WO2012149299A2 - Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor - Google Patents

Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor Download PDF

Info

Publication number
WO2012149299A2
WO2012149299A2 PCT/US2012/035429 US2012035429W WO2012149299A2 WO 2012149299 A2 WO2012149299 A2 WO 2012149299A2 US 2012035429 W US2012035429 W US 2012035429W WO 2012149299 A2 WO2012149299 A2 WO 2012149299A2
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
crbn
expression
antibody
patients
Prior art date
Application number
PCT/US2012/035429
Other languages
French (fr)
Other versions
WO2012149299A3 (en
Inventor
Peter Schafer
Antonia Lopez-Girona
Thomas O. Daniel
Anita GANDHI
Derek MENDY
Original Assignee
Celgene Corporaiton
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020137031674A priority Critical patent/KR20140024914A/en
Application filed by Celgene Corporaiton filed Critical Celgene Corporaiton
Priority to JP2014508592A priority patent/JP6016892B2/en
Priority to MX2013012564A priority patent/MX353482B/en
Priority to AU2012249491A priority patent/AU2012249491B2/en
Priority to EP12726264.0A priority patent/EP2702410A2/en
Priority to NZ617142A priority patent/NZ617142B2/en
Priority to CN201280032778.XA priority patent/CN103688176A/en
Priority to CA2834535A priority patent/CA2834535A1/en
Publication of WO2012149299A2 publication Critical patent/WO2012149299A2/en
Publication of WO2012149299A3 publication Critical patent/WO2012149299A3/en
Priority to IL229114A priority patent/IL229114B/en
Priority to ZA2013/08111A priority patent/ZA201308111B/en
Priority to AU2017201674A priority patent/AU2017201674A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57426Specifically defined cancers leukemia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/5743Specifically defined cancers of skin, e.g. melanoma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/60Complex ways of combining multiple protein biomarkers for diagnosis

