆并架双回输电线路物理模型
CN101789602A (zh) * 2010-01-13 2010-07-28 中国电力科学研究院 一种超、特高压可控串联补偿装置的动态模拟装置及其试验方法
CN102184656A (zh) * 2011-05-10 2011-09-14 安徽省电力科学研究院 输电线路工频参数模拟系统及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11092632B2 (en) 2016-10-05 2021-08-17 Hydro-Quebec Resistance-measuring device and method
CN108984959A (zh) * 2018-08-14 2018-12-11 国网安徽省电力有限公司 基于pscad的新建直流输电线路感应电压和电流的仿真计算方法
CN111881558A (zh) * 2020-07-06 2020-11-03 武汉大学 消除冲击试验中布线回路感应干扰电压的仿真计算方法

Also Published As

Publication number Publication date
US20140072950A1 (en) 2014-03-13
CN102184656A (zh) 2011-09-14
US9460636B2 (en) 2016-10-04
CN102184656B (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
WO2012151836A1 (zh) 一种输电线路工频参数模拟系统及其控制方法
CN111521919A (zh) 一种低压台区零线带电故障诊断装置及诊断与定位方法
CN106405402A (zh) 一种断路器断口动态电压分布测量接线回路及测量方法
CN106534003B (zh) 阻抗匹配方法、装置及通信网络
CN205229411U (zh) 一种开关元件负载特性试验台
CN104251978B (zh) 直流系统交流串扰与电压波动对继电器影响的测试装置
CN110544930A (zh) 一种基于电容电流的电压跌落调整系统及方法
CN106125032B (zh) 一种基于程控恒流源的互感器测试机
CN105093162A (zh) 脉冲群干扰条件下电能表计量误差检定方法和装置
CN113156251B (zh) 非有效接地系统地故障模拟实验台
CN103312188B (zh) 用于电力电子装置中电抗器性能测试的电源及其测试方法
CN101937058A (zh) 一种换流阀运行试验多波次故障电流试验装置及试验方法
CN108181600B (zh) 电容式电压互感器测试装置
CN108168385B (zh) 具有负载自动匹配功能的大电流恒流测试仪
CN103280980A (zh) 漏电保护器检测系统的数字式电源装置
WO2015192273A1 (zh) 一种三相交流电弧炉自适应建模装置及其仿真算法
CN112415429B (zh) 中压接地故障智能诊断仪
CN104375040B (zh) 一种压敏电阻伏安特性的测量系统
CN210323338U (zh) 一种电容式电压互感器测量装置
CN112557984A (zh) 一种用于验证直流pd超宽频带检测系统的试验装置
CN104407208B (zh) 一种利用电路能量基于傅里叶fft正反变换相对较准阻性电流测量的系统
CN207623427U (zh) 中间继电器感应电压屏蔽—rc速选测试箱
CN208795801U (zh) 一种自动变比测试仪
CN206311659U (zh) 交流电压过零点检测电路
CN204228855U (zh) 一种压敏电阻伏安特性的测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865150

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13810318

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11865150

Country of ref document: EP

Kind code of ref document: A1