Definitions

  • protein cereblon as a predictor of clinical sensitivity to cancer and inflammatory diseases, and patient response to drug treatment.
  • Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, or lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis).
  • Clinical data and molecular biologic studies indicate that cancer is a multistep process that begins with minor preneoplastic changes, which may under certain conditions progress to neoplasia.
  • the neoplastic lesion may evolve clonally and develop an increasing capacity for invasion, growth, metastasis, and heterogeneity, especially under conditions in which the neoplastic cells escape the host's immune surveillance.
  • cancers There is an enormous variety of cancers which are described in detail in the medical literature. Examples include cancers of the lung, colon, rectum, prostate, breast, brain, blood and intestine. The incidence of cancer continues to climb as the general population ages, as new cancers develop, and as susceptible populations ⁇ e.g., people infected with AIDS or excessively exposed to sunlight) grow.
  • options for the treatment of cancer are limited. For example, in the case of blood cancers ⁇ e.g., multiple myeloma), few treatment options are available, especially when conventional chemotherapy fails and bone -marrow transplantation is not an option.
  • a tremendous demand therefore exists for new methods and compositions that can be used to treat patients with cancer.
  • angiogenesis a process known as angiogenesis.
  • cytokines include acidic and basic fibroblastic growth factor (a,b-FGF), angiogenin, vascular endothelial growth factor (VEGF), and TNF-a.
  • a,b-FGF acidic and basic fibroblastic growth factor
  • VEGF vascular endothelial growth factor
  • TNF-a tumor cell
  • tumor cells can release angiogenic peptides through the production of proteases and the subsequent breakdown of the extracellular matrix where some cytokines are stored (e.g., b-FGF).
  • Angiogenesis can also be induced indirectly through the recruitment of inflammatory cells (particularly macrophages) and their subsequent release of angiogenic cytokines (e.g., TNF-a, b-FGF).
  • Lymphoma refers to cancers that originate in the lymphatic system. Lymphoma is characterized by malignant neoplasms of lymphocytes— B lymphocytes and T lymphocytes (i.e., B-cells and T-cells). Lymphoma generally starts in lymph nodes or collections of lymphatic tissue in organs including, but not limited to, the stomach or intestines. Lymphoma may involve the marrow and the blood in some cases. Lymphoma may spread from one site to other parts of the body.
  • lymphomas include, but are not limited to, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous B-cell lymphoma, activated B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), follicular center lymphoma, transformed lymphoma, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma (ILL), diffuse poorly differentiated lymphocytic lymphoma (PDL), centrocytic lymphoma, diffuse small-cleaved cell lymphoma (DSCCL), peripheral T-cell lymphomas (PTCL), cutaneous T-Cell lymphoma and mantle zone lymphoma and low grade follicular lymphoma.
  • DLBCL diffuse large B-cell lymphoma
  • MCL mantle cell lymphoma
  • follicular center lymphoma transformed lymphoma
  • Non-Hodgkin's lymphoma is the fifth most common cancer for both men and women in the United States, with an estimated 63,190 new cases and 18,660 deaths in 2007.
  • Jemal A et al., CA Cancer J Clin 2007; 57(l):43-66.
  • the probability of developing NHL increases with age and the incidence of NHL in the elderly has been steadily increasing in the past decade, causing concern with the aging trend of the US population.
  • Clarke C A et al., Cancer 2002;
  • Diffuse large B-cell lymphoma accounts for approximately one-third of non- Hodgkin's lymphomas. While some DLBCL patients are cured with traditional chemotherapy, the remainder die from the disease. Anticancer drugs cause rapid and persistent depletion of lymphocytes, possibly by direct apoptosis induction in mature T and B cells. See K. Stahnke. et al, Blood 2001, 98:3066-3073. Absolute lymphocyte count (ALC) has been shown to be a prognostic factor in follicular non-Hodgkin's lymphoma and recent results have suggested that ALC at diagnosis is an important prognostic factor in diffuse large B-cell lymphoma.
  • ALC Absolute lymphocyte count
  • the diffuse large-B-cell lymphomas can be divided into distinct molecular subtypes according to their gene profiling patterns: germinal-center B-cell-like DLBCL (GCB-DLBCL), activated B-cell-like DLBCL (ABC-DLBCL), and primary mediastinal B-cell lymphoma
  • PMBL neurotrophic factor-binding protein
  • Leukemia refers to malignant neoplasms of the blood-forming tissues.
  • Various forms of leukemias are described, for example, in U.S. patent no. 7,393,862 and U.S. provisional patent application no. 60/380,842, filed May 17, 2002, the entireties of which are incorporated herein by reference.
  • viruses reportedly cause several forms of leukemia in animals, causes of leukemia in humans are to a large extent unknown.
  • chromosomal translocations have been identified with consistent leukemic cell morphology and special clinical features ⁇ e.g., translocations of 9 and 22 in chronic myelocytic leukemia, and of 15 and 17 in acute promyelocytic leukemia). Acute leukemias are predominantly undifferentiated cell populations and chronic leukemias more mature cell forms.
  • Acute leukemias are divided into lymphoblastic (ALL) and non-lymphoblastic (ANLL) types.
  • ALL lymphoblastic
  • ANLL non-lymphoblastic
  • ALL is predominantly a childhood disease which is established by laboratory findings and bone marrow examination.
  • ANLL also known as acute myelogenous leukemia or acute myeloid leukemia (AML), occurs at all ages and is the more common acute leukemia among adults; it is the form usually associated with irradiation as a causative agent.
  • CLL lymphocytic
  • CML myelocytic
  • CLL lymphocytes in blood, bone marrow, and lymphoid organs.
  • the hallmark of CLL is sustained, absolute lymphocytosis (> 5,000/ ⁇ ) and an increase of lymphocytes in the bone marrow.
  • Most CLL patients also have clonal expansion of lymphocytes with B-cell characteristics.
  • CLL is a disease of middle or old age.
  • the characteristic feature is the predominance of granulocytic cells of all stages of differentiation in blood, bone marrow, liver, spleen, and other organs.
  • WBC white blood cell
  • CML is relatively easy to diagnose because of the presence of the Philadelphia chromosome.
  • Bone marrow stromal cells are well known to support CLL disease progression and resistance to chemotherapy. Disrupting the interactions between CLL cells and stromal cells is an additional target of CLL chemotherapy.
  • neoplasms are also categorized based upon the cells giving rise to such disorder into precursor or peripheral. See e.g., U.S. patent publication no. 2008/0051379, the disclosure of which is incorporated herein by reference in its entirety.
  • Precursor neoplasms include ALLs and lymphoblastic lymphomas and occur in lymphocytes before they have differentiated into either a T- or B-cell.
  • Peripheral neoplasms are those that occur in lymphocytes that have differentiated into either T- or B-cells.
  • peripheral neoplasms include, but are not limited to, B-cell CLL, B-cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, mantle cell lymphoma, follicular lymphoma, extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue, nodal marginal zone lymphoma, splenic marginal zone lymphoma, hairy cell leukemia, plasmacytoma, diffuse large B-cell lymphoma and Burkitt lymphoma.
  • the clonal expansion is of a B cell lineage. See Cancer: Principles & Practice of Oncology (3rd Edition) (1989) (pp. 1843-1847).
  • the tumor cells In less than 5 percent of CLL cases, the tumor cells have a T-cell phenotype. Notwithstanding these classifications, however, the pathological impairment of normal hematopoiesis is the hallmark of all leukemias.
  • MM Multiple myeloma
  • Plasma cells Normally, plasma cells produce antibodies and play a key role in immune function. However, uncontrolled growth of these cells leads to bone pain and fractures, anemia, infections, and other complications.
  • Multiple myeloma is the second most common hematological malignancy, although the exact causes of multiple myeloma remain unknown. Multiple myeloma causes high levels of proteins in the blood, urine, and organs, including but not limited to M-protein and other
  • M-protein short for monoclonal protein, also known as paraprotein, is a particularly abnormal protein produced by the myeloma plasma cells and can be found in the blood or urine of almost all patients with multiple myeloma.
  • Skeletal symptoms including bone pain, are among the most clinically significant symptoms of multiple myeloma.
  • Malignant plasma cells release osteoclast stimulating factors (including IL-1, IL-6 and TNF) which cause calcium to be leached from bones causing lytic lesions;
  • osteoclast stimulating factors including IL-1, IL-6 and TNF
  • hypercalcemia is another symptom.
  • the osteoclast stimulating factors also referred to as cytokines, may prevent apoptosis, or death of myeloma cells. Fifty percent of patients have radio logically detectable myeloma-related skeletal lesions at diagnosis. Other common clinical symptoms for multiple myeloma include polyneuropathy, anemia, hyperviscosity, infections, and renal insufficiency.
  • Bone marrow stromal cells are well known to support multiple myeloma disease progression and resistance to chemotherapy. Disrupting the interactions between multiple myeloma cells and stromal cells is an additional target of multiple myeloma chemotherapy.
  • MDS Myelodysplastic syndrome
  • Solid tumors are abnormal masses of tissue that may, but usually do not contain cysts or liquid areas. Solid tumors may be benign (not cancer), or malignant (cancer). Different types of solid tumors are named for the type of cells that form them. Examples of types solid tumors include, but are not limited to malignant melanoma, adrenal carcinoma, breast carcinoma, renal cell cancer, carcinoma of the pancreas, non-small-cell lung carcinoma (NSCLC) and carcinoma of unknown primary.
  • NSCLC non-small-cell lung carcinoma
  • Drugs commonly administered to patients with various types or stages of solid tumors include, but are not limited to, Celebrex, etoposide, cyclophosphamide, docetaxel, apecitabine, IFN, tamoxifen, IL-2, GM-CSF, or a combination thereof.
  • Rituximab is known to deplete normal host B cells. See M. Aklilu et al., Annals of Oncology 15: 1109-1114, 2004. The long-term immunologic effects of B cell depletion with rituximab and the characteristics of the reconstituting B cell pool in lymphoma patients are not well defined, despite the widespread usage of this therapy. See Jennifer H. Anolik et al., Clinical Immunology, vol. 122, issue 2, February 2007, pages 139-145.
  • tumor cell survival and proliferation via increased glucose metabolism has been linked to the PIK3 pathway, whereby mutations in tumor suppressor genes such as PTEN activate tumor cell metabolism.
  • AKT1 a.k.a., PKB
  • PFKFB3, ENTPD5, mTOR and TSC2 a.k.a., tuberin.
  • HIF1 and HIF2 are largely responsible for cellular response to low oxygen conditions often associated with tumors.
  • HIF1 Once activated, HIF1 promotes tumor cell capacity to carry out glycolysis. Id. Thus, inhibition of HIF1 may slow or reverse tumor cell metabolism.
  • Activation of HIF1 has been linked to PI3K, tumor suppressor proteins such as VHL, succinate dehydrogenase (SDH) and fumarate hydratase.
  • SDH succinate dehydrogenase
  • MYC The oncogenic transcription factor MYC has also been linked to tumor cell metabolism, specifically glycolysis. Id. MYC also promotes cell proliferation by glutamine metabolic pathways. Id.
  • AMP-activated protein kinase functions as a metabolic check point which tumor cells must overcome in order to proliferate. Id. Several mutations have been identified which suppress AMPK signaling in tumor cells. See Shackelford, D.B. & Shaw, R.J., Nature Rev. Cancer, 2009, 9: 563-575. STK11 has been identified as a tumor suppressor gene related to the role of AMPK. See Cairns, R.A., et al. Nature Rev., 2011, 11 :85-95.
  • the transcription factor p53 a tumor suppressor, also has an important role in the regulation of cellular metabolism. Id. The loss of p53 in tumor cells may be a significant contributor to changes in tumor cell metabolism to the glycolytic pathway. Id. The OCT1 transcription factor, another potential target for chemotherapeutics, may cooperate with p53 in regulating tumor cell metabolism. Id.
  • PKM2 Pyruvate kinate M2 promotes changes in cellular metabolism which confer metabolic advantages to cancer cells by supporting cell proliferation. Id. For example, lung cancer cells which express PKM2 over PKMl have been found to have such an advantage. Id. In the clinic, PKM2 has been identified as being overexpressed in a number of cancer types. Id. Thus PKM2 may be a useful biomarker for the early detection of tumors.
  • angiogenesis A variety of other diseases and disorders are also associated with, or characterized by, undesired angiogenesis.
  • enhanced or unregulated angiogenesis has been implicated in a number of diseases and medical conditions including, but not limited to, ocular neovascular diseases, choroidal neovascular diseases, retina neovascular diseases, rubeosis (neovascularization of the angle), viral diseases, genetic diseases, inflammatory diseases, allergic diseases, fibrosis, arthritis and autoimmune diseases.
  • diseases and conditions include, but are not limited to: diabetic retinopathy; retinopathy of prematurity; corneal graft rejection; neovascular glaucoma; retrolental fibroplasia; and proliferative vitreoretinopathy.
  • compounds that can control and/or inhibit unwanted angiogenesis or inhibit the production of certain cytokines, including TNF-a may be useful in the treatment and prevention of various diseases and conditions.
  • Inflammation plays a fundamental role in host defenses and the progression of immune- mediated diseases.
  • the inflammatory response is initiated in response to injury (e.g., trauma, ischemia, and foreign particles) and infection (e.g., bacterial or viral infection) by a complex cascade of events, including chemical mediators (e.g., cytokines and prostaglandins) and inflammatory cells (e.g., leukocytes).
  • the inflammatory response is characterized by increased blood flow, increased capillary permeability, and the influx of phagocytic cells. These events result in swelling, redness, warmth (altered heat patterns), and pus formation at the site of injury or infection.
  • Cytokines and prostaglandins control the inflammatory response, and are released in an ordered and self-limiting cascade into the blood or affected tissues. This release of cytokines and prostaglandins increases the blood flow to the area of injury or infection, and may result in redness and warmth. Some of these chemicals cause a leak of fluid into the tissues, resulting in swelling. This protective process may stimulate nerves and cause pain. These changes, when occurring for a limited period in the relevant area, work to the benefit of the body.
  • Tumor necrosis factor alpha is a cytokine that is released primarily by mononuclear phagocytes in response to immunostimulators. TNF-a is capable of enhancing most cellular processes, such as differentiation, recruitment, proliferation, and proteolytic degradation. At low levels, TNF-a confers protection against infective agents, tumors, and tissue damage. But TNF-a also has a role in many diseases. When administered to mammals or humans, TNF-a causes or aggravates inflammation, fever, cardiovascular effects, hemorrhage, coagulation, and acute phase responses similar to those seen during acute infections and shock states.
  • Enhanced or unregulated TNF-a production has been implicated in a number of diseases and medical conditions, for example, cancers, such as solid tumors and blood-borne tumors; heart disease, such as congestive heart failure; and viral, genetic, inflammatory, allergic, and autoimmune diseases.
  • Adenosine 3',5'-cyclic monophosphate also plays a role in many diseases and conditions, such as but not limited to asthma and inflammation, and other conditions (Lowe and Cheng, Drugs of the Future, 17(9), 799-807, 1992). It has been shown that the elevation of cAMP in inflammatory leukocytes inhibits their activation and the subsequent release of inflammatory mediators, including TNF-a and NF- ⁇ . Increased levels of cAMP also leads to the relaxation of airway smooth muscle.
  • a delicate well-balanced interplay between the humoral and cellular immune elements in the inflammatory response enables the elimination of harmful agents and the initiation of the repair of damaged tissue.
  • the inflammatory response may result in considerable damage to normal tissue and may be more harmful than the original insult that initiated the reaction.
  • clinical intervention is needed to prevent tissue damage and organ dysfunction.
  • Diseases such as psoriasis, rheumatoid arthritis, osteoarthritis, psoriatic arthritis, Crohn's disease, asthma, allergies or inflammatory bowel disease, are characterized by chronic inflammation.
  • Inflammatory diseases such as arthritis, related arthritic conditions (e.g., osteoarthritis, rheumatoid arthritis, and psoriatic arthritis), inflammatory bowel disease (e.g., Crohn's disease and ulcerative colitis), sepsis, psoriasis, atopic dermatitis, contact dermatitis, and chronic obstructive pulmonary disease, chronic inflammatory pulmonary diseases are also prevalent and problematic ailments.
  • Enhanced or unregulated TNF-a production plays a central role in the inflammatory response and the administration of their antagonists block chronic and acute responses in animal models of inflammatory disease.
  • Arthritis is a systemic autoimmune disease that can refer to a group of conditions involving damage to the joints of the body.
  • arthritis There are over 100 different forms of arthritis. The most common form is osteoarthritis (degenerative joint disease) and other arthritis forms are rheumatoid arthritis, psoriatic arthritis, and related autoimmune diseases such as lupus and gout.
  • Rheumatoid arthritis is characterized by a chronic inflammation of the joints. Both synovial tissue and fluid are invaded by inflammatory cells which lead to cytokine production. T cells and monocytes infiltrating the joints display an increased activation of Type 1 and 2 immune response markers.
  • Psoriatic arthritis is a chronic inflammatory arthritic condition affecting the skin, the joints, the insertion sites of tendons, ligaments, and fascia. Gladman, Current Opinion in
  • Psoriatic arthritis is commonly associated with psoriasis. Id. Approximately 7% of patients with psoriasis develop psoriatic arthritis. The Merck Manual, 448 (17th ed., 1999). Psoriatic arthritis may appear in a variety of clinical patterns.
  • Psoriasis is a chronic systemic autoimmune disease that appears on the skin.
  • psoriasis There are five types of psoriasis: plaque, guttate, inverse, pustular and erythrodermic.
  • plaque psoriasis is commonly seen as red and white hues of scaly patches appearing on the top first layer of the epidermis.
  • plaque psoriasis skin rapidly accumulates at these sites, which gives it a silvery-white
  • psoriasis is more likely to be found on the outer side of the joint.
  • the disorder is a chronic recurring condition that varies in severity from minor localized patches to complete body coverage. Fingernails and toenails are frequently affected (psoriatic nail dystrophy) and can be seen as an isolated symptom.
  • Psoriasis can also cause inflammation of the joints, which is known as psoriatic arthritis.
  • T cells become active, migrate to the dermis and trigger the release of cytokines, TNF-a in particular, which causes inflammation and the rapid proliferation of keratinocytes.
  • Compounds for the methods provided herein include, but are not limited to, the substituted 2- (2,6-dioxopiperidin-3-yl) phthalimides and substituted 2-(2,6-dioxopiperidin-3-yl)-l- oxoisoindoles described in U.S. patent nos. 6,281,230 and 6,316,471, both to G.W. Muller, et al. Still other specific compounds disclosed herein belong to a class of isoindole-imides disclosed in U.S. patent nos. 6,395,754, 6,555,554, 7,091,353, U.S. patent publication no. 2004/0029832, and International Publication No. WO 98/54170, each of which is incorporated herein by reference.
  • Thalidomide, lenalidomide and pomalidomide have shown remarkable responses in patients with multiple myeloma, lymphoma and other hematological diseases such as myelodysplasia syndrome. See Galustian C, et al, Expert Opin Pharmacother., 2009, 10: 125-133. These drugs display a broad spectrum of activity, including anti-angiogenic properties, modulation of proinflammatory cytokines, co-stimulation of T cells, increased NK cell toxicity, direct anti-tumor effects and modulation of stem cell differentiation.
  • thalidomide and lenalidomide have emerged as important options for the treatment of multiple myeloma in newly diagnosed patients, in patients with advanced disease who have failed chemotherapy or transplantation, and in patients with relapsed or refractory multiple myeloma.
  • Lenalidomide in combination with dexamethasone has been approved for the treatment of patients with multiple myeloma who have received at least one prior therapy.
  • Pomalidomide may also be administered in combination with dexamethasone.
  • U.S. Patent Publication No. 2004/0029832 Al the disclosure of which is hereby incorporated in its entirety, discloses the treatment of multiple myeloma.
  • Compound B 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione
  • Compound B 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione
  • Compound B can be prepared according to the methods described in the Examples provided herein or as described in U.S. Pat. No. 7,635,700, the disclosure of which is
  • Compound B is in a crystalline form described in U.S. Provisional Pat. App. No. 61/451,806, filed March 11, 2011, which is incorporated herein by reference in its entirety.
  • the hydrochloride salt of Compound B is used in the methods provided herein. Methods of treating, preventing and/or managing cancers and other diseases using Compound B are described in U.S. Provisional Pat. App. No. 61/451,995, filed March 11, 2011, which is incorporated herein by reference in its entirety.
  • CRBN The protein Cereblon (CRBN) is a 442-amino acid protein conserved from plant to human. In humans, the CRBN gene has been identified as a candidate gene of an autosomal recessive nonsyndromic mental retardation (ARNSMR). See Higgins, J.J. et al, Neurology, 2004, 63 : 1927- 1931. CRBN was initially characterized as an RGS-containing novel protein that interacted with a calcium-activated potassium channel protein (SLOl) in the rat brain, and was later shown to interact with a voltage-gated chloride channel (CIC-2) in the retina with AMPK7 and DDBl . See Jo, S. et al., J.
  • SLOl calcium-activated potassium channel protein
  • DDBl was originally identified as a nucleotide excision repair protein that associates with damaged DNA binding protein 2 (DDB2). Its defective activity causes the repair defect in the patients with xeroderma pigmentosum complementation group E (XPE). DDBl also appears to function as a component of numerous distinct DCX (DDBl-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. CRBN has also been identified as a target for the development of therapeutic agents for diseases of the cerebral cortex. See WO 2010/137547 Al .
  • Cereblon has recently been identified as a key molecular target that binds to thalidomide to cause birth defects. See Ito, T. et al, Science, 2010, 327: 1345-1350. DDBl was found to interact with CRBN and, thus, was indirectly associated with thalidomide. Moreover, thalidomide was able to inhibit auto-ubiquitination of CRBN in vitro, suggesting that thalidomide is an E3 ubiquitin-ligase inhibitor. Id. Importantly, this activity was inhibited by thalidomide in wild- type cells, but not in cells with mutated CRBN binding sites that prevent thalidomide binding. Id.
  • the thalidomide binding site was mapped to a highly conserved C-terminal 104 amino acid region in CRBN. Id. Individual point mutants in CRBN, Y384A and W386A were both defective for thalidomide binding, with the double point mutant having the lowest thalidomide- binding activity. Id. A link between CRBN and the teratogenic effect of thalidomide was confirmed in animal models of zebra-fish and chick embryos. Id.
  • hormonal therapy can be effective, it is often used to prevent or delay recurrence of cancer after other treatments have removed the majority of cancer cells.
  • Certain biological and other therapies are limited in number and may produce side effects such as rashes or swellings, flu-like symptoms, including fever, chills and fatigue, digestive tract problems or allergic reactions.
  • chemotherapeutic agents there are a variety of chemotherapeutic agents available for treatment of cancer.
  • a number of cancer chemotherapeutics act by inhibiting DNA synthesis, either directly or indirectly by inhibiting the biosynthesis of deoxyribonucleotide triphosphate precursors, to prevent DNA replication and concomitant cell division.
  • Gilman et al. Goodman and Gilman 's: The Pharmacological Basis of Therapeutics, Tenth Ed. (McGraw Hill, New York).
  • chemotherapeutic agents Despite availability of a variety of chemotherapeutic agents, chemotherapy has many drawbacks. Stockdale, Medicine, vol. 3, Rubenstein and Federman, eds., ch. 12, sect. 10, 1998. Almost all chemotherapeutic agents are toxic, and chemotherapy causes significant and often dangerous side effects including severe nausea, bone marrow depression, and
  • chemotherapeutic agents many tumor cells are resistant or develop resistance to the
  • chemotherapeutic agents In fact, those cells resistant to the particular chemotherapeutic agents used in the treatment protocol often prove to be resistant to other drugs, even if those agents act by different mechanism from those of the drugs used in the specific treatment. This phenomenon is referred to as multidrug resistance. Because of the drug resistance, many cancers prove refractory to standard chemotherapeutic treatment protocols.
  • NSAIDs nonsteroidal anti-inflammatory drugs
  • NSAIDs such as aspirin, ibuprofen, fenoprofen, naproxen, tolmetin, sulindac, meclofenamate sodium, piroxicam, flurbiprofen, diclofenac, oxaprozin, nabumetone, etodolac, and ketoprofen
  • NSAIDs are believed not to be capable of altering progression of the disease.
  • Corticosteroids are another class of drugs that are commonly used to control inflammatory symptoms. Corticosteroids, like NSAIDs, do not alter the natural progression of the disease, and thus, clinical manifestations of active disease commonly reappear when the drug is discontinued.
  • corticosteroid therapy e.g., osteoporosis, increased risk of infection, increased appetite, hypertension, edema, peptic ulcers, psychoses greatly limits its long-term use.
  • cytotoxic agents such as cytotoxic agents
  • cytotoxic agents may be used for the treatment of inflammatory disorders.
  • DMARDs disease-modifying anti-rheumatic drugs
  • TNF-a inhibitors such as etanercept
  • any new treatment that reduces the dosage and/or frequency of administration of agents currently being used, or is capable of making a currently used treatment more effective is constantly being sought.
  • CRBN protein cereblon
  • methods for screening or identifying cancer patients e.g., multiple myeloma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, and/or MDS patients, for treatment with thalidomide, lenalidomide and/or pomalidomide, using CRBN levels as a predictive or prognostic factor.
  • provided herein is a method of predicting patient response to treatment of cancer or an inflammatory disease with thalidomide, lenalidomide and/or pomalidomide, the method comprising obtaining biological material from the patient, and measuring the presence or absence of CRBN.
  • the mRNA or protein is purified from the tumor and the presence or absence of a biomarker is measured by gene or protein expression analysis.
  • the presence or absence of a biomarker is measured by quantitative real-time PCR (QRT-PCR), microarray, flow cytometry or immunofluorescence.
  • the presence or absence of a biomarker is measured by enzyme-linked immunosorbent assay-based methodologies (ELISA) or other similar methods known in the art.
  • ELISA enzyme-linked immunosorbent assay-based methodologies
  • a method of predicting patient response to treatment in a cancer patient comprising obtaining cancer cells from the patient, culturing the cells in the presence or absence of a compound provided herein, purifying protein or RNA from the cultured cells, and measuring the presence or absence of a biomarker by , e.g., protein or gene expression analysis.
  • the expression monitored may be, for example, mRNA expression or protein expression.
  • the cancer patient is a lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma patient.
  • a method of monitoring tumor response to compound (e.g., drug) treatment in a cancer patient comprises obtaining a biological sample from the patient, measuring the expression of a biomarker in the biological sample, administering one or more compounds (e.g., drugs) to the patient, thereafter obtaining a second biological sample from the patient, measuring biomarker expression in the second biological sample, and comparing the levels of expression, where an increased level of biomarker expression after treatment indicates the likelihood of an effective tumor response.
  • compound e.g., drug
  • the cancer patient is a lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblasts leukemia, chronic lymphocytic leukemia, MDS or melanoma patient.
  • a decreased level of biomarker expression after treatment indicates the likelihood of effective tumor response.
  • the biomarker expression monitored can be, for example, mR A expression or protein expression.
  • the expression in the treated sample can increase, for example, by about 1.5X, 2. OX, 3X, 5X, or more.
  • the tumor is a lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL or melanoma.
  • a method of predicting the sensitivity to compound (e.g., drug) treatment in a cancer patient specifically, a multiple myeloma or non- Hodgkin's lymphoma patient (e.g., DLBCL).
  • the method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the cancer will be sensitive to treatment with a compound (e.g., drug).
  • the biomarker is a gene or protein associated with multiple myeloma or non-Hodgkin's lymphoma (e.g., DLBCL).
  • the genes are selected from the group consisting of DDBl , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS l , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • the gene or protein associated with CRBN is selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP-1 , FAS 1 , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • identifying a patient having lymphoma, leukemia, multiple myeloma, a solid tumor, non-Hodgkin's lymphoma, DLBCL or melanoma sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient.
  • measuring the level of CRBN activity in the patient comprises measuring DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and/or NFKB in cells obtained from the patient.
  • provided herein are methods of predicting the sensitivity to compound (e.g., drug) treatment in a patient having a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's
  • the method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the disease or disorder will be sensitive to treatment with a compound (e.g., drug).
  • a compound e.g., drug
  • the biomarker is a gene or protein selected from the group consisting of DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • the gene or protein associated with CRBN is selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS 1 , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • identifying a patient having systemic lupus erythematosus, ANCA- induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis or systemic sclerosis sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2- methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient.
  • measuring the level of CRBN activity in the patient comprises measuring DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and/or NFKB in cells obtained from the patient.
  • the compound is thalidomide.
  • the compound is lenalidomide. In another embodiment, the compound is pomalidomide.
  • the compound is 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione, or an enantiomer thereof, or a pharmaceutically acceptable salt, polymorph, solvate or hydrate thereof.
  • the kit comprises a solid support, and a means for detecting the protein expression of at least one biomarker in a biological sample.
  • kit may employ, for example, a dipstick, a membrane, a chip, a disk, a test strip, a filter, a microsphere, a slide, a multiwell plate, or an optical fiber.
  • the solid support of the kit can be, for example, a plastic, silicon, a metal, a resin, glass, a membrane, a particle, a precipitate, a gel, a polymer, a sheet, a sphere, a polysaccharide, a capillary, a film, a plate, or a slide.
  • the biological sample can be, for example, a cell culture, a cell line, a tissue, an oral tissue, gastrointestinal tissue, an organ, an organelle, a biological fluid, a blood sample, a urine sample, or a skin sample.
  • the biological sample can be, for example, a lymph node biopsy, a bone marrow biopsy, or a sample of peripheral blood tumor cells.
  • the kit comprises a solid support, nucleic acids contacting the support, where the nucleic acids are complementary to at least 20, 50, 100, 200, 350, or more bases of mR A, and a means for detecting the expression of the mRNA in a biological sample.
  • kits provided herein employ means for detecting the expression of a biomarker by quantitative real-time PCR (QRT-PCR), microarray, flow
  • the expression of the biomarker is measured by ELISA-based methodologies or other similar methods known in the art.
  • kits provided herein are useful for predicting the likelihood of an effective treatment of a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis and fibrotic conditions such as systemic sclerosis.
  • a compound provided herein is administered in combination with a therapy conventionally used to treat, prevent or manage a disease or disorder described herein. Examples of such conventional therapies include, but are not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy and immunotherapy.
  • compositions, single unit dosage forms, dosing regimens and kits which comprise a compound provided herein, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof, and a second, or additional, active agent.
  • Second active agents include specific combinations, or "cocktails," of drugs.
  • Figures 1 A & IB Confirmation of CRBN knockdown by siR As in H929 and U266 multiple myeloma cells.
  • FIGS 2 A - 2C Knockdown of CRBN abrogated Gl arrest induced by lenalidomide (“Len”), pomalidomide (“Pom”) and Compound B.
  • Figure 3 A CRBN knockdown in U266B1 cells confirmed by RT-PCR.
  • Figure 3B CRBN knockdown abrogates lenalidomide and pomalidomide effect on cell cycle in U266 cells.
  • Figures 3C & 3D Knockdown of CRBN prevents increase of p21 WAF1 in lenalidomide and pomalidomide treated U266 cells as detected by RT-PCR and Western blot analysis.
  • Figures 4 A - 4D CRBN knockdown abrogates drug effect on phosphorylation of pRb and IRF-4 in H929 cells.
  • FIGS. 5 A - 5C Cell cycle and gene expression profiles in U266B1 cells transfected with CRBN-siRNA.
  • Figures 6 A - 6D DDB1 knockdown only partially affected cell cycle delay induced by lenalidomide and pomalidomide in U266 cells.
  • Figures 7A & 7B Lenalidomide and pomalidomide decrease total K48-linked polyubiquitination but not K-63 -linked ubiquitination in H929.
  • Figure 8 1 hour up-regulated ubiquitination, no MG132.
  • Figure 9 4 hour up-regulated ubiquitination, no MG132.
  • Figure 10 1 hour up-regulated ubiquitination, MG132.
  • Figure 11 4 hour up-regulated ubiquitination, MG132.
  • Figures 12A - 12D Effect of CRBN knockdown on TNFa and IL-2 levels in T cells.
  • Figures 13A - 13C Effect of CUL4A and CUL4A knockdown on TNFa and IL-2 levels in T cells.
  • Figure 14 Antiproliferative activity of lenalidomide vs. CRBN expression in DLBCL cells.
  • Figure 15 A Map of CRBN 034 clone.
  • Figure 15B Map of DDB1 004 clone.
  • Figure 16A Antiproliferative activity of lenalidomide in CRBN-sensitive myeloma cells.
  • Figure 16B Antiproliferative activity of pomalidomide in CRBN-sensitive myeloma cells.
  • Figure 16C Antiproliferative activity of Compound B in CRBN-sensitive myeloma cells.
  • Figure 17 Peptides regulated by lenalidomide (“Len”) and pomalidomide (“Pom”) without MG132 in 1 hour ubiquitination experiments.
  • Figure 18 Peptides regulated by lenalidomide (“Len”) and pomalidomide (“Pom”) with MG132 in 1 hour ubiquitination experiments.
  • Figure 19 Peptides regulated by lenalidomide (“Len”) and pomalidomide (“Pom”) without MG132 in 4 hour ubiquitination experiments.
  • Figure 20 Peptides regulated by lenalidomide (“Len”) and pomalidomide (“Pom”) with
  • Figure 21 Table of common peptides between lenalidomide (“Len”) and pomalidomide (“Pom”) in ubiquitination experiments.
  • Figure 22 Table of common hits in multiple lenalidomide (“Len”) and pomalidomide (“Pom”) ubiquitination experiments.
  • Figure 23 Ubiscan data for lenalidomide ("Len” or “Rev”), pomalidomide (“Pom”), and Compound B.
  • Figure 24A ABC-DLBCL signature genes.
  • Figure 24B NF- ⁇ activity and IRF4 activity in DLBCL cells.
  • Figure 24C "ABC Scores" of DLBCL cell lines.
  • Figure 25 Lenalidomide inhibits proliferation of ABC-DLBCL cells in vitro.
  • Figure 26 Lenalidomide treatment also induced apoptosis of sensitive cell lines such as OCI-LylO.
  • Figures 27A - 27C Effect of Lenalidomide on IRF4 expression in ABC-DLBCL cell lines.
  • Figure 28 Mutation analysis of CARD 11 coiled-coil domain 1 in DLBCL cell lines.
  • Figures 29A - 29C Lenalidomide inhibits activation of CARD 11 -Bel- 10-MALT 1 complex in sensitive DLBCL cell lines.
  • Figures 30A - 30C Lenalidomide inhibits NF- ⁇ activity in ABC-DLBCL cells.
  • Figures 31 A - 3 ID Alteration of IRF4 expression in ABC-DLBCL cells affects cell sensitivity to lenalidomide.
  • Figures 32A - 32D Downregulation of IRF4, NF- ⁇ and proliferation by lenalidomide requires the presence of cereblon.
  • Figures 33A- 33B Lenalidomide inhibits tumor growth in mouse xenograft model with OCI-LylO ABC-DLBCL.
  • Figures 34A - 34B "ABC scores" and baseline IRF4/CRBN levels correlate
  • Figure 35 Alignment between heavy chain amino acid sequences of antibodies CGN-6- 1-11 (top; SEQ ID NO:5) and CGN-6-4-5 (bottom; SEQ ID NO:8).
  • Figures 36 Alignment between light chain amino acid sequences of antibodies CGN-6-1- 11 (top; SEQ ID NO:7) and CGN-6-4-5 (bottom; SEQ ID NO: 11).
  • Figures 37A & 37B Confocal immunofluorescent analysis of DF15 (left panel) and DF15R cells (right panel) using 1 ⁇ CGN-6-4-5 antibody (green) (A) or CGN-6-4-5 antibody / CRBN blocking peptide mix (1 :5 excess ratio) (B). Nuclear staining performed with Dapi (blue).
  • Figure 38 Immunoblot with myeloma cells containing endogenous CRBN (DF15),
  • Figure 39A & 39B Binding of thalidomide and other compounds to CRBN
  • Cereblon Cereblon
  • CRBN Cereblon
  • CRBN binding may contribute to or even be required for anti-proliferative or other activities of certain compounds, such as the compounds provided herein.
  • the compounds provided herein bind directly to CRBN-DDB1 and/or the CRBN E3 ubiquitin-ligase complex. Mutations in CRBN could be associated with resistance to the compounds provided herein.
  • the levels of CRBN were significantly lower in the pomalidomide-resistant cells line DF15R and the lenalidomide-resistant cells, H929 RlO-1, H929 R10-2, H929 R10-3, H929 R10-4 and MM1/R compared to the matched parental lines.
  • an interesting mutation was found in CRBN gene of one of the myeloma lines that had acquired resistance to lenalidomide while in the parental line the CRBN gene was wild type. This mutation mapped to the DDB1 binding domain in CRBN.
  • the sensitivity of a cancer cell e.g., a myeloma cell, or a patient having cancer, to therapy with a compound provided herein is related to CRBN expression.
  • IRF4 inhibition by lenalidomide caused downregulation of B cell receptor (BCR)-dependent NF- ⁇ activation. While IRF4-specific siRNA mimicked effects of lenalidomide reducing NF- ⁇ activation, IRF4 overexpression enhanced NF- ⁇ activation and conferred resistance to lenalidomide. Furthermore, lenalidomide-induced IRF4 downregulation required the expression of CRBN. Without being bound to a particular theory, these data show that lenalidomide may have direct antitumor activity against DLBCL cells, preferentially ABC- DLBCL cells, by blocking IRF4 expression and the BCR-NF- ⁇ signaling pathway in a CRBN- dependent manner.
  • CRBN protein functions as a substrate receptor for Cul4-E3- ligase complexes through its interaction with DDB 1.
  • DDB 1 DDB 1
  • mTORCl signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase.
  • CST Ubiscan technology 162 unique ubiquitin-peptides were identified which were significantly modulated by the compounds provided herein after short treatments (1 - 4 h).
  • the corresponding proteins participate in nucleasome and chromatin function, protein-DNA assembly and histone H2A. The relevance of this early modification in the mode of action of compounds provided herein, and the relationship with CRBN and CUL4/DDB1 activities are under investigation.
  • provided herein are methods for screening or identifying cancer patients, e.g., lymphoma, leukemia, multiple myeloma, solid tumor, non- Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma patients, for treatment with thalidomide, lenalidomide and/or pomalidomide, using CRBN levels as a predictive or prognostic factor.
  • provided herein are methods for selecting patients having a higher response rate to therapy with thalidomide, lenalidomide and/or pomalidomide, using CRBN levels as a predictive or prognostic factor.
  • provided herein is a method of predicting patient response to treatment of cancer or an inflammatory disease with thalidomide, lenalidomide and/or pomalidomide, the method comprising obtaining biological material from the patient, and measuring the presence or absence of CRBN.
  • the mRNA or protein is purified from the tumor and the presence or absence of a biomarker is measured by gene or protein expression analysis.
  • the presence or absence of a biomarker is measured by quantitative real-time PCR (QRT-PCR), microarray, flow cytometry or immunofluorescence.
  • the presence or absence of a biomarker is measured by enzyme-linked immunosorbent assay-based methodologies (ELISA) or other similar methods known in the art.
  • a method of predicting the sensitivity to compound (e.g., drug) treatment in a cancer patient such as, a multiple myeloma or non-
  • the method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the cancer will be sensitive to treatment with a compound (e.g., drug).
  • the biomarker is a gene or protein associated with multiple myeloma or non-Hodgkin's lymphoma (e.g., DLBCL).
  • the genes are selected from the group consisting of DDBl , DDB2, GSK3B, CUL4A, CUL4B, XBP-1 , FAS l , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • the gene or protein associated with CRBN is selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS l , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • identifying a patient having lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient.
  • measuring the level of CRBN activity in the patient comprises measuring DDBl , DDB2, GSK3B, CUL4A, CUL4B, XBP-1 , FASl , RANBP6, DUS3L,
  • the compound is thalidomide.
  • the compound is lenalidomide. In another embodiment, the compound is pomalidomide.
  • the compound is 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione, or an enantiomer thereof, or a pharmaceutically acceptable salt, polymorph, solvate or hydrate thereof.
  • the cancer is multiple myeloma.
  • the cancer is non-Hodgkin's lymphoma.
  • the non-Hodgkin's lymphoma is of the activated B-cell phenotype.
  • the cancer is diffuse large B-cell lymphoma.
  • the diffuse large B-cell lymphoma is of the activated B-cell phenotype.
  • the cancer is mantle cell lymphoma.
  • the cancer is follicular lymphoma.
  • the cancer is acute myeloblasts leukemia.
  • the cancer is chronic lymphocytic leukemia.
  • the cancer is myelodysplasia syndrome.
  • the cancer is melanoma.
  • provided herein are methods of predicting the sensitivity to compound (e.g., drug) treatment in a patient having a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's
  • the method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the disease or disorder will be sensitive to treatment with a compound (e.g., drug).
  • a compound e.g., drug
  • the biomarker is a gene or protein selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS1, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • erythematosus ANCA-induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis or systemic sclerosis sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3- (5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione comprises identification of a gene or protein associated with CRBN.
  • the gene or protein associated with CRBN is selected from the group consisting of DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP- 1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
  • identifying a patient having systemic lupus erythematosus, ANCA- induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis or systemic sclerosis sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2- methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient.
  • measuring the level of CRBN activity in the patient comprises measuring DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and/or NFKB in cells obtained from the patient.
  • the compound is thalidomide.
  • the compound is lenalidomide.
  • the compound is pomalidomide.
  • the compound is 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione, or an enantiomer thereof, or a pharmaceutically acceptable salt, polymorph, solvate or hydrate thereof.
  • the kit comprises a solid support, and a means for detecting the protein expression of at least one biomarker in a biological sample.
  • kit may employ, for example, a dipstick, a membrane, a chip, a disk, a test strip, a filter, a microsphere, a slide, a multiwell plate, or an optical fiber.
  • the solid support of the kit can be, for example, a plastic, silicon, a metal, a resin, glass, a membrane, a particle, a precipitate, a gel, a polymer, a sheet, a sphere, a polysaccharide, a capillary, a film, a plate, or a slide.
  • the biological sample can be, for example, a cell culture, a cell line, a tissue, an oral tissue, gastrointestinal tissue, an organ, an organelle, a biological fluid, a blood sample, a urine sample, or a skin sample.
  • the biological sample can be, for example, a lymph node biopsy, a bone marrow biopsy, or a sample of peripheral blood tumor cells.
  • the kit comprises a solid support, nucleic acids contacting the support, where the nucleic acids are complementary to at least 20, 50, 100, 200, 350, or more bases of mR A, and a means for detecting the expression of the mRNA in a biological sample.
  • kits provided herein employ means for detecting the expression of a biomarker by quantitative real-time PCR (QRT-PCR), microarray, flow cytometry or immunofluorescence.
  • the expression of the biomarker is measured by ELISA-based methodologies or other similar methods known in the art.
  • kits provided herein are useful for predicting the likelihood of an effective treatment of a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis and fibrotic conditions such as systemic sclerosis.
  • a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis and fibrotic conditions such as systemic sclerosis.
  • the cancer patients are multiple myeloma patients.
  • cancer patients are non-Hodgkin's lymphoma patients.
  • the non-Hodgkin's lymphoma is of the activated B-cell phenotype.
  • cancer patients are diffuse large B-cell lymphoma patients.
  • the diffuse large B-cell lymphoma is of the activated B-cell phenotype.
  • method of selecting a group of cancer patients is based on the level of DDB1 expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of DDB2 expression within the cancer. In one embodiment, the method of selecting a group of cancer patients is based on the level of GSK3B expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of CUL4A expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of CUL4B expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of XBP-1 expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of FAS 1 expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of RANBP6 expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of DUS3L expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of PHGDH expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of AMPK expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of IRF4 expression within the cancer.
  • the method of selecting a group of cancer patients is based on the level of NFKB expression within the cancer.
  • Also provided herein is a method of identifying or monitoring multiple myeloma patient resistance to thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione therapy, based on the presence or appearance of mutations within a CRBN gene.
  • the mutation with the CRBN gene is a single -nucleotide
  • pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • CRBN70 isolated CRBN antibody
  • the antibody is a polyclonal antibody.
  • the antibody is a monoclonal antibody.
  • the antibody is a rabbit polyclonal antibody.
  • the antibody is a rabbit monoclonal antibody.
  • the antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1). In another embodiment, the antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1), wherein the peptide is coupled to Keyhole Limpet Hemocyanin (KLH).
  • KLH Keyhole Limpet Hemocyanin
  • the antibody is a polyclonal antibody.
  • the antibody is a monoclonal antibody.
  • the antibody is a rabbit polyclonal antibody.
  • the antibody is a rabbit monoclonal antibody.
  • the antibody immunospecifically binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12).
  • an antibody that immunospecifically binds CRBN and comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:5.
  • the antibody immunospecifically binds CRBN and comprises a light chain having the amino acid sequence depicted in SEQ ID NO:7.
  • the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:5 and a light chain having the amino acid sequence depicted in SEQ ID NO:7.
  • the antibody immunospecifically binds CRBN and comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:9.
  • the antibody immunospecifically binds CRBN and comprises a light chain having the amino acid sequence depicted in SEQ ID NO: 1 1.
  • the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO: 9 and a light chain having the amino acid sequence depicted in SEQ ID NO: 1 1.
  • the antibody immunospecifically binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12).
  • a CRBN antibody e.g., a rabbit polyclonal or monoclonal antibody CRBN70, or a rabbit polyclonal or monoclonal antibody that binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12) to measure expression levels of CRBN in patient tumor or host cells, to predict clinical response, monitor clinical response, monitor patient compliance to dosing, or monitor development of resistance to therapy with thalidomide, lenalidomide, pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • the CRBN antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTL
  • the CRBN antibody is a polyclonal antibody, such as a rabbit polyclonal antibody. In another embodiment, the CRBN antibody is a monoclonal antibody, such as a rabbit monoclonal antibody.
  • treatment refers to an action that occurs while a patient is suffering from the specified cancer, which reduces the severity of the cancer, or retards or slows the progression of the cancer.
  • sensitivity and “sensitive” when made in reference to treatment with compound is a relative term which refers to the degree of effectiveness of the compound in lessening or decreasing the progress of a tumor or the disease being treated.
  • increased sensitivity when used in reference to treatment of a cell or tumor in connection with a compound refers to an increase of, at least a 5%, or more, in the effectiveness of the tumor treatment.
  • the term "therapeutically effective amount" of a compound is an amount sufficient to provide a therapeutic benefit in the treatment or management of a cancer, or to delay or minimize one or more symptoms associated with the presence of the cancer.
  • a therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment or management of the cancer.
  • the term "therapeutically effective amount” can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of cancer, or enhances the therapeutic efficacy of another therapeutic agent.
  • an "effective patient tumor response” refers to any increase in the therapeutic benefit to the patient.
  • An “effective patient tumor response” can be, for example, a 5%, 10%, 25%, 50%), or 100% decrease in the rate of progress of the tumor.
  • An “effective patient tumor response” can be, for example, a 5%, 10%>, 25%, 50%>, or 100% decrease in the physical symptoms of a cancer.
  • An “effective patient tumor response” can also be, for example, a 5%), 10%), 25%o, 50%), 100%, 200%>, or more increase in the response of the patient, as measured by any suitable means, such as gene expression, cell counts, assay results, etc.
  • generally refers to an increase in the probability of an event.
  • the term “likelihood” when used in reference to the effectiveness of a patient tumor response generally contemplates an increased probability that the rate of tumor progress or tumor cell growth will decrease.
  • the term “likelihood” when used in reference to the effectiveness of a patient tumor response can also generally mean the increase of indicators, such as mR A or protein expression, that may evidence an increase in the progress in treating the tumor.
  • predict generally means to determine or tell in advance.
  • predict the effectiveness of a cancer treatment
  • the term “predict” can mean that the likelihood of the outcome of the cancer treatment can be determined at the outset, before the treatment has begun, or before the treatment period has progressed substantially.
  • monitoring generally refers to the overseeing, supervision, regulation, watching, tracking, or surveillance of an activity.
  • monitoring the effectiveness of a compound refers to tracking the effectiveness in treating a cancer in a patient or in a tumor cell culture.
  • monitoring when used in connection with patient compliance, either individually, or in a clinical trial, refers to the tracking or confirming that the patient is actually taking a drug being tested as prescribed.
  • the monitoring can be performed, for example, by following the expression of mRNA or protein biomarkers.
  • An improvement in the cancer or cancer-related disease can be characterized as a complete or partial response.
  • “Complete response” refers to an absence of clinically detectable disease with normalization of any previously abnormal radiographic studies, bone marrow, and cerebrospinal fluid (CSF) or abnormal monoclonal protein measurements.
  • “Partial response” refers to at least about a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% decrease in all measurable tumor burden (i.e., the number of malignant cells present in the subject, or the measured bulk of tumor masses or the quantity of abnormal monoclonal protein) in the absence of new lesions.
  • treatment contemplates both a complete and a partial response.
  • Tumor refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
  • Neoplastic refers to any form of dysregulated or unregulated cell growth, whether malignant or benign, resulting in abnormal tissue growth.
  • neoplastic cells include malignant and benign cells having dysregulated or unregulated cell growth.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth.
  • examples of cancer include, but are not limited to, blood-borne tumors (e.g., multiple myeloma, lymphoma and leukemia), and solid tumors.
  • refractory or resistant refers to a circumstance where patients, even after intensive treatment, have residual cancer cells (e.g. , leukemia or lymphoma cells) in their lymphatic system, blood and/or blood forming tissues (e.g. , marrow).
  • residual cancer cells e.g. , leukemia or lymphoma cells
  • blood and/or blood forming tissues e.g. , marrow.
  • polypeptide and “protein” as used interchangeably herein, refer to a polymer of amino acids of three or more amino acids in a serial array, linked through peptide bonds.
  • polypeptide includes proteins, protein fragments, protein analogues, oligopeptides and the like.
  • polypeptide as used herein can also refer to a peptide.
  • the amino acids making up the polypeptide may be naturally derived, or may be synthetic.
  • the polypeptide can be purified from a biological sample.
  • antibody is used herein in the broadest sense and covers fully assembled antibodies, antibody fragments which retain the ability to specifically bind to the antigen (e.g., Fab, F(ab')2, Fv, and other fragments), single chain antibodies, diabodies, antibody chimeras, hybrid antibodies, bispecific antibodies, humanized antibodies, and the like.
  • antigen e.g., Fab, F(ab')2, Fv, and other fragments
  • single chain antibodies diabodies, antibody chimeras, hybrid antibodies, bispecific antibodies, humanized antibodies, and the like.
  • antibody covers both polyclonal and monoclonal antibodies.
  • antibody and “immunoglobulin” or “Ig” may be used interchangeably herein.
  • antibodies that immunospecifically bind to a CRBN antigen refers to antibodies and fragments thereof, that specifically bind to a CRBN polypeptide, such as a CRBN antigen or epitope (e.g., EEFHGRTLHDDD (SEQ ID NO: l) or peptide 65-76 human CRBN (SEQ ID NO: 12)).
  • a CRBN antigen or epitope e.g., EEFHGRTLHDDD (SEQ ID NO: l) or peptide 65-76 human CRBN (SEQ ID NO: 12)
  • the antibodies including both modified antibodies (i.e., antibodies that comprise a modified IgG (e.g., IgGl) constant domain and unmodified antibodies (i.e., antibodies that do not comprise a modified IgG (e.g., IgGl) constant domain that specifically bind to a CRBN polypeptide.
  • modified antibodies i.e., antibodies that comprise a modified IgG (e.g., IgGl) constant domain
  • unmodified antibodies i.e., antibodies that do not comprise a modified IgG (e.g., IgGl) constant domain that specifically bind to a CRBN polypeptide.
  • An antibody or a fragment thereof that immunospecifically binds to a CRBN antigen may be cross- reactive with related antigens.
  • an antibody or a fragment thereof that immunospecifically binds to a CRBN antigen does not cross-react with other antigens.
  • An antibody or a fragment thereof that immunospecifically binds to a CRBN antigen can be identified, for example, by immunoassays, BIAcore, or other techniques known to those of skill in the art.
  • An antibody or a fragment thereof binds specifically to a CRBN antigen when it binds to a CRBN antigen with higher affinity than to any cross-reactive antigen as determined using experimental techniques, such as radioimmunoassays (RIA) and enzyme-linked immunosorbent assays (ELISAs).
  • RIA radioimmunoassays
  • ELISAs enzyme-linked immunosorbent assays
  • a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 times background. See, e.g., Paul, ed., 1989, Fundamental Immunology Second Edition, Raven Press, New York at pages 332-336 for a discussion regarding antibody specificity.
  • Antibodies provided herein include, but are not limited to, synthetic antibodies, monoclonal antibodies, recombinantly produced antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, intrabodies, single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.), camelized antibodies, Fab fragments, F(ab") fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.
  • scFv single-chain Fvs
  • sdFv single-chain Fvs
  • sdFv disulfide-linked Fvs
  • anti-Id anti-idiotypic antibodies
  • immunoglobulin molecules i.e., antigen binding domains or molecules that contain an antigen- binding site that immunospecifically binds to a CRBN antigen (e.g., one or more
  • the antibodies provided herein can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), any class (e.g., IgGl , IgG2, IgG3, IgG4, IgAl and IgA2), or any subclass (e.g., IgG2a and IgG2b) of immunoglobulin molecule.
  • the anti-CRBN antibodies are fully human, such as fully human monoclonal CRBN antibodies.
  • antibodies provided herein are IgG antibodies, or a class (e.g., human IgGl or IgG4) or subclass thereof.
  • antigen binding domain refers to that portion of an antibody which comprises the amino acid residues that interact with an antigen and confer on the binding agent its specificity and affinity for the antigen (e.g., the CDR).
  • the antigen binding region can be derived from any animal species, such as rodents (e.g., rabbit, rat or hamster) and humans. In some embodiments, the antigen binding region will be of human origin.
  • constant region or “constant domain” of an antibody refers to a carboxy terminal portion of the light and heavy chain which is not directly involved in binding of the antibody to antigen but exhibits various effector function, such as interaction with the Fc receptor.
  • the terms refer to the portion of an immunoglobulin molecule having a more conserved amino acid sequence relative to the other portion of the immunoglobulin, the variable domain, which contains the antigen binding site.
  • the constant domain contains the CHI , CH2 and CH3 domains of the heavy chain and the CL domain of the light chain.
  • epitope refers to a localized region on the surface of an antigen, such as CRBN polypeptide or CRBN polypeptide fragment, that is capable of being bound to one or more antigen binding regions of an antibody, and that has antigenic or immunogenic activity in an animal, such as a mammal (e.g., a human), that is capable of eliciting an immune response.
  • An epitope having immunogenic activity is a portion of a polypeptide that elicits a antibody response in an animal.
  • An epitope having antigenic activity is a portion of a polypeptide to which an antibody immunospecifically binds as determined by any method well known in the art, for example, by the immunoassays described herein.
  • Antigenic epitopes need not necessarily be immunogenic. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and have specific three dimensional structural characteristics as well as specific charge characteristics. A region of a polypeptide contributing to an epitope may be contiguous amino acids of the polypeptide or the epitope may come together from two or more non-contiguous regions of the polypeptide. The epitope may or may not be a three-dimensional surface feature of the antigen.
  • An exemplary epitope of CRBN provided herein is EEFHGRTLHDDD (SEQ ID NO: l) or peptide 65-60 of CRBN (SEQ ID NO: 13).
  • Fully human antibody or “human antibody” are used interchangeably herein and refer to an antibody that comprises a human variable region and, in some embodiments, a human constant region. In specific embodiments, the terms refer to an antibody that comprises a variable region and constant region of human origin.
  • Fully human anti-CRBN antibodies in certain embodiments, can also encompass antibodies which bind CRBN polypeptides and are encoded by nucleic acid sequences which are naturally occurring somatic variants of human germline immunoglobulin nucleic acid sequence. In a specific embodiment, the anti-CRBN antibodies provided herein are fully human antibodies.
  • Fully human antibody includes antibodies having variable and constant regions corresponding to human germline immunoglobulin sequences as described by Kabat et al, Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91- 3242, 1991. Exemplary methods of producing fully human antibodies are provided, e.g., in the Examples herein, but any method known in the art may be used.
  • recombinant human antibody includes human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a
  • Such recombinant human antibodies can have variable and constant regions derived from human germline immunoglobulin sequences. See Kabat, E. A. et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242. In certain embodiments, however, such recombinant human antibodies are subjected to in vitro
  • the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.
  • heavy chain when used in reference to an antibody refers to five distinct types, called alpha (a), delta ( ⁇ ), epsilon ( ⁇ ), gamma ( ⁇ ) and mu ( ⁇ ), based on the amino acid sequence of the heavy chain constant domain.
  • These distinct types of heavy chains are well known and give rise to five classes of antibodies, IgA, IgD, IgE, IgG and IgM, respectively, including four subclasses of IgG, namely IgGl, IgGl, IgG3 and IgG4.
  • the heavy chain is a human heavy chain.
  • Kabat numbering and like terms are recognized in the art and refer to a system of numbering amino acid residues which are more variable (i.e. hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof.
  • the hypervariable region typically ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 102 for CDR3.
  • the hypervariable region typically ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3.
  • Other numbering schemes will be readily understood by those skilled in the art.
  • light chain when used in reference to an antibody refers to two distinct types, called kappa ( ⁇ ) of lambda ( ⁇ ) based on the amino acid sequence of the constant domains. Light chain amino acid sequences are well known in the art. In certain embodiments, the light chain is a human light chain.
  • a “monoclonal antibody” refers to an antibody obtained from a population of homogenous or substantially homogeneous antibodies, and each monoclonal antibody will typically recognize a single epitope on the antigen.
  • a “monoclonal antibody,” as used herein is an antibody produced by a single hybridoma or other cell, wherein the antibody immunospecifically binds to only a CRBN epitope as determined, e.g., by ELISA or other antigen-binding or competitive binding assay known in the art or in the Examples provided herein.
  • the term “monoclonal” is not limited to any particular method for making the antibody.
  • monoclonal antibodies provided herein may be made by the hybridoma method as described in Kohler et al; Nature, 256:495 (1975) or may be isolated from phage libraries using the techniques as described herein, for example.
  • Other methods for the preparation of clonal cell lines and of monoclonal antibodies expressed thereby are well known in the art. See, e.g., Chapter 11 in: Short Protocols in Molecular Biology, (2002) 5th Ed., Ausubel et al, eds., John Wiley and Sons, New York.
  • Other exemplary methods of producing other monoclonal antibodies are provided in the Examples herein.
  • Polyclonal antibodies refers to an antibody population generated in an immunogenic response to a protein having many epitopes and thus includes a variety of different antibodies directed to the same and to different epitopes within the protein. Methods for producing polyclonal antibodies are known in the art. See, e.g., Chapter 11 in: Short Protocols in Molecular Biology, (2002) 5th Ed., Ausubel et al, eds., John Wiley and Sons, New York.
  • polypeptides comprising the amino acid sequence any CRBN, such as a human CRBN protein ⁇ e.g., human CRBN isoform 1, GenBank Accession No. NP 057386 (SEQ ID NO: 12); or human CRBN isoforms 2, GenBank Accession No. NP 001166953 (SEQ ID NO: 13), each of which is herein incorporated by reference in its entirety), and related polypeptides, including SNP variants thereof.
  • CRBN a human CRBN protein ⁇ e.g., human CRBN isoform 1, GenBank Accession No. NP 057386 (SEQ ID NO: 12); or human CRBN isoforms 2, GenBank Accession No. NP 001166953 (SEQ ID NO: 13), each of which is herein incorporated by reference in its entirety
  • related polypeptides including SNP variants thereof.
  • CRBN polypeptides include allelic variants (e.g., SNP variants); splice variants; fragments; derivatives; substitution, deletion, and insertion variants; fusion polypeptides; and interspecies homologs, which, in certain embodiments, retain CRBN activity and/or are sufficient to generate an anti-CRBN immune response.
  • allelic variants e.g., SNP variants
  • splice variants e.g., SNP variants
  • fragments e.g., derivatives; substitution, deletion, and insertion variants
  • fusion polypeptides e.g., fusion polypeptides
  • interspecies homologs e.g., interspecies homologs
  • CRBN antigen refers to that portion of a CRBN polypeptide to which an antibody immunospecifically binds.
  • a CRBN antigen also refers to an analog or derivative of a CRBN polypeptide or fragment thereof to which an antibody immunospecifically binds.
  • a localized region on the surface of a CRBN antigen that is capable of eliciting an immune response is an CRBN "epitope.”
  • a region of a CRBN polypeptide contributing to an epitope may be contiguous amino acids of the polypeptide or the epitope may come together from two or more non-contiguous regions of the polypeptide.
  • the epitope may or may not be a three- dimensional surface feature of the antigen.
  • the CRBN epitope is EEFHGRTLHDDD (SEQ ID NO: 1) or peptide 65-76 of human CRBN (SEQ ID NO: 12).
  • the term "variable region” or “variable domain” refers to a portion of the light and heavy chains, typically about the amino-terminal 120 to 130 amino acids in the heavy chain and about 100 to 110 amino acids in the light chain, which differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. The variability in sequence is concentrated in those regions called complimentarily determining regions (CDRs) while the more highly conserved regions in the variable domain are called framework regions (FR). The CDRs of the light and heavy chains are primarily responsible for the interaction of the antibody with antigen. Numbering of amino acid positions used herein is according to the EU Index, as in See Kabat, E. A. et al. (1991) Sequences of Proteins of
  • variable region is a human variable region.
  • expressed or expression refers to the transcription from a gene to give an RNA nucleic acid molecule at least complementary in part to a region of one of the two nucleic acid strands of the gene.
  • expressed or expression as used herein also refers to the translation from the RNA molecule to give a protein, a polypeptide or a portion thereof.
  • An mRNA that is "upregulated” is generally increased upon a given treatment or condition.
  • An mRNA that is “downregulated” generally refers to a decrease in the level of expression of the mRNA in response to a given treatment or condition. In some situations, the mRNA level can remain unchanged upon a given treatment or condition.
  • An mRNA from a patient sample can be "upregulated" when treated with a drug, as compared to a non-treated control.
  • This upregulation can be, for example, an increase of about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 90%, 100%, 200%, 300%, 500%, 1,000%, 5,000% or more of the comparative control mRNA level.
  • an mRNA can be "downregulated", or expressed at a lower level, in response to administration of certain compounds or other agents.
  • a downregulated mRNA can be, for example, present at a level of about 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 1% or less of the comparative control mRNA level.
  • the level of a polypeptide or protein biomarker from a patient sample can be increased when treated with a drug, as compared to a non-treated control.
  • This increase can be about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 90%, 100%, 200%, 300%, 500%, 1,000%, 5,000% or more of the comparative control protein level.
  • the level of a protein biomarker can be decreased in response to administration of certain compounds or other agents. This decrease can be, for example, present at a level of about 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 1% or less of the comparative control protein level.
  • determining generally refer to any form of measurement, and include determining if an element is present or not. These terms include both quantitative and/or qualitative determinations.
  • Assessing may be relative or absolute. "Assessing the presence of can include determining the amount of something present, as well as determining whether it is present or absent.
  • nucleic acid and “polynucleotide” are used interchangeably herein to describe a polymer of any length composed of nucleotides, e.g. , deoxyribonucleotides or ribonucleotides, or compounds produced synthetically, which can hybridize with naturally occurring nucleic acids in a sequence specific manner analogous to that of two naturally occurring nucleic acids, e.g., can participate in Watson-Crick base pairing interactions.
  • bases are synonymous with “nucleotides” (or “nucleotide”), i.e., the monomer subunit of a polynucleotide.
  • nucleoside and nucleotide are intended to include those moieties that contain not only the known purine and pyrimidine bases, but also other heterocyclic bases that have been modified. Such modifications include methylated purines or pyrimidines, acylated purines or pyrimidines, alkylated riboses or other heterocycles.
  • nucleoside and nucleotide include those moieties that contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides or nucleotides also include modifications on the sugar moiety, e.g. , wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like.
  • Analogues refer to molecules having structural features that are recognized in the literature as being mimetics, derivatives, having analogous structures, or other like terms, and include, for example, polynucleotides incorporating non-natural nucleotides, nucleotide mimetics such as 2'-modified nucleosides, peptide nucleic acids, oligomeric nucleoside phosphonates, and any polynucleotide that has added substituent groups, such as protecting groups or linking moieties.
  • complementary refers to specific binding between polynucleotides based on the sequences of the polynucleotides.
  • a first polynucleotide and a second polynucleotide are complementary if they bind to each other in a hybridization assay under stringent conditions, e.g. if they produce a given or detectable level of signal in a hybridization assay.
  • Portions of polynucleotides are complementary to each other if they follow conventional base-pairing rules, e.g. A pairs with T (or U) and G pairs with C, although small regions (e.g. less than about 3 bases) of mismatch, insertion, or deleted sequence may be present.
  • Sequence identity or “identity” in the context of two nucleic acid sequences refers to the residues in the two sequences which are the same when aligned for maximum
  • substantially identical in their various grammatical forms in the context of polynucleotides generally means that a polynucleotide comprises a sequence that has a desired identity, for example, at least 60% identity, preferably at least 70% sequence identity, more preferably at least 80%, still more preferably at least 90% and even more preferably at least 95%, compared to a reference sequence.
  • a desired identity for example, at least 60% identity, preferably at least 70% sequence identity, more preferably at least 80%, still more preferably at least 90% and even more preferably at least 95%.
  • isolated and purified refer to isolation of a substance (such as m NA, antibody or protein) such that the substance comprises a substantial portion of the sample in which it resides, i.e. greater than the substance is typically found in its natural or un-isolated state.
  • a substantial portion of the sample comprises, e.g., greater than 1%, greater than 2%, greater than 5%, greater than 10%>, greater than 20%>, greater than 50%>, or more, usually up to about 90%- 100% of the sample.
  • a sample of isolated mRNA can typically comprise at least about 1% total mRNA.
  • Techniques for purifying polynucleotides are well known in the art and include, for example, gel electrophoresis, ion-exchange chromatography, affinity chromatography, flow sorting, and sedimentation according to density.
  • sample as used herein relates to a material or mixture of materials, typically, although not necessarily, in fluid form, containing one or more components of interest.
  • Bio sample refers to a sample obtained from a biological subject, including sample of biological tissue or fluid origin, obtained, reached, or collected in vivo or in situ.
  • a biological sample also includes samples from a region of a biological subject containing precancerous or cancer cells or tissues. Such samples can be, but are not limited to, organs, tissues, fractions and cells isolated from a mammal.
  • Exemplary biological samples include but are not limited to cell lysate, a cell culture, a cell line, a tissue, oral tissue, gastrointestinal tissue, an organ, an organelle, a biological fluid, a blood sample, a urine sample, a skin sample, and the like.
  • Preferred biological samples include but are not limited to whole blood, partially purified blood, PBMCs, tissue biopsies, and the like.
  • capture agent refers to an agent that binds an mR A or protein through an interaction that is sufficient to permit the agent to bind and concentrate the mRNA or protein from a homogeneous mixture.
  • probe refers to a capture agent that is directed to a specific target mRNA biomarker sequence. Accordingly, each probe of a probe set has a respective target mRNA biomarker.
  • a probe/target mRNA duplex is a structure formed by hybridizing a probe to its target mRNA biomarker.
  • nucleic acid or “oligonucleotide probe” refers to a nucleic acid capable of binding to a target nucleic acid of complementary sequence, such as the mRNA biomarkers provided herein, through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation.
  • a probe may include natural ⁇ e.g., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.).
  • the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization.
  • probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions.
  • the probes are preferably directly labeled with isotopes, for example, chromophores, lumiphores, chromogens, or indirectly labeled with biotin to which a streptavidin complex may later bind.
  • isotopes for example, chromophores, lumiphores, chromogens, or indirectly labeled with biotin to which a streptavidin complex may later bind.
  • stringent assay conditions refers to conditions that are compatible to produce binding pairs of nucleic acids, e.g., probes and target mRNAs, of sufficient complementarity to provide for the desired level of specificity in the assay while being generally incompatible to the formation of binding pairs between binding members of insufficient complementarity to provide for the desired specificity.
  • stringent assay conditions generally refers to the combination of hybridization and wash conditions.
  • a “label” or a “detectable moiety” in reference to a nucleic acid refers to a composition that, when linked with a nucleic acid, renders the nucleic acid detectable, for example, by spectroscopic, photochemical, biochemical, immunochemical, or chemical means.
  • Exemplary labels include, but are not limited to, radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, enzymes, biotin, digoxigenin, haptens, and the like.
  • a "labeled nucleic acid or oligonucleotide probe” is generally one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic bonds, van der Waals forces, electrostatic attractions, hydrophobic interactions, or hydrogen bonds, to a label such that the presence of the nucleic acid or probe can be detected by detecting the presence of the label bound to the nucleic acid or probe.
  • PCR Polymerase chain reaction
  • sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified.
  • the 5' terminal nucleotides of the two primers may coincide with the ends of the amplified material.
  • PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol, 51 : 263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989).
  • cycle number refers to the PCR cycle number at which the fluorescence level passes a given set threshold level.
  • the CT measurement can be used, for example, to approximate levels of mRNA in an original sample.
  • the CT measurement is often used in terms of "dCT” or the “difference in the CT” score, when the CT of one nucleic acid is subtracted from the CT of another nucleic acid.
  • optically pure means a composition that comprises one optical isomer of a compound and is substantially free of other isomers of that compound.
  • an optically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
  • An optically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound.
  • a typical optically pure compound comprises greater than about 80% by weight of one enantiomer of the compound and less than about 20% by weight of other enantiomers of the compound, more preferably greater than about 90% by weight of one enantiomer of the compound and less than about 10% by weight of the other enantiomers of the compound, even more preferably greater than about 95% by weight of one enantiomer of the compound and less than about 5% by weight of the other enantiomers of the compound, more preferably greater than about 97% by weight of one enantiomer of the compound and less than about 3% by weight of the other enantiomers of the compound, and most preferably greater than about 99% by weight of one enantiomer of the compound and less than about 1% by weight of the other enantiomers of the compound.
  • the term "pharmaceutically acceptable salt” encompasses non-toxic acid and base addition salts of the compound to which the term refers.
  • Acceptable non-toxic acid addition salts include those derived from organic and inorganic acids or bases know in the art, which include, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulphonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embolic acid, enanthic acid, and the like.
  • bases that can be used to prepare pharmaceutically acceptable base addition salts of such acidic compounds are those that form non-toxic base addition salts, i.e., salts containing pharmacologically acceptable cations such as, but not limited to, alkali metal or alkaline earth metal salts and the calcium, magnesium, sodium or potassium salts in particular.
  • Suitable organic bases include, but are not limited to,
  • ⁇ , ⁇ -dibenzylethylenediamine chloroprocaine, choline, diethanolamine, ethylenediamine, meglumaine (N-methylglucamine), lysine, and procaine.
  • solvate means a compound provided herein or a salt thereof, that further includes a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces. Where the solvent is water, the solvate is a hydrate.
  • stereomerically pure means a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomers of that compound. For example, a stereomerically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
  • a stereomerically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound.
  • a typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
  • stereomerically enriched means a composition that comprises greater than about 60% by weight of one stereoisomer of a compound, preferably greater than about 70% by weight, more preferably greater than about 80%> by weight of one stereoisomer of a compound.
  • enantiomerically pure means a stereomerically pure composition of a compound having one chiral center.
  • stereomerically enriched means a stereomerically enriched composition of a compound having one chiral center.
  • co-crystal means a crystalline form that contains more than one compound in a crystal lattice.
  • Co-crystals include crystalline molecular complexes of two or more non-volatile compounds bound together in a crystal lattice through non-ionic interactions.
  • co-crystals include pharmaceutical cocrystals wherein the crystalline molecular complexes containin a therapeutic compound and one or more additional non- volatile compound(s) (referred to herein as counter-molecule(s)).
  • a counter- molecule in a pharmaceutical cocrystal is typically a non-toxic pharmaceutically acceptable molecule, such as, for example, food additives, preservatives, pharmaceutical excipients, or other APIs.
  • pharmaceutical cocrystals enhance certain physicochemical properties of drug products (e.g., solubility, dissolution rate, bioavailability and/or stability), without compromising the chemical structural integrity of the active pharmaceutical ingredient (API). See, e.g., Jones et al., "Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement," MRS Bulletin, 2006, 31, 875-879; Trask, "An Overview of
  • a biological marker or "biomarker” is a substance whose detection indicates a particular biological state, such as, for example, the presence of cancer.
  • biomarkers can either be determined individually, or several biomarkers can be measured simultaneously.
  • a “biomarker” indicates a change in the level of mRNA
  • the biomarker is a nucleic acid, such as a mRNA or cDNA.
  • a “biomarker” indicates a change in the level of polypeptide or protein expression that may correlate with the risk, susceptibility to treatment, or progression of a disease.
  • the biomarker can be a polypeptide or protein, or a fragment thereof.
  • the relative level of specific proteins can be determined by methods known in the art. For example, antibody based methods, such as an immunoblot, enzyme-linked immunosorbent assay (ELISA), or other methods can be used.
  • “Overall survival” is defined as the time from randomization until death from any cause, and is measured in the intent-to-treat population. Overall survival should be evaluated in randomized controlled studies. Demonstration of a statistically significant improvement in overall survival can be considered to be clinically significant if the toxicity profile is acceptable, and has often supported new drug approval.
  • endpoints are based on cancer assessments. These endpoints include disease free survival (DFS), objective response rate (ORR), time to progression (TTP), progression-free survival (PFS), and time-to-treatment failure (TTF).
  • DFS disease free survival
  • ORR objective response rate
  • TTP time to progression
  • PFS progression-free survival
  • TTF time-to-treatment failure
  • DFS disease free survival
  • overall survival is a conventional endpoint for most adjuvant settings, DFS can be an important endpoint in situations where survival may be prolonged, making a survival endpoint impractical.
  • DFS can be a surrogate for clinical benefit or it can provide direct evidence of clinical benefit. This determination is based on the magnitude of the effect, its risk-benefit relationship, and the disease setting.
  • the definition of DFS can be complicated, particularly when deaths are noted without prior cancer progression documentation. These events can be scored either as disease recurrences or as censored events.
  • ORR objective response rate
  • ORR is a direct measure of drug anticancer activity, which can be evaluated in a single- arm study. If available, standardized criteria should be used to ascertain response. A variety of response criteria have been considered appropriate (e.g., RECIST criteria) (Therasse et al, (2000) J. Natl. Cancer Inst, 92: 205-16). The significance of ORR is assessed by its magnitude and duration, and the percentage of complete responses (no detectable evidence of cancer).
  • TTP time to progression
  • PFS progression- free survival
  • PFS can reflect cancer growth and be assessed before the determination of a survival benefit. Its determination is not confounded by subsequent therapy. For a given sample size, the magnitude of effect on PFS can be larger than the effect on overall survival.
  • formal validation of PFS as a surrogate for survival for the many different malignancies that exist can be difficult. Data are sometimes insufficient to allow a robust evaluation of the correlation between effects on survival and PFS. Cancer trials are often small, and proven survival benefits of existing drugs are generally modest.
  • the role of PFS as an endpoint to support licensing approval varies in different cancer settings. Whether an
  • TTF time-to-treatment failure
  • TTF is defined as a composite endpoint measuring time from randomization to discontinuation of treatment for any reason, including disease progression, treatment toxicity, and death. TTF is not recommended as a regulatory endpoint for drug approval. TTF does not adequately distinguish efficacy from these additional variables. A regulatory endpoint should clearly distinguish the efficacy of the drug from toxicity, patient or physician withdrawal, or patient intolerance.
  • the compounds provided herein may be combined with other pharmacologically active compounds ("second active agents") in methods and compositions provided herein. It is believed that certain combinations work synergistically in the treatment of particular types of cancer, and certain diseases and conditions associated with or characterized by undesired angiogenesis and/or inflammation.
  • the compounds provided herein provided herein can also work to alleviate adverse effects associated with certain second active agents, and some second active agents can be used to alleviate adverse effects associated with the compounds provided herein provided herein.
  • Second active ingredients or agents can be used in the methods and compositions provided herein with the compounds provided herein.
  • Second active agents can be large molecules (e.g., proteins) or small molecules (e.g., synthetic inorganic, organometallic, or organic molecules).
  • large molecule active agents include, but are not limited to, hematopoietic growth factors, cytokines, and monoclonal and polyclonal antibodies.
  • large molecule active agents are biological molecules, such as naturally occurring or artificially made proteins. Proteins that are particularly useful in this disclosure include proteins that stimulate the survival and/or proliferation of hematopoietic precursor cells and immunologically active poietic cells in vitro or in vivo. Others stimulate the division and differentiation of committed erythroid progenitors in cells in vitro or in vivo.
  • interleukins such as IL-2 (including recombinant IL-II ("rIL2") and canarypox IL-2), IL-10, IL-12, and IL-18
  • interferons such as interferon alfa-2a, interferon alfa-2b, interferon alfa-nl, interferon alfa-n3, interferon beta-I a, and interferon gamma-I b
  • GM-CF and GM-CSF GM-CF and GM-CSF
  • EPO EPO
  • Particular proteins that can be used in the methods and compositions of the disclosure include, but are not limited to: filgrastim, which is sold in the United States under the trade name NEUPOGEN® (Amgen, Thousand Oaks, CA); sargramostim, which is sold in the United States under the trade name LEUKINE® (Immunex, Seattle, WA); and recombinant EPO, which is sold in the United States under the trade name EPGEN® (Amgen, Thousand Oaks, CA).
  • Recombinant and mutated forms of GM-CSF can be prepared as described in U.S. Patent Nos. 5,391,485; 5,393,870; and 5,229,496; the disclosure of each of which is incorporated herein by reference in its entirety.
  • Recombinant and mutated forms of G-CSF can be prepared as described in U.S. Patent Nos. 4,810,643; 4,999,291; 5,528,823; and 5,580,755; the disclosure of each of which is incorporated herein by reference in its entirety.
  • mutants and derivatives e.g., modified forms
  • mutants include, but are not limited to, proteins that have one or more amino acid residues that differ from the corresponding residues in the naturally occurring forms of the proteins.
  • mutants are proteins that lack carbohydrate moieties normally present in their naturally occurring forms (e.g. , nonglycosylated forms).
  • derivatives include, but are not limited to, pegylated derivatives and fusion proteins, such as proteins formed by fusing IgGl or IgG3 to the protein or active portion of the protein of interest. See, e.g., Penichet, M.L. and Morrison, S.L., J. Immunol. Methods 248:91-101 (2001).
  • Antibodies that can be used in combination with the compound of Formula I provided herein include monoclonal and polyclonal antibodies.
  • Examples of antibodies include, but are not limited to, trastuzumab (HERCEPTIN ® ), rituximab (RITUXAN ® ),bevacizumab
  • panitumumab panitumab and G250.
  • the compound of Formula I provided herein can also be combined with or used in combination with anti-TNF-a antibodies.
  • cytokines such as IL-2, SCF, CXC14 (platelet factor 4), G-CSF, and GM-CSF
  • cytokines such as IL-2, SCF, CXC14 (platelet factor 4), G-CSF, and GM-CSF
  • Second active agents that are small molecules can also be used to alleviate adverse effects associated with the administration of the compound of Formula I provided herein. However, like some large molecules, many are believed to be capable of providing a synergistic effect when administered with (e.g., before, after or simultaneously) the compound of Formula I.
  • small molecule second active agents include, but are not limited to, anti-cancer agents, antibiotics, immunosuppressive agents, and steroids.
  • anti-cancer agents include, but are not limited to: abraxane; ace-1 1; acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin; ametantrone acetate; amrubicin; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin
  • hydrochloride carzelesin; cedefingol; celecoxib (COX-2 inhibitor); chlorambucil; cirolemycin; cisplatin; cladribine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine;
  • dezaguanine mesylate diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride;
  • droloxifene droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate;
  • eflornithine hydrochloride elsamitrucin; enloplatin; enpromate; epipropidine; epirubicin hydrochloride; erbulozole; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride;
  • mitocromin mitogillin; mitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocodazole; nogalamycin; ormaplatin; oxisuran; paclitaxel; pegaspargase; peliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan;
  • piroxantrone hydrochloride piroxantrone hydrochloride; plicamycin; plomestane; porfimer sodium; porfiromycin;
  • testolactone thiamiprine; thioguanine; thiotepa; tiazofurin; tirapazamine; toremifene citrate; trestolone acetate; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin;
  • tubulozole hydrochloride uracil mustard; uredepa; vapreotide; verteporfm; vinblastine sulfate; vincristine sulfate; vindesine; vindesine sulfate; vinepidine sulfate; vinglycinate sulfate;
  • vinleurosine sulfate vinorelbine tartrate; vinrosidine sulfate; vinzolidine sulfate; vorozole;
  • anti-cancer drugs include, but are not limited to: 20-epi-l,25 dihydroxyvitamin D3;
  • amrubicin amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors;
  • antagonist D antagonist G
  • antarelix anti-dorsalizing morphogenetic protein- 1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin 1; axinastatin 2; axinastatin
  • betaclamycin B betulinic acid; b-FGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptothecin derivatives; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorlns; chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole;
  • collismycin A collismycin B; combretastatin A4; combretastatin analogue; conagenin;
  • crambescidin 816 crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A;
  • cyclopentanthraquinones cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor;
  • cytostatin cytostatin; dacliximab; decitabine; dehydrodidemnin B; deslorelin; dexamethasone;
  • dexifosfamide dexifosfamide
  • dexrazoxane dexverapamil
  • diaziquone didemnin B
  • didox diethylnorspermine
  • dihydro-5-azacytidine dihydrotaxol, 9-; dioxamycin; diphenyl spiromustine; docetaxel;
  • docosanol dolasetron; doxifluridine; doxorubicin; droloxifene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab; eflornithine; elemene; emitefur; epirubicin; epristeride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole;
  • flavopiridol flavopiridol; flezelastine; fluasterone; fludarabine; fluorodaunorunicin hydrochloride; forfenimex; formestane; fostriecin; fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine;
  • ganirelix gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin;
  • hexamethylene bisacetamide hypericin; ibandronic acid; idarubicin; idoxifene; idramantone; ilmofosine; ilomastat; imatinib (e.g., GLEEVEC®), imiquimod; immunostimulant peptides;
  • insulin- like growth factor- 1 receptor inhibitor insulin-like growth factor- 1 receptor inhibitor
  • interferon agonists interferons
  • interleukins interferon agonists
  • iobenguane iododoxorubicin; ipomeanol, 4-; iroplact; irsogladine; isobengazole;
  • isohomohalicondrin B itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenograstim; lentinan sulfate; leptolstatin; letrozole; leukemia inhibiting factor;
  • leukocyte alpha interferon leuprolide+estrogen+progesterone; leuprorelin; levamisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds;
  • marimastat masoprocol
  • maspin matrilysin inhibitors
  • matrix metalloproteinase inhibitors
  • menogaril menogaril; merbarone; meterelin; methioninase; metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim;Erbitux, human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; mopidamol;
  • N-acetyldinaline N-substituted benzamides
  • nafarelin N-substituted benzamides
  • nagrestip N-substituted benzamides
  • naloxone+pentazocine N-acetyldinaline
  • nisamycin nisamycin
  • nitric oxide modulators nitroxide antioxidant
  • nitrullyn nitrullyn
  • ondansetron ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin;
  • oxaunomycin paclitaxel
  • paclitaxel analogues paclitaxel derivatives
  • palauamine oxaunomycin
  • palmitoylrhizoxin pamidronic acid; panaxytriol; panomifene; parabactin; pazelliptine;
  • pegaspargase peldesine; pentosan polysulfate sodium; pentostatin; pentrozole; perflubron;
  • perfosfamide perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; porfimer sodium; porfiromycin; prednisone; propyl bis-acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylene conjugate; raf antagonists;
  • raltitrexed ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII retinamide; rohitukine; romurtide; roquinimex; rubiginone Bl ; ruboxyl; safingol; saintopin;
  • SarCNU sarcophytol A; sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1 ; sense oligonucleotides; signal transduction inhibitors; sizofiran; sobuzoxane; sodium
  • borocaptate sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1 ; squalamine; stipiamide;
  • stromelysin inhibitors sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; tallimustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; teniposide;
  • tetrachlorodecaoxide tetrazomine; thaliblastine; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; toremifene; translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrphostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; velaresol;
  • veramine veramine
  • verdins verteporfin
  • vinorelbine vinxaltine
  • vitaxin vorozole
  • zanoterone zeniplatin
  • zilascorb zilascorb
  • zinostatin stimalamer veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitaxin; vorozole; zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer.
  • Specific second active agents include, but are not limited to, oblimersen
  • provided herein is a method of treating and preventing cancer, which comprises administering to a patient a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • method of managing cancer which comprises administering to a patient a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • the invention also encompasses methods of treating patients regardless of patient's age, although some diseases or disorders are more common in certain age groups.
  • the invention further encompasses methods of treating patients who have undergone surgery in an attempt to treat the disease or condition at issue, as well as those who have not. Because patients with cancer have heterogeneous clinical manifestations and varying clinical outcomes, the treatment given to a patient may vary, depending on his/her prognosis. The skilled clinician will be able to readily determine without undue experimentation specific secondary agents, types of surgery, and types of non-drug based standard therapy that can be effectively used to treat an individual patient with cancer.
  • provided herein is a method of treating, managing, or preventing diseases and disorders other than cancer that are associated with or characterized by undesired angiogenesis, which comprises administering to a patient a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • cancer includes, but is not limited to, solid tumors and blood born tumors.
  • cancer refers to disease of skin tissues, organs, blood, and vessels, including, but not limited to, cancers of the bladder, bone, blood, brain, breast, cervix, chest, colon, endrometrium, esophagus, eye, head, kidney, liver, lymph nodes, lung, mouth, neck, ovaries, pancreas, prostate, rectum, stomach, testis, throat, and uterus.
  • Specific cancers include, but are not limited to, advanced malignancy, amyloidosis, neuroblastoma, meningioma, hemangiopericytoma, multiple brain metastase, glioblastoma multiforms, glioblastoma, brain stem glioma, poor prognosis malignant brain tumor, malignant glioma, recurrent malignant giolma, anaplastic astrocytoma, anaplastic oligodendroglioma, neuroendocrine tumor, rectal adenocarcinoma, Dukes C & D colorectal cancer, unresectable colorectal carcinoma, metastatic hepatocellular carcinoma, Kaposi's sarcoma, karotype acute myeloblastic leukemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous T-Cell lymphoma, cutaneous B-Cell lymphoma, diffuse large B-C
  • the cancer is a blood borne tumor. In certain embodiments, the blood borne tumor is metastatic. In certain embodiments, the blood borne tumor is drug resistant. In certain embodiments, the cancer is myeloma or lymphoma.
  • the cancer is a solid tumor.
  • the solid tumor is metastatic.
  • the solid tumor is drug-resistant.
  • the solid tumor is hepatocellular carcinoma, prostate cancer, ovarian cancer, or glioblastoma.
  • diseases or disorders associated with or characterized by undesired angiogenesis refer to diseases, disorders, and conditions that are caused, mediated, or attended by undesired, unwanted, or uncontrolled angiogenesis, including, but not limited to,
  • inflammatory diseases autoimmune diseases, genetic diseases, allergic diseases, bacterial diseases, ocular neovascular diseases, choroidal neovascular diseases, and retina neovascular diseases.
  • diseases or disorders associated with undesired angiogenesis include, but are not limited to, diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, proliferative vitreoretinopathy, trachoma, myopia, optic pits, epidemnic keratoconjunctivitis, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis, lipid degeneration, bacterial ulcer, fungal ulcer, Herpes simplex infection, Herpes zoster infection, protozoan infection, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, mariginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners
  • pseudoxanthoma elasticum Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis, chronic vitritis, Lyme's disease, Eales disease, Behcet's disease, retinitis, choroiditis, presumed ocular histoplasmosis, Bests disease, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, rubeosis, sarcodisis, sclerosis, soriatis, psoriasis, primary sclerosing cholangitis, proctitis, primary biliary srosis, idiopathic pulmonary fibrosis, and alcoholic hepatitis.
  • a therapeutically or prophylactically effective amount of the compound is from about 0.005 to about 1,000 mg per day, from about 0.01 to about 500 mg per day, from about 0.01 to about 250 mg per day, from about 0.01 to about 100 mg per day, from about 0.1 to about 100 mg per day, from about 0.5 to about 100 mg per day, from about 1 to about 100 mg per day, from about 0.01 to about 50 mg per day, from about 0.1 to about 50 mg per day, from about 0.5 to about 50 mg per day, from about 1 to about 50 mg per day, from about
  • the therapeutically or prophylactically effective amount is about
  • the recommended daily dose range of the compound for the conditions described herein lie within the range of from about 0.5 mg to about 50 mg per day, preferably given as a single once-a-day dose, or in divided doses throughout a day. In some embodiments, the dosage ranges from about 1 mg to about 50 mg per day. In other embodiments, the dosage ranges from about 0.5 to about 5 mg per day. Specific doses per day include 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 mg per day. In other embodiments, specific doses per day include 0.5, 1, 1.5, 2, 2.5, 3, 3.5 or 4 mg per day.
  • the recommended starting dosage may be 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 10, 15, 20, 25 or 50 mg per day. In another embodiment, the recommended starting dosage may be 0.5, 1, 1.5, 2, 2.5, 3, 3.5 or 4 mg per day.
  • the dose may be escalated to 15, 20, 25, 30, 35, 40, 45 and 50 mg/day.
  • the compound can be administered in an amount of about 25 mg/day to patients with cacner. In a particular embodiment, the compound can be administered in an amount of about 10 mg/day to patients with cancer.
  • the therapeutically or prophylactically effective amount is from about 0.001 to about 100 mg/kg/day, from about 0.01 to about 50 mg/kg/day, from about 0.01 to about 25 mg/kg/day, from about 0.01 to about 10 mg/kg/day, from about 0.01 to about 9 mg/kg/day, 0.01 to about 8 mg/kg/day, from about 0.01 to about 7 mg/kg/day, from about 0.01 to about 6 mg/kg/day, from about 0.01 to about 5 mg/kg/day, from about 0.01 to about 4 mg/kg/day, from about 0.01 to about 3 mg/kg/day, from about 0.01 to about 2 mg/kg/day, or from about 0.01 to about 1 mg/kg/day.
  • the administered dose can also be expressed in units other than mg/kg/day.
  • doses for parenteral administration can be expressed as mg/m 2 /day.
  • doses for parenteral administration can be expressed as mg/m 2 /day.
  • One of ordinary skill in the art would readily know how to convert doses from mg/kg/day to mg/m 2 /day to given either the height or weight of a subject or both (see, www.fda.gov/cder/cancer/animalframe.htm).
  • a dose of 1 mg/kg/day for a 65 kg human is approximately equal to 38 mg/m 2 /day.
  • the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state, ranging from about 0.001 to about 500 ⁇ , about 0.002 to about 200 ⁇ , about 0.005 to about 100 ⁇ , about 0.01 to about 50 ⁇ , from about 1 to about 50 ⁇ , about 0.02 to about 25 ⁇ , from about 0.05 to about 20 ⁇ , from about 0.1 to about 20 ⁇ , from about 0.5 to about 20 ⁇ , or from about 1 to about 20 ⁇ .
  • the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state, ranging from about 5 to about 100 iiM, about 5 to about 50 nM, about 10 to about 100 nM, about 10 to about 50 nM or from about 50 to about 100 nM.
  • plasma concentration at steady state is the concentration reached after a period of administration of a compound provided herein, e.g., the compound of Formula I, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • the amount of the compound administered is sufficient to provide a maximum plasma concentration (peak concentration) of the compound, ranging from about 0.001 to about 500 ⁇ , about 0.002 to about 200 ⁇ , about 0.005 to about 100 ⁇ , about 0.01 to about 50 ⁇ , from about 1 to about 50 ⁇ , about 0.02 to about 25 ⁇ , from about 0.05 to about 20 ⁇ , from about 0.1 to about 20 ⁇ , from about 0.5 to about 20 ⁇ , ⁇ from about 1 to about 20 ⁇ .
  • the amount of the compound administered is sufficient to provide a minimum plasma concentration (trough concentration) of the compound, ranging from about 0.001 to about 500 ⁇ , about 0.002 to about 200 ⁇ , about 0.005 to about 100 ⁇ , about 0.01 to about 50 ⁇ , from about 1 to about 50 ⁇ , about 0.01 to about 25 ⁇ , from about 0.01 to about 20 ⁇ , from about 0.02 to about 20 ⁇ , from about 0.02 to about 20 ⁇ , or from about 0.01 to about 20 ⁇ .
  • a minimum plasma concentration (trough concentration) of the compound ranging from about 0.001 to about 500 ⁇ , about 0.002 to about 200 ⁇ , about 0.005 to about 100 ⁇ , about 0.01 to about 50 ⁇ , from about 1 to about 50 ⁇ , about 0.01 to about 25 ⁇ , from about 0.01 to about 20 ⁇ , from about 0.02 to about 20 ⁇ , from about 0.02 to about 20 ⁇ , or from about 0.01 to about 20 ⁇ .
  • the amount of the compound administered is sufficient to provide an area under the curve (AUC) of the compound, ranging from about 100 to about 100,000 ng*hr/mL, from about 1,000 to about 50,000 ng*hr/mL, from about 5,000 to about 25,000 ng*hr/mL, or from about 5,000 to about 10,000 ng*hr/mL.
  • AUC area under the curve
  • the patient to be treated with one of the methods provided herein has not been treated with anticancer therapy prior to the administration of the drug. In certain embodiments, the patient to be treated with one of the methods provided herein has been treated with anticancer therapy prior to the administration of the drug. In certain embodiments, the patient to be treated with one of the methods provided herein has developed drug resistance to the anticancer therapy.
  • the methods provided herein encompass treating a patient regardless of patient's age, although some diseases or disorders are more common in certain age groups. Further provided herein is a method for treating a patient who has undergone surgery in an attempt to treat the disease or condition at issue, as well in one who has not.
  • the treatment given to a particular subject may vary, depending on his/her prognosis.
  • the skilled clinician will be able to readily determine without undue experimentation, specific secondary agents, types of surgery, and types of non-drug based standard therapy that can be effectively used to treat an individual subject with cancer.
  • the compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof may be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous, CIV, intracistemal injection or infusion, subcutaneous injection, or implant), inhalation, nasal, vaginal, rectal, sublingual, or topical (e.g., transdermal or local) routes of administration.
  • parenteral e.g., intramuscular, intraperitoneal, intravenous, CIV, intracistemal injection or infusion, subcutaneous injection, or implant
  • parenteral e.g., intramuscular, intraperitoneal, intravenous, CIV, intracistemal injection or infusion, subcutaneous injection, or implant
  • inhalation nasal, vaginal, rectal, sublingual, or topical (e.g., transdermal or
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co- crystal, clathrate, or polymorph thereof, may be formulated, alone or together, in suitable dosage unit with pharmaceutically acceptable excipients, carriers, adjuvants and vehicles, appropriate for each route of administration.
  • the compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered orally.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered parenterally.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered intravenously.
  • pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof can be delivered as a single dose such as, e.g., a single bolus injection, or oral tablets or pills; or over time, such as, e.g., continuous infusion over time or divided bolus doses over time.
  • the compound can be administered repeatedly if necessary, for example, until the patient experiences stable disease or regression, or until the patient experiences disease progression or unacceptable toxicity.
  • stable disease for solid tumors generally means that the perpendicular diameter of measurable lesions has not increased by 25% or more from the last measurement.
  • Response Evaluation Criteria in Solid Tumors (RECIST) Guidelines, Journal of the National Cancer Institute 92(3): 205-216 (2000). Stable disease or lack thereof is determined by methods known in the art such as evaluation of patient symptoms, physical examination, visualization of the tumor that has been imaged using X-ray, CAT, PET, or MRI scan and other commonly accepted evaluation modalities.
  • pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof can be administered once daily (QD), or divided into multiple daily doses such as twice daily (BID), three times daily (TID), and four times daily (QID).
  • the administration can be continuous ⁇ i.e., daily for consecutive days or every day), intermittent, e.g., in cycles ⁇ i.e., including days, weeks, or months of rest without drug).
  • the term “daily” is intended to mean that a therapeutic compound is administered once or more than once each day, for example, for a period of time.
  • continuous is intended to mean that a therapeutic compound is administered daily for an uninterrupted period of at least 10 days to 52 weeks.
  • intermittent administration of a compound is administration for one to six days per week, administration in cycles ⁇ e.g., daily administration for two to eight consecutive weeks, then a rest period with no administration for up to one week), or administration on alternate days.
  • cycling as used herein is intended to mean that a therapeutic compound is administered daily or continuously but with a rest period.
  • the frequency of administration is in the range of about a daily dose to about a monthly dose.
  • administration is once a day, twice a day, three times a day, four times a day, once every other day, twice a week, once every week, once every two weeks, once every three weeks, or once every four weeks.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered once a day.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered twice a day.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered three times a day.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered four times a day.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered once per day from one day to six months, from one week to three months, from one week to four weeks, from one week to three weeks, or from one week to two weeks.
  • the compound, or a pharmaceutically acceptable salt or solvate thereof is administered once per day for one week, two weeks, three weeks, or four weeks.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered once per day for one week.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered once per day for two weeks.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered once per day for three weeks.
  • the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered once per day for four weeks.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, can also be combined or used in combination with other therapeutic agents useful in the treatment and/or prevention of a disease described herein.
  • provided herein is a method of treating, preventing, or managing cancer, comprising administering to a patient compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof; in combination with one or more second active agents, and optionally in combination with radiation therapy, blood transfusions, or surgery.
  • second active agents are disclosed herein (see, e.g., section 5.3).
  • a first therapy e.g., a first therapy
  • prophylactic or therapeutic agent such as a compound provided herein, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof
  • a second therapy e.g., a prophylactic or therapeutic agent
  • Administration of the compound and one or more second active agents to a patient can occur simultaneously or sequentially by the same or different routes of administration.
  • the suitability of a particular route of administration employed for a particular active agent will depend on the active agent itself (e.g., whether it can be administered orally without
  • the route of administration of the compound is independent of the route of
  • the compound is administered orally.
  • the compound is administered intravenously.
  • the second therapy can be administered orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery by catheter or stent, subcutaneously, intraadiposally, intraarticularly, intrathecally, or in a slow release dosage form.
  • the compound and a second therapy are administered by the same mode of administration, orally or by IV.
  • the compound is administered by one mode of administration, e.g., by IV, whereas the second agent (an anticancer agent) is administered by another mode of administration, e.g., orally.
  • the second active agent is administered intravenously or
  • the specific amount of the second active agent will depend on the specific agent used, the type of disease being treated or managed, the severity and stage of disease, and the amount of the drug provided herein and any optional additional active agents concurrently administered to the patient.
  • the second active agent is oblimersen (GENASENSE ® ), GM- CSF, G-CSF, SCF, EPO, taxotere, irinotecan, dacarbazine, transretinoic acid, topotecan, pentoxifylline, ciprofloxacin, dexamethasone, vincristine, doxorubicin, COX-2 inhibitor, IL2, IL8, IL18, IFN, Ara-C, vinorelbine, or a combination thereof.
  • GM-CSF, G-CSF, SCF or EPO is administered subcutaneously during about five days in a four or six week cycle in an amount ranging from about 1 to about 750 mg/m 2 /day, from about 25 to about 500 mg/m 2 /day, from about 50 to about 250 mg/m 2 /day, or from about 50 to about 200 mg/m 2 /day.
  • GM-CSF may be administered in an amount of from about 60 to about 500 mcg/m 2 intravenously over 2 hours or from about 5 to about 12 mcg/m 2 /day subcutaneously.
  • G-CSF may be administered subcutaneously in an amount of about 1 mcg/kg/day initially and can be adjusted depending on rise of total granulocyte counts.
  • the maintenance dose of G-CSF may be administered in an amount of about 300 (in smaller patients) or 480 meg subcutaneously.
  • EPO may be administered subcutaneously in an amount of 10,000 Unit 3 times per week.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with melphalan and dexamethasone to patients with amyloidosis.
  • a compound provided herein, e.g., the compound of Formula I, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, and steroids can be administered to patients with amyloidosis.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with gemcitabine and cisplatinum to patients with locally advanced or metastatic transitional cell bladder cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with a second active ingredient as follows: temozolomide to pediatric patients with relapsed or progressive brain tumors or recurrent neuroblastoma; celecoxib, etoposide and cyclophosphamide for relapsed or progressive CNS cancer; temodar to patients with recurrent or progressive meningioma, malignant meningioma, hemangiopericytoma, multiple brain metastases, relapased brain tumors, or newly diagnosed glioblastoma multiforms; irinotecan to patients with recurrent glioblastoma; carboplatin to pediatric patients with brain stem glioma; procarbazine to pediatric patients with progressive malignant gliomas; cyclophos
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with methotrexate, cyclophosphamide, taxane, abraxane, lapatinib, herceptin, aromatase inhibitors, selective estrogen modulators, estrogen receptor antagonists, and/or PLX3397 (Plexxikon) to patients with metastatic breast cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with temozolomide to patients with neuroendocrine tumors.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with gemcitabine to patients with recurrent or metastatic head or neck cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with gemcitabine to patients with pancreatic cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with colon cancer in combination with ARISA ® , avastatin, taxol, and/or taxotere.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with capecitabine and/or PLX4032 (Plexxikon) to patients with refractory colorectal cancer or patients who fail first line therapy or have poor performance in colon or rectal adenocarcinoma.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with fluorouracil, leucovorin, and irinotecan to patients with Dukes C & D colorectal cancer or to patients who have been previously treated for metastatic colorectal cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with refractory colorectal cancer in
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with capecitabine and irinotecan to patients with refractory colorectal cancer or to patients with unresectable or metastatic colorectal carcinoma.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered alone or in combination with interferon alpha or capecitabine to patients with unresectable or metastatic hepatocellular carcinoma; or with cisplatin and thiotepa to patients with primary or metastatic liver cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with pegylated interferon alpha to patients with Kaposi's sarcoma.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with fludarabine, carboplatin, and/or topotecan to patients with refractory or relapsed or high-risk acuted myelogenous leukemia.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with liposomal daunorubicin, topotecan and/or cytarabine to patients with unfavorable karotype acute myeloblastic leukemia.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with gemcitabine, abraxane, erlotinib, geftinib, and/or irinotecan to patients with non-small cell lung cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with carboplatin and irinotecan to patients with non-small cell lung cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered with doxetaxol to patients with non-small cell lung cancer who have been previously treated with carbo/VP 16 and radiotherapy.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with carboplatin and/or taxotere, or in combination with carboplatin, pacilitaxel and/or thoracic radiotherapy to patients with non-small cell lung cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with taxotere to patients with stage IIIB or IV non-small cell lung cancer.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with oblimersen (Genasense ® ) to patients with small cell lung cancer.
  • oblimersen Gene ®
  • a compound provided herein e.g., the compound of Formula I, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with ABT-737 (Abbott Laboratories) and/or obatoclax (GXl 5-070) to patients with lymphoma and other blood cancers.
  • ABT-737 Abbott Laboratories
  • GXl 5-070 obatoclax
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered alone or in combination with a second active ingredient such as vinblastine or fludarabine to patients with various types of lymphoma, including, but not limited to, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous T-Cell lymphoma, cutaneous B-Cell lymphoma, diffuse large B-Cell lymphoma or relapsed or refractory low grade follicular lymphoma.
  • a second active ingredient such as vinblastine or fludarabine
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with taxotere, IL-2, IFN, GM-CSF, PLX4032 (Plexxikon) and/or dacarbazine to patients with various types or stages of melanoma.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered alone or in combination with vinorelbine to patients with malignant mesothelioma, or stage IIIB non-small cell lung cancer with pleural implants or malignant pleural effusion mesothelioma syndrome.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with various types or stages of multiple myeloma in combination with dexamethasone, zoledronic acid, palmitronate, GM-CSF, biaxin, vinblastine, melphalan, busulphan, cyclophosphamide, IFN, palmidronate, prednisone, bisphosphonate, celecoxib, arsenic trioxide, PEG INTRON-A, vincristine, or a combination thereof.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with relapsed or refractory multiple myeloma in combination with doxorubicin (Doxil ® ), vincristine and/or dexamethasone (Decadron ® ).
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with various types or stages of ovarian cancer such as peritoneal carcinoma, papillary serous carcinoma, refractory ovarian cancer or recurrent ovarian cancer, in combination with taxol, carboplatin, doxorubicin, gemcitabine, cisplatin, xeloda, paclitaxel, dexamethasone, or a combination thereof.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with various types or stages of prostate cancer, in combination with xeloda, 5 FU/LV, gemcitabine, irinotecan plus gemcitabine,
  • cyclophosphamide vincristine, dexamethasone, GM-CSF, celecoxib, taxotere, ganciclovir, paclitaxel, adriamycin, docetaxel, estramustine, Emcyt, denderon or a combination thereof.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with various types or stages of renal cell cancer, in combination with capecitabine, IFN, tamoxifen, IL-2, GM-CSF, Celebrex ® , or a combination thereof.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with various types or stages of gynecologic, uterus or soft tissue sarcoma cancer in combination with IFN, a COX-2 inhibitor such as
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with various types or stages of solid tumors in combination with celebrex, etoposide, cyclophosphamide, docetaxel, apecitabine, IFN, tamoxifen, IL-2, GM-CSF, or a combination thereof.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with scleroderma or cutaneous vasculitis in combination with celebrex, etoposide, cyclophosphamide, docetaxel, apecitabine, IFN, tamoxifen, IL-2, GM-CSF, or a combination thereof.
  • Also encompassed herein is a method of increasing the dosage of an anti-cancer drug or agent that can be safely and effectively administered to a patient, which comprises administering to the patient (e.g. , a human) or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • Patients that can benefit by this method are those likely to suffer from an adverse effect associated with anti-cancer drugs for treating a specific cancer of the skin, subcutaneous tissue, lymph nodes, brain, lung, liver, bone, intestine, colon, heart, pancreas, adrenal, kidney, prostate, breast, colorectal, or combinations thereof.
  • a compound provided herein or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, alleviates or reduces adverse effects which are of such severity that it would otherwise limit the amount of anti-cancer drug.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered orally and daily in an amount ranging from about 0.1 to about 150 mg, from about 1 to about 50 mg, or from about 2 to about 25 mg, prior to, during, or after the occurrence of the adverse effect associated with the administration of an anti-cancer drug to a patient.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered in combination with specific agents such as heparin, aspirin, Coumadin, or G-CSF to avoid adverse effects that are associated with anticancer drugs such as but not limited to neutropenia or thrombocytopenia.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof is administered to patients with diseases and disorders associated with or characterized by, undesired angiogenesis in combination with additional active ingredients, including, but not limited to, anti-cancer drugs, anti-inflammatories, antihistamines, antibiotics, and steroids.
  • encompassed herein is a method of treating, preventing and/or managing cancer, which comprises administering the compound, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, in conjunction with (e.g. before, during, or after) conventional therapy including, but not limited to, surgery, immunotherapy, biological therapy, radiation therapy, or other non-drug based therapy presently used to treat, prevent or manage cancer.
  • conventional therapy including, but not limited to, surgery, immunotherapy, biological therapy, radiation therapy, or other non-drug based therapy presently used to treat, prevent or manage cancer.
  • encompassed herein is a method of reducing, treating and/or preventing adverse or undesired effects associated with conventional therapy including, but not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy and immunotherapy.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, and other active ingredient can be administered to a patient prior to, during, or after the occurrence of the adverse effect associated with conventional therapy.
  • the compound can be administered in an amount ranging from about 0.1 to about 150 mg, from about 1 to about 25 mg, from about 2 to about 10 mg, or about 0.5 to about 4 mg orally and daily alone, or in combination with a second active agent disclosed herein (see, e.g., section 4.3), prior to, during, or after the use of conventional therapy.
  • a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, and doxetaxol are administered to patients with non- small cell lung cancer who were previously treated with carbo/VP 16 and radiotherapy.
  • compositions can be used in the preparation of individual, single unit dosage forms.
  • Pharmaceutical compositions and dosage forms provided herein comprise a compound, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof.
  • Pharmaceutical compositions and dosage forms provided herein may further comprise one or more excipients.
  • compositions and dosage forms provided herein may also comprise one or more additional active ingredients.
  • additional active ingredients examples of optional second, or additional, active ingredients are disclosed herein.
  • Single unit dosage forms are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient.
  • parenteral e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial
  • topical e.g., eye drops or other ophthalmic preparations
  • transdermal or transcutaneous administration a patient.
  • dosage forms include, but are not limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches;
  • lozenges lozenges; dispersions; suppositories; powders; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or mucosal administration to a patient, including
  • suspensions e.g., aqueous or non-aqueous liquid suspensions, oil-in- water emulsions, or a water- in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; eye drops or other ophthalmic preparations suitable for topical administration; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
  • sterile solids e.g., crystalline or amorphous solids
  • compositions, shape, and type of dosage forms provided herein will typically vary depending on their use.
  • a dosage form used in the acute treatment of a disease may contain larger amounts of one or more of the active ingredients it comprises than a dosage form used in the chronic treatment of the same disease.
  • a parenteral dosage form may contain smaller amounts of one or more of the active ingredients it comprises than an oral dosage form used to treat the same disease.
  • Typical pharmaceutical compositions and dosage forms comprise one or more excipients.
  • Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient. For example, oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms. The suitability of a particular excipient may also depend on the specific active ingredients in the dosage form. For example, the decomposition of some active ingredients may be accelerated by some excipients such as lactose, or when exposed to water.
  • lactose-free means that the amount of lactose present, if any, is insufficient to substantially increase the degradation rate of an active ingredient.
  • Lactose-free compositions can comprise excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002).
  • lactose-free compositions comprise active ingredients, a binder/filler, and a lubricant in pharmaceutically compatible and pharmaceutically acceptable amounts.
  • lactose-free dosage forms comprise active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
  • anhydrous pharmaceutical compositions and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds.
  • water e.g., 5%
  • water is widely accepted in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T. Carstensen, Drug Stability: Principles & Practice, 2d. Ed., Marcel Dekker, NY, NY, 1995, pp. 379-80.
  • water and heat accelerate the decomposition of some compounds.
  • the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.
  • Anhydrous pharmaceutical compositions and dosage forms may be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions.
  • Pharmaceutical compositions and dosage forms that comprise lactose and at least one active ingredient that comprises a primary or secondary amine are preferably anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.
  • anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are preferably packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g., vials), blister packs, and strip packs.
  • compositions and dosage forms that comprise one or more compounds that reduce the rate by which an active ingredient will decompose.
  • compounds which are referred to herein as “stabilizers,” include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers.
  • compositions that are suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups).
  • dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington 's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton PA (1990).
  • Typical oral dosage forms are prepared by combining the active ingredients in an intimate admixture with at least one excipient according to conventional pharmaceutical compounding techniques.
  • Excipients can take a wide variety of forms depending on the form of preparation desired for administration.
  • excipients suitable for use in oral liquid or aerosol dosage forms include, but are not limited to, water, glycols, oils, alcohols, flavoring agents, preservatives, and coloring agents.
  • excipients suitable for use in solid oral dosage forms include, but are not limited to, starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents.
  • tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid excipients are employed. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by any of the methods of pharmacy. In general, pharmaceutical compositions and dosage forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided solid carriers, or both, and then shaping the product into the desired presentation if necessary.
  • a tablet can be prepared by compression or molding.
  • Compressed tablets can be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as powder or granules, optionally mixed with an excipient.
  • Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
  • excipients that can be used in oral dosage forms provided herein include, but are not limited to, binders, fillers, disintegrants, and lubricants.
  • Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, (e.g., Nos. 2208, 2906, 2910), microcrystalline cellulose, and mixtures thereof.
  • Suitable forms of microcrystalline cellulose include, but are not limited to, the materials sold as AVICEL-PH-101 , AVICEL-PH-103 AVICEL RC-581 , AVICEL-PH-105 (available from FMC Corporation, American Viscose Division, Avicel Sales, Marcus Hook, PA), and mixtures thereof.
  • An specific binder is a mixture of microcrystalline cellulose and sodium carboxymethyl cellulose sold as AVICEL RC-581.
  • Suitable anhydrous or low moisture excipients or additives include AVICEL-PH-103TM and Starch 1500 LM.
  • fillers suitable for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof.
  • the binder or filler in pharmaceutical compositions of the invention is typically present in from about 50 to about 99 weight percent of the pharmaceutical composition or dosage form.
  • Disintegrants are used in compositions to provide tablets that disintegrate when exposed to an aqueous environment. Tablets that contain too much disintegrant may disintegrate in storage, while those that contain too little may not disintegrate at a desired rate or under the desired conditions. Thus, a sufficient amount of disintegrant that is neither too much nor too little to detrimentally alter the release of the active ingredients should be used to form solid oral dosage forms.
  • the amount of disintegrant used varies based upon the type of formulation, and is readily discernible to those of ordinary skill in the art.
  • Typical pharmaceutical compositions comprise from about 0.5 to about 15 weight percent of disintegrant, preferably from about 1 to about 5 weight percent of disintegrant.
  • Disintegrants that can be used in pharmaceutical compositions and dosage forms include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums, and mixtures thereof.
  • Lubricants that can be used in pharmaceutical compositions and dosage forms include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, and mixtures thereof.
  • Additional lubricants include, for example, a syloid silica gel (AEROSIL200, manufactured by W.R.
  • lubricants are typically used in an amount of less than about 1 weight percent of the pharmaceutical compositions or dosage forms into which they are incorporated.
  • a solid oral dosage form of the invention comprises a compound provided herein, anhydrous lactose, microcrystalline cellulose, polyvinylpyrrolidone, stearic acid, colloidal anhydrous silica, and gelatin.
  • Active ingredients may be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Patent Nos. : 3,845,770; 3,916,899; 3,536,809; 3,598, 123; and 4,008,719, 5,674,533, 5,059,595, 5,591 ,767, 5, 120,548, 5,073,543, 5,639,476, 5,354,556, and 5,733,566, each of which is incorporated herein by reference.
  • Such dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions.
  • Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients provided herein.
  • single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled-release.
  • controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts.
  • the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time.
  • Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance.
  • controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.
  • Controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time.
  • the drug In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
  • Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.
  • Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions.
  • Suitable vehicles that can be used to provide parenteral dosage forms are well known to those skilled in the art. Examples include, but are not limited to: Water for Injection USP;
  • aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
  • water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol
  • non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
  • cyclodextrin and its derivatives can be used to increase the solubility of a compound and its derivatives. See, e.g., U.S. Patent No. 5,134,127, which is incorporated herein by reference.
  • Topical and mucosal dosage forms provided herein include, but are not limited to, sprays, aerosols, solutions, emulsions, suspensions, eye drops or other ophthalmic preparations, or other forms known to one of skill in the art. See, e.g., Remington 's Pharmaceutical Sciences, 16 th and 18 th eds., Mack Publishing, Easton PA (1980 & 1990); and Introduction to Pharmaceutical Dosage Forms, 4th ed., Lea & Febiger, Philadelphia (1985). Dosage forms suitable for treating mucosal tissues within the oral cavity can be formulated as mouthwashes or as oral gels.
  • Suitable excipients ⁇ e.g. , carriers and diluents
  • other materials that can be used to provide topical and mucosal dosage forms are well known to those skilled in the pharmaceutical arts, and depend on the particular tissue to which a given pharmaceutical composition or dosage form will be applied.
  • typical excipients include, but are not limited to, water, acetone, ethanol, ethylene glycol, propylene glycol, butane-l,3-diol, isopropyl myristate, isopropyl palmitate, mineral oil, and mixtures thereof to form solutions, emulsions or gels, which are non-toxic and pharmaceutically acceptable.
  • Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired.
  • additional ingredients are well known in the art. See, e.g., Remington 's Pharmaceutical Sciences, 16 th and 18 th eds., Mack Publishing, Easton PA (1980 & 1990).
  • the H of a pharmaceutical composition or dosage form may also be adjusted to improve delivery of one or more active ingredients.
  • the polarity of a solvent carrier, its ionic strength, or tonicity can be adjusted to improve delivery.
  • Compounds such as stearates can also be added to pharmaceutical compositions or dosage forms to advantageously alter the
  • stearates can serve as a lipid vehicle for the formulation, as an emulsifying agent or surfactant, and as a delivery-enhancing or penetration-enhancing agent.
  • Different salts, hydrates or solvates of the active ingredients can be used to further adjust the properties of the resulting composition.
  • active ingredients are preferably not administered to a patient at the same time or by the same route of administration.
  • kits which, when used by the medical practitioner, can simplify the administration of appropriate amounts of active ingredients to a patient.
  • kits provided herein comprises a compound provided herein, or a pharmaceutically acceptable salt, solvate or hydrate thereof. Kits may further comprise additional active agents, including but not limited to those disclosed herein.
  • Kits provided herein may further comprise devices that are used to administer the active ingredients.
  • devices include, but are not limited to, syringes, drip bags, patches, and inhalers.
  • Kits may further comprise cells or blood for transplantation as well as pharmaceutically acceptable vehicles that can be used to administer one or more active ingredients.
  • the kit can comprise a sealed container of a suitable vehicle in which the active ingredient can be dissolved to form a particulate-free sterile solution that is suitable for parenteral administration.
  • Examples of pharmaceutically acceptable vehicles include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
  • aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection
  • water-miscible vehicles such as, but not limited to, ethyl alcohol
  • Antibodies that immunospecifically bind to CRBN include, but are not limited to, synthetic antibodies, monoclonal antibodies, recombinantly produced antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, intrabodies, single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.), camelized antibodies, Fab fragments, F(ab') fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies, and antigen- or epitope-binding fragments of any of the above.
  • synthetic antibodies monoclonal antibodies, recombinantly produced antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, intrabodies, single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.), camelized antibodies, Fab fragments, F(ab') fragments, disulf
  • antibodies provided herein include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds to a CRBN antigen.
  • the immunoglobulin molecules provided herein can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2) or subclass of immunoglobulin molecule.
  • an antibody provided herein is an IgG antibody, and, in certain embodiments, an IgGl or IgG4.
  • CRBN70 isolated CRBN antibody
  • the antibody is a polyclonal antibody.
  • the antibody is a monoclonal antibody.
  • the antibody is a rabbit polyclonal antibody.
  • the antibody is a rabbit monoclonal antibody.
  • the antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1). In another embodiment, the antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1), wherein the peptide is coupled to Keyhole Limpet Hemocyanin (KLH).
  • the antibody is a polyclonal antibody. In another embodiment, the antibody is a monoclonal antibody. In some embodiments, the antibody is a rabbit polyclonal antibody. In other embodiments, the antibody is a rabbit monoclonal antibody.
  • the antibody immunospecifically binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12).
  • the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:5, or the VH domain, VH CDRl, VH CDR2, and/or VH CDR3 thereof; and a light chain having the amino acid sequence depicted in SEQ ID NO:7, or the VL domain, VL CDRl, VL CDR2, and/or VL CDR3 thereof.
  • the antibody immunospecifically binds CRBN and comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:9, or the VH domain, VH CDRl, VH CDR2, and/or VH CDR3 thereof.
  • the antibody immunospecifically binds CRBN and comprises a light chain having the amino acid sequence depicted in SEQ ID NO: l 1, or the VL domain, VL CDRl, VL CDR2, and/or VL CDR3 thereof.
  • the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:9, or the VH domain, VH CDRl, VH CDR2, and/or VH CDR3 thereof; and a light chain having the amino acid sequence depicted in SEQ ID NO: l 1, or the VL domain, VL CDRl, VL CDR2, and/or VL
  • the antibody immunospecifically binds peptide 65-76
  • Variants and derivatives of antibodies include antibody fragments that retain the ability to specifically bind to an epitope.
  • Exemplary fragments include Fab fragments (an antibody fragment that contains the antigen-binding domain and comprises a light chain and part of a heavy chain bridged by a disulfide bond); Fab' (an antibody fragment containing a single anti- binding domain comprising an Fab and an additional portion of the heavy chain through the hinge region); F(ab') 2 (two Fab' molecules joined by interchain disulfide bonds in the hinge regions of the heavy chains; the Fab' molecules may be directed toward the same or different epitopes); a bispecific Fab (a Fab molecule having two antigen binding domains, each of which may be directed to a different epitope); a single chain Fab chain comprising a variable region, also known as, a sFv (the variable, antigen-binding determinative region of a single light and heavy chain of an antibody linked together by a chain of 10-25 amino acids); a disulf
  • Derivatives of antibodies also include one or more CDR sequences of an antibody combining site.
  • the CDR sequences may be linked together on a scaffold when two or more CDR sequences are present.
  • the anti-CRBN antibody comprises a single-chain Fv ("scFv").
  • scFvs are antibody fragments comprising the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain.
  • the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding.
  • antibodies that immunospecifically bind to a CRBN epitope comprising derivatives of the VH and VL chains described herein that
  • the derivatives include less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the original molecule.
  • the derivatives have conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.
  • an antibody that immunospecifically binds to a CRBN epitope comprises an amino acid sequence that is at least 35%, at least 40%>, at least 45%, at least 50%>, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%), at least 95%, or at least 99% identical to the amino acid sequence of CGN-6-1-1 1 OR CGN-6-1-1 1 , or an antigen-binding fragment thereof, such as a VH domain, VL domain, VH chain, or VL chain.
  • an antibody that immunospecifically binds to a CRBN epitope comprises an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%), at least 90%, at least 95%, or at least 99% identical to an amino acid sequence depicted in SEQ ID NOS:5, 7, 9 or 11.
  • an antibody that immunospecifically binds a CRBN antigen comprises an amino acid sequence of a VH chain and/or an amino acid sequence a VL chain encoded by a nucleotide sequence that hybridizes to (1) the complement of a nucleotide sequence encoding any one of the VH and/or VL chains depicted in SEQ ID NOS:5 or 9 (H chain) and/or SEQ ID NOS:7 or 1 1 (L chain) under stringent conditions (e.g., hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate (SSC) at about 45° C followed by one or more washes in 0.2xSSC/0.1%> SDS at about 50-65° C) under highly stringent conditions (e.g., hybridization to filter-bound nucleic acid in 6xSSC at about 45° C followed by one or more washes in O.
  • stringent conditions e.g., hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate
  • the anti-CRBN antibodies may be from any animal origin including birds and mammals ⁇ e.g., human, murine, donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken). In certain embodiments, the anti-CRBN antibodies are human or humanized monoclonal antibodies.
  • "human” antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from mice that express antibodies from human genes.
  • the anti-CRBN antibodies are fully human antibodies, such as fully human antibodies that immunospecifically bind a CRBN polypeptide, a CRBN polypeptide fragment, or a CRBN epitope.
  • fully human antibodies would be advantageous over fully mouse (or other full or partial non-human species antibodies), humanized antibodies, or chimeric antibodies to minimize the development of unwanted or unneeded side effects, such as immune responses directed toward non- fully human antibodies ⁇ e.g., anti-CRBN antibodies derived from other species) when administered to the subject.
  • Anti-CRBN antibodies provided herein may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a CRBN polypeptide or may be specific for both a CRBN polypeptide as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. In certain embodiments, the antibodies provided herein are monospecific for a given epitope of a CRBN polypeptide and do not immunospecifically bind to other epitopes.
  • anti-CRBN antibodies that immunospecifically bind to a CRBN epitope ⁇ e.g., EEFHGRTLHDDD (SEQ ID NO: l) or peptide 65-76 of human CRBN (SEQ ID NO: 12)) or a CRBN antigen, as well as methods of use thereof.
  • Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding an anti-CRBN provided herein, including, for example, site- directed mutagenesis and PCR-mediated mutagenesis which results in amino acid substitutions.
  • a "conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art.
  • amino acids with basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g., aspartic acid, glutamic acid
  • uncharged polar side chains e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine
  • nonpolar side chains e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • beta-branched side chains e.g., threonine, valine, isoleucine
  • aromatic side chains e.g., tyrosine, phenylalanine, tryptophan, histidine
  • mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.
  • the antibody is a fully human anti-human CRBN antibody, such as a fully human monoclonal antibody.
  • Fully human antibodies may be produced by any method known in the art. Exemplary methods include immunization with a CRBN antigen (any CRBN polypeptide capable of eliciting an immune response, and optionally conjugated to a carrier) of transgenic animals (e.g., mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production; see, e.g., Jakobovits et al., (1993) Proc. Natl. Acad.
  • Fully human antibodies may be generated through the in vitro screening of phage display antibody libraries; see e.g., Hoogenboom et al., J. Mol. Biol, 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991), incorporated herein by reference.
  • phage display antibody libraries see e.g., Hoogenboom et al., J. Mol. Biol, 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991), incorporated herein by reference.
  • Various antibody-containing phage display libraries have been described and may be readily prepared by one skilled in the art. Libraries may contain a diversity of human antibody sequences, such as human Fab, Fv, and scFv fragments, that may be screened against an appropriate target.
  • the anti-CRBN antibodies include antibodies that are chemically modified, i.e., by the covalent attachment of any type of molecule to the antibody.
  • the antibody derivatives include antibodies that have been chemically modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formulation, metabolic synthesis of tunicamycin, etc. Additionally, the antibody may contain one or more non-classical amino acids.
  • anti-CRBN antibodies that immunospecifically bind to a CRBN antigen comprise a framework region known to those of skill in the art ⁇ e.g., a human or non- human fragment).
  • the framework region may, for example, be naturally occurring or consensus framework regions.
  • the framework region of an anti-CRBN antibody is human (see, e.g., Chothia et ah, 1998, J. Mol. Biol. 278:457-479 for a listing of human
  • the anti-CRBN antibodies provided herein are chimeric or humanized antibodies.
  • the antibodies provided herein comprise human framework regions with one or more amino acid substitutions at one, two, three or more of the following residues: (a) rare framework residues that differ between the murine antibody framework (i.e., donor antibody framework) and the human antibody framework (i.e., acceptor antibody framework); (b) Venier zone residues when differing between donor antibody framework and acceptor antibody framework; (c) interchain packing residues at the VH/VL interface that differ between the donor antibody framework and the acceptor antibody framework; (d) canonical residues which differ between the donor antibody framework and the acceptor antibody framework sequences, particularly the framework regions crucial for the definition of the canonical class of the murine antibody CDR loops; (e) residues that are adjacent to a CDR; (g) residues capable of interacting with the antigen; (h) residues capable of interacting with the CDR; and (i) contact residues between the VH domain and the following residues: (a)
  • fusion proteins comprising an anti-CRBN antibody are provided herein that immunospecifically binds to a CRBN antigen and a heterologous polypeptide.
  • CRBN antibodies provided herein and derivatives and analogs thereof, which immunospecifically bind to a CRBN antigen can be used for diagnostic purposes to detect, diagnose, or monitor CRBN expression levels or a CRBN-mediated disease in a patient.
  • provided herein are methods of utilizing a CRBN antibody to measure expression levels of CRBN in patient tumor or host cells, to predict clinical response to therapy with thalidomide, lenalidomide, pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof. Also provided herein are methods of utilizing a CRBN antibody provided herein to measure expression levels of CRBN in patient tumor or host cells, to monitor clinical response to therapy with thalidomide,
  • lenalidomide pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6- dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
  • diagnostic assays for diagnosing a CRBN-mediated disease comprising: (a) assaying for the level of a CRBN antigen in cells or a tissue sample of an individual using one or more antibodies of the invention that immunospecifically bind to a
  • CRBN antigen e.g., levels in normal tissue samples
  • a control level e.g., levels in normal tissue samples
  • Antibodies provided herein can be used to assay CRBN antigen levels in a biological sample using classical immunohistological methods as described herein or as known to those of skill in the art ⁇ e.g., see Jalkanen et ah, 1985, J. Cell. Biol. 101 :976-985; and Jalkanen et ah, 1987, J. Cell . Biol. 105:3087-3096).
  • Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay
  • ELISA enzyme label
  • radioisotopes such as iodine ( 125 I, 121 I), carbon ( 14 C), sulfur ( 35 S), tritium ( 3 H), indium ( 121 In), and technetium ( 99 Tc)
  • luminescent labels such as luminol
  • fluorescent labels such as fluorescein and rhodamine, and biotin.
  • the method comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled antibody that immunospecifically binds to a CRBN antigen; b) waiting for a time interval following the administering for permitting the labeled antibody to preferentially concentrate at sites in the subject where the CRBN antigen is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled antibody in the subject, such that detection of labeled antibody above the background level indicates that the subject has increased CRBN expression.
  • Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.
  • the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images.
  • the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99 Tc.
  • the labeled antibody will then preferentially accumulate at the location of cells which contain the specific protein.
  • In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments.” (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B.A. Rhodes, eds., Masson Publishing Inc. (1982).
  • the time interval following the administration for permitting the labeled antibody to preferentially concentrate at sites in the subject and for unbound labeled antibody to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days. Presence of the labeled molecule can be detected in the subject using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.
  • CT computed tomography
  • PET position emission tomography
  • MRI magnetic resonance imaging
  • sonography sonography
  • the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Patent No. 5,441,050).
  • the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument.
  • the molecule is labeled with a positron emitting metal and is detected in the patient using positron emission-tomography.
  • the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).
  • MRI magnetic resonance imaging
  • Triethylamine (2.9 g, 28.6 mmol) was added dropwise to a stirred mixture of methyl 2- bromomethyl-3-nitrobenzoate (3.5 g, 13.0 mmol) and L-glutamine t-butyl ester hydrochloride (3.1 g, 13.0 mmol) in tetrahydrofuran (90 mL). The mixture was heated to reflux for 24 hours. To the cooled mixture was added methylene chloride (150 mL) and the mixture was washed with water (2 x 40 mL), brine (40 mL) and dried.
  • Hydrogen chloride gas was bubbled into a stirred 5°C solution of t-butyl N-(l-oxo-4-nitro- isoindolin-2-yl)-L-glutamine (3.6 g, 9.9 mmol) in methylene chloride (60 mL) for 1 hour. The mixture was then stirred at room temperature for another hour. Ether (40 mL) was added and the resulting mixture was stirred for 30 minutes.
  • the mixture was poured into ice water (200 mL) and the aqueous layer was extracted with methylene chloride (40 mL). The methylene chloride solution was washed with water (2 x 60 mL), brine (60 mL) and dried.
  • 3-(4-Amino-l-oxo-l,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione may also be prepared by methods known in the art, for example, as provided in Drugs of the Future, 2003, 28(5): 425- 431, the entirety of which is incorporated by reference.
  • carboxybenzyloxy-L-glutamine can be cyclized by treating with SOCl 2 in ⁇ , ⁇ -dimethylformamide at -70°C to 0°C for 1 hour to form the product).
  • the reaction mixture was diluted with CHCI 3 and washed with 5% Na 2 C03, dried over anhydrous Na 2 S0 4 , filtered, and evaporated to give 2.5 g (90% yield) S(-)-(3- benzyloxycarbonylamino)-glutarimide).
  • the two enantiomers were resolved by chiral HPLC column Welk-01 (10 mm x 750 mm) and eluted with CH3CN/MeOH/H20 1 : 1 :5 mixture.
  • the retention time for the S(-) enantiomer was 33.74 minutes and for the R(+) enantiomer 35.62 minutes at a flow rate of 2 mL/min at 240 nm, respectively.
  • Compound A coupled to Affigel-10 (10 ⁇ drug per mg Affigel) was used for affinity purification experiments.
  • DDB1 DNA damage binding protein 1 (XPCE, human) was affinity purified from Jurkat extracts using Compound A-immobilized beads. DDB1 was highly represented in the eluted fractions (108 peptides) compare with for example with the second proteins most represented Glycogen branching enzyme (55 peptides). DDB1 directly interacts with CRBN and could had been pull-down by virtue of its binding to CRBN.
  • XPCE DNA damage binding protein 1
  • CRBN cereblon
  • H929 and U266B1 The role of cereblon (CRBN) in lenalidomide MOA was confirmed using knock-down experiments in two lenalidomide sensitive multiple myeloma cell lines, H929 and U266B1. It was found that down regulation of CRBN abrogates drug-induced cell cycle arrest, activiation of tumor suppressors, inhibition of oncogenes and global changes in gene expression profiles and ubiquitination.
  • Drugs such as lenalidomide and pomalidomide have direct anti-proliferative activity against MM cells by inducing cell cycle arrest in Gl phase, followed by a decrease in viability.
  • H929 and U266B1 cells two sensitive myeloma lines, were transfected with CRBN-siRNAs or control siRNAs for 24, 48, 72 and 96 hours. Cells were treated 24 h after transfection with DMSO
  • CRBN siRNAs knocked down CRBN was confirmed by RT-PCR and Western blot using the
  • CRBN70 antibody ( Figure 1). Treatment with lenalidomide and pomalidomide affected neither mRNA nor protein expression of CRBN significantly.
  • Lenalidomide and pomalidomide induced a delay of cell cycle progression, measured as the decrease of the number of cells in S phase, of 40 % and 50 % respectively in control mock and negative control siRNA-transfected cells (average inhibition of 3 days of treatment)
  • H929 cells were transfected with mock, negative control siRNA and CRBN-siRNA-7 for 24, 48, 72 and 96 h. Cells were treated 24 h after transfection with DMSO (0.1 %), pomalidomide ( ⁇ ), lenalidomide (10 ⁇ ) or 3- (5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione ("Compound B”) for 1, 2, 3 days and the effect on cell cycle and proliferation investigated.
  • DMSO 0.1 %
  • pomalidomide
  • lenalidomide 10 ⁇
  • Compound B 3- (5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione
  • Lenalidomide, pomalidomide and Compound B induced a delay of cell cycle progression, measured as the decrease of the number of cells in S phase, in control mock and negative control siRNA-transfected cells after 72 h treatment (Figure 2C).
  • Knockdown of CRBN markedly abrogated immunomodulatory drugs- induced delay in cell cycle progression in H929 cells ( Figure 2C) from of 50 to 4% for lenalidomide, from 70 to 15% for pomalidomide, and from 65 to 22% for Compound B.
  • U266B1 cells were transfected with mock, negative control siRNA, CRBN-siRNA-7 and CRBN-siRNA-11 for 24, 48, 72 and 96 h ( Figure 3A). Cells were treated 24 h after transfection with DMSO (0.1 %), pomalidomide ( ⁇ ) and lenalidomide (10 ⁇ ) for 1, 2, 3 days and the effect on mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p2i wAF-i were evaluated.
  • CDK cyclin-dependent kinase
  • the cell cycle arrest in Gl phase by the drugs coincides with a reduction of tumor suppressor, pRb, phosphorylation and the oncogene and myeloma survival factor IRF4.
  • Gene expression profile using microarray technology identified 759 or 609 genes differentially modulated in negative control siRNA-transfected U266B1 cells treated with pomalidomide (1 ⁇ ) or lenalidomide (10 ⁇ ) compared to DMSO treated control ( ⁇ 1.7 fold; P ⁇ 0.05 ANOVA p-value) ( Figures 5A & 5B).
  • GO Gene Ontology
  • lenalidomide-based therapies Although the development of lenalidomide-based therapies has improved significantly clinical responses, most multiple myeloma patients eventually relapse or become refractory to their therapeutic regimens. Multiple myeloma cell lines resistant to the anti-proliferative effects of lenalidomide have been developed in order to evaluate the potential mechanisms responsible for lenalidomide resistance.
  • CRBN Due to the relevance of CRBN for the anti-proliferative response of lenalidomide, pomalidomide and other immunomodulatory the levels of CRBN protein was compared in matched pairs of parental sensitive lines with acquired lenalidomide- or pomalidomide-resistance cells. Consistent with CRBN being required for the anti-proliferative activity of lenalidomide and pomalidomide, the levels of CRBN protein were significantly lower in the pomalidomide- resistant cells line DF15R and the lenalidomide-resistant cells, H929 RlO-1, H929 R10-2, H929
  • the target genes CRBN, DDB1, and GSK3B were sequenced from a variety of human cell lines and primary cells. Sequencing of the CRBN gene identified mutations in lenalidomide resistant human cell lines which are absent in parental cells.
  • T > TG indicates a heterozygous change from reference T to T and G.
  • T > G indicates a homozygous change from reference T to G.
  • c refers to the coding sequence while 'TVS” refers to an intron variant.
  • the "Amino Acid Change” column uses similar notation to the "Mutation Call” column.
  • ANBL-6 The multiple myeloma cell line, ANBL-6, showed a mutation in CRBN of the lenalidomide-resistant line that was not seen in the wild type.
  • ANBL-6.wt was treated only with DMSO and the CRBN coding sequence exactly matched the reference.
  • Rl OR which has resistance to 10 ⁇ lenalidomide, a SNP in the coding region c.745C>CA caused an amino acid change 249D>YD in the protein. This amino acid change mapped to the DDB1 binding domain of CRBN.
  • a silent mutation found in the CRBN coding region of HepG2 and JeKo-1 was heterozygous c.735A>AG with KMS-12-BM as homozygous c.735A>G.
  • the cell line, OPM2 had a different silent mutation in the coding region of CRBN, c.1209C>CT. No amino acid changes resulted from these SNPs.
  • the sequencing results for DDB1 uncovered a SNP in the coding region c.909T>TA which resulted in an amino acid change 303E>ED in both ANBL-6.wt and ANBL-6.R10R cell lines.
  • a different SNP was found in the Jurkat cell line, with a mutation c.2143C>CT in the DDB1 coding region that changed the amino acid sequence 715V>VI.
  • a silent mutation found in the DDB1 coding region of ANBL-6.wt, ANBL-6. Rl OR, and SH-SY5Y at c. l53G>GA did not change the amino acid sequence.
  • a sample of PBMC from a healthy donor also had a silent mutation in the DDB1 coding region c.2265G>GA that did not change the amino acid sequence.
  • One GSK3P mutation was found in the PMBC sample.
  • the mutation in the coding region c.1187C>CT resulted in an amino acid change 396R>RQ. This mutation did not map to the kinase domain.
  • Other mutations are shown in Table 11. Most of these have low coverage. This could be due to primers targeting these regions and/or sequencing error.
  • IVS1148+21 1148+22insA IVS528-29 528-
  • immunomodulatory drugs on global levels of ubiquitination. H929 cells were treated with lenalidomide (1 ⁇ ), pomalidomide (1 ⁇ ) or proteasome inhibitor MG132. After 30 minutes cells were process for immunofluorescence. Global levels of K63-linked polyubiquitination were quantified by Cellomics. As shown in Figures 7A & 7B, immunomodulatory drugs decrease total K48-linked polyubiquitination but not K-63-linked ubiquitination in H929.
  • ubiquitinated peptides were significantly up-regulated by lenalidomide and pomalidomide alone, or with MG132 at 1 hour or 4 hours. These peptides correspond to 176 unique proteins. Top few groups are: nucleosome, chromatin, protein-DNA complex assembly, Histone H2A. Among the 176 proteins, we found five proteins that belong to "ubiquitin-protein ligase activity" category, they are MDM2, HERC2, UBE2D3 (only by pomalidomide), UBE2N (lenalidomide only), UBE2M (both). Results for hits categorized by conditions are shown in Figures 8 & 9
  • Cul4A knockdown efficiency prior to drug treatment was measured.
  • Cul4A gene expression was knocked down by 82% and 76% by Cul4A siRNA- 1 and Cul4A + Cul4B siRNA, respectively ( Figure 13 A).
  • Cul4B gene expression was suppressed by 70%> and 63%> byCul4B and Cul4A + Cul4B siRNA, respectively.
  • the individual knock down of Cul4A or Cul4B had no effect on T cell TNF-a or IL-2 production induced by 10 ⁇ lenalidomide, pomalidomide or Compound B ( Figures 13 B & C).
  • DLBCL diffuse large B-cell lymphoma
  • the primers were used to amplify the CRBN gene from a cDNA library.
  • the product was gel purified and treated with T4 DNA polymerase in the presence of TTP only to make single-stranded ends compatible for ligation independent cloning.
  • the CRBN DNA was then annealed to pBV-ZZ-HT-LIC to create CRBN 034 ( Figure 15 A).
  • the DDBl gene was amplified from a cDNA library, gel purified, and treated with T4 polymerase in the presence of TTP. The DDBl gene was then annealed to pBV-notag-LIC to create the plasmid DDBl 004 ( Figure 15B).
  • constructs could were tested for expression in insect cells.
  • Recombinants pBV-HT- LIC and pBV-GST-LIC plasmids were transformed into DHlOBac to produced bacmids.
  • Integrity of the recombination was followed by a blue -white screen and PCR.
  • the recombinant bacmids were used to transfect 9 x 105 Sf9 adherent cells per well in serum free-Grace media. After the transfection, fresh Grace media containing antibiotics and glutamine was added.
  • FiNRNPR were commonly decreased in abundance by Rev and Pom in U266 and Compound B in T cells.
  • Proteins in common with lenalidomide, pomalidomide and Compound B IKZF3, RPL19, PCMl, NEDD8, GNB2L1, and FiNRNPR.

Abstract

Uses of the protein cereblon as a predictor of clinical sensitivity to cancer, inflammatory diseases, and patient response to drug treatment.

Description

METHODS FOR THE TREATMENT OF CANCER AND INFLAMMATORY
DISEASES USING CEREBLON AS A PREDICTOR
The present application claims priority to U.S. Provisional Patent Application Nos.
61/481,066, filed April 29, 2011; 61/511,986, filed July 26, 2011; and 61/579,600, filed
December 22, 2011; the entirety of each of which is incorporated herein by reference.
1. FIELD
Provided herein are uses of the protein cereblon as a predictor of clinical sensitivity to cancer and inflammatory diseases, and patient response to drug treatment.
2. BACKGROUND
2.1 Pathobiology of Cancer
Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, or lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). Clinical data and molecular biologic studies indicate that cancer is a multistep process that begins with minor preneoplastic changes, which may under certain conditions progress to neoplasia. The neoplastic lesion may evolve clonally and develop an increasing capacity for invasion, growth, metastasis, and heterogeneity, especially under conditions in which the neoplastic cells escape the host's immune surveillance. Roitt, I., Brostoff, J and Kale, D., Immunology, 17.1-17.12 (3rd ed., Mosby, St. Louis, Mo., 1993).
There is an enormous variety of cancers which are described in detail in the medical literature. Examples include cancers of the lung, colon, rectum, prostate, breast, brain, blood and intestine. The incidence of cancer continues to climb as the general population ages, as new cancers develop, and as susceptible populations {e.g., people infected with AIDS or excessively exposed to sunlight) grow. However, options for the treatment of cancer are limited. For example, in the case of blood cancers {e.g., multiple myeloma), few treatment options are available, especially when conventional chemotherapy fails and bone -marrow transplantation is not an option. A tremendous demand therefore exists for new methods and compositions that can be used to treat patients with cancer. Many types of cancers are associated with new blood vessel formation, a process known as angiogenesis. Several of the mechanisms involved in tumor-induced angiogenesis have been elucidated. The most direct of these mechanisms is the secretion by the tumor cells of cytokines with angiogenic properties. Examples of these cytokines include acidic and basic fibroblastic growth factor (a,b-FGF), angiogenin, vascular endothelial growth factor (VEGF), and TNF-a. Alternatively, tumor cells can release angiogenic peptides through the production of proteases and the subsequent breakdown of the extracellular matrix where some cytokines are stored (e.g., b-FGF). Angiogenesis can also be induced indirectly through the recruitment of inflammatory cells (particularly macrophages) and their subsequent release of angiogenic cytokines (e.g., TNF-a, b-FGF).
Lymphoma refers to cancers that originate in the lymphatic system. Lymphoma is characterized by malignant neoplasms of lymphocytes— B lymphocytes and T lymphocytes (i.e., B-cells and T-cells). Lymphoma generally starts in lymph nodes or collections of lymphatic tissue in organs including, but not limited to, the stomach or intestines. Lymphoma may involve the marrow and the blood in some cases. Lymphoma may spread from one site to other parts of the body.
The treatment of various forms of lymphomas are described, for example, in U.S. patent no. 7,468,363, the entirety of which is incorporated herein by reference. Such lymphomas include, but are not limited to, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous B-cell lymphoma, activated B-cell lymphoma, diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), follicular center lymphoma, transformed lymphoma, lymphocytic lymphoma of intermediate differentiation, intermediate lymphocytic lymphoma (ILL), diffuse poorly differentiated lymphocytic lymphoma (PDL), centrocytic lymphoma, diffuse small-cleaved cell lymphoma (DSCCL), peripheral T-cell lymphomas (PTCL), cutaneous T-Cell lymphoma and mantle zone lymphoma and low grade follicular lymphoma.
Non-Hodgkin's lymphoma (NHL) is the fifth most common cancer for both men and women in the United States, with an estimated 63,190 new cases and 18,660 deaths in 2007. Jemal A, et al., CA Cancer J Clin 2007; 57(l):43-66. The probability of developing NHL increases with age and the incidence of NHL in the elderly has been steadily increasing in the past decade, causing concern with the aging trend of the US population. Id. Clarke C A, et al., Cancer 2002;
94(7):2015-2023. Diffuse large B-cell lymphoma (DLBCL) accounts for approximately one-third of non- Hodgkin's lymphomas. While some DLBCL patients are cured with traditional chemotherapy, the remainder die from the disease. Anticancer drugs cause rapid and persistent depletion of lymphocytes, possibly by direct apoptosis induction in mature T and B cells. See K. Stahnke. et al, Blood 2001, 98:3066-3073. Absolute lymphocyte count (ALC) has been shown to be a prognostic factor in follicular non-Hodgkin's lymphoma and recent results have suggested that ALC at diagnosis is an important prognostic factor in diffuse large B-cell lymphoma.
The diffuse large-B-cell lymphomas (DLBCL) can be divided into distinct molecular subtypes according to their gene profiling patterns: germinal-center B-cell-like DLBCL (GCB-DLBCL), activated B-cell-like DLBCL (ABC-DLBCL), and primary mediastinal B-cell lymphoma
(PMBL) or unclassified type. These subtypes are characterized by distinct differences in survival, chemo-responsiveness, and signaling pathway dependence, particularly the NF-κΒ pathway. See D. Kim et al, Journal of Clinical Oncology, 2007 ASCO Annual Meeting Proceedings Part I. Vol 25, No. 18S (June 20 Supplement), 2007: 8082. See Bea S, et al, Blood 2005; 106: 3183-90; Ngo V.N. et al, Nature 2011; 470: 115-9. Such differences have prompted the search for more effective and subtype-specific treatment strategies in DLBCL.
Leukemia refers to malignant neoplasms of the blood-forming tissues. Various forms of leukemias are described, for example, in U.S. patent no. 7,393,862 and U.S. provisional patent application no. 60/380,842, filed May 17, 2002, the entireties of which are incorporated herein by reference. Although viruses reportedly cause several forms of leukemia in animals, causes of leukemia in humans are to a large extent unknown. The Merck Manual, 944-952 (17th ed. 1999). Transformation to malignancy typically occurs in a single cell through two or more steps with subsequent proliferation and clonal expansion. In some leukemias, specific chromosomal translocations have been identified with consistent leukemic cell morphology and special clinical features {e.g., translocations of 9 and 22 in chronic myelocytic leukemia, and of 15 and 17 in acute promyelocytic leukemia). Acute leukemias are predominantly undifferentiated cell populations and chronic leukemias more mature cell forms.
Acute leukemias are divided into lymphoblastic (ALL) and non-lymphoblastic (ANLL) types. The Merck Manual, 946-949 (17th ed. 1999). They may be further subdivided by their
morphologic and cytochemical appearance according to the French- American-British (FAB) classification or according to their type and degree of differentiation. The use of specific B- and T-cell and myeloid-antigen monoclonal antibodies are most helpful for classification. ALL is predominantly a childhood disease which is established by laboratory findings and bone marrow examination. ANLL, also known as acute myelogenous leukemia or acute myeloid leukemia (AML), occurs at all ages and is the more common acute leukemia among adults; it is the form usually associated with irradiation as a causative agent.
Chronic leukemias are described as being lymphocytic (CLL) or myelocytic (CML). The Merck Manual, 949-952 (17th ed. 1999). CLL is characterized by the appearance of mature
lymphocytes in blood, bone marrow, and lymphoid organs. The hallmark of CLL is sustained, absolute lymphocytosis (> 5,000/μί) and an increase of lymphocytes in the bone marrow. Most CLL patients also have clonal expansion of lymphocytes with B-cell characteristics. CLL is a disease of middle or old age. In CML, the characteristic feature is the predominance of granulocytic cells of all stages of differentiation in blood, bone marrow, liver, spleen, and other organs. In the symptomatic patient at diagnosis, the total white blood cell (WBC) count is usually about 200,000/μί, but may reach Ι,ΟΟΟ,ΟΟΟ/μί. CML is relatively easy to diagnose because of the presence of the Philadelphia chromosome.
Bone marrow stromal cells are well known to support CLL disease progression and resistance to chemotherapy. Disrupting the interactions between CLL cells and stromal cells is an additional target of CLL chemotherapy.
In addition to the acute and chronic categorization, neoplasms are also categorized based upon the cells giving rise to such disorder into precursor or peripheral. See e.g., U.S. patent publication no. 2008/0051379, the disclosure of which is incorporated herein by reference in its entirety. Precursor neoplasms include ALLs and lymphoblastic lymphomas and occur in lymphocytes before they have differentiated into either a T- or B-cell. Peripheral neoplasms are those that occur in lymphocytes that have differentiated into either T- or B-cells. Such peripheral neoplasms include, but are not limited to, B-cell CLL, B-cell prolymphocytic leukemia, lymphoplasmacytic lymphoma, mantle cell lymphoma, follicular lymphoma, extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue, nodal marginal zone lymphoma, splenic marginal zone lymphoma, hairy cell leukemia, plasmacytoma, diffuse large B-cell lymphoma and Burkitt lymphoma. In over 95 percent of CLL cases, the clonal expansion is of a B cell lineage. See Cancer: Principles & Practice of Oncology (3rd Edition) (1989) (pp. 1843-1847). In less than 5 percent of CLL cases, the tumor cells have a T-cell phenotype. Notwithstanding these classifications, however, the pathological impairment of normal hematopoiesis is the hallmark of all leukemias.
Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow. Normally, plasma cells produce antibodies and play a key role in immune function. However, uncontrolled growth of these cells leads to bone pain and fractures, anemia, infections, and other complications.
Multiple myeloma is the second most common hematological malignancy, although the exact causes of multiple myeloma remain unknown. Multiple myeloma causes high levels of proteins in the blood, urine, and organs, including but not limited to M-protein and other
immunoglobulins (antibodies), albumin, and beta-2-microglobulin. M-protein, short for monoclonal protein, also known as paraprotein, is a particularly abnormal protein produced by the myeloma plasma cells and can be found in the blood or urine of almost all patients with multiple myeloma.
Skeletal symptoms, including bone pain, are among the most clinically significant symptoms of multiple myeloma. Malignant plasma cells release osteoclast stimulating factors (including IL-1, IL-6 and TNF) which cause calcium to be leached from bones causing lytic lesions;
hypercalcemia is another symptom. The osteoclast stimulating factors, also referred to as cytokines, may prevent apoptosis, or death of myeloma cells. Fifty percent of patients have radio logically detectable myeloma-related skeletal lesions at diagnosis. Other common clinical symptoms for multiple myeloma include polyneuropathy, anemia, hyperviscosity, infections, and renal insufficiency.
Bone marrow stromal cells are well known to support multiple myeloma disease progression and resistance to chemotherapy. Disrupting the interactions between multiple myeloma cells and stromal cells is an additional target of multiple myeloma chemotherapy.
Myelodysplastic syndrome (MDS) refers to a diverse group of hematopoietic stem cell disorders. MDS is characterized by a cellular marrow with impaired morphology and maturation
(dysmyelopoiesis), peripheral blood cytopenias, and a variable risk of progression to acute leukemia, resulting from ineffective blood cell production. See The Merck Manual 953 (17th ed. 1999) and List et al, 1990, J Clin. Oncol. 8:1424. The treatment of MDS using
immunomodulatory compounds is described in U.S. Patent Publication No. 2004/0220144, the entirety of which is hereby incorporated by reference. Solid tumors are abnormal masses of tissue that may, but usually do not contain cysts or liquid areas. Solid tumors may be benign (not cancer), or malignant (cancer). Different types of solid tumors are named for the type of cells that form them. Examples of types solid tumors include, but are not limited to malignant melanoma, adrenal carcinoma, breast carcinoma, renal cell cancer, carcinoma of the pancreas, non-small-cell lung carcinoma (NSCLC) and carcinoma of unknown primary. Drugs commonly administered to patients with various types or stages of solid tumors include, but are not limited to, Celebrex, etoposide, cyclophosphamide, docetaxel, apecitabine, IFN, tamoxifen, IL-2, GM-CSF, or a combination thereof.
While patients who achieve a complete remission after initial therapy have a good chance for cure, less than 10% of those who do not respond or relapse achieve a cure or a response lasting longer than 3 years. See Cerny T, et al., Ann Oncol 2002; 13 Suppl 4:211-216.
Rituximab is known to deplete normal host B cells. See M. Aklilu et al., Annals of Oncology 15: 1109-1114, 2004. The long-term immunologic effects of B cell depletion with rituximab and the characteristics of the reconstituting B cell pool in lymphoma patients are not well defined, despite the widespread usage of this therapy. See Jennifer H. Anolik et al., Clinical Immunology, vol. 122, issue 2, February 2007, pages 139-145.
The approach for patients with relapsed or refractory disease relies heavily on experimental treatments followed by stem cell transplantation, which may not be appropriate for patients with a poor performance status or advanced age. Therefore, a tremendous demand exists for new methods that can be used to treat patients with NHL.
The link between cancer an altered cellular metabolism has been well established. See Cairns, R.A., et al. Nature Rev., 2011, 11 :85-95. Understanding tumor cell metabolism and the associated genetic changes thereof may lead to the identification of improved methods of cancer treatment. Id. For example, tumor cell survival and proliferation via increased glucose metabolism has been linked to the PIK3 pathway, whereby mutations in tumor suppressor genes such as PTEN activate tumor cell metabolism. Id. AKT1 (a.k.a., PKB) stimulates glucose metabolism associated with tumor cell growth by various interactions with PFKFB3, ENTPD5, mTOR and TSC2 (a.k.a., tuberin). Id.
Transcription factors HIF1 and HIF2 are largely responsible for cellular response to low oxygen conditions often associated with tumors. Id. Once activated, HIF1 promotes tumor cell capacity to carry out glycolysis. Id. Thus, inhibition of HIF1 may slow or reverse tumor cell metabolism. Activation of HIF1 has been linked to PI3K, tumor suppressor proteins such as VHL, succinate dehydrogenase (SDH) and fumarate hydratase. Id. The oncogenic transcription factor MYC has also been linked to tumor cell metabolism, specifically glycolysis. Id. MYC also promotes cell proliferation by glutamine metabolic pathways. Id.
AMP-activated protein kinase (AMPK) functions as a metabolic check point which tumor cells must overcome in order to proliferate. Id. Several mutations have been identified which suppress AMPK signaling in tumor cells. See Shackelford, D.B. & Shaw, R.J., Nature Rev. Cancer, 2009, 9: 563-575. STK11 has been identified as a tumor suppressor gene related to the role of AMPK. See Cairns, R.A., et al. Nature Rev., 2011, 11 :85-95.
The transcription factor p53, a tumor suppressor, also has an important role in the regulation of cellular metabolism. Id. The loss of p53 in tumor cells may be a significant contributor to changes in tumor cell metabolism to the glycolytic pathway. Id. The OCT1 transcription factor, another potential target for chemotherapeutics, may cooperate with p53 in regulating tumor cell metabolism. Id.
Pyruvate kinate M2 (PKM2) promotes changes in cellular metabolism which confer metabolic advantages to cancer cells by supporting cell proliferation. Id. For example, lung cancer cells which express PKM2 over PKMl have been found to have such an advantage. Id. In the clinic, PKM2 has been identified as being overexpressed in a number of cancer types. Id. Thus PKM2 may be a useful biomarker for the early detection of tumors.
Mutations in isocitrate dehydrogenases IDH1 and IDH2 have been linked to tumorigenesis, specifically, in glioblastoma and acute myeloid leukemia. See Mardis, E.R. et al., N. Engl. J. Med, 2009, 361 : 1058-1066; Parsons, D.W. et al, Science, 2008, 321 : 1807-1812.
The incidence of cancer continues to climb as the general population ages, as new cancers develop, and as susceptible populations {e.g., people infected with AIDS, the elderly or excessively exposed to sunlight) grow. A tremendous demand therefore exists for new methods, treatments and compositions that can be used to treat patients with cancer including but not limited to those with lymphoma, NHL, multiple myeloma, AML, leukemias, and solid tumors.
A variety of other diseases and disorders are also associated with, or characterized by, undesired angiogenesis. For example, enhanced or unregulated angiogenesis has been implicated in a number of diseases and medical conditions including, but not limited to, ocular neovascular diseases, choroidal neovascular diseases, retina neovascular diseases, rubeosis (neovascularization of the angle), viral diseases, genetic diseases, inflammatory diseases, allergic diseases, fibrosis, arthritis and autoimmune diseases. Examples of such diseases and conditions include, but are not limited to: diabetic retinopathy; retinopathy of prematurity; corneal graft rejection; neovascular glaucoma; retrolental fibroplasia; and proliferative vitreoretinopathy.
Accordingly, compounds that can control and/or inhibit unwanted angiogenesis or inhibit the production of certain cytokines, including TNF-a, may be useful in the treatment and prevention of various diseases and conditions.
2.2 Inflammatory Diseases
Inflammation plays a fundamental role in host defenses and the progression of immune- mediated diseases. The inflammatory response is initiated in response to injury (e.g., trauma, ischemia, and foreign particles) and infection (e.g., bacterial or viral infection) by a complex cascade of events, including chemical mediators (e.g., cytokines and prostaglandins) and inflammatory cells (e.g., leukocytes). The inflammatory response is characterized by increased blood flow, increased capillary permeability, and the influx of phagocytic cells. These events result in swelling, redness, warmth (altered heat patterns), and pus formation at the site of injury or infection.
Cytokines and prostaglandins control the inflammatory response, and are released in an ordered and self-limiting cascade into the blood or affected tissues. This release of cytokines and prostaglandins increases the blood flow to the area of injury or infection, and may result in redness and warmth. Some of these chemicals cause a leak of fluid into the tissues, resulting in swelling. This protective process may stimulate nerves and cause pain. These changes, when occurring for a limited period in the relevant area, work to the benefit of the body.
Tumor necrosis factor alpha (TNF-a) is a cytokine that is released primarily by mononuclear phagocytes in response to immunostimulators. TNF-a is capable of enhancing most cellular processes, such as differentiation, recruitment, proliferation, and proteolytic degradation. At low levels, TNF-a confers protection against infective agents, tumors, and tissue damage. But TNF-a also has a role in many diseases. When administered to mammals or humans, TNF-a causes or aggravates inflammation, fever, cardiovascular effects, hemorrhage, coagulation, and acute phase responses similar to those seen during acute infections and shock states. Enhanced or unregulated TNF-a production has been implicated in a number of diseases and medical conditions, for example, cancers, such as solid tumors and blood-borne tumors; heart disease, such as congestive heart failure; and viral, genetic, inflammatory, allergic, and autoimmune diseases.
Adenosine 3',5'-cyclic monophosphate (cAMP) also plays a role in many diseases and conditions, such as but not limited to asthma and inflammation, and other conditions (Lowe and Cheng, Drugs of the Future, 17(9), 799-807, 1992). It has been shown that the elevation of cAMP in inflammatory leukocytes inhibits their activation and the subsequent release of inflammatory mediators, including TNF-a and NF-κΒ. Increased levels of cAMP also leads to the relaxation of airway smooth muscle.
A delicate well-balanced interplay between the humoral and cellular immune elements in the inflammatory response enables the elimination of harmful agents and the initiation of the repair of damaged tissue. When this delicately balanced interplay is disrupted, the inflammatory response may result in considerable damage to normal tissue and may be more harmful than the original insult that initiated the reaction. In these cases of uncontrolled inflammatory responses, clinical intervention is needed to prevent tissue damage and organ dysfunction. Diseases such as psoriasis, rheumatoid arthritis, osteoarthritis, psoriatic arthritis, Crohn's disease, asthma, allergies or inflammatory bowel disease, are characterized by chronic inflammation.
Inflammatory diseases such as arthritis, related arthritic conditions (e.g., osteoarthritis, rheumatoid arthritis, and psoriatic arthritis), inflammatory bowel disease (e.g., Crohn's disease and ulcerative colitis), sepsis, psoriasis, atopic dermatitis, contact dermatitis, and chronic obstructive pulmonary disease, chronic inflammatory pulmonary diseases are also prevalent and problematic ailments. Enhanced or unregulated TNF-a production plays a central role in the inflammatory response and the administration of their antagonists block chronic and acute responses in animal models of inflammatory disease.
Arthritis is a systemic autoimmune disease that can refer to a group of conditions involving damage to the joints of the body. There are over 100 different forms of arthritis. The most common form is osteoarthritis (degenerative joint disease) and other arthritis forms are rheumatoid arthritis, psoriatic arthritis, and related autoimmune diseases such as lupus and gout. Rheumatoid arthritis is characterized by a chronic inflammation of the joints. Both synovial tissue and fluid are invaded by inflammatory cells which lead to cytokine production. T cells and monocytes infiltrating the joints display an increased activation of Type 1 and 2 immune response markers. Psoriatic arthritis is a chronic inflammatory arthritic condition affecting the skin, the joints, the insertion sites of tendons, ligaments, and fascia. Gladman, Current Opinion in
Rheumatology, "Current concepts in psoriatic arthritis," 2002, 14:361-366, and Ruddy et al, Rheumatology, vol. 2., chapter 71, page 1071, 6th ed., 2001. Psoriatic arthritis is commonly associated with psoriasis. Id. Approximately 7% of patients with psoriasis develop psoriatic arthritis. The Merck Manual, 448 (17th ed., 1999). Psoriatic arthritis may appear in a variety of clinical patterns. There are five general patterns of psoriatic arthritis: arthritis of the distal interphalangeal joints, destructive arthritis, symmetric polyarthritis indistinguishable from rheumatoid arthritis, asymmetric oligoarthritis, and spondyloarthropathy. Ruddy et al., page 1073. Psoriasis appears to precede the onset of psoriatic arthritis in 60-80% of patients.
Occasionally, arthritis and psoriasis appear simultaneously. Cutaneous eruptions may be preceded by the arthropathy.
Psoriasis is a chronic systemic autoimmune disease that appears on the skin. There are five types of psoriasis: plaque, guttate, inverse, pustular and erythrodermic. The most common form, plaque psoriasis, is commonly seen as red and white hues of scaly patches appearing on the top first layer of the epidermis. Some patients, though, have no dermatological symptoms. In plaque psoriasis, skin rapidly accumulates at these sites, which gives it a silvery-white
appearance. Plaques frequently occur on the skin of the elbows and knees, but can affect any area, including the scalp, palms of hands and soles of feet, and genitals. In contrast to eczema, psoriasis is more likely to be found on the outer side of the joint. The disorder is a chronic recurring condition that varies in severity from minor localized patches to complete body coverage. Fingernails and toenails are frequently affected (psoriatic nail dystrophy) and can be seen as an isolated symptom. Psoriasis can also cause inflammation of the joints, which is known as psoriatic arthritis. In psoriasis, one hypothesis is that T cells become active, migrate to the dermis and trigger the release of cytokines, TNF-a in particular, which causes inflammation and the rapid proliferation of keratinocytes.
2.3 Compounds
A number of studies have been conducted with the aim of providing compounds that can safely and effectively be used to treat diseases associated with abnormal production of TNF-a. See, e.g., Marriott, J.B., et al, Expert Opin. Biol. Ther., 2001, 1(4): 1-8; G.W. Muller, et al., J Med Chem., 1996, 39(17): 3238-3240; and G.W. Muller, et al, Bioorg & Med Chem Lett., 1998, 8: 2669- 2674. Some studies have focused on a group of compounds selected for their capacity to potently inhibit TNF-a production by LPS stimulated PBMC. L.G. Corral, et al., Ann. Rheum. Dis., 1999, 58:(Suppl I) 1107-1113. These compounds show not only potent inhibition of TNF-a but also marked inhibition of LPS induced monocyte IL1B and IL12 production. LPS induced IL6 is also inhibited by such compounds, albeit partially. These compounds are potent stimulators of LPS induced IL10. Id.
Compounds for the methods provided herein include, but are not limited to, the substituted 2- (2,6-dioxopiperidin-3-yl) phthalimides and substituted 2-(2,6-dioxopiperidin-3-yl)-l- oxoisoindoles described in U.S. patent nos. 6,281,230 and 6,316,471, both to G.W. Muller, et al. Still other specific compounds disclosed herein belong to a class of isoindole-imides disclosed in U.S. patent nos. 6,395,754, 6,555,554, 7,091,353, U.S. patent publication no. 2004/0029832, and International Publication No. WO 98/54170, each of which is incorporated herein by reference. Thalidomide, lenalidomide and pomalidomide have shown remarkable responses in patients with multiple myeloma, lymphoma and other hematological diseases such as myelodysplasia syndrome. See Galustian C, et al, Expert Opin Pharmacother., 2009, 10: 125-133. These drugs display a broad spectrum of activity, including anti-angiogenic properties, modulation of proinflammatory cytokines, co-stimulation of T cells, increased NK cell toxicity, direct anti-tumor effects and modulation of stem cell differentiation.
For example, thalidomide and lenalidomide have emerged as important options for the treatment of multiple myeloma in newly diagnosed patients, in patients with advanced disease who have failed chemotherapy or transplantation, and in patients with relapsed or refractory multiple myeloma. Lenalidomide in combination with dexamethasone has been approved for the treatment of patients with multiple myeloma who have received at least one prior therapy.
Pomalidomide may also be administered in combination with dexamethasone. U.S. Patent Publication No. 2004/0029832 Al, the disclosure of which is hereby incorporated in its entirety, discloses the treatment of multiple myeloma.
Another compound provided herein is 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione ("Compound B"), which has the following structure:
Figure imgf000013_0001
or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
Compound B can be prepared according to the methods described in the Examples provided herein or as described in U.S. Pat. No. 7,635,700, the disclosure of which is
incorporated herein by reference in its entirety. The compound can be also synthesized according to other methods apparent to those of skill in the art based upon the teaching herein. In certain embodiments, Compound B is in a crystalline form described in U.S. Provisional Pat. App. No. 61/451,806, filed March 11, 2011, which is incorporated herein by reference in its entirety. In some embodiments, the hydrochloride salt of Compound B is used in the methods provided herein. Methods of treating, preventing and/or managing cancers and other diseases using Compound B are described in U.S. Provisional Pat. App. No. 61/451,995, filed March 11, 2011, which is incorporated herein by reference in its entirety.
2.4 Cereblon
The protein Cereblon (CRBN) is a 442-amino acid protein conserved from plant to human. In humans, the CRBN gene has been identified as a candidate gene of an autosomal recessive nonsyndromic mental retardation (ARNSMR). See Higgins, J.J. et al, Neurology, 2004, 63 : 1927- 1931. CRBN was initially characterized as an RGS-containing novel protein that interacted with a calcium-activated potassium channel protein (SLOl) in the rat brain, and was later shown to interact with a voltage-gated chloride channel (CIC-2) in the retina with AMPK7 and DDBl . See Jo, S. et al., J. Neurochem, 2005, 94:1212-1224; Hohberger B. et al, FEBS Lett, 2009, 583:633-637; Angers S. et al, Nature, 2006, 443:590-593. DDBl was originally identified as a nucleotide excision repair protein that associates with damaged DNA binding protein 2 (DDB2). Its defective activity causes the repair defect in the patients with xeroderma pigmentosum complementation group E (XPE). DDBl also appears to function as a component of numerous distinct DCX (DDBl-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. CRBN has also been identified as a target for the development of therapeutic agents for diseases of the cerebral cortex. See WO 2010/137547 Al .
Cereblon has recently been identified as a key molecular target that binds to thalidomide to cause birth defects. See Ito, T. et al, Science, 2010, 327: 1345-1350. DDBl was found to interact with CRBN and, thus, was indirectly associated with thalidomide. Moreover, thalidomide was able to inhibit auto-ubiquitination of CRBN in vitro, suggesting that thalidomide is an E3 ubiquitin-ligase inhibitor. Id. Importantly, this activity was inhibited by thalidomide in wild- type cells, but not in cells with mutated CRBN binding sites that prevent thalidomide binding. Id. The thalidomide binding site was mapped to a highly conserved C-terminal 104 amino acid region in CRBN. Id. Individual point mutants in CRBN, Y384A and W386A were both defective for thalidomide binding, with the double point mutant having the lowest thalidomide- binding activity. Id. A link between CRBN and the teratogenic effect of thalidomide was confirmed in animal models of zebra-fish and chick embryos. Id.
Whether binding to CRBN, the CRBN E3 ubiquitin-ligase complex, or one or more substrates of CRBN, is required for the beneficial effects of thalidomide and other drugs is yet to be established. Understanding these interactions with thalidomide and other drug targets will allow the definition of the molecular mechanisms of efficacy and/or toxicity and may lead to drugs with improved efficacy and toxicity profiles.
2.5 Methods of Treating Cancer
Current cancer therapy may involve surgery, chemotherapy, hormonal therapy and/or radiation treatment to eradicate neoplastic cells in a patient (see, for example, Stockdale, 1998, Medicine, vol. 3, Rubenstein and Federman, eds., Chapter 12, Section IV). Recently, cancer therapy could also involve biological therapy or immunotherapy. All of these approaches may pose significant drawbacks for the patient. Surgery, for example, may be contraindicated due to the health of a patient or may be unacceptable to the patient. Additionally, surgery may not completely remove neoplastic tissue. Radiation therapy is only effective when the neoplastic tissue exhibits a higher sensitivity to radiation than normal tissue. Radiation therapy can also often elicit serious side effects. Hormonal therapy is rarely given as a single agent. Although hormonal therapy can be effective, it is often used to prevent or delay recurrence of cancer after other treatments have removed the majority of cancer cells. Certain biological and other therapies are limited in number and may produce side effects such as rashes or swellings, flu-like symptoms, including fever, chills and fatigue, digestive tract problems or allergic reactions.
With respect to chemotherapy, there are a variety of chemotherapeutic agents available for treatment of cancer. A number of cancer chemotherapeutics act by inhibiting DNA synthesis, either directly or indirectly by inhibiting the biosynthesis of deoxyribonucleotide triphosphate precursors, to prevent DNA replication and concomitant cell division. Gilman et al. , Goodman and Gilman 's: The Pharmacological Basis of Therapeutics, Tenth Ed. (McGraw Hill, New York).
Despite availability of a variety of chemotherapeutic agents, chemotherapy has many drawbacks. Stockdale, Medicine, vol. 3, Rubenstein and Federman, eds., ch. 12, sect. 10, 1998. Almost all chemotherapeutic agents are toxic, and chemotherapy causes significant and often dangerous side effects including severe nausea, bone marrow depression, and
immunosuppression. Additionally, even with administration of combinations of
chemotherapeutic agents, many tumor cells are resistant or develop resistance to the
chemotherapeutic agents. In fact, those cells resistant to the particular chemotherapeutic agents used in the treatment protocol often prove to be resistant to other drugs, even if those agents act by different mechanism from those of the drugs used in the specific treatment. This phenomenon is referred to as multidrug resistance. Because of the drug resistance, many cancers prove refractory to standard chemotherapeutic treatment protocols.
Other diseases or conditions associated with, or characterized by, undesired angiogenesis are also difficult to treat. However, some compounds such as protamine, hepain and steroids have been proposed to be useful in the treatment of certain specific diseases associated with, or characterized by, undesired angiogenesis. Taylor et al, Nature 297:307 (1982); Folkman et al, Science 221 :719 (1983); and U.S. Pat. Nos. 5,001,116 and 4,994,443. Thalidomide and certain thalidomide derivatives based on their multiple activities have also been proposed for the treatment of such diseases and conditions. U.S. Patent Nos. 5,593,990, 5,629,327, 5,712,291, 6,071,948 and 6,114,355 to D'Amato.
Still, there is a significant need for safe and effective methods of treating, preventing and managing cancer and other diseases that are refractory to standard treatments, such as surgery, radiation therapy, chemotherapy and hormonal therapy, while reducing or avoiding the toxicities and/or side effects associated with the conventional therapies.
2.6 Methods of Treating Inflammatory Diseases
Current treatments for inflammatory diseases and disorders involve symptomatic medications and immunosuppressive agents to control symptoms. For example, nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen, fenoprofen, naproxen, tolmetin, sulindac, meclofenamate sodium, piroxicam, flurbiprofen, diclofenac, oxaprozin, nabumetone, etodolac, and ketoprofen have analgesic and anti-inflammatory effects. However, NSAIDs are believed not to be capable of altering progression of the disease. (Tierney et al. (eds), Current Medical Diagnosis & Treatment, 37 ed., Appleton & Lange (1998), p 793). Moreover, NSAIDs frequently cause gastrointestinal side effects, affect the lower intestinal tract causing perforation or aggravating inflammatory bowel disease, produce renal toxicity, and prolong bleeding time. Corticosteroids are another class of drugs that are commonly used to control inflammatory symptoms. Corticosteroids, like NSAIDs, do not alter the natural progression of the disease, and thus, clinical manifestations of active disease commonly reappear when the drug is discontinued. The serious problem of untoward reactions resulting from prolonged corticosteroid therapy (e.g., osteoporosis, increased risk of infection, increased appetite, hypertension, edema, peptic ulcers, psychoses) greatly limits its long-term use.
Low doses of immunosuppressive agents such as cytotoxic agents may be used for the treatment of inflammatory disorders. For example, some treatments for psoriasis and arthritis are based on disease-modifying anti-rheumatic drugs (DMARDs such as cyclosporine A and methotrexate), anti-inflammatory agents (TNF-a inhibitors such as etanercept), and analgesics.
New treatments for inflammatory and autoimmune disorders are constantly being sought.
In particular, any new treatment that reduces the dosage and/or frequency of administration of agents currently being used, or is capable of making a currently used treatment more effective is constantly being sought.
3. SUMMARY OF THE INVENTION
Provided herein are uses of the protein cereblon (CRBN) as a predictor of clinical sensitivity to cancer and inflammatory diseases, and patient response to treatment with the compounds provided herein. In certain embodiments, the compounds provided herein bind directly to CRBN-DDB 1.
Also provided herein are methods for the treatment or management of cancer and inflammatory diseases using CRBN as a predictive or prognostic factor for the compounds provided herein. In certain embodiments, provided herein are methods for screening or identifying cancer patients, e.g., multiple myeloma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, and/or MDS patients, for treatment with thalidomide, lenalidomide and/or pomalidomide, using CRBN levels as a predictive or prognostic factor. In some embodiments, provided herein are methods for selecting patients having a higher response rate to therapy with thalidomide, lenalidomide and/or pomalidomide, using CRBN levels as a predictive or prognostic factor.
In one embodiment, provided herein is a method of predicting patient response to treatment of cancer or an inflammatory disease with thalidomide, lenalidomide and/or pomalidomide, the method comprising obtaining biological material from the patient, and measuring the presence or absence of CRBN.
In one embodiment, the mRNA or protein is purified from the tumor and the presence or absence of a biomarker is measured by gene or protein expression analysis. In certain embodiments, the presence or absence of a biomarker is measured by quantitative real-time PCR (QRT-PCR), microarray, flow cytometry or immunofluorescence. In other embodiments, the presence or absence of a biomarker is measured by enzyme-linked immunosorbent assay-based methodologies (ELISA) or other similar methods known in the art. Biomarkers associated with non-Hodgkin's lymphomas are described, for example, in U.S. Patent Publication No.
2011/0223157, the entirety of which is incorporated by reference in its entirety.
In another embodiment, provided herein is a method of predicting patient response to treatment in a cancer patient, the method comprising obtaining cancer cells from the patient, culturing the cells in the presence or absence of a compound provided herein, purifying protein or RNA from the cultured cells, and measuring the presence or absence of a biomarker by , e.g., protein or gene expression analysis. The expression monitored may be, for example, mRNA expression or protein expression. In one embodiment, the cancer patient is a lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma patient.
In another embodiment, provided herein is a method of monitoring tumor response to compound (e.g., drug) treatment in a cancer patient. The method comprises obtaining a biological sample from the patient, measuring the expression of a biomarker in the biological sample, administering one or more compounds (e.g., drugs) to the patient, thereafter obtaining a second biological sample from the patient, measuring biomarker expression in the second biological sample, and comparing the levels of expression, where an increased level of biomarker expression after treatment indicates the likelihood of an effective tumor response. In one embodiment, the cancer patient is a lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblasts leukemia, chronic lymphocytic leukemia, MDS or melanoma patient.
In one embodiment, a decreased level of biomarker expression after treatment indicates the likelihood of effective tumor response. The biomarker expression monitored can be, for example, mR A expression or protein expression. The expression in the treated sample can increase, for example, by about 1.5X, 2. OX, 3X, 5X, or more. In one embodiment, the tumor is a lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL or melanoma.
In another embodiment, provided herein is a method of predicting the sensitivity to compound (e.g., drug) treatment in a cancer patient, specifically, a multiple myeloma or non- Hodgkin's lymphoma patient (e.g., DLBCL). The method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the cancer will be sensitive to treatment with a compound (e.g., drug). In certain embodiments, the biomarker is a gene or protein associated with multiple myeloma or non-Hodgkin's lymphoma (e.g., DLBCL). In one embodiment, the genes are selected from the group consisting of DDBl , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS l , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione, comprises identifying a gene or protein associated with CRBN. In one embodiment, the gene or protein associated with CRBN is selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP-1 , FAS 1 , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having lymphoma, leukemia, multiple myeloma, a solid tumor, non-Hodgkin's lymphoma, DLBCL or melanoma sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient. In another embodiment, measuring the level of CRBN activity in the patient comprises measuring DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and/or NFKB in cells obtained from the patient.
In still other embodiments, provided herein are methods of predicting the sensitivity to compound (e.g., drug) treatment in a patient having a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's
granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis and fibrotic conditions such as systemic sclerosis. The method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the disease or disorder will be sensitive to treatment with a compound (e.g., drug). In certain embodiments, the biomarker is a gene or protein selected from the group consisting of DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having systemic lupus erythematosus, ANCA- induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis or systemic sclerosis and sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2- methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione, comprises identifying a gene or protein associated with CRBN. In one embodiment, the gene or protein associated with CRBN is selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS 1 , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having systemic lupus erythematosus, ANCA- induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis or systemic sclerosis sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2- methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient. In another embodiment, measuring the level of CRBN activity in the patient comprises measuring DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and/or NFKB in cells obtained from the patient.
In one embodiment, the compound is thalidomide.
In another embodiment, the compound is lenalidomide. In another embodiment, the compound is pomalidomide.
In another embodiment, the compound is 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione, or an enantiomer thereof, or a pharmaceutically acceptable salt, polymorph, solvate or hydrate thereof.
Also provided herein are kits useful for predicting the likelihood of an effective lymphoma, leukemia, multiple myeloma, a solid tumor, non-Hodgkin's lymphoma, diffuse large B-cell lymphoma mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma treatment or for monitoring the effectiveness of a treatment with one or more compounds (e.g., drugs). The kit comprises a solid support, and a means for detecting the protein expression of at least one biomarker in a biological sample.
Such a kit may employ, for example, a dipstick, a membrane, a chip, a disk, a test strip, a filter, a microsphere, a slide, a multiwell plate, or an optical fiber. The solid support of the kit can be, for example, a plastic, silicon, a metal, a resin, glass, a membrane, a particle, a precipitate, a gel, a polymer, a sheet, a sphere, a polysaccharide, a capillary, a film, a plate, or a slide. The biological sample can be, for example, a cell culture, a cell line, a tissue, an oral tissue, gastrointestinal tissue, an organ, an organelle, a biological fluid, a blood sample, a urine sample, or a skin sample. The biological sample can be, for example, a lymph node biopsy, a bone marrow biopsy, or a sample of peripheral blood tumor cells.
In another embodiment, the kit comprises a solid support, nucleic acids contacting the support, where the nucleic acids are complementary to at least 20, 50, 100, 200, 350, or more bases of mR A, and a means for detecting the expression of the mRNA in a biological sample.
In certain embodiments, the kits provided herein employ means for detecting the expression of a biomarker by quantitative real-time PCR (QRT-PCR), microarray, flow
cytometry or immunofluorescence. In other embodiments, the expression of the biomarker is measured by ELISA-based methodologies or other similar methods known in the art.
In still other embodiments, the kits provided herein are useful for predicting the likelihood of an effective treatment of a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis and fibrotic conditions such as systemic sclerosis. In addition to the methods described above, a compound provided herein is administered in combination with a therapy conventionally used to treat, prevent or manage a disease or disorder described herein. Examples of such conventional therapies include, but are not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy and immunotherapy.
Also provided herein are pharmaceutical compositions, single unit dosage forms, dosing regimens and kits which comprise a compound provided herein, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof, and a second, or additional, active agent. Second active agents include specific combinations, or "cocktails," of drugs.
4. BRIEF DESCRIPTION OF THE FIGURES
Figures 1 A & IB: Confirmation of CRBN knockdown by siR As in H929 and U266 multiple myeloma cells.
Figures 2 A - 2C: Knockdown of CRBN abrogated Gl arrest induced by lenalidomide ("Len"), pomalidomide ("Pom") and Compound B.
Figure 3 A: CRBN knockdown in U266B1 cells confirmed by RT-PCR.
Figure 3B: CRBN knockdown abrogates lenalidomide and pomalidomide effect on cell cycle in U266 cells.
Figures 3C & 3D: Knockdown of CRBN prevents increase of p21WAF1 in lenalidomide and pomalidomide treated U266 cells as detected by RT-PCR and Western blot analysis.
Figures 4 A - 4D: CRBN knockdown abrogates drug effect on phosphorylation of pRb and IRF-4 in H929 cells.
Figures 5 A - 5C Cell cycle and gene expression profiles in U266B1 cells transfected with CRBN-siRNA.
Figures 6 A - 6D: DDB1 knockdown only partially affected cell cycle delay induced by lenalidomide and pomalidomide in U266 cells.
Figures 7A & 7B: Lenalidomide and pomalidomide decrease total K48-linked polyubiquitination but not K-63 -linked ubiquitination in H929.
Figure 8: 1 hour up-regulated ubiquitination, no MG132.
Figure 9: 4 hour up-regulated ubiquitination, no MG132. Figure 10: 1 hour up-regulated ubiquitination, MG132.
Figure 11 : 4 hour up-regulated ubiquitination, MG132.
Figures 12A - 12D: Effect of CRBN knockdown on TNFa and IL-2 levels in T cells. Figures 13A - 13C: Effect of CUL4A and CUL4A knockdown on TNFa and IL-2 levels in T cells.
Figure 14: Antiproliferative activity of lenalidomide vs. CRBN expression in DLBCL cells.
Figure 15 A: Map of CRBN 034 clone.
Figure 15B: Map of DDB1 004 clone.
Figure 16A: Antiproliferative activity of lenalidomide in CRBN-sensitive myeloma cells.
Figure 16B: Antiproliferative activity of pomalidomide in CRBN-sensitive myeloma cells.
Figure 16C: Antiproliferative activity of Compound B in CRBN-sensitive myeloma cells. Figure 17: Peptides regulated by lenalidomide ("Len") and pomalidomide ("Pom") without MG132 in 1 hour ubiquitination experiments.
Figure 18: Peptides regulated by lenalidomide ("Len") and pomalidomide ("Pom") with MG132 in 1 hour ubiquitination experiments.
Figure 19: Peptides regulated by lenalidomide ("Len") and pomalidomide ("Pom") without MG132 in 4 hour ubiquitination experiments.
Figure 20: Peptides regulated by lenalidomide ("Len") and pomalidomide ("Pom") with
MG132 in 4 hour ubiquitination experiments.
Figure 21 : Table of common peptides between lenalidomide ("Len") and pomalidomide ("Pom") in ubiquitination experiments.
Figure 22: Table of common hits in multiple lenalidomide ("Len") and pomalidomide ("Pom") ubiquitination experiments.
Figure 23: Ubiscan data for lenalidomide ("Len" or "Rev"), pomalidomide ("Pom"), and Compound B.
Figure 24A: ABC-DLBCL signature genes.
Figure 24B: NF-κΒ activity and IRF4 activity in DLBCL cells.
Figure 24C: "ABC Scores" of DLBCL cell lines.
Figure 25: Lenalidomide inhibits proliferation of ABC-DLBCL cells in vitro. Figure 26: Lenalidomide treatment also induced apoptosis of sensitive cell lines such as OCI-LylO.
Figures 27A - 27C: Effect of Lenalidomide on IRF4 expression in ABC-DLBCL cell lines.
Figure 28: Mutation analysis of CARD 11 coiled-coil domain 1 in DLBCL cell lines.
Figures 29A - 29C : Lenalidomide inhibits activation of CARD 11 -Bel- 10-MALT 1 complex in sensitive DLBCL cell lines.
Figures 30A - 30C: Lenalidomide inhibits NF-κΒ activity in ABC-DLBCL cells.
Figures 31 A - 3 ID: Alteration of IRF4 expression in ABC-DLBCL cells affects cell sensitivity to lenalidomide.
Figures 32A - 32D: Downregulation of IRF4, NF-κΒ and proliferation by lenalidomide requires the presence of cereblon.
Figures 33A- 33B: Lenalidomide inhibits tumor growth in mouse xenograft model with OCI-LylO ABC-DLBCL.
Figures 34A - 34B: "ABC scores" and baseline IRF4/CRBN levels correlate
lenalidomide sensitivity of DLBCL cells.
Figure 35: Alignment between heavy chain amino acid sequences of antibodies CGN-6- 1-11 (top; SEQ ID NO:5) and CGN-6-4-5 (bottom; SEQ ID NO:8).
Figures 36: Alignment between light chain amino acid sequences of antibodies CGN-6-1- 11 (top; SEQ ID NO:7) and CGN-6-4-5 (bottom; SEQ ID NO: 11).
Figures 37A & 37B: Confocal immunofluorescent analysis of DF15 (left panel) and DF15R cells (right panel) using 1 μ^ιηΐ CGN-6-4-5 antibody (green) (A) or CGN-6-4-5 antibody / CRBN blocking peptide mix (1 :5 excess ratio) (B). Nuclear staining performed with Dapi (blue).
Figure 38: Immunoblot with myeloma cells containing endogenous CRBN (DF15),
DF15R with no CRBN and HEK293 cells expressing recombinant flag-tagged CRBN.
Figure 39A & 39B: Binding of thalidomide and other compounds to CRBN
5. DETAILED DESCRIPTION OF THE INVENTION
The methods provided herein are based, in part, on the discovery that cereblon is associated with the anti-proliferative activities of certain drugs, such as the compounds provided herein. In some embodiments, Cereblon (CRBN) may be utilized as a biomarker to indicate the effectiveness or progress of a disease treatment with a compound provided herein.
Without being bound to a particular theory, CRBN binding may contribute to or even be required for anti-proliferative or other activities of certain compounds, such as the compounds provided herein. In certain embodiments, the compounds provided herein bind directly to CRBN-DDB1 and/or the CRBN E3 ubiquitin-ligase complex. Mutations in CRBN could be associated with resistance to the compounds provided herein.
For example, the levels of CRBN were significantly lower in the pomalidomide-resistant cells line DF15R and the lenalidomide-resistant cells, H929 RlO-1, H929 R10-2, H929 R10-3, H929 R10-4 and MM1/R compared to the matched parental lines. Furthermore, an interesting mutation was found in CRBN gene of one of the myeloma lines that had acquired resistance to lenalidomide while in the parental line the CRBN gene was wild type. This mutation mapped to the DDB1 binding domain in CRBN. Thus, in certain embodiments, the sensitivity of a cancer cell, e.g., a myeloma cell, or a patient having cancer, to therapy with a compound provided herein is related to CRBN expression.
In relapsed or refractory diffuse large B-cell lymphoma (DLBCL), higher responses were seen in the activated B-cell-like (ABC) subtype than the germinal center B-cell-like subtype. As provided herein using DLBCL cell lines, it was shown that lenalidomide treatment preferentially suppressed proliferation of ABC-DLBCL cells in vitro and delayed tumor growth in a human tumor xenograft model, with minimal effect on non-ABC-DLBCL cells. This tumoricidal effect was associated with downregulation of interferon regulatory factor 4 (IRF4), a hallmark of ABC- DLBCL cells.
IRF4 inhibition by lenalidomide caused downregulation of B cell receptor (BCR)- dependent NF-κΒ activation. While IRF4-specific siRNA mimicked effects of lenalidomide reducing NF-κΒ activation, IRF4 overexpression enhanced NF-κΒ activation and conferred resistance to lenalidomide. Furthermore, lenalidomide-induced IRF4 downregulation required the expression of CRBN. Without being bound to a particular theory, these data show that lenalidomide may have direct antitumor activity against DLBCL cells, preferentially ABC- DLBCL cells, by blocking IRF4 expression and the BCR-NF-κΒ signaling pathway in a CRBN- dependent manner. It has been proposed that CRBN protein functions as a substrate receptor for Cul4-E3- ligase complexes through its interaction with DDB 1. As provided herein, whether in vivo ubiquitination is associated with drug responses in multiple myeloma cells has been investigated. In H929 cells, compounds provided herein decrease total K48-linked polyubiquitination but not K-63 -linked ubiquitination after 30 minutes treatment. At present, nearly two dozen proteins are reported to be degraded by a Cul4-DDB1 ligase2. Several studies have shown Cul4/DDB1- dependent ubiquitination of core histones, DNA repair proteins, cell cycle regulators and key signaling pathways molecules. mTORCl signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase. Using CST Ubiscan technology, 162 unique ubiquitin-peptides were identified which were significantly modulated by the compounds provided herein after short treatments (1 - 4 h). The corresponding proteins participate in nucleasome and chromatin function, protein-DNA assembly and histone H2A. The relevance of this early modification in the mode of action of compounds provided herein, and the relationship with CRBN and CUL4/DDB1 activities are under investigation.
Provided herein are methods for the treatment or management of cancer and
inflammatory diseases using CRBN as a predictive or prognostic factor for the compounds provided herein. In certain embodiments, provided herein are methods for screening or identifying cancer patients, e.g., lymphoma, leukemia, multiple myeloma, solid tumor, non- Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma patients, for treatment with thalidomide, lenalidomide and/or pomalidomide, using CRBN levels as a predictive or prognostic factor. In some embodiments, provided herein are methods for selecting patients having a higher response rate to therapy with thalidomide, lenalidomide and/or pomalidomide, using CRBN levels as a predictive or prognostic factor.
In one embodiment, provided herein is a method of predicting patient response to treatment of cancer or an inflammatory disease with thalidomide, lenalidomide and/or pomalidomide, the method comprising obtaining biological material from the patient, and measuring the presence or absence of CRBN.
In one embodiment, the mRNA or protein is purified from the tumor and the presence or absence of a biomarker is measured by gene or protein expression analysis. In certain embodiments, the presence or absence of a biomarker is measured by quantitative real-time PCR (QRT-PCR), microarray, flow cytometry or immunofluorescence. In other embodiments, the presence or absence of a biomarker is measured by enzyme-linked immunosorbent assay-based methodologies (ELISA) or other similar methods known in the art.
In another embodiment, provided herein is a method of predicting the sensitivity to compound (e.g., drug) treatment in a cancer patient, such as, a multiple myeloma or non-
Hodgkin's lymphoma patient. The method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the cancer will be sensitive to treatment with a compound (e.g., drug). In certain embodiments, the biomarker is a gene or protein associated with multiple myeloma or non-Hodgkin's lymphoma (e.g., DLBCL). In one embodiment, the genes are selected from the group consisting of DDBl , DDB2, GSK3B, CUL4A, CUL4B, XBP-1 , FAS l , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having lymphoma, leukemia, multiple myeloma, a solid tumor, non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5- amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione, comprises identifying a gene or protein associated with CRBN. In one embodiment, the gene or protein associated with CRBN is selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS l , RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having lymphoma, leukemia, multiple myeloma, solid tumor, non-Hodgkin's lymphoma, DLBCL, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, MDS or melanoma sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient. In another embodiment, measuring the level of CRBN activity in the patient comprises measuring DDBl , DDB2, GSK3B, CUL4A, CUL4B, XBP-1 , FASl , RANBP6, DUS3L,
PHGDH, AMPK, IRF4 and/or NFKB in cells obtained from the patient.
In one embodiment, the compound is thalidomide.
In another embodiment, the compound is lenalidomide. In another embodiment, the compound is pomalidomide.
In another embodiment, the compound is 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione, or an enantiomer thereof, or a pharmaceutically acceptable salt, polymorph, solvate or hydrate thereof.
In one embodiment, the cancer is multiple myeloma.
In another embodiment, the cancer is non-Hodgkin's lymphoma. In one embodiment, the non-Hodgkin's lymphoma is of the activated B-cell phenotype.
In another embodiment, the cancer is diffuse large B-cell lymphoma. In one embodiment, the diffuse large B-cell lymphoma is of the activated B-cell phenotype.
In another embodiment, the cancer is mantle cell lymphoma.
In another embodiment, the cancer is follicular lymphoma.
In another embodiment, the cancer is acute myeloblasts leukemia.
In another embodiment, the cancer is chronic lymphocytic leukemia.
In another embodiment, the cancer is myelodysplasia syndrome.
In another embodiment, the cancer is melanoma.
In still other embodiments, provided herein are methods of predicting the sensitivity to compound (e.g., drug) treatment in a patient having a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's
granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis and fibrotic conditions such as systemic sclerosis. The method comprises obtaining a biological sample from the patient, optionally isolating or purifying mRNA from the biological sample, amplifying the mRNA transcripts by, e.g., RT-PCR, where a higher baseline level of a specific biomarker indicates a higher likelihood that the disease or disorder will be sensitive to treatment with a compound (e.g., drug). In certain embodiments, the biomarker is a gene or protein selected from the group consisting of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP- 1 , FAS1, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having selected from systemic lupus
erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis or systemic sclerosis sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3- (5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione comprises identification of a gene or protein associated with CRBN. In one embodiment, the gene or protein associated with CRBN is selected from the group consisting of DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP- 1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and NFKB.
In one embodiment, identifying a patient having systemic lupus erythematosus, ANCA- induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis or systemic sclerosis sensitive to treatment with thalidomide, lenalidomide, pomalidomide and/or 3-(5-amino-2- methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione comprises measuring the level of CRBN activity in the patient. In another embodiment, measuring the level of CRBN activity in the patient comprises measuring DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 and/or NFKB in cells obtained from the patient.
In one embodiment, the compound is thalidomide.
In another embodiment, the compound is lenalidomide.
In another embodiment, the compound is pomalidomide.
In another embodiment, the compound is 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione, or an enantiomer thereof, or a pharmaceutically acceptable salt, polymorph, solvate or hydrate thereof.
Also provided herein are kits useful for predicting the likelihood of an effective lymphoma, leukemia, multiple myeloma, a solid tumor, non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, follicular lymphoma, acute myeloblastic leukemia, chronic lymphocytic leukemia, myelodysplasia syndrome or melanoma treatment or for monitoring the effectiveness of a treatment with one or more compounds (e.g., drugs). The kit comprises a solid support, and a means for detecting the protein expression of at least one biomarker in a biological sample. Such a kit may employ, for example, a dipstick, a membrane, a chip, a disk, a test strip, a filter, a microsphere, a slide, a multiwell plate, or an optical fiber. The solid support of the kit can be, for example, a plastic, silicon, a metal, a resin, glass, a membrane, a particle, a precipitate, a gel, a polymer, a sheet, a sphere, a polysaccharide, a capillary, a film, a plate, or a slide. The biological sample can be, for example, a cell culture, a cell line, a tissue, an oral tissue, gastrointestinal tissue, an organ, an organelle, a biological fluid, a blood sample, a urine sample, or a skin sample. The biological sample can be, for example, a lymph node biopsy, a bone marrow biopsy, or a sample of peripheral blood tumor cells. In another embodiment, the kit comprises a solid support, nucleic acids contacting the support, where the nucleic acids are complementary to at least 20, 50, 100, 200, 350, or more bases of mR A, and a means for detecting the expression of the mRNA in a biological sample.
In certain embodiments, the kits provided herein employ means for detecting the expression of a biomarker by quantitative real-time PCR (QRT-PCR), microarray, flow cytometry or immunofluorescence. In other embodiments, the expression of the biomarker is measured by ELISA-based methodologies or other similar methods known in the art.
In still other embodiments, the kits provided herein are useful for predicting the likelihood of an effective treatment of a disease or disorder selected from systemic lupus erythematosus, ANCA-induced vasculitis, glomerulonephritis, acute Wegener's granulomatosis, Myasthenia Gravis, Sjogren Syndrome, anti-phospholipid syndrome, rheumatoid arthritis and fibrotic conditions such as systemic sclerosis.
Provided herein is a method of selecting a group of cancer patients based on the level of CRBN expression, or the levels of DDB1, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FAS1, RANBP6, DUS3L, PHGDH, AMPK, IRF4 or NFKB expression within the cancer, for the purposes of predicting clinical response, monitoring clinical response, or monitoring patient compliance to dosing by thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl-4- oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof; wherein the cancer patients are selected from multiple myeloma, non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, melanoma and solid tumor patients.
In one embodiment, the cancer patients are multiple myeloma patients.
In one embodiment, cancer patients are non-Hodgkin's lymphoma patients. In one embodiment, the non-Hodgkin's lymphoma is of the activated B-cell phenotype.
In one embodiment, cancer patients are diffuse large B-cell lymphoma patients. In one embodiment, the diffuse large B-cell lymphoma is of the activated B-cell phenotype.
In one embodiment, method of selecting a group of cancer patients is based on the level of DDB1 expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of DDB2 expression within the cancer. In one embodiment, the method of selecting a group of cancer patients is based on the level of GSK3B expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of CUL4A expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of CUL4B expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of XBP-1 expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of FAS 1 expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of RANBP6 expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of DUS3L expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of PHGDH expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of AMPK expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of IRF4 expression within the cancer.
In one embodiment, the method of selecting a group of cancer patients is based on the level of NFKB expression within the cancer.
Also provided herein is a method of identifying or monitoring multiple myeloma patient resistance to thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione therapy, based on the presence or appearance of mutations within a CRBN gene.
In one embodiment, the mutation with the CRBN gene is a single -nucleotide
polymorphism in the coding region c.745C>CA causing an amino acid change 249D>YD in the protein within the DDB1 binding domain of CRBN.
In another embodiment, provided herein is a method of selecting a group of patients responsive to treatment with thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl- 4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof; based on the level of CRBN expression, or the levels of DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 or NFKB expression within the patient's T cells, B cells, or plasma cells, for the purposes of predicting clinical response, monitoring clinical response, or monitoring patient compliance to dosing by thalidomide, lenalidomide,
pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
Also provided herein is an isolated CRBN antibody, for example, "CRBN70," as prepared according to Example 6.20 or 6.21 below. In one embodiment, the antibody is a polyclonal antibody. In another embodiment, the antibody is a monoclonal antibody. In some embodiments, the antibody is a rabbit polyclonal antibody. In other embodiments, the antibody is a rabbit monoclonal antibody.
In another embodiment, provided herein is an isolated antibody which
immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1). In another embodiment, the antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1), wherein the peptide is coupled to Keyhole Limpet Hemocyanin (KLH). In one embodiment, the antibody is a polyclonal antibody. In another embodiment, the antibody is a monoclonal antibody. In some embodiments, the antibody is a rabbit polyclonal antibody. In other embodiments, the antibody is a rabbit monoclonal antibody. In certain embodiments, the antibody immunospecifically binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12).
In certain embodiments, provided herein is an antibody that immunospecifically binds CRBN and comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:5. In other embodiment, the antibody immunospecifically binds CRBN and comprises a light chain having the amino acid sequence depicted in SEQ ID NO:7. In some embodiments, the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:5 and a light chain having the amino acid sequence depicted in SEQ ID NO:7. In certain embodiments, the antibody immunospecifically binds CRBN and comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:9. In other embodiment, the antibody immunospecifically binds CRBN and comprises a light chain having the amino acid sequence depicted in SEQ ID NO: 1 1. In some embodiments, the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO: 9 and a light chain having the amino acid sequence depicted in SEQ ID NO: 1 1. In certain embodiments, the antibody immunospecifically binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12).
Also provided herein is a method of utilizing a CRBN antibody (e.g., a rabbit polyclonal or monoclonal antibody CRBN70, or a rabbit polyclonal or monoclonal antibody that binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12) to measure expression levels of CRBN in patient tumor or host cells, to predict clinical response, monitor clinical response, monitor patient compliance to dosing, or monitor development of resistance to therapy with thalidomide, lenalidomide, pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof. In one embodiment, the CRBN antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDD (SEQ ID NO: 1). In an embodiment, the CRBN antibody specifically binds to
EEFHGRTLHDDD (SEQ ID NO: l), which is coupled to Keyhole Limpet Hemocyanin (KLH). In one embodiment, the CRBN antibody is a polyclonal antibody, such as a rabbit polyclonal antibody. In another embodiment, the CRBN antibody is a monoclonal antibody, such as a rabbit monoclonal antibody. 5.1 Definitions
As used herein, and unless otherwise specified, the terms "treat," "treating" and
"treatment" refer to an action that occurs while a patient is suffering from the specified cancer, which reduces the severity of the cancer, or retards or slows the progression of the cancer.
The term "sensitivity" and "sensitive" when made in reference to treatment with compound is a relative term which refers to the degree of effectiveness of the compound in lessening or decreasing the progress of a tumor or the disease being treated. For example, the term "increased sensitivity" when used in reference to treatment of a cell or tumor in connection with a compound refers to an increase of, at least a 5%, or more, in the effectiveness of the tumor treatment.
As used herein, and unless otherwise specified, the term "therapeutically effective amount" of a compound is an amount sufficient to provide a therapeutic benefit in the treatment or management of a cancer, or to delay or minimize one or more symptoms associated with the presence of the cancer. A therapeutically effective amount of a compound means an amount of therapeutic agent, alone or in combination with other therapies, which provides a therapeutic benefit in the treatment or management of the cancer. The term "therapeutically effective amount" can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of cancer, or enhances the therapeutic efficacy of another therapeutic agent.
As used herein, an "effective patient tumor response" refers to any increase in the therapeutic benefit to the patient. An "effective patient tumor response" can be, for example, a 5%, 10%, 25%, 50%), or 100% decrease in the rate of progress of the tumor. An "effective patient tumor response" can be, for example, a 5%, 10%>, 25%, 50%>, or 100% decrease in the physical symptoms of a cancer. An "effective patient tumor response" can also be, for example, a 5%), 10%), 25%o, 50%), 100%, 200%>, or more increase in the response of the patient, as measured by any suitable means, such as gene expression, cell counts, assay results, etc.
The term "likelihood" generally refers to an increase in the probability of an event. The term "likelihood" when used in reference to the effectiveness of a patient tumor response generally contemplates an increased probability that the rate of tumor progress or tumor cell growth will decrease. The term "likelihood" when used in reference to the effectiveness of a patient tumor response can also generally mean the increase of indicators, such as mR A or protein expression, that may evidence an increase in the progress in treating the tumor.
The term "predict" generally means to determine or tell in advance. When used to
"predict" the effectiveness of a cancer treatment, for example, the term "predict" can mean that the likelihood of the outcome of the cancer treatment can be determined at the outset, before the treatment has begun, or before the treatment period has progressed substantially.
The term "monitor," as used herein, generally refers to the overseeing, supervision, regulation, watching, tracking, or surveillance of an activity. For example, the term "monitoring the effectiveness of a compound" refers to tracking the effectiveness in treating a cancer in a patient or in a tumor cell culture. Similarly, the "monitoring," when used in connection with patient compliance, either individually, or in a clinical trial, refers to the tracking or confirming that the patient is actually taking a drug being tested as prescribed. The monitoring can be performed, for example, by following the expression of mRNA or protein biomarkers. An improvement in the cancer or cancer-related disease can be characterized as a complete or partial response. "Complete response" refers to an absence of clinically detectable disease with normalization of any previously abnormal radiographic studies, bone marrow, and cerebrospinal fluid (CSF) or abnormal monoclonal protein measurements. "Partial response" refers to at least about a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% decrease in all measurable tumor burden (i.e., the number of malignant cells present in the subject, or the measured bulk of tumor masses or the quantity of abnormal monoclonal protein) in the absence of new lesions. The term "treatment" contemplates both a complete and a partial response.
"Tumor," as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues. "Neoplastic," as used herein, refers to any form of dysregulated or unregulated cell growth, whether malignant or benign, resulting in abnormal tissue growth. Thus, "neoplastic cells" include malignant and benign cells having dysregulated or unregulated cell growth.
The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, blood-borne tumors (e.g., multiple myeloma, lymphoma and leukemia), and solid tumors.
The term "refractory or resistant" refers to a circumstance where patients, even after intensive treatment, have residual cancer cells (e.g. , leukemia or lymphoma cells) in their lymphatic system, blood and/or blood forming tissues (e.g. , marrow).
As used herein the terms "polypeptide" and "protein" as used interchangeably herein, refer to a polymer of amino acids of three or more amino acids in a serial array, linked through peptide bonds. The term "polypeptide" includes proteins, protein fragments, protein analogues, oligopeptides and the like. The term polypeptide as used herein can also refer to a peptide. The amino acids making up the polypeptide may be naturally derived, or may be synthetic. The polypeptide can be purified from a biological sample.
The term "antibody" is used herein in the broadest sense and covers fully assembled antibodies, antibody fragments which retain the ability to specifically bind to the antigen (e.g., Fab, F(ab')2, Fv, and other fragments), single chain antibodies, diabodies, antibody chimeras, hybrid antibodies, bispecific antibodies, humanized antibodies, and the like. The term "antibody" covers both polyclonal and monoclonal antibodies. The term "antibody" and "immunoglobulin" or "Ig" may be used interchangeably herein. The terms "antibodies that immunospecifically bind to a CRBN antigen," "antibodies that immunospecifically bind to a CRBN epitope," "CRBN antibodies," "anti-CRBN antibodies" and analogous terms are also used interchangeably herein and refer to antibodies and fragments thereof, that specifically bind to a CRBN polypeptide, such as a CRBN antigen or epitope (e.g., EEFHGRTLHDDD (SEQ ID NO: l) or peptide 65-76 human CRBN (SEQ ID NO: 12)). The antibodies, including both modified antibodies (i.e., antibodies that comprise a modified IgG (e.g., IgGl) constant domain and unmodified antibodies (i.e., antibodies that do not comprise a modified IgG (e.g., IgGl) constant domain that specifically bind to a CRBN polypeptide. An antibody or a fragment thereof that immunospecifically binds to a CRBN antigen may be cross- reactive with related antigens. In certain embodiments, an antibody or a fragment thereof that immunospecifically binds to a CRBN antigen does not cross-react with other antigens. An antibody or a fragment thereof that immunospecifically binds to a CRBN antigen can be identified, for example, by immunoassays, BIAcore, or other techniques known to those of skill in the art. An antibody or a fragment thereof binds specifically to a CRBN antigen when it binds to a CRBN antigen with higher affinity than to any cross-reactive antigen as determined using experimental techniques, such as radioimmunoassays (RIA) and enzyme-linked immunosorbent assays (ELISAs). Typically a specific or selective reaction will be at least twice background signal or noise and more typically more than 10 times background. See, e.g., Paul, ed., 1989, Fundamental Immunology Second Edition, Raven Press, New York at pages 332-336 for a discussion regarding antibody specificity.
Antibodies provided herein include, but are not limited to, synthetic antibodies, monoclonal antibodies, recombinantly produced antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, intrabodies, single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.), camelized antibodies, Fab fragments, F(ab") fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. In particular, antibodies provided herein include immunoglobulin molecules and immunologically active portions of
immunoglobulin molecules, i.e., antigen binding domains or molecules that contain an antigen- binding site that immunospecifically binds to a CRBN antigen (e.g., one or more
complementarity determining regions (CDRs) of an anti-CRBN antibody). The antibodies provided herein can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), any class (e.g., IgGl , IgG2, IgG3, IgG4, IgAl and IgA2), or any subclass (e.g., IgG2a and IgG2b) of immunoglobulin molecule. In some embodiments, the anti-CRBN antibodies are fully human, such as fully human monoclonal CRBN antibodies. In certain embodiments, antibodies provided herein are IgG antibodies, or a class (e.g., human IgGl or IgG4) or subclass thereof.
The term "antigen binding domain," "antigen binding region," "antigen binding fragment," and similar terms refer to that portion of an antibody which comprises the amino acid residues that interact with an antigen and confer on the binding agent its specificity and affinity for the antigen (e.g., the CDR). The antigen binding region can be derived from any animal species, such as rodents (e.g., rabbit, rat or hamster) and humans. In some embodiments, the antigen binding region will be of human origin.
The term "constant region" or "constant domain" of an antibody refers to a carboxy terminal portion of the light and heavy chain which is not directly involved in binding of the antibody to antigen but exhibits various effector function, such as interaction with the Fc receptor. The terms refer to the portion of an immunoglobulin molecule having a more conserved amino acid sequence relative to the other portion of the immunoglobulin, the variable domain, which contains the antigen binding site. The constant domain contains the CHI , CH2 and CH3 domains of the heavy chain and the CL domain of the light chain.
The term "epitope" as used herein refers to a localized region on the surface of an antigen, such as CRBN polypeptide or CRBN polypeptide fragment, that is capable of being bound to one or more antigen binding regions of an antibody, and that has antigenic or immunogenic activity in an animal, such as a mammal (e.g., a human), that is capable of eliciting an immune response. An epitope having immunogenic activity is a portion of a polypeptide that elicits a antibody response in an animal. An epitope having antigenic activity is a portion of a polypeptide to which an antibody immunospecifically binds as determined by any method well known in the art, for example, by the immunoassays described herein. Antigenic epitopes need not necessarily be immunogenic. Epitopes usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and have specific three dimensional structural characteristics as well as specific charge characteristics. A region of a polypeptide contributing to an epitope may be contiguous amino acids of the polypeptide or the epitope may come together from two or more non-contiguous regions of the polypeptide. The epitope may or may not be a three-dimensional surface feature of the antigen. An exemplary epitope of CRBN provided herein is EEFHGRTLHDDD (SEQ ID NO: l) or peptide 65-60 of CRBN (SEQ ID NO: 13).
The terms "fully human antibody" or "human antibody" are used interchangeably herein and refer to an antibody that comprises a human variable region and, in some embodiments, a human constant region. In specific embodiments, the terms refer to an antibody that comprises a variable region and constant region of human origin. "Fully human" anti-CRBN antibodies, in certain embodiments, can also encompass antibodies which bind CRBN polypeptides and are encoded by nucleic acid sequences which are naturally occurring somatic variants of human germline immunoglobulin nucleic acid sequence. In a specific embodiment, the anti-CRBN antibodies provided herein are fully human antibodies. The term "fully human antibody" includes antibodies having variable and constant regions corresponding to human germline immunoglobulin sequences as described by Kabat et al, Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91- 3242, 1991. Exemplary methods of producing fully human antibodies are provided, e.g., in the Examples herein, but any method known in the art may be used.
The phrase "recombinant human antibody" includes human antibodies that are prepared, expressed, created or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell, antibodies isolated from a
recombinant, combinatorial human antibody library, antibodies isolated from an animal {e.g., a mouse or cow) that is transgenic and/or transchromosomal for human immunoglobulin genes (see, e.g., Taylor, L. D. et al. (1992) Nucl. Acids Res. 20:6287-6295) or antibodies prepared, expressed, created or isolated by any other means that involves splicing of human
immunoglobulin gene sequences to other DNA sequences. Such recombinant human antibodies can have variable and constant regions derived from human germline immunoglobulin sequences. See Kabat, E. A. et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242. In certain embodiments, however, such recombinant human antibodies are subjected to in vitro
mutagenesis (or, when an animal transgenic for human Ig sequences is used, in vivo somatic mutagenesis) and thus the amino acid sequences of the VH and VL regions of the recombinant antibodies are sequences that, while derived from and related to human germline VH and VL sequences, may not naturally exist within the human antibody germline repertoire in vivo.
The term "heavy chain" when used in reference to an antibody refers to five distinct types, called alpha (a), delta (δ), epsilon (ε), gamma (γ) and mu (μ), based on the amino acid sequence of the heavy chain constant domain. These distinct types of heavy chains are well known and give rise to five classes of antibodies, IgA, IgD, IgE, IgG and IgM, respectively, including four subclasses of IgG, namely IgGl, IgGl, IgG3 and IgG4. In some embodiments the heavy chain is a human heavy chain.
The terms "Kabat numbering," and like terms are recognized in the art and refer to a system of numbering amino acid residues which are more variable (i.e. hypervariable) than other amino acid residues in the heavy and light chain variable regions of an antibody, or an antigen binding portion thereof. Kabat et al. (1971) Ann. any Acad. Sci. 190:382-391 and, Kabat et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242. For the heavy chain variable region, the hypervariable region typically ranges from amino acid positions 31 to 35 for CDR1, amino acid positions 50 to 65 for CDR2, and amino acid positions 95 to 102 for CDR3. For the light chain variable region, the hypervariable region typically ranges from amino acid positions 24 to 34 for CDR1, amino acid positions 50 to 56 for CDR2, and amino acid positions 89 to 97 for CDR3. Other numbering schemes will be readily understood by those skilled in the art.
The term "light chain" when used in reference to an antibody refers to two distinct types, called kappa (κ) of lambda (λ) based on the amino acid sequence of the constant domains. Light chain amino acid sequences are well known in the art. In certain embodiments, the light chain is a human light chain.
The term "monoclonal antibody" refers to an antibody obtained from a population of homogenous or substantially homogeneous antibodies, and each monoclonal antibody will typically recognize a single epitope on the antigen. In some embodiments, a "monoclonal antibody," as used herein, is an antibody produced by a single hybridoma or other cell, wherein the antibody immunospecifically binds to only a CRBN epitope as determined, e.g., by ELISA or other antigen-binding or competitive binding assay known in the art or in the Examples provided herein. The term "monoclonal" is not limited to any particular method for making the antibody. For example, monoclonal antibodies provided herein may be made by the hybridoma method as described in Kohler et al; Nature, 256:495 (1975) or may be isolated from phage libraries using the techniques as described herein, for example. Other methods for the preparation of clonal cell lines and of monoclonal antibodies expressed thereby are well known in the art. See, e.g., Chapter 11 in: Short Protocols in Molecular Biology, (2002) 5th Ed., Ausubel et al, eds., John Wiley and Sons, New York. Other exemplary methods of producing other monoclonal antibodies are provided in the Examples herein.
"Polyclonal antibodies" as used herein refers to an antibody population generated in an immunogenic response to a protein having many epitopes and thus includes a variety of different antibodies directed to the same and to different epitopes within the protein. Methods for producing polyclonal antibodies are known in the art. See, e.g., Chapter 11 in: Short Protocols in Molecular Biology, (2002) 5th Ed., Ausubel et al, eds., John Wiley and Sons, New York.
The terms "cereblon" or "CRBN"and similar terms refers to the polypeptides
("polypeptides," "peptides" and "proteins" are used interchangeably herein) comprising the amino acid sequence any CRBN, such as a human CRBN protein {e.g., human CRBN isoform 1, GenBank Accession No. NP 057386 (SEQ ID NO: 12); or human CRBN isoforms 2, GenBank Accession No. NP 001166953 (SEQ ID NO: 13), each of which is herein incorporated by reference in its entirety), and related polypeptides, including SNP variants thereof. Related CRBN polypeptides include allelic variants (e.g., SNP variants); splice variants; fragments; derivatives; substitution, deletion, and insertion variants; fusion polypeptides; and interspecies homologs, which, in certain embodiments, retain CRBN activity and/or are sufficient to generate an anti-CRBN immune response.
The term "CRBN antigen" refers to that portion of a CRBN polypeptide to which an antibody immunospecifically binds. A CRBN antigen also refers to an analog or derivative of a CRBN polypeptide or fragment thereof to which an antibody immunospecifically binds. A localized region on the surface of a CRBN antigen that is capable of eliciting an immune response is an CRBN "epitope." A region of a CRBN polypeptide contributing to an epitope may be contiguous amino acids of the polypeptide or the epitope may come together from two or more non-contiguous regions of the polypeptide. The epitope may or may not be a three- dimensional surface feature of the antigen. In certain embodiments, the CRBN epitope is EEFHGRTLHDDD (SEQ ID NO: 1) or peptide 65-76 of human CRBN (SEQ ID NO: 12). The term "variable region" or "variable domain" refers to a portion of the light and heavy chains, typically about the amino-terminal 120 to 130 amino acids in the heavy chain and about 100 to 110 amino acids in the light chain, which differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular antigen. The variability in sequence is concentrated in those regions called complimentarily determining regions (CDRs) while the more highly conserved regions in the variable domain are called framework regions (FR). The CDRs of the light and heavy chains are primarily responsible for the interaction of the antibody with antigen. Numbering of amino acid positions used herein is according to the EU Index, as in See Kabat, E. A. et al. (1991) Sequences of Proteins of
Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH
Publication No. 91-3242. In some embodiments, the variable region is a human variable region.
The term "expressed" or "expression" as used herein refers to the transcription from a gene to give an RNA nucleic acid molecule at least complementary in part to a region of one of the two nucleic acid strands of the gene. The term "expressed" or "expression" as used herein also refers to the translation from the RNA molecule to give a protein, a polypeptide or a portion thereof.
An mRNA that is "upregulated" is generally increased upon a given treatment or condition. An mRNA that is "downregulated" generally refers to a decrease in the level of expression of the mRNA in response to a given treatment or condition. In some situations, the mRNA level can remain unchanged upon a given treatment or condition.
An mRNA from a patient sample can be "upregulated" when treated with a drug, as compared to a non-treated control. This upregulation can be, for example, an increase of about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 90%, 100%, 200%, 300%, 500%, 1,000%, 5,000% or more of the comparative control mRNA level.
Alternatively, an mRNA can be "downregulated", or expressed at a lower level, in response to administration of certain compounds or other agents. A downregulated mRNA can be, for example, present at a level of about 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 1% or less of the comparative control mRNA level.
Similarly, the level of a polypeptide or protein biomarker from a patient sample can be increased when treated with a drug, as compared to a non-treated control. This increase can be about 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 90%, 100%, 200%, 300%, 500%, 1,000%, 5,000% or more of the comparative control protein level.
Alternatively, the level of a protein biomarker can be decreased in response to administration of certain compounds or other agents. This decrease can be, for example, present at a level of about 99%, 95%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 1% or less of the comparative control protein level.
The terms "determining", "measuring", "evaluating", "assessing" and "assaying" as used herein generally refer to any form of measurement, and include determining if an element is present or not. These terms include both quantitative and/or qualitative determinations.
Assessing may be relative or absolute. "Assessing the presence of can include determining the amount of something present, as well as determining whether it is present or absent.
The terms "nucleic acid" and "polynucleotide" are used interchangeably herein to describe a polymer of any length composed of nucleotides, e.g. , deoxyribonucleotides or ribonucleotides, or compounds produced synthetically, which can hybridize with naturally occurring nucleic acids in a sequence specific manner analogous to that of two naturally occurring nucleic acids, e.g., can participate in Watson-Crick base pairing interactions. As used herein in the context of a polynucleotide sequence, the term "bases" (or "base") is synonymous with "nucleotides" (or "nucleotide"), i.e., the monomer subunit of a polynucleotide. The terms "nucleoside" and "nucleotide" are intended to include those moieties that contain not only the known purine and pyrimidine bases, but also other heterocyclic bases that have been modified. Such modifications include methylated purines or pyrimidines, acylated purines or pyrimidines, alkylated riboses or other heterocycles. In addition, the terms "nucleoside" and "nucleotide" include those moieties that contain not only conventional ribose and deoxyribose sugars, but other sugars as well. Modified nucleosides or nucleotides also include modifications on the sugar moiety, e.g. , wherein one or more of the hydroxyl groups are replaced with halogen atoms or aliphatic groups, or are functionalized as ethers, amines, or the like. "Analogues" refer to molecules having structural features that are recognized in the literature as being mimetics, derivatives, having analogous structures, or other like terms, and include, for example, polynucleotides incorporating non-natural nucleotides, nucleotide mimetics such as 2'-modified nucleosides, peptide nucleic acids, oligomeric nucleoside phosphonates, and any polynucleotide that has added substituent groups, such as protecting groups or linking moieties. The term "complementary" refers to specific binding between polynucleotides based on the sequences of the polynucleotides. As used herein, a first polynucleotide and a second polynucleotide are complementary if they bind to each other in a hybridization assay under stringent conditions, e.g. if they produce a given or detectable level of signal in a hybridization assay. Portions of polynucleotides are complementary to each other if they follow conventional base-pairing rules, e.g. A pairs with T (or U) and G pairs with C, although small regions (e.g. less than about 3 bases) of mismatch, insertion, or deleted sequence may be present.
"Sequence identity" or "identity" in the context of two nucleic acid sequences refers to the residues in the two sequences which are the same when aligned for maximum
correspondence over a specified comparison window, and can take into consideration additions, deletions and substitutions.
The term "substantial identity" or "homologous" in their various grammatical forms in the context of polynucleotides generally means that a polynucleotide comprises a sequence that has a desired identity, for example, at least 60% identity, preferably at least 70% sequence identity, more preferably at least 80%, still more preferably at least 90% and even more preferably at least 95%, compared to a reference sequence. Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions.
The terms "isolated" and "purified" refer to isolation of a substance (such as m NA, antibody or protein) such that the substance comprises a substantial portion of the sample in which it resides, i.e. greater than the substance is typically found in its natural or un-isolated state. Typically, a substantial portion of the sample comprises, e.g., greater than 1%, greater than 2%, greater than 5%, greater than 10%>, greater than 20%>, greater than 50%>, or more, usually up to about 90%- 100% of the sample. For example, a sample of isolated mRNA can typically comprise at least about 1% total mRNA. Techniques for purifying polynucleotides are well known in the art and include, for example, gel electrophoresis, ion-exchange chromatography, affinity chromatography, flow sorting, and sedimentation according to density.
The term "sample" as used herein relates to a material or mixture of materials, typically, although not necessarily, in fluid form, containing one or more components of interest.
"Biological sample" as used herein refers to a sample obtained from a biological subject, including sample of biological tissue or fluid origin, obtained, reached, or collected in vivo or in situ. A biological sample also includes samples from a region of a biological subject containing precancerous or cancer cells or tissues. Such samples can be, but are not limited to, organs, tissues, fractions and cells isolated from a mammal. Exemplary biological samples include but are not limited to cell lysate, a cell culture, a cell line, a tissue, oral tissue, gastrointestinal tissue, an organ, an organelle, a biological fluid, a blood sample, a urine sample, a skin sample, and the like. Preferred biological samples include but are not limited to whole blood, partially purified blood, PBMCs, tissue biopsies, and the like.
The term "capture agent," as used herein, refers to an agent that binds an mR A or protein through an interaction that is sufficient to permit the agent to bind and concentrate the mRNA or protein from a homogeneous mixture.
The term "probe" as used herein, refers to a capture agent that is directed to a specific target mRNA biomarker sequence. Accordingly, each probe of a probe set has a respective target mRNA biomarker. A probe/target mRNA duplex is a structure formed by hybridizing a probe to its target mRNA biomarker.
The term "nucleic acid" or "oligonucleotide probe" refers to a nucleic acid capable of binding to a target nucleic acid of complementary sequence, such as the mRNA biomarkers provided herein, through one or more types of chemical bonds, usually through complementary base pairing, usually through hydrogen bond formation. As used herein, a probe may include natural {e.g., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. It will be understood by one of skill in the art that probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled with isotopes, for example, chromophores, lumiphores, chromogens, or indirectly labeled with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of a target mRNA biomarker of interest.
The term "stringent assay conditions" refers to conditions that are compatible to produce binding pairs of nucleic acids, e.g., probes and target mRNAs, of sufficient complementarity to provide for the desired level of specificity in the assay while being generally incompatible to the formation of binding pairs between binding members of insufficient complementarity to provide for the desired specificity. The term stringent assay conditions generally refers to the combination of hybridization and wash conditions.
A "label" or a "detectable moiety" in reference to a nucleic acid, refers to a composition that, when linked with a nucleic acid, renders the nucleic acid detectable, for example, by spectroscopic, photochemical, biochemical, immunochemical, or chemical means. Exemplary labels include, but are not limited to, radioactive isotopes, magnetic beads, metallic beads, colloidal particles, fluorescent dyes, enzymes, biotin, digoxigenin, haptens, and the like. A "labeled nucleic acid or oligonucleotide probe" is generally one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic bonds, van der Waals forces, electrostatic attractions, hydrophobic interactions, or hydrogen bonds, to a label such that the presence of the nucleic acid or probe can be detected by detecting the presence of the label bound to the nucleic acid or probe.
The terms "Polymerase chain reaction," or "PCR," as used herein generally refers to a procedure wherein small amounts of a nucleic acid, RNA and/or DNA, are amplified as described, for example, in U.S. Pat. No. 4,683,195 to Mullis. Generally, sequence information from the ends of the region of interest or beyond needs to be available, such that oligonucleotide primers can be designed; these primers will be identical or similar in sequence to opposite strands of the template to be amplified. The 5' terminal nucleotides of the two primers may coincide with the ends of the amplified material. PCR can be used to amplify specific RNA sequences, specific DNA sequences from total genomic DNA, and cDNA transcribed from total cellular RNA, bacteriophage or plasmid sequences, etc. See generally Mullis et al., Cold Spring Harbor Symp. Quant. Biol, 51 : 263 (1987); Erlich, ed., PCR Technology, (Stockton Press, NY, 1989).
The term "cycle number" or "CT" when used herein in reference to PCR methods, refers to the PCR cycle number at which the fluorescence level passes a given set threshold level. The CT measurement can be used, for example, to approximate levels of mRNA in an original sample. The CT measurement is often used in terms of "dCT" or the "difference in the CT" score, when the CT of one nucleic acid is subtracted from the CT of another nucleic acid.
As used herein, and unless otherwise indicated, the term "optically pure" means a composition that comprises one optical isomer of a compound and is substantially free of other isomers of that compound. For example, an optically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound. An optically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical optically pure compound comprises greater than about 80% by weight of one enantiomer of the compound and less than about 20% by weight of other enantiomers of the compound, more preferably greater than about 90% by weight of one enantiomer of the compound and less than about 10% by weight of the other enantiomers of the compound, even more preferably greater than about 95% by weight of one enantiomer of the compound and less than about 5% by weight of the other enantiomers of the compound, more preferably greater than about 97% by weight of one enantiomer of the compound and less than about 3% by weight of the other enantiomers of the compound, and most preferably greater than about 99% by weight of one enantiomer of the compound and less than about 1% by weight of the other enantiomers of the compound.
As used herein and unless otherwise indicated, the term "pharmaceutically acceptable salt" encompasses non-toxic acid and base addition salts of the compound to which the term refers. Acceptable non-toxic acid addition salts include those derived from organic and inorganic acids or bases know in the art, which include, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, methanesulphonic acid, acetic acid, tartaric acid, lactic acid, succinic acid, citric acid, malic acid, maleic acid, sorbic acid, aconitic acid, salicylic acid, phthalic acid, embolic acid, enanthic acid, and the like.
Compounds that are acidic in nature are capable of forming salts with various
pharmaceutically acceptable bases. The bases that can be used to prepare pharmaceutically acceptable base addition salts of such acidic compounds are those that form non-toxic base addition salts, i.e., salts containing pharmacologically acceptable cations such as, but not limited to, alkali metal or alkaline earth metal salts and the calcium, magnesium, sodium or potassium salts in particular. Suitable organic bases include, but are not limited to,
Ν,Ν-dibenzylethylenediamine, chloroprocaine, choline, diethanolamine, ethylenediamine, meglumaine (N-methylglucamine), lysine, and procaine.
As used herein and unless otherwise indicated, the term "solvate" means a compound provided herein or a salt thereof, that further includes a stoichiometric or non-stoichiometric amount of solvent bound by non-covalent intermolecular forces. Where the solvent is water, the solvate is a hydrate. As used herein and unless otherwise indicated, the term "stereomerically pure" means a composition that comprises one stereoisomer of a compound and is substantially free of other stereoisomers of that compound. For example, a stereomerically pure composition of a compound having one chiral center will be substantially free of the opposite enantiomer of the compound. A stereomerically pure composition of a compound having two chiral centers will be substantially free of other diastereomers of the compound. A typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound. As used herein and unless otherwise indicated, the term "stereomerically enriched" means a composition that comprises greater than about 60% by weight of one stereoisomer of a compound, preferably greater than about 70% by weight, more preferably greater than about 80%> by weight of one stereoisomer of a compound. As used herein and unless otherwise indicated, the term "enantiomerically pure" means a stereomerically pure composition of a compound having one chiral center. Similarly, the term "stereomerically enriched" means a stereomerically enriched composition of a compound having one chiral center.
As used herein and unless otherwise indicated, the term "co-crystal" means a crystalline form that contains more than one compound in a crystal lattice. Co-crystals include crystalline molecular complexes of two or more non-volatile compounds bound together in a crystal lattice through non-ionic interactions. As used herein, co-crystals include pharmaceutical cocrystals wherein the crystalline molecular complexes containin a therapeutic compound and one or more additional non- volatile compound(s) (referred to herein as counter-molecule(s)). A counter- molecule in a pharmaceutical cocrystal is typically a non-toxic pharmaceutically acceptable molecule, such as, for example, food additives, preservatives, pharmaceutical excipients, or other APIs. In some embodiments, pharmaceutical cocrystals enhance certain physicochemical properties of drug products (e.g., solubility, dissolution rate, bioavailability and/or stability), without compromising the chemical structural integrity of the active pharmaceutical ingredient (API). See, e.g., Jones et al., "Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement," MRS Bulletin, 2006, 31, 875-879; Trask, "An Overview of
Pharmaceutical Cocrystals as Intellectual Property," Molecular Pharmaceutics, 2007, 4(3), 301- 309; Schultheiss & Newman, "Pharmaceutical Cocrystals and Their Physicochemical Properties," Crystal Growth & Design, 2009, 9(6), 2950-2967; Shan & Zaworotko, "The Role of Cocrystals in Pharmaceutical Science," Drug Discovery Today, 2008, 13(9/10), 440-446; and Vishweshwar et al, "Pharmaceutical Co-Crystals," J. Pharm. Sci, 2006, 95(3), 499-516.
A biological marker or "biomarker" is a substance whose detection indicates a particular biological state, such as, for example, the presence of cancer. In some embodiments, biomarkers can either be determined individually, or several biomarkers can be measured simultaneously.
In some embodiments, a "biomarker" indicates a change in the level of mRNA
expression that may correlate with the risk or progression of a disease, or with the susceptibility of the disease to a given treatment. In some embodiments, the biomarker is a nucleic acid, such as a mRNA or cDNA.
In additional embodiments, a "biomarker" indicates a change in the level of polypeptide or protein expression that may correlate with the risk, susceptibility to treatment, or progression of a disease. In some embodiments, the biomarker can be a polypeptide or protein, or a fragment thereof. The relative level of specific proteins can be determined by methods known in the art. For example, antibody based methods, such as an immunoblot, enzyme-linked immunosorbent assay (ELISA), or other methods can be used.
It should be noted that if there is a discrepancy between a depicted structure and a name given that structure, the depicted structure is to be accorded more weight. In addition, if the stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it.
The practice of the embodiments provided herein will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, and immunology, which are within the skill of those working in the art. Such techniques are explained fully in the literature.
Examples of particularly suitable texts for consultation include the following: Sambrook et al. (1989) Molecular Cloning; A Laboratory Manual (2d ed.); D.N Glover, ed. (1985) DNA Cloning, Volumes I and II; M.J. Gait, ed. (1984) Oligonucleotide Synthesis; B.D. Hames & SJ. Higgins, eds. (1984) Nucleic Acid Hybridization; B.D. Hames & S.J. Higgins, eds. (1984) Transcription and Translation; R.I. Freshney, ed. (1986) Animal Cell Culture; Immobilized Cells and Enzymes (IRL Press, 1986); Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes (1987) Protein Purification: Principles and Practice (2d ed.; Springer Verlag, N.Y.); and D.M. Weir and C. C. Blackwell, eds. (1986) Handbook of Experimental Immunology, Volumes I-IV.
5.2 Clincal Trial Endpoints
"Overall survival" is defined as the time from randomization until death from any cause, and is measured in the intent-to-treat population. Overall survival should be evaluated in randomized controlled studies. Demonstration of a statistically significant improvement in overall survival can be considered to be clinically significant if the toxicity profile is acceptable, and has often supported new drug approval.
Several endpoints are based on cancer assessments. These endpoints include disease free survival (DFS), objective response rate (ORR), time to progression (TTP), progression-free survival (PFS), and time-to-treatment failure (TTF). The collection and analysis of data on these time- dependent endpoints are based on indirect assessments, calculations, and estimates (e.g., tumor measurements).
Generally, "disease free survival" (DFS) is defined as the time from randomization until recurrence of cancer or death from any cause. Although overall survival is a conventional endpoint for most adjuvant settings, DFS can be an important endpoint in situations where survival may be prolonged, making a survival endpoint impractical. DFS can be a surrogate for clinical benefit or it can provide direct evidence of clinical benefit. This determination is based on the magnitude of the effect, its risk-benefit relationship, and the disease setting. The definition of DFS can be complicated, particularly when deaths are noted without prior cancer progression documentation. These events can be scored either as disease recurrences or as censored events. Although all methods for statistical analysis of deaths have some limitations, considering all deaths (deaths from all causes) as recurrences can minimize bias. DFS can be overestimated using this definition, especially in patients who die after a long period without observation. Bias can be introduced if the frequency of long-term follow-up visits is dissimilar between the study arms or if dropouts are not random because of toxicity. "Objective response rate" (ORR) is defined as the proportion of patients with cancer reduction of a predefined amount and for a minimum time period. Response duration usually is measured from the time of initial response until documented cancer progression. Generally, the FDA has defined ORR as the sum of partial responses plus complete responses. When defined in this manner, ORR is a direct measure of drug anticancer activity, which can be evaluated in a single- arm study. If available, standardized criteria should be used to ascertain response. A variety of response criteria have been considered appropriate (e.g., RECIST criteria) (Therasse et al, (2000) J. Natl. Cancer Inst, 92: 205-16). The significance of ORR is assessed by its magnitude and duration, and the percentage of complete responses (no detectable evidence of cancer).
"Time to progression" (TTP) and "progression- free survival" (PFS) have served as primary endpoints for drug approval. TTP is defined as the time from randomization until objective cancer progression; TTP does not include deaths. PFS is defined as the time from randomization until objective cancer progression or death. Compared with TTP, PFS is the preferred regulatory endpoint. PFS includes deaths and thus can be a better correlate to overall survival. PFS assumes patient deaths are randomly related to cancer progression. However, in situations where the majority of deaths are unrelated to cancer, TTP can be an acceptable endpoint.
As an endpoint to support drug approval, PFS can reflect cancer growth and be assessed before the determination of a survival benefit. Its determination is not confounded by subsequent therapy. For a given sample size, the magnitude of effect on PFS can be larger than the effect on overall survival. However, the formal validation of PFS as a surrogate for survival for the many different malignancies that exist can be difficult. Data are sometimes insufficient to allow a robust evaluation of the correlation between effects on survival and PFS. Cancer trials are often small, and proven survival benefits of existing drugs are generally modest. The role of PFS as an endpoint to support licensing approval varies in different cancer settings. Whether an
improvement in PFS represents a direct clinical benefit or a surrogate for clinical benefit depends on the magnitude of the effect and the risk-benefit of the new treatment compared to available therapies.
"Time-to-treatment failure" (TTF) is defined as a composite endpoint measuring time from randomization to discontinuation of treatment for any reason, including disease progression, treatment toxicity, and death. TTF is not recommended as a regulatory endpoint for drug approval. TTF does not adequately distinguish efficacy from these additional variables. A regulatory endpoint should clearly distinguish the efficacy of the drug from toxicity, patient or physician withdrawal, or patient intolerance.
5.3 Second Active Agents
The compounds provided herein may be combined with other pharmacologically active compounds ("second active agents") in methods and compositions provided herein. It is believed that certain combinations work synergistically in the treatment of particular types of cancer, and certain diseases and conditions associated with or characterized by undesired angiogenesis and/or inflammation. The compounds provided herein provided herein can also work to alleviate adverse effects associated with certain second active agents, and some second active agents can be used to alleviate adverse effects associated with the compounds provided herein provided herein.
One or more second active ingredients or agents can be used in the methods and compositions provided herein with the compounds provided herein. Second active agents can be large molecules (e.g., proteins) or small molecules (e.g., synthetic inorganic, organometallic, or organic molecules).
Examples of large molecule active agents include, but are not limited to, hematopoietic growth factors, cytokines, and monoclonal and polyclonal antibodies. In certain embodiments, large molecule active agents are biological molecules, such as naturally occurring or artificially made proteins. Proteins that are particularly useful in this disclosure include proteins that stimulate the survival and/or proliferation of hematopoietic precursor cells and immunologically active poietic cells in vitro or in vivo. Others stimulate the division and differentiation of committed erythroid progenitors in cells in vitro or in vivo. Particular proteins include, but are not limited to: interleukins, such as IL-2 (including recombinant IL-II ("rIL2") and canarypox IL-2), IL-10, IL-12, and IL-18; interferons, such as interferon alfa-2a, interferon alfa-2b, interferon alfa-nl, interferon alfa-n3, interferon beta-I a, and interferon gamma-I b; GM-CF and GM-CSF; and EPO.
Particular proteins that can be used in the methods and compositions of the disclosure include, but are not limited to: filgrastim, which is sold in the United States under the trade name NEUPOGEN® (Amgen, Thousand Oaks, CA); sargramostim, which is sold in the United States under the trade name LEUKINE® (Immunex, Seattle, WA); and recombinant EPO, which is sold in the United States under the trade name EPGEN® (Amgen, Thousand Oaks, CA). Recombinant and mutated forms of GM-CSF can be prepared as described in U.S. Patent Nos. 5,391,485; 5,393,870; and 5,229,496; the disclosure of each of which is incorporated herein by reference in its entirety. Recombinant and mutated forms of G-CSF can be prepared as described in U.S. Patent Nos. 4,810,643; 4,999,291; 5,528,823; and 5,580,755; the disclosure of each of which is incorporated herein by reference in its entirety.
This disclosure encompasses the use of native, naturally occurring, and recombinant proteins. The disclosure further encompasses mutants and derivatives (e.g., modified forms) of naturally occurring proteins that exhibit, in vivo, at least some of the pharmacological activity of the proteins upon which they are based. Examples of mutants include, but are not limited to, proteins that have one or more amino acid residues that differ from the corresponding residues in the naturally occurring forms of the proteins. Also encompassed by the term "mutants" are proteins that lack carbohydrate moieties normally present in their naturally occurring forms (e.g. , nonglycosylated forms). Examples of derivatives include, but are not limited to, pegylated derivatives and fusion proteins, such as proteins formed by fusing IgGl or IgG3 to the protein or active portion of the protein of interest. See, e.g., Penichet, M.L. and Morrison, S.L., J. Immunol. Methods 248:91-101 (2001).
Antibodies that can be used in combination with the compound of Formula I provided herein include monoclonal and polyclonal antibodies. Examples of antibodies include, but are not limited to, trastuzumab (HERCEPTIN®), rituximab (RITUXAN®),bevacizumab
(AVASTIN™), pertuzumab (OMNITARG™), tositumomab (BEXXAR®), edrecolomab
(PANOREX®), panitumumab and G250. The compound of Formula I provided herein can also be combined with or used in combination with anti-TNF-a antibodies.
Large molecule active agents may be administered in the form of anti-cancer vaccines. For example, vaccines that secrete, or cause the secretion of, cytokines such as IL-2, SCF, CXC14 (platelet factor 4), G-CSF, and GM-CSF can be used in the methods, pharmaceutical compositions, and kits of the disclosure. See, e.g., Emens, L.A., et al., Curr. Opinion Mol. Ther. 3(l):77-84 (2001).
Second active agents that are small molecules can also be used to alleviate adverse effects associated with the administration of the compound of Formula I provided herein. However, like some large molecules, many are believed to be capable of providing a synergistic effect when administered with (e.g., before, after or simultaneously) the compound of Formula I. Examples of small molecule second active agents include, but are not limited to, anti-cancer agents, antibiotics, immunosuppressive agents, and steroids.
Examples of anti-cancer agents include, but are not limited to: abraxane; ace-1 1; acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin; ametantrone acetate; amrubicin; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin
hydrochloride; carzelesin; cedefingol; celecoxib (COX-2 inhibitor); chlorambucil; cirolemycin; cisplatin; cladribine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine;
dactinomycin; daunorubicin hydrochloride; decitabine; dexormaplatin; dezaguanine;
dezaguanine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride;
droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate;
eflornithine hydrochloride; elsamitrucin; enloplatin; enpromate; epipropidine; epirubicin hydrochloride; erbulozole; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride;
fazarabine; fenretinide; floxuridine; fludarabine phosphate; fluorouracil; flurocitabine;
fosquidone; fostriecin sodium; gemcitabine; gemcitabine hydrochloride; herceptin; hydroxyurea; idarubicin hydrochloride; ifosfamide; ilmofosine; iproplatin; irinotecan; irinotecan hydrochloride; lanreotide acetate; lapatinib; letrozole; leuprolide acetate; liarozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprocol; maytansine; mechlorethamine hydrochloride; megestrol acetate; melengestrol acetate; melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; metoprine; meturedepa; mitindomide; mitocarcin;
mitocromin; mitogillin; mitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocodazole; nogalamycin; ormaplatin; oxisuran; paclitaxel; pegaspargase; peliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan;
piroxantrone hydrochloride; plicamycin; plomestane; porfimer sodium; porfiromycin;
prednimustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazofurin; riboprine; romidepsin; safmgol; safmgol hydrochloride; semustine; simtrazene; sparfosate sodium; sparsomycin; spirogermanium hydrochloride; spiromustine; spiroplatin; stem cell treatments such as PDA-001; streptonigrin; streptozocin; sulofenur; talisomycin; tecogalan sodium; taxotere; tegafur; teloxantrone hydrochloride; temoporfm; teniposide; teroxirone;
testolactone; thiamiprine; thioguanine; thiotepa; tiazofurin; tirapazamine; toremifene citrate; trestolone acetate; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin;
tubulozole hydrochloride; uracil mustard; uredepa; vapreotide; verteporfm; vinblastine sulfate; vincristine sulfate; vindesine; vindesine sulfate; vinepidine sulfate; vinglycinate sulfate;
vinleurosine sulfate; vinorelbine tartrate; vinrosidine sulfate; vinzolidine sulfate; vorozole;
zeniplatin; zinostatin; and zorubicin hydrochloride.
Other anti-cancer drugs include, but are not limited to: 20-epi-l,25 dihydroxyvitamin D3;
5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid;
amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors;
antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein- 1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin 1; axinastatin 2; axinastatin
3; azasetron; azatoxin; azatyrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine;
betaclamycin B; betulinic acid; b-FGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptothecin derivatives; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorlns; chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole;
collismycin A; collismycin B; combretastatin A4; combretastatin analogue; conagenin;
crambescidin 816; crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A;
cyclopentanthraquinones; cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor;
cytostatin; dacliximab; decitabine; dehydrodidemnin B; deslorelin; dexamethasone;
dexifosfamide; dexrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorspermine; dihydro-5-azacytidine; dihydrotaxol, 9-; dioxamycin; diphenyl spiromustine; docetaxel;
docosanol; dolasetron; doxifluridine; doxorubicin; droloxifene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab; eflornithine; elemene; emitefur; epirubicin; epristeride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole;
etoposide phosphate; exemestane; fadrozole; fazarabine; fenretinide; filgrastim; finasteride;
flavopiridol; flezelastine; fluasterone; fludarabine; fluorodaunorunicin hydrochloride; forfenimex; formestane; fostriecin; fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine;
ganirelix; gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin;
hexamethylene bisacetamide; hypericin; ibandronic acid; idarubicin; idoxifene; idramantone; ilmofosine; ilomastat; imatinib (e.g., GLEEVEC®), imiquimod; immunostimulant peptides;
insulin- like growth factor- 1 receptor inhibitor; interferon agonists; interferons; interleukins;
iobenguane; iododoxorubicin; ipomeanol, 4-; iroplact; irsogladine; isobengazole;
isohomohalicondrin B; itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenograstim; lentinan sulfate; leptolstatin; letrozole; leukemia inhibiting factor;
leukocyte alpha interferon; leuprolide+estrogen+progesterone; leuprorelin; levamisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds;
lissoclinamide 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; loxoribine;
lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannostatin A;
marimastat; masoprocol; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors;
menogaril; merbarone; meterelin; methioninase; metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim;Erbitux, human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; mopidamol;
mustard anticancer agent; mycaperoxide B; mycobacterial cell wall extract; myriaporone;
N-acetyldinaline; N-substituted benzamides; nafarelin; nagrestip; naloxone+pentazocine;
napavin; naphterpin; nartograstim; nedaplatin; nemorubicin; neridronic acid; nilutamide;
nisamycin; nitric oxide modulators; nitroxide antioxidant; nitrullyn; oblimersen
(GENASENSE®); 06-benzylguanine; octreotide; okicenone; oligonucleotides; onapristone;
ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin;
oxaunomycin; paclitaxel; paclitaxel analogues; paclitaxel derivatives; palauamine;
palmitoylrhizoxin; pamidronic acid; panaxytriol; panomifene; parabactin; pazelliptine;
pegaspargase; peldesine; pentosan polysulfate sodium; pentostatin; pentrozole; perflubron;
perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; porfimer sodium; porfiromycin; prednisone; propyl bis-acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylene conjugate; raf antagonists;
raltitrexed; ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII retinamide; rohitukine; romurtide; roquinimex; rubiginone Bl ; ruboxyl; safingol; saintopin;
SarCNU; sarcophytol A; sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1 ; sense oligonucleotides; signal transduction inhibitors; sizofiran; sobuzoxane; sodium
borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1 ; squalamine; stipiamide;
stromelysin inhibitors; sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; tallimustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; teniposide;
tetrachlorodecaoxide; tetrazomine; thaliblastine; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; toremifene; translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrphostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; velaresol;
veramine; verdins; verteporfin; vinorelbine; vinxaltine; vitaxin; vorozole; zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer.
Specific second active agents include, but are not limited to, oblimersen
(GENASENSE®), remicade, docetaxel, celecoxib, melphalan, dexamethasone (DECADRON®), steroids, gemcitabine, cisplatinum, temozolomide, etoposide, cyclophosphamide, temodar, carboplatin, procarbazine, gliadel, tamoxifen, topotecan, methotrexate, ARISA®, taxol, taxotere, fluorouracil, leucovorin, irinotecan, xeloda, CPT-1 1 , interferon alpha, pegylated interferon alpha (e.g., PEG INTRON-A), capecitabine, cisplatin, thiotepa, fludarabine, carboplatin, liposomal daunorubicin, cytarabine, doxetaxol, pacilitaxel, vinblastine, IL-2, GM-CSF, dacarbazine, vinorelbine, zoledronic acid, palmitronate, biaxin, busulphan, prednisone, bisphosphonate, arsenic trioxide, vincristine, doxorubicin (DOXIL ), paclitaxel, ganciclovir, adriamycin, estramustine sodium phosphate (EMCYT®), sulindac, and etoposide.
5.4 Methods of Treatment and Prevention
In one embodiment, provided herein is a method of treating and preventing cancer, which comprises administering to a patient a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
In another embodiment, provided herein is method of managing cancer, which comprises administering to a patient a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
Also provided herein are methods of treating patients who have been previously treated for cancer but are non-responsive to standard therapies, as well as those who have not previously been treated. The invention also encompasses methods of treating patients regardless of patient's age, although some diseases or disorders are more common in certain age groups. The invention further encompasses methods of treating patients who have undergone surgery in an attempt to treat the disease or condition at issue, as well as those who have not. Because patients with cancer have heterogeneous clinical manifestations and varying clinical outcomes, the treatment given to a patient may vary, depending on his/her prognosis. The skilled clinician will be able to readily determine without undue experimentation specific secondary agents, types of surgery, and types of non-drug based standard therapy that can be effectively used to treat an individual patient with cancer.
In yet another embodiment, provided herein is a method of treating, managing, or preventing diseases and disorders other than cancer that are associated with or characterized by undesired angiogenesis, which comprises administering to a patient a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
As used herein, the term "cancer" includes, but is not limited to, solid tumors and blood born tumors. The term "cancer" refers to disease of skin tissues, organs, blood, and vessels, including, but not limited to, cancers of the bladder, bone, blood, brain, breast, cervix, chest, colon, endrometrium, esophagus, eye, head, kidney, liver, lymph nodes, lung, mouth, neck, ovaries, pancreas, prostate, rectum, stomach, testis, throat, and uterus. Specific cancers include, but are not limited to, advanced malignancy, amyloidosis, neuroblastoma, meningioma, hemangiopericytoma, multiple brain metastase, glioblastoma multiforms, glioblastoma, brain stem glioma, poor prognosis malignant brain tumor, malignant glioma, recurrent malignant giolma, anaplastic astrocytoma, anaplastic oligodendroglioma, neuroendocrine tumor, rectal adenocarcinoma, Dukes C & D colorectal cancer, unresectable colorectal carcinoma, metastatic hepatocellular carcinoma, Kaposi's sarcoma, karotype acute myeloblastic leukemia, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous T-Cell lymphoma, cutaneous B-Cell lymphoma, diffuse large B-Cell lymphoma, low grade follicular lymphoma, malignant melanoma, malignant mesothelioma, malignant pleural effusion mesothelioma syndrome, peritoneal carcinoma, papillary serous carcinoma, gynecologic sarcoma, soft tissue sarcoma, scleroderma, cutaneous vasculitis, Langerhans cell histiocytosis, leiomyosarcoma, fibrodysplasia ossificans progressive, hormone refractory prostate cancer, resected high-risk soft tissue sarcoma, unrescectable hepatocellular carcinoma, Waldenstrom's macroglobulinemia, smoldering myeloma, indolent myeloma, fallopian tube cancer, androgen independent prostate cancer, androgen dependent stage IV non-metastatic prostate cancer, hormone-insensitive prostate cancer, chemotherapy-insensitive prostate cancer, papillary thyroid carcinoma, follicular thyroid carcinoma, medullary thyroid carcinoma, and leiomyoma
In certain embodiments, the cancer is a blood borne tumor. In certain embodiments, the blood borne tumor is metastatic. In certain embodiments, the blood borne tumor is drug resistant. In certain embodiments, the cancer is myeloma or lymphoma.
In certain embodiments, the cancer is a solid tumor. In certain embodiments, the solid tumor is metastatic. In certain embodiments, the solid tumor is drug-resistant. In certain embodiments, the solid tumor is hepatocellular carcinoma, prostate cancer, ovarian cancer, or glioblastoma.
As used herein to refer to diseases and conditions other than cancer, the terms "diseases or disorders associated with or characterized by undesired angiogenesis," "diseases or disorders associated with undesired angiogenesis," and "diseases or disorders characterized by undesired angiogenesis" refer to diseases, disorders, and conditions that are caused, mediated, or attended by undesired, unwanted, or uncontrolled angiogenesis, including, but not limited to,
inflammatory diseases, autoimmune diseases, genetic diseases, allergic diseases, bacterial diseases, ocular neovascular diseases, choroidal neovascular diseases, and retina neovascular diseases.
Examples of such diseases or disorders associated with undesired angiogenesis include, but are not limited to, diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, neovascular glaucoma, retrolental fibroplasia, proliferative vitreoretinopathy, trachoma, myopia, optic pits, epidemnic keratoconjunctivitis, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phylectenulosis, syphilis, lipid degeneration, bacterial ulcer, fungal ulcer, Herpes simplex infection, Herpes zoster infection, protozoan infection, Kaposi sarcoma, Mooren ulcer, Terrien's marginal degeneration, mariginal keratolysis, rheumatoid arthritis, systemic lupus, polyarteritis, trauma, Wegeners sarcoidosis, Scleritis, Steven's Johnson disease, periphigoid radial keratotomy, sickle cell anemia, sarcoid,
pseudoxanthoma elasticum, Pagets disease, vein occlusion, artery occlusion, carotid obstructive disease, chronic uveitis, chronic vitritis, Lyme's disease, Eales disease, Behcet's disease, retinitis, choroiditis, presumed ocular histoplasmosis, Bests disease, Stargarts disease, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, rubeosis, sarcodisis, sclerosis, soriatis, psoriasis, primary sclerosing cholangitis, proctitis, primary biliary srosis, idiopathic pulmonary fibrosis, and alcoholic hepatitis.
In certain embodiments, a therapeutically or prophylactically effective amount of the compound is from about 0.005 to about 1,000 mg per day, from about 0.01 to about 500 mg per day, from about 0.01 to about 250 mg per day, from about 0.01 to about 100 mg per day, from about 0.1 to about 100 mg per day, from about 0.5 to about 100 mg per day, from about 1 to about 100 mg per day, from about 0.01 to about 50 mg per day, from about 0.1 to about 50 mg per day, from about 0.5 to about 50 mg per day, from about 1 to about 50 mg per day, from about
0.02 to about 25 mg per day, or from about 0.05 to about 10 mg per day.
In certain embodiments, the therapeutically or prophylactically effective amount is about
1, about 2, about 5, about 10, about 15, about 20, about 25, about 30, about 40, about 45, about 50, about 60, about 70, about 80, about 90, about 100, or about 150 mg per day.
In one embodiment, the recommended daily dose range of the compound for the conditions described herein lie within the range of from about 0.5 mg to about 50 mg per day, preferably given as a single once-a-day dose, or in divided doses throughout a day. In some embodiments, the dosage ranges from about 1 mg to about 50 mg per day. In other embodiments, the dosage ranges from about 0.5 to about 5 mg per day. Specific doses per day include 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 mg per day. In other embodiments, specific doses per day include 0.5, 1, 1.5, 2, 2.5, 3, 3.5 or 4 mg per day.
In a specific embodiment, the recommended starting dosage may be 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 10, 15, 20, 25 or 50 mg per day. In another embodiment, the recommended starting dosage may be 0.5, 1, 1.5, 2, 2.5, 3, 3.5 or 4 mg per day. The dose may be escalated to 15, 20, 25, 30, 35, 40, 45 and 50 mg/day. In a specific embodiment, the compound can be administered in an amount of about 25 mg/day to patients with cacner. In a particular embodiment, the compound can be administered in an amount of about 10 mg/day to patients with cancer.
In certain embodiments, the therapeutically or prophylactically effective amount is from about 0.001 to about 100 mg/kg/day, from about 0.01 to about 50 mg/kg/day, from about 0.01 to about 25 mg/kg/day, from about 0.01 to about 10 mg/kg/day, from about 0.01 to about 9 mg/kg/day, 0.01 to about 8 mg/kg/day, from about 0.01 to about 7 mg/kg/day, from about 0.01 to about 6 mg/kg/day, from about 0.01 to about 5 mg/kg/day, from about 0.01 to about 4 mg/kg/day, from about 0.01 to about 3 mg/kg/day, from about 0.01 to about 2 mg/kg/day, or from about 0.01 to about 1 mg/kg/day.
The administered dose can also be expressed in units other than mg/kg/day. For example, doses for parenteral administration can be expressed as mg/m2/day. One of ordinary skill in the art would readily know how to convert doses from mg/kg/day to mg/m2/day to given either the height or weight of a subject or both (see, www.fda.gov/cder/cancer/animalframe.htm). For example, a dose of 1 mg/kg/day for a 65 kg human is approximately equal to 38 mg/m2/day.
In certain embodiments, the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state, ranging from about 0.001 to about 500 μΜ, about 0.002 to about 200 μΜ, about 0.005 to about 100 μΜ, about 0.01 to about 50 μΜ, from about 1 to about 50 μΜ, about 0.02 to about 25 μΜ, from about 0.05 to about 20 μΜ, from about 0.1 to about 20 μΜ, from about 0.5 to about 20 μΜ, or from about 1 to about 20 μΜ.
In other embodiments, the amount of the compound administered is sufficient to provide a plasma concentration of the compound at steady state, ranging from about 5 to about 100 iiM, about 5 to about 50 nM, about 10 to about 100 nM, about 10 to about 50 nM or from about 50 to about 100 nM.
As used herein, the term "plasma concentration at steady state" is the concentration reached after a period of administration of a compound provided herein, e.g., the compound of Formula I, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof. Once steady state is reached, there are minor peaks and troughs on the time dependent curve of the plasma concentration of the compound.
In certain embodiments, the amount of the compound administered is sufficient to provide a maximum plasma concentration (peak concentration) of the compound, ranging from about 0.001 to about 500 μΜ, about 0.002 to about 200 μΜ, about 0.005 to about 100 μΜ, about 0.01 to about 50 μΜ, from about 1 to about 50 μΜ, about 0.02 to about 25 μΜ, from about 0.05 to about 20 μΜ, from about 0.1 to about 20 μΜ, from about 0.5 to about 20 μΜ,θΓ from about 1 to about 20 μΜ.
In certain embodiments, the amount of the compound administered is sufficient to provide a minimum plasma concentration (trough concentration) of the compound, ranging from about 0.001 to about 500 μΜ, about 0.002 to about 200 μΜ, about 0.005 to about 100 μΜ, about 0.01 to about 50 μΜ, from about 1 to about 50 μΜ, about 0.01 to about 25 μΜ, from about 0.01 to about 20 μΜ, from about 0.02 to about 20 μΜ, from about 0.02 to about 20 μΜ, or from about 0.01 to about 20 μΜ.
In certain embodiments, the amount of the compound administered is sufficient to provide an area under the curve (AUC) of the compound, ranging from about 100 to about 100,000 ng*hr/mL, from about 1,000 to about 50,000 ng*hr/mL, from about 5,000 to about 25,000 ng*hr/mL, or from about 5,000 to about 10,000 ng*hr/mL.
In certain embodiments, the patient to be treated with one of the methods provided herein has not been treated with anticancer therapy prior to the administration of the drug. In certain embodiments, the patient to be treated with one of the methods provided herein has been treated with anticancer therapy prior to the administration of the drug. In certain embodiments, the patient to be treated with one of the methods provided herein has developed drug resistance to the anticancer therapy. The methods provided herein encompass treating a patient regardless of patient's age, although some diseases or disorders are more common in certain age groups. Further provided herein is a method for treating a patient who has undergone surgery in an attempt to treat the disease or condition at issue, as well in one who has not. Because the subjects with cancer have heterogeneous clinical manifestations and varying clinical outcomes, the treatment given to a particular subject may vary, depending on his/her prognosis. The skilled clinician will be able to readily determine without undue experimentation, specific secondary agents, types of surgery, and types of non-drug based standard therapy that can be effectively used to treat an individual subject with cancer.
Depending on the disease to be treated and the subject's condition, the compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, may be administered by oral, parenteral (e.g., intramuscular, intraperitoneal, intravenous, CIV, intracistemal injection or infusion, subcutaneous injection, or implant), inhalation, nasal, vaginal, rectal, sublingual, or topical (e.g., transdermal or local) routes of administration. The compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co- crystal, clathrate, or polymorph thereof, may be formulated, alone or together, in suitable dosage unit with pharmaceutically acceptable excipients, carriers, adjuvants and vehicles, appropriate for each route of administration.
In one embodiment, the compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered orally. In another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered parenterally. In yet another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered intravenously.
The compound, or an enantiomer or a mixture of enantiomers thereof; or a
pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, can be delivered as a single dose such as, e.g., a single bolus injection, or oral tablets or pills; or over time, such as, e.g., continuous infusion over time or divided bolus doses over time. The compound can be administered repeatedly if necessary, for example, until the patient experiences stable disease or regression, or until the patient experiences disease progression or unacceptable toxicity. For example, stable disease for solid tumors generally means that the perpendicular diameter of measurable lesions has not increased by 25% or more from the last measurement. Response Evaluation Criteria in Solid Tumors (RECIST) Guidelines, Journal of the National Cancer Institute 92(3): 205-216 (2000). Stable disease or lack thereof is determined by methods known in the art such as evaluation of patient symptoms, physical examination, visualization of the tumor that has been imaged using X-ray, CAT, PET, or MRI scan and other commonly accepted evaluation modalities.
The compound, or an enantiomer or a mixture of enantiomers thereof; or a
pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, can be administered once daily (QD), or divided into multiple daily doses such as twice daily (BID), three times daily (TID), and four times daily (QID). In addition, the administration can be continuous {i.e., daily for consecutive days or every day), intermittent, e.g., in cycles {i.e., including days, weeks, or months of rest without drug). As used herein, the term "daily" is intended to mean that a therapeutic compound is administered once or more than once each day, for example, for a period of time. The term "continuous" is intended to mean that a therapeutic compound is administered daily for an uninterrupted period of at least 10 days to 52 weeks. The term "intermittent" or "intermittently" as used herein is intended to mean stopping and starting at either regular or irregular intervals. For example, intermittent administration of a compound is administration for one to six days per week, administration in cycles {e.g., daily administration for two to eight consecutive weeks, then a rest period with no administration for up to one week), or administration on alternate days. The term "cycling" as used herein is intended to mean that a therapeutic compound is administered daily or continuously but with a rest period.
In some embodiments, the frequency of administration is in the range of about a daily dose to about a monthly dose. In certain embodiments, administration is once a day, twice a day, three times a day, four times a day, once every other day, twice a week, once every week, once every two weeks, once every three weeks, or once every four weeks. In one embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered once a day. In another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered twice a day. In yet another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered three times a day. In still another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered four times a day.
In certain embodiments, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered once per day from one day to six months, from one week to three months, from one week to four weeks, from one week to three weeks, or from one week to two weeks. In certain embodiments, the compound, or a pharmaceutically acceptable salt or solvate thereof, is administered once per day for one week, two weeks, three weeks, or four weeks. In one embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered once per day for one week. In another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered once per day for two weeks. In yet another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered once per day for three weeks. In still another embodiment, the compound, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered once per day for four weeks.
5.5 Combination Therapy With A Second Active Agent
A compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, can also be combined or used in combination with other therapeutic agents useful in the treatment and/or prevention of a disease described herein.
In one embodiment, provided herein is a method of treating, preventing, or managing cancer, comprising administering to a patient compound provided herein, or an enantiomer or a mixture of enantiomers thereof; or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof; in combination with one or more second active agents, and optionally in combination with radiation therapy, blood transfusions, or surgery. Examples of second active agents are disclosed herein (see, e.g., section 5.3).
As used herein, the term "in combination" includes the use of more than one therapy (e.g., one or more prophylactic and/or therapeutic agents). However, the use of the term "in
combination" does not restrict the order in which therapies (e.g., prophylactic and/or therapeutic agents) are administered to a patient with a disease or disorder. A first therapy (e.g., a
prophylactic or therapeutic agent such as a compound provided herein, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy (e.g., a prophylactic or therapeutic agent) to the subject.
Triple therapy is also contemplated herein.
Administration of the compound and one or more second active agents to a patient can occur simultaneously or sequentially by the same or different routes of administration. The suitability of a particular route of administration employed for a particular active agent will depend on the active agent itself (e.g., whether it can be administered orally without
decomposing prior to entering the blood stream) and the cancer being treated.
The route of administration of the compound is independent of the route of
administration of a second therapy. In one embodiment, the compound is administered orally. In another embodiment, the compound is administered intravenously. Thus, in accordance with these embodiments, the compound is administered orally or intravenously, and the second therapy can be administered orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraoccularly, via local delivery by catheter or stent, subcutaneously, intraadiposally, intraarticularly, intrathecally, or in a slow release dosage form. In one embodiment, the compound and a second therapy are administered by the same mode of administration, orally or by IV. In another embodiment, the compound is administered by one mode of administration, e.g., by IV, whereas the second agent (an anticancer agent) is administered by another mode of administration, e.g., orally.
In one embodiment, the second active agent is administered intravenously or
subcutaneously and once or twice daily in an amount of from about 1 to about 1000 mg, from about 5 to about 500 mg, from about 10 to about 350 mg, or from about 50 to about 200 mg. The specific amount of the second active agent will depend on the specific agent used, the type of disease being treated or managed, the severity and stage of disease, and the amount of the drug provided herein and any optional additional active agents concurrently administered to the patient. In certain embodiments, the second active agent is oblimersen (GENASENSE®), GM- CSF, G-CSF, SCF, EPO, taxotere, irinotecan, dacarbazine, transretinoic acid, topotecan, pentoxifylline, ciprofloxacin, dexamethasone, vincristine, doxorubicin, COX-2 inhibitor, IL2, IL8, IL18, IFN, Ara-C, vinorelbine, or a combination thereof.
In certain embodiments, GM-CSF, G-CSF, SCF or EPO is administered subcutaneously during about five days in a four or six week cycle in an amount ranging from about 1 to about 750 mg/m2/day, from about 25 to about 500 mg/m2/day, from about 50 to about 250 mg/m2/day, or from about 50 to about 200 mg/m2/day. In certain embodiments, GM-CSF may be administered in an amount of from about 60 to about 500 mcg/m2 intravenously over 2 hours or from about 5 to about 12 mcg/m2/day subcutaneously. In certain embodiments, G-CSF may be administered subcutaneously in an amount of about 1 mcg/kg/day initially and can be adjusted depending on rise of total granulocyte counts. The maintenance dose of G-CSF may be administered in an amount of about 300 (in smaller patients) or 480 meg subcutaneously. In certain embodiments, EPO may be administered subcutaneously in an amount of 10,000 Unit 3 times per week.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with melphalan and dexamethasone to patients with amyloidosis. In certain embodiments, a compound provided herein, e.g., the compound of Formula I, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, and steroids can be administered to patients with amyloidosis.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with gemcitabine and cisplatinum to patients with locally advanced or metastatic transitional cell bladder cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with a second active ingredient as follows: temozolomide to pediatric patients with relapsed or progressive brain tumors or recurrent neuroblastoma; celecoxib, etoposide and cyclophosphamide for relapsed or progressive CNS cancer; temodar to patients with recurrent or progressive meningioma, malignant meningioma, hemangiopericytoma, multiple brain metastases, relapased brain tumors, or newly diagnosed glioblastoma multiforms; irinotecan to patients with recurrent glioblastoma; carboplatin to pediatric patients with brain stem glioma; procarbazine to pediatric patients with progressive malignant gliomas; cyclophosphamide to patients with poor prognosis malignant brain tumors, newly diagnosed or recurrent glioblastoma multiforms; Gliadel® for high grade recurrent malignant gliomas; temozolomide and tamoxifen for anaplastic astrocytoma; or topotecan for gliomas, glioblastoma, anaplastic astrocytoma or anaplastic oligodendroglioma.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with methotrexate, cyclophosphamide, taxane, abraxane, lapatinib, herceptin, aromatase inhibitors, selective estrogen modulators, estrogen receptor antagonists, and/or PLX3397 (Plexxikon) to patients with metastatic breast cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with temozolomide to patients with neuroendocrine tumors.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with gemcitabine to patients with recurrent or metastatic head or neck cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with gemcitabine to patients with pancreatic cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with colon cancer in combination with ARISA®, avastatin, taxol, and/or taxotere.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with capecitabine and/or PLX4032 (Plexxikon) to patients with refractory colorectal cancer or patients who fail first line therapy or have poor performance in colon or rectal adenocarcinoma.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with fluorouracil, leucovorin, and irinotecan to patients with Dukes C & D colorectal cancer or to patients who have been previously treated for metastatic colorectal cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with refractory colorectal cancer in
combination with capecitabine, xeloda, and/or CPT-11.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with capecitabine and irinotecan to patients with refractory colorectal cancer or to patients with unresectable or metastatic colorectal carcinoma.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered alone or in combination with interferon alpha or capecitabine to patients with unresectable or metastatic hepatocellular carcinoma; or with cisplatin and thiotepa to patients with primary or metastatic liver cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with pegylated interferon alpha to patients with Kaposi's sarcoma.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with fludarabine, carboplatin, and/or topotecan to patients with refractory or relapsed or high-risk acuted myelogenous leukemia.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with liposomal daunorubicin, topotecan and/or cytarabine to patients with unfavorable karotype acute myeloblastic leukemia.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with gemcitabine, abraxane, erlotinib, geftinib, and/or irinotecan to patients with non-small cell lung cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with carboplatin and irinotecan to patients with non-small cell lung cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered with doxetaxol to patients with non-small cell lung cancer who have been previously treated with carbo/VP 16 and radiotherapy.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with carboplatin and/or taxotere, or in combination with carboplatin, pacilitaxel and/or thoracic radiotherapy to patients with non-small cell lung cancer. In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with taxotere to patients with stage IIIB or IV non-small cell lung cancer.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with oblimersen (Genasense®) to patients with small cell lung cancer.
In certain embodiments, a compound provided herein, e.g., the compound of Formula I, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with ABT-737 (Abbott Laboratories) and/or obatoclax (GXl 5-070) to patients with lymphoma and other blood cancers.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered alone or in combination with a second active ingredient such as vinblastine or fludarabine to patients with various types of lymphoma, including, but not limited to, Hodgkin's lymphoma, non-Hodgkin's lymphoma, cutaneous T-Cell lymphoma, cutaneous B-Cell lymphoma, diffuse large B-Cell lymphoma or relapsed or refractory low grade follicular lymphoma.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with taxotere, IL-2, IFN, GM-CSF, PLX4032 (Plexxikon) and/or dacarbazine to patients with various types or stages of melanoma.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered alone or in combination with vinorelbine to patients with malignant mesothelioma, or stage IIIB non-small cell lung cancer with pleural implants or malignant pleural effusion mesothelioma syndrome.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with various types or stages of multiple myeloma in combination with dexamethasone, zoledronic acid, palmitronate, GM-CSF, biaxin, vinblastine, melphalan, busulphan, cyclophosphamide, IFN, palmidronate, prednisone, bisphosphonate, celecoxib, arsenic trioxide, PEG INTRON-A, vincristine, or a combination thereof.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with relapsed or refractory multiple myeloma in combination with doxorubicin (Doxil®), vincristine and/or dexamethasone (Decadron®).
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with various types or stages of ovarian cancer such as peritoneal carcinoma, papillary serous carcinoma, refractory ovarian cancer or recurrent ovarian cancer, in combination with taxol, carboplatin, doxorubicin, gemcitabine, cisplatin, xeloda, paclitaxel, dexamethasone, or a combination thereof.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with various types or stages of prostate cancer, in combination with xeloda, 5 FU/LV, gemcitabine, irinotecan plus gemcitabine,
cyclophosphamide, vincristine, dexamethasone, GM-CSF, celecoxib, taxotere, ganciclovir, paclitaxel, adriamycin, docetaxel, estramustine, Emcyt, denderon or a combination thereof.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with various types or stages of renal cell cancer, in combination with capecitabine, IFN, tamoxifen, IL-2, GM-CSF, Celebrex®, or a combination thereof.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with various types or stages of gynecologic, uterus or soft tissue sarcoma cancer in combination with IFN, a COX-2 inhibitor such as
Celebrex®, and/or sulindac. In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with various types or stages of solid tumors in combination with celebrex, etoposide, cyclophosphamide, docetaxel, apecitabine, IFN, tamoxifen, IL-2, GM-CSF, or a combination thereof.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with scleroderma or cutaneous vasculitis in combination with celebrex, etoposide, cyclophosphamide, docetaxel, apecitabine, IFN, tamoxifen, IL-2, GM-CSF, or a combination thereof.
Also encompassed herein is a method of increasing the dosage of an anti-cancer drug or agent that can be safely and effectively administered to a patient, which comprises administering to the patient (e.g. , a human) or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof. Patients that can benefit by this method are those likely to suffer from an adverse effect associated with anti-cancer drugs for treating a specific cancer of the skin, subcutaneous tissue, lymph nodes, brain, lung, liver, bone, intestine, colon, heart, pancreas, adrenal, kidney, prostate, breast, colorectal, or combinations thereof. The administration of a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, alleviates or reduces adverse effects which are of such severity that it would otherwise limit the amount of anti-cancer drug.
In one embodiment, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered orally and daily in an amount ranging from about 0.1 to about 150 mg, from about 1 to about 50 mg, or from about 2 to about 25 mg, prior to, during, or after the occurrence of the adverse effect associated with the administration of an anti-cancer drug to a patient. In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered in combination with specific agents such as heparin, aspirin, Coumadin, or G-CSF to avoid adverse effects that are associated with anticancer drugs such as but not limited to neutropenia or thrombocytopenia. In one embodiment, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, is administered to patients with diseases and disorders associated with or characterized by, undesired angiogenesis in combination with additional active ingredients, including, but not limited to, anti-cancer drugs, anti-inflammatories, antihistamines, antibiotics, and steroids.
In another embodiment, encompassed herein is a method of treating, preventing and/or managing cancer, which comprises administering the compound, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, in conjunction with (e.g. before, during, or after) conventional therapy including, but not limited to, surgery, immunotherapy, biological therapy, radiation therapy, or other non-drug based therapy presently used to treat, prevent or manage cancer. The combined use of the compound provided herein and conventional therapy may provide a unique treatment regimen that is unexpectedly effective in certain patients. Without being limited by theory, it is believed that the compound of Formula I may provide additive or synergistic effects when given concurrently with conventional therapy.
As discussed elsewhere herein, encompassed herein is a method of reducing, treating and/or preventing adverse or undesired effects associated with conventional therapy including, but not limited to, surgery, chemotherapy, radiation therapy, hormonal therapy, biological therapy and immunotherapy. A compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, and other active ingredient can be administered to a patient prior to, during, or after the occurrence of the adverse effect associated with conventional therapy.
In one embodiment, the compound can be administered in an amount ranging from about 0.1 to about 150 mg, from about 1 to about 25 mg, from about 2 to about 10 mg, or about 0.5 to about 4 mg orally and daily alone, or in combination with a second active agent disclosed herein (see, e.g., section 4.3), prior to, during, or after the use of conventional therapy.
In certain embodiments, a compound provided herein, or an enantiomer or a mixture of enantiomers thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof, and doxetaxol are administered to patients with non- small cell lung cancer who were previously treated with carbo/VP 16 and radiotherapy. 5.6 Pharmaceutical Compositions
Pharmaceutical compositions can be used in the preparation of individual, single unit dosage forms. Pharmaceutical compositions and dosage forms provided herein comprise a compound, or a pharmaceutically acceptable salt, solvate, hydrate, stereoisomer, clathrate, or prodrug thereof. Pharmaceutical compositions and dosage forms provided herein may further comprise one or more excipients.
Pharmaceutical compositions and dosage forms provided herein may also comprise one or more additional active ingredients. Examples of optional second, or additional, active ingredients are disclosed herein.
Single unit dosage forms are suitable for oral, mucosal (e.g., nasal, sublingual, vaginal, buccal, or rectal), parenteral (e.g., subcutaneous, intravenous, bolus injection, intramuscular, or intraarterial), topical (e.g., eye drops or other ophthalmic preparations), transdermal or transcutaneous administration to a patient. Examples of dosage forms include, but are not limited to: tablets; caplets; capsules, such as soft elastic gelatin capsules; cachets; troches;
lozenges; dispersions; suppositories; powders; aerosols (e.g., nasal sprays or inhalers); gels; liquid dosage forms suitable for oral or mucosal administration to a patient, including
suspensions (e.g., aqueous or non-aqueous liquid suspensions, oil-in- water emulsions, or a water- in-oil liquid emulsions), solutions, and elixirs; liquid dosage forms suitable for parenteral administration to a patient; eye drops or other ophthalmic preparations suitable for topical administration; and sterile solids (e.g., crystalline or amorphous solids) that can be reconstituted to provide liquid dosage forms suitable for parenteral administration to a patient.
The composition, shape, and type of dosage forms provided herein will typically vary depending on their use. For example, a dosage form used in the acute treatment of a disease may contain larger amounts of one or more of the active ingredients it comprises than a dosage form used in the chronic treatment of the same disease. Similarly, a parenteral dosage form may contain smaller amounts of one or more of the active ingredients it comprises than an oral dosage form used to treat the same disease. These and other ways in which specific dosage forms provided herein will vary from one another will be readily apparent to those skilled in the art. See, e.g., Remington 's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton PA (1990).
Typical pharmaceutical compositions and dosage forms comprise one or more excipients.
Suitable excipients are well known to those skilled in the art of pharmacy, and non-limiting examples of suitable excipients are provided herein. Whether a particular excipient is suitable for incorporation into a pharmaceutical composition or dosage form depends on a variety of factors well known in the art including, but not limited to, the way in which the dosage form will be administered to a patient. For example, oral dosage forms such as tablets may contain excipients not suited for use in parenteral dosage forms. The suitability of a particular excipient may also depend on the specific active ingredients in the dosage form. For example, the decomposition of some active ingredients may be accelerated by some excipients such as lactose, or when exposed to water. Active ingredients that comprise primary or secondary amines are particularly susceptible to such accelerated decomposition. Consequently, provided herein are pharmaceutical compositions and dosage forms that contain little, if any, lactose other mono- or di-saccharides. As used herein, the term "lactose-free" means that the amount of lactose present, if any, is insufficient to substantially increase the degradation rate of an active ingredient.
Lactose-free compositions provided herein can comprise excipients that are well known in the art and are listed, for example, in the U.S. Pharmacopeia (USP) 25-NF20 (2002). In general, lactose-free compositions comprise active ingredients, a binder/filler, and a lubricant in pharmaceutically compatible and pharmaceutically acceptable amounts. In one embodiment, lactose-free dosage forms comprise active ingredients, microcrystalline cellulose, pre-gelatinized starch, and magnesium stearate.
Also provided herein are anhydrous pharmaceutical compositions and dosage forms comprising active ingredients, since water can facilitate the degradation of some compounds. For example, the addition of water (e.g., 5%) is widely accepted in the pharmaceutical arts as a means of simulating long-term storage in order to determine characteristics such as shelf-life or the stability of formulations over time. See, e.g., Jens T. Carstensen, Drug Stability: Principles & Practice, 2d. Ed., Marcel Dekker, NY, NY, 1995, pp. 379-80. In effect, water and heat accelerate the decomposition of some compounds. Thus, the effect of water on a formulation can be of great significance since moisture and/or humidity are commonly encountered during manufacture, handling, packaging, storage, shipment, and use of formulations.
Anhydrous pharmaceutical compositions and dosage forms may be prepared using anhydrous or low moisture containing ingredients and low moisture or low humidity conditions. Pharmaceutical compositions and dosage forms that comprise lactose and at least one active ingredient that comprises a primary or secondary amine are preferably anhydrous if substantial contact with moisture and/or humidity during manufacturing, packaging, and/or storage is expected.
An anhydrous pharmaceutical composition should be prepared and stored such that its anhydrous nature is maintained. Accordingly, anhydrous compositions are preferably packaged using materials known to prevent exposure to water such that they can be included in suitable formulary kits. Examples of suitable packaging include, but are not limited to, hermetically sealed foils, plastics, unit dose containers (e.g., vials), blister packs, and strip packs.
Also provided herein are pharmaceutical compositions and dosage forms that comprise one or more compounds that reduce the rate by which an active ingredient will decompose. Such compounds, which are referred to herein as "stabilizers," include, but are not limited to, antioxidants such as ascorbic acid, pH buffers, or salt buffers.
5.7 Oral Dosage Forms
Pharmaceutical compositions that are suitable for oral administration can be presented as discrete dosage forms, such as, but are not limited to, tablets (e.g., chewable tablets), caplets, capsules, and liquids (e.g., flavored syrups). Such dosage forms contain predetermined amounts of active ingredients, and may be prepared by methods of pharmacy well known to those skilled in the art. See generally, Remington 's Pharmaceutical Sciences, 18th ed., Mack Publishing, Easton PA (1990).
Typical oral dosage forms are prepared by combining the active ingredients in an intimate admixture with at least one excipient according to conventional pharmaceutical compounding techniques. Excipients can take a wide variety of forms depending on the form of preparation desired for administration. For example, excipients suitable for use in oral liquid or aerosol dosage forms include, but are not limited to, water, glycols, oils, alcohols, flavoring agents, preservatives, and coloring agents. Examples of excipients suitable for use in solid oral dosage forms (e.g., powders, tablets, capsules, and caplets) include, but are not limited to, starches, sugars, micro-crystalline cellulose, diluents, granulating agents, lubricants, binders, and disintegrating agents.
Because of their ease of administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid excipients are employed. If desired, tablets can be coated by standard aqueous or nonaqueous techniques. Such dosage forms can be prepared by any of the methods of pharmacy. In general, pharmaceutical compositions and dosage forms are prepared by uniformly and intimately admixing the active ingredients with liquid carriers, finely divided solid carriers, or both, and then shaping the product into the desired presentation if necessary.
For example, a tablet can be prepared by compression or molding. Compressed tablets can be prepared by compressing in a suitable machine the active ingredients in a free-flowing form such as powder or granules, optionally mixed with an excipient. Molded tablets can be made by molding in a suitable machine a mixture of the powdered compound moistened with an inert liquid diluent.
Examples of excipients that can be used in oral dosage forms provided herein include, but are not limited to, binders, fillers, disintegrants, and lubricants. Binders suitable for use in pharmaceutical compositions and dosage forms include, but are not limited to, corn starch, potato starch, or other starches, gelatin, natural and synthetic gums such as acacia, sodium alginate, alginic acid, other alginates, powdered tragacanth, guar gum, cellulose and its derivatives (e.g., ethyl cellulose, cellulose acetate, carboxymethyl cellulose calcium, sodium carboxymethyl cellulose), polyvinyl pyrrolidone, methyl cellulose, pre-gelatinized starch, hydroxypropyl methyl cellulose, (e.g., Nos. 2208, 2906, 2910), microcrystalline cellulose, and mixtures thereof.
Suitable forms of microcrystalline cellulose include, but are not limited to, the materials sold as AVICEL-PH-101 , AVICEL-PH-103 AVICEL RC-581 , AVICEL-PH-105 (available from FMC Corporation, American Viscose Division, Avicel Sales, Marcus Hook, PA), and mixtures thereof. An specific binder is a mixture of microcrystalline cellulose and sodium carboxymethyl cellulose sold as AVICEL RC-581. Suitable anhydrous or low moisture excipients or additives include AVICEL-PH-103™ and Starch 1500 LM.
Examples of fillers suitable for use in the pharmaceutical compositions and dosage forms disclosed herein include, but are not limited to, talc, calcium carbonate (e.g., granules or powder), microcrystalline cellulose, powdered cellulose, dextrates, kaolin, mannitol, silicic acid, sorbitol, starch, pre-gelatinized starch, and mixtures thereof. The binder or filler in pharmaceutical compositions of the invention is typically present in from about 50 to about 99 weight percent of the pharmaceutical composition or dosage form.
Disintegrants are used in compositions to provide tablets that disintegrate when exposed to an aqueous environment. Tablets that contain too much disintegrant may disintegrate in storage, while those that contain too little may not disintegrate at a desired rate or under the desired conditions. Thus, a sufficient amount of disintegrant that is neither too much nor too little to detrimentally alter the release of the active ingredients should be used to form solid oral dosage forms. The amount of disintegrant used varies based upon the type of formulation, and is readily discernible to those of ordinary skill in the art. Typical pharmaceutical compositions comprise from about 0.5 to about 15 weight percent of disintegrant, preferably from about 1 to about 5 weight percent of disintegrant.
Disintegrants that can be used in pharmaceutical compositions and dosage forms include, but are not limited to, agar-agar, alginic acid, calcium carbonate, microcrystalline cellulose, croscarmellose sodium, crospovidone, polacrilin potassium, sodium starch glycolate, potato or tapioca starch, other starches, pre-gelatinized starch, other starches, clays, other algins, other celluloses, gums, and mixtures thereof.
Lubricants that can be used in pharmaceutical compositions and dosage forms include, but are not limited to, calcium stearate, magnesium stearate, mineral oil, light mineral oil, glycerin, sorbitol, mannitol, polyethylene glycol, other glycols, stearic acid, sodium lauryl sulfate, talc, hydrogenated vegetable oil (e.g., peanut oil, cottonseed oil, sunflower oil, sesame oil, olive oil, corn oil, and soybean oil), zinc stearate, ethyl oleate, ethyl laureate, agar, and mixtures thereof. Additional lubricants include, for example, a syloid silica gel (AEROSIL200, manufactured by W.R. Grace Co. of Baltimore, MD), a coagulated aerosol of synthetic silica (marketed by Degussa Co. of Piano, TX), CAB-O-SIL (a pyrogenic silicon dioxide product sold by Cabot Co. of Boston, MA), and mixtures thereof. If used at all, lubricants are typically used in an amount of less than about 1 weight percent of the pharmaceutical compositions or dosage forms into which they are incorporated.
In one embodiment, a solid oral dosage form of the invention comprises a compound provided herein, anhydrous lactose, microcrystalline cellulose, polyvinylpyrrolidone, stearic acid, colloidal anhydrous silica, and gelatin.
5.8 Delayed Release Dosage Forms
Active ingredients may be administered by controlled release means or by delivery devices that are well known to those of ordinary skill in the art. Examples include, but are not limited to, those described in U.S. Patent Nos. : 3,845,770; 3,916,899; 3,536,809; 3,598, 123; and 4,008,719, 5,674,533, 5,059,595, 5,591 ,767, 5, 120,548, 5,073,543, 5,639,476, 5,354,556, and 5,733,566, each of which is incorporated herein by reference. Such dosage forms can be used to provide slow or controlled-release of one or more active ingredients using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, microspheres, or a combination thereof to provide the desired release profile in varying proportions. Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the active ingredients provided herein. Thus, provided herein are single unit dosage forms suitable for oral administration such as, but not limited to, tablets, capsules, gelcaps, and caplets that are adapted for controlled-release.
All controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance. In addition, controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood levels of the drug, and can thus affect the occurrence of side (e.g., adverse) effects.
Most controlled-release formulations are designed to initially release an amount of drug (active ingredient) that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic or prophylactic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body. Controlled-release of an active ingredient can be stimulated by various conditions including, but not limited to, pH, temperature, enzymes, water, or other physiological conditions or compounds.
5.9 Parenteral Dosage Forms
Parenteral dosage forms can be administered to patients by various routes including, but not limited to, subcutaneous, intravenous (including bolus injection), intramuscular, and intraarterial. Because their administration typically bypasses patients' natural defenses against contaminants, parenteral dosage forms are preferably sterile or capable of being sterilized prior to administration to a patient. Examples of parenteral dosage forms include, but are not limited to, solutions ready for injection, dry products ready to be dissolved or suspended in a pharmaceutically acceptable vehicle for injection, suspensions ready for injection, and emulsions.
Suitable vehicles that can be used to provide parenteral dosage forms are well known to those skilled in the art. Examples include, but are not limited to: Water for Injection USP;
aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
Compounds that increase the solubility of one or more of the active ingredients disclosed herein can also be incorporated into the parenteral dosage forms provided herein. For example, cyclodextrin and its derivatives can be used to increase the solubility of a compound and its derivatives. See, e.g., U.S. Patent No. 5,134,127, which is incorporated herein by reference.
5.10 Topical and Mucosal Dosage Forms
Topical and mucosal dosage forms provided herein include, but are not limited to, sprays, aerosols, solutions, emulsions, suspensions, eye drops or other ophthalmic preparations, or other forms known to one of skill in the art. See, e.g., Remington 's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton PA (1980 & 1990); and Introduction to Pharmaceutical Dosage Forms, 4th ed., Lea & Febiger, Philadelphia (1985). Dosage forms suitable for treating mucosal tissues within the oral cavity can be formulated as mouthwashes or as oral gels.
Suitable excipients {e.g. , carriers and diluents) and other materials that can be used to provide topical and mucosal dosage forms are well known to those skilled in the pharmaceutical arts, and depend on the particular tissue to which a given pharmaceutical composition or dosage form will be applied. With that fact in mind, typical excipients include, but are not limited to, water, acetone, ethanol, ethylene glycol, propylene glycol, butane-l,3-diol, isopropyl myristate, isopropyl palmitate, mineral oil, and mixtures thereof to form solutions, emulsions or gels, which are non-toxic and pharmaceutically acceptable. Moisturizers or humectants can also be added to pharmaceutical compositions and dosage forms if desired. Examples of such additional ingredients are well known in the art. See, e.g., Remington 's Pharmaceutical Sciences, 16th and 18th eds., Mack Publishing, Easton PA (1980 & 1990). The H of a pharmaceutical composition or dosage form may also be adjusted to improve delivery of one or more active ingredients. Similarly, the polarity of a solvent carrier, its ionic strength, or tonicity can be adjusted to improve delivery. Compounds such as stearates can also be added to pharmaceutical compositions or dosage forms to advantageously alter the
hydrophilicity or lipophilicity of one or more active ingredients so as to improve delivery. In this regard, stearates can serve as a lipid vehicle for the formulation, as an emulsifying agent or surfactant, and as a delivery-enhancing or penetration-enhancing agent. Different salts, hydrates or solvates of the active ingredients can be used to further adjust the properties of the resulting composition.
5.11 Kits
In some embodiments provided herein, active ingredients are preferably not administered to a patient at the same time or by the same route of administration. Thus, provided herein are kits which, when used by the medical practitioner, can simplify the administration of appropriate amounts of active ingredients to a patient.
In one embodiment a kit provided herein comprises a compound provided herein, or a pharmaceutically acceptable salt, solvate or hydrate thereof. Kits may further comprise additional active agents, including but not limited to those disclosed herein.
Kits provided herein may further comprise devices that are used to administer the active ingredients. Examples of such devices include, but are not limited to, syringes, drip bags, patches, and inhalers.
Kits may further comprise cells or blood for transplantation as well as pharmaceutically acceptable vehicles that can be used to administer one or more active ingredients. For example, if an active ingredient is provided in a solid form that must be reconstituted for parenteral administration, the kit can comprise a sealed container of a suitable vehicle in which the active ingredient can be dissolved to form a particulate-free sterile solution that is suitable for parenteral administration. Examples of pharmaceutically acceptable vehicles include, but are not limited to: Water for Injection USP; aqueous vehicles such as, but not limited to, Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, and Lactated Ringer's Injection; water-miscible vehicles such as, but not limited to, ethyl alcohol, polyethylene glycol, and polypropylene glycol; and non-aqueous vehicles such as, but not limited to, corn oil, cottonseed oil, peanut oil, sesame oil, ethyl oleate, isopropyl myristate, and benzyl benzoate.
5.12 Antibodies
Antibodies that immunospecifically bind to CRBN (anti-CRBN antibodies) provided herein include, but are not limited to, synthetic antibodies, monoclonal antibodies, recombinantly produced antibodies, multispecific antibodies (including bi-specific antibodies), human antibodies, humanized antibodies, chimeric antibodies, intrabodies, single-chain Fvs (scFv) (e.g., including monospecific, bispecific, etc.), camelized antibodies, Fab fragments, F(ab') fragments, disulfide-linked Fvs (sdFv), anti-idiotypic (anti-Id) antibodies, and antigen- or epitope-binding fragments of any of the above.
In particular, antibodies provided herein include immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds to a CRBN antigen. The immunoglobulin molecules provided herein can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2) or subclass of immunoglobulin molecule. In a specific embodiment, an antibody provided herein is an IgG antibody, and, in certain embodiments, an IgGl or IgG4.
Also provided herein is an isolated CRBN antibody, for example, "CRBN70," as prepared according to Example 6.20 or 6.21 below. In one embodiment, the antibody is a polyclonal antibody. In another embodiment, the antibody is a monoclonal antibody. In some embodiments, the antibody is a rabbit polyclonal antibody. In other embodiments, the antibody is a rabbit monoclonal antibody.
In another embodiment, provided herein is an isolated antibody which
immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1). In another embodiment, the antibody immunospecifically binds to the epitope having an amino acid sequence EEFHGRTLHDDDC (SEQ ID: 1), wherein the peptide is coupled to Keyhole Limpet Hemocyanin (KLH). In one embodiment, the antibody is a polyclonal antibody. In another embodiment, the antibody is a monoclonal antibody. In some embodiments, the antibody is a rabbit polyclonal antibody. In other embodiments, the antibody is a rabbit monoclonal antibody. In certain embodiments, the antibody immunospecifically binds peptide 65-76 (SEQ ID NO: l) of human CRBN (SEQ ID NO: 12). In certain embodiments, provided herein is an antibody that immunospecifically binds CRBN and comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:5, or the VH domain, VH CDRl , VH CDR2, and/or VH CDR3 thereof. In other embodiment, the antibody immunospecifically binds CRBN and comprises a light chain having the amino acid sequence depicted in SEQ ID NO:7, or the VL domain, VL CDRl , VL CDR2, and/or VL CDR3 thereof. In some embodiments, the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:5, or the VH domain, VH CDRl, VH CDR2, and/or VH CDR3 thereof; and a light chain having the amino acid sequence depicted in SEQ ID NO:7, or the VL domain, VL CDRl, VL CDR2, and/or VL CDR3 thereof. In certain embodiments, the antibody immunospecifically binds CRBN and comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:9, or the VH domain, VH CDRl, VH CDR2, and/or VH CDR3 thereof. In other embodiment, the antibody immunospecifically binds CRBN and comprises a light chain having the amino acid sequence depicted in SEQ ID NO: l 1, or the VL domain, VL CDRl, VL CDR2, and/or VL CDR3 thereof. In some embodiments, the antibody comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO:9, or the VH domain, VH CDRl, VH CDR2, and/or VH CDR3 thereof; and a light chain having the amino acid sequence depicted in SEQ ID NO: l 1, or the VL domain, VL CDRl, VL CDR2, and/or VL
CDR3 thereof. In certain embodiments, the antibody immunospecifically binds peptide 65-76
(SEQ ID NO: l) of human CRBN (SEQ ID NO: 12).
Any of the CRBN antibodies provided herein can be used in any of the methods provided herein
Variants and derivatives of antibodies include antibody fragments that retain the ability to specifically bind to an epitope. Exemplary fragments include Fab fragments (an antibody fragment that contains the antigen-binding domain and comprises a light chain and part of a heavy chain bridged by a disulfide bond); Fab' (an antibody fragment containing a single anti- binding domain comprising an Fab and an additional portion of the heavy chain through the hinge region); F(ab')2 (two Fab' molecules joined by interchain disulfide bonds in the hinge regions of the heavy chains; the Fab' molecules may be directed toward the same or different epitopes); a bispecific Fab (a Fab molecule having two antigen binding domains, each of which may be directed to a different epitope); a single chain Fab chain comprising a variable region, also known as, a sFv (the variable, antigen-binding determinative region of a single light and heavy chain of an antibody linked together by a chain of 10-25 amino acids); a disulfide-linked Fv, or dsFv (the variable, antigen-binding determinative region of a single light and heavy chain of an antibody linked together by a disulfide bond); a camelized VH (the variable, antigen- binding determinative region of a single heavy chain of an antibody in which some amino acids at the VH interface are those found in the heavy chain of naturally occurring camel antibodies); a bispecific sFv (a sFv or a dsFv molecule having two antigen-binding domains, each of which may be directed to a different epitope); a diabody (a dimerized sFv formed when the VH domain of a first sFv assembles with the VL domain of a second sFv and the VL domain of the first sFv assembles with the VH domain of the second sFv; the two antigen-binding regions of the diabody may be directed towards the same or different epitopes); and a triabody (a trimerized sFv, formed in a manner similar to a diabody, but in which three antigen-binding domains are created in a single complex; the three antigen binding domains may be directed towards the same or different epitopes). Derivatives of antibodies also include one or more CDR sequences of an antibody combining site. The CDR sequences may be linked together on a scaffold when two or more CDR sequences are present. In certain embodiments, the anti-CRBN antibody comprises a single-chain Fv ("scFv"). scFvs are antibody fragments comprising the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the scFv to form the desired structure for antigen binding. For a review of scFvs see Pluckthun in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds. Springer- Verlag, New York, pp. 269-315 (1994).
Provided herein are antibodies that immunospecifically bind to a CRBN epitope, the antibodies comprising derivatives of the VH and VL chains described herein that
immunospecifically bind to a CRBN antigen or a CRBN epitope.. Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding a molecule of the invention, including, for example, site-directed mutagenesis and PCR-mediated mutagenesis which results in amino acid substitutions. Preferably, the derivatives include less than 25 amino acid substitutions, less than 20 amino acid substitutions, less than 15 amino acid substitutions, less than 10 amino acid substitutions, less than 5 amino acid substitutions, less than 4 amino acid substitutions, less than 3 amino acid substitutions, or less than 2 amino acid substitutions relative to the original molecule. In a preferred embodiment, the derivatives have conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.
In another embodiment, an antibody that immunospecifically binds to a CRBN epitope comprises an amino acid sequence that is at least 35%, at least 40%>, at least 45%, at least 50%>, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%), at least 95%, or at least 99% identical to the amino acid sequence of CGN-6-1-1 1 OR CGN-6-1-1 1 , or an antigen-binding fragment thereof, such as a VH domain, VL domain, VH chain, or VL chain. In one embodiment, an antibody that immunospecifically binds to a CRBN epitope comprises an amino acid sequence that is at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%), at least 90%, at least 95%, or at least 99% identical to an amino acid sequence depicted in SEQ ID NOS:5, 7, 9 or 11.
In a specific embodiment, an antibody that immunospecifically binds a CRBN antigen comprises an amino acid sequence of a VH chain and/or an amino acid sequence a VL chain encoded by a nucleotide sequence that hybridizes to (1) the complement of a nucleotide sequence encoding any one of the VH and/or VL chains depicted in SEQ ID NOS:5 or 9 (H chain) and/or SEQ ID NOS:7 or 1 1 (L chain) under stringent conditions (e.g., hybridization to filter-bound DNA in 6x sodium chloride/sodium citrate (SSC) at about 45° C followed by one or more washes in 0.2xSSC/0.1%> SDS at about 50-65° C) under highly stringent conditions (e.g., hybridization to filter-bound nucleic acid in 6xSSC at about 45° C followed by one or more washes in O. lxSSC/0.2%) SDS at about 68° C), or under other stringent hybridization conditions which are known to those of skill in the art (see, for example, Ausubel, F.M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc. and John Wiley & Sons, Inc., New York at pages 6.3.1-6.3.6 and 2.10.3).
The anti-CRBN antibodies may be from any animal origin including birds and mammals {e.g., human, murine, donkey, sheep, rabbit, goat, guinea pig, camel, horse, or chicken). In certain embodiments, the anti-CRBN antibodies are human or humanized monoclonal antibodies. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from mice that express antibodies from human genes.
In certain embodiments, the anti-CRBN antibodies are fully human antibodies, such as fully human antibodies that immunospecifically bind a CRBN polypeptide, a CRBN polypeptide fragment, or a CRBN epitope. Such fully human antibodies would be advantageous over fully mouse (or other full or partial non-human species antibodies), humanized antibodies, or chimeric antibodies to minimize the development of unwanted or unneeded side effects, such as immune responses directed toward non- fully human antibodies {e.g., anti-CRBN antibodies derived from other species) when administered to the subject.
Anti-CRBN antibodies provided herein may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a CRBN polypeptide or may be specific for both a CRBN polypeptide as well as for a heterologous epitope, such as a heterologous polypeptide or solid support material. In certain embodiments, the antibodies provided herein are monospecific for a given epitope of a CRBN polypeptide and do not immunospecifically bind to other epitopes.
In certain embodiments, provided herein are anti-CRBN antibodies that immunospecifically bind to a CRBN epitope {e.g., EEFHGRTLHDDD (SEQ ID NO: l) or peptide 65-76 of human CRBN (SEQ ID NO: 12)) or a CRBN antigen, as well as methods of use thereof.
Standard techniques known to those of skill in the art can be used to introduce mutations in the nucleotide sequence encoding an anti-CRBN provided herein, including, for example, site- directed mutagenesis and PCR-mediated mutagenesis which results in amino acid substitutions. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a side chain with a similar charge. Families of amino acid residues having side chains with similar charges have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed and the activity of the protein can be determined.
In some embodiments, the antibody is a fully human anti-human CRBN antibody, such as a fully human monoclonal antibody. Fully human antibodies may be produced by any method known in the art. Exemplary methods include immunization with a CRBN antigen (any CRBN polypeptide capable of eliciting an immune response, and optionally conjugated to a carrier) of transgenic animals (e.g., mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production; see, e.g., Jakobovits et al., (1993) Proc. Natl. Acad. Sci., 90:2551; Jakobovits et al., (1993) Nature, 362:255 258 (1993); Bruggermann et al., (1993) Year in Immunol., 7:33. Other methods of producing anti-CRBN antibodies can be found in the Examples provided herein.
Alternatively, fully human antibodies may be generated through the in vitro screening of phage display antibody libraries; see e.g., Hoogenboom et al., J. Mol. Biol, 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991), incorporated herein by reference. Various antibody-containing phage display libraries have been described and may be readily prepared by one skilled in the art. Libraries may contain a diversity of human antibody sequences, such as human Fab, Fv, and scFv fragments, that may be screened against an appropriate target.
The anti-CRBN antibodies include antibodies that are chemically modified, i.e., by the covalent attachment of any type of molecule to the antibody. For example, but not by way of limitation, the antibody derivatives include antibodies that have been chemically modified, e.g., by glycosylation, acetylation, pegylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formulation, metabolic synthesis of tunicamycin, etc. Additionally, the antibody may contain one or more non-classical amino acids.
In certain embodiments, anti-CRBN antibodies that immunospecifically bind to a CRBN antigen comprise a framework region known to those of skill in the art {e.g., a human or non- human fragment). The framework region may, for example, be naturally occurring or consensus framework regions. In some embodiments, the framework region of an anti-CRBN antibody is human (see, e.g., Chothia et ah, 1998, J. Mol. Biol. 278:457-479 for a listing of human
framework regions, which is incorporated by reference herein in its entirety). See also Kabat et al. (1991) Sequences of Proteins of Immunological Interest (U.S. Department of Health and Human Services, Washington, D.C.) 5th ed.
In certain embodiments, the anti-CRBN antibodies provided herein are chimeric or humanized antibodies. In some embodiments, the antibodies provided herein comprise human framework regions with one or more amino acid substitutions at one, two, three or more of the following residues: (a) rare framework residues that differ between the murine antibody framework (i.e., donor antibody framework) and the human antibody framework (i.e., acceptor antibody framework); (b) Venier zone residues when differing between donor antibody framework and acceptor antibody framework; (c) interchain packing residues at the VH/VL interface that differ between the donor antibody framework and the acceptor antibody framework; (d) canonical residues which differ between the donor antibody framework and the acceptor antibody framework sequences, particularly the framework regions crucial for the definition of the canonical class of the murine antibody CDR loops; (e) residues that are adjacent to a CDR; (g) residues capable of interacting with the antigen; (h) residues capable of interacting with the CDR; and (i) contact residues between the VH domain and the VL domain. In certain embodiments, antibodies that immunospecifically bind to a CRBN antigen comprising the human framework regions with one or more amino acid substitutions at one, two, three or more of the above- identified residues are antagonistic CRBN antibodies.
In other embodiments, fusion proteins comprising an anti-CRBN antibody are provided herein that immunospecifically binds to a CRBN antigen and a heterologous polypeptide.
5.13 Diagnostic Use of Antibodies Labeled CRBN antibodies provided herein and derivatives and analogs thereof, which immunospecifically bind to a CRBN antigen can be used for diagnostic purposes to detect, diagnose, or monitor CRBN expression levels or a CRBN-mediated disease in a patient.
In some embodiments, provided herein are methods of utilizing a CRBN antibody to measure expression levels of CRBN in patient tumor or host cells, to predict clinical response to therapy with thalidomide, lenalidomide, pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof. Also provided herein are methods of utilizing a CRBN antibody provided herein to measure expression levels of CRBN in patient tumor or host cells, to monitor clinical response to therapy with thalidomide,
lenalidomide, pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6- dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof. Also provided herein are methods of utilizing a CRBN antibody provided herein to measure expression levels of CRBN in patient tumor or host cells, to monitor patient compliance to dosing to therapy with thalidomide, lenalidomide, pomalidomide, or 3-(5- amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof. Also provided herein are methods of utilizing a CRBN antibody provided herein to measure expression levels of CRBN in patient tumor or host cells, to monitor development of resistance to therapy with thalidomide, lenalidomide, pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
Provided herein are diagnostic assays for diagnosing a CRBN-mediated disease comprising: (a) assaying for the level of a CRBN antigen in cells or a tissue sample of an individual using one or more antibodies of the invention that immunospecifically bind to a
CRBN antigen; and (b) comparing the level of the CRBN antigen with a control level, e.g., levels in normal tissue samples, whereby an increase in the assayed CRBN antigen level compared to the control level of the CRBN antigen is indicative of a CRBN-mediated disease.
Antibodies provided herein can be used to assay CRBN antigen levels in a biological sample using classical immunohistological methods as described herein or as known to those of skill in the art {e.g., see Jalkanen et ah, 1985, J. Cell. Biol. 101 :976-985; and Jalkanen et ah, 1987, J. Cell . Biol. 105:3087-3096). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay
(ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (121In), and technetium (99Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
Provided herein are methods for the detection or CRBN in a patient. In one embodiment, the method comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled antibody that immunospecifically binds to a CRBN antigen; b) waiting for a time interval following the administering for permitting the labeled antibody to preferentially concentrate at sites in the subject where the CRBN antigen is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled antibody in the subject, such that detection of labeled antibody above the background level indicates that the subject has increased CRBN expression. Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.
It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99Tc. The labeled antibody will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B.A. Rhodes, eds., Masson Publishing Inc. (1982).
Depending on several variables, including the type of label used and the mode of administration, the time interval following the administration for permitting the labeled antibody to preferentially concentrate at sites in the subject and for unbound labeled antibody to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days. Presence of the labeled molecule can be detected in the subject using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.
In a specific embodiment, the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S. Patent No. 5,441,050). In another embodiment, the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and is detected in the patient using positron emission-tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).
6. EXAMPLES
Certain embodiments of the invention are illustrated by the following non- limiting examples.
6.1 Preparation of 3-(4-amino-l-oxo-l,3-dihydro-isoindol-2-yl)- piperidine-2,6-dione (lenalidomide)
Methyl 2-bromomethyl-3-nitrobenzoate
A stirred mixture of methyl 2-methyl-3-nitrobenzoate (14. O g, 71.7 mmol) and N- bromosuccinimide (15.3 g, 86.1 mmol) in carbon tetrachloride (200 mL) was heated under gentle reflux for 15 hours while a 100W bulb situated 2 cm away was shining on the flask. The mixture was filtered and the solid was washed with methylene chloride (50 mL). The filtrate was washed with water (2x100 mL), brine (100 mL) and dried. The solvent was removed in vacuo and the residue was purified by flash chromatography (hexane/ethyl acetate, 8/2) to afford 19 g (96%) of the product as a yellow solid: mp 70.0-71.5°C; 1H NMR (CDC13) δ 8.12-8.09(dd, J=1.3 and 7.8 Hz, 1H), 7.97-7.94(dd, J=1.3 and 8.2 Hz, 1H), 7.54(t, J=8.0 Hz, 1H). 5.15(s, 2H), 4.00(s, 3H); 13C NMR (CDC13) 5 165.85, 150.58, 134.68, 132.38, 129.08, 127.80, 53.06, 22.69; HPLC, Water Nove-Pak/C 18, 3.9x150 mm, 4 micron, lmL/min, 240 nm, 40/60 CH3CN/0.1%H3PO4(aq) 7.27 min(98.92%); Anal. Calcd for C9H8N04Br : C, 39.44; H, 2.94; N, 5.1 1 ; Br, 29.15. Found : C, 39.46; H, 3.00; N, 5.00; Br, 29.1 1. t-Butyl N-(l-oxo-4-nitroisoindolin-2-yl)-L-glutamine
Triethylamine (2.9 g, 28.6 mmol) was added dropwise to a stirred mixture of methyl 2- bromomethyl-3-nitrobenzoate (3.5 g, 13.0 mmol) and L-glutamine t-butyl ester hydrochloride (3.1 g, 13.0 mmol) in tetrahydrofuran (90 mL). The mixture was heated to reflux for 24 hours. To the cooled mixture was added methylene chloride (150 mL) and the mixture was washed with water (2 x 40 mL), brine (40 mL) and dried. The solvent was removed in vacuo and the residue was purified by flash chromatography (3% CH3OH in methylene chloride) to afford 2.84 g (60%) of crude product which was used directly in the next reaction: 1H NMR (CDCI3) δ 8.40(d, J=8.1 Hz, 1H), 8.15(d, J=7.5 Hz, 1H), 7.71(t, J=7.8 Hz, 1H), 5.83(s, 1H), 5.61(s, 1H), 5.12(d, J=19.4 Hz, 1H), 5.04-4.98(m, 1H), 4.92(d, J=19.4 Hz, 1H), 2.49-2.22(m, 4H). 1.46(s, 9H); HPLC, Waters Nova-Pak C18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 25/75
CH3CN/0.1%H3PO4(aq) 6.75 min(99.94%).
N-(l-oxo-4-nitroisoindolin-2-yl)-L-glutamine
Hydrogen chloride gas was bubbled into a stirred 5°C solution of t-butyl N-(l-oxo-4-nitro- isoindolin-2-yl)-L-glutamine (3.6 g, 9.9 mmol) in methylene chloride (60 mL) for 1 hour. The mixture was then stirred at room temperature for another hour. Ether (40 mL) was added and the resulting mixture was stirred for 30 minutes. The slurry was filtered, washed with ether and dried to afford 3.3 g of the product: 1H NMR (DMSO-d6) δ 8.45(d, J=8.1 Hz, 1H), 8.15(d, J=7.5 Hz, 1H), 7.83(t, J=7.9 Hz. 1H), 7.24(s, 1H), 6.76(s, 1H), 4.93(s, 2H), 4.84-4.78(dd, J=4.8amd 10.4 Hz, 1H), 2.34-2.10(m, 4H); 13C NMR (DMSO-d6) δ 173.03, 171.88, 165.96, 143.35, 137.49, 134.77, 130.10, 129.61 , 126.95, 53.65, 48.13, 31.50, 24.69; Anal. Calcd for Ci3Hi3N306 : C, 50.82; H, 4.26; N, 13.68. Found : C, 50.53; H. 4.37; N, 13.22.
(S)-3-(l-oxo-4-nitroisoindolin-2-yl)piperidine-2,6-dione
A stirred suspension mixture of N-(l-oxo-4-nitroisoindolin-2-yl)-L-glutamine (3.2 g, 10.5 mmol) in anhydrous methylene chloride (150 mL) was cooled to -40°C with isopropanol/dry ice bath. Thionyl chloride (0.82 mL, 1 1.3 mmol) was added dropwise to the cooled mixture followed by pyridine (0.9 g. 1 1.3 mmol). After 30 min, triethylamine (1.2 g, 1 1.5 mmol) was added and the mixture was stirred at -30 to -40°C for 3 hours. The mixture was poured into ice water (200 mL) and the aqueous layer was extracted with methylene chloride (40 mL). The methylene chloride solution was washed with water (2 x 60 mL), brine (60 mL) and dried. The solvent was removed in vacuo and the solid residue was slurried with ethyl acetate (20 mL) to give 2.2 g (75%) of the product as a white solid: mp 285°C; 1H NMR (DMSO-d6) δ : 1.04(s, 1H), 8.49-8.45(dd, J=0.8 and 8.2 Hz, 1H), 8.21-8.17(dd, J=7.3 Hz, 1H), 7.84(t, J=7.6 Hz, 1H), 5.23-5.15(dd, J=4.9 and 13.0 Hz, 1H), 4.96(dd, J=19.3 and 32.4 Hz, 2H), 3.00-2.85(m, 1H), 2.64-2.49(m, 2H), 2.08- 1.98(m, 1H); 13C NMR (DMSO- d6) δ 172.79, 170.69, 165.93, 143.33, 137.40, 134.68, 130.15, 129.60, 127.02, 51.82, 48.43, 31.16. 22.23; HPLC, Waters Nove-Pak/C 18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 20/80 CH3CN/0.1%H3PO4(aq) 3.67 min(100%); Anal. Calcd for Ci3HnN305 : C, 53.98; H, 3.83; N, 14.53. Found : C, 53.92; H, 3.70; N, 14.10.
3-(4-amino-l-oxo-l,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione A mixture of (S)-3-(l-oxo-4-nitroisoindolin-2-yl)piperidine-2,6-dione (1.0 g, 3.5 mmol) and 10% Pd/C (0.3 g) in methanol (600 mL) was hydrogenated in a Parr-Shaker apparatus at 50 psi of hydrogen for 5 hours. The mixture was filtered through Celite and the filtrate was concentrated in vacuo. The solid was slurried in hot ethyl acetate for 30 min, filtered and dried to afford 0.46 g (51%) of the product as a white solid: mp 235.5-239°C; 1H NMR (DMSO-d6) δ 11.01 (s, 1H). 7.19(t, J=7.6 Hz, 1H). 6.90(d. J=7.3 Hz, 1H), 6.78(d, J=7.8 Hz, 1H), 5.42(s, 2H). 5.12(dd. J=5.1 and 13.1 Hz, 1H), 4.17(dd, J=17.0 and 28.8 Hz, 2H), 2.92-2.85(m, 1H). 2.64-2.49(m, 1H). 2.34- 2.27(m, 1H), 2.06-1.99(m, 1H); 13C NMR (DMSO-d6) δ 172.85, 171.19, 168.84, 143.58, 132.22. 128.79, 125.56, 1 16.37, 1 10.39, 51.48, 45.49, 31.20, 22.74; HPLC. Waters Nova-Pak/C 18, 3.9x150 mm, 4 micron, 1 mL/min, 240 nm, 10/90 CH3CN/0.1%H3PO4(aq) 0.96 min(100%); Chiral analysis, Daicel Chiral Pak AD, 40/60 Hexane/IPA, 6.60 min(99.42%); Anal. Calcd for Ci3Hi3N303 : C, 60.23; H, 5.05; N, 16.21. Found : C, 59.96; H. 4.98; N, 15.84.
3-(4-Amino-l-oxo-l,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione may also be prepared by methods known in the art, for example, as provided in Drugs of the Future, 2003, 28(5): 425- 431, the entirety of which is incorporated by reference.
6.2 Preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)-lH-isoindole- 1,3- dione (pomalidomide)
The preparation of 4-amino-2-(2,6-dioxopiperidin-3-yl)-lH-isoindole-l,3-dione is described, for example, in U.S. patent nos. 7,812,169 and 7,709,502, the entirety of each of which is incorporated by reference.
Into a stirring solution of carboxybenzyloxy-L-glutamine (2.8 g, 10 mmols) in 40 mL anhydrous THF, 1,1-carbonyldiimidazole (1.92 g, 12 mmols) were added. The reaction mixture was heated under reflux for 18 hours. The THF was evaporated and the product was dissolved in chloroform. The chloroform layer was washed with water and brine and dried over anhydrous CaS04, filtered and evaporated to give white solid. The solid product was crystallized from ethyl ether to give 2.4 grams crystalline powder (90%). (Alternatively, carboxybenzyloxy-L-glutamine can be cyclized by treating with SOCl2 in Ν,Ν-dimethylformamide at -70°C to 0°C for 1 hour to form the product). The reaction mixture was diluted with CHCI3 and washed with 5% Na2C03, dried over anhydrous Na2S04, filtered, and evaporated to give 2.5 g (90% yield) S(-)-(3- benzyloxycarbonylamino)-glutarimide). 1H NMR (CDC13) δ 8.2 (1H, s broad), 7.4 (5H, s, aromatic), 5.8 (1H, d), 5.15 (2H, s), 4.4 (1H, dd, J=4.5, 3), 2.95-2.4 (3H, m), 1.86 (1H, d, t, J=l 1.5, 6.5). m.p. 122-124°C (lit. 122-124°C).
Into a solution of S(-)-(2-benzyloxycarbonylamino)glutarimide (1.2 g, 4.6 mmols) in 15 mL acetic acid glacial, 8 mL of 30% HBr/ acetic acid solution was added at 20°C. The temperature of reaction mixture was raised to RT and stirred for 1 hour. White solid powder of S-(-)-2-amino-glutarimide HBr started appearing in reaction mixture. The solid was filtered and washed with 5 mL acetic acid glacial and then with ether to give 1.8 g (80%>) product. Analysis on polarimeter of product showed (-) rotation, [a]25 D (c=l, water) = -37.5° and confirmed the product as S-(-)-2-amino-glutarimide. 1H NMR in DMSO-D6 confirmed the product as 2-amino- L-glutarimide HBr.
Into a solution of (4.18 g, 20 mmols S-(-)-2-amino-glutarimide HBr in 50 mL of anhydrous DMF, 3.8 g (20 mmols) of 3-nitrophthalic anhydride was added. After adding 100 mL acetic acid (glacial), the reaction mixture was heated at about 70°C to about 80°C for about 24 hours. Thereafter, the solvents were evaporated under vacuum to yield an off-white solid. On adding 10 mL ethyl alcohol to the solid, an off- white powder product was formed. The product was separated and washed with 20 mL ethyl alcohol. 1H NMR (DMSO-D6) δ 11.25 (1H, s broad), 8.35 (1H, d, J=7.2), 8.25 (1H, d, J=7.0), 8.15 (1H, t, J=8.0), 5.2 (1H, dd, J=5.5, 7.2), 3.00-2.85 (1H, m), 2.65-2.4 (2H, m), 2.15-2.05 (1H, m). m.p.: 228-229°C (lit. 228.5-229.5°C).
4-Nitro-thalidomide (1 g, 3.3 mmols) was dissolved in 50 mL dioxane/methanol 4: 1 mixture and hydrogenated in a Parr hydrogenater at 40 psi of hydrogen in the presence of a Pd/C 5% catalyst for about 4 hours. After filtering the reaction mixture through a Celite filtering agent, the solvents were evaporated under vacuum to yield a yellow powder. The product was recrystallized from ethyl acetate/dioxane to yield 800 mg (85% purity) of S(-)-4-amino- thalidomide. 1H NMR in DMSO-D6: 11.10 (1H, s broad), 7.45 (1H, t, J=7. 5), 7.05 (1H, d, J=5.2), 6.95 (1H, d, J=5.2), 6.5 (2H, s broad), 5.05 (1H, dd, J=5.0, 13.42),2.95-2.80 (1H, m), 2.65-2.5 (2H, m), 2.05-1.95 (1H, m). m.p. 318.2-319.5°C. Absolute configuration was determined by comparison of specific rotation [a]25 D of (R)- and (S)-4-amino-2-(2,6-dioxopiperidin-3-yl)-lH- isoindole-l ,3-dione to the analogous compounds R(+)- and S(-)-thalidomide. Analysis on polarimeter of product showed (-) rotation, [a]25 D (C=0.5, dioxane) = -27.70° and confirmed the product as S(-)-4-amino-2-(2,6-dioxopiperidin-3-yl)-lH-isoindole-l ,3-dione.
The two enantiomers were resolved by chiral HPLC column Welk-01 (10 mm x 750 mm) and eluted with CH3CN/MeOH/H20 1 : 1 :5 mixture. The retention time for the S(-) enantiomer was 33.74 minutes and for the R(+) enantiomer 35.62 minutes at a flow rate of 2 mL/min at 240 nm, respectively.
6.3 Preparation of 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione (Compound B)
To a solution of potassium hydroxide (16.1 g, 286 mmol) in water (500 mL), was added 3-nitrophthalimide (25.0 g, 130 mmol) in portion at 0 °C. The suspension was stirred at 0 °C for 3 hrs, and then heated to 30 °C for 3 hrs. To the solution, was added HC1 (100 mL, 6N). The resulting suspension was cooled to 0 °C for 1 hr. The suspension was filtered and washed with cold water (2 x 10 mL) to give 3-nitro-phthalamic acid as a white solid (24.6 g, 90% yield): 1H NMR (DMSO-de) δ 7.69 (brs, 1H, NHH), 7.74 (t, J = 8 Hz, 1H, Ar), 7.92 (dd, J= 1 , 8 Hz, 1H, Ar), 8.13 (dd, J = 1 , 8 Hz, 1H, Ar), 8.15 (brs, 1H, NHH), 13.59 (s, 1Η, OH); 13C NMR (DMSO- d6) δ 125.33, 129.15, 130.25, 132.54, 136.72, 147.03, 165.90, 167.31.
To a mixture of 3-nitro-phthalamic acid (24.6 g, 1 17 mmol) and potassium hydroxide (6.56 g, 1 17 mmol) in water (1 18 mL), was added a mixture of bromine (6 mL), potassium hydroxide (13.2 g, 234 mmol) in water (240 mL) at 0 °C, followed by addition of a solution of potassium hydroxide (19.8 g, 351 mmol) in water (350 mL). After 5 minutes at 0 °C, the mixture was heated in a 100 °C oil bath for 1 hr. The reaction solution was cooled to room temperature, and then, in an ice-water bath for 30 minutes. To the mixture, a solution of HC1 (240 mL, 2N) was added dropwise at 0 °C, and the resulting mixture was kept for 1 hr. The supsension was filtered and washed with water (5 mL) to give 2-amino-6-nitro-benzoic acid as yellow solid (15.6 g, 73% yield): HPLC: Waters Symmetry C18, 5μιη, 3.9 x 150 mm, 1 mL/min, 240 nm, CH3CN/0.1% H3P04, 5% grad to 95% over 5 min, 5.83 min (85%); 1H NMR (DMSO- de) δ 6.90 (dd, J = 1 , 8 Hz, 1H, Ar), 7.01 (dd, J= 1 , 9 Hz, 1H, Ar), 7.31 (t, J = 8 Hz, 1H, Ar), 8.5-9.5 (brs, 3H, OH, NH2); 13C NMR (DMSO-d6) δ 105.58, 1 10.14, 120.07, 131.74, 149.80, 151.36, 166.30; LCMS: ΜΗ = 183.
A mixture of 2-amino-6-nitro-benzoic acid (1.5 g, 8.2 mmol) in acetic anhydride (15 mL) was heated at 200 °C for 30 minutes in a microwave oven. The mixture was filtered and washed with ethyl acetate (20 mL). The filtrate was concentrated in vacuo. The solid was stirred in ether (20 mL) for 2 hrs. The suspension was filtered and washed with ether (20 mL) to give 2- methyl-5-nitro-benzo[d][l ,3]oxazin-4-one as a light brown solid (1.4 g, 85% yield): HPLC: Waters Symmetry Ci8, 5μιη, 3.9 x 150 mm, 1 mL/min, 240 nm, CH3CN/0.1% H3P04, 5% grad 95% in 5 min, 5.36 min (92%); 1H NMR (DMSO-d6) δ 2.42 (s, 3H, C¾), 7.79 (dd, J = 1 , 8 Hz, 1H, Ar), 7.93 (dd, J = 1 , 8 Hz, 1H, Ar), 8.06 (t, J= 8 Hz, 1H, Ar); 13C NMR (DMSO-d6) δ 20.87, 107.79, 121.54, 128.87, 137.19, 147.12, 148.46, 155.18, 161.78; LCMS: MH = 207.
Two vials each with a suspension of 5-nitro-2-methyl-benzo[d][l ,3]oxazin-4-one (0.60 g, 2.91 mmol) and 3-amino-piperidine-2,6-dione hydrogen chloride (0.48 g, 2.91 mmol) in pyridine (15 mL) were heated at 170 °C for 10 minutes in a microwave oven. The suspension was filtered and washed with pyridine (5 mL). The filtrate was concentrated in vacuo. The resulting mixture was stirred in HC1 (30 mL, IN), ethyl acetate (15 mL) and ether (15 mL) for 2 hrs. The suspension was filtered and washed with water (30 mL) and ethyl acetate (30 mL) to give a dark brown solid, which was stirred with methanol (50 mL) at room temperature overnight. The suspension was filtered and washed with methanol to give 3-(2-methyl-5-nitro-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione as a black solid (490 mg, 27% yield). The solid was used in the next step without further purification.
A mixture of 3-(2-methyl-5-nitro-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione (250 mg) and Pd(OH)2 on carbon (1 10 mg) in DMF (40 mL) was shaken under hydrogen (50 psi) for 12 hrs. The suspension was filtered through a pad of Celite and washed with DMF (10 mL). The filtrate was concentrated in vacuo and the resulting oil was purified by flash column chromatography (silica gel, methanol/methylene chloride) to give 3-(5-amino-2-methyl-4-oxo- 4H-quinazolin-3-yl)-piperidine-2,6-dione as a white solid (156 mg, 69% yield): HPLC: Waters Symmetry Ci8, 5μιη, 3.9 x 150 mm, 1 mL/min, 240 nm, 10/90 CH3CN/0.1% H3P04, 3.52 min (99.9%); mp: 293-295 °C; 1H NMR (DMSO-d6) δ 2.10-2.17 (m, 1H, CHH), 2.53 (s, 3Η, CH3), 2.59-2.69 (m, 2Η, CH2), 2.76-2.89 (m, 1Η, CHH), 5.14 (dd, J = 6, 1 1 Hz, 1H, NCH), 6.56 (d, J = 8 Hz, 1H, Ar), 6.59 (d, J = 8 Hz, 1H, Ar), 7.02 (s, 2H, NH2), 7.36 (t, J = 8 Hz, 1H, Ar), 10.98 (s, 1H, NH); 13C NMR (DMSO-d6) ^ 20.98, 23.14, 30.52, 55.92, 104.15, 110.48, 111.37, 134.92, 148.17, 150.55, 153.62, 162.59, 169.65, 172.57; LCMS: ΜΗ = 287; Anal. Calcd. for
C14H14N4O3 + 0.3 H20: C, 57.65; H, 5.05; N, 19.21. Found: C, 57.50; H, 4.73; N, 19.00.
6.4 Identification of direct compound targets
To identify the direct target of thalidomide and other related drugs, we develop an affinity purification technique. A compound control ("Compound A") coupled to Affigel-10 (10 μιηοΐ drug per mg Affigel) was used for affinity purification experiments.
Figure imgf000097_0001
Compound A (TNF IC50=622 nM; Jurkat IL-2 EC20o=3.47 μΜ) Proteins were isolated from Jurkat T cell lysates by binding to the Compound A- Affigel followed by elution using free Compound A. Coomassie stained bands were excised and sent to Harvard Microchemistry Facility for sequence analysis. The proteins were proteolytically digested and analyzed by microcapillary reverse-phase HPLC nano-electrospray tandem mass spectrometry on a Finnigan LCQ DECA quadrupole ion trap mass spectrometer. The MS/MS spectra were correlated with known sequences using the algorithm Sequest and other programs, then the peptide sequences were reviewed by a scientist for consensus with known proteins and the results manually confirmed for fidelity.
Summary of results: DDB1 (DNA damage binding protein 1 (XPCE, human) was affinity purified from Jurkat extracts using Compound A-immobilized beads. DDB1 was highly represented in the eluted fractions (108 peptides) compare with for example with the second proteins most represented Glycogen branching enzyme (55 peptides). DDB1 directly interacts with CRBN and could had been pull-down by virtue of its binding to CRBN.
6.5 CRBN siRNAs knocked down CRBN in sensitive multiple myeloma cell lines
The role of cereblon (CRBN) in lenalidomide MOA was confirmed using knock-down experiments in two lenalidomide sensitive multiple myeloma cell lines, H929 and U266B1. It was found that down regulation of CRBN abrogates drug-induced cell cycle arrest, activiation of tumor suppressors, inhibition of oncogenes and global changes in gene expression profiles and ubiquitination.
10 different single and pool siRNAs against CRBN were evaluated in H929 and U266B1 cells. RT-PCR was used to test the knockdown efficiency after 24 and 48 hour transfection. The results showed that the CRBN-siRNA- 1 , CRBN-siRNA-7, CRBN-siRNA-9, CRBN-siRNA- 10, and CRBN-siRNA-11 significantly reduced the expression of CRBN mRNA as compared with other siRNAs and mock siRNA (Table 1).
Table 1: Effect of CRBN-siRNAs on CRBN gene expression
% inhibition of CRBN mRNA relative to CRBN
mRNA levels in Mock control
siRNA cone
siRNA 10 nM 25 nM 50 nM
Invitrogen siRNAs
Low GC Neg Ctrl 88/ 100 85.5/77.5 85/77
CRBN-7 22/25 14/ 17.5 16.5/ 17
CRBN-8 47.5/61 29.5/41 33 / 37.5
CRBN-9 67.5/66.4 61.5/52 42/37
Dharmacon siRNAs
Smart pool neg Ctrl 87/78 72.5 / 84 98.5/88.5
CRBN Smartpool 28 / 34.5 19.3/28.5 18/ 17
CRBN-9 55/40 28.5/33 17.5/23
CRBN-10 23/35 20.5/29 20/22.5
J-021086-11 22/27 20/ 17 16.3/ 15.3
J-021086-12 55/53 37/39 21125 6.6 Knockdown of CRBN abrogates the anti-proliferative
effect of drugs in multiple myeloma cells
Drugs such as lenalidomide and pomalidomide have direct anti-proliferative activity against MM cells by inducing cell cycle arrest in Gl phase, followed by a decrease in viability.
To study the role of CRBN in lenalidomide and other drugs anti-proliferative activities, H929 and U266B1 cells, two sensitive myeloma lines, were transfected with CRBN-siRNAs or control siRNAs for 24, 48, 72 and 96 hours. Cells were treated 24 h after transfection with DMSO
(0.1 %), pomalidomide (ΙμΜ) and lenalidomide (10 μΜ) for 1, 2, 3 days to evaluated the compound effect on CRBN protein, mRNA expression and the effect on cell cycle and proliferation. RT-PCR and western blot assays showed that CRBN siRNAs knocked down CRBN. CRBN down regulation was confirmed by RT-PCR and Western blot using the
CRBN70 antibody (Figure 1). Treatment with lenalidomide and pomalidomide affected neither mRNA nor protein expression of CRBN significantly.
Lenalidomide and pomalidomide induced a delay of cell cycle progression, measured as the decrease of the number of cells in S phase, of 40 % and 50 % respectively in control mock and negative control siRNA-transfected cells (average inhibition of 3 days of treatment)
(Figures 2 A & 2B). Knockdown of CRBN markedly abrogated the lenalidomide and
pomalidomide -induced delay in cell cycle progression in U266B1 cells. Id.
The effect of CRBN in H929 cells was also evaluated. H929 cells were transfected with mock, negative control siRNA and CRBN-siRNA-7 for 24, 48, 72 and 96 h. Cells were treated 24 h after transfection with DMSO (0.1 %), pomalidomide (ΙμΜ), lenalidomide (10 μΜ) or 3- (5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6-dione ("Compound B") for 1, 2, 3 days and the effect on cell cycle and proliferation investigated. Lenalidomide, pomalidomide and Compound B induced a delay of cell cycle progression, measured as the decrease of the number of cells in S phase, in control mock and negative control siRNA-transfected cells after 72 h treatment (Figure 2C). Knockdown of CRBN markedly abrogated immunomodulatory drugs- induced delay in cell cycle progression in H929 cells (Figure 2C) from of 50 to 4% for lenalidomide, from 70 to 15% for pomalidomide, and from 65 to 22% for Compound B.
6.7 Knockdown of CRBN abrogated effect of drugs on cell
cycle, tumor suppressor and apoptotic proteins
To further investigate the effects of CRBN on the cell cycle arrest induced by drugs we used RT-PCR and Western blot analysis to measure the levels of key cell cycle and apoptotic regulators. U266B1 cells were transfected with mock, negative control siRNA, CRBN-siRNA-7 and CRBN-siRNA-11 for 24, 48, 72 and 96 h (Figure 3A). Cells were treated 24 h after transfection with DMSO (0.1 %), pomalidomide (ΙμΜ) and lenalidomide (10 μΜ) for 1, 2, 3 days and the effect on mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p2i wAF-i were evaluated. It has been shown that lenalidomide- and pomalidomide-induced cell cycle arrest is dependent on up-regulation of p21WAF 1 in U2669. Our results showed that p21 was up-regulated by lenalidomide and pomalidomide in control mock and negative control siRNA-transfected cells (Figure 3C) indicating a decrease of S phase cells resulted from lenalidomide and pomalidomide Gl arrest (Figure 3B). However, knockdown of CRBN prevents the induction of p21WAF 1 indicating the successful abrogation of Gl arrest and renewal of S phase progression (Figure 3C & 3D).
In H929 cells, the cell cycle arrest in Gl phase by the drugs coincides with a reduction of tumor suppressor, pRb, phosphorylation and the oncogene and myeloma survival factor IRF4.
Western blot analysis showed that lenalidomide, pomalidomide and Compound B decreased phosphorylation of pRB (Figures 4 A & 4B) and total level of protein IRF4 (Figures 4C & 4D).
The effect of the drugs was reduced by knockdown of CRBN suggesting that inhibition of cell cycle progression by the drugs requires CRBN protein.
6.8 Knockdown of CRBN inhibits lenalidomide and pomalidomide
effects on gene expression
Gene expression profile using microarray technology identified 759 or 609 genes differentially modulated in negative control siRNA-transfected U266B1 cells treated with pomalidomide (1 μΜ) or lenalidomide (10 μΜ) compared to DMSO treated control (± 1.7 fold; P<0.05 ANOVA p-value) (Figures 5A & 5B).
Representative significant Gene Ontology (GO) classes of down regulated genes in pomalidomide include: cell cycle (87 genes; P = 5.2E-56), mitosis (43 genes; P = 1.2E-39), cytoskeleton (58 genes; P = 2.6E-16) and response to DNA damage stimulus (36 genes; P = 1.8E-21). Representative significant Gene Ontology (GO) classes of up regulated genes include: antigen processing and presentation (12 genes; P = 2.8E-17), immune response (35 genes; P = 5.70E-14) and cell death (50 genes; P = 1.7E-10).
Representative significant Gene Ontology (GO) classes of up regulated genes in lenalidomide include: antigen processing and presentation (11 genes; P = 1.9E-16), immune response (37 genes; P = 3.9E-13) and cell death (55 genes; P = l .OE-10) (Tables 4 and 5).
Lenalidomide and pomalidomide effects on cell cycle and gene expression profiles in U266 were abrogated by knockdown of CRBN using 4 different siRNAs (Figures 5A - 5C). 6.9 CRBN levels are decreased in multiple myeloma cells resistant to lenalidomide or pomalidomide
Although the development of lenalidomide-based therapies has improved significantly clinical responses, most multiple myeloma patients eventually relapse or become refractory to their therapeutic regimens. Multiple myeloma cell lines resistant to the anti-proliferative effects of lenalidomide have been developed in order to evaluate the potential mechanisms responsible for lenalidomide resistance.
Due to the relevance of CRBN for the anti-proliferative response of lenalidomide, pomalidomide and other immunomodulatory the levels of CRBN protein was compared in matched pairs of parental sensitive lines with acquired lenalidomide- or pomalidomide-resistance cells. Consistent with CRBN being required for the anti-proliferative activity of lenalidomide and pomalidomide, the levels of CRBN protein were significantly lower in the pomalidomide- resistant cells line DF15R and the lenalidomide-resistant cells, H929 RlO-1, H929 R10-2, H929
R10-3, H929 R10-4 and MM1/R compared to the matched parental lines (Table 2).
Table 2. Fold difference of CRBN protein level between lenalidomide- or pomalidomide-resistant cells and the matched parental cells
CRBN protein fold
decrease relative to
matched parental lines
DF15R 7.16E-07
H929 R10-1 0.503989
H929 R10-2 0.295482
H929 R10-3 0.459599
H929 R10-4 0.659341
MM1/R 0.172249
6.10 Genomic DNA sequencing of CRBN, DDB1 and GSK3 from
human cell lines and primary cells
The target genes CRBN, DDB1, and GSK3B were sequenced from a variety of human cell lines and primary cells. Sequencing of the CRBN gene identified mutations in lenalidomide resistant human cell lines which are absent in parental cells.
Sequence enrichment, NexGen sequencing, and data analysis yielded the results shown in Tables 3-6 below. Each table lists the cell lines from which the data are derived. The reference nucleotide refers to the wild type nucleotide at that position. "Coverage" refers to the total number of reads at that position. The overall mutation score ("Score") is based on the concept of Phred scores with a maximum value of 30, meaning the probability that the mutations call is wrong is 1/1000; 20, 1/100; and 10, 1/10. A Score, however, does not necessarily mean that the mutation is more than likely a false mutation. A low Score implies only that the mutation cannot be called a true mutation with absolute certainty. "Mutation Call" denotes the nucleotide change. For example, T > TG indicates a heterozygous change from reference T to T and G. T > G indicates a homozygous change from reference T to G. The term "c." refers to the coding sequence while 'TVS" refers to an intron variant. The "Amino Acid Change" column uses similar notation to the "Mutation Call" column.
Results
In the large-scale sequence analysis of 27 cell lines, more intronic mutations were found than exonic mutations. The multiple myeloma cell line, ANBL-6, showed a mutation in CRBN of the lenalidomide-resistant line that was not seen in the wild type. ANBL-6.wt was treated only with DMSO and the CRBN coding sequence exactly matched the reference. However, in the ANBL-6. Rl OR which has resistance to 10 μΜ lenalidomide, a SNP in the coding region c.745C>CA caused an amino acid change 249D>YD in the protein. This amino acid change mapped to the DDB1 binding domain of CRBN.
A silent mutation found in the CRBN coding region of HepG2 and JeKo-1 was heterozygous c.735A>AG with KMS-12-BM as homozygous c.735A>G. The cell line, OPM2, had a different silent mutation in the coding region of CRBN, c.1209C>CT. No amino acid changes resulted from these SNPs.
The sequencing results for DDB1 uncovered a SNP in the coding region c.909T>TA which resulted in an amino acid change 303E>ED in both ANBL-6.wt and ANBL-6.R10R cell lines. A different SNP was found in the Jurkat cell line, with a mutation c.2143C>CT in the DDB1 coding region that changed the amino acid sequence 715V>VI.
A silent mutation found in the DDB1 coding region of ANBL-6.wt, ANBL-6. Rl OR, and SH-SY5Y at c. l53G>GA did not change the amino acid sequence. A sample of PBMC from a healthy donor also had a silent mutation in the DDB1 coding region c.2265G>GA that did not change the amino acid sequence. One GSK3P mutation was found in the PMBC sample. The mutation in the coding region c.1187C>CT resulted in an amino acid change 396R>RQ. This mutation did not map to the kinase domain. Other mutations are shown in Table 11. Most of these have low coverage. This could be due to primers targeting these regions and/or sequencing error.
While no consistent mutations in CRBN, DDB1 and GSIQ-β were found to correlate with resistance to lenalidomide or pomalidomide in these MM cell lines, sporadic mutations such as the 249D>YD CRBN mutation observed in lenalidomide-resistant ANBL-6 MM cells exemplify the type of polymorphism which might occur in such genes within the clinical setting, and which might constitute a mechanism of resistance. Further studies would be needed to confirm or refute this hypothesis.
Table 3 CRBN Mutations
Figure imgf000103_0001
H929_ 10-3 IVS175-9A>G
H929_R10-4 IVS175-9A>G
H929-luM- CC5013 IVS175-9A>G
JeKo-1 IVS175-9A>G
JJN-3 IVS175-9A>G
Jurkat IVS175-9A>G
KMS-12-BM IVS175-9A>G
OPM2 IVS175-9A>G
RPMI-8226 IVS175-9A>G
SH-SY5Y IVS175-9A>G
SK-Hepl IVS175-9A>G
SKMM2 IVS175-9A>G
U266_B1 IVS175-9A>G
ANBL-6.R10R IVS175-9A>G. IVS1148+21 1148+22insA
IVS175-9A>G.
IVS1148+21 1148+22insA. IVS528-29 528-
U87 28insCT
H929 IVS175-9A>G. IVS1329+18 1329+19insAACT
H929-0.1uM- CC4047 IVS175-9A>G, IVS1329+18_1329+19insAACT
H929-DMSO IVS175-9A>G, IVS528-29_528-28insCT
KMS-12-BM IVS528-29_528-28insCT
SKMM2 IVS528-29_528-28insCT
U266_B1 IVS528-29 528-28insCT a = silent mutation; b = region required for DDB 1 interaction
Table 4 DDB1 Mutations
Amino Acid
Cell line Mutation Call Change
ANBL-6.R10R C.153G>AG 51P>PPa
ANBL-6.wt C.153G>AG 51P>PPa
SH-SY5Y C.153G>AG 51P>PPa
Jurkat c.2143 OCT 715V>VI
PBMC c.2265G>AG 755S>SSa
ANBL-6.R10R c.909T>AT 303E>DE
ANBL-6.wt c.909T>AT 303E>DE
ANBL-6.wt IVS1123-29A>G
EJM IVS1123-29A>G
H929 IVS1123-29A>G
H929_R10-3 IVS1123-29A>G
H929-luM- CC5013 IVS1123-29A>G HepG2 IVS1123-29A>G
JeKo-1 IVS1123-29A>G
MM.lS.wt IVS1123-29A>G
OPM2 IVS1123-29A>G
SK-Hepl IVS1123-29A>G
U266_B1 IVS1123-29A>G
ANBL-6.wt IVS1123-30OT
EJM IVS1123-30OT
H929 IVS1123-30OT
H929_ 10-3 IVS1123-30OT
H929-luM- CC5013 IVS1123-30OT
HepG2 IVS1123-30OT
JeKo-1 IVS1123-30OT
MM.lS.wt IVS1123-30OT
OPM2 IVS1123-30OT
SK-Hepl IVS1123-30OT
U266_B1 IVS1123-30OT
PBMC IVS1225+30T>C
MM.1S.R10R IVS1225+30T>CT
MM.lS.wt IVS1225+30T>CT
RPMI-8226 IVS1225+30T>CT
JJN-3 IVS1862-26A>AT
0PM2 IVS1862-26A>AT
H929-0.1uM- CC4047 IVS1862-27A>AC
JJN-3 IVS1862-27A>AC
0PM2 IVS1862-27A>AC
SH-SY5Y IVS1862-27A>AC
H929 IVS2278-26T>GT
H929-luM- CC5013 IVS2278-26T>GT
Jurkat IVS2278-26T>GT
KMS-12-BM IVS2278-26T>GT
0PM2 IVS2278-26T>GT
ANBL-6.wt IVS2278-270CT
EJM IVS2278-270CT
H929 IVS2278-270CT
H929_R10-2 IVS2278-270CT
H929-luM- CC5013 IVS2278-270CT
JJN-3 IVS2278-270CT Jurkat IVS2278-270CT
KMS-12-BM IVS2278-270CT
OPM2 IVS2278-270CT
PBMC IVS2278-270CT
SH-SY5Y IVS2278-270CT
SK-Hepl IVS2278-270CT
SKMM2 IVS2278-270CT
U266_B1 IVS2278-270CT
U87 IVS2278-270CT
ANBL-6.wt IVS2278-280T
H929 IVS2278-280T
H929_ 10-2 IVS2278-280T
H929_R10-3 IVS2278-280T
H929-luM- CC5013 IVS2278-280T
Jurkat IVS2278-280T
KMS-12-BM IVS2278-280T
0PM2 IVS2278-280T
PBMC IVS2278-280T
SH-SY5Y IVS2278-280T
SKMM2 IVS2278-280T
U266_B1 IVS2278-280T
U87 IVS2278-280T
JJN-3 IVS2661+60CT
PBMC IVS2832+60CT
RPMI-8226 IVS2832+60CT
a = silent mutation
Table 5 GSK3P Mutations
Amino Acid
Cell line Mutation Call Change
PBMC C.11870CT 396R>RQ
Jurkat IVS282+3delT
U266_B1 IVS366+29A>AG
H929 IVS366+29A>G
Jurkat IVS909+lldelA
Table 6 Other Mutations
Chr Y: LOCI 00288025
Chr M: ATP6, COXl, CYTB, NDl, ND4, ND4L, ND5
Chr 2: C2orf67 Chr 1 : ITLN1
Chr 19: KLK10
Chr 17: K T15
Chr 14: PRMT5, FMNL1
Chr 9: NOTCH 1
6.11 Study of the relationship between drugs and the ubiquitin proteasome system
Specific antibodies for poly-ubiquitin chains were used to study the effect of
immunomodulatory drugs on global levels of ubiquitination. H929 cells were treated with lenalidomide (1 μΜ), pomalidomide (1 μΜ) or proteasome inhibitor MG132. After 30 minutes cells were process for immunofluorescence. Global levels of K63-linked polyubiquitination were quantified by Cellomics. As shown in Figures 7A & 7B, immunomodulatory drugs decrease total K48-linked polyubiquitination but not K-63-linked ubiquitination in H929.
6.12 Study of the effect of drugs on global changes of ubiquination
and protein abundance
The effects of lenalidomide and pomalidomide on protein ubiquination were investigated using CST Ubiscan technology. Treated samples were sent to Cell Signaling Technology for ubiquinated peptide enrichment and quantification by LC/MS/MS. Raw intensity was used for this analysis to identify peptides that are significantly regulated by the drugs, or the drugs with proteasome inhibitor MG132. Analysis showed that compared with MG132, the effects of lenalidomide and pomalidomide on ubiquitinated peptides are small. In the MG132 combo, more ubiquinated peptides are observed (compared with their controls). 162 unique
ubiquitinated peptides were significantly up-regulated by lenalidomide and pomalidomide alone, or with MG132 at 1 hour or 4 hours. These peptides correspond to 176 unique proteins. Top few groups are: nucleosome, chromatin, protein-DNA complex assembly, Histone H2A. Among the 176 proteins, we found five proteins that belong to "ubiquitin-protein ligase activity" category, they are MDM2, HERC2, UBE2D3 (only by pomalidomide), UBE2N (lenalidomide only), UBE2M (both). Results for hits categorized by conditions are shown in Figures 8 & 9
(without MG132) and Figures 10 & 11 (with MG132).
6.13 CRBN knockdown effect on drug induced TNFa and IL-2 in
primary T-cells In these studies, human T cells were isolated from blood and treated with 1 μg/ml PHA-L at 37°C. After 24 hr stimulation T cells were subjected to siRNA trans fection with the indicated siRNAs. Knockdown efficiencies were analyzed by qRT-PCR after 24 h transfections and the remaining transfected cells seeded in 96-well plate s pre-bound with OKT3 and treated with DMSO or 1 and 10 μΜ thalidomide, lenalidomide, pomalidomide and phthalimide in duplicate at 37°C for 48 hours. After 48 hours, the supernatants were collected and tested for TNFa and IL-2 production by ELISA (Figures 12A - 12D). This data indicates that siRNA knockdown of CRBN abrogates drug-induced TNFa and IL-2 production in anti-CD3 -stimulated primary human T cells.
6.14 Knocking down Cul4A and Cul4B together partially abrogates
lenalidomide, pomalidomide, or Compound B-induced TNFa and IL-2 induction in T cells
Cul4A knockdown efficiency prior to drug treatment was measured. Cul4A gene expression was knocked down by 82% and 76% by Cul4A siRNA- 1 and Cul4A + Cul4B siRNA, respectively (Figure 13 A). Cul4B gene expression was suppressed by 70%> and 63%> byCul4B and Cul4A + Cul4B siRNA, respectively. The individual knock down of Cul4A or Cul4B had no effect on T cell TNF-a or IL-2 production induced by 10 μΜ lenalidomide, pomalidomide or Compound B (Figures 13 B & C). However, the double knockdown of Cul4A and Cul4B together resulted in a significant but partial reversal of the compound-induced elevation of TNF- production due to lenalidomide, pomalidomide, and Compound B (Figure 13B). There was a trend of a reversal of IL-2 induction when Cul4A and Cul4B were knocked down (Figure 13C). These data suggest that lenalidomide, pomalidomide, and Compound B-mediated T cell costiulation is dependent on the expression of Cul4A and Cul4B, and that these proteins serve redundant functions in the T cell.
6.15 CRBN expression and sensitivity to lenalidomide in lymphoma
cells
The antiproliferative activity of lenalidomide versus baseline CRBN expression was studied in diffuse large B-cell lymphoma (DLBCL) cell lines. The following DLBCL cell lines were evaluated for sensitivity to lenalidomide: OCI-LylO-NCI, U2932, OCI-Ly-3, DB, RIVA, TMD8, Toledo, OCI-Ly-19, Pfeiffer, WSU-DLCL2, Karpas-1106P and SU-DHL-4. Results are shown in Figure 14. 6.16 Preparation of CRBN-DDB1 complex
Primers were designed for cloning of CRBN into pBV-ZZ-HT-LIC and pBV-notag-LIC. Two primers were prepared, "CRBN For" and CRBN Rev."
CRBN For: GTGCCGCGTGGCTCCATGATGGCCGGCGAAGGAGATCA
CRBN Rev: GCTTCCTTTCGGGCTTATTACAAGCAAAGTATTACTT
The primers were used to amplify the CRBN gene from a cDNA library. The product was gel purified and treated with T4 DNA polymerase in the presence of TTP only to make single-stranded ends compatible for ligation independent cloning. The CRBN DNA was then annealed to pBV-ZZ-HT-LIC to create CRBN 034 (Figure 15 A).
For DDBl, two primers were prepared, "DDBl For" and "DDBl Rev."
DDBl For: TCGGGCGCGGCTCTCGGTCCGAAAAGGATGTCGTACAACTACGTGGTAAC
(SEQ ID NO:2)
DDBl Rev:
GCTTCCTTTCGGGCTTATTTTTCGAACTGCGGGTGGCTCCAATGGATCCGAGTTAGCTCCT
(SEQ ID NO:3)
The DDBl Rev adds a StrepTag at the C-termini of DDBl . The DDBl gene was amplified from a cDNA library, gel purified, and treated with T4 polymerase in the presence of TTP. The DDBl gene was then annealed to pBV-notag-LIC to create the plasmid DDBl 004 (Figure 15B).
Expression of constructs in baculovirus and purification
The constructs could were tested for expression in insect cells. Recombinants pBV-HT- LIC and pBV-GST-LIC plasmids were transformed into DHlOBac to produced bacmids.
Integrity of the recombination was followed by a blue -white screen and PCR. The recombinant bacmids were used to transfect 9 x 105 Sf9 adherent cells per well in serum free-Grace media. After the transfection, fresh Grace media containing antibiotics and glutamine was added.
Infection was followed by observation of the cell monolayers under microscope. After 5 to 7 days, the supernatants were saved (PI virus) and the pellets were analyzed for recombinant protein expression. Virus amplification was in 24 deep well plates with 4 ml of 2 x 106 Sf9 cells/ml per well. Aliquots were removed to assess the kinetics of protein expression. After 4 days, the plate was centrifuged, the supernatant were saved (P2 virus) and the pellets were analyzed by mini scale purification of the tagged proteins. The viruses were finally amplified in 750 ml of Grace media containing antibiotics and glutamine and the supernatants saved as P3 virus. Pellets were saved and purified using either the AKATxpress or the AKTA purifier from Amersham Biosciences.
Purification
Cell pastes containing CRBN-DDBlwere lysed in a buffer containing 50 mM Tris pH 8.0,
500 mM NaCl, 20 mM Imidazole, 10% Glycerol, and 2 mM DTT and protease inhibitors. The lysate was then cleared by centrifugation. The tagged proteins were then purified from the supernatants using the AKTA Express from Amersham Biosciences. Five ml HisTrap HP columns were used for the affinity step while a 16 mm X 60 cm Sephacryl S-200 HR was used for the size exclusion steps. After loading the column, was column was washed with 20 volumes of lysis buffer, then 10 column volumes of 50 mM Tris pH 8.0, 1000 mM NaCl, 40 mM
Imidazole, 10% Glycerol, and 2 mM DTT. Elution of the bound proteins was performed with lysis buffer containing 500 mM Imidazole. Eluted proteins were directly injected into the gel filtration column equilibrated in 25 mM Tris pH 8.0, 200 mM NaCl, 5 % Glycerol, and 2 mM DTT. Fractions were analyzed by 4-20 % SDS polyacrylamide gel electrophoresis.
Fractions containing both CRBN and DDB1 were pooled and digested with Thrombin to remove the ZZ-HT tag from CRBN. Digestion was carried at 4°C for 5-6 hours with 1 :2000 (weight/weight) of thrombin and CRBN-DDB 1. Cleaved CRBN-DDB1 was diluted in 25 mM Tris pH 8.0, 5 % Glycerol, and 2 mM DTT, and loaded onto an 8 ml MonoQ column
(Amersham-Pharmacia) equilibrated in 25 mM Tris pH 8.0, 75 mM NaCL, 5% Glycerol, and 2 mM DTT. After loading the column was wash with 2 volumes of 25 mM Tris pH 8.0, 75 mM NaCl, 5 % Glycerol and 2 mM DTT, and the bound proteins were eluted with a gradient from 75 mM to 400 mM in 25 mM Tris pH 8.0, 5 % Glycerol and 2 mM DTT
A final gel filtration was done to polish the CRBN-DDB 1 complex. The fraction pooled from the MonoQ were loaded onto a 140 ml S200HR Gel filtration column and ran in 25 mM
Tris pH 8.0, 200 mM NaC, 5 % Glycerol, and 2 mM DTT. Fractions were analyzed and positive fractions were pooled and concentrated to approximately 15 mg/ml. Aliquots were stored at - 80°C.
6.17 Ubiscan ubiquitination experiments
The results of 1 hour and 4 hour ubiquitination experiments are shown in Figures 17-22, which demonstrate that certain peptides are regulated by lenalidomide and/or pomalidomide. The tables of Figure 23 show Ubiscan data results for lenalidomide, pomalidomide and Compound B. Ub-proteins IKZF3, RPL19, PCMl and NEDD8 were commonly increased in abundance by Rev and Pom in U266 and Compound B in T cells. Proteins GNB2L1 and
FiNRNPR were commonly decreased in abundance by Rev and Pom in U266 and Compound B in T cells.
Treatment of T cells with Compound B resulted in a greater abundance of two
ubiquinated peptides (vs. DMSO control), SECTM1 and ZC3H15.
Proteins in common with lenalidomide, pomalidomide and Compound B: IKZF3, RPL19, PCMl, NEDD8, GNB2L1, and FiNRNPR.
Table 7 Final Ubiscan hits for lenalidomide and pomalidomide (lhr)
ID Gene Name Peptide Sequence
1 147 G3BP2 QYYTLLNK*APEYLHR
2 904 COPS6 QVCEIIESPLFLK*LNPM#TK
3 905 COPS6 QVCEIIESPLFLKLNPM#TK*
5 1137 VCPIP1 VGDVQGQESESQLPTKIILTGQK*
9 1582 HYOU1 FFGDSAASM#AIK*NPK
10 2541 MCM7 FLQEFYQDDELGK*K
13 3043 CCT3 SM#M#K*MLLDPMGGIVM#TNDGNAILR
14 3226 LMNB2 LSSDQNDK*AASAAR 278
16 3910 C12orf51 LSPYLEDVSGGMWPVVHIQK*KNTK
18 3992 EDEM3 ATGDP Y YLE VGK* TLIENLNK
25 4982 RAB28 VVK*ADIVNYNQEPM#SR
33 7093 HNRNPUL1 IGWSLDSCSTQLGEEPFSYGYGGTGK*K
35 7556 ABCF2 YGLTGK*QQVSPIR
37 7740 DNAJC1 ALPHLIQDAGQFYAKYK*
38 7798 GNAS VLTSGIFETKFQVDK*VNFHM#FDVGGQRD
PR
39 8193 SLC16A1 ASLEK*AGK
42 10418 RPL19 HMGIGK*R
43 10556 RPL36 AMELLKVSK*
44 10565 RPL4 MF APTK* T WR
46 11831 UBE2Q1 ELK*LLESIFHR
47 12009 ARMC6 NLVAHGQAFSK*PILDLGAEALIM#QAR
50 12698 KLHL7 ISVNSNNVQSLLDAANQYQIEPVK*K
51 12891 NUP37 FCTSAADMK*IR
52 12942 POC5 VVTSAQQK*AGR
54 13152 SNRPE IM#LK*GDNITLLQSVSN
PAGE INTENTIONALLY LEFT BLANK
Table 8 Final Ubiscan hits for lenalidomide and pomalidomide (MG lhr)
ID Gene Name Peptide Sequence
1 105 DOK5 K*ASSKGPK
2 324 SHCBP1 AYQDYILADCK*ASEVQEFTAEFLEK
4 389 YWHAE MK*GDYHR
5 512 FERMT3 ETTLSYYK*SQDEAPGDPIQQLNLK
6 904 COPS6 QVCEIIESPLFLK*LNPM#TK
7 905 COPS6 QVCEIIESPLFLKLNPM#TK*
8 1010 PCM1 LMAAK*QK
9 1112 SMC4 SVAVNPK*EIASK
10 1114 TOPORS K*IQEQDIINFR
11 1323 HSPA1A S AVEDEGLK* GK
12 1323 HSPA1B S AVEDEGLK* GK
13 1452 HSPA8 DISENK*R
14 1623 ATRX DNRGGIKSK*
15 1679 DUT IFYPEIEEVQALDDTERGSGGFGSTGK*N
16 1773 H2AFJ K*GNYAER
17 1773 HIST1H2 17
AA
18 1773 HIST1H2 K*GNYAER
AC
19 1773 HIST1H2 K*GNYAER
AI
20 1773 HIST1H2 K*GNYAER
AK
21 1773 HIST2H2 K*GNYAER
AA3
22 1773 HIST2H2 K*GNYAER
AB
23 1773 HIST2H2 K*GNYAER
AC
24 1863 H2AFX K*TSATVGPK
25 3146 LMNA TLEGELHDLRGQVAK*LEAALGEAK
26 3192 LMNA K*LESTESR
27 3377 TUBA1A D VN AAI ATIK* TK
28 3377 TUBA1B DVN AAI ATIK* TK
29 3377 TUBA1C DVN AAI ATIK* TK
30 3377 TUB A3 C DVNAAIATIK*TK
31 3377 TUB A3 D D VN AAI ATIK* TK
32 3377 TUB A3 E D VN AAI ATIK* TK
33 3963 DHFR LTEQPELANK* VDM# VWTVGGS S VYK
34 3984 DHX15 EVDDLGPEVGDIK*IIPLYSTLPPQQQQR
37 4111 GBA LLLPHWAK*VVLTDPEAAK
41 4199 IDH3G NTGK*SIANK
Figure imgf000114_0001
κ*
98 9794 EEF1A1 AAGAGK*VTK
99 9794 eEFlAL3 AAGAGK*VTK
106 10407 RPL19 TLSK*EEETKK
107 10409 RPL19 TLSKEEETK*K
108 10411 RPL19 TLSKEEETKK*
111 11082 RPS25 LVSK*HR
112 11397 COPS3 LKAM#DQEITVNPQFVQK*SM#GSQEDDSGNKPSSYS
113 11426 CUL9 ILK*AHGEK
115 11794 UBAP2L IDL AVLLGK* TP STMEND S SNLDP S Q AP SL AQPL VF SN
SK
116 11931 ADRM1 GTTVTPDK*R
120 12423 FAM10A4 AK* SEENTKEEKPDSK
121 12423 FAM10A5 AK* SEENTKEEKPDSK
122 12423 ST13 AK* SEENTKEEKPDSK
123 12447 FAM129A VLK*QYDYDSSTIR
125 12609 IGJ FVYHLSDLCK*K
126 12627 IKZF3 SHT VEKP YK* CEFCGR
131 13060 S100A6 EGDKHTLSK*K
132 13212 SSR2 KYDTPK*TK
133 13250 SSX1 SK*AFDDIATYFSK
134 13306 TIPRL LK*VVPTTDHIDTEKLK
136 13598 AMBRA1 REPFAVVK*TASEM#ER
137 13676 COPG ALQQ YTLEPSEKPFDLK* S VPL ATAPM#AEQR
138 13280 TBCC GK*DAASSTKVDAAPGIPPAVESIQDSPLPK
139 13281 TBCC GKDAASSTK*VDAAPGIPPAVESIQDSPLPK
Table 9 Final Ubiscan hits for lenalidomide and pomalidomide (4hr)
ID Gene Name Peptide Sequence
1 236 GNB2L1 LK*TNHIGHTGYLNTVTVSPDGSLCASGGK
2 487 CTNNB1 LLHPPSHWPLIK*ATVGLIR
3 512 FERMT3 ETTLSYYK*SQDEAPGDPIQQLNLK
5 663 PKP2 TYDMLK*AGTTATYEGR
6 732 HSP90B1 NLGTIAK* SGTSEFLNK
9 1112 SMC4 SVAVNPK*EIASK
10 1863 H2AFX K*TSATVGPK
11 2508 HIST2H2AB KTESHKPGK*NK
12 2512 HIST2H2AB KTESHKPGKNK*
13 2579 NAP1L2 GLIGYVLDTDFVESLPVKVK*
15 3712 TPD52 SFEEK*VENLK
16 3742 VAPA RYCVRPNSGIIDPGSTVTVSVM#LQPFDYDPNEKSK*
17 3799 AKR1B1 LLLNNGAK*M#PILGLGTWK
18 3916 CHPF SALT AHPVRDPVHMYQLHK* AFAR
19 3955 DDX24 ATNEGLSLM#LIGPEDVINFKK* 4035 FASN DGLLENQTPEFFQDVCKPK*
4181 HMOX1 K*AALEQDLAFWYGPR
4347 NANS QLLPCEMACNEK*LGK
4938 GNB3 GQQK*TV
4938 H2AFZ GQQK*TV
4968 NET1 IGEATK*PDGTVEQIGHILVSWLPR
5672 ANP32E KLELSDNIISGGLEVLAEK*CPNLTYLNLSGNK
5676 CDC25C SLNQ YP AL YYPEL YILK* GGYR
5732 PPP1CB AK*YQYGGLNSGRPVTPPR
6543 CHEK1 M#CGTLPYVAPELLK*R
6546 CSNK1A1 LFLIDFGLAK*K
6546 CSNK1A1L LFLIDFGL AK* K
6563 IRAKI GTLAYLPEEYIK*TGR
6843 PRKAG2 KK*DVSSPGGSGGK*K*NASQK*
6858 CPSF3L VNCYM#PANGETVTLPTSPSIPVGISLGLLK*R
7344 RARS SDGGYT YDTSDL AAIK* QR
7672 C7orf42 QSNPEFCPEK*VALAEA
7717 CPNE1 SEVIK*NNLNPTWK
8137 NUP88 IYSLREPQTPTNVIILSEAEEESLVLNK*GR
8331 TCIRG1 QEENK*AGLLDLPDASVNGWSSDEEK
8723 FAF1 K*SPM#M#PENAENEGDALLQFTAEFSSR
8734 FUBP3 ITGDAFK*VQQAR
9253 PSMC3 LAGPQLVQM#FIGDGAK*LVR
9526 TSG101 ASLISAVSDK*LR
9794 EEF1A1 AAGAGK*VTK
9794 eEFlAL3 AAGAGK*VTK
9933 EIF2S1 ADIEVACYGYEGIDAVK*EALR
10690 RPL9 K*FLDGIYVSEK
11010 RPS2 AEDK* E WMP VTK
11010 LOC645018 AEDK* E WMP VTK
11585 NAE1 CINITK*QTPSFWILAR
11831 UBE2Q1 ELK*LLESIFHR
12110 C13orf40 KPDLRIIEQEEK*
12242 COMMD4 LEVAAAPGTPAQPVAM#SLSADK*FQVLLAELK
12320 DDIT4 GALLDVCVEQGK* SCHS VGQLALDPSLVPTF
12458 FAM60A TPVFSFLDLTYWK*R
12545 HLA-E GYEQFAYDGK*DYLTLNEDLR
12758 MAGEA3 AREPVTK*AEM#LGSVVGNWQYFFPVIFSK
12758 MAGEA6 AREPVTK*AEM#LGSVVGNWQYFFPVIFSK
12865 NHP2 IK*ADPDGPEAQAEACSGER
13290 TBL3 LWTIK*NNECVR
13930 NEDD8 QMNDEK* T AAD YK
403 YWHAZ YL AE V AAGDDK* K
805 SHISA5 SQPPYNPAYM#DAPK*AAL
2089 HIST1H1A GTLVQTK*GTGASGSFK
2089 HIST1H1B GTLVQTK*GTGASGSFK 84 2089 HIST1H1C GTLVQTK*GTGASGSFK
85 2089 HIST1H1D GTLVQTK*GTGASGSFK
86 2089 HIST1H1E GTLVQTK*GTGASGSFK
87 13902 NEDD8 LIYSGK*QMNDEK
88 14057 RPS27A K*IQDK*EGIPPDQQR
89 14057 RPS27AP5 K*IQDK*EGIPPDQQR
90 14057 UBA52 K*IQDK*EGIPPDQQR
91 14057 UBB K*IQDK*EGIPPDQQR
92 14057 UBC K*IQDK*EGIPPDQQR
Table 10 Final Ubiscan hits for lenalidomide and pomalidomide (MG 4hr)
ID Gene Name Peptide Site
1 11 PLAA FIIDNTK*GQM#LGLGNPSFSDPFTGGGR
2 259 HGS ACGQIFCGK*CSSK
3 260 HGS ACGQIFCGKCSSK*
4 358 UBE2M VGQGYPHDPPK*VK
5 361 UBE2M VGQGYPHDPPKVK*
6 533 IL32 GDK*EELTPQK
7 826 ANXA7 AM#K* GFGTDEQ AI VD VVANR
8 917 CP110 NKMLGTSSKESEELLK*SK*
9 1112 SMC4 SVAVNPK*EIASK
10 1146 ANP32B IFGGLDM#LAEKLPNLTHLNLSGNKLK*
11 2579 NAP1L2 GLIGYVLDTDFVESLPVKVK*
12 2591 PURA FFFDVGSNK*YGVFM#R
13 2768 VCP KAFEEAEK*NAPAIIFIDELDAIAPKR
14 2791 VCP ELQELVQYPVEHPDKFLK*
15 2929 ACTB DIK*EKLCYVALDFEQEMATAASSSSLEK
16 2929 ACTG1 DIK*EKLCYVALDFEQEMATAASSSSLEK
17 2929 POTEE DIK* EKLC Y V ALDFEQEM AT AAS S S SLEK
18 3231 LSP1 QEM#LLSLK*PSEAPELDEDEGFGDWSQRPEQR
19 3281 NES TSLSFQDPK*LELQFPR
20 3575 AUP1 FPS SGP VTPQPTALTF AK* S S WAR
21 3588 MAN1A1 GYAWGLNELK*PISK 3589 MAN1A1 K*GSGPAALR
3712 TPD52 SFEEK*VENLK
3740 VAPA YCVRPNSGIIDPGSTVTVSVM#LQPFDYDPNEK*SK
4483 PPIA VSFELFADK*VPK
4655 TPll ELASQPDVDGFLVGGASLK*PEFVDIINAKQ
4656 TPll KQSLGELIGTLNAAK*VPADTEVVCAPPTAYIDFAR
4938 GNB3 GQQK*TV
4938 H2AFZ GQQK*TV
5308 ALDOA VDK*GVVPLAGTNGETTTQGLDGLSER
5459 MTX1 FTGAPLK*VHKISNPWQSPSGTLPALR
5573 PTRH2 TQIAPGSQTVLGIGPGPADLIDKVTGHLK*LY
5640 MYL6 VFDK*EGNGTVMGAEIR
5792 PPP3CA HLTEYFTFK* QECK
5792 PPP3CB HLTEYFTFK* QECK
5810 PPP3CC SQATGFPSLITIFSAPNYLDVYNNK*AAVLK
6427 UCHL5 TLAEHQQLIPLVEKAK*
6449 USP15 GPSTPNVK*NSNYCLPSYTAYK
6558 HUNK K*PEPHQPGPGSTGIPHK*EDPLMLDM#VR
6861 CPSF6 KTTQSGQMSGEGK*AGPPGGSSR
7088 HNRNPPv IK*ALLER
7088 SYNCRIP IK*ALLER
7186 MORC3 STNQQTATDVSTSSNIEESVNHM#DGESLK*LR
7240 PABPC1 VVCDENGSK*GYGFVHFETQEAAER
7522 ABCE1 STALK*ILAGK
7672 C7orf42 QSNPEFCPEK*VALAEA
8030 MLC1 K* G SM SD S ANILDE VPFP AR
8239 SLC35F2 TAEPAESSVPPVTSIGIDNLGLK*LEENLQETHSAVL
8370 TMEM57 KHNLGINNNNILQPVDSKIQEIEYM#ENHINSK*
9215 POLR2L CFTCGKIVGNK*WEAYLGLLQAEYTEGDALDALGLKR
9354 RSF1 AQIDP VLLK*NS SQQDNS SR
9398 SP140 MK*ESPGSQQCCQESEVLER 9468 TBL1XR1 DK*LAQQQAAAAAAAAAAASQQGSAK
10524 RPL30 KSEIEYYAM#LAK*TGVHHYSGNNIELGTACGK*YYR
11010 RPS2 AEDK* E WMP VTK
1101 LOC645018 AEDK* E WMP VTK
11435 DCUN1D1 QFM#IFTQSSEK*TAVSCLSQNDWK
11510 MDM2 ENWLPEDKGKDKGEISEK*
11580 MIB1 S SED ATDDI S S GNIP VLQK* DKDNTN VN AD VQK
11581 MIB1 S SED ATDDI S S GNIP VLQKDK* DNTN VN AD VQK
11830 UBE20 STDSQCGTVIDVNIDCAVK*LIGTNCIIYPVNSK
11969 ANKRD13A LTLDLM#KPK*
12110 C13orf40 KPDLRIIEQEEK*
12127 C19orf43 QKTEDE VLT SK* GD A WAK
12129 C19orf43 QKTEDEVLTSKGDAWAK*
12171 CAPN8 LAGKDSEITANALK*
12259 COPS8 K*PVAGALDVSFNKFIPLSEPAPVPPIPNEQQLAR
12322 DDIT4 K*LYSSEQLLIEEC
12432 FAM114A1 SVLTGGLDALEFIGK*
12564 HSPBP1 AMQQQVQK*LK
12929 PLIN2 GAVTGSVEK*TK
12930 PLIN2 GAVTGSVEKTK*
13264 STRBP M#VLLPVM#K*FPTYPVPHYSFF
13561 WDR6 MVK*VDPETR
13849 VAMP 8 NLQSEVEGVK*NIMTQNVER
2097 HIST1H1A K*ALAAAGYDVEKNNSR
2097 HIST1H1C K*ALAAAGYDVEKNNSR
2097 HIST1H1D K*ALAAAGYDVEKNNSR
2097 HIST1H1E K*ALAAAGYDVEKNNSR
2097 HIST1H1T K*ALAAAGYDVEKNNSR
3242 MY018A INSLQDMVTK*YQKR
4677 UAP1 LTLSK*AGQEHLLR
8262 SLC3A2 IK*VAEDEAEAAAAAK 6.18 Efficacy of lenalidomide in activated B-cell like subtype DLBCL
is dependent upon expression of IRF4 and CRBN
Cell proliferation assay
Cell proliferation was assessed using the 3H-thymidine incorporation assay. Briefly, logarithmically growing DLBCL cells were cultured in 96-well culture plates in complete media with the indicated concentration of lenalidomide or DMSO control. Following incubation at 37°C for 5 days, 1 3H-thymidine (GE Healthcare Biosciences, Piscataway, NJ) was added to each well for the final 5 hours of incubation. Cells were then harvested onto UniFilter GF/C filter plates (PerkinElmer, Waltham, MA) using a cell harvester (Tomtec, Hamden, CT) and the plates were allowed to dry overnight. The 3H-thymidine incorporation of each well was then measured using a TopCount NXT Microplate Scintillation and Luminescence Counter (Packard
Bioscience, Meriden, CT). The percent inhibition of cell proliferation was calculated and normalized to DMSO control.
Protein expression analysis
Cells were treated with test compounds or 0.1% DMSO for indicated times. Following incubation, cells were collected, pelleted with centrifugation, and immediately lysed in 0.1 ml lysis buffer containing 10 mM Tris-HCl pH 8.0, 10 mM EDTA, 150 mM NaCl, 1% NP-40, 0.5% SDS, 1 mM DTT, 1 mM Na3V04, plus Complete protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN), then processed with a Qiashredder™ (Qiagen, Valencia, CA) for 1 minute and frozen on dry ice. Samples were diluted with 6 x SDS sample buffer and then boiled for 5 min. Approximately 30 μΐ of this mixture was loaded per lane on a Criterion Precast 4-12% Tris-HCl gel (Bio-Rad, Hercules, CA), electrophoresed, and transferred to nitrocellulose membranes (Bio-Rad, Hercules, CA). The membranes were blocked for 1 hour at room temperature using blocking buffer (LI-COR Biosciences, Lincoln, Nebraska), then incubated overnight at 4°C with antibodies against either BCL-10, IRF4, CRBN or β-actin. Membranes were washed and incubated with IRDye Secondary Antibodies (1 :30,000) for 1 hour at room temperature. A standard protocol was then followed for signal detection, using the Odyssey® Infrared Imaging System and software (LI-COR Biosciences, Lincoln, NE). NF-κΒ activity assays
Logarithmically growing DLBCL cells were treated with test agents as indicated. Nuclear extracts were prepared using a Nuclear Extract Kit (Active Motif, Carlsbad, CA) and protein concentration was determined by the bicinchoninic acid assay (Thermo Scientific, Rockford, IL). Detection of NF-κΒ activity was performed using a sensitive oligo-based colorimetric enzyme- linked immunosorbent assay (ELISA) method, according to the instructions of the manufacturer (Active Motif). Briefly, nuclear extracts of DLBCL cells were hybridized to 96-well plates coated with wild-type DNA oligonucleotides containing a single copy of the NF-κΒ consensus binding sequence. Bound NF-κΒ protein was then detected with antibodies specific for p50, p65 (Rel A) or p70 subunits. A secondary antibody conjugated to horseradish peroxidase was added and plates were then read by spectrophotometry at 450 nm with a reference wavelength of 655 nm. NF-KB activity was calculated based on OD450/655 nm.
For the NF-κΒ -driven luciferase reporter gene assay, cells were transfected with the pGL4.32 [luc2P/NF-KB-RE/Hygro] plasmid (Promega, Madison, WI) using Nucleofector kit V and program 013 according to the manufacturer's protocol (Amaxa Biosystems, Gaithersburg, MD). After 24 hours of transfection, cells were treated with test agents for 2 days and lysates were prepared using the Dual-Glo® Luciferase Assay System (Promega). Luciferase activities of each sample were measured using a TopCount NXT Microplate Scintillation and Luminescence Counter (Packard Bioscience).
Real-time quantitative reverse transcriptase-PCR analysis
After 48 hours of cell treatment, total RNA was purified with RNeasy® Mini Kits using QiaCube™ system (Qiagen Inc., Valencia, CA). Real-time quantitative RT-PCR with 25-100 ng of total RNA was performed using the reverse transcription kit and Taqman® PCR probes specific for the genes of interest according to standard methods (Applied Biosystems Inc.). The quantity of product was normalized to glyceraldehyde-3 -phosphate dehydrogenase as the endogenous housekeeping gene. Fold increase of gene expression was calculated using comparative Ct method (2"ΔΔα).
Electroporation for overexpression and knockdown of IRF4
To knockdown IRF4, cells were transfected with Silencer® Select siRNA (small interfering RNA, Applied Biosystems) directed against IRF4, CRBN, or Silencer® Select
Negative Control siRNAs at a final concentration of 0.2-1 μΜ using Nucleofector® Kit V for transfection. For IRF4 overexpression, cells were transfected with IRF4- or green fluorescent protein (GFP)- cytomegalovirus (CMV) expression plasmids (OriGene Technologies, Rockville, MD) for 24 h using the Cell Line Nucleofector kit V as above-mentioned. After 24 hours of transfection, cells were treated with lenalidomide for 2 days before luciferase assay, RT-PCR gene expression analysis and Western blot.
Human tumor xenograft model
Female CB17 severe combined immunodeficiency (SCID) mice (6-12 weeks old) were obtained from the Charles River Laboratory (Wilmington, MA) and maintained in microisolator cages under sterile conditions. A total of 10 X 106 OCI-LylO DLBCL cells in 100% Matrigel (Becton Dickinson, San Jose, CA) were injected subcutaneously into the right flank of mice.
Mice were monitored 2 or 3 times a week for the appearance of tumors. Once the tumors reached an average size of 100 - 150 mg, 10 mice in each group were treated with either vehicle (0.5% carboxymethyl cellulose: 0.25%> Tween 80 in deionized H20) or indicated doses of lenalidomide (qd x 28, p.o.) or the positive control vincristine (q4d x 4, i.v.). Mice were monitored daily for health status as well as tumor growth. Tumors of all mice were measured with a digital caliper and volumes calculated with the following formula: tumor volume (mm3) = length (mm) X width (mm)2. Mice were killed when tumor size exceeded 1000 mm3.
Statistical analysis
Analyses for multiple group comparisons were performed with one-way analysis of variance, followed by Dunnett's post-test, and correlation analyses were carried out using the two-tailed -value Pearson test using GraphPad Prism® version 5.01 (San Diego, CA). A value of P < .05 was considered significant in all analyses.
Results
6.18.1 ABC-DLBCL cells are more sensitive to lenalidomide than
non-ABC-DLBCL cells
In order to define the place of lenalidomide for DLBCL therapy in specific patient populations and to understand the molecular mechanisms of efficacy, a panel of DLBCL cell lines was collected in this study. The DLBCL subtypes of the cell lines were confirmed based on literature information (Lenz G, et al., Proc Natl Acad Sci USA 2008; 105: 13520-5) and molecular analysis, including intracellular NF-κΒ activity or IRF4 expression, as well as gene expression profiling of key signature genes of activated B cells. See Figures 24A-24C. Cell proliferation of DLBCL cell lines was found to be inhibited to various degrees by treatment with lenalidomide at a concentration range of 0.01 - 100 μΜ. Lenalidomide had minimal effects on proliferation of PBML and GCB-DLBCL cells, but significantly inhibited proliferation of ABC- DLBCL cell lines, except for OCI-Ly3. See Figure 24. Lenalidomide treatment also induced apoptosis of sensitive cell lines such as OCI-Ly 10. See Figure 26.
6.18.2 Lenalidomide reduces IRF4 expression in ABC-DLBCL cells
To understand the molecular mechanism of lenalidomide on ABC-DLBCL cells, the effects of lenalidomide on IRF4 expression in these cells were investigated. Lenalidomide treatment for 1-3 days was found to significantly downregulate IRF4 protein levels in sensitive cell lines such as U2932 and OCI-Ly 10, but not the insensitive line OCI-Ly3 cells. See Figures 27A-C. Lenalidomide-induced decrease of IRF4 expression occurred as early as 1 day of drug treatment, with similar kinetics to that of the inhibitors (zVRPR-fmk and LY-333,531, respectively) of MALT 1 and PKCP, two key enzymes involved in NF-κΒ activation upon BCR engagement in B cells. In OCI-Ly3 cells, neither lenalidomide nor the PKCP inhibitor had any appreciable effect on IRF4 levels during 1-3 day treatments. However, the MALT1 inhibitor suppressed IRF4 expression in OCI-Ly3 cells, with complete inhibition observed after 2-3 days of treatment. Taken together, these data suggest that lenalidomide -mediated inhibition of IRF4 expression may be an important mechanism and appears to be related to cell sensitivity to the drug.
6.18.3 Lenalidomide reduces CARDll-BCL-10-MALTl complex
activity of ABC-DLBCL cells
Our DNA sequencing data confirmed previous reports (Lenz, G., et al, Science 2008,
319: 1676-9) that the lenalidomide-insensitive ABC-DLBCL line OCI-Ly3 has a unique point mutation in CARD 11 within the exons encoding the coiled-coil domain, while lenalidomide- sensitive ABC-DLBCL lines OCI-LylO, U2932, TMD8, and Riva do not. See Figure 28. This mutation has been reported to cause constitutive formation and activation of CARDl l-BCL-10- MALT1 (CBM) complex of BCR signaling pathway, leading to NF-κΒ overactivation in lymphoma cells. See Lenz, G., et al, Science 2008, 319: 1676-9; Thome, M. et al, Cold Spring Harb Perspect Biol. 2010; 2: a003004. To investigate the potential involvement of CBM complex in lenalidomide-induced IRF4 inhibition in these cells, the effect of lenalidomide on the complex activity was examined by measuring MALT1 paracaspase enzymatic activity. MALT1 is activated upon association with BCL-10 and CARD 11 to form active CBM complex and then cleaves its binding partners, such as BCL-10.. See Figures 29A-C.
Similar to the effect of the specific MALT1 inhibitor and PKCP inhibitor, lenalidomide inhibited MALT 1 -induced BCL-10 cleavage in a concentration-dependent manner in the sensitive ABC-DLBCL cell lines OCI-LylO and U2932. Time-kinetic studies revealed that while MALT1- and PKCP-inhibitors affected BCL-10 cleavage within 1 day of treatment, significant inhibition of BCL-10 cleavage by lenalidomide occurred after 2 days of treatment.
See Figures 29A and 29B. Unlike the MALT1 inhibitor, neither the PKCp inhibitor nor lenalidomide had any effect on BCL-10 cleavage in OCI-Ly3 cells, presumably due to CARD 11 mutation which causes over-activation of CBM complex. See Figure 29C. These data suggest that lenalidomide, similar to the PKC inhibitor, can significantly block CBM complex formation/activation or other upstream events in sensitive ABC-DLBCL cells.
6.18.4 Lenalidomide reduces NF-κΒ activity of ABC-DLBCL cells but
not non-ABC subtype cells
The effect of lenalidomide on NF-κΒ activity in various DLBCL cells was examined by measuring the level of NF-κΒ subunit proteins binding to consensus sequences and the NF-KB- driven luciferase activity. As expected, NF-κΒ in ABC-DLBCL cells demonstrated increased NF-KB DNA binding compared to non-ABC-DLBCL. See Figure 24B. An NF-KB-driven luciferase assay demonstrated that lenalidomide inhibited transcriptional activity of NF-κΒ by 32-56% in the lenalidomide-sensitive ABC-DLBCL cell lines OCI-Ly 10 and U2932 after 2 day drug treatment. See Figure 3 OA. Lenalidomide also partially inhibited DNA binding by Rel AJ p65, p50 and c-rel/p70 NF-κΒ subunits in a concentration-dependent manner in several ABC- DLBCL cell lines, although the effect was not as potent as the control ΙΚ α/β inhibitor CC- 415501. See Figures 3 OB and 30C. In contrast, lenalidomide had no effect on NF-κΒ DNA binding in GCB-DLBCL lines nor in normal peripheral blood mononuclear cells. The lenalidomide-insensitive ABC-DLBCL OCI-Ly3 line containing the CARD 11 mutation showed significant NF-κΒ inhibition only by the ΙΚ α/β inhibitor, and not by lenalidomide. See Figures 3 OB and 30C. These data suggest that lenalidomide inhibits NF-κΒ signaling at CBM complex or upstream events in sensitive ABC-DLBCL cells. 6.18.5 Alteration of IRF4 expression in sensitive ABC-DLBCL cells
confers resistance to lenalidomide
The dependency role of IRF4 expression in BCR-NF-κΒ signal transduction and the sequent effects of lenalidomide treatment upon IRF4 were investigated. Lenalidomide-sensitive ABC-DLBCL cells were transfected with IRF4-specific siRNA or IRF4-CMV-based expression plasmid to modulate IRF4 expression. When U2932 or OCI-LylO cells were transfected with
IRF4 siRNA to knock down the expression of IRF4, NF-κΒ transcriptional activity was diminished by 36-53%. See Figure 31 A. Thus IRF4 siRNA mimicked the effects of
lenalidomide on NF-κΒ in these cells. The addition of lenalidomide to the IRF4 siRNA- transfected cells led to even further downregulation of NF-κΒ transcriptional activity.
In contrast to IRF4 siRNA transfection, over-expressing IRF4 in these cells for 24 h significantly increased NF-κΒ activity by 3.6-7.9 fold. See Figure 3 IB. Furthermore, IRF4 overexpression decreased protein expression levels of the CBM-component BCL-10. See Figure 31C. In addition, IRF4 overexpression antagonized the effect of lenalidomide and the PKCP inhibitor but not the IKK inhibitor on NF-κΒ -driven luciferase expression in both U2932 and OCI-LylO cells. See Figure 3 ID. Therefore, the positive feedback effect of IRF4 on the BCR- NF-KB pathway appeared to be at a point somewhere between PKCP and IKK.
6.18.6 Cereblon is required for lenalidomide effect on ABC-DLBCL
cells
Cereblon has been shown to be a primary mediator of the teratogenicity of thalidomide.
Due to its critical role in the anti-myeloma and immunomodulatory activities of lenalidomide and pomalidomide, the role of cereblon in lenalidomide sensitivity of DLBCL was investigated. In ABC-DLBCL cells, knockdown of CRBN with siRNA conferred resistance to lenalidomide as demonstrated by the abrogation of the inhibitory effects of lenalidomide on IRF4 expression, BCL-10 cleavage, NF-κΒ activity and proliferation of these cells, while the activity of inhibitors to PKC and IKK remained unaffected. See Figures 32A-32D. These data indicate that antitumor effects of lenalidomide on ABC-DLBCL cells require the presence of cereblon.
6.18.7 Lenalidomide down-regulates IRF4/NF-KB signaling in
OCI-LylO mouse xenograft model
To confirm the relevance of lenalidomide-mediated inhibition of NF-KB/IRF4 signaling in vivo in ABC-DLBCL, a subcutaneous OCI-LylO xenograft model was established.
Lenalidomide at 3-30 mg/kg (po, qdX28) significantly decreased tumor size in this model (p<0.01). See Figure 33A. No pronounced toxicity of lenalidomide was observed based upon mouse weight throughout study. Compared with vehicle control group, lenalidomide treatment for 7 days reduced IRF4 expression and BCL-10 cleavage by 15-35% (p<0.05). See Figure 33B.
These data demonstrate that lenalidomide can reduce IRF4 expression in vivo and delays tumor growth in an ABC-DLBCL model, supporting the potential value of lenalidomide as a therapeutic in the treatment of ABC-DLBCL in clinical studies.
6.18.8 IRF4 and CRBN baseline mRNA levels and "ABC scores" of
DLBCL cells correlate with sensitivity to lenalidomide
As multiple studies have demonstrated greater lenalidomide sensitivity of ABC-DLBCL cells versus non-ABC-subytpes, potential biomarkers predictive for a therapeutic response to lenalidomide were studied. Pooled in vitro data from eleven DLBCL cell lines of various subtypes showed that lenalidomide sensitivity of DLBCL subtypes highly correlated to the baseline level of IRF4 and CRBN mRNA expression. Additionally, the overall "ABC score," calculated based on baseline levels of signature genes of ABC-DLBCL cells proposed by Staudt, et al. {Ann. Rev. Med., 2002, 53: 303-18), correlated to lenalidomide activity and further confirms the unique sensitivity of this subtype. See Figures 34A and 25. Lenalidomide-sensitive ABC-DLBCL cell lines tended to express higher CRBN and IRF4 protein levels than GCB- DLBCL cell lines. See Figure 34B. Notably, the lenalidomide-resistant OCI-Ly3 ABC-DLBCL cell line was devoid of CRBN protein expression. These data support the preferential efficacy of lenalidomide in ABC-DLBCL seen in clinical studies, and suggest that the "ABC score," or the expression of IRF4 or CRBN itself, may serve as potential biomarkers for the prediction of lenalidomide efficacy.
6.19 Polyclonal CRBN70 antibody
Rabbit polyclonal antibody CRBN70 was generated by inoculating rabbits with the CRBN peptide sequence EEFHGRTLHDDD (SEQ ID: 1), wherein a C-terminal cysteine EEFHGRTLHDDDC (underlined) is further used to couple the peptide to Keyhole Limpet Hemocyanin (KLH).
£EF SmH¾O € q :H f SSL The peptide depicted in SEQ ID N0: 1 used to make the antibody corresponds to amino acids 65-76 (bolded) of CRBN isoform 1 (NP 057386) (SEQ ID NO: 12):
1 magegdqqda ahnmgnhlpl lpaeseeede mevedqdske akkpniinfd tslptshtyl
61 gadmeefhgr tlhdddscqv ipvlpqvmmi lipgqtlplq lfhpqevsmv rnliqkdrtf
121 avlaysnvqe reaqfgttae iyayreeqdf gieivkvkai grqrfkvlel rtqsdgiqqa
181 kvqilpecvl pstmsavqle slnkcqifps kpvsredqcs ykwwqkyqkr kfhcanltsw
241 prwlyslyda etlmdrikkq lrewdenlkd dslpsnpidf syrvaaclpi ddvlriqllk
301 igsaiqrlrc eldimnkcts lcckqcqete ittkneifsi slcgpmaayv nphgyvhetl
361 tvykacnlnl igrpstehsw fpgyawtvaq ckicashigw kftatkkdms pqkfwgltrs
421 allptipdte deispdkvil cl
It is noted that isoform 2 of CRBN (GenBank Acession No. NP 001166953; SEQ ID NO: 13) uses an alternate in frame splice site that results in the elimination of the alanine (underlined), but has no other changes:
1 magegdqqda ahnmgnhlpl lpeseeedem evedqdskea kkpniinfdt slptshtylg 61 admeefhgrt lhdddscqvi pvlpqvmmil ipgqtlplql fhpqevsmvr nliqkdrtfa 121 vlaysnvqer eaqfgttaei yayreeqdfg ieivkvkaig rqrfkvlelr tqsdgiqqak 181 vqilpecvlp stmsavqles lnkcqifpsk pvsredqcsy kwwqkyqkrk fhcanltswp 241 rwlyslydae tlmdrikkql rewdenlkdd slpsnpidfs yrvaaclpid dvlriqllki
301 gsaiqrlrce ldimnkctsl cckqcqetei ttkneifsls lcgpmaayvn phgyvhetlt 361 vykacnlnli grpstehswf pgyawtvaqc kicashigwk ftatkkdmsp qkfwgltrsa 421 llptipdted eispdkvilc 1
The polyclonal CRBN70 antibody was purified. Purified antibody was then titered by indirect ELISA against the peptide or protein bound to a solid-phase to measure the reactivity of the antibodies after elution and the amount of antibody remaining in serum (the flow-through).
Figure imgf000127_0001
The eluent "titer" indicates the minimum concentration at which the CRBN70 antibody can effectively detect the CRBN antigen. The "flow-through" titer represents the reactivity of the antibodies remaining in the serum after it has been passed through the column. 6.20 Sequences of VH and VL of anti-CRBN antibodies
Rabbits were primed with amino acid sequence 65-76 (SEQ ID NO: 1) of human CRBN (SEQ ID NO: 12), and the spleen was removed for IgG subtyping and monoclonal antibody creation. The IgG heavy and light chains from two CGN-6 hybridoma clones were sequenced by Epitomics. The two clones were CGN-6- 1-11 and CGN-6-4-5.
Brief methods description of RabMAb IgG molecular cloning:
Messenger RNA (mRNA) from hybridoma cells was isolated using TURBOCAPTURE Kit (Qiagen: Catalog #72232) following the manufacturer's suggested protocol, and then reverse transcribed into cDNA using oligo-dT primer. The variable region of heavy chain (VH) was PCR amplified using proprietary primers OYZ64-2 and OYZvh3. The entire light chain (LC) was PCR amplified using proprietary primers OYZ62 and OYZ71. The PCR products were resolved on 1% argrose gel followed by purification using Qiagen gel purification kit (Qiagen: Catalog #28704), and the purified DNA fragments were subjected to sequencing.
CGN-6-1-11- Heavy chain nucleotide sequence (SEP ID NO:4):
ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCACTGTCAGTCAGTGGAGGAGTCCGG GGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGTACAGTCTCTGGATTCTCCCTCAGTTACTATGGAG TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTAGAATACATCGGATACATTTATAGTGATAGTGATAAGACATAC TACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCTCGACCACGGTGGATTTGAAAATCACCAGTCCGAC AATCGAGGACACGGCCACCTATTTCTGTGCCAGAGGTACTCCGCTTGCTAGTTATAGCATCTGGGGCCCAGGCACCC TGGTCACCGTCTCCTTAGGGCAACCTAAGGCTCCATCAGTCTTCCCACTGGCCCCCTGCTGCGGGGACACACCCAGC TCCACGGTGACCCTGGGCTGCCTGGTCAAAGGGTACCTCCCGGAGCCAGTGACCGTGACCTGGAACTCGGGCACCCT CACCAATGGGGTACGCACCTTCCCGTCCGTCCGGCAGTCCTCAGGCCTCTACTCGCTGAGCAGCGTGGTGAGCGTGA CCTCAAGCAGCCAGCCCGTCACCTGCAACGTGGCCCACCCAGCCACCAACACCAAAGTGGACAAGACCGTTGCGCCC TCGACATGCAGCAAGCCCACGTGCCCACCCCCTGAACTCCTGGGGGGACCGTCTGTCTTCATCTTCCCCCCAAAACC CAAGGACACCCTCATGATCTCACGCACCCCCGAGGTCACATGCGTGGTGGTGGACGTGAGCCAGGATGACCCCGAGG TGCAGTTCACATGGTACATAAACAACGAGCAGGTGCGCACCGCCCGGCCGCCGCTACGGGAGCAGCAGTTCAACAGC ACGATCCGCGTGGTCAGCACCCTCCCCATCGCGCACCAGGACTGGCTGAGGGGCAAGGAGTTCAAGTGCAAAGTCCA CAACAAGGCACTCCCGGCCCCCATCGAGAAAACCATCTCCAAAGCCAGAGGGCAGCCCCTGGAGCCGAAGGTCTACA CCATGGGCCCTCCCCGGGAGGAGCTGAGCAGCAGGTCGGTCAGCCTGACCTGCATGATCAACGGCTTCTACCCTTCC GACATCTCGGTGGAGTGGGAGAAGAACGGGAAGGCAGAGGACAACTACAAGACCACGCCGGCCGTGCTGGACAGCGA CGGCTCCTACTTCCTCTACAGCAAGCTCTCAGTGCCCACGAGTGAGTGGCAGCGGGGCGACGTCTTCACCTGCTCCG TGATGCACGAGGCCTTGCACAACCACTACACGCAGAAGTCCATCTCCCGCTCTCCGGGTAAATGA
CGN-6-1-11- Heavy chain protein sequence (SEQ ID NO:5):
METGLRWLLLVAVLKGVHCQSVEESGGRLVTPGTPLTLTCTVSGFSLSYYGVSWVRQAPG KGLEYIGYIYSDSDKTYYATWAKGRFTISKTSTTVDLKITSPTIEDTATYFCARGTPLAS YSIWGPGTLVTVSLGQPKAPSVFPLAPCCGDTPSSTVTLGCLVKGYLPEPVTVTWNSGTL TNGVRTFPSVRQSSGLYSLSSWSVTSSSQPVTCNVAHPATNTKVDKTVAPSTCSKPTCP PPELLGGPSVFIFPPKPKDTLMISRTPEVTCVWDVSQDDPEVQFTWYINNEQVRTARPP LREQQFNSTIRWSTLPIAHQDWLRGKEFKCKVHNKALPAPIEKTISKARGQPLEPKVYT MGPPREELSSRSVSLTCMINGFYPSDISVEWEKNGKAEDNYKTTPAVLDSDGSYFLYSKL SVPTSEWQRGDVFTCSVMHEALHNHYTQKSISRSPGK-
CGN-6-1-11- Light chain nucleotide sequence (SEQ ID NO:6):
ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGCCCAGGTGCT GACCCAGACTCCAGCCTCGGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATTGCCAGGCCAGTCAGAGTGTTT ATAAGAATAACTATTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCCAAGCTCCTGATTTACGAAGCGTCCAAA CTGGCATCTGGGGTCCCCCCGCGGTTCAAAGGCAGTGGATTTGGGACACAGTTCACTTTCACCATTAGCGACCTGGA GTGTGACGATGCTGCCTTTTACTACTGTGCAGGCGGTTATTATGGTAATATTTTTTTTTTCGGCGGAGGGACCGAGG TGGTGGTCAAAGGTGATCCAGTTGCACCTACTGTCCTCATCTTCCCACCAGCTGCTGATCAGGTGGCAACTGGAACA GTCACCATCGTGTGTGTGGCGAATAAATACTTTCCCGATGTCACCGTCACCTGGGAGGTGGATGGCACCACCCAAAC AACTGGCATCGAGAACAGTAAAACACCGCAGAATTCTGCAGATTGTACCTACAACCTCAGCAGCACTCTGACACTGA CCAGCACACAGTACAACAGCCACAAAGAGTACACCTGCAAGGTGACCCAGGGCACGACCTCAGTCGTCCAGAGCTTC AATAGGGGTGACTGTTAG
CGN-6-1-11- Light chain protein sequence (SEQ ID NO:7):
MDTRAPTQLLGLLLLWLPGATFAQVLTQTPASVSAAVGGTVTINCQASQSVYKNNYLSWF QQKPGQPPKLLIYEASKLASGVPPRFKGSGFGTQFTFTISDLECDDAAFYYCAGGYYGNI FFFGGGTEVWKGDPVAPTVLIFPPAADQVATGTVTIVCVANKYFPDVTVTWEVDGTTQT TGIENSKTPQNSADCTYNLSSTLTLTSTQYNSHKEYTCKVTQGTTSWQSFNRGDC-
CGN-6-4-5- Heavy chain nucleotide sequence (SEQ ID NO:8):
ATGGAGACTGGGCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGAGGAGTCCGG GGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCACAGTCTCTGGATTCTCCCTCAGTAGGTATGGAG TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAACACATCGGATACATTTATAGTGATCCTGGTATGACATTC TACGCGACCTGGGCGAAAGGCCGATTCACCATCTCCAAAACCTCGTCGACCACGGTGGATTTGAAAATGACCAGTCC GACAATCGAGGACACGGCCACCTATTTCTGTGCCAGAGGTACTCCGCTTGCTAGTTATAGCACCTGGGGCCCAGGCA CCCTGGTCACCATCTCCTTAGGGCAACCTAAGGCTCCATCAGTCTTCCCACTGGCCCCCTGCTGCGGGGACACACCC AGCTCCACGGTGACCCTGGGCTGCCTGGTCAAAGGGTACCTCCCGGAGCCAGTGACCGTGACCTGGAACTCGGGCAC CCTCACCAATGGGGTACGCACCTTCCCGTCCGTCCGGCAGTCCTCAGGCCTCTACTCGCTGAGCAGCGTGGTGAGCG TGACCTCAAGCAGCCAGCCCGTCACCTGCAACGTGGCCCACCCAGCCACCAACACCAAAGTGGACAAGACCGTTGCG CCCTCGACATGCAGCAAGCCCACGTGCCCACCCCCTGAACTCCTGGGGGGACCGTCTGTCTTCATCTTCCCCCCAAA ACCCAAGGACACCCTCATGATCTCACGCACCCCCGAGGTCACATGCGTGGTGGTGGACGTGAGCCAGGATGACCCCG AGGTGCAGTTCACATGGTACATAAACAACGAGCAGGTGCGCACCGCCCGGCCGCCGCTACGGGAGCAGCAGTTCAAC AGCACGATCCGCGTGGTCAGCACCCTCCCCATCGCGCACCAGGACTGGCTGAGGGGCAAGGAGTTCAAGTGCAAAGT CCACAACAAGGCACTCCCGGCCCCCATCGAGAAAACCATCTCCAAAGCCAGAGGGCAGCCCCTGGAGCCGAAGGTCT ACACCATGGGCCCTCCCCGGGAGGAGCTGAGCAGCAGGTCGGTCAGCCTGACCTGCATGATCAACGGCTTCTACCCT TCCGACATCTCGGTGGAGTGGGAGAAGAACGGGAAGGCAGAGGACAACTACAAGACCACGCCGGCCGTGCTGGACAG CGACGGCTCCTACTTCCTCTACAGCAAGCTCTCAGTGCCCACGAGTGAGTGGCAGCGGGGCGACGTCTTCACCTGCT CCGTGATGCACGAGGCCTTGCACAACCACTACACGCAGAAGTCCATCTCCCGCTCTCCGGGTAAATGA
CGN-6-4-5- Heavy chain protein sequence (450 amino acids) (SEQ ID NO:9):
METGLRWLLLVAVLKGVQCQSVEESGGRLVTPGTPLTLTCTVSGFSLSRYGVSWVRQAPG KGLEHIGYIYSDPGMTFYATWAKGRFTISKTSSTTVDLKMTSPTIEDTATYFCARGTPLA SYSTWGPGTLVTISLGQPKAPSVFPLAPCCGDTPSSTVTLGCLVKGYLPEPVTVTWNSGT LTNGVRTFPSVRQSSGLYSLSSWSVTSSSQPVTCNVAHPATNTKVDKTVAPSTCSKPTC PPPELLGGPSVFIFPPKPKDTLMISRTPEVTCVWDVSQDDPEVQFTWYINNEQVRTARP PLREQQFNSTIRWSTLPIAHQDWLRGKEFKCKVHNKALPAPIEKTISKARGQPLEPKVY TMGPPREELSSRSVSLTCMINGFYPSDISVEWEKNGKAEDNYKTTPAVLDSDGSYFLYSK LSVPTSEWQRGDVFTCSVMHEALHNHYTQKSISRSPGK-
CGN-6-4-5- Light chain nucleotide sequence (SEP ID NO: 10):
ATGGACACGAGGGCCCCCACTCAGCTGCTGGGGCTCCTGCTGCTCTGGCTCCCAGGTGCCACATTTGCTCAAGTGCT GACCCAGACTCCAGCCTCCGTGTCTGCAGCTGTGGGAGGCACAGTCACCATCAATTGCCAGTCCAGTGAGAATATTT ATAAGAACAACTACTTATCCTGGTTTCAGCAGAAACCAGGGCAGCCTCCCAAGCTCCTGATCTATCAGGCATCCACT CTGGCATCTGGGGTCCCATCGCGGTTCAAAGGCAGTGGATCTGGGACACGATTCAGTCTCACCATCAGCGACCTGGA GTGTGACGATGCTGCCACTTACTACTGTGCAGGCGGTTATAGTGGTAATATTTTTACTTTCGGCGGAGGGACCGAGG TGGTGGTCAAAGGTGATCCAGTTGCACCTACTGTCCTCATCTTCCCACCAGCTGCTGATCAGGTGGCAACTGGAACA GTCACCATCGTGTGTGTGGCGAATAAATACTTTCCCGATGTCACCGTCACCTGGGAGGTGGATGGCACCACCCAAAC AACTGGCATCGAGAACAGTAAAACACCGCAGAATTCTGCAGATTGTACCTACAACCTCAGCAGCACTCTGACACTGA CCAGCACACAGTACAACAGCCACAAAGAGTACACCTGCAAGGTGACCCAGGGCACGACCTCAGTCGTCCAGAGCTTC AATAGGGGTGACTGTTAG
CGN-6-4-5- Light chain protein sequence (SEQ ID NO: 11):
MDTRAPTQLLGLLLLWLPGATFAQVLTQTPASVSAAVGGTVT INCQS SENIYKNNYLSWF QQKPGQPPKLLIYQASTLASGVPSRFKGSGSGTRFSLT I SDLECDDAATYYCAGGYSGNI FTFGGGTEVWKGDPVAPTVLI FPPAADQVATGTVT IVCVANKYFPDVTVTWEVDGTTQT TGIENSKTPQNSADCTYNLS STLTLTSTQYNSHKEYTCKVTQGTTSWQSFNRGDC-
Amino acid sequence alignments of the heavy and light chains of the CGN6-1-11 and CGN 6-4-5 antibodies are provided in Figures 35 (heavy chains) and 36 (light chains).
6.21 Immunoblot and immunofluorescnce with monoclonal anti-CRBN antibody, CGN-6-4-5
Rabbit monoclonal antibody CGN-6-4-5 specifically recognizes the full-length 51 kDa human CRBN protein on denaturing immunoblots.
Confocal microscopic Immunofluorescence:
CGN-6-4-5 was diluted 1 :1000. Exemplary sell staining of DF15 and DF15R cells is shown in Figure 37. In particular, Figures 37A and 37B depict confocal immunofluorescent analysis of DF15 (left panel) and DF15R cells (right panel) using 1 μg/ml CGN-6-4-5 antibody (green) (A) or CGN-6-4-5 antibody / CRBN blocking peptide mix (1 :5 excess ratio) (B).
Nuclear staining was performed with Dapi (blue).
Immunoblot
CGN-6-4-5 was diluted 1 : 10,000 dilution in 0.1% Tween PBS buffer. An exemplary immunoblot with myeloma cells containing endogenous CRBN (DF15), DF15R with no CRBN and HEK293 cells expressing recombinant flag-tagged CRBN is shown in Figure 38. Peptide neutralization was performed by combining antibody with a five-fold (by weight) excess of blocking peptide in 500 μΐ PBS and incubating with constant rotation at room temperature for 2 hours. 6.22 Thalidomide, lenalidomide and pomalidomide bind to CRBN via the glutarimide moiety
The binding of pthalimide and glutarimide to CRBN was investigated in order to elucidate the mechanism of CRBN binding of thalidomide, lenalidomide, pomalidomide and structurally similar compounds. Glutarimide bound to CRBN while pthalimide did not. Thus, these results support the hypothesis that thalidomide, lenalidomide and pomalidomide bind to
CRBN via the glutarimide moiety. See Figure 39 A.
6.23 CRBN binding of methyl-pomalidomide is enantioselective
The binding of S -methyl-pomalidomide and R-methyl-pomalidomide was investigated in order to determine whether CRBN binding is enantioselective. S-methyl-pomalidomide had greater affinity -methyl-pomalidomide limide. See Figure 39B.
Figure imgf000131_0001
S-methyl-pomalidomide R-methyl-pomalidomide
The examples set forth above are provided to give those of ordinary skill in the art with a complete disclosure and description of how to make and use the claimed embodiments, and are not intended to limit the scope of what is disclosed herein. Modifications that are obvious to persons of skill in the art are intended to be within the scope of the following claims. All publications, patents, and patent applications cited in this specification are incorporated herein by reference as if each such publication, patent or patent application were specifically and individually indicated to be incorporated herein by reference.

Claims

What is claimed is:
1. A method of selecting a group of cancer patients based on the level of CRBN expression, or the levels of DDBl, DDB2, GSK3B, CUL4A, CUL4B, XBP-1, FASl, RANBP6, DUS3L, PHGDH, AMPK, IRF4 or NFKB expression within the cancer, for the purposes of predicting clinical response, monitoring clinical response, or monitoring patient compliance to dosing by thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H- quinazolin-3-yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof; wherein the cancer patients are multiple myeloma, non-Hodgkin's lymphoma, diffuse large B-cell lymphoma, melanoma or solid tumor patients .
2. The method of claim 1, wherein the cancer patients are multiple myeloma patients.
3. The method of claim 1, wherein the cancer patients are non-Hodgkin's lymphoma patients.
4. The method of claim 1, wherein the method of selecting a group of cancer patients is based on the level of DDBl expression within the cancer.
5. The method of claim 1, wherein the method of selecting a group of cancer patients is based on the level of DDB2 expression within the cancer.
6. The method of claim 1, wherein the method of selecting a group of cancer patients is based on the level of GSK3B expression within the cancer.
7. The method of claim 1, wherein the method of selecting a group of cancer patients is based on the level of CUL4A expression within the cancer.
8. The method of claim 1, wherein the method of selecting a group of cancer patients is based on the level of CUL4B expression within the cancer.
9. The method of claim 1, wherein the method of selecting a group of cancer patients is based on the level of XBP-1 expression within the cancer.
10. The method of claim 1, wherein the method of selecting a group of cancer patients is based on the level of FASl expression within the cancer.
1 1. The method of claim 1 , wherein the method of selecting a group of cancer patients is based on the level of RANBP6 expression within the cancer.
12. The method of claim 1 , wherein the method of selecting a group of cancer patients is based on the level of DUS3L expression within the cancer.
13. The method of claim 1 , wherein the method of selecting a group of cancer patients is based on the level of PHGDH expression within the cancer.
14. The method of claim 1 , wherein the method of selecting a group of cancer patients is based on the level of AMPK expression within the cancer.
15. The method of claim 1 , wherein the method of selecting a group of cancer patients is based on the level of IRF4 expression within the cancer.
16. The method of claim 1 , wherein the method of selecting a group of cancer patients is based on the level of NFKB expression within the cancer.
17. A method of identifying or monitoring multiple myeloma patient resistance to thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione therapy, based on the presence or appearance of mutations within a CRBN gene.
18. The method of claim 17, wherein the mutation with the CRBN gene is a single- nucleotide polymorphism in the coding region c.745C>CA causing an amino acid change 249D>YD in the protein within the DDB 1 binding domain of CRBN.
19. A method of selecting a group of cancer patients responsive to treatment with thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)- piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof;
based on the level of CRBN expression, or the levels of DDB 1 , DDB2, GSK3B, CUL4A, CUL4B, XBP-1 , FAS 1 , RANBP6, DUS3L, PHGDH, AMPK, IRF4 or NFKB expression within the patient's T cells, B cells, or plasma cells, for the purposes of predicting clinical response, monitoring clinical response, or monitoring patient compliance to dosing by thalidomide, lenalidomide, pomalidomide or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3-yl)-piperidine-2,6- dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
20. The method of claim 19, wherein the cancer patients are multiple myeloma, non- Hodgkin's lymphoma, diffuse large B-cell lymphoma, melanoma or solid tumor patients.
21. The method of claim 20, wherein the cancer patients are multiple myeloma patients.
22. The method of claim 20, wherein the cancer patients are diffuse large B-cell lymphoma patients.
23. The method of claim 22, wherein the diffuse large B-cell lymphoma is of the activated B-cell-like subtype.
24. The method of claim 21, wherein the method of selecting the group of cancer patients is based on the level of CRBN or IRF4 expression within the patient's T cells, B cells, or plasma cells.
25. An isolated antibody that immunospecifically binds to an epitope in CRBN, wherein the epitope has the amino acid sequence SEQ ID NO: 1.
26. The isolated antibody of claim 25, wherein the antibody is polyclonal.
27. An antibody that immunospecifically binds CRBN, wherein the antibody comprises: a heavy chain having the amino acid sequence depicted in SEQ ID NO: 5 or 9.
28. An antibody that immunospecifically binds CRBN, wherein the antibody comprises a light chain having the amino acid sequence depicted in SEQ ID NO: 7 or 11.
29. An isoloated antibody that comprises a heavy chain having the amino acid sequence depicted in SEQ ID NO: 5 and a light chain having the amino acid sequence depicted in SEQ ID NO:7.
30. An isolated antibody, comprising a heavy chain having the amino acid sequence depicted in SEQ ID NO: 9 and a light chain having the amino acid sequence depicted in SEQ ID
NO: l l .
31. A method of utilizing the antibody according to claim 25 to measure expression levels of CRBN in patient tumor or host cells, to predict clinical response, monitor clinical response, monitor patient compliance to dosing, or monitor development of resistance to therapy with thalidomide, lenalidomide, pomalidomide, or 3-(5-amino-2-methyl-4-oxo-4H-quinazolin-3- yl)-piperidine-2,6-dione, a stereoisomer thereof, or a pharmaceutically acceptable salt, solvate, hydrate, co-crystal, clathrate, or polymorph thereof.
PCT/US2012/035429 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor WO2012149299A2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
NZ617142A NZ617142B2 (en) 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
JP2014508592A JP6016892B2 (en) 2011-04-29 2012-04-27 Methods for treating cancer and inflammatory diseases using cereblon as a predictor
MX2013012564A MX353482B (en) 2011-04-29 2012-04-27 METHODS FOR THE TREATMENT OF CANCER and INFLAMMATORY DISEASES USING CEREBLON AS A PREDICTOR.
AU2012249491A AU2012249491B2 (en) 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
EP12726264.0A EP2702410A2 (en) 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
KR1020137031674A KR20140024914A (en) 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
CN201280032778.XA CN103688176A (en) 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
CA2834535A CA2834535A1 (en) 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
IL229114A IL229114B (en) 2011-04-29 2013-10-28 Methods for predicting clinical response of a cancer patient to certain treatments using cereblon as a predictor
ZA2013/08111A ZA201308111B (en) 2011-04-29 2013-10-30 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
AU2017201674A AU2017201674A1 (en) 2011-04-29 2017-03-10 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161481066P 2011-04-29 2011-04-29
US61/481,066 2011-04-29
US201161511986P 2011-07-26 2011-07-26
US61/511,986 2011-07-26
US201161579600P 2011-12-22 2011-12-22
US61/579,600 2011-12-22

Publications (2)

Publication Number Publication Date
WO2012149299A2 true WO2012149299A2 (en) 2012-11-01
WO2012149299A3 WO2012149299A3 (en) 2013-06-27

Family

ID=46210410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/035429 WO2012149299A2 (en) 2011-04-29 2012-04-27 Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor

Country Status (11)

Country Link
US (2) US9365640B2 (en)
EP (2) EP3096142A3 (en)
JP (2) JP6016892B2 (en)
KR (1) KR20140024914A (en)
CN (1) CN103688176A (en)
AU (2) AU2012249491B2 (en)
CA (1) CA2834535A1 (en)
IL (1) IL229114B (en)
MX (1) MX353482B (en)
WO (1) WO2012149299A2 (en)
ZA (1) ZA201308111B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014004990A2 (en) * 2012-06-29 2014-01-03 Celgene Corporation Methods for determining drug efficacy using cereblon-associated proteins
WO2014039960A1 (en) * 2012-09-10 2014-03-13 Celgene Corporation Methods for the treatment of locally advanced breast cancer
WO2014071280A1 (en) * 2012-11-05 2014-05-08 Celgene Corporation Treatment of cancer with pomalidomide in a renally impaired subject
WO2015069790A1 (en) * 2013-11-06 2015-05-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for subtyping lymphoma types by means expression profiling
WO2015108889A1 (en) * 2014-01-15 2015-07-23 Celgene Corporation Formulations of 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione
US9090585B2 (en) 2011-03-28 2015-07-28 Deuterx, Llc 2,6-dioxo-3-deutero-piperdin-3-yl-isoindoline compounds
US9290475B2 (en) 2013-03-14 2016-03-22 Deuterx, Llc 3-(substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US9365640B2 (en) 2011-04-29 2016-06-14 Celgene Corporation Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
JP2016521280A (en) * 2013-05-03 2016-07-21 セルジーン コーポレイション How to treat cancer with combination therapy
KR20160090345A (en) * 2013-12-06 2016-07-29 셀진 코포레이션 Methods for Determining Drug Efficacy for the Treatment of Diffuse Large B-Cell Lymphoma, Multiple Myeloma, and Myeloid Cancers
US9540340B2 (en) 2013-01-14 2017-01-10 Deuterx, Llc 3-(5-substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
JP2017503481A (en) * 2013-12-06 2017-02-02 セルジーン コーポレイション Methods of treating hematological cancer and the use of biomarkers as predictors of clinical sensitivity to immunomodulatory therapy
US9587281B2 (en) 2012-08-14 2017-03-07 Celgene Corporation Cereblon isoforms and their use as biomarkers for therapeutic treatment
US9611465B2 (en) 2009-05-25 2017-04-04 Celgene Corporation Pharmaceutical composition containing core factor involved in proliferation and differentiation of central nervous cell
US9809603B1 (en) 2015-08-18 2017-11-07 Deuterx, Llc Deuterium-enriched isoindolinonyl-piperidinonyl conjugates and oxoquinazolin-3(4H)-yl-piperidinonyl conjugates and methods of treating medical disorders using same
US10092555B2 (en) 2014-06-27 2018-10-09 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases
EP3334844A4 (en) * 2015-08-12 2019-11-06 Celgene Corporation Methods for treating solid tumors and the use of biomarkers as a predictor of clinical sensitivity to immunomodulatory therapies
US10830762B2 (en) 2015-12-28 2020-11-10 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2428513T3 (en) 2006-09-26 2017-08-21 Celgene Corp 5-substituted quinazolinone derivatives as anti-cancer agents
EP2683384B1 (en) * 2011-03-11 2015-12-09 Celgene Corporation Methods of treating cancer using 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione
SG192946A1 (en) 2011-03-11 2013-09-30 Celgene Corp Solid forms of 3-(5-amino-2methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione, and their pharmaceutical compositions and uses
CN104755472A (en) 2012-09-04 2015-07-01 细胞基因公司 Isotopologues of 3-(5-amino-2-methyl-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione and methods of preparation thereof
WO2015077058A2 (en) 2013-11-08 2015-05-28 The Broad Institute, Inc. Compositions and methods for selecting a treatment for b-cell neoplasias
CA2936907C (en) 2014-02-14 2022-06-07 Arkansas Children's Hospital Research Institute, Inc. Acetaminophen protein adducts and methods of use thereof
AU2015240454B2 (en) 2014-04-04 2019-08-22 Mayo Foundation For Medical Education And Research Isotyping immunoglobulins using accurate molecular mass
KR20210132233A (en) * 2014-04-14 2021-11-03 아비나스 오퍼레이션스, 인코포레이티드 Imide-based modulators of proteolysis and associated methods of use
WO2016018978A1 (en) 2014-07-29 2016-02-04 Mayo Foundation For Medical Education And Research Quantifying monoclonal antibody therapeutics by lc-ms/ms
JP2017533727A (en) * 2014-10-13 2017-11-16 セルジーン コーポレイション Methods of treating solid tumors and use of biomarkers as predictors of clinical sensitivity to immunomodulatory therapy
EP3227681B1 (en) * 2014-12-03 2020-10-21 Bioventures, LLC Anti-acetaminophen antibodies and acetaminophen protein adducts
GB2533552B (en) * 2014-12-11 2019-09-04 Abcam Plc A method for producing a recombinant allotype-specific rabbit monoclonal antibody
US20170327469A1 (en) 2015-01-20 2017-11-16 Arvinas, Inc. Compounds and methods for the targeted degradation of androgen receptor
CA2982536C (en) 2015-04-17 2023-04-18 Spring Bioscience Corporation Antibodies, compositions, and immunohistochemistry methods for detecting c4.4a
US10338077B2 (en) * 2015-06-02 2019-07-02 Celgene Corporation Methods for determining drug efficacy for treatment of cancer ration of cereblon associated proteins
US20180147202A1 (en) 2015-06-05 2018-05-31 Arvinas, Inc. TANK-BINDING KINASE-1 PROTACs AND ASSOCIATED METHODS OF USE
GB201512133D0 (en) * 2015-07-10 2015-08-19 Bergenbio As Biomarkers
US10772962B2 (en) 2015-08-19 2020-09-15 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of bromodomain-containing proteins
WO2017044793A1 (en) * 2015-09-11 2017-03-16 The Brigham And Women's Hospital, Inc. Methods of characterizing resistance to modulators of cereblon
JP6968058B2 (en) 2015-09-24 2021-11-17 メイヨ・ファウンデーション・フォー・メディカル・エデュケーション・アンド・リサーチ Identification of immunoglobulin free light chain by mass spectrometry
EP3352756A1 (en) 2015-09-25 2018-08-01 Celgene Corporation Methods for treating diffuse large b-cell lymphoma and the use of biomarkers as a predictor of responsiveness to drugs
KR20180095094A (en) 2016-01-08 2018-08-24 셀진 코포레이션 The use of biomarkers as predictors of clinical susceptibility to treatment methods and therapies for cancer
JP2019506897A (en) 2016-01-19 2019-03-14 セルジーン コーポレイション Transgenic mice expressing human cereblon
US11028138B2 (en) * 2016-07-02 2021-06-08 Virongy L.L.C. Compositions and methods for using actin-based peptides to modulate cellular bioactivity and cellular susceptibility to intracellular pathogens
EP3523647A4 (en) 2016-09-07 2020-05-27 Mayo Foundation for Medical Education and Research Identification and monitoring of cleaved immunoglobulins by molecular mass
KR102173463B1 (en) 2016-10-11 2020-11-04 아비나스 오퍼레이션스, 인코포레이티드 Compounds and methods for the targeted degradation of androgen receptor
US11458123B2 (en) 2016-11-01 2022-10-04 Arvinas Operations, Inc. Tau-protein targeting PROTACs and associated methods of use
KR20190082989A (en) 2016-12-01 2019-07-10 아비나스 오퍼레이션스, 인코포레이티드 Tetrahydronaphthalene and tetrahydroisoquinoline derivatives as estrogen receptor release
AU2017382406A1 (en) 2016-12-23 2019-04-18 Arvinas Operations, Inc. EGFR proteolysis targeting chimeric molecules and associated methods of use
EP3559006A4 (en) 2016-12-23 2021-03-03 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of fetal liver kinase polypeptides
MX2019007649A (en) 2016-12-23 2019-09-10 Arvinas Operations Inc Compounds and methods for the targeted degradation of rapidly accelerated fibrosarcoma polypeptides.
US11173211B2 (en) 2016-12-23 2021-11-16 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of rapidly accelerated Fibrosarcoma polypeptides
US11191741B2 (en) 2016-12-24 2021-12-07 Arvinas Operations, Inc. Compounds and methods for the targeted degradation of enhancer of zeste homolog 2 polypeptide
CN117551089A (en) 2017-01-26 2024-02-13 阿尔维纳斯运营股份有限公司 Estrogen receptor proteolytic modulators and related methods of use
WO2018144445A1 (en) * 2017-01-31 2018-08-09 Celgene Corporation Methods for treating hematological cancer and the use of biomarkers as a predictor for responsiveness to treatment compounds
EP3577459A4 (en) 2017-02-03 2020-12-16 Celgene Corporation Methods for measuring small molecule affinity to cereblon
GB201710620D0 (en) * 2017-07-03 2017-08-16 Glaxosmithkline Intellectual Property Ltd Targeted protein degradation
KR102050774B1 (en) 2017-08-14 2019-12-02 충남대학교산학협력단 A composition comprising cereblon protein or cereblon gene for preventing or treating of muscle damage induced muscular disorder
US11946937B2 (en) 2017-09-13 2024-04-02 Mayo Foundation For Medical Education And Research Identification and monitoring of apoptosis inhibitor of macrophage
WO2019078522A1 (en) * 2017-10-20 2019-04-25 한국화학연구원 Cereblon protein degradation inducing compound, preparation method therefor and pharmaceutical composition for preventing or treating cancer, containing same as active ingredient
WO2019099926A1 (en) 2017-11-17 2019-05-23 Arvinas, Inc. Compounds and methods for the targeted degradation of interleukin-1 receptor-associated kinase 4 polypeptides
US11220515B2 (en) 2018-01-26 2022-01-11 Yale University Imide-based modulators of proteolysis and associated methods of use
CN112218859A (en) 2018-04-04 2021-01-12 阿尔维纳斯运营股份有限公司 Modulators of proteolysis and related methods of use
JP7297053B2 (en) 2018-08-20 2023-06-23 アルビナス・オペレーションズ・インコーポレイテッド Alpha-Synuclein Protein-Targeted Proteolysis Targeting Chimeric (PROTAC) Compounds with E3 Ubiquitin Ligase Binding Activity to Treat Neurodegenerative Diseases
WO2020197227A1 (en) * 2019-03-22 2020-10-01 울산대학교 산학협력단 Biomarker cereblon for diagnosing hepatocellular carcinoma, and novel monoclonal antibody specific thereto
WO2020227183A1 (en) * 2019-05-03 2020-11-12 Dynamic Biologics Inc. Lenalidomide prodrugs, polymeric conjugates, and formulations thereof, and their uses for the treatment of multiple myeloma
US11912699B2 (en) 2019-07-17 2024-02-27 Arvinas Operations, Inc. Tau-protein targeting compounds and associated
AU2020372333A1 (en) * 2019-10-21 2022-04-28 Celgene Corporation Methods for treating a hematological cancer and the use of companion biomarkers for 2-(2,6-Dioxopiperidin-3-yl)-4-((2-fluoro-4-((3-morpholinoazetidin-1-yl)methyl)benzyl)amino)isoindoline-1,3-dione
TW202136240A (en) 2019-12-19 2021-10-01 美商亞文納營運公司 Compounds and methods for the targeted degradation of androgen receptor
KR102311390B1 (en) * 2020-03-03 2021-10-13 이화여자대학교 산학협력단 Composition for prognosing glioblastoma
EP4126966A1 (en) * 2020-03-31 2023-02-08 Seattle Children's Hospital d/b/a Seattle Children's Research Institute Proteomic screening for lysosomal storage diseases
KR102555483B1 (en) * 2020-06-29 2023-07-14 고려대학교 산학협력단 Method for predicting high cereblon expression using blood markers in multiple myeloma
WO2023151635A1 (en) * 2022-02-14 2023-08-17 标新生物医药科技(上海)有限公司 Compound based on quinazoline-substituted glutarimide skeleton and use thereof
WO2024054591A1 (en) 2022-09-07 2024-03-14 Arvinas Operations, Inc. Rapidly accelerated fibrosarcoma (raf) degrading compounds and associated methods of use

Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536809A (en) 1969-02-17 1970-10-27 Alza Corp Medication method
US3598123A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4008719A (en) 1976-02-02 1977-02-22 Alza Corporation Osmotic system having laminar arrangement for programming delivery of active agent
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4810643A (en) 1985-08-23 1989-03-07 Kirin- Amgen Inc. Production of pluripotent granulocyte colony-stimulating factor
US4994443A (en) 1982-12-20 1991-02-19 The Children's Medical Center Corporation Inhibition of angiogenesis
US4999291A (en) 1985-08-23 1991-03-12 Amgen Inc. Production of human pluripotent granulocyte colony-stimulating factor
US5001116A (en) 1982-12-20 1991-03-19 The Children's Medical Center Corporation Inhibition of angiogenesis
US5059595A (en) 1989-03-22 1991-10-22 Bioresearch, S.P.A. Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances
US5073543A (en) 1988-07-21 1991-12-17 G. D. Searle & Co. Controlled release formulations of trophic factors in ganglioside-lipsome vehicle
US5120548A (en) 1989-11-07 1992-06-09 Merck & Co., Inc. Swelling modulated polymeric drug delivery device
US5134127A (en) 1990-01-23 1992-07-28 University Of Kansas Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof
US5229496A (en) 1985-08-06 1993-07-20 Immunex Corporation Analogs of human granulocyte-macrophage colony stimulating factor
US5354556A (en) 1984-10-30 1994-10-11 Elan Corporation, Plc Controlled release powder and process for its preparation
US5441050A (en) 1992-12-18 1995-08-15 Neoprobe Corporation Radiation responsive surgical instrument
US5528823A (en) 1992-12-24 1996-06-25 The Whitaker Corporation Method for retaining wires in a current mode coupler
US5591767A (en) 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
US5593990A (en) 1993-03-01 1997-01-14 The Children's Medical Center Corporation Methods and compositions for inhibition of angiogenesis
US5639476A (en) 1992-01-27 1997-06-17 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5674533A (en) 1994-07-07 1997-10-07 Recordati, S.A., Chemical And Pharmaceutical Company Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension
US5733566A (en) 1990-05-15 1998-03-31 Alkermes Controlled Therapeutics Inc. Ii Controlled release of antiparasitic agents in animals
WO1998054170A1 (en) 1997-05-30 1998-12-03 Celgene Corporation SUBSTITUTED 2-(2,6-DIOXOPIPERIDIN-3-YL)-PHTHALIMIDES AND 1-OXOISOINDOLINES AND METHOD OF REDUCING TNFα LEVELS
US6114355A (en) 1993-03-01 2000-09-05 D'amato; Robert Methods and compositions for inhibition of angiogenesis
US6281230B1 (en) 1996-07-24 2001-08-28 Celgene Corporation Isoindolines, method of use, and pharmaceutical compositions
US6555554B2 (en) 1996-07-24 2003-04-29 Celgene Corporation Isoindolines, method of use, and pharmaceutical compositions
US20040029832A1 (en) 2002-05-17 2004-02-12 Zeldis Jerome B. Methods and compositions using immunomodulatory compounds for treatment and management of cancers and other diseases
US20040220144A1 (en) 2002-10-15 2004-11-04 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myelodysplastic syndromes
US7091353B2 (en) 2000-12-27 2006-08-15 Celgene Corporation Isoindole-imide compounds, compositions, and uses thereof
US20080051379A1 (en) 2004-12-01 2008-02-28 Trustees Of Boston University Compositions and Methods for the Treatment of Peripheral B-Cell Neoplasms
US7393862B2 (en) 2002-05-17 2008-07-01 Celgene Corporation Method using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias
US7635700B2 (en) 2006-09-26 2009-12-22 Celgene Corporation 5-Substituted quinazolinone derivatives and compositions comprising and methods of using the same
US7709502B2 (en) 1999-05-07 2010-05-04 Celgene Corporation Substituted 2-(2,6-dioxopiperidin-3-yl)-phthalimides and 1-oxoisoindolines
US7812169B2 (en) 2000-11-30 2010-10-12 The Children's Medical Center Corporation Method of synthesis of 4-amino-thalidomide enantiomers
WO2010137547A1 (en) 2009-05-25 2010-12-02 国立大学法人東京工業大学 Pharmaceutical composition containing nuclear factor involved in proliferation and differentiation of central neuronal cells
US20110223157A1 (en) 2010-03-12 2011-09-15 Schafer Peter H Methods for the treatment of non-hodgkin's lymphomas using lenalidomide, and gene and protein biomarkers as a predictor

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE205542T1 (en) 1992-03-04 2001-09-15 Univ California COMPARATIVE GENOME HYBRIDIZATION
US8143283B1 (en) 1993-03-01 2012-03-27 The Children's Medical Center Corporation Methods for treating blood-born tumors with thalidomide
US5698579A (en) 1993-07-02 1997-12-16 Celgene Corporation Cyclic amides
US5573758A (en) 1995-04-28 1996-11-12 Allergan Method for reducing intraocular pressure in the mammalian eye by administration of potassium channel blockers
ES2529190T3 (en) 1996-07-24 2015-02-17 Celgene Corporation 2- (2,6-Dioxopiperidin-3-yl) -amino-substituted phthalimides to reduce TNF-alpha levels
US5798368A (en) 1996-08-22 1998-08-25 Celgene Corporation Tetrasubstituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines and method of reducing TNFα levels
NZ334148A (en) 1996-08-12 2001-12-21 Celgene Corp 3-Substituted phenyl-ethyl or ethenyl derivatives terminated with a nitrile, alkane, carboxyl or carbamoyl group useful to reduce cytokine levels
US5874448A (en) 1997-11-18 1999-02-23 Celgene Corporation Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels
US5955476A (en) 1997-11-18 1999-09-21 Celgene Corporation Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels
BR9908811A (en) 1998-03-16 2000-12-05 Celgene Corp Compound, pharmaceutical composition and its use in the treatment of mammals
US6927024B2 (en) 1998-11-30 2005-08-09 Genentech, Inc. PCR assay
ATE306469T1 (en) 1999-03-18 2005-10-15 Celgene Corp SUBSTITUTED 1-OXO- AND 1,3-DIOXOISOINDOLINES AND THEIR USE IN PHARMACEUTICAL COMPOSITIONS FOR LOWERING THE LEVELS OF INFLAMMATORY CYTOKINE
AU3074001A (en) 1999-12-09 2001-06-18 Advanced Research And Technology Institute, Inc. Fluorescent in situ rt-pcr
AU2001274888A1 (en) * 2000-05-19 2001-12-03 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
US6458810B1 (en) 2000-11-14 2002-10-01 George Muller Pharmaceutically active isoindoline derivatives
US20030045552A1 (en) 2000-12-27 2003-03-06 Robarge Michael J. Isoindole-imide compounds, compositions, and uses thereof
JP4808365B2 (en) 2001-03-02 2011-11-02 ユニバーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブ ハイヤー エデュケイション PCR method
US7981863B2 (en) 2001-09-19 2011-07-19 Neuronova Ab Treatment of Parkinson's disease with PDGF
US7122799B2 (en) 2003-12-18 2006-10-17 Palo Alto Research Center Incorporated LED or laser enabled real-time PCR system and spectrophotometer
US7244759B2 (en) 2004-07-28 2007-07-17 Celgene Corporation Isoindoline compounds and methods of making and using the same
EP1924250B1 (en) 2004-12-01 2017-01-04 Celgene Corporation Methods and compositions comprising immunomodulatory compounds for use for the treatment of immunodeficiency disorders
JP2008528514A (en) 2005-01-25 2008-07-31 セルジーン・コーポレーション Methods and compositions using 4-amino-2- (3-methyl-2,6-dioxopiperidin-3-yl) -isoindole-1,3-dione
US7776551B2 (en) 2005-07-12 2010-08-17 Ramot At Tel Aviv University Ltd. Methods and kits for diagnosing and treating mental retardation
CA2899923A1 (en) 2005-08-31 2007-03-08 Celgene Corporation Isoindole-imide compounds and compositions comprising and methods of using the same
WO2007067500A2 (en) 2005-12-05 2007-06-14 Genomic Health, Inc. Predictors of patient response to treatment with egfr inhibitors
WO2007084992A2 (en) 2006-01-19 2007-07-26 The University Of Chicago Prognosis and therapy predictive markers and methods of use
AU2007227664A1 (en) 2006-03-13 2007-09-27 Merck & Co., Inc. Ophthalmic compositions for treating ocular hypertension
US20100284915A1 (en) 2006-06-30 2010-11-11 Hongyue Dai Genes associated with chemotherapy response and uses thereof
WO2008039475A2 (en) * 2006-09-26 2008-04-03 The Board Of Trustees Of The University Of Arkansas A gene expression profiling based identification of genomic signatures of multiple myeloma and uses thereof
EP2179037A4 (en) * 2007-08-21 2010-12-22 Nodality Inc Methods for diagnosis, prognosis and methods of treatment
US20090148853A1 (en) 2007-12-07 2009-06-11 Schafer Peter H Biomarkers for predicting the sensitivity of cells to immunomodulatory compounds during treatment of non-hodgkin's lymphoma
US20100021437A1 (en) 2008-04-07 2010-01-28 The McLean Hospital Corporation Whitehead Institute for Biomedical Research Neural stem cells derived from induced pluripotent stem cells
CA2725551C (en) 2008-05-26 2017-06-06 Yeda Research And Development Co. Ltd. Methods of treating cancer of the central nervous system
EP2419727A1 (en) 2009-04-14 2012-02-22 Schering Corporation Interferon-alfa sensitivity biomarkers
AU2010309035B2 (en) * 2009-10-20 2014-01-30 Fujimoto Pharmaceutical Corporation Screening method utilizing thalidomide-targeting factor
MX337169B (en) 2010-02-11 2016-02-16 Celgene Corp Arylmethoxy isoindoline derivatives and compositions comprising and methods of using the same.
US20110208433A1 (en) * 2010-02-24 2011-08-25 Biodesix, Inc. Cancer patient selection for administration of therapeutic agents using mass spectral analysis of blood-based samples
SG10201610027VA (en) 2010-09-15 2017-01-27 Almac Diagnostics Ltd Molecular diagnostic test for cancer
EP2683384B1 (en) 2011-03-11 2015-12-09 Celgene Corporation Methods of treating cancer using 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione
EP3266452B1 (en) * 2011-03-11 2019-07-03 Mayo Foundation for Medical Education and Research Means to treat myelomas which are resistant to thalidomide, lenalidomide or pomalidomide
SG192946A1 (en) 2011-03-11 2013-09-30 Celgene Corp Solid forms of 3-(5-amino-2methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione, and their pharmaceutical compositions and uses
WO2012149299A2 (en) 2011-04-29 2012-11-01 Celgene Corporaiton Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
WO2012153187A2 (en) 2011-05-06 2012-11-15 Xentech Markers for cancer prognosis and therapy and methods of use
WO2014028445A2 (en) 2012-08-14 2014-02-20 Celgene Corporation Cereblon isoforms and their use as biomarkers for therapeutic treatment

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536809A (en) 1969-02-17 1970-10-27 Alza Corp Medication method
US3598123A (en) 1969-04-01 1971-08-10 Alza Corp Bandage for administering drugs
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4008719A (en) 1976-02-02 1977-02-22 Alza Corporation Osmotic system having laminar arrangement for programming delivery of active agent
US4994443A (en) 1982-12-20 1991-02-19 The Children's Medical Center Corporation Inhibition of angiogenesis
US5001116A (en) 1982-12-20 1991-03-19 The Children's Medical Center Corporation Inhibition of angiogenesis
US5354556A (en) 1984-10-30 1994-10-11 Elan Corporation, Plc Controlled release powder and process for its preparation
US5229496A (en) 1985-08-06 1993-07-20 Immunex Corporation Analogs of human granulocyte-macrophage colony stimulating factor
US5393870A (en) 1985-08-06 1995-02-28 Immunex Corporation Analogs of human granulocyte-macrophage colony stimulating factor
US5391485A (en) 1985-08-06 1995-02-21 Immunex Corporation DNAs encoding analog GM-CSF molecules displaying resistance to proteases which cleave at adjacent dibasic residues
US4810643A (en) 1985-08-23 1989-03-07 Kirin- Amgen Inc. Production of pluripotent granulocyte colony-stimulating factor
US4999291A (en) 1985-08-23 1991-03-12 Amgen Inc. Production of human pluripotent granulocyte colony-stimulating factor
US5580755A (en) 1985-08-23 1996-12-03 Amgen Inc. Human pluripotent granulocyte colony-stimulating factor
US4683195B1 (en) 1986-01-30 1990-11-27 Cetus Corp
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5073543A (en) 1988-07-21 1991-12-17 G. D. Searle & Co. Controlled release formulations of trophic factors in ganglioside-lipsome vehicle
US5059595A (en) 1989-03-22 1991-10-22 Bioresearch, S.P.A. Pharmaceutical compositions containing 5-methyltetrahydrofolic acid, 5-formyltetrahydrofolic acid and their pharmaceutically acceptable salts in controlled-release form active in the therapy of organic mental disturbances
US5120548A (en) 1989-11-07 1992-06-09 Merck & Co., Inc. Swelling modulated polymeric drug delivery device
US5134127A (en) 1990-01-23 1992-07-28 University Of Kansas Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof
US5733566A (en) 1990-05-15 1998-03-31 Alkermes Controlled Therapeutics Inc. Ii Controlled release of antiparasitic agents in animals
US5639476A (en) 1992-01-27 1997-06-17 Euro-Celtique, S.A. Controlled release formulations coated with aqueous dispersions of acrylic polymers
US5441050A (en) 1992-12-18 1995-08-15 Neoprobe Corporation Radiation responsive surgical instrument
US5528823A (en) 1992-12-24 1996-06-25 The Whitaker Corporation Method for retaining wires in a current mode coupler
US5591767A (en) 1993-01-25 1997-01-07 Pharmetrix Corporation Liquid reservoir transdermal patch for the administration of ketorolac
US6114355A (en) 1993-03-01 2000-09-05 D'amato; Robert Methods and compositions for inhibition of angiogenesis
US5712291A (en) 1993-03-01 1998-01-27 The Children's Medical Center Corporation Methods and compositions for inhibition of angiogenesis
US5593990A (en) 1993-03-01 1997-01-14 The Children's Medical Center Corporation Methods and compositions for inhibition of angiogenesis
US5629327A (en) 1993-03-01 1997-05-13 Childrens Hospital Medical Center Corp. Methods and compositions for inhibition of angiogenesis
US6071948A (en) 1993-03-01 2000-06-06 The Children's Medical Center Corporation Methods and compositions for inhibition of angiogenesis
US5674533A (en) 1994-07-07 1997-10-07 Recordati, S.A., Chemical And Pharmaceutical Company Pharmaceutical composition for the controlled release of moguisteine in a liquid suspension
US6555554B2 (en) 1996-07-24 2003-04-29 Celgene Corporation Isoindolines, method of use, and pharmaceutical compositions
US6281230B1 (en) 1996-07-24 2001-08-28 Celgene Corporation Isoindolines, method of use, and pharmaceutical compositions
US6316471B1 (en) 1996-07-24 2001-11-13 Celgene Corporation Isoindolines, method of use, and pharmaceutical compositions
US6395754B1 (en) 1997-05-30 2002-05-28 Celgene Corporation, Et Al. Substituted 2-(2,6-dioxopiperidin-3-yl)- phthalimides and 1-oxoisoindolines and method of reducing TNFα levels
WO1998054170A1 (en) 1997-05-30 1998-12-03 Celgene Corporation SUBSTITUTED 2-(2,6-DIOXOPIPERIDIN-3-YL)-PHTHALIMIDES AND 1-OXOISOINDOLINES AND METHOD OF REDUCING TNFα LEVELS
US7709502B2 (en) 1999-05-07 2010-05-04 Celgene Corporation Substituted 2-(2,6-dioxopiperidin-3-yl)-phthalimides and 1-oxoisoindolines
US7812169B2 (en) 2000-11-30 2010-10-12 The Children's Medical Center Corporation Method of synthesis of 4-amino-thalidomide enantiomers
US7091353B2 (en) 2000-12-27 2006-08-15 Celgene Corporation Isoindole-imide compounds, compositions, and uses thereof
US7393862B2 (en) 2002-05-17 2008-07-01 Celgene Corporation Method using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione for treatment of certain leukemias
US7468363B2 (en) 2002-05-17 2008-12-23 Celgene Corporation Methods for treatment of cancers using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione
US20040029832A1 (en) 2002-05-17 2004-02-12 Zeldis Jerome B. Methods and compositions using immunomodulatory compounds for treatment and management of cancers and other diseases
US20040220144A1 (en) 2002-10-15 2004-11-04 Zeldis Jerome B. Methods of using and compositions comprising immunomodulatory compounds for the treatment and management of myelodysplastic syndromes
US20080051379A1 (en) 2004-12-01 2008-02-28 Trustees Of Boston University Compositions and Methods for the Treatment of Peripheral B-Cell Neoplasms
US7635700B2 (en) 2006-09-26 2009-12-22 Celgene Corporation 5-Substituted quinazolinone derivatives and compositions comprising and methods of using the same
WO2010137547A1 (en) 2009-05-25 2010-12-02 国立大学法人東京工業大学 Pharmaceutical composition containing nuclear factor involved in proliferation and differentiation of central neuronal cells
US20110223157A1 (en) 2010-03-12 2011-09-15 Schafer Peter H Methods for the treatment of non-hodgkin's lymphomas using lenalidomide, and gene and protein biomarkers as a predictor

Non-Patent Citations (87)

* Cited by examiner, † Cited by third party
Title
"Animal Cell Culture; Immobilized Cells and Enzymes", 1986, IRL PRESS
"Cancer: Principles & Practice of Oncology", 1989, pages: 1843 - 1847
"Current Medical Diagnosis & Treatment", 1998, APPLETON & LANGE, pages: 793
"Current Protocols in Molecular Biology", vol. 1, 1989, GREEN PUBLISHING ASSOCIATES, INC. AND JOHN WILEY & SONS, INC., pages: 6.3.1 - 6.3.6
"DNA Cloning", vol. I, II, 1985
"Fundamental Immunology Second Edition", 1989, RAVEN PRESS, pages: 332 - 336
"Handbook of Experimental Immunology", vol. I-IV, 1986
"Immunochemical Methods in Cell and Molecular Biology", ACADEMIC PRESS
"Introduction to Pharmaceutical Dosage Forms", 1985, LEA & FEBIGER
"Oligonucleotide Synthesis", 1984
"PCR Technology", 1989, STOCKTON PRESS
"Remington's Pharmaceutical Sciences", 1980, MACK PUBLISHING
"Remington's Pharmaceutical Sciences", 1990, MACK PUBLISHING
"Short Protocols in Molecular Biology", 2002, JOHN WILEY AND SONS
"The Merck Manual", 1999, pages: 448
"The Merck Manual", 1999, pages: 944 - 952
"The Merck Manual", 1999, pages: 946 - 949
"The Merck Manual", 1999, pages: 949 - 952
"The Merck Manual", 1999, pages: 953
ANGERS S. ET AL., NATURE, vol. 443, 2006, pages 590 - 593
B D HAMES & S J HIGGINS: "Transcription and Translation", 1984
B.D. HAMES; S J. HIGGINS: "Nucleic Acid Hybridization", 1984
BEA S ET AL., BLOOD, vol. 106, 2005, pages 3183 - 3190
BRUGGERMANN ET AL., YEAR IN IMMUNOL., vol. 7, 1993, pages 33
CAIRNS, R.A. ET AL., NATURE REV., vol. 11, 2011, pages 85 - 95
CERNY T ET AL., ANN ONCOL, vol. 13, no. 4, 2002, pages 211 - 216
CHOTHIA ET AL., J. MOL. BIOL., vol. 278, 1998, pages 457 - 479
CLARKE C A ET AL., CANCER, vol. 94, no. 7, 2002, pages 2015 - 2023
D. KIM ET AL., JOURNAL OF CLINICAL ONCOLOGY, 2007 ASCO ANNUAL MEETING PROCEEDINGS PART I, vol. 25, no. 18S, 20 June 2007 (2007-06-20), pages 8082
DRUGS OF THE FUTURE, vol. 28, no. 5, 2003, pages 425 - 431
EMENS, L.A. ET AL., CURR. OPINION MOL. THER., vol. 3, no. 1, 2001, pages 77 - 84
FOLKMAN ET AL., SCIENCE, vol. 221, 1983, pages 719
G.W. MULLER ET AL., BIOORG & MED CHEM LETT., vol. 8, 1998, pages 2669 - 2674
G.W. MULLER ET AL., J MED CHEM., vol. 39, no. 17, 1996, pages 3238 - 3240
GALUSTIAN C ET AL., EXPERT OPIN PHARMACOTHER., vol. 10, 2009, pages 125 - 133
GILMAN ET AL.: "Goodman and Gilman's: The Pharmacological Basis of Therapeutics", MCGRAW HILL
GLADMAN: "Current concepts in psoriatic arthritis", CURRENT OPINION IN RHEUMATOLOGY, vol. 14, 2002, pages 361 - 366
HIGGINS, J.J. ET AL., NEUROLOGY, vol. 63, 2004, pages 1927 - 1931
HOHBERGER B. ET AL., FEBS LETT, vol. 583, 2009, pages 633 - 637
HOOGENBOOM ET AL., J. MOL. BIOL., vol. 227, 20 September 1991 (1991-09-20), pages 381 - 388
ITO, T. ET AL., SCIENCE, vol. 327, 2010, pages 1345 - 1350
JAKOBOVITS ET AL., NATURE, vol. 362, 1993, pages 255 258
JAKOBOVITS ET AL., PROC. NATL. ACAD. SCI., vol. 90, 1993, pages 2551
JALKANEN ET AL., J. CELL. BIOL., vol. 101, 1985, pages 976 - 985
JALKANEN ET AL., J. CELL. BIOL., vol. 105, 1987, pages 3087 - 3096
JEMAL A ET AL., CA CANCER J CLIN, vol. 57, no. 1, 2007, pages 43 - 66
JENNIFER H.; ANOLIK ET AL., CLINICAL IMMUNOLOGY, vol. 122, no. 2, February 2007 (2007-02-01), pages 139 - 145
JENS T. CARSTENSEN: "Drug Stability: Principles & Practice", 1995, MARCEL DEKKER, pages: 379 - 380
JO, S. ET AL., J. NEUROCHEM, vol. 94, 2005, pages 1212 - 1224
JONES ET AL.: "Pharmaceutical Cocrystals: An Emerging Approach to Physical Property Enhancement", MRS BULLETIN, vol. 31, 2006, pages 875 - 879
JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 92, no. 3, 2000, pages 205 - 216
K. STAHNKE ET AL., BLOOD, vol. 98, 2001, pages 3066 - 3073
KABAT ET AL., ANN. ACAD. SCI., vol. 190, 1971, pages 382 - 391
KABAT ET AL.: "Sequences of Proteins of Immunological Interest", 1991, NIH PUBLICATION NO. 91-3242
KABAT ET AL.: "Sequences of Proteins of Immunoloy-ical Interest", 1991, U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495
L.G. CORRAL ET AL., ANN. RHEUM. DIS., vol. 58, no. I, 1999, pages 1107 - 1113
LENZ G ET AL., PROC NATL ACAD SCI U S A, vol. 105, 2008, pages 13520 - 13525
LENZ, G. ET AL., SCIENCE, vol. 319, 2008, pages 1676 - 1679
LIST ET AL., J CLIN. ONCOL., vol. 8, 1990, pages 1424
LOWE; CHENG, DRUGS OF THE FUTURE, vol. 17, no. 9, 1992, pages 799 - 807
M. AKLILU ET AL., ANNALS OF ONCOLOGY, vol. 15, 2004, pages 1109 - 1114
MARDIS, E.R. ET AL., N. ENGL. J. MED., vol. 361, 2009, pages 1058 - 1066
MARKS ET AL., J. MOL. BIOL., vol. 222, no. 3, 5 December 1991 (1991-12-05), pages 581 - 597
MARRIOTT, J.B. ET AL., EXPERT OPIN. BIOL. THER., vol. 1, no. 4, 2001, pages 1 - 8
MULLIS ET AL., COLD SPRING HARBOR SYMP. QUANT. BIOL., vol. 51, 1987, pages 263
NGO V.N. ET AL., NATURE, vol. 470, 2011, pages 115 - 119
PARSONS, D.W. ET AL., SCIENCE, vol. 321, 2008, pages 1807 - 1812
PENICHET, M.L.; MORRISON, S.L., J. IMMUNOL. METHODS, vol. 248, 2001, pages 91 - 101
PLUCKTHUN: "The Pharmacology of Monoclonal Antibodies", vol. 113, 1994, SPRINGER-VERLAG, pages: 269 - 315
ROITT, I.; BROSTOFF, J; KALE, D.: "Immunology", 1993, MOSBY, ST. LOUIS, MO., pages: 17.1 - 17.12
RUDDY ET AL.: "Rheumatology", vol. 2, 2001, pages: 1071
S.W. BURCHIEL ET AL.: "Tumor Imaging: The Radiochemical Detection of Cancer", 1982, MASSON PUBLISHING INC., article "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments."
SAMBROOK ET AL.: "Molecular Cloning; A Laboratory Manual", 1989
SCHULTHEISS; NEWMAN: "Pharmaceutical Cocrystals and Their Physicochemical Properties", CRYSTAL GROWTH & DESIGN, vol. 9, no. 6, 2009, pages 2950 - 2967, XP055011939, DOI: doi:10.1021/cg900129f
SCOPES: "Protein Purification: Principles and Practice", 1987, SPRINGER VERLAG
See also references of EP2702410A2
SHACKELFORD, D.B.; SHAW, R.J., NATURE REV. CANCER, vol. 9, 2009, pages 563 - 575
SHAN; ZAWOROTKO: "The Role of Cocrystals in Pharmaceutical Science", DRUG DISCOVERY TODAY, vol. 13, no. 9-10, 2008, pages 440 - 446, XP022649919, DOI: doi:10.1016/j.drudis.2008.03.004
STAUDT ET AL., ANN. REV. MED., vol. 53, 2002, pages 303 - 318
STOCKDALE: "Medicine", vol. 3, 1998
TAYLOR ET AL., NATURE, vol. 297, 1982, pages 307
TAYLOR, L. D. ET AL., NUCL. ACIDS RES., vol. 20, 1992, pages 6287 - 6295
THERASSE ET AL., J. NATL. CANCER INST, vol. 92, 2000, pages 205 - 16
THOME, M. ET AL.: "Antigen receptor signaling to NF-kappaB via CARMA1, BCL10, and MALT1, art. nr. a003004", COLD SPRING HARB PERSPECT BIOL., vol. 2, 2010
TRASK: "An Overview of Pharmaceutical Cocrystals as Intellectual Property", MOLECULAR PHANNACEUTICS, vol. 4, no. 3, 2007, pages 301 - 309, XP008098803, DOI: doi:10.1021/mp070001z
VISHWESHWAR ET AL.: "Pharmaceutical Co-Crystals", J. PHARM. SCI., vol. 95, no. 3, 2006, pages 499 - 516

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9611465B2 (en) 2009-05-25 2017-04-04 Celgene Corporation Pharmaceutical composition containing core factor involved in proliferation and differentiation of central nervous cell
US9090585B2 (en) 2011-03-28 2015-07-28 Deuterx, Llc 2,6-dioxo-3-deutero-piperdin-3-yl-isoindoline compounds
US10047151B2 (en) 2011-04-29 2018-08-14 Celgene Corporation Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
US9365640B2 (en) 2011-04-29 2016-06-14 Celgene Corporation Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
WO2014004990A3 (en) * 2012-06-29 2014-06-12 Celgene Corporation Methods for determining drug efficacy using cereblon-associated proteins
WO2014004990A2 (en) * 2012-06-29 2014-01-03 Celgene Corporation Methods for determining drug efficacy using cereblon-associated proteins
US9857359B2 (en) 2012-06-29 2018-01-02 Celgene Corporation Methods for determining drug efficacy using cereblon-associated proteins
US9587281B2 (en) 2012-08-14 2017-03-07 Celgene Corporation Cereblon isoforms and their use as biomarkers for therapeutic treatment
US9694015B2 (en) 2012-09-10 2017-07-04 Celgene Corporation Methods for the treatment of locally advanced breast cancer
WO2014039960A1 (en) * 2012-09-10 2014-03-13 Celgene Corporation Methods for the treatment of locally advanced breast cancer
WO2014071280A1 (en) * 2012-11-05 2014-05-08 Celgene Corporation Treatment of cancer with pomalidomide in a renally impaired subject
US11820720B2 (en) 2013-01-14 2023-11-21 Salarius Pharmaceuticals, Inc. 3-(5-substituted-4-oxoquinazolin-3(4H)-yl)-3-deuteropiperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US11040925B2 (en) 2013-01-14 2021-06-22 Deuterx, Llc 3-(5-substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US10202316B2 (en) 2013-01-14 2019-02-12 Deuterx, Llc 3-(5-substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US9540340B2 (en) 2013-01-14 2017-01-10 Deuterx, Llc 3-(5-substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US9913845B2 (en) 2013-03-14 2018-03-13 Deuterx, Llc 3-(substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US11491156B2 (en) 2013-03-14 2022-11-08 Deuterx, Llc 3-(substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US10555946B2 (en) 2013-03-14 2020-02-11 Deuterx, Llc 3-(substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
US9290475B2 (en) 2013-03-14 2016-03-22 Deuterx, Llc 3-(substituted-4-oxoquinazolin-3(4H)-yl)-3-deutero-piperidine-2,6-dione derivatives and compositions comprising and methods of using the same
JP2016521280A (en) * 2013-05-03 2016-07-21 セルジーン コーポレイション How to treat cancer with combination therapy
JP2020078323A (en) * 2013-11-06 2020-05-28 アメリカ合衆国 Method for subtyping lymphoma types by means of expression profiling
EP3594359A1 (en) * 2013-11-06 2020-01-15 The United States of America, as represented by the Secretary, Department of Health and Human Services Method for subtyping lymphoma types by means of expression profiling
WO2015069790A1 (en) * 2013-11-06 2015-05-14 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for subtyping lymphoma types by means expression profiling
US11574704B2 (en) 2013-11-06 2023-02-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for subtyping lymphoma types by means of expression profiling
JP2017502686A (en) * 2013-11-06 2017-01-26 アメリカ合衆国 Methods for subtyping lymphoma types by expression profiling
JP7016129B2 (en) 2013-11-06 2022-02-04 アメリカ合衆国 Methods for subtyping lymphoma types by expression profiling
US10607717B2 (en) 2013-11-06 2020-03-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Method for subtyping lymphoma types by means of expression profiling
AU2014360328B2 (en) * 2013-12-06 2021-04-01 Celgene Corporation Methods for determining drug efficacy for the treatment of diffuse large B-cell lymphoma, multiple myeloma, and myeloid cancers
KR102299801B1 (en) * 2013-12-06 2021-09-10 셀진 코포레이션 Methods for Determining Drug Efficacy for the Treatment of Diffuse Large B-Cell Lymphoma, Multiple Myeloma, and Myeloid Cancers
IL278381B1 (en) * 2013-12-06 2024-04-01 Celgene Corp Methods for determining drug efficacy for the treatment of diffuse large b-cell lymphoma, multiple myeloma, and myeloid cancers
JP2017503481A (en) * 2013-12-06 2017-02-02 セルジーン コーポレイション Methods of treating hematological cancer and the use of biomarkers as predictors of clinical sensitivity to immunomodulatory therapy
KR20160090345A (en) * 2013-12-06 2016-07-29 셀진 코포레이션 Methods for Determining Drug Efficacy for the Treatment of Diffuse Large B-Cell Lymphoma, Multiple Myeloma, and Myeloid Cancers
EP3077547A4 (en) * 2013-12-06 2017-11-08 Celgene Corporation Methods for treating hematological cancers and the use of biomarkers as a predictor of clinical sensitivity to immunomodulatory therapies
JP2017501400A (en) * 2013-12-06 2017-01-12 セルジーン コーポレイション Method for determining the efficacy of treatment of diffuse large B-cell lymphoma, multiple myeloma, and bone marrow cancer
US10996215B2 (en) 2013-12-06 2021-05-04 Celgene Corporation Methods for determining drug efficacy for the treatment of diffuse large B-cell lymphoma, multiple myeloma, and myeloid cancers
EP3077548A4 (en) * 2013-12-06 2017-08-30 Celgene Corporation Methods for determining drug efficacy for the treatment of diffuse large b-cell lymphoma, multiple myeloma, and myeloid cancers
WO2015108889A1 (en) * 2014-01-15 2015-07-23 Celgene Corporation Formulations of 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione
US10092555B2 (en) 2014-06-27 2018-10-09 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases
US11419861B2 (en) 2014-06-27 2022-08-23 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases
EP3827836A1 (en) 2014-06-27 2021-06-02 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other e3 ubiquitin ligases
US10668057B2 (en) 2014-06-27 2020-06-02 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases
EP3334844A4 (en) * 2015-08-12 2019-11-06 Celgene Corporation Methods for treating solid tumors and the use of biomarkers as a predictor of clinical sensitivity to immunomodulatory therapies
US9809603B1 (en) 2015-08-18 2017-11-07 Deuterx, Llc Deuterium-enriched isoindolinonyl-piperidinonyl conjugates and oxoquinazolin-3(4H)-yl-piperidinonyl conjugates and methods of treating medical disorders using same
US10830762B2 (en) 2015-12-28 2020-11-10 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases
US11733233B2 (en) 2015-12-28 2023-08-22 Celgene Corporation Compositions and methods for inducing conformational changes in cereblon and other E3 ubiquitin ligases

Also Published As

Publication number Publication date
KR20140024914A (en) 2014-03-03
AU2012249491B2 (en) 2016-12-15
AU2017201674A1 (en) 2017-03-30
CA2834535A1 (en) 2012-11-01
JP6016892B2 (en) 2016-10-26
IL229114A0 (en) 2013-12-31
US9365640B2 (en) 2016-06-14
JP6389217B2 (en) 2018-09-12
MX2013012564A (en) 2015-01-12
EP3096142A3 (en) 2017-03-08
JP2014514579A (en) 2014-06-19
US20120322073A1 (en) 2012-12-20
MX353482B (en) 2018-01-16
CN103688176A (en) 2014-03-26
JP2017037081A (en) 2017-02-16
AU2012249491A1 (en) 2013-11-14
US10047151B2 (en) 2018-08-14
NZ617142A (en) 2015-11-27
IL229114B (en) 2018-01-31
EP2702410A2 (en) 2014-03-05
US20160319005A1 (en) 2016-11-03
WO2012149299A3 (en) 2013-06-27
EP3096142A2 (en) 2016-11-23
ZA201308111B (en) 2017-04-26

Similar Documents

Publication Publication Date Title
US10047151B2 (en) Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
US20190388429A1 (en) Methods of treating cancer using 3-(4-((4-(morpholinomethyl)benzyl)oxy)-1-oxoisoindolin-2-yl)piperidine-2,6-dione
US20180055844A1 (en) Methods of treating cancer using 3-(5-amino-2-methyl-4-oxo-4h-quinazolin-3-yl)-piperidine-2,6-dione
AU2011224166B2 (en) Methods for the treatment of non-Hodgkin&#39;s lymphomas using lenalidomide, and gene and protein biomarkers as a predictor
US20180238886A1 (en) Methods for treating hematological cancer and the use of biomarkers as a predictor for responsiveness to treatment compounds
NZ617142B2 (en) Methods for the treatment of cancer and inflammatory diseases using cereblon as a predictor
US20200118646A1 (en) Methods of classifying diffuse large b-cell lymphoma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12726264

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2014508592

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2834535

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/012564

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012726264

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012249491

Country of ref document: AU

Date of ref document: 20120427

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137031674

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013027861

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013027861

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131